
Lawrence Berkeley National Laboratory
LBL Publications

Title
Porting WarpX to GPU-accelerated platforms

Permalink
https://escholarship.org/uc/item/4f28s6b2

Authors
Myers, A
Almgren, A
Amorim, LD
et al.

Publication Date
2021-12-01

DOI
10.1016/j.parco.2021.102833

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f28s6b2
https://escholarship.org/uc/item/4f28s6b2#author
https://escholarship.org
http://www.cdlib.org/

Porting WarpX to GPU-accelerated platforms
A. Myersa, A. Almgrena, L. D. Amorima, J. Bella, L. Fedelie, L. Geb,a, K. Gotta, D. P. Grotec,
M. Hoganb, A. Huebla, R. Jambunathana, R. Lehea, C. Ngb, M. Rowana, O. Shapovala,
M. Thévenetd, J.-L. Vaya, H. Vincentie, E. Yanga, N. Zaïme, W. Zhanga, Y. Zhaoa and E. Zonia
aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
bSLAC National Accelerator Laboratory Menlo Park, CA 94025, USA
cLawrence Livermore National Laboratory, Livermore, CA 94550, USA
dDeutsches Elektronen Synchrotron (DESY), Hamburg, Hamburg 22607, Germany
eLIDYL, CEA-Université Paris-Saclay, CEA Saclay, 91 191 Gif-sur-Yvette, France

ART ICLE INFO
Keywords:
Exascale Computing
Particle-in-Cell Methods
Accelerator Modelling

ABSTRACT
WarpX is a general purpose electromagnetic particle-in-cell code that was originally designed to run
on many-core CPU architectures. We describe the strategy followed to allow WarpX to use the GPU-
accelerated nodes on OLCF’s Summit supercomputer, a strategy we believe will extend to the upcom-
ing machines Frontier and Aurora. We summarize the challenges encountered, lessons learned, and
give current performance results on a series of relevant benchmark problems.

1. Introduction
WarpX [20] is a fully electromagnetic Particle-in-Cell

(PIC) code that is being developed as part of the US Depart-
ment of Energy’s Exascale Computing Project [8]. Origi-
nally designed for particle accelerator modelling, and in par-
ticular for the study of laser- and beam-driven wakefield ac-
celerators, it has also been used to study several other topics
in the field of laser-plasma interaction, such as probing the
onset of Quantum Electrodynamics (QED) in extreme fields
and laser-ion acceleration.

WarpX implements thewell-known electromagnetic PIC
method for solving the motion of relativistic, charged par-
ticles in the presence electromagnetic fields. In addition,
it also includes support for many advanced features, such
as: perfectly matched layers (PMLs) [16], a pseudo-spectral
(PSATD) Maxwell solver [23], and multi-physics options
such a ionization, QED pair creation [14, 10], a QED vac-
uumpolarization solver [5], and binary collisions [15]. WarpX
currently supports 2D, 3D and azimuthally decomposed ge-
ometries [12] and has the ability to operate in a Lorentz-
boosted reference frame [18]. It also includes support for
mesh refinement and dynamic load balancing through the
AMReX library [26].

WarpX was originally designed with many-core archi-
tectures in mind. While the high-level operations such as
time-stepping and MPI parallelization were implemented in
C++ usingAMReX data structures, the core PIC operations,
such as current deposition, field gathering, and various par-

ORCID(s): 0000-0001-8427-8330 (A. Myers); 0000-0003-2103-312X (A.
Almgren); 0000-0002-1445-0032 (L.D. Amorim); 0000-0002-7215-4178 (L.
Fedeli); 0000-0003-3244-5525 (K. Gott); 0000-0002-4057-8582 (D.P. Grote);
0000-0003-1943-7141 (A. Huebl); 0000-0001-9432-2091 (R. Jambunathan);
0000-0002-3656-9659 (R. Lehe); 0000-0003-2406-1273 (M. Rowan);
0000-0003-4003-4507 (O. Shapoval); 0000-0001-7216-2277 (M. Thévenet);
0000-0002-0040-799X (J.-L. Vay); 0000-0002-9839-2692 (H. Vincenti);
0000-0002-9319-4216 (E. Yang); 0000-0002-9582-5894 (N. Zaïm);
0000-0001-8092-1974 (W. Zhang); 0000-0003-4362-3630 (Y. Zhao);
0000-0001-5662-4646 (E. Zoni)

ticle pushers and field solvers, were handled by the PIC-
SAR library of Fortran kernels [22]. These routines were
highly optimized for the Intel’s Knight’s Landing architec-
ture found on supercomputers such as NERSC’s Cori and
ALCF’s Theta platforms and featured hand-vectorized ver-
sions of the core PIC operations. Related works presenting
early adoptions of accelerator hardware in PIC codes are pre-
sented in Refs. [2, 3, 17, 22].

As the ECP focus shifted towards GPU-based machines
such as Summit, Frontier, and Aurora, the question natu-
rally arose about what to do with the Fortran kernels in PIC-
SAR. CUDA Fortran provided a way forward for platforms
with NVIDIA hardware such as Summit [21], but it was not
clear what support for Fortran would look like on AMD or
Intel hardware. Likewise, OpenACC provided an easy-to-
use model for offloading Fortran routines to NVIDIA GPUs,
but again it was not clear how that would work with non-
NVIDIA GPUs and compiler support was limited to a sin-
gle vendor. OpenMP offered better prospects for portability;
however, early implementations suffered performance prob-
lems when compared to OpenACC on NVIDIA hardware.

Ultimately, the choice was made to port the PIC kernels
in PICSAR from Fortran to C++, and to offload kernels us-
ing either CUDA, HIP, or DPC++, depending on whether
NVIDIA, AMD, Intel hardware is targeted. This removed
any need for mixed language programming, which adds sub-
stantial complication to the codebase and also defeats im-
portant compiler optimizations such as inlining. Addition-
ally, C++ usually gets better and, importantly, earlier sup-
port from vendors, owing to its prominence in industry rel-
ative to Fortran. Finally, CUDA, HIP, and DPC++ offer a
relatively consistent programmingmodel across all three tar-
get platforms. Any implementation differences between the
three could be entirely hidden in a performance portability
layer; in our case, in the ParallelFor routines in AMReX
(see Section 2.5). In this manner, NIVIDA, AMD, and Intel
GPUs could all be supported, with little to no change to the

A. Myers et al.: Preprint submitted to Elsevier Page 1 of 10

ar
X

iv
:2

10
1.

12
14

9v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
8

Ja
n

20
21

Porting WarpX to GPU platforms

WarpX code required.
Today, WarpX is a C++14 application with an optional,

standardized Python interface (PICMI) that can be used to
drive simulations interactively[4], and it runs on NVIDIA,
AMD, and Intel GPUs. The core of the GPU support is the
ParallelFor kernel launching method fromAMReX. In what
follows, we give a brief overview of the features in AMReX
that WarpX uses to enable parallelization and GPU support.
Then, we summarize several key lessons learned from the
experience of scaling up the code on Summit. In particu-
lar, we discuss the importance of memory management, the
importance of optimizing for memory footprint as well as
run time, the importance of optimizing parallel communi-
cation routines, and the importance of properly utilizing the
memory hierarchy. Finally, we will present weak and strong
scaling results from a uniform plasma problem setup and per-
formance numbers obtained on a plasma acceleration stage
benchmark problem.

2. Parallelization
WarpX leverages the AMReX framework for paralleliza-

tion and GPU offloading. In what follows we summarize
the main features of the hierarchical parallelism model that
WarpX uses to run on multi-node CPU and GPU platforms.
2.1. Domain Decomposition

WarpX makes use of the AMReX-provided tools for de-
scribing block-structured adaptive mesh refinement (AMR)
hierarchies. From the simplest to the most complex, these
are the IntVect, which describes a point in an integer in-
dex space; the Box, which describes a region in the same
index space and consists of low- and high- end IntVects plus
a third IntVect that describes the staggering (i.e. is the box
cell-, node- face, or edge-centered); the BoxArray, which de-
scribes a collection of Boxes at a given level of refinement;
and the DistributionMapping, which describes how each of
those Boxes is mapped to MPI ranks. Vector<BoxArray> and
Vector<DistributionMapping> then describe the mesh hierar-
chy across multiple levels of refinement. When used to de-
scribe a block in an AMR hierarchy like this, we use the term
‘grid‘ interchangeably with Box.

DistributionMappings can be user-generated, or AMReX
can generate them for a given BoxArray using a number of al-
gorithms: round robin, knapsack, and space filling curve. By
default, the boxes in WarpX are assigned to MPI ranks ac-
cording to the space filling curve algorithm, which attempts
to put nearby boxes on the same rank. When dynamic load
balancing is employed, the user can select to use either space
filling curve, which attempts to maintain spatial locality, or
knapsack, which provides the most flexibility to achieve a
balanced work distribution.
2.2. Mesh and particle data structures

The basicmesh data structure inAMReX is the FArrayBox,
which is a multi-dimensional array of floating point values
defined on a given Box. FArrayBoxes can be single- or multi-
component and used to represent scalar or vector physical

quantities. In the multi-component case, the components are
stored in a Struct-of-Array style. A distributed collection of
FArrayBoxes defined on a given BoxArray and Distribution-

Mapping is called a MultiFab. The MultiFab data structure is
what stores the core mesh data fields in WarpX - the electric
and magnetic fields, the current density, and so forth.

The core particle data structure inAMReX is the Particle,
which consists of a collection of real and integer compo-
nents. InWarpX, themajority of these components are stored
in Struct-of-Array style. The exceptions are the particle po-
sitions and a 64-bit integer identification number, which are
stored together in a separate struct.

A ParticleContainer is a distributed collection of parti-
cles associated with a givenAMRhierarchy. InWarpX, each
particle species (driver beam, plasma elections, ions, etc...)
is stored in a separate ParticleContainer. Particles are as-
signed to AMR levels and grids based on their physical po-
sitions. The particles in the ParticleContainer can then be
looped over grid-by-grid, and PIC operations such as field
gathering, particle pushing, and current deposition can be
performed.
2.3. Hierarchical Parallelism

The above data structures naturally lend themselves to an
“MPI+X" hierarchical approach to parallelism, where "X" is
one of OpenMP, CUDA, HIP, or DPC++ for on-node accel-
erated compute. Boxes are assigned to MPI tasks, and we
typically use a form of over decomposition so that each MPI
tasks is responsible for processing multiple boxes. This al-
lows for more flexible grid structures and also aids load bal-
ancing via swapping boxes across ranks. AMReX provides
MultiFab and ParticleContainer iterator objects that can in-
struct each rank to loop over their local grids, processing
each one in turn. When processing individual grids, an ac-
celerated compute backend such as OpenMP or CUDA can
be selected to perform the actual computations. See the sec-
tion on ParallelFor for more information.
2.4. Parallel Communication routines

Communicatingmesh and particle data betweenMPI ranks
is handled by the AMReX framework. In particular, WarpX
makes use of the following parallel communication routines:

• FillBoundary: This method is used to fill guard cells
for the mesh data (e.g. the electric and magnetic field
components, and current / charge densities). It fills the
data in the guard cells with the (possibly more recent)
data from the corresponding valid cells. Here, "valid"
refers to cells that are uniquely owned by the grid in
question, as opposed to ghosted copies that may exist
on other grids / MPI processes.

• SumBoundary: This operation is analogous to Fill-

Boundary, except that instead of copying from valid to
guard, it takes the values in the ghost cells and adds
them to corresponding valid cells. This is useful when
doing current and charge deposition operations on par-
ticles that are near the edge of grid boundaries. These

A. Myers et al.: Preprint submitted to Elsevier Page 2 of 10

Porting WarpX to GPU platforms

particles add some of their weights to guard cells, and
these contributions are summed to the proper valid
cell by the SumBoundary method.

• SyncNodal: This function is used when staggered or
node-centered grids are employed to represent physi-
cal quantities, for example, when using the Yee grid to
represent E, B, and J. In this case, some points in the
discretization are represented on multiple grids and
potentially multiple MPI ranks. Note that, unlike in
the cell-centered case, no one grid can be said to u-
niquely “own" these points. To prevent spurious nu-
merical effects, it is necessary to synchronize these
shared nodal points so that they have exactly the same
values to machine precision. The SyncNodal method
accomplishes this. Several different options for de-
ciding which value to use are implemented, e.g. sim-
ple or weighted averaging. By default, WarpX simply
chooses an arbitrary value as the ‘winner‘ and over-
rides the others.

• ParallelCopy: This is the most general form of par-
allel communication for mesh data in AMReX. It per-
forms copy on intersection from one MultiFab to an-
other, even when those MultiFabs have different Box-
Arrays and DistributionMappings. This is neededwhen,
for example, copying data between different levels of
refinement, performing regridding or load balancing
operations, and when copying data between the PML
grids and the rest of the domain.

• Particle Redistribution: This refers to putting parti-
cles back on the proper level and grid after they have
been pushed. AMReX includes two versions of this
operation, one in which the particles are assumed to
only move between neighboring ranks, and another in
which they are allowed tomove between any two ranks
in the MPI communicator. The former, local version
is the one used most often during normal time step-
ping, while the latter version is used when performing
load balancing.

These parallel communication routines have been opti-
mized for hybrid CPU/GPU platforms, in particular, Sum-
mit. All run fully on the GPUs, meaning that they do not
trigger any unnecessary host/device copies of mesh or par-
ticle data. Communication has been refactored to reduce
the number of GPU kernels launched, in particular when
performing packing and unpacking operations on MPI send
and receive buffers (see Section 3.3). Finally, WarpX can
take advantage of gpu-aware MPI implementations that can
operate directly on device data pointers, if one is available.
This operation can be enabled using a runtime option. When
turned off, right before the MPI sends are performed, the
data to be sent is copied into pinned memory buffers on the
host and the MPI exchanges are made between host memory
buffers instead.

2.5. ParallelFor
The core of the GPU support in WarpX consists of a se-

ries of ParallelFor functions provided by theAMReX frame-
work. These are similar to those provided by the perfor-
mance portability layers Kokkos [6] and RAJA [1], but have
been tailored towards the needs of structured grid applica-
tions. The idea of these functions is that they separate the
details of how the loop is performed from the loop body,
which describes the operation done on each elements. The
body is supplied using C++ lambda functions, which cap-
ture (device) variables from the surrounding scope. When
amrex::ParallelFor is compiled with CUDA as the backend,
they translate into a GPU kernel launch. When they are com-
piled without GPU support, they translate into a normal for
loop on the host. Using this approach, a single codebase
can be maintained that can run on CPUs and on multiple
GPU platforms. CPU loops can be further tiled for individ-
ual threads to aid vectorization on CPUs, which is outside of
the scope for this GPU-focused paper and thus omitted for
brevity.

Listings 1 and 2 show two examples of ParallelFor. The
first specifies the loop bounds using an AMReX Box object,
which results in a 3-dimensional loop over the cells in the
box. The second shows a one-dimensional ParallelFor, which
loops over the particles in a grid.

1 amrex : : P a r a l l e l F o r (bx ,
2 [=] AMREX_GPU_DEVICE (i n t i , i n t j , i n t k)

noexcep t
3 {
4 d s t a r r (i , j , k , 0) = s r c a r r (i , j , k , 0) ;
5 }) ;
Listing 1: A ParallelFor routine operating on a single box
of mesh data. In this example case, the threading will be
performed over the cells of a 3-dimensional box. AMReX
arrays use Fortran index order.

1 amrex : : P a r a l l e l F o r (np ,
2 [=] AMREX_GPU_DEVICE (i n t i)
3 {
4 amp l i t u d e [i] = 0 . 0 _ r t ;
5 }) ;
Listing 2: A one-dimensional ParallelFor used to thread
over all the particles in a grid.

2.6. Reductions
Parallel reductions are useful in many places in WarpX,

including both “on-node" reductions over OpenMP threads
(or other, GPU-based compute backends) and “off-node" re-
ductions over MPI ranks. For example, these type of re-
ductions are found in diagnostic functions for particles and
beams that act as an in situ data reduction technique, which
can be performed in high frequency compared to costly full
data output.

Performing these operations efficiently in parallel in a
way that is portable between CPU and various GPU plat-
forms is non-trivial. To aid in this task, AMReX provides
generic functions for performing reduction operations in a

A. Myers et al.: Preprint submitted to Elsevier Page 3 of 10

Porting WarpX to GPU platforms

performance-portable way. These functions can be used at
the level of contiguous arrays by passing in data pointers, or
they can work on higher-level AMReX data containers to,
e.g., perform reductions over all the cells in a MultiFab, or
all the particles in a ParticleContainer.

A feature of the AMReX implementation of parallel re-
ductions is that it provides an API for performing multiple
reductions in one pass on any combination of data types and
reduction operators. When running on GPUs, all these op-
erations would be done in a single kernel launch. These re-
ductions operations have been tested and implemented for
CUDA, HIP, and DPC++, as well as on CPU platforms us-
ing OpenMP.

3. Lessons from Summit
In the following section, we summarize some key lessons

learned from our experience of porting WarpX to Summit.
These fall under three main areas: issues relating to memory
management and overall footprint, issues relating to parallel
communication, and finally, the importance of cache utiliza-
tion on GPU platforms.
3.1. Memory Optimization

With the trend towards GPU computing, the importance
of optimizing codes for memory consumption has increased.
Consider the example of Summit. Summit has 4608 nodes,
each of which has 608 GB of host memory (512 DDR4 +
96 HBM2), for a system total of 2.8 Petabytes. This is con-
siderably more than Cori’s KNL nodes, which have a total
aggregate memory of 1.1 Petabytes. However, if we con-
sider only device memory, each Summit node has 6 NVIDIA
V100 GPUs with 16 GB of memory each, for a total of only
440 TB, substantially less than Cori phase II. This means
that, provided that one wants to run in a mode in which your
problem entirely fits on the GPUs (which is desirable con-
sidering the performance penalties associated with frequent
host / device data transfers), one actually cannot run as big
of a problem on Summit than one could fit on Cori. This
makes reducing the memory footprint of a simulation code
quite impactful in terms of enabling production-level science
calculations.

Reducing the memory footprint can have performance
implications as well. Originally in WarpX, every particle
stored persistent values for the electric and magnetic fields
interpolated to the particle’s position. In addition to the stor-
age overhead, these values need to be communicated every
time particles change MPI domains, and shuffled around in
memory every time particles are sorted (see Section 3.4.2).
Additionally, if the performance of a GPU kernel is memory-
bound, meaning that its performance is limited by the rate
at which data can be transferred from main memory to the
streaming multiprocessors on the GPUs, then increasing the
arithmetic intensity of those kernels by streaming less data
and recomputing values on-the-fly can improve their overall
performance.

Recently,WarpX removed the persistent electric andmag-
netic fields at the particle positions in favor of re-gathering

these values inside GPU kernels as they are needed. For this,
the field gathering and particle pushing kernels were fused
together in the PIC loop, resulting in less data that needed to
be streamed to the processors in a given timestep. In addi-
tion to reducing the memory footprint by a factor of ≈ 1.6,
this also led to a ≈ 25% percent speedup in the overall run-
time on several key benchmarks. When the field values at
the particle positions are needed more than once in a step,
as, for example, when modelling additional effects such as
ionization or using certain diagnostics, the gather operation
is simply performed multiple times.

Finally, we are currently exploring other means of re-
ducing the overall memory footprint of WarpX, including
exploiting single / mixed precision and employing compres-
sion.
3.2. Memory Arenas

Dynamic memory allocation is many times more expen-
sive on GPU than CPU architectures. This fact, combined
with common programming patterns involving temporary
variables, can lead to drastic performance penalties on GPU
systems. For example, consider the code in Listing 3. This
snippet demonstrates how to loop over mesh data using the
AMReX data structures. The MFIter object instructs each
MPI rank to loop over the grids it owns. For each grid, we
resize a temporary scratch space called tmp, then launch a
ParallelFor kernel to do some calculations using it. The
Elixir is not essential to the point, but it keeps the scratch
space alive in memory until the kernel is finished working
with it - this is needed due to the asynchronous nature of
GPU kernel launches. If every call to resize the buffer ended
up triggering cudaMalloc and cudaFree calls, this could easily
end up becoming the dominant cost of this routine. Another
place this comes up is in out-of-place sorting and partition-
ing operations, which require a temporary buffer in which to
store the result.

One way to mitigate this is to refactor application codes
to keep temporary buffers alive in memory instead of letting
them go out of scope. However, this is error-prone and labor-
intensive. Instead, AMReX provides a number of memory
arena classes, which allocate memory in large chunks and
dole out pieces of it as the application runs. Thus, even
though WarpX makes frequent use of temporary variables,
during most time steps that are no calls to cudaMalloc or
cudaFree.

TheseArenas have a number of different options forman-
aging memory fragmentation; currently, the default in AM-
ReX is to use a "first fit" strategy. AMReX provides memory
arenas that use host, device, pinned, and managed memory.
WarpX uses these Arenas for all of its mesh and particle data
structures. By default, when running on NVIDIA GPUs,
WarpX places all of its core data in managed memory.

1 FArrayBox tmp ;
2 f o r (MFIter mfi (mf) ; mfi . i s V a l i d () ; ++mfi)
3 {
4 c o n s t Box& bx = mf . t i l e b o x () ;
5 tmp . r e s i z e (bx) ;
6 E l i x i r e l i = tmp . e l i x i r () ;

A. Myers et al.: Preprint submitted to Elsevier Page 4 of 10

Porting WarpX to GPU platforms

7 au t o c o n s t& tmp_a r r = tmp . a r r a y () ;
8
9 amrex : : P a r a l l e l F o r (bx ,

10 [=] AMREX_GPU_DEVICE (i n t i , i n t j , i n t k)
noexcep t

11 {
12 compute_tmp (i , j , k , tmp_a r r) ;
13 }
14 }
Listing 3: Example of ParallelFor. This code can be
compiled to run on CPUwith OpenMP or GPUwith CUDA,
HIP, or DPC++.

3.3. Communication Optimization
Once the initial port of WarpX to NVIDIA GPUs was

complete, the initial experience was that compute kernels
such as current deposition and field gathering were much
faster on V100 hardware than on KNL. However, the same
was not true for the AMReX parallel communication rou-
tines. The primary reason for this was that the parallel com-
munication routines involvedmany small, "copy on intersec-
tion" routines between neighboring boxes, especially when
packing and unpacking MPI send and receive buffers. These
operations involved little to no computation but launched
many small kernels that packed and unpacked data buffers.
Thus, the dominant cost in these routines was the latency as-
sociated with the kernel launches, which could be fused into
a fewer number. After optimization, each MPI rank makes
only 1 kernel launch to pack and unpack its MPI buffers,
which led to greatly improved performance on Summit.
3.4. Cache utilization

As with CPU-based many-core architectures, rearrang-
ing computations so that they properly exploit the memory
hierarchy can lead to significant performance increases on
V100 GPUs. In this section, we discuss a case-study in this
effect - specifically, on how periodic sorting of particle data,
so that it is processed in a cache-friendly way, can greatly
improve the performance of PIC operations like field gath-
ering and current deposition on V100. First, however, we
will describe the current deposition algorithm we use, and
how it differs between CPU and GPU runs, in more detail.
3.4.1. Current Deposition

In PIC codes, most operations are straightforward to par-
allelize, since particles can be threaded over and processed
independently without needing to worry about potential race
conditions. Charge and current deposition operations, how-
ever, require special consideration, sincewhen threading over
particles there is the potential for collisions asmultiple threads
may attempt to update the same cell simultaneously.

In WarpX, our approach to concurrent scatter operations
in particle deposition kernels varies depending on whether
we are running with OpenMP or CUDA/HIP/DPC++ as the
parallel backend. With OpenMP, the particles on a grid are
sorted onto smaller sub-regions called tiles. OpenMP threads
are mapping to tiles, which begin processing them simul-
taneously. Each OpenMP thread deposits particles onto its

own, private deposition buffer with enough cells to capture
the support of all the particles on the tile. There is no need
for atomics at this stage, since each thread has its own buffer.
After deposition onto the buffer is complete, the buffer val-
ues are atomically added to the values for the full grid using
atomic writes. Thus atomics are only needed on a per-cell
basis, not a per-particle basis. When running on GPUs, how-
ever, we perform atomics write directly to global memory for
each particle. This, along with periodic sorting, is sufficient
to get good performance on NVIDIA V100 GPUs.
3.4.2. Particle Sorting

Figure 1: The effect of sorting interval (i.e., sorting every
N time steps) and sort bin size on the overall performance
on a uniform plasma benchmark. The x-axis shows the sort
interval, while the y-axis shows the overall time to take 100
steps, including the cost of the sorting. A sort interval > 100
means that the particles are never re-sorted during the run.

Periodic sorting of the particles on each grid by their spa-
tial locations so that particles that are close to each in mem-
ory also interact with cells that are close to each in memory
exploits the memory hierarchy on the GPUsmore effectively
than processing them in an unordered fashion. This is par-
ticularly true in the case that particles are moving with high
velocities, such that they frequently change cells. In that
case, even if particles are sorted at a particular time, they
will rapidly become disordered, leading to significant per-
formance degradation in the particle-mesh operations.

Note that we differentiate between binning, which com-
putes a permutation array that assigns particle indices to cells
with user-defined bin size, and sorting, which uses this per-
mutation array to actually reorder the particle data in mem-
ory. Cache utilization requires full sorting, but for many
operations simply knowing the cell-sorted indices is suffi-
cient. AMReX provides a GPU-capable implementation of
the counting sort operation that can be used to perform both
of these operations. Internally, it is built using a GPU imple-
mentation of parallel prefix sum, which is based on Ref. [13]
and works on NVIDIA, AMD, and Intel GPUs.

In addition to the presented cache-utilization optimiza-
A. Myers et al.: Preprint submitted to Elsevier Page 5 of 10

Porting WarpX to GPU platforms

Figure 2: Roofline analysis of the 3rd-order Esirkepov current
deposition [7] kernel in WarpX on a single V100 GPU, with
and without particle sorting. In the memory streaming limit,
three different lines are shown, corresponding to the band-
widths of the L1 and L2 caches as well as that for the main
high-bandwidth memory (HBM) on the GPU. Likewise, in the
compute-bound regime, two different values are used for the
peak floating point performance: both with and without taking
advantage of fused multiply-add instructions. The arithmetic
intensity (A.I.) is measured three times for each kernel, using
the memory traffic for each level of the memory hierarchy. For
the sorted version, the fact the A.I. is significantly lower for
the L1 and L2 data points shows that we are getting substan-
tial reuse in both levels of cache. Conversely, the fact that the
data points are all on top of each for the unsorted run indicates
that without sorting, the degree of reuse is poor.

Figure 3: Same as Figure 2, but for the fused gather and push
kernel in WarpX. Again, there is substantial cache reuse when
sorting is employed, although for this kernel performance still
appears to be limited by HBM bandwidth, even with sorting.

tion, sorting and/or binning particles is needed for the mod-
eling of particle-particle interactions. The PIC method by
default only models particle-mesh interaction and mesh up-
dates. WarpX implements binary collisions, which depend
on a prior binning of neighboring particles, to address vari-
ous applications in accelerator and beam physics.

Figure 1 shows the results of a parameter study in which
the bin size and sorting interval were varied. For example,
a bin size of 2x2x2 and sorting interval of 4 means that par-

ticles were sorted into 2x2x2 supercells every 4 timesteps.
On this problem, the optimal sorting is to sort by cell (i.e.
a bin size of 1x1x1 every time step, and the difference be-
tween sorting optimally and not sorting at all is a factor of
≈ 7.5, with most of the improvement comings from the cur-
rent deposition and fused gather and push kernels. However,
this very frequent sorting interval for this problem is a spe-
cial because, because the particles in this problem change
cell more often than in most WarpX applications. Currently,
the default in WarpX, used throughout Section 4, is to sort
the particles by their PIC cell every 4 time steps.

Note that, although the Redistribute() function in AM-
ReX does notmaintain this cell-sorted order for particles that
left one grid and been migrated to another, this only applies
to particles that have changed grids - typically only a small
subset of the total that are near the “surface". The bulk of the
particles on a grid will maintain their sorted order in between
Redistribute() calls.

Figures 2 and 3 show the results of a roofline analysis
[24] on the current deposition and fused gather and push ker-
nels in WarpX, which are the two most computationally ex-
pensive operations. Our analysis followed the methodology
of [25]. For this test, we used a uniform plasma setup with 8
particles per cell and gave the particles a large thermal veloc-
ity, so that they frequently change cells. To eliminate effects
associated with unified memory paging, we ran the problem
for a total of 100 steps and only profiled the last one.

The roofline analysis reveals three things. First, as al-
ready demonstrated, sorting the particles gives significantly
better performance on V100 GPUs than not sorting them.
Second, the fact that the arithmetic intensity measured us-
ing the memory bandwidth for the L1 and L2 caches is sig-
nificantly lower than for HBM indicates that, in the sorted
run, we are getting significant reuse in both of these levels
of cache. Third, the arithmetic intensity for the current de-
position for the sorted run is right up against the streaming
limit for the L2 cache. This indicates that the performance of
this kernel is now limited by the L2 cache bandwidth. Gather
and push, on the other hand, is likely still limited by HBM
bandwidth. Taken together, these results suggest that these
kernels should get significantly better performance on the
A100, which has a larger L2 cache and higher HBM band-
width than the V100.

4. Performance Results
In this section, we give current performance results on

Summit for two key benchmark problems. We concentrate
on two areas - the scaling of the code on a uniform plasma
test case and the performance on a plasma accelerator bench-
mark problem.
4.1. Uniform Plasma Scaling
4.1.1. Weak scaling study

In order to test the scaling of WarpX in an idealized set-
ting, as well as to gauge the speedup associated with us-
ing accelerated nodes, we have performed a weak scaling

A. Myers et al.: Preprint submitted to Elsevier Page 6 of 10

Porting WarpX to GPU platforms

study using a uniform plasma setup on OLCF’s Summit su-
percomputer. The base case for this scaling study used a
256 x 256 x 384 domain with a box size of 1283 and ran
on 1 Summit node; thus, on the GPU-accelerated runs, each
GPU was responsible for processing two 1283-sized boxes.
Particles were initially distributed uniformly with 8 parti-
cles per cell. We used the standard Yee FDTD solver for
these runs, with Esirkepov current deposition and third or-
der shape functions. For the weak-scaling study, the number
of Summit nodes were doubled with the number of cells (and
particles therein) in the x-, y-, or z- directions, while hold-
ing everything else constant, maintaining a constant work-
load per node. We continued this process up to 2048 nodes
- about half of the Summit machine. Overhead associated
with time spent in problem initialization, memory allocation,
etc., was minimized by running for a total of 100 steps.

The results are shown in Figure 4. We performed the
above scaling study twice, once using all six GPUs per Sum-
mit node, and again using only the POWER9 CPUs. For
both runs, we used 6 MPI tasks per node. For the GPU-
accelerated runs, we used one GPU per MPI task, and for
the CPU-only case, we used 7 OpenMP threads per task, so
that all 42 cores on the node were active. Using these re-
sults, we can characterize both the weak scaling behavior of
the CPU and GPU versions of the WarpX, as well as see the
overall speedup obtained on Summit from using the acceler-
ators. In both cases, the code scales well up to 2048 nodes.
The weak scaling efficiency, defined as the total time taken
for 100 time steps on 1 node divided by the total taken on
2048 nodes, is 81% for the GPU case and 90% for the CPU
case. The difference in scaling efficiency between the CPU
and GPU can be attributed to the fact that, because the local
work is significantly faster when using the V100s, commu-
nication operations like FillBoundary, which are inherently
harder to scale, become relatively more expensive. Addi-
tionally, the speedup from the accelerators at all scales tested
was a factor of 30. This speedup refers to the total run time,
including time associated with host / device memory traffic
and communication, not to isolated compute kernels.
4.1.2. Strong Scaling study

We have also conducted a series of strong scaling tests,
using a very similar uniform plasma problem setup as before.
The only difference is that the box size has been set to 643, to
allow for more GPUs /MPI tasks to be used as the problem is
strong scaled. There is some overhead associated with doing
this, since with smaller boxes, the surface to volume ratio of
ghost cells is higher. Other than the box size, the parameters
are all the same as before.

We use a series of problem sizes, each scaled up a fac-
tor of 2 in terms of the number of cells and particles in the
domain. For each one, we conduct a series of five runs, in-
creasing the number of MPI tasks by a factor of 2 each time.
Thus, in the fifth run, the run time should have decreased by a
factor of 16, assuming perfect strong scaling. By the time we
have multiplied the number of MPI ranks by 16, this prob-
lem has reached the point where the compute work and the

Figure 4: Results of a weak scaling study on a uniform plasma
setup on Summit. The x-axis shows the number of Summit
nodes, while the y-axis is the number of particles advances per
nanosecond. Both the CPU and GPU versions of the code
scale well, and the overall speedup associated with using the
accelerators is ∼ 30.

communication work take approximately the same amount
of time, so we would not expect the problem to scale further
than that.

The smallest scaling study in this series goes from 1 to
16 nodes, while the largest goes from 256 to 4096, nearly the
entire machine. The scaling efficiency, defined as the time
a run should take assuming perfect strong scaling within a
problem size and perfect weak scaling from the base prob-
lem size divided by the actual run time, is plotted in Figure 5.
The efficiencies after strong scaling by a factor of 16 for each
problem size vary from approximately 70% for the smallest
case to approximately 50% for the largest.
4.2. Plasma Acceleration Stage

The above tests were highly idealized in several ways.
First, the workload was perfectly uniform at initial time, and
approximately uniform at later times, subject only to random
fluctuations in the particle density from cell to cell. Second,
the number of particles per cell, 8, is significantly higher
than used in someWarpX physics applications. Laser-wake-
field acceleration runs, for example, tend to use about 2 par-
ticles per cell on average, which can change the performance
profile of the code. Evaluating WarpX on this important
science scenario, the following setup was used, designed to
mimic the essential features of modelling a single plasma-
accelerator stage from WarpX’s challenge problem. This
is also the benchmark problem used to determine a Figure-
of-Merit (FOM) for the ECP Key-Performance Parameters
(KPP) assessment. As a KPP-1 project, WarpX needs to
show at least a factor of 50 increase in its FOM over the
baseline on the eventual Exascale hardware. In this setup,

A. Myers et al.: Preprint submitted to Elsevier Page 7 of 10

Porting WarpX to GPU platforms

Figure 5: Strong scaling studies for a variety of problem sizes.
Each tick type refers to a different problem size. The x-axis
shows the number of Summit nodes, and the y-axis shows scal-
ing efficiency, defined as the time a run should take assuming
perfect strong scaling within a problem size and perfect weak
scaling from the base problem size, divided by the actual run
time.

an accelerated particle beam is tracked using the moving
window feature in WarpX, in which the simulation domain
itself shifts along with the beam at speed c. Additionally,
the entire simulation is modeled in a Lorentz-boosted refer-
ence frame [18], using a gamma boost of 30. New plasma is
continuously injected at the right-hand side of the domain,
while particles that leave the domain at the left-hand side
are removed from the simulation. The plasma consists of
two particles per cell (one electron and one proton), while
the accelerated beam is comprised of electrons. Mitigating
the numerical Cherenkov instability in the modeling of a rel-
ativistically flowing plasma, the Godrey filter [9] is applied
to the electromagnetic fields prior to gathering them to par-
ticle positions. For the algorithmic options, we have used
the Vay particle pusher [19], the Cole-Karkkainen-Cowan
FDTD solver [11], and energy-conserving field gathering.
We have again used Esirkepov current deposition with 3rd-
order interpolation. To minimize the computer time needed
to conduct these simulations, we initialize the problem to
have the simulation domain entirely filledwith plasma, which
would normally not be the case when modelling an acceler-
ator stage.

To gauge the impact of using accelerated nodes on this
more realistic problem setup, we have measured the FOM on
Summit, defined as

FOM = num_cells ∗ (�+� ∗ ppc)∕avg_time_per_it (1)
where num_cells is the total number of grid points in the

simulation, � is 0.1 as heuristic grid update cost, � is 0.9
for particle update costs, ppc is the average number of par-
ticles per cell, and avg_time_per_it is the average time per
iteration after 1000 steps. We performed this measurement
on 4263 Summit nodes, and extrapolated this number to the
full machine assuming perfect weak scaling. Our baseline

FOM was measured on NERSC’s Cori using the original
Warp code. The baseline FOM value, measured in March
2019 on 6625 Cori nodes and extrapolated to the 9668 on
the full machine, was 2.2e10. The corresponding value on
Summit, measured in July 2020, was 2.5e12, over a factor of
100 improvement from the baseline. Additionally, the best
CPU-only FOM obtained using theWarpX code was 1.0e11,
also measured in March 2019. So there is a substantial (25x)
improvement in our FOMmeasured withWarpX from using
the GPUs on Summit, as compared to Cori. These values
are all summarized in Table 1, along with several other data
points showing the evolution of WarpX’s FOM over time.

Table 1
Progress in the FOM measurement over time. Code: ei-
ther the original Warp code (baseline) or WarpX. Date:
the date when the measurement was taken. Machine:
which computer was used to make the measurement.
Nodes: how many nodes the measurement was per-
formed on; there are 9668 KNL nodes on Cori and 4608
nodes on Summit. FOM: the figure of merit, extrapo-
lated from the number of nodes the measurement was
taken on to the full machine.

Code Date Machine Nodes FOM

Warp 3/2019 Cori (KNL) 6625 2.2e10
WarpX 3/2019 Cori (KNL) 6625 1.0e11
WarpX 6/2019 Summit 32 8.6e11
WarpX 6/2019 Summit 1000 7.8e11
WarpX 9/2019 Summit 2560 6.8e11
WarpX 1/2020 Summit 2560 1.0e12
WarpX 2/2020 Summit 4263 1.2e12
WarpX 6/2020 Summit 4263 1.4e12
WarpX 7/2020 Summit 4263 2.5e12

5. Conclusion
We have summarized the approach taken to porting

WarpX, which was originally designed for many-core CPU
architectures, to take advantage of GPU-accelerated nodes.
This approach is largely based on the amrex::ParallelFor set
of performance portability functions. We have summarized
several key lessons learned from the port, including the im-
portance ofmanagingmemory allocation and the code’s over-
all memory footprint, the importance of minimizing the ef-
fect of kernel launch latency in MPI communication rou-
tines, and the importance of utilizing the cache hierarchy on
V100 GPUs. The GPU port of WarpX scales up to nearly
all of Summit and currently sees good improvements in its
KPP-1 figure of merit on Summit relative to its baseline.

6. Acknowledgements
This research was supported by the Exascale Computing

Project (17-SC-20-SC), a joint project of the U.S. Depart-
ment of Energy’s Office of Science and National Nuclear Se-
curity Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and

A. Myers et al.: Preprint submitted to Elsevier Page 8 of 10

Porting WarpX to GPU platforms

hardware technology, to support the nation’s exascale com-
puting imperative. This work was performed in part under
the auspices of the U.S. Department of Energy by Lawrence
Berkeley National Laboratory under Contract
DE-AC02-05CH11231, SLAC National Accelerator Labo-
ratory under contract AC02-76SF00515, and Lawrence Liv-
ermore National Laboratory under Contract
DE-AC52-07NA27344.

This research used resources of the Oak Ridge Leader-
ship Computing Facility, which is a DOE Office of Science
User Facility supported under Contract
DE-AC05-00OR22725.

WarpX is developed as open source project and avail-
able under https://github.com/ECP-WarpX/WarpX. Presented
code versions correspond to the monthly releases of the code
between 3/2019 and 10/2020. The data that support the find-
ings of this study are available under DOI:10.5281/
zenodo.4277941.

References
[1] Beckingsale, D.A., Burmark, J., Hornung, R., Jones, H., Killian,

W., Kunen, A.J., Pearce, O., Robinson, P., Ryujin, B.S., Scogland,
T.R., 2019. Raja: Portable performance for large-scale scientific
applications, in: 2019 IEEE/ACM International Workshop on Per-
formance, Portability and Productivity in HPC (P3HPC), pp. 71–81.
doi:10.1109/P3HPC49587.2019.00012.

[2] Burau, H., Widera, R., Hönig, W., Juckeland, G., Debus, A., Kluge,
T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M., 2010.
Picongpu: A fully relativistic particle-in-cell code for a gpu cluster.
IEEE Transactions on Plasma Science 38, 2831–2839. doi:10.1109/
TPS.2010.2064310.

[3] Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A.,
Juckeland, G., Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F.,
Schramm, U., Schuchart, J., Widera, R., 2013. Radiative signa-
tures of the relativistic kelvin-helmholtz instability, in: Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ACM, New York, NY, USA. pp.
5:1–5:12. URL: https://github.com/ComputationalRadiationPhysics/
picongpu, doi:10.1145/2503210.2504564.

[4] CAMPACollaboration, . Particle-in-cell modeling interface (PICMI).
URL: https://github.com/picmi-standard/picmi.

[5] Carneiro, P., Grismayer, T., Fonseca, R., Silva, L., 2017. Quantum
electrodynamics vacuum polarization solver. arXiv:1607.04224.

[6] Carter Edwards, H., Trott, C.R., Sunderland, D., 2014. Kokkos: En-
abling manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Computing
74, 3202 – 3216. doi:10.1016/j.jpdc.2014.07.003. domain-Specific
Languages and High-Level Frameworks for High-Performance Com-
puting.

[7] Esirkepov, T., 2001. Exact charge conservation scheme for particle-
in-cell simulation with an arbitrary form-factor. Computer Physics
Communications 135, 144 – 153. doi:10.1016/S0010-4655(00)00228-9.

[8] Exascale Computing Project, . Homepage. URL: https://www.

exascaleproject.org.
[9] Godfrey, B., Vay, J.L., 2014. Suppressing the numerical cherenkov

instability in fdtd pic codes. Journal of Computational Physics 267.
doi:10.1016/j.jcp.2014.02.022.

[10] Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund,
M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.,
2015. Extended particle-in-cell schemes for physics in ultrastrong
laser fields: Review and developments. Phys. Rev. E 92, 023305.
doi:10.1103/PhysRevE.92.023305.

[11] Karkkainen, M., Gjonaj, E., Lau, T., Weiland, T., 2006. Low-
Dispersionwake Field Calculation Tools, in: Proc. Of International

Computational Accelerator Physics Conference, Chamonix, France.
pp. 35–40.

[12] Lifschitz, A., Davoine, X., Lefebvre, E., Faure, J., Rechatin, C.,
Malka, V., 2009. Particle-in-cell modelling of laser–plasma interac-
tion using fourier decomposition. Journal of Computational Physics
228, 1803 – 1814. doi:10.1016/j.jcp.2008.11.017.

[13] Merrill, D., Garland, M., 2016. Single-pass Parallel Prefix Scan with
Decoupled Lookback. Technical Report NVR2016-001. NVIDIA
Research. URL: https://research.nvidia.com/sites/default/files/
pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf.

[14] Nikishov, A., 1970. Pair production by a constant external field. Sov.
Phys. JETP 30, 660.

[15] Pérez, F., Gremillet, L., Decoster, A., Drouin, M., Lefebvre, E., 2012.
Improved modeling of relativistic collisions and collisional ionization
in particle-in-cell codes. Physics of Plasmas 19, 083104. doi:10.1063/
1.4742167.

[16] Shapoval, O., Vay, J.L., Vincenti, H., 2019. Two-step perfectly
matched layer for arbitrary-order pseudo-spectral analytical time-
domainmethods. Computer Physics Communications 235, 102 – 110.
doi:10.1016/j.cpc.2018.09.015.

[17] Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A.,
Meyerov, I., 2016. Co-design of a particle-in-cell plasma simulation
code for intel xeon phi: A first look at knights landing, in: Algorithms
and Architectures for Parallel Processing, Springer International Pub-
lishing, Cham. pp. 319–329. doi:10.1007/978-3-319-49956-7_25.

[18] Vay, J.L., 2007. Noninvariance Of Space- And Time-Scale Ranges
Under A Lorentz Transformation And The Implications For The
Study Of Relativistic Interactions. Physical Review Letters 98,
130405/1–4. doi:10.1103/PhysRevLett.98.130405.

[19] Vay, J.L., 2008. Simulation of beams or plasmas crossing at relativis-
tic velocity. Physics of Plasmas 15, 056701. doi:10.1063/1.2837054.

[20] Vay, J.L., Almgren, A., Amorim, L.D., Bell, J., Ge, L., Gott, K.,
Grote, D.P., Hogan, M., Huebl, A., Jambunathan, R., Lehe, R., Myers,
A., Ng, C., Park, J., Rowan, M., Shapoval, O., Thévenet, M., Zhang,
W., Zhao, Y., Zoni, E., 2020. Toward themodeling of chains of plasma
accelerator stages with WarpX. Journal of Physics: Conference
Series 1596, 012059. URL: https://github.com/ECP-WarpX/WarpX,
doi:10.1088/1742-6596/1596/1/012059.

[21] Vazhkudai, S.S., de Supinski, B.R., Bland, A.S., Geist, A., Sexton,
J., Kahle, J., Zimmer, C.J., Atchley, S., Oral, S., Maxwell, D.E., Lar-
rea, V.G.V., Bertsch, A., Goldstone, R., Joubert, W., Chambreau, C.,
Appelhans, D., Blackmore, R., Casses, B., Chochia, G., Davison, G.,
Ezell, M.A., Gooding, T., Gonsiorowski, E., Grinberg, L., Hanson,
B., Hartner, B., Karlin, I., Leininger, M.L., Leverman, D., Marroquin,
C., Moody, A., Ohmacht, M., Pankajakshan, R., Pizzano, F., Rogers,
J.H., Rosenburg, B., Schmidt, D., Shankar, M., Wang, F., Watson, P.,
Walkup, B., Weems, L.D., Yin, J., 2018. The design, deployment, and
evaluation of the coral pre-exascale systems, in: SC18: International
Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 661–672. doi:10.1109/SC.2018.00055.

[22] Vincenti, H., Lobet, M., Lehe, R., Sasanka, R., Vay, J.L., 2017. An
efficient and portable simd algorithm for charge/current deposition in
particle-in-cell codes. Computer Physics Communications 210, 145
– 154. doi:10.1016/j.cpc.2016.08.023.

[23] Vincenti, H., Vay, J.L., 2016. Detailed analysis of the effects of stencil
spatial variations with arbitrary high-order finite-difference Maxwell
solver. Computer Physics Communications 200, 147–167. doi:10.
1016/j.cpc.2015.11.009.

[24] Williams, S., Waterman, A., Patterson, D., 2009. Roofline: An in-
sightful visual performance model for multicore architectures. Com-
mun. ACM 52, 65–76. doi:10.1145/1498765.1498785.

[25] Yang, C., Kurth, T., Williams, S., 2020. Hierarchical roofline anal-
ysis for gpus: Accelerating performance optimization for the nersc-9
perlmutter system. Concurrency and Computation: Practice and Ex-
perience 32, e5547. doi:10.1002/cpe.5547. e5547 cpe.5547.

[26] Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan,
C., Day, M., Friesen, B., Gott, K., Graves, D., Katz, M.P., Myers, A.,
Nguyen, T., Nonaka, A., Rosso, M., Williams, S., Zingale, M., 2019.

A. Myers et al.: Preprint submitted to Elsevier Page 9 of 10

https://github.com/ECP-WarpX/WarpX
https://doi.org/10.5281/zenodo.4277941
https://doi.org/10.5281/zenodo.4277941
http://dx.doi.org/10.1109/P3HPC49587.2019.00012
http://dx.doi.org/10.1109/TPS.2010.2064310
http://dx.doi.org/10.1109/TPS.2010.2064310
https://github.com/ComputationalRadiationPhysics/picongpu
https://github.com/ComputationalRadiationPhysics/picongpu
http://dx.doi.org/10.1145/2503210.2504564
https://github.com/picmi-standard/picmi
http://arxiv.org/abs/1607.04224
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/S0010-4655(00)00228-9
https://www.exascaleproject.org
https://www.exascaleproject.org
http://dx.doi.org/10.1016/j.jcp.2014.02.022
http://dx.doi.org/10.1103/PhysRevE.92.023305
http://dx.doi.org/10.1016/j.jcp.2008.11.017
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
http://dx.doi.org/10.1063/1.4742167
http://dx.doi.org/10.1063/1.4742167
http://dx.doi.org/10.1016/j.cpc.2018.09.015
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1103/PhysRevLett.98.130405
http://dx.doi.org/10.1063/1.2837054
https://github.com/ECP-WarpX/WarpX
http://dx.doi.org/10.1088/1742-6596/1596/1/012059
http://dx.doi.org/10.1109/SC.2018.00055
http://dx.doi.org/10.1016/j.cpc.2016.08.023
http://dx.doi.org/10.1016/j.cpc.2015.11.009
http://dx.doi.org/10.1016/j.cpc.2015.11.009
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1002/cpe.5547

Porting WarpX to GPU platforms

AMReX: a framework for block-structured adaptive mesh refinement.
Journal of Open Source Software 4, 1370. URL: https://ccse.lbl.
gov/AMReX, doi:10.21105/joss.01370.

A. Myers et al.: Preprint submitted to Elsevier Page 10 of 10

https://ccse.lbl.gov/AMReX
https://ccse.lbl.gov/AMReX
http://dx.doi.org/10.21105/joss.01370

