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Abstract: Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns
(PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs
by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades,
advances in our knowledge of innate immune sensing have enhanced our understanding of the host
immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection,
mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the
expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a
variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral
responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This
review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their
elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated
host immune responses.

Keywords: poxviruses; vaccinia virus; pattern recognition receptors; PKR; RNase L; ZBP1; cGAS–
STING; Toll-like receptors; inflammasome

1. Introduction

Members of the family Poxviridae can infect a diverse range of vertebrates and in-
vertebrates, although some poxviruses have narrow host ranges and others have very
broad host ranges [1]. Poxvirus infections have posed serious threats to both humans
and animals worldwide [2]. Poxviridae is a large family of DNA viruses comprised of two
subfamilies: Chordopoxvirinae and Entomopoxvirinae. There are currently 18 recognized
genera of Chordopoxvirinae, which infect vertebrates, and 4 genera of Entomopoxvirinae,
which infect invertebrates [1]. Poxviruses possess a single, linear double-stranded DNA
(dsDNA) genome, which ranges in size from 127 to 456 kb and encodes several hundred
gene products. Unlike most other DNA viruses, poxviruses replicate exclusively within
the cytoplasm of permissive cells [3].

One of the best known poxviruses is variola virus (VARV), a member of the or-
thopoxvirus genus. VARV is the causative agent of human smallpox, which was one of
the most devastating human diseases in history [4]. Despite the success of global smallpox
eradication through a vaccination campaign led by the World Health Organization, other
pathogenic poxviruses, such as monkeypox virus, cowpox viruses (CPXV), camelpox virus,
tanapox virus, and capripoxviruses remain threats to human and animal health [1,2,5,6].
The most intensively studied poxviruses, such as vaccinia virus (VACV) and myxoma virus
(MYXV), have proven to be excellent research models to study host innate recognition and
virus–host protein interactions and have provided important insights into the fields of
virology and immunology [7,8]. In turn, these fundamental insights have direct transla-
tional applications to improve the development of safer and more effective attenuated viral
vectors for vaccines, cancer therapeutics, and other treatment modalities [9]. For example,
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in VACV inactivation of either IL-1β-binding protein or IL-18-binding protein, encoded by
B15R and C12L, respectively, enhanced CD8+ T cell memory responses after immunization
and improved the protection against virulent VACV WR challenge [10,11]. In addition,
VACV has the genomic capacity to incorporate >25 kb of foreign DNA without noticeable
impacts on viral replication. This capacity has been employed to genetically engineer
VACV chimeras carrying multiple heterologous genes, as both polyvalent vaccines and
treatment of various genetic diseases [12–15]. Multiple poxviruses are being investigated
for use in oncolytic virotherapy. Myxoma virus (MYXV) is one such preclinical candidate
oncolytic virus, and recombinant MYXV lacking various viral death modulator genes, such
as M-T5 [16], M11 [17], M13 [18], and Serp2 [19], have enhanced anti-tumor activity that
appears to be mediated through viral induction of programmed cell death rather than
through viral replication (reviewed in [20]).

The recognition of viral pathogens and the host defense against them are provided
by the innate and adaptive immune systems. The adaptive immune system is broadly
comprised of antigen-specific CD8+ T cells, CD4+ helper T cells, and B cell antibody
responses for specific, anamnestic protection against distinct pathogens [21–23]. Prior to
the initiation of the adaptive immune response, pathogen-associated molecular patterns
(PAMPs) derived from poxviruses, such as DNA and RNA, as well as envelope or core
proteins, can be sensed by a diverse set of pattern recognition receptors (PRRs) to initiate
the faster but less specific innate immune responses [24–31]. The innate immune response
provides the first line of host defense and includes antiviral proteins that can lead to
the direct elimination of viruses or induce the expression of type I interferons (IFNs),
proinflammatory cytokines, chemokines, and other antiviral proteins [32,33]. These effector
molecules mediate direct antiviral effects or orchestrate the adaptive immune response
to contain poxvirus infections at various stages. In particular, type I IFNs, the hallmark
effector of antiviral responses, are essential to initiate innate immunity and also to mediate
the subsequent development of adaptive immunity against invading poxviruses [34]. In
addition, type I IFNs upregulate the expression of hundreds of IFN-stimulated genes (ISGs)
that directly influence protein synthesis, cell growth, and survival to establish an antiviral
state [35,36]. Furthermore, multiple cytokines, such as interleukin-6 (IL-6), IL-12, and
tumor necrosis factor-alpha (TNFα), can be induced during poxvirus infections which then
act systemically to induce immune responses [37,38].

Over recent decades, substantial progress has been made in defining the roles of
PRRs and the subsequent signaling pathways that are involved in the sensing of and
response to poxviruses. IFN expression is transcriptionally regulated through activation
of IFN regulatory factor (IRF) family members or coordinated activation of IRFs and
nuclear factor kappa B (NF-κB) [39]. The stimulation of proinflammatory genes depends
on activation of the transcription factors NF-κB and activator protein 1 (AP1) [40]. Despite
the diversity of PRR ligands, many PRR-regulated signaling pathways share common
downstream molecules, such as myeloid differentiation primary response gene 88 (MyD88)
and Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β (TRIF).
Thus, there is substantial crosstalk and overlap between the signaling cascades stimulated
by different PRRs, which lead to IFN activation and also drive the production of other
cytokines [41–43].

A broad spectrum of PRRs has been implicated in poxvirus recognition, including RNA
sensors, cytosolic DNA sensors, multiple Toll-like receptors (TLRs), and components of the
inflammasome. In order to establish successful infections in the face of this multi-pronged
immune response, poxviruses evade host antiviral responses by expressing a variety of
viral proteins. Those viral proteins interact with and antagonize the key components of
these intracellular signal transduction pathways. In this review, we discuss our current
knowledge concerning how innate receptors or sensors detect poxviruses and how PRR-
mediated recognition translates into effective antiviral immune responses. Following each
sensor, we present mechanisms employed by poxviruses to thwart PAMP recognition by
the host and how poxviruses manipulate PRR-mediated signaling pathways to their benefit.
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2. Double-Stranded RNA-Activated Sensors and Poxvirus Antagonists

The lifecycle of most virus families generates double-stranded RNA (dsRNA). In
Poxviridae, dsRNA is the result of overlapping transcripts, which form duplexes, primarily
at intermediate and late time points in the viral replication cycle [44–46]. Due to the
ubiquity of this PAMP, it is perhaps not surprising that the first PRRs to be described were
the dsRNA-activated molecules PKR and OAS/RNase L [35,47–51]. Since these initial
discoveries, other broadly acting antiviral dsRNA sensors have been identified, and we
have developed a better understanding of the plethora of mechanisms that viruses employ
to evade these host proteins (Figure 1). In this section, we describe the mechanisms that
these host proteins use to sense dsRNA, the antiviral pathways that they initiate, and the
strategies poxviruses employ to inhibit them.

Figure 1. dsRNA sensor-mediated signaling pathways and poxvirus antagonists. The figure presents host sensors (black
text) involved in recognizing dsRNA species from poxviral infections, and the elicited signaling cascades by these sensors,
which are indicated by black arrows. Poxvirus-encoded immunomodulatory proteins that inhibit activation of these host
pathways are indicated in red text and their effects on pathways are indicated by red lines. See main text for corresponding
details and the underlying molecular mechanisms. Abbreviations used in this figure include ADP: adenosine diphosphate;
ATP: adenosine triphosphate; CARD: caspase activation and recruitment domains; CNPV: canarypox virus; CTD: carboxy-
terminal domain; dsRBD: dsRNA binding domain; dsRNA: double-stranded RNA; eIF2: eukaryotic translation initiation
factor 2; GDP: guanosine diphosphate; GTP: guanosine-5′-triphosphate; IKKα: IκBα kinase α; IKKβ: IκBα kinase β;
IKKε: IκBα kinase ε; IKKγ: IκBα kinase γ; IL-6: interleukin-6; IRF3/7: interferon regulatory factor 3/7; IκBα: inhibitor
κBα; MAVS: mitochondrial antiviral-signaling protein; MDA5: melanoma differentiation-associated protein 5; MYXV:
myxoma virus; NF-κB: nuclear factor kappa B; OAS: 2′-5′-oligoadenylate synthetases; p65/p50: NF-κB heterodimer p50/p65
subunit; PKR: protein kinase R; RIG-I: retinoic acid-inducible gene I; RNase L: ribonuclease L; TBK1: TRAF family member-
associated NF-κB activator (TANK)-binding kinase 1; TNFα: tumor necrosis factor-alpha; TRAF3/6: tumor necrosis factor
receptor-associated factor 3/6; VACV: vaccinia virus; VARV: variola virus.
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2.1. Protein Kinase R

Protein kinase R (PKR) was first discovered as an IFN-stimulated, dsRNA-dependent
protein kinase [35,47,48]. PKR is comprised of two N-terminal dsRNA binding domains
(dsRBDs) and a C-terminal catalytic kinase domain [52]. These functional domains allow
PKR to serve as both an intracellular sensor for double-stranded RNA (dsRNA) and
an effector serine/threonine protein kinase. PKR is expressed in most cell types as an
inactive monomer at intermediate levels. PKR recognizes dsRNA via its dsRBDs, and
this binding event leads to PKR dimerization and autophosphorylation [53,54]. Activated
PKR phosphorylates the alpha subunit of the eukaryotic translation initiation factor 2
(eIF2), which forms the ternary complex together with initiator methionyl-tRNA and
GTP. Concomitant with translation initiation, GTP is hydrolyzed to GDP, which must
subsequently be exchanged with GTP by the guanine nucleotide exchange factor eIF2B
(reviewed in [55]). However, phosphorylated eIF2α has increased binding affinity between
eIF2 and eIF2B. This increased affinity effectively turns eIF2α into an inhibitor of eIF2B,
thus impairing the generation of active GTP-bound eIF2 and inhibiting the initiation of cap-
dependent translation, ultimately leading to cell death and inhibition of viral replication
(Figure 1) [56–59].

In addition to its canonical function as an eIF2α kinase, PKR has also been impli-
cated in different stress-induced signaling pathways including IFN responses and NF-
κB-dependent inflammatory responses [60–62]. It has been reported that PKR activation
decreases the protein levels of IκBα, the NF-κB inhibitor, thus activating this pathway. The
molecular mechanism underlying this activation appears to rely on the kinase activity
of PKR which has been shown to be essential for NF-κB activation [61,63]. Additionally,
during infection with VV∆E3L, a VACV lacking the PKR antagonist protein E3, PKR
was shown to regulate melanoma differentiation-associated protein 5 (MDA5)-mediated
IFNβ production through a mechanism that does not require eIF2α phosphorylation.
Interestingly, PKR activation also upregulated IFN induction by MAVS (mitochondrial
antiviral-signaling protein) in an MDA5-independent manner [64]. Similarly, in human
and murine cells infected with a modified vaccinia virus Ankara (MVA) strain engineered
to produce more dsRNA, the expression of IFNβ increased. Furthermore, mice infected
with this MVA strain showed increased expression of IFNα, IFNγ, and other cytokines,
which were enhanced in a PKR-dependent manner [27].

Poxvirus Evasion of PKR

Poxviruses encode diverse PKR antagonists that either directly or indirectly inhibit
the PKR pathway. In VACV, these proteins are encoded by E3L, K3L, D9R, and D10R.
In addition, avipoxviruses possess homologs of cellular protein phosphatase 1 (PP1) tar-
geting growth arrest and DNA damage-inducible protein 34 (GADD34, PPP1R15A) and
constitutive repressor of eIF2α phosphorylation (CREP, PPP1R15B), which promote the
dephosphorylation of eIF2α (Figure 1) [65].

E3 was initially characterized as a dsRNA-binding protein responsible for IFN resis-
tance. This phenotype was dependent on the C-terminal domain of E3, which contains a
dsRBD [66]. E3 can bind dsRNA via this dsRBD to prevent PKR dimerization and activa-
tion [67,68]. In human-derived HeLa cells, an E3L-deleted VACV displayed a replication
defect [69]. Moreover, this E3L-deleted VACV was able to replicate in PKR-deficient HeLa
cells as efficiently as wild type VACV, which demonstrated that PKR was the major target
of E3 in these cells [70]. However, VACV∆E3L replication in Syrian hamster-derived BHK
cells was not affected, suggesting that, as with most other host range genes, there is a
species-specific component to E3 activity. Additionally, E3 orthologs from myxoma virus
and swinepox virus were shown to inhibit PKR activity and impair the induction of IFNβ
and proinflammatory cytokines, such as TNFα and IL-6, during viral infection [68,71].
Interestingly, E3L orthologs from myxoma virus and swinepox, but not from sheeppox
virus, were able to rescue virus replication when expressed by a VACV∆E3L chimera. These
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PKR-inhibitory activities correlated with PKR inhibition in vitro studies as well, further
supporting the hypothesis that there are ortholog-specific differences in E3 activity [68,72].

VACV K3 and its orthologs in other poxviruses are structural mimics of eIF2α. They
act as pseudosubstrate inhibitors and compete with eIF2α to bind PKR, thus preventing
eIF2α phosphorylation and allowing protein synthesis to continue [73–75]. As with E3L,
K3L was also identified as a VACV host range gene when a K3L-deleted VACV was
able to replicate in HeLa cells but not in BHK cells [69]. Further evidence for this host
range function is provided by the observation that K3 orthologs from multiple poxvirus
genera exhibited both virus- and host-specific inhibition of PKR in both reporter- and
infection-based assays [72,76–79].

VACV encodes two decapping enzymes D9 and D10, which share approximately 25%
amino acid sequence identity [80,81]. D9 and D10 are expressed either early or late in
infection, respectively. They cleave m7GDP from capped RNA substrates through nudix
hydrolase motifs. This decapping activity reduced mRNA stability and prevented dsRNA
accumulation, thereby indirectly preventing PKR activation. Inactivation of D9 and D10
catalytic activities increased PKR-induced eIF2α phosphorylation and enhanced PKR- and
OAS/RNase L-mediated antiviral responses during VACV infection [81–84].

E3 and K3 orthologs evolved in mammalian poxviruses after the split from avipox-
viruses [85]. In order to inhibit PKR, avipoxviruses evolved inhibitors that act later in the
PKR pathway, facilitating the dephosphorylation of eIF2α. These proteins are homologous
to the PP1 adaptor proteins GADD34 and CREP. In a yeast-based system, the canarypox
virus protein 231 reversed the cytotoxic effects of ectopically expressed human PKR and
reduced the level of PKR-induced eIF2α phosphorylation [65]. The roles of avipoxviral
GADD34 homologs in poxvirus infection still need to be elucidated.

2.2. 2′-5′-Oligoadenylate Synthetase (OAS)/RNase L

The 2′-5′-oligoadenylate synthetase (OAS)/RNase L-mediated antiviral pathway was
discovered as one of the first interferon-induced systems in response to diverse viral infec-
tions [36]. The OAS family includes OAS1, OAS2, and OAS3 and their expression can be
upregulated by type I and type III IFNs [86]. These molecules detect accumulated dsRNA
species from diverse sources, which are usually viral but may sometimes have cellular ori-
gins [87,88]. Upon binding dsRNA, enzymatically active OAS1, OAS2, and OAS3 use ATP
to synthesize linear 2′-5′-linked second messenger molecules called 2′-5′-oligoadenylates
(2-5As) [36,89]. 2-5As, in turn, bind and activate latent RNase L monomers in the cyto-
plasm, inducing RNase L dimerization and activation. Activated RNase L suppresses viral
replication by cleaving viral and cellular RNAs, limiting mRNA translation and promoting
apoptosis (Figure 1). The resulting RNA cleavage products can be recognized by other RNA
sensors, such as PKR, retinoic acid-inducible gene I (RIG-I), and MDA5 (Figure 1). Thus,
RNase L acts to both inhibit viral replication itself and amplify the response of other innate
immune proteins [90–93]. For example, RNase L activation has been shown to amplify
IRF3-dependent IFN production by inducing the formation of antiviral stress granules, for
which PKR and RIG-I are essential mediators [93].

Multiple studies have demonstrated that the antiviral activity of OAS/RNase L limits
poxvirus infections. In response to VACV infection, RNase L knockout (KO) C57BL/6
mice were more susceptible to viral infection than wild type mice, indicating that RNase
L plays an antiviral role in vivo [28]. Recombinant VACV expressing OAS or RNase L
showed impaired viral replication relative to wild type VACV. This replication defect was
accompanied by increased rRNA degradation and inhibition of virus protein synthesis [94].
In A549 cells, OAS3, but not OAS1 or OAS2, played the dominant role in RNase L activation
and subsequent antiviral effects in response to VACV infection [89].

Poxvirus Evasion of OAS/RNase L

VACV E3 has been shown to inhibit the activation of the OAS/RNase L system [95].
Compared to MVA infection, HeLa cells infected with MVA-∆E3L inhibited viral replica-
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tion at multiple steps including viral late transcription, late mRNA translation, and viral
DNA replication. These replication blocks were associated with activation of OAS/RNase
L, rRNA degradation, and upregulation of host transcripts, such as IL-6 [96]. Further-
more, VACV∆E3L replicated approximately 20-fold higher in RNase LKO MEF cells
than in cells with intact RNase L, suggesting that E3 is involved in suppression of the
OAS/RNase L system [97]. As described above, the VACV decapping enzymes D9 and
D10 reduce dsRNA accumulation and thus also inhibit OAS/RNase L-mediated antiviral
responses [81,83,98]. In A549 cells, knocking out both RNase L and PKR was necessary to
allow replication of VACV∆E3L, whereas in HAP1 cells, PKR knockout alone was sufficient
to allow VACV∆E3L replication. These data highlight the cell type-specific activities of the
OAS/RNase L pathway [99].

2.3. RIG-I and MDA5

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein
5 (MDA5) are intracellular pathogen sensors and type I IFN inducers, which belong to
the RIG-I-like receptors (RLRs) family [100,101]. RIG-I and MDA5 are localized in the
cytosol of most cell types, where they recognize dsRNA derived from a variety of viral
infections [64,102–108]. Both RIG-I and MDA5 contain a carboxy-terminal domain (CTD),
two central helicase domains (Hel1 and Hel2), and two N-terminal caspase activation and
recruitment domains (CARDs) [109]. Despite these similarities, RIG-I and MDA5 show
different RNA binding preferences. RIG-I primarily senses and recognizes short RNA lig-
ands containing 5′ triphosphate groups, while MDA5 mainly recognizes long dsRNA and
replication intermediates [110–113]. Once activated, RIG-I and MDA5 both initiate signal-
ing cascades through the adaptor protein MAVS. MAVS forms a multilayered complex to
mediate downstream signal transduction, inducing type I interferons (IFNs) through IRF3
and IRF7 phosphorylation, and activating NF-κB through the tumor necrosis factor receptor
(TNFR)-associated factor 6 (TRAF6)-mediated signal cascade (Figure 1) [112,114,115].

During poxvirus infections, RIG-I has been shown to play an essential role in sens-
ing MYXV and triggering the induction of TNFα and type I IFN in primary human
macrophages in an IRF3- and IRF7-dependent manner [107]. Furthermore, in the pres-
ence of VACV DNA, RNA polymerase III exerts its antiviral effect by generating 5′ppp
RNA, which acts as a RIG-I substrate [106]. Additionally, VACV late RNA transcripts
can be sensed by either RIG-I or MDA5 in a cell type-specific manner, triggering IFNβ
gene transcription [116]. However, during MVA infection, MDA-5, but not RIG-I, was
essential for the induction of IFNβ mRNA responses in THP-1 cells [29]. Although this
activation specifically by late transcripts is intriguing, it remains unclear which poxviral
RNA structures or motifs activate RIG-I and/or MDA5.

Poxvirus Evasion of RIG-I and MDA5

When infected with VACV∆E3L, mouse primary keratinocytes produced IFNβ, IL-
6, and other cytokines in a MAVS- and IRF-3-dependent manner. MAVS and IRF3 are
essential components of the RIG-I and MDA5 pathway. Production of these cytokines was
completely prevented by infection with wild type VACV, or by VACV expressing only the
E3 dsRNA binding domain [108]. Similarly, a second mechanism of E3 inhibition of RIG-I
has been proposed that is mediated by inhibiting RIG-I recognition of RNA generated by
RNA polymerase III [117].

3. Dual RNA/DNA Sensor
Z-DNA Binding Protein 1

Z-DNA binding protein 1 (ZBP1), previously known as DLM-1 or DNA-dependent
activator of IFN-regulatory factors (DAI), is a stress granule-associated protein, which
contains two functional Z-DNA/RNA binding (Zα) domains in its N-terminus [118–121].
In addition to binding Z-DNA, it can also bind left-handed double-stranded Z-RNA and
RNA, which adopt Z-RNA-like conformations [122]. ZBP1 has been identified as a putative
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cytosolic DNA sensor and activator for the induction of type I IFNs and other genes
involved in innate immunity [123]. Upon binding DNA, ZBP1 dimerizes and recruits
TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3) to induce the production
of type I IFNs and the NF-κB pathway (Figure 2) [123–125]. Activated ZBP1 can also activate
receptor interacting protein kinase 3 (RIPK3) by binding through RIP homotypic interaction
motifs (RHIM). This interaction leads to the activation of the mixed lineage kinase-like
protein (MLKL), ultimately inducing necroptotic cell death (Figure 2) [126–130]. However,
it is still unclear what specific ligand generated during VACV infection is recognized
by ZBP1.

Figure 2. Cytosolic DNA sensor-mediated signaling pathways and poxvirus antagonists. DNA sensors are denoted in black
text and the transduction of their triggered signaling cascades are indicated by black arrows. The diverse poxviral inhibitors
of these cytosolic DNA sensors are indicated in red. See main text for corresponding details and the underlying molecular
mechanisms. Abbreviations used in this figure include ADP: adenosine diphosphate; AMP: adenosine monophosphate;
ATP: adenosine triphosphate; cGAS: cyclic GMP-AMP synthase; DDX41: Asp-Glu-Ala-Asp (DEAD) box polypeptide
41; DNA-PK: DNA-dependent protein kinase; DNA-PKcs: DNA-dependent protein kinase catalytic subunit; dsDNA:
double-stranded DNA; ECTV: ectromelia virus; ER: endoplasmic reticulum; GMP: guanosine monophosphate; IFI16:
interferon-γ inducible protein 16; IL-6: interleukin-6; IRF1/3/7: interferon regulatory factor 1/3/7; IκBα: inhibitor κBα;
MAVS: mitochondrial antiviral-signaling protein; MLKL: mixed lineage kinase-like; mTORC1/2: mammalian target of
rapamycin complex 1/2; MVA: modified vaccinia virus Ankara; NF-κB: nuclear factor kappa B; p50/p65: NF-κB heterodimer
p50/p65 subunit; RHIM: RIP homotypic interaction motif; RIG-I: retinoic acid-inducible gene I; RIPK: receptor interacting
protein kinase; RNA pol III: DNA-dependent RNA polymerase III; STING: stimulator of interferon genes; TBK1: TRAF
family member-associated NF-κB activator (TANK)-binding kinase 1; TNFα: tumor necrosis factor-alpha; TRAF: tumor
necrosis factor receptor-associated factor; VACV: vaccinia virus; vSlfn: viral Schlafen; ZBP1: Z-nucleic acid-binding protein
1; Zα: Z-nucleic acid binding domain; 2′3′ cGAMP: 2′3′ cyclic guanosine monophosphate–adenosine monophosphate;
5′ppp-dsRNA: 5′ triphosphate double-stranded RNA.
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Poxvirus Evasion of ZBP1

VACV E3 contains an amino-terminal Zα domain that is homologous to the ZBP1
Zα domains. E3 is critical for VACV pathogenicity in vivo and for inhibition of the IFN
response [97,131,132]. It has been proposed that E3 competes with ZBP1 for Z-nucleic acid
binding in VACV-infected cells. This hypothesis is supported by the observation that E3
overexpression reduced DNA-mediated induction of IFNβ responses [124]. In addition,
a VACV E3 mutant that lacks the ability to bind Z-DNA is less pathogenic in a wild type
mouse infection model, but not in either ZBP1- or RIPK3-deficient mice. However, this
pathogenicity could be restored by an E3 chimera expressing the first Zα domain of ZBP1
or ADAR1 [126,132]. Overexpression of E3 was also described to reduce DNA-mediated
induction of IFNβ responses [124]. During VACV infection, only full-length E3, but not a
Zα-deleted E3 mutant (∆83N), prevented ZBP1-mediated RIPK3-dependent necroptosis.
Importantly, VACV-E3L∆83N showed strong attenuation in wild type mice, but not in
either ZBP1-, RIPK3-, or DAI-deficient mice [126]. While most mammalian poxviruses
contain E3L orthologs, some of these orthologs, including those from monkeypox virus
and myxoma virus, do not encode functional Zα domains [85]. In myxoma virus and rabbit
fibroma virus, which only productively infect rabbits and hares, the complete Zα domain-
encoding DNA is missing from their E3 orthologs [85] and is therefore not predicted to
inhibit RIPK3-dependent necroptosis.

4. DNA-Activated Sensors and Poxvirus Antagonists

Cytosolic DNA sensing mainly induces transcription of type I interferons but can
also initiate NF-κB-dependent proinflammatory cytokines, which constitute an important
frontline of antiviral defense against DNA viruses. Initial research demonstrated that
multiple ligands, such as long poly(dA:dT), and dsDNA oligonucleotides led to the acti-
vation of the IRF3 pathway and subsequent type I interferon responses [133,134]. More
recently, investigations have focused on defining the upstream DNA receptors, and this
effort has advanced considerably over the past decade [135]. Along with TLR9, discussed
in a separate section, this effort has led to the identification of multiple DNA receptors,
of which cyclic GMP-AMP synthase (cGAS), DNA-dependent RNA polymerase III (Pol-
III), interferon-γ inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK),
and DEAD box polypeptide 41 (DDX41) have been implicated in detecting poxviruses
(Figure 2).

4.1. Cyclic GMP-AMP Synthase

Cyclic GMP-AMP synthase (cGAS) belongs to the oligoadenylate synthase (OAS)
protein family and recognizes DNA in the cytosol [136]. Upon binding DNA, cGAS
dimerizes and catalyzes the synthesis of 2′,3′ cyclic guanosine monophosphate–adenosine
monophosphate (2′, 3′ cGAMP), a 2′-5′-linked cyclic dinucleotide second messenger [137].
cGAMP binds to and activates the adaptor protein STING (stimulator of interferon genes).
In turn, STING activates the protein kinases IκBα kinase (IKK) and TANK-binding kinase 1
(TBK1), leading to the induction of interferons and cytokines through activation of NF-κB
and IRF3, respectively (Figure 2) [136,138–141].

The cGAS–STING axis is an important recognition pathway for multiple DNA viruses,
including poxviruses. In ectromelia virus (ECTV)-infected inflammatory monocytes,
STING played an essential role in inducing interferon production through the activa-
tion of IRF7 and NF-κB signaling. Mice deficient in IRF7- and NF-κB were susceptible
to ECTV infection [142]. Additional work demonstrated that cGAS is a key sensor for
ECTV infection. Knockdown of either cGAS or STING decreased transcription of IFNα
and IFNβ in L929 cells infected with ECTV. This phenotype was also observed in cGAS- or
STING-deficient mice [143]. The cGAS–STING axis has also been shown to detect VACV
infection. IFNβ induction after VACV infection was largely abolished in cGAS- or STING-
deficient mouse lung fibroblasts and dendritic cells [144]. In line with this observation, the
cGAS–STING axis was necessary for type I IFN production in MVA-infected murine bone
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marrow-derived cDCs. Furthermore, cGAS and STING deficiency abolished TBK1 and
IRF3 phosphorylation in these cells, and mice lacking STING or IRF3 showed decreased
type I IFN expression compared to wild type mice in response to MVA infection [145].

4.1.1. Poxvirus Evasion of cGAS

Poxviruses encode several proteins that target cGAS–STING at different steps in the
pathway (Figure 2). STING phosphorylation and dimerization were suppressed during
VACV-COP and -WR infection, indicating the existence of inhibitors that target this pathway
upstream of STING [146]. The poxvirus protein F17, a late structural protein, has been
reported to help evade cytosolic cGAS sensing. In response to infection with VACV lacking
F17, cGAS mediated IRF activation and interferon-stimulated gene (ISG) responses in both
macrophages and lung fibroblasts [147]. F17 bound and sequestered Raptor and Rictor,
which are regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2,
respectively. F17-mediated mTOR dysregulation blocked STING-mediated ISG induction
and antiviral responses, in part, through mTOR-dependent cGAS degradation [148]. More
recently, VACV B2 was shown to degrade the second messenger 2′,3′-cGAMP, and this
family of enzymes has been named “poxins”. Deleting VACV poxin led to significant
attenuation in a skin infection mouse model, although, interestingly, IFNβ levels were not
increased, suggesting that poxins act by preventing cGAMP spread more than they prevent
downstream effector production [149].

Poxin-encoding genes are found in many other poxviruses but are notably inactivated
in VARV and VACV-MVA. In VACV and the closely related horsepox and rabbitpox viruses,
the poxin domain is found by itself. However, in most orthopoxviruses, the poxin domain
is found in combination with a Schlafen (Slfn) family-related domain [149]. In ECTV, this
protein was called vSlfn. vSlfn-deficient ECTV was strongly attenuated in mouse infection
models and unable to block the activation of STING, TBK1, and IRF3 in macrophages and
correlated with a strong IFN response [150].

4.1.2. Poxvirus Evasion of STING

It was found that DNA-induced activation of STING and IRF3 can be inhibited by
infection with cowpox virus, ECTV, and VACV strains Copenhagen (COP) and Western
Reserve (WR), but not by MVA [146]. Both TBK1 and IRF3 are key downstream components
of the STING pathway, which mediate the IFN response. These downstream effectors are
also targeted by poxviral antagonists such as VACV-C6, N1, N2, and E3 proteins (Figure 2).
VACV-C6, N1, and N2 belong to a family of B cell CLL/lymphoma 2 (Bcl-2)-like proteins.
C6 inhibits the IFNβ response induced by poly(dA:dT) DNA by blocking the activation
of TBK1 and IKKεwhile inhibiting translocation and activation of IRF3 [151]. VACV N1
was shown to directly associate with TBK1 to inhibit IRF3-mediated IFNβ responses. As
an example of this effect, repairing the defective N1L gene in MVA abrogated the type
I IFN response relative to infection with unaltered MVA. This IFN reduction coincided
with reduced levels of TBK1 and IRF3 phosphorylation [145]. The early nuclear protein
N2 acts further downstream in this pathway, inhibiting an IRF3-specific reporter (ISG56)
response that was induced by overexpression of TBK1 or by poly(dA:dT) DNA stimulation.
In addition, N2 also inhibited TBK1-elicited IFNβ promoter responses [152].

4.2. RNA Polymerase III

DNA-dependent RNA polymerase III (Pol III) is a ubiquitous enzyme, which mainly
resides in the nucleus, where it fulfills most of its cellular functions, including transcription
of short untranslated RNAs, including transfer RNAs, 5S rRNA, and U6 spliceosomal RNA,
using DNA as a template. However, Pol III may also localize to the cytosol, where it acts
as a DNA sensor and engages the RIG-I-mediated pathway [106]. In the cytosol, Pol III
serves as a DNA sensor of several pathogens, including Legionella pneumophila, herpes
simplex virus 1 (HSV-1), Epstein–Barr virus, and VACV [106,117]. It detects cytosolic AT-
rich dsDNA through its DNA binding regions. Pol III then transcribes the DNA template
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into 5′-triphosphate-containing dsRNA, which activates RIG-I and leads to the induction
of type I interferons and NF-κB activation (Figure 2) [106,153,154].

Poxvirus Evasion of Pol III

To date, the only described inhibitor of Pol III dsDNA sensing is VACV E3. In 293T
cells transfected with full-length E3, poly(dA:dT) DNA induced IFNβ expression, and
NF-κB activity was abolished. Furthermore, the dsRBD-containing C-terminus alone was
sufficient to inhibit these responses, whereas the Zα domain-containing N-terminus was
dispensable [117].

4.3. Interferon-γ Inducible Protein 16

The intracellular DNA sensor interferon-γ inducible protein 16 (IFI16) belongs to the
pyrin and HIN200 domain (PYHIN) protein family. Although IFI16 contains a nuclear
localization signal and is mainly located in the nucleus, it can also be found in the cytosol,
where it can recognize single-stranded (ss) DNA and dsDNA [155]. The HIN domain
of IFI16 recognizes DNA ligands in a length-dependent manner [156]. Activated IFI16
induced the expression of IFNβ through IRF3 activation and the production of NF-κB-
dependent proinflammatory genes during infection with several DNA viruses, including
HIV, HSV-1, and VACV (Figure 2) [155,157–159]. IFNβ expression induced by transfection
with VACV DNA was dependent upon STING, TBK1, and IRF3, but not TLRs, ZBP1, or Pol
III. IFI16 physically interacted with STING, and BMDMs lacking STING failed to trigger
IFNβ secretion in response to viral DNA [159]. IFI16 deficiency inhibited IRF3 activation-
and NF-κB-dependent gene production induced by transfected DNA, and during infection
with either MVA or HSV-1 [155,159]. During VACV infection, IFI16 shuttled from the
nucleus of keratinocytes to viral factories in the cytosol for viral DNA recognition. Infection
with the highly attenuated VACV strain MVA, but not with VACV-WR, induced IFI16-
dependent CCL5 and ISG56 expression. These data indicate that VACV-WR can inhibit the
IFI16 pathway, presumably via one or more of the genes missing in MVA [155]. The precise
mechanisms of how VACV modulates IFI16-mediated DNA sensing are unclear, but viral
immunomodulators that target downstream signaling of STING likely play a role.

4.4. DNA-Dependent Protein Kinase

DNA-dependent protein kinase (DNA-PK) is best studied for its involvement in DNA
repair and V(D)J recombination [160]. However, in addition to this well-documented
activity, DNA-PK can also recognize cytosolic DNA [161]. As a heterotrimeric complex,
DNA-PK is comprised of the catalytic subunit DNA-PKcs and the Ku heterodimer, consist-
ing of Ku70 and Ku80 subunits. Upon exposure to exogenous DNA, Ku70 translocated
from the nucleus to the cytosol and triggered the production of type III IFN (IFNλ1), which
involved STING and TBK1 as mediators. This activity was associated with the activation
of the transcription factors IRF1, IRF3, and IRF7 (Figure 2) [161,162]. DNA-PK-dependent
DNA sensing was shown to contribute to the initiation of the immune response to VACV
in fibroblasts. Supporting this contribution, DNA-PK deficiency in either cell lines or mice
significantly impaired the induction of IFNβ and IL-6 in response to infection with MVA or
HSV-1 [163].

Poxvirus Evasion of DNA-PK

VACV expresses two related proteins, called C16 and C4 in the WR strain, that target
the DNA-PK-mediated DNA sensing pathway (Figure 2). These proteins share about
54% amino acid identity in their C-terminal region [164–166]. The C-terminal region of
C16 interacts directly with the Ku heterodimer of the DNA-PK complex to prevent DNA-
PK binding to DNA, ultimately reducing the production of cytokines and chemokines.
Consistent with this in vitro observation, mice infected with C16-deficient VACV, produced
more cytokines and chemokines than mice infected with wild type VACV [164]. As with
C16, VACV protein C4 also interacts with Ku and blocks DNA binding through its C-
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terminal domain, resulting in decreased IRF3 phosphorylation. Additionally, C4 inhibits
the recruitment and activation of immune cells and suppresses cytokine production, such
as IL-6, both in vitro and in vivo [165]. While C16 and C4 have overlapping functions,
viruses with deletions of only one of these proteins were still attenuated in mouse infection
models. The two most likely interpretations of these data are that there might be currently
unrecognized non-redundant functions between the two proteins, or that C16 and C4 work
in tandem by mass action [165].

4.5. DEAD Box Polypeptide 41

DEAD box polypeptide 41 (DDX41) was identified as a cytosolic sensor that recognizes
diverse pathogen-derived nucleic acids, such as viral dsDNA, cyclic di-GMP, and cyclic
di-AMP [167,168]. DDX41 is a member of the DEAD-box protein family and is composed
of two RecA-like domains (DEADc and HELICc domains) and a zinc finger [169]. Upon
binding dsDNA via its DEADc domain, DDX41 associates with STING and initiates the
activation of NF-κB and IFN signaling pathways in myeloid dendritic cells (Figure 2) [167].

DDX41 directly recognized a repeating 70 bp motif (VACV 70mer), which is located in
the inverted terminal repeat region of the VACV genome [159,167]. Knockdown of DDX41
or STING in THP-1 cells abolished the production of IFNβ and IL-6 in response to either
the VACV 70mer or HSV-1 DNA [167]. It is unknown if poxviruses directly target DDX41,
but it is possible that poxviral inhibitors that act downstream of STING activation can also
interfere with this DDX41-mediated immune response (see Poxvirus Evasion of STING).

5. Toll-Like Receptor-Mediated Poxvirus Recognition and Poxvirus Antagonists

Toll-like receptors (TLRs) are a family of PRRs, which derive their name from their
homology with the Drosophila Toll gene [170]. In Drosophila, activation of the Toll pathway
by ligands from Gram-positive bacteria or fungi triggers cellular immunity and production
of antimicrobial peptides [171–173]. Toll-like receptors function as PRRs to initiate signaling
cascades important for host defense against many pathogens. There are 13 currently known
TLRs in mammals (TLR1 to TLR13), although humans only possess TLRs 1 through 10 [174].

TLRs are type I integral membrane glycoproteins expressed in both immune cells and
non-immune cells such as fibroblasts and endothelial cells. These receptors have a common
architecture, with an N-terminal extracellular leucine-rich repeat-containing ectodomain,
which is responsible for the recognition of PAMPs, a single transmembrane helix, and a
C-terminal cytoplasmic Toll/interleukin-1 receptor (TIR) homology domain [175]. TLRs
localize to the plasma membrane of the cell surface (TLRs 1, 2, 4, 5, 6, and 10) or to various
intracellular compartments (TLRs 3, 7, 8, 9, 11, 12, and 13), such as the endoplasmic reticu-
lum (ER), endosome, lysosome, and endolysosome [176]. This cellular localization is one
determinant of the PAMPs sensed by TLRs [176]. Once activated, TLRs typically activate
downstream effectors through either adaptor proteins, typically myeloid differentiation
primary response gene 88 (MyD88) or TRIF.

TLR2/6, TLR4, TLR8, and TLR9 recruit myeloid differentiation primary response gene
88 (MyD88) to transduce their signaling cascades [41]. Activation of MyD88-dependent
signaling induces proinflammatory cytokines and chemokines (Figure 3). TLR8-MyD88
and TLR9-MyD88 signaling pathways are also engaged in IFN induction through IFN
regulatory factor 7 (IRF7) activation in dendritic cell (DC) subsets, such as the plasmacytoid
DCs (pDCs) [177]. MyD88 recruits and interacts with interleukin 1 receptor-associated
kinase 4 (IRAK4) to form a structure known as the Myddosome along with two other IRAK
family members, IRAK1 and IRAK2. This complex activates tumor necrosis factor receptor-
associated factor 6 (TRAF6) [178]. TRAF6-induced activation of TGF-β activated kinase 1
(TAK1) subsequently phosphorylates the IKKβ subunit of the canonical IκB kinase (IKK)
complex [179], resulting in ubiquitination and proteasomal degradation of IκBα and release
of NF-κB [180], leading to the production of proinflammatory cytokines (Figure 3) [181].
Notably, Toll/interleukin 1 receptor (TIR) domain-containing adapter protein (TIRAP,



Biomedicines 2021, 9, 765 12 of 30

also known as Mal) and TRIF-related adaptor molecule (TRAM) are further required for
bridging MyD88 to TLR2/6 and TLR4.

Figure 3. TLR family-mediated signaling pathways and poxvirus antagonists. TLR sensors involved in the recognition of
poxviral infections are indicated in their subcellular localization. The signaling cascades induced by these TLRs are denoted
by black arrows to indicate transduction or activation. Poxvirus-encoded viral antagonists and their targeted signaling
molecules are shown in red. Abbreviations used in this figure include DDX3: Asp-Glu-Ala-Asp (DEAD) box polypeptide 3;
DHX9: DExH-Box helicase 9; dsDNA: double-stranded DNA; dsRNA: double-stranded RNA; HMGB1: high mobility group
box protein 1; IκBα: inhibitor κBα; IKKα: IκBα kinase α; IKKβ: IκBα kinase β; IKKε: IκBα kinase ε; IKKγ: IκBα kinase
γ; IL-6: interleukin-6; IRAK1/2/4: interleukin-1 receptor-associated kinase 1/2/4; IRF3/7: interferon regulatory factor
3/7; Mal: myD88-adapter-like; MD-2: myeloid differentiation factor 2; MyD88: myeloid differentiation primary response
gene 88; NF-κB: nuclear factor kappa B; p65/p50: NF-κB heterodimer p50/p65 subunit; RIP1: receptor-interacting protein
1; ssDNA: single-stranded DNA; ssRNA: single-stranded RNA; TBK1: TRAF family member-associated NF-κB activator
(TANK)-binding kinase 1; TLR2/3/4/8/9: Toll-like receptor 2/3/4/8/9; TNFα: tumor necrosis factor-alpha; TRAF3/6:
tumor necrosis factor receptor-associated factor 3/6; TRAM: TRIF-related adapter molecule; TRIF: Toll/interleukin-1
receptor domain-containing adapter-inducing interferon-β; VACV: vaccinia virus.

The TRIF-dependent pathways are initiated through TLR3 and endosomal TLR4 and
induce both inflammatory responses and type I IFNs through activation of TRAF6 or
TRAF3, respectively [42]. TRIF associates with TRAF6 and RIP1 to activate the classical
IKK complex through the activation of TAK1 kinase complex, resulting in the production
of NF-κB-dependent proinflammatory cytokines and chemokines [181]. In contrast, TRIF
interacts with TRAF3 to recruit the noncanonical IKK-related kinases TBK1 and IKKε for
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phosphorylation and activation of IRF3/IRF7, resulting in the subsequent induction of
type I and type III IFNs (Figure 3) [182].

Several TLRs play roles in poxvirus infections, including endosomal TLR3, TLR8, and
TLR9, and membrane-bound extracellular TLR2 and TLR4 (Figure 3).

5.1. TLR3

TLR3 localizes to the endosome and was the first characterized TLR to recognize
nucleic acid [183]. The primary ligand of TLR3 dsRNA is recognized via the N-terminal
ectodomain (ECD) [183–185]. After binding dsRNA, downstream signaling transduction is
mediated through the TIR domain-containing adaptor-inducing interferon-β (TRIF) [186].
Activation of the TLR3-TRIF pathway leads to the production of NF-κB-dependent proin-
flammatory cytokines, and type I and type III IFNs (Figure 3) [183].

Paradoxically, when infected with VACV, TLR3−/− mice showed decreased disease
morbidity, accompanied by reduced VACV replication in the respiratory tract and impaired
viral dissemination [25]. This TLR3 deficiency did not change the level of IFNβ but
did reduce the levels of inflammatory cytokines, including IL-6, TNFα, and monocyte
chemoattractant protein-1 (MCP-1/CCL2). These cytokine increases suggest that the
increased morbidity and viral dissemination observed in TLR3-competent mice may be
mediated through NF-κB-dependent inflammatory cytokines [25]. However, TLR3 has also
been shown to improve post-exposure vaccine efficacy in response to ECTV infection in
mice. BALB/c mice infected with ECTV can be cured by post-exposure vaccination with
either the VACV-Lister or MVA strains up to three days after infection. However, post-
exposure treatment with poly(I:C), an agonist of TLR and other dsRNA-binding proteins,
either alone or in combination with traditional vaccination improved the efficacy of this
treatment regimen by modulating TLR3 activation and IFNα induction [187]. Thus, the
antiviral activity of TLR3 is complex and merits further investigation.

Poxvirus Evasion of TLR3

Poxviruses encode multiple Bcl-2-like proteins that target the TLR3 pathway, including
A52, A46, N1, B14, K7, N2, and C6 proteins (Figure 3). Intriguingly, the first five of these
proteins share homology, although as described below, they inhibit TLR3 through distinct
mechanisms. A52 was shown to block TLR3-mediated activation of NF-κB induced by
poly(I:C) stimulation through interaction with both interleukin 1 receptor-associated kinase
2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), disrupting the
Mal-IRAK2 signaling complex or TRAF6-TAB1-containing complex, respectively [188]. In
response to poly(I:C), A46 was directly associated with TRIF, which acted as a TIR adapter
for TLR3 signaling, in order to inhibit IRF3 activation and gene induction [189]. However,
in the presence of poly(I:C), N1 physically interacted with components of the IKK complex
and also associated with IKKε and TBK1, thereby inhibiting NF-κB activation and IRF3-
mediated IFNβ responses [190]. B14, an immediate-early gene product of VACV, prevented
phosphorylation of IKKβ, a component of the IKK complex, resulting in inhibition of NF-κB
signaling induced by poly(I:C) [191,192]. K7 has been shown to interact with DEAD-box
RNA helicase (DDX3) to inhibit TRIF-induced IRF3/7 activation and also prevented IFNβ
promoter induction at the level of TBK1/IKKε [193]. VACV N2 localized to the nucleus and
functionally inhibited IRF3 activity after translocation of IRF3 into the nucleus. Ultimately,
this N2–IRF3 interaction decreased activation of the IFNβ promoter in response to poly(I:C)
stimulation [152]. Finally, C6 has been reported to be a multifunctional interferon antagonist
during VACV infection. In the context of the TLR3 pathway, C6 prevented TBK1- and IKKε-
dependent IRF3 activation, resulting in inhibition of IFNβ promoter activation induced by
poly(I:C) [151,152].

5.2. TLR8

TLR8 is broadly expressed in the endosomes of myeloid cells, such as monocytes,
macrophages, and myeloid dendritic cells (DCs) [194,195]. TLR8 is non-functional un-
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til it undergoes proteolytic processing to generate a functional receptor in the endo-
some [195]. Activation of this Toll-like receptor is traditionally mediated through recog-
nition of uridine- and guanosine-rich single-stranded RNA (ssRNA) of either bacterial
or viral origin [196,197]. However, a recent report has shown that murine TLR8 can be
activated by poxviral DNA or by synthetic poly(A) and poly(T) oligodeoxynucleotides both
in vitro and in vivo. Either VACV infection or VACV DNA activated an NF-κB reporter
expressed by HEK293 cells that expressed murine TLR8, but not in cells expressing murine
TLR7. Similarly, siRNA-mediated knockdown of TLR8 reduced the secretion of IFNα in
pDCs [198]. However, the underlying mechanism is yet to be determined.

Regardless of the ligand, binding transduces signaling through MyD88, ultimately
resulting in the induction of IRF7 activation, IFN production, and NF-κB-dependent proin-
flammatory responses (Figure 3). In addition, VACV infection-induced IFNα production
by pDCs in vitro and in vivo and TLR8-dependent pDC activation played an important
role in the control of VACV infection in vivo [198].

Poxvirus Evasion of TLR8

VACV E3 has been reported to target TLR8-dependent pathways. In human mono-
cytes, E3 reduced the expression of TLR8-dependent cytokines, including proinflammatory
cytokines such as TNFα and IL-6, and chemokines such as interferon gamma-induced
protein 10 (IP-10), and chemokine (C-C motif) ligand 5 (CCL5, also known as RANTES).
In addition, E3 directly interacted with DExH-Box helicase 9 (DHX9) to antagonize IL-6
promoter activation [199].

5.3. TLR9

TLR9 was the first identified DNA sensor. It is localized in endosomes in a variety of
cells including plasmacytoid dendritic cells (pDCs), B cells, neutrophils, monocytes, and
some non-immune cells [200,201]. TLR9 undergoes proteolytic cleavage of its ectodomain
to recognize unmethylated cytosine–guanosine (CpG)-rich DNA derived from bacteria or
viral genomic dsDNA [200,202–204].

As the primary DNA-sensing TLR, TLR9 has been implicated in the response to
multiple poxvirus infections. For example, TLR9 depletion dramatically decreased mouse
survival after ECTV infection, which required TLR9 expression in DCs [26]. TLR9 depletion
in these mice abolished ECTV-induced DC maturation and IFNα production, highlighting
the important role of TLR9 when controlling ECTV infection [26]. In this ECTV model,
the TLR9-MyD88-IRF7 pathway was essential for proinflammatory cytokine expression in
CD11c+ cells and for the recruitment of inflammatory monocytes to the draining lymph
node [142].

In response to MVA infection, TLR9-deficient or MyD88-deficient murine cDCs
showed decreased production of IFNα and IFNβ compared to wild type cDCs [145].
TLR9 has also been implicated in the host response to fowlpox virus and MYXV through
the above-described MyD88 signal transduction cascade [205,206].

Poxvirus Evasion of TLR9

To date, VACV E3 is the only described viral antagonist of the TLR9 pathway [206].
In cells treated with CpG-containing DNA, a TLR9 agonist, wild type VACV significantly
inhibited IFNβ, TNF, and IL-12p70 (IL-12) production in murine pDCs. In contrast, in-
fecting these cells with VACV lacking E3L reduced this inhibitory effect, which could be
rescued by co-infection with wild type VACV. These results were also phenocopied if only
the N-terminal Z-DNA binding (Zα) domain of E3 was deleted, demonstrating that this
domain is important for TLR9 pathway inhibition [206].

5.4. TLR4

TLR4 was identified as a human Toll homolog in 1997 [207]. TLR4 predominantly
recognizes bacterial lipopolysaccharide (LPS), mannuronic acid polymers, and teichuronic
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acid. TLR4 has also been shown to recognize viral glycoproteins, fusion proteins, and
damage-associated molecular patterns (DAMPs) [208–212]. Whether TLR4 directly recog-
nizes poxvirus ligands is not yet clear. One possibility is that TLR4 is indirectly activated
after poxvirus infections. Previous work has demonstrated that infection with either VACV
strains WR or MVA can lead to the extracellular release of high mobility group box protein
1 (HMGB1). Outside the cell, HMGB1 binds to myeloid differentiation factor 2 (MD-2),
the extracellular adaptor of TLR4, to activate this pathway [213–215]. There is also some
evidence that TLR4 may recognize a viral protein, potentially on the virion surface, rather
than ligands released or generated during infection [216]. It is currently unclear if either or
both of these mechanisms are the primary mode of TLR4 activation by poxviruses. After
ligand binding, TLR4 dimerizes and initiates a signaling cascade via TLR adapter molecules
MyD88 adaptor-like (Mal)/TIRAP, MyD88, TRAM, and TRIF, resulting in the production
of inflammatory cytokines and type I IFNs (Figure 3) [217]. In response to VACV infection,
TLR4 provided maximal protection against pulmonary VACV infection in a mouse model.
Surprisingly, TLR4 dampened the cytokine response of bone marrow macrophages to
VACV, and TLR4 deficiency promoted an increase in IFNβ and IL-6 production in the
lungs [216].

Poxvirus Evasion of TLR4

VACV proteins A46, A52, K7, and N1 have been implicated in TLR4 evasion (Figure 3).
A46 and A52 share amino acid sequence similarity with the Toll/interleukin-1 receptor
(TIR) domain. The VACV A46 protein directly interacts with the TLR4, MyD88, Mal, TRIF,
and TRIF-related adaptor molecule (TRAM), disrupting receptor–adaptor interactions
and inhibiting downstream signaling [218–222]. A46-deficient VACV showed attenuated
virulence in a murine intranasal infection model [189]. A52 targets TLR4 signaling, potently
suppressing both IL-1- and TLR4-mediated NF-κB activation by mimicking the dominant
negative effect of a truncated version of MyD88 [223]. VACV K7 blocks both IRAK2 and
TRAF6 activation to inhibit the TLR4–NF-κB signaling axis [193]. Finally, N1 has been
shown to target the TRAF6-TBK1-IKK complex, interacting with IKKα and IKKβ to block
NF-κB responses [190].

5.5. TLR2

TLR2, first identified in 1998 [170], is expressed on the surface of immune cells, such
as monocytes, macrophages, dendritic cells, and NK cells. On the cell surface, TLR2 forms
heterodimers with either TLR1 or TLR6 to recognize a wide array of distinct ligands includ-
ing lipopeptides and lipoteichoic acid from bacteria, and fungal polysaccharides [224–227].
TLR2 also recognizes multiple viral ligands, including envelope glycoproteins and core pro-
teins from cytomegalovirus, HIV-1, and hepatitis C virus [228–230]. Upon ligand binding,
TLR2 interacts with the adaptor protein MyD88, ultimately inducing NF-κB-dependent
inflammatory responses (Figure 3). While TLR2 has been implicated in the innate response
to VACV infection [202,203], defining the poxvirus ligands is still an ongoing area of re-
search. As with TLR4, poxviruses may indirectly initiate TLR2 signaling through HMGB1
and MD-2. This mechanism was proposed for TLR2 activation by an MVA-vectored tuber-
culosis vaccine candidate (MVA85A), supported by the observation that treating mouse
PBMCs with anti-HMGB1 antibodies reduced in vitro production of chemokine (C-X-C
Motif) ligand 2 (CXCL2) [214]. However, the more basic question of whether TLR2 can be
activated through this HMGB1/MD-2 axis remains controversial [231,232]. Both VACV
and UV-inactivated VACV elicited similar immune responses through the TLR2-MyD88
pathway [24]. TLR2 activation by UV-inactivated viruses that should not induce cell death
and thus HMGB1 release suggests that TLR2 activation may instead be mediated by direct
binding of an as yet undescribed poxvirus ligand. TLR2 deficiency in conventional DCs
(cDCs) and T cells reduced the secretion of IL-6 in response to VACV infection compared to
infected wild type cells [24,233]. Additionally, TLR2-mediated signaling is important for
NK cell activation after VACV infection and critical to control VACV infection in mice [234].
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Poxvirus Evasion of TLR2

VACV encodes multiple antagonists of TLR2-mediated signaling, including A46, N1,
and E3 (Figure 3). A46 and N1 belong to a family of B cell lymphoma 2 (Bcl-2)-like proteins
and contain experimentally confirmed Bcl-2 folds [219,235,236]. A46 physically interacted
with diverse TIR domain-containing adaptor proteins including MyD88, ultimately pre-
venting TLR2-mediated activation of IRF7 and IFNβ responses [237]. VACV N1 inhibited
the TLR2-mediated activation of NF-κB through a direct association with components of the
IKK complex [190,236]. Finally, VACV E3 was described to act downstream of this pathway
to interact with the DExD/H-box helicase DHX9 to inhibit DHX9-mediated enhancement
of NF-κB-dependent IL-6 promoter activation [199].

6. Inflammasome Recognition of Poxviruses and Poxvirus Antagonists

Inflammasomes are multiprotein signaling complexes responsible for the production
of proinflammatory cytokines and the induction of pyroptosis, an inflammatory lytic pro-
grammed cell death, to halt viral replication and induce nearby cells to adopt antiviral
states [238]. Inflammasome activation mediates the conversion of inactive precursor pro-
teins pro-interleukin (IL)-1β and pro-IL-18 into the bioactive forms IL-1β and IL-18, which
play important roles in host defense against a variety of bacterial, fungal, and viral infec-
tions [239,240]. Certain PRRs have been implicated in canonical inflammasome assembly,
including NOD-like receptors and AIM2-like receptors [241,242]. After PAMP and cell
damage-associated signal recognition, adaptors are recruited, such as apoptosis-associated
speck-like protein (ASC) [243]. This process results in cytokine secretion and pyroptosis as
proteolytically active caspases mediate the maturation and secretion of proinflammatory
cytokines IL-1β and IL-18, while cleavage of gasdermin-D (GSDMD), a key pyroptotic
substrate of inflammatory caspases, induces pyroptosis (Figure 4) [244]. Specifically, the
inflammasome proteins NACHT, LRR, and PYD domains-containing protein (NLRP3) and
AIM2 have been implicated in the recognition of poxvirus infections [29,30,245].

6.1. The NLRP3 Inflammasome

NLRP3 acts as the intracellular sensor component of the NLRP3 inflammasome and
detects a broad range of both PAMPs and host-derived activating signals (endogenous
damage-associated molecular patterns, DAMPs). NLRP3 is expressed in innate immune
cells and non-immune cells, including macrophages, neutrophils, and epithelial cells [246].
This sensor is comprised of an N-terminal pyrin domain (PYD), a central NACHT domain,
and C-terminal leucine-rich repeat domains. NLRP3 inflammasomes must be primed before
they are activated. This priming step can be mediated by a variety of signals including TLR
or NLR ligands, which activate NF-κB. NF-κB then upregulates NLRP3 expression to levels
sufficient to permit inflammasome assembly [247–249]. Once the PAMP or DAMP ligand is
bound, oligomerized NLRP3 recruits ASC through homotypic PYD–PYD interactions and
activates caspase 1, thereby triggering the secretion of the proinflammatory cytokines IL-1β
and IL-18 (Figure 4). During MVA infection, crosstalk between the NLRP3 inflammasome
and TLR2-TLR6-MyD88 has been documented to mediate the expression and processing
of IL-1β in macrophages both in vivo and in vitro [29]. Furthermore, in a keratinocyte
model of MVA infection, IL-1β secretion was reduced in the presence of pyrrolidine
dithiocarbamate, BAPTA tetrakis (acetoxymethyl ester), and glibenclamide, suggesting
that intracellular Ca2+ levels and K+ efflux may be involved in NLRP3 inflammasome
activation [250].
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Figure 4. Inflammasome-mediated signaling pathways and poxvirus antagonists. NLRP3 and AIM2 inflammasome-
mediated recognition of poxvirus infection and the priming and activation pathways for maturation and secretion of IL-1β
and IL-18 effectors are indicated by black arrows. Poxviruses express several viral inhibitors or viral homologs of cellular
proteins (shown in red) to interfere with these inflammasome pathways at different stages. Abbreviations used in this figure
include AIM2: absent in melanoma 2; ASC: apoptosis-associated speck-like protein containing a CARD; CARD: caspase
activating and recruiting domains; CPXV: cowpox virus; CrmA: cytokine response modifier A; dsDNA: double-stranded
DNA; HIN-200: hematopoietic interferon-inducible nuclear proteins with a 200 amino acid repeat; IKKα: IκBα kinase
α; IKKβ: IκBα kinase β; IKKγ: IκBα kinase γ; IL-18: interleukin-18; IL-1β: interleukin-1β; IκBα: inhibitor κBα; LRR:
leucine-rich repeats; NF-κB: nuclear factor kappa B; NLRP3: NOD, LRR and pyrin domains-containing protein 3; NOD;
nucleotide binding and oligomerization domain; p65/p50: NF-κB heterodimer p50/p65 subunit; PYD: pyrin domain; RFV:
rabbit fibroma virus; ROS: reactive oxygen species; SPI-2: serine proteinase inhibitor 2; TLRs: Toll-like receptors; TRAF6:
tumor necrosis factor receptor-associated factor 6; VACV: vaccinia virus.

Poxvirus Evasion of the NLRP3 Inflammasome

To inhibit NLRP3 activity, poxviruses target different stages of inflammasome assem-
bly and processing, as well as inhibiting the secretion or the function of IL-1β and IL-18.
Multiple poxviruses encode viral pyrin-only proteins (PYD/vPOP), which have homology
with the ASC-PYD domain [18,251]. For example, one of these proteins, MYXV-M013,
directly interacts with ASC-1 to inhibit NLRP3–ASC-1 interactions, thereby inhibiting
activation of caspase-1 and the secretion of IL-1β and IL-18 [18,245,252,253]. Similarly,
gp013 from rabbit fibroma virus (RFV) interacts with ASC to interfere with PYD-mediated
activation of caspase-1 [251]. Poxviruses also encode serine proteinase inhibitor 2 (SPI-2)
orthologs, including cytokine response modifier A (CrmA) from cowpox virus and VACV-
B13. These proteins act as substrate mimics to inhibit caspase-1 activity, thus preventing
proteolytic processing of IL-1β [254–256]. Additionally, poxviruses have evolved secreted
viral IL-1β receptors (vIL-1βR), such as VACV-B15, CPXV-B14, and ECTV-191, which pre-
vent IL-1β binding with the host receptors [257,258]. Similarly, viral IL-18 binding proteins
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(e.g., molluscum contagiosum virus -54L and VACV-C12) compete with the IL-18 cognate
receptor for IL-18 binding [259–261].

6.2. The AIM2 Inflammasome

AIM2 belongs to the pyrin and HIN protein (PYHIN) family of proteins and is com-
prised of an N-terminal PYD domain, which recruits ASC through PYD–PYD interactions,
and a C-terminal HIN200 domain, which is essential for recognition and binding cytosolic
DNA [262–265]. Upon recognition of DNA, AIM2, ASC, and procaspase 1 form the AIM2 in-
flammasome. This inflammasome activates caspase 1 to initiate proinflammatory cytokine
processing, resulting in maturation and secretion of IL-1β and IL-18 (Figure 4) [30,266,267].

The AIM2 inflammasome has been shown to recognize multiple viral infections
including VACV, mouse cytomegalovirus, and influenza A virus [268–271]. For example,
in cells derived from AIM2−/− mice infected with VACV, IL-1β release and maturation, as
well as caspase-1 cleavage, were all reduced [30,268]. Similarly, AIM2 knockdown in human
primary keratinocytes almost completely abolished IL-1β and IL-18 production during
MVA infection. In contrast, NLRP3 knockout only slightly reduced IL-1β secretion [250].
While these data clearly establish a role for the AIM2 inflammasome in response to poxvirus
infection, no direct poxvirus inhibitors are currently known. However, the inhibitors of
IL-1β and IL-18 activity, discussed in the previous section, are likely effective at preventing
the activity of these downstream effectors of AIM2 inflammasome activation.

7. Conclusions and Outlook

In this review, we have discussed multiple PRRs and their roles in sensing poxviruses
infections and subsequently initiating innate immune responses. Individual PRRs have
unique molecular mechanisms for sensing ligands and triggering antiviral responses via
diverse adapters and effectors. Furthermore, redundancy, cooperation, and crosstalk
among the various PRRs increase this complexity. This crosstalk and redundancy in
immune pathways are also reflected in the viral antagonists, with multiple PRR pathways
targeted by the same viral proteins. For example, E3 sequesters the dsRNA and blocks the
activation of PKR, OAS/RNase L, and TLRs [68,95,199,206]. However, it is currently an
open question as to whether these multiple functions, for E3 and other antagonists, are
truly redundant, or if there are situational differences in the activity of E3 against various
pathways. Thus, the overall picture of host recognition of poxviruses is multifaceted and
far from clear. Investigation of the cooperation and crosstalk between PRRs will help
define the innate immune network(s) elicited by these various PRRs both individually and
in combination.

On the other side of this battle, the specific poxviral ligands are not yet known for
all of these PRRs. Identification of these ligands, characterization of their structures or
motifs, and their interactions with the sensors themselves are necessary to reveal how the
signal is initiated by receptors during infection of poxviruses. Furthermore, the molecular
mechanisms underlying cell type-specific or virus-specific recognition and signaling by
certain PAMPs during poxvirus infections are still largely unknown. Finally, it is becoming
more apparent that the diversity in the poxvirus family is also reflected by the range of
activities discovered for individual viral gene orthologs, and their implications for viral
host range and virulence. This observation is most strongly supported for rapidly evolving
genes such as viral immune regulators and their implications for virus host range and
virulence [4,72,78,272]. Therefore, the data presented in this view representing the response
to a handful of poxviruses may not capture the full spectrum of poxvirus responses, and
viral orthologs from other poxviruses should also be examined.
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Abbreviations

ADAR1: adenosine deaminase acting on RNA 1; ADP: adenosine diphosphate; AIM2: absent in
melanoma 2; AMP: adenosine monophosphate; AP1: activator protein 1; ASC: apoptosis-associated
speck-like protein containing a CARD; ATP: adenosine triphosphate; Bcl-2: B cell CLL/lymphoma
2; CARD: caspase activation and recruitment domains; CCL5: chemokine (C-C motif) ligand 5;
cGAS: cyclic GMP-AMP synthase; CNPV: canarypox virus; COP: Copenhagen; CPXV: cowpox
virus; CPXV: cowpox viruses; CREP: constitutive repressor of eIF2α phosphorylation; CrmA: cy-
tokine response modifier A; CTD: carboxy-terminal domain; CXCL2: chemokine (C-X-C Motif)
ligand 2; DAMPs: damage-associated molecular patterns; DDX3: Asp-Glu-Ala-Asp (DEAD) box
polypeptide 3; DDX41: Asp-Glu-Ala-Asp (DEAD) box polypeptide 41; DHX9: DExH-Box helicase
9; DNA-PK: DNA-dependent protein kinase; DNA-PKcs: DNA-dependent protein kinase catalytic
subunit; dsDNA: double-stranded DNA; dsRBD: dsRNA binding domain; dsRNA: double-stranded
RNA; ECTV: ectromelia virus; eIF2: eukaryotic translation initiation factor 2; eIF2B: eukaryotic
translation initiation factor 2B; eIF2α: alpha-subunit of the eukaryotic translation initiation factor
2; ER: endoplasmic reticulum; GADD34: growth arrest and DNA damage-inducible protein 34;
GDP: guanosine diphosphate; GMP: guanosine monophosphate; GTP: guanosine-5′-triphosphate;
HSV-1: herpes simplex virus 1 HIN-200: hematopoietic interferon-inducible nuclear proteins with
a 200 amino acid repeat; HMGB1: high mobility group box protein 1; IFI16: interferon-γ inducible
protein 16; IFNAR: type I interferon receptor; IFNs: interferons; IKKα: IκBα kinase α; IKKβ: IκBα
kinase β; IKKε: IκBα kinase ε; IKKγ: IκBα kinase γ; IL-18: interleukin-18; IL-1β: interleukin-1β;
IL-6: interleukin-6; IRAK1/2/4: interleukin-1 receptor-associated kinase 1/2/4; IRF1/3/7: inter-
feron regulatory factor 1/3/7; ISGs: IFN-stimulated genes; IκBα: inhibitor κBα; KD: kinase domain;
LPS: lipopolysaccharide; LRRFIP1: leucine-rich repeat flightless-interacting protein 1; Mal: myD88-
adapter-like; Malp2: macrophage-activating lipopeptide 2; MAVS: mitochondrial antiviral-signaling
protein; MCP1: monocyte chemoattractant protein 1; MD-2: myeloid differentiation factor 2; MDA5:
melanoma differentiation-associated protein 5; MIP2: macrophage inflammatory protein 2; MLKL:
mixed lineage kinase-like; MRE11: meiotic recombination 11; mTORC1/2: mammalian target of
rapamycin complex 1/2; MVA: modified vaccinia virus Ankara; MyD88: myeloid differentiation pri-
mary response gene 88; MYXV: myxoma virus; NF-κB: nuclear factor kappa B; NLRP3: NOD-, LRR-
and pyrin domain-containing protein 3; NOD; nucleotide binding and oligomerization domain; OAS:
2′-5′-oligoadenylate synthetases; OASL: OAS like; p65/p50: NF-κB heterodimer p50/p65 subunit;
PAMPs: pathogen-associated molecular patterns; PKR: protein kinase R; PRRs: pattern recognition
receptors; PYD: pyrin domain; LRR: leucine-rich repeats; PYHIN: pyrin and HIN domain; RFV: rabbit
fibroma virus; RHIM: RIP homotypic interaction motif; RIG-I: retinoic acid-inducible gene I; RIP1:
receptor-interacting protein 1; RIPK: receptor interacting protein kinase; RLRs: RIG-I-like receptors;
RNA pol III: DNA-dependent RNA polymerase III; RNase L: ribonuclease L; ROS: reactive oxygen
species; SPI-2: serine proteinase inhibitor 2; ssDNA: single-stranded DNA; ssRNA: single-stranded
RNA; STING: stimulator of interferon genes; TAK1: TGF-β activated kinase 1; TBK1: TRAF fam-
ily member-associated NF-κB activator (TANK)-binding kinase 1; TIR: Toll/Interleukin-1 receptor;
TIRAP: Toll/interleukin 1 receptor (TIR) domain-containing adapter protein; TLRs: Toll-like recep-
tors; TNFα: tumor necrosis factor-alpha; TRAF3/6: tumor necrosis factor receptor-associated factor
3/6; TRIF: Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β; TRAM:
TRIF-related adapter molecule; VACV: vaccinia virus; VARV: variola virus; vIL-18BPs: viral IL-18



Biomedicines 2021, 9, 765 20 of 30

binding proteins; vIL-1βR: viral IL-1β receptor; VIPER: viral inhibitory peptide of TLR4; vPOP: viral
pyrin-only proteins; vSlfn: viral Schlafen; WR: Western Reserve; ZBP1: Z-DNA binding protein 1;
Zα: Z-nucleic acid binding domain; 2-5As: 2′-5′-oligoadenylates; 2′3′ cGAMP: 2′3′ cyclic guanosine
monophosphate–adenosine monophosphate; 5′ppp-dsRNA: 5′ triphosphate double-stranded RNA.
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