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Abstract 

Collaborative Resource Allocation Strategies for Air Traffic Flow Management 

by 

Amy Miyoung Kim 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

 

The Airspace Flow Program (AFP) is a traffic management initiative that aims to 

mitigate delays arising from en route capacity constraints, by holding flights on the 

ground and metering their flow through constrained regions. It has been successful in 

controlling traffic with reasonable delays, but the procedures must be improved upon to 

handle future projected demands. This dissertation explores a future AFP concept that 

incorporates structured user preference inputs in a centrally-managed assignment of 

ground delays as well as reroutes. However, the commercial aviation industry is very 

competitive, and airlines are reticent to share detailed operational information without 

clear benefits in return. This idea must be taken into consideration when designing flight 

resource assignment strategies, as we address a very fundamental question in 

transportation service provision: how does a central authority allocate resources 

efficiently when they are uncertain about what users want? 

A modeling framework was developed to evaluate and compare allocation 

strategies, under differing assumptions regarding the information that traffic managers 

may (or may not) have about airline flight costs. We introduce several resource allocation 

strategies that feature different allocation rules and route preference inputs requested of 

flight operators. We assess the total user-cost impact of each allocation strategy through a 

simple generalized cost function that represents the cost of delay for each flight caught in 

the AFP. This flight cost function consists of two parts: the first is a simple representation 

of operator flight cost characteristics that the traffic managers have adopted, while the 

second consists of a flight’s routing preferences that are not captured by the first, and 

therefore are privately known to each flight’s operator but not to traffic managers unless 

the information is offered. In one allocation strategy, users are asked to provide their 

private information in exchange for the employment of a resource allocation rule that 

rewards flights for early submission. In another, users are not asked to provide their 

proprietary information but, in turn, are not offered the same “guarantee” regarding 

resource allocations, i.e. flights have less idea about what resources they will receive in 

the allocation. We identify some basic properties about the relationships of the 
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assignment schemes’ total flight cost efficiency results, under changing assumptions 

about the quality of the central decision maker’s knowledge about the flight operators’ 

route preferences. Numerical examples illustrate situations where sacrificing a system-

optimal allocation rule for a sequential one (First Submitted, First Assigned, or FSFA), in 

order to obtain and utilize flight operators’ private information about route preferences, 

will result in more user cost efficient resource allocations. The examples also illustrate 

situations where the opposite is true, i.e. it is more efficient to use a system-optimal 

allocation without private route preference information. Also, it is found that the existing 

Ration-by-Schedule algorithm performs poorly in the context of our modeling 

framework. 

The above results do not consider the effects of gaming behavior. As a result, we 

also study the gaming and truth-telling behaviors of flight operators in response to the 

competition for limited en route resources. It is demonstrated that operators are 

incentivized to provide untruthfully high inputs in schemes where a system-optimal 

allocation rule is used. Using a gaming analysis, it is also demonstrated that the 

operators’ equilibrium submission strategies in the FSFA scheme can vary significantly 

depending on the conditions of the AFP and their private information. However, it is also 

shown that flights are highly incentivized to submit at the very beginning of the FSFA 

planning period, which is favorable for air traffic flow management (ATFM) planning 

and coordination. 
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1. Introduction 

Adverse weather frequently and severely impacts flight operations in the National 

Airspace System (NAS). In addition, with the growth in demand projected for the NAS 

over the next 20 years, weather and traffic-induced delays are anticipated to increase 

under the current system (Bureau of Transportation Statistics, 2007). Air traffic flow 

management (ATFM) programs are used to reduce the scale and cost of disruptions to 

flight operators. One such initiative is the Airspace Flow Program (AFP), which 

facilitates resource allocation decisions when en route capacity/demand imbalances exist. 

In the AFP, flights are held on the ground at departure airports in order to control their 

flow through capacity constrained airspace regions. The AFP was first implemented in 

2006 in the northeastern airspace of the United States, and has proven to be successful in 

increasing efficiency and reducing flight delays. However, projected increases in traffic 

demand will eventually limit the benefits derived from the currently employed AFP. A 

procedure to more effectively utilize available airspace capacity must be incorporated 

into the AFP to handle these future demand levels. 

This research proposes a more comprehensive, centralized, and collaborative 

resource allocation concept within a future AFP. In particular, it proposes a highly 

structured user preference input component. It builds and compares alternative resource 

allocation strategies that employ rerouting combined with ground delay to minimize the 

impacts of AFP initiatives on users of the NAS. These strategies differ with respect to the 

mechanisms and philosophies of resource allocation, and the inputs requested of users. 

We develop a modeling framework through which these strategies are represented, 

evaluated and compared. The objective of this work is to determine how the strategies 

perform in comparison to one another under different assumptions about airline utility as 

well as potential gaming behaviors. 

This chapter contains a review of current en route ATFM practices, a brief 

description of flight planning, an introduction to the en route resource allocation problem 

studied in this research, and a literature review. Chapter 2 introduces the modeling 

framework and flight cost model. Chapter 3 describes the three basic resource allocation 

schemes and some properties of these schemes, and illustrates their performance through 

several numerical examples. Chapter 4 explores the gaming and truth-telling behaviors of 

the airlines when subject to each allocation scheme. Chapter 5 discusses several other 

resource allocation schemes. Chapter 6 contains conclusions and a summary of on-going 

and future work.  

Throughout this dissertation, “operator” or “user” will be used to refer to NAS 

users such as commercial airlines and general aviation aircraft. “Traffic manager” will 

refer to the agent responsible for allocating resources. In the U.S. context these would be 
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traffic management specialists at the Federal Aviation Administration’s (FAA’s) Air 

Traffic Control System Command Center (ATCSCC). 

1.1 Review of Current ATFM Practices 

En route air traffic congestion occurs daily in the National Airspace System (NAS) due to 

capacity/demand imbalances caused by various phenomena. Of these phenomena, severe 

weather and excessive demand are the dominant contributors to traffic congestion, and 

combined were the source of over 85 percent of all NAS delays in 2008 (see Figure 1.1). 

Air traffic flow management (ATFM) programs are employed to reduce the scale and 

cost of disruptions to flight operators. One such initiative is the Airspace Flow Program 

(AFP), which facilitates resource allocation decisions when en route capacity/demand 

imbalances exist. In the AFP, flights are held on the ground at departure airports in order 

to limit traffic flow through capacity constrained airspace regions. The AFP was first 

implemented in 2006 in the northeastern region of the United States, and has proven to be 

successful in reducing en route flight delay (Federal Aviation Administration, 2007).  

  

Figure 1.1 Causes of NAS delay (% of total operations), 2008 

This section will provide an overview of past and current strategies for en route air traffic 

flow management and the AFP.  

1.1.1 Flight Rerouting  

Flight rerouting due to severe en route weather and traffic congestion is performed in 

both strategic and tactical air traffic flow management today. It is manually intensive as it 

Weather, 66.7%

Volume, 
20.6%

Equipment, 
0.8%

Closed Runway, 
9.3%

Other, 2.6%

SOURCE: Bureau of Transportation Statistics and FAA OPSNET 
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requires close coordination between several traffic management units. Consequently, 

FAA traffic managers typically select reroutes from a standard set compiled in the 

National Playbook
1
, basically employing a “one size fits all” approach (Wilmouth & 

Taber, 2005) without input from the operators. Airlines also have the option of rerouting 

their own flights before and after departure, subject to traffic managers' approvals. They 

will often exercise this option to avoid being assigned routes they consider undesirable or 

long ground delays due to postponed departure times. However, if rerouting decisions 

were completely in the hands of the traffic managers, where airlines could not propose 

their own reroutes or voice any type of preference, these ATFM initiatives would likely 

be more inefficient and highly suboptimal. Concepts that propose more collaboration in 

rerouting have existed since the early 2000s (Ball, Futer, Hoffman, & Sherry, 2002); 

these concepts describe a more structured approach to coordination between traffic 

managers and operators.  

1.1.2 Ground Delay Program (GDP) 

A significant improvement to NAS air traffic management began in the mid-1990s with 

the Collaborative Decision Making (CDM) program. CDM is a program that aims to 

improve the technological and procedural aspects of air traffic management, by 

improving information exchange between government and industry. The first major 

application of CDM was to Ground Delay Programs (GDPs) (Chang, Howard, Oiesen, 

Shisler, Tanino, & Wambsganss, 2001). When an airport has reduced arrival capacity due 

to severe weather at or near an airport, a GDP holds flights destined for that airport on the 

ground at their origin airports to meter demand. CDM information exchange between 

operators and traffic managers drastically enhanced the effectiveness of GDPs in 

correcting demand/capacity imbalances and reducing delays (Hoffman, Hall, Ball, Odoni, 

& Wambsganss, 1999). CDM is employed in GDPs through the Ration-By-Schedule 

(RBS) algorithm. RBS allocates constrained airport resources by assigning flights 

delayed departure times in the order by which they are scheduled to arrive at the 

constrained airport. RBS also stipulates that airlines have ownership of their arrival slots 

(or, scheduled arrival times) at the constrained airport, and relinquish ownership only by 

choosing to vacate them. As airlines are free to swap and cancel flights
2
 without losing 

slot ownership, they are incentivized to share their up-to-date flight schedule information 

with FAA traffic managers. RBS is a well-accepted allocation scheme that has been in 

use in ground delay programs since the mid-1990s (Hoffman, Burke, Lewis, Futer, & 

Ball, 2005). Prior to CDM and RBS, resource allocations were made using the Grover 

Jack algorithm. Airlines did not “own” their slots, and would lose ownership by 

canceling or swapping flights. They had no incentive to report updated flight schedule 

information, and as a result slots would often go unused. Clearly, CDM and RBS resulted 

in great efficiency improvements in ground delay programs (Hoffman, Burke, Lewis, 

Futer, & Ball, 2005). 

                                                      
1 http://www.fly.faa.gov/PLAYBOOK/pbindex.html 
2 These actions are subject to a set of rules that prohibit airlines from assigning certain flights to certain routes, even if 

they desire to. 
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GDPs are very effective in dealing with reduced arrival capacity when it is caused 

by inclement weather near the destination airport. However, before 2006, GDPs were 

also employed to address capacity issues in the en route airspace. This could be 

inefficient, ineffective, and inequitable. We illustrate how, using the example in Figure 

1.2 below. 

 

Figure 1.2 Use of GDPs for en route capacity constraints 

The above figure identifies a flow constrained region in the northeastern United States en 

route airspace, depicted by the thick black line. It could represent a line of thunderstorms 

or a cordon through a corridor of heavy traffic. In fact, the constrained area shown above 

is a relatively common occurrence during thunderstorm season, as it is a primary corridor 

between the major cities on the northeastern seaboard and those further west (Chicago, 

Minneapolis, San Francisco, etc.). Prior to 2006, it was common to manage traffic flow 

through the constrained region by implementing GDPs at LaGuardia (LGA), Newark 

(EWR) and Kennedy (JFK) airports. However, GDPs were not commonly implemented 

at smaller airports such as Islip (ISP) in Long Island, New York. Under this practice, all 

flights destined for the New York airports with GDPs in place were assigned delayed 

departure times, regardless of whether or not they fly through the constrained region. 

However, flights destined for Islip are not delayed, although they might fly through the 

constrained region. It is clear that using GDPs to manage en route capacity was highly 

inequitable and inefficient. As a result, another CDM traffic management initiative, the 

Airspace Flow Program (AFP), was created and first implemented in 2006 to handle en 

route constraints (Federal Aviation Administration, 2008).  

No GDP at ISP

not delayed

delayed

delayed

GDP at LGA
En route constraint
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1.1.3 Airspace Flow Program (AFP) 

The FAA will initiate an AFP to facilitate traffic assignment decisions when en route 

demand/capacity imbalances exist. In an AFP, the constrained airspace region and the 

flights scheduled to fly into this region during the period of reduced capacity are first 

identified. Again, constrained airspace regions include those that are experiencing 

undesirable weather and/or heavy demands. Most of these regions are able to 

accommodate a reduced amount of flight traffic; unless thunderstorms are very severe, 

flights are usually still permitted to fly through these regions. The reduced capacity of the 

constrained region is reallocated to impacted flights by assigning each flight a delayed 

departure time to fly their originally scheduled route. Delays are imposed only on flights 

that travel through the constrained airspace in question. Under the CDM rules of slot 

ownership, users are incentivized to provide up-to-date information about their flights to 

FAA traffic managers. Users will either accept these new departure times, or reject and 

reroute around the constrained airspace (subject to traffic managers’ approval), or cancel 

flights altogether (Libby, Buckner, & Brennan, 2005). Slots to fly through the AFP are 

vacated as flights are canceled and routed out, and the schedule is compressed such that 

remaining flights are moved up in time. Currently, the distribution of delayed departure 

times combined with airline-initiated rerouting and cancellation has proven to be a 

sufficient improvement on GDPs in addressing en route capacity constraints (Federal 

Aviation Administration, 2007). However, with increasing demands and/or very severe 

storms, better utilization of all other available capacity options will be necessary. This is 

particularly true in the summer months when convective weather is most prevalent. One 

strategy is for FAA traffic managers to take control of allocating all aspects of en route 

resources, such that delayed departure times are combined with new route assignments. 

This would allow the FAA to manage rerouting centrally, and optimize utilization of 

available capacity on neighboring routes, to ultimately reduce the total delay cost of the 

AFP. In order to offer resource assignments that are desirable to operators, however, the 

FAA will require a significant level of user input. This is the main topic of this research, 

and is discussed in greater detail in Section 1.2. 

According to 2008 data obtained from Metron Aviation, most AFPs begin after 

2PM local time as airspace congestion and convective weather is more likely to occur 

later in the day. They typically end after 10PM when air traffic demands are low. AFPs 

can end earlier than their scheduled termination time, and do so about 70 percent of the 

time. AFPs are very rarely extended, because they are usually scheduled to end in the 

evening well after the time the capacity constraint is most severe. 

1.1.4 Airline Flight Planning and Operating Costs 

An airline's flight planning procedures typically begin about three hours before its 

scheduled departure (Hoffman, Lewis, & Jakobovits, 2004). Major airlines typically have 

sets of preferred routes that are flown under particular conditions. For a given flight, 

airline dispatchers (who oversee flights from planning to completion) load these routes 

into a program that will select the most desirable one according to their airline’s 
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objectives for the flight. If severe weather is predicted on the selected route, the 

dispatcher will search for alternatives around the storm during this time. Approximately 

90 to 120 minutes before departure, the airline dispatcher will file the flight plan 

trajectory with the FAA traffic managers. For any strategic planning activities that must 

occur prior to the time that flight plans are filed (for instance, an AFP) traffic managers 

rely on published airline schedules, historical data, or early intent flight plans from 

airlines when available.  

An airline’s operating objectives and flight cost calculations are proprietary and 

vary from operator to operator. As a result their preferred routes will vary as well. Traffic 

managers cannot assume that all flights will want to travel one route, whether it is wind-

optimal or otherwise. For instance, although Northwest Airlines had a well-known 

preference for routes with less turbulence, timely arrival is of greater importance to 

Southwest Airlines. Despite these differences, however, all flight costs are clearly 

dependent on such things as crew time, fuel costs, maintenance costs, facility usage fees, 

etc. The factors contributing to flight costs differ according to whether the flight is on the 

ground or en route, mainly due to the fact that an aircraft’s fuel costs are very high while 

it is in the air. En route fuel usage also varies depending on the type of aircraft flown, its 

speed, flight level (i.e. elevation), and other operating characteristics. Additionally, 

missed connections can greatly increase the cost of delay incurred either on the ground or 

en route. Missed connections disrupt personnel and equipment usage schedules, while 

missed passenger connections cause customer dissatisfaction and add rebooking 

workload. 

1.2 En Route Resource Allocation 

En route resource allocation decisions are the result of system capacity constraints, the 

allocation and equity principles chosen for use, and, under the CDM philosophy, up-to-

date flight demand information (Figure 1.3). Flight demand information includes original 

flight schedules and updates about cancellations and other changes. Demand information 

is naturally a function of users’ underlying flight cost structure. Also, the perceived 

quality of an allocation result will depend on the assessment metrics used to gauge its 

performance. Performance assessments are typically based on system efficiency measures 

such as total flight delay. 
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Figure 1.3 Current resource allocation process 

There are many resource rationing mechanisms (uppermost box, Figure 1.3) that could be 

considered for use if FAA traffic managers were to take control of rerouting in an AFP. 

To demonstrate two possibilities, consider the example illustrated in Figure 1.4. Two 

flights (A and B) are planned to travel some nominal route with original departure times 

0 and 5 minutes, shown in the top box. The route is completely closed due to convective 

weather; to accommodate these flights, departure slots on two alternative routes are 

offered (middle box). Suppose that flights A and B provide the traffic manager with their 

en route costs (in units of ground delay minutes, as discussed further below) for each 

route, also shown in the top box. The final cost is calculated based on the difference 

between the original departure time and the assigned departure time, plus the en route 

cost. Say traffic managers are obligated to serve Flight A first and Flight B second 

(Allocation 1). This kind of sequential allocation may be necessary because Flight A has 

some clear priority over Flight B, and expects to be served first as a result of some 

fairness principle. In this case, Flight A would be given Route 1 slot 1 as it is the lowest 

cost option available to it. Flight B would be left with Route 1 slot 2 as its best available 

option. The total cost of this allocation is 250. If the goal is to minimize total cost 

(Allocation 2), they would assign Flight A to Route 2 slot 1 and Flight B to Route 1 slot 

1. The cost of this allocation is 240. Clearly the allocation results could be different if 

airlines submitted different cost values, or if some equity constraint, such as keeping the 

highest cost incurred as low as possible, were also included in an allocation. 
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Figure 1.4 Illustration of possible allocation outcomes 

We list a few of the many other allocation mechanisms that could be adopted (Ball, Futer, 

Hoffman, & Sherry, 2002). Traffic managers may be instructed to minimize a system cost 

metric such as the weighted sum, with or without consideration of flight/operator equity. 

Allocation could follow a “first-come, first-served” process where the ordering is based 

on the time of resource requests, the original schedule, or some other criterion. Real-time 

auctions of available resources could be employed. These are just a few of the many 

potential allocation mechanisms.  

As stated previously, user inputs into the resource allocation process currently 

consist of providing up-to-date flight schedules, or demand information (Figure 1.3). We 

are interested in a system where airlines, in addition to providing updated demand 

information, provide other richer and more detailed information into the allocation 

process. This would ideally consist of users’ flight cost and resource preference 

information, and would be represented by changing the “user demand” box label in 

Figure 1.3 to “user demand and preference”. However, as the commercial airline industry 

is highly competitive, airlines are typically reticent to reveal any information about 

themselves that could potentially be used by competitors to gain a market advantage. 

Also, it is likely that additional effort will be needed to develop these user inputs. As a 

result, airlines must be offered incentives and rewards commensurate to the amount of 

information requested of them. In other words, airlines must feel that the rewards offered 

by traffic managers must exceed the disutility of developing and revealing proprietary 

information. Additionally, the competitive nature of the industry also leads naturally to 

gaming behavior, which is often a critical issue in the design of ATFM programs. It is not 
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likely that airlines will provide accurate flight cost information if they perceive that by 

reporting higher cost differentials they could receive more desirable resources. When 

designing resource allocation schemes, it is necessary to consider and address the gaming 

behavior that could potentially negate the benefits of these schemes. 

In this research, we propose a functional form to represent user flight cost in the 

context of an AFP (leftmost box, Figure 1.3). We also propose three basic resource 

allocation schemes for AFP flights, where each consists of an allocation mechanism and a 

user input type. The three schemes are based on two user input types – Stated Route 

Preference input and Parametric input. Stated Route Preference input (Section 3.1) 

requires operators to supply route-level flight cost information about each alternative 

route. It is based on the delay thresholds concept developed as part of the Flow 

Constrained Area Rerouting (FCAR) Decision Support Tool by Metron Aviation 

(Hoffman, Lewis, & Jakobovits, 2004), which is also presented in more detail in Section 

3.1. Parametric input (Section 3.2) requires flight operators to supply parameters of the 

flight cost function which are not route-specific, but which traffic managers can use to 

calculate the user costs of reroute and ground delay options available in an AFP. The first 

two allocation schemes employ Stated Route Preference user input. The first scheme 

allocates resources with the goal of minimizing total system-wide user cost (without 

considering equity) while the second allocates resources through a First Submitted, First 

Assigned (FSFA) process. In FSFA, flights are assigned the best available resources in 

the order they submit their input data. FSFA is just one of the many allocation 

mechanisms described above. It is one example of resource assignment according to a 

flight prioritization scheme, which could also be based on other criteria, such as flight 

schedule. The third assignment model uses the Parametric user input scheme and again 

allocates resources to minimize total system cost. Several other allocation schemes are 

discussed in Chapter 5, including one that employs the RBS prioritization scheme. 

Furthermore, the efficiency of the allocation results are assessed based on the sum of 

individual user costs, which depend on the user flight cost structure. 

 

Figure 1.5 Proposed modeling and analysis framework 
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In this user cost-based performance assessment, allocation performance will improve 

when inputs that are a good representation of users’ underlying cost structures are 

incorporated. However, the performance of a resource allocation scheme also depends on 

the allocation mechanism employed. We assess how the different schemes perform 

against one another under changing assumptions about the flights’ route preferences. One 

of the main results of this research is a framework through which feasible user input and 

allocation mechanism combinations can be represented, evaluated, and compared.  

1.3 Literature Review 

Our review of the literature begins with a discussion about the classic traffic assignment 

problem, both under static and dynamic treatments, and will move to their applications to 

air traffic flow management (ATFM) problems. We then discuss the work that has been 

done to address equity and fairness issues in resource assignment for ATFM as well as a 

wider class of network flow problems. The final section discusses the limitations of the 

existing literature in addressing how a central authority like the FAA can best serve their 

customers using uncertain and/or incomplete information about these customers.  

1.3.1 Traffic Assignment 

The literature on traffic assignment is extensive and well-established. Of Wardrop’s two 

equilibrium principles, the User Equilibrium (UE) is of greater interest in surface traffic 

planning, where drivers can make their own personal travel choices to minimize their 

travel costs. Under congested conditions, unique user equilibrium (UE) conditions exist 

when drivers are homogeneous. It has also been shown that for certain cases, the UE 

solution exists and is unique for heterogeneous driver classes (Daganzo, 1983) (Sheffi, 

1985). Konishi (2004) extends Daganzo’s work to heterogeneous drivers with different 

utility functions. Konishi shows that an equilibrium solution is unique for a general class 

of utility functions on a simple network. Also, Leurent (1993) accounts for driver 

heterogeneity through the use of continuously distributed (over the driver population) 

values of time, and demonstrates that there exists a unique cost-versus-time equilibrium. 

His work can be differentiated from a multiple user classes model (such as that analyzed 

by Daganzo) in that heterogeneity in his model is demand-related, not supply-related. 

There are many difficulties that arise in surface traffic assignment problems due to the 

nature of driver behavior, traffic controls and physical infrastructure characteristics on 

road networks. Many of these do not apply to air traffic flow management (ATFM) due 

to fundamental differences in “driver” behavior, the physical structure of airspace, 

aircraft flight patterns, and traffic management activities. However, from a traffic 

assignment perspective, the most significant difference is that aircraft cannot be in the 

airspace without permission from air traffic managers, and are always under their control. 

As a result, traditional ATFM models (including those discussed in the next section) have 

focused on system-optimal traffic assignment solutions. Dynamic traffic assignment 

(DTA) has also been studied extensively in the context of road and air transport networks 
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since the late 1970s. The problem has been addressed using optimization models, 

variational equality theory, and simulation, in addition to other tools (Peeta & 

Ziliaskopoulos, 2004). DTA has been applied to the ATFM problem mainly in reaction to 

changing adverse weather (Bertsimas & Stock Patterson, 2000) (Mukherjee & Hansen, 

2007). 

1.3.2 Air Traffic Flow Management Models 

There has been much work in developing optimization models to support air traffic flow 

management (ATFM) decisions under disruptions. The objective of many such models is 

to minimize the expected system-wide cost of delay to flights. Uncertainties in capacity 

and weather have been extensively addressed in the single airport ground holding 

problem (SAGHP). This is appropriate as it is still true today that the main traffic 

bottlenecks in the NAS are at airports and their terminal airspace. Some of the earliest 

work on the SAGHP includes that by Andreatta et al. (1987) and Richetta and Odoni 

(1993). Ball, Hoffman, Odoni, & Rifkin (2003) show that the integer program of a 

stochastic version of the model can be solved using linear programming. They give 

consideration to its integration with the CDM paradigm. Mukherjee and Hansen (2007) 

extend the model further by considering a dynamic stochastic treatment of the problem. 

More recently, they extended their work to consider dynamic rerouting decisions in 

airport terminal areas (Mukherjee & Hansen, 2009). 

When there is convective weather in the en route airspace, which occurs 

frequently in the summer months, heavily trafficked corridors can be greatly affected and 

cause flights delays that cause even more delays throughout the NAS. As traffic volumes 

increase, these en route delays become more significant. As a result, some attention has 

shifted to address the effects of en route congestion on ATFM. Many of these models are 

formulated as integer programs using discretized time intervals, as in most SAGHP 

models. One of the most well-known models was proposed by Bertsimas and Stock-

Patterson (1998), and includes both airport and en route airspace capacity constraints. 

They considered ground holding, air holding and rerouting decisions in a static 

deterministic setting, (Bertsimas and Stock-Patterson later proposed a two-stage dynamic 

model (2000)). It should be noted that their cost function accounts for many aspects of 

operational costs including fixed costs, aircraft availability, ground delay costs, and en 

route flight costs. Although flight-specific air and ground hold cost ratios are included in 

the Bertsimas and Stock-Patterson model, it does not provide any information or 

assumptions about these values or how they would be obtained. Goodhart (2000) 

addresses the limitations of previous ATFM models, in that they assume the FAA possess 

all information about the flights and their costs, and have complete authority to make all 

decisions about these flights’ departure times and routes. She proposes an ATFM model 

framework where decisions are made cooperatively, relying on information exchange 

between the FAA and flight operators. Operators are expected to provide their resource 

preferences to the FAA, and she approaches the problem in two ways. In the first model, 

she assumes that airlines offer their preferred route and departure time information to the 

FAA such that they can make decisions that better reflect airline preferences. In the 
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second model her work takes a more “bottom up” approach. She assumes that airlines 

have optimized their own costs and chosen their resources with respect to the NAS 

constraints they face, and the FAA attempts to accommodate them with respect to the 

capacity and equity constraints.  

Jakobovits et al. (2005) formulated a variant of the GDP algorithm to schedule, 

reroute and airhold flights flying into and around constrained airspace. They employ a 

dynamic capacity estimation algorithm to forecast time-varying entry and exit points and 

maximum flow rates for constrained airspace. The algorithm imposes ordering schemes 

that align with Collaborative Decision Making. 

1.3.3 Equity and Collaboration 

As mentioned previously, ATFM models have traditionally aimed to optimize system 

efficiency in assigning resources to flights. Much of this work does not take equity into 

consideration, which is problematic in practice for two major reasons: a central authority 

like the FAA has an obligation to serve its customers (the airlines) fairly, and customers 

are less likely to share up-to-date information with the FAA (and potentially compromise 

some of their competitive advantage) without the promise of good initiatives and fair 

treatment. Over the last decade more attention has been given to equity in ATFM, mainly 

through GDPs that address airport and terminal area capacity shortfalls. One of the most 

significant developments involved the application of the Ration-By-Schedule (RBS) 

algorithm, which has been studied extensively. Vossen et al. (2003) describe a framework 

for equitable allocation in GDPs through RBS, illustrating its operational impacts in 

reducing systematic biases due to flight exemptions. Vossen and Ball (2006) also 

demonstrate that RBS is both efficient and equitable under certain conditions, in that the 

equitable solution is contained within the solution space of maximally efficient solutions. 

Hoffman et al. (2007) and Ball et al. (2010) introduce the Ration-by-Distance (RBD) 

allocation method, which is shown to be more efficient than RBS under early GDP 

cancellation, but less equitable. As a result of this finding, they introduce an equity-based 

RBD (or E-RBD) algorithm, which is a constrained version of RBD that imposes an 

upper bound value on a pre-defined equity metric. Glover and Ball (2010) use multi-

objective optimization and investigate the use of several different objective functions to 

more precisely balance efficiency and equity. They compare their results to existing 

algorithms RBS, RBD (Ration-by-Distance) and E-RBD (Equity-based RBD). 

Equity applied specifically to the problem of en route resource allocation has been 

studied more recently as well. Hoffman et al. (2005) discuss and evaluate the efficiency 

of allocation strategies tailored to the en route resource allocation problem, as an 

alternative to the use of GDPs in assigning en route resources. One of the ways they 

address the airspace resource problem is by rationing multiple resources simultaneously. 

Their strategy was also designed to incorporate changing user preferences and real-time 

operational decisions by the FAA. Pourtaklo and Ball (2009) propose an algorithm to 

equitably allocate airspace slots specifically within the AFP context using flight operator 

preference information and randomization. 
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Resource allocation in ATFM has also been studied to some extent from a game-

theoretic and/or market-based perspective. The one-player case corresponds to a classic 

traffic assignment system-optimal solution, while a many-player case yields the user 

equilibrium solution. Haurie & Marcott (1985) formulate a non-cooperative game where 

players, defined by their origin-destination pairs, must send flows along a congested 

network to serve demand at their destination node. The cost of sending flow along a 

given link is a function of the flow on that link (congestion effect). They show that the 

Nash-Cournot equilibrium corresponds to the user equilibrium. Wie (1993) studies a 

dynamic extension of (Haurie & Marcotte, 1985), where each player must make decisions 

(to minimize their cost) about sending a fixed volume of traffic from a single origin to a 

single destination over a network of routes. Players make simultaneous decisions over 

time, which is modeled using differential game theory, and Wie establishes a dynamic 

game theoretic interpretation of the user equilibrium condition. He considers delay costs 

in addition to travel (congestion) costs, which Haurie & Marcott do not consider. The 

author extends his work (Wie, 1995) to account for two types of players – a user-

equilibrium player and a Cournot-Nash player. The latter behaves to establish a system-

optimal cost outcome. 

Waslander, Raffard, & Tomlin (2008) propose a market mechanism-based 

approach in allocating en route resources to competing airlines, and incorporate this 

rationing mechanism into an ATFM model. They show that it is in the airlines’ best 

interest to participate in the airspace resource allocation market; they can do no worse by 

participating than if they do not participate and allow the central decision maker to assign 

them resources without taking their preferences into account. The resources in this study 

consisted of access to airspace sectors during particular time intervals. In Waslander et al. 

(2008), the authors consider that airlines submit maximum lump-sum bids for resources 

in a market where they influence resource prices through their bids. They show that a 

Nash equilibrium and a bound on the worst efficiency loss exist for utility maximizing 

players that anticipate how their bids will affect resource prices. 

1.3.4 Research Contributions 

This literature review has briefly touched on the extensive body of research in 

transportation network analysis and most precisely, air traffic flow management models 

applied in the context of en route resource allocation. Over the last decade, collaborative 

decision making concepts have been incorporated into ATFM models, some of which go 

a step further to consider systems where airlines provide resource preference information 

to the FAA’s resource allocation processes. However, these models do not consider that 

airlines may not be inclined to provide their preference information into the allocation 

process without a guarantee of fairness or efficiency in return. They also do not consider 

that airlines will attempt to gain advantages by gaming the system through their input 

information. And although many have formulated complex stochastic and dynamic 

models in response to uncertainty regarding how weather impacts NAS operations, they 

do not consider the uncertainty and incompleteness inherent in the FAA’s knowledge 

about the airlines they serve. We address these gaps in the literature. We propose 
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allocation schemes that focus on how combinations of structured user preference inputs 

and resource rationing mechanisms can be combined to allocate constrained en route 

resources fairly and efficiently, particularly within the context of the AFP. Our work 

pairs user preference input schemes with resource rationing mechanisms, taking into 

account the fact that airlines will not be inclined to reveal preference inputs without being 

offered some type of resource guarantee from traffic managers in return for this 

proprietary information. One of the most significant contributions of this work is in the 

use of random utility theory to represent airline flight costs from the FAA’s perspective. 

We propose a methodological framework that utilizes a random flight cost model to 

assess and compare these resource allocation schemes. We also look at some of the 

gaming issues behind our allocation schemes by considering some simple aspects of 

competitive behavior.  
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2. Flight Cost Model 

2.1 Evaluation Framework 

Figure 2.1 depicts the geometry of our modeling framework. Two points, or fixes, in en 

route airspace are connected by a nominal route, designated as such because it is the 

lowest cost path between the two points. Flights enter the nominal route at entry fix “A” 

and leave at exit fix “B”. The nominal route has sufficient capacity to serve the pre-AFP 

scheduled demand       between the fixes, until a constraint develops at some point 

along its path and lasts for some duration. The capacity of the nominal route is now 

reduced, and all   flights originally scheduled to use this route must be reassigned to 

observe the reduced capacity. All   flights are either given delayed departure times on 

the nominal route, or rerouted to one of     alternate routes and assigned a delayed 

departure time on their alternate route. Each alternate route   is characterized by its 

capacity and travel time. We characterize routes by travel time rather than distance, as 

favorable winds on a longer route can result in better travel times and fuel savings than a 

shorter route with less favorable winds. The nominal route is assumed to have the lowest 

travel time during the period of interest, and therefore the lowest cost of travel. 

We further assume that fixes A and B are not bottlenecks, and for the purpose of 

this problem they can be thought of as the flights’ origin and destination. Flight 

trajectories upstream of fix A and downstream of fix B are not considered in this analysis. 

 

Figure 2.1 Model airspace geometry and select parameters 

As mentioned in Section 1.2, FAA traffic managers typically have limited access to 

airline flight cost details and subsequent routing preferences. This analysis is not 

concerned with the costs of the airlines’ original scheduled flight plans, because we 
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assume that these flight plans were those most preferred under ideal conditions. Instead, 

this analysis focuses on evaluating the added costs associated with greater en route time 

and ground delay due to the AFP. 

2.2 User Flight Cost Model 

The flight cost function,     , represents the additional cost of flight   taking route   in an 

AFP.      is a function of the additional travel time of route   compared to the nominal 

route (assuming that aircraft fly at desirable, fuel-efficient speeds), time spent waiting for 

their assigned slot on their AFP route (ground delay), and other factors. It is a generalized 

cost function as it is quantified in units of ground delay minutes. We assume it is the sum 

of the above components: 

         
              

       
          

     accounts for direct costs including additional fuel, crew time, and equipment 

maintenance, and indirect costs such as passenger dissatisfaction, gate time, flight 

coordination, the airline’s satisfaction with their own specific objectives (such as 

minimization of en route turbulence), and others. Air holding is not included because we 

assume that traffic managers have perfect information about the capacity constraint 

location and duration, scheduled demand      , and all AFP route capacities 

                   . As such, all anticipated delay can be incurred on the ground.  

We assume that the term          represents flight  ’s private preferences about 

taking route  . These preferences are private in that they are known by the airline that 

operates flight   but not to the FAA traffic managers. We replace it with      and further 

identify the other components of the function as follows: 

                                    

where 

    is a ratio that identifies flight  ’s en route time cost in units of ground delay 

minutes, and     ; 

    is the additional flight time (in en route minutes) on route   compared to the 

flight time of the nominal route,     ; 

      is the new departure time for flight   on route   at fix A; 

      is the original scheduled departure time for flight   at fix A; 

      is a random error term representing flight  ’s “other” preferences for flying 

route  . It represents AFP- and route-specific preferences factors that are, by 

definition, known to a flight’s operator but not known to traffic managers or other 

airlines.      follows some distribution  . 

The unit cost of airborne delay exceeds that of ground delay, so     .    is non-

negative, assuming the nominal route had the shortest flying time under good weather 
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conditions; hence its status as the nominal route. Ground delay, or          , is non-

negative as well because aircraft cannot be rescheduled to depart before their original 

scheduled departure time. Recall that      and    are in fact departure times from Fix A, 

since we are only concerned with capacity restrictions that occur between Fix A and B. 

Slots correspond to the sequence ordering as well as departure times of flights on 

a route, such that a flight assigned to slot   on route   is the  th flight to depart on that 

route. Let us index slots by increasing departure time on a given route   by          . 

The variable    represents the total number of flights assigned to route  , and it follows 

that    
 
     . We can identify the route to which flight   is assigned by     , and its 

slot on that route by      . 

The AFP capacity of each alternative route   is      , and it follows that the 

instantaneous minimum headway at time   is   
     . Now assume that       is constant 

over the duration of the AFP such that         , and aircraft on route   are scheduled 

at constant headways    such that      
  . By this assumption of constant headways 

and the mapping of flights to their assigned route and slot, the departure time of flight   

on route   is            . It then follows that the total cost of an AFP can be expressed 

as: 

                                     

 

   
 

where  

   is the total cost of an AFP, measured in ground delay minutes; 

       is flight  ’s additional en route time when it has been assigned to route   

from the nominal route;  

       is the new AFP departure headway on the route   to which   has been 

assigned;  

          is the slot on   to which   has been assigned; 

      is flight  ’s original pre-AFP scheduled departure time, and  

         is a stochastic term representing  ’s “other” private preferences for flying 

on the route   to which it was assigned. 

Ground delay                     , is non-negative       . The assumption of constant 

route headways    facilitates the formulation of analytic approximations to the resource 

allocation schemes introduced in Chapter 3 (Section 3.5). However, the assumption is 

retained for the numerical results, which are built from the exact models, because it does 

not detract from any insights we obtain from the analysis. 
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2.3 Heterogeneous Flights 

We now give attention to the idea that   flights operators submit different en route cost 

parameters to traffic managers such that           . We assume that cost 

parameters are distributed over the flight population according to some distribution, and 

that the   AFP flights are a representative population sample. Furthermore, if flights are 

ordered by increasing  , we define         to be the en route cost parameter for the 

 th flight, and also the  th smallest value for this parameter.  

In this research, we assume that the en route cost parameter has a uniform 

distribution with a minimum value      and a maximum value     . This implies that 

   can be approximated as:  

        
           

 
  





Equation (2.4) also facilitates the analytic approximations to the resource allocation 

schemes of Chapter 3. It is also used for the numerical results. 

2.4 Unknown Cost Component 

Recall that the stochastic term in Equations (2.1) through (2.3) represents the part of 

airlines’ route-specific flight preferences that traffic managers have little or no 

information about. The stochastic term enters the objective functions at different places in 

the various resource allocation schemes, depending on whether or not the traffic manager 

has received this preference information from the airlines. The specification of the 

stochastic term affects the comparative performance of each allocation scheme. The 

strategies are evaluated over different variances of the stochastic term, where the variance 

is used to indicate the degree to which we have captured operator utility in the 

deterministic part of the cost equation. 

In the following chapter, we specify that the random term is independent and 

identically distributed (iid) normal, with mean   and variance   . The independence 

assumption is reasonable if we trust that our cost function captures the major elements of 

airlines’ AFP reassignment costs, both across flights and across routes. Although the 

(deterministic and stochastic) costs of flights operated by the same airline may be 

correlated, we assume here that intra-airline flight differences are so pronounced that this 

correlation can be ignored. In the approximations to the resource allocation schemes, we 

assume the error term takes an extreme value (Gumbel) form. The Gumbel distribution is 

characterized by its location ( ) and scale ( ) parameters, where the variance is 

determined by the scale parameter alone but the mean is determined by both   and  . In 

the standard Gumbel distribution,     and    . The Gumbel distribution has several 

important properties that make it analytically convenient to use in the specification of 

choice probabilities and expected cost, when faced with a given set of choices (Train, 

2003). In addition, the Gumbel distribution is fairly similar to the normal distribution.  
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2.5 Concluding Remarks 

It has been demonstrated in the literature that flight costs are not a linear function of 

flight delay, and in fact the marginal cost of delay is increasing. This means that a small 

increase in delay will cost much less when a flight is experiencing low delays than if it 

experiences a comparable increase in delay when already experiencing higher delay 

levels. An increase in delay is not likely to disrupt airline operations or passengers to a 

great extent when delays are low. However, when delay levels are already high, that same 

increase is likelier to cause a service disruption that affects more of the airline’s 

downstream operations. The delay is much more likely to cause missed connections by 

passengers, crew time-out problems, and delays to downstream flights due to late 

equipment turnaround, all of which are very costly. In the future we propose to modify 

the flight cost model introduced in this chapter to account for non-linearity in delay cost, 

and we discuss the specifics of this further at the end of Chapter 3.  
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3. Resource Allocation 

Schemes 

This chapter introduces three schemes by which flights caught in an AFP might be 

assigned en route resources. Two resource allocation schemes are based on the Stated 

Route Preference input concept, while the third allocation scheme is based on the 

Parametric input concept. Section 3.1 introduces the concepts and formulations of the two 

schemes based on Stated Route Preference input, and Section 3.2 presents the Parametric 

scheme. In Section 3.3 we introduce a simple example to illustrate how the stochastic 

term of the flight cost function affects the relative performance of the models. From this 

example we can understand some basic properties of these models. Section 3.4 contains 

numerical examples, which serve to explore differences in the allocation efficiencies of 

each model, under a variety of demand and supply scenarios. Section 3.5 presents 

analytic and quasi-analytic approximations of the Parametric and the First Submitted, 

First Assigned (FSFA) Stated Route Preference input schemes. These approximations are 

formulated by relaxing the departure constraint, which stipulates that a flight’s ground 

delay must be non-negative. We demonstrate that the approximations are quite good 

under certain conditions. The final section (3.6) discusses directions for future work.  

3.1 Stated Route Preference 

Stated Route Preference user input utilizes the delay thresholds concept of the Flow 

Constrained Area Rerouting (FCAR) Decision Support Tool (Hoffman, Lewis, & 

Jakobovits, 2004). Delay thresholds are a method by which airlines can express their 

privately known route preferences to traffic managers. Developed by Metron Aviation, it 

was designed to incorporate user preferences in an AFP resource allocation process that 

combines rerouting decisions with delayed departure times. The FCAR also outlines a 

method to facilitate information flow between traffic managers and operators. 

The delay threshold concept gives operators flexibility in identifying the best 

resource options for their AFP-impacted flights, in a way that does not reveal explicit 

cost information about them. In an AFP, if a flight wants to fly the original route (whose 

capacity was reduced in the AFP) it must wait on the ground until its assigned AFP 

departure slot. There may, however, be an alternate route that is less desirable (for 

instance, it has a greater distance or more unfavorable winds) but has less associated 

ground delay. Despite the increased en route time, which is generally more expensive 

than ground delay, it may be less costly for the flight to take that alternate route. This 

would be the case if the flight avoids a long ground delay by flying the alternate route, 
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and/or an on-time arrival were particularly critical because of a downline connection or 

other factors. In the FCAR process, operators of impacted flights are asked to submit 

inputs that communicate these types of preferences to the FAA traffic managers. 

When an AFP is announced, the flight operators are asked by traffic managers to 

submit route preference information to them. For each route   available in the AFP, the 

operator of flight   submits a delay threshold     . The quantity      is assumed to reflect 

the airline’s complete generalized cost of its flight   traveling on route  , relative to the 

original flight plan, without any additional ground delay costs and before ground delay is 

assigned. By submitting delay thresholds, airlines are providing the FAA with complete 

information about their route preference structure. Delay threshold values are expressed 

in units of ground delay minutes such that true airline costs are not explicitly revealed, 

and can be used directly with ground delay times to choose a route and slot. 

Once traffic managers receive the delay threshold values, they will apply their 

adopted allocation mechanism to assign resources to flights. We illustrate a flight’s costs 

using the example shown in Figure 3.1. Suppose a flight   had three route options in the 

AFP, and the flight operator submitted a delay threshold value for each route. Traffic 

managers will calculate the cost of   taking some slot on some route   as the sum of the 

delay threshold for that route and the ground delay for   to take the said slot. In the First 

Submitted, First Assigned scheme (introduced in Chapter 1 and to be discussed in detail 

shortly), once it is  ’s turn for allocation, traffic managers check the slot availability on 

each route and determine the ground delay that flight   must take on each route: 

             or      . If the minimum cost route were assigned to this flight, it would be 

                                     , or route 3 according to Figure 3.1. 

 

Figure 3.1 Delay thresholds 
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In the Stated Route Preference concept, we assume that each airline would calculate the 

added cost of a reassignment option using Equation (2.2). However, as indicated above, 

airlines do not know what slots the traffic managers have available for their flight(s) on 

each route, and therefore have no information about the amount of ground delay that will 

be assigned to their flights. As a result, airlines submit delay thresholds by which traffic 

managers can compare the costs of allocation – routing options and ground delay slots – 

for each flight. In this research, we use the flight cost model introduced in Section 2.2 to 

define the functional form of the delay thresholds submitted by flight operators, such that 

they are calculated as follows: 

                      

As discussed above, traffic managers will assign resources to each flight through a 

chosen allocation scheme using these delay thresholds which, again, represent complete 

route preference information. These inputs ensure that under any combination of ground 

delay slots that could be assigned to their flight, the airlines have informed the FAA 

about their route preferences.  

We first consider a situation where an AFP has been created, and FAA traffic 

managers request airlines to submit their inputs before some cutoff time. Only after this 

cutoff time, when traffic managers have presumably received information for most of the 

participating flights, do they allocate resources. To represent this scheme we employ a 

model where the entire batch of “requests” is considered simultaneously in making 

optimal resource rationing decisions. We then consider a system where airlines are 

allocated their preferred resources on a First Submitted, First Assigned (FSFA) basis, and 

are thereby incentivized to submit their required inputs in a timely manner. 

3.1.1 Full Information Optimal (OPT) 

In the full information optimal (OPT) model, we assume that when AFP details are 

known and released to flight operators, traffic managers request complete route 

preference information from all operators with flights in the AFP, and receive them 

immediately upon request. Traffic managers then make system-optimal resource 

allocations to the AFP flights using the received route preferences. The objective is to 

minimize total operator cost, measured in units of ground delay minutes, without explicit 

considerations for flight equity. This model is highly idealized in that commercial 

aviation is an extremely competitive industry, and airlines are unlikely to offer such 

detailed information about their proprietary flight costs if they are not offered any 

incentives (resource or equity guarantees) in exchange for the information. They may 

submit untruthful and/or inaccurate information, or none at all. However, the OPT 

scheme yields the best system performance that can be achieved from any AFP allocation 

scheme, and its results can be used as a benchmark by which all other schemes are 

evaluated and compared. 

Due to the fact that the flight operators’ complete route preference information is 

available for decision making through the information they offer to traffic managers, the 
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stochastic term of the flight cost model (representing private airline route preferences) is 

available to the resource allocation process, and therefore is included within the objective 

function. We must randomly draw these values for our numerical examples, and as a 

result Equation (2.3) cannot be solved analytically for OPT. Instead we formulate this 

model as an assignment problem, where the decision variable is a binary indicator of 

whether a flight takes a given slot  . 

Decision variables:           ;        if flight   is assigned to slot   and        

otherwise. 

Objective function: 

   
         

            

               

 
(.2) 

Where  

   is the set of flights in the AFP (set   contains   total flights); 

   is the set of slots available over all routes, and each slot   is associated with 

some route  ; 

                 –     , and is the cost of assigning flight   to slot  ; 

                        , and 

    is the departure time associated with slot  . 

Constraints:        ,              ;              ;                . 

We assume that the stochastic term is distributed iid normal with mean zero and standard 

deviation  ,            . Random sampling is used to generate      values; as a result 

we solve Equation (3.2) 5,000 times to generate an average result for  , for a given   

value, in the numerical examples of Section 3.4. We retain the assumption from Section 

2.2 that the AFP departure headways on each route   are constant at   , such that if slot   
is the  th slot on route  , then           . We also assume that pre-AFP scheduled 

departure headways are constant for all flights such that original scheduled departure 

times      are constantly spaced. These assumptions are retained because they do not 

detract from what we are interested in learning about these resource allocation schemes. 

The constraints ensure that each flight  ’s ground delay is non-negative, each flight is 

assigned to one slot, each slot is assigned at most one flight, and      can only take values 

of zero or one. 

We find   for increasing values of  , starting at    , in Section 3.4. 

3.1.2 First Submitted, First Assigned (FSFA) 

In the First Submitted, First Assigned (FSFA) allocation scheme, we imagine that the 

details of an impending AFP have been released to the airlines. They are instructed to 



 

24 
 

submit their flight cost information sometime within the AFP planning period, which 

begins a few hours prior to the start of the AFP. As a result, traffic managers receive 

complete route preference information from flight operators in a sequence unknown 

beforehand. Each time an operator submits their route preference values for a flight, the 

FSFA algorithm identifies the best available and feasible departure time slot on each 

route. The flight in question is then assigned the minimum cost resource (route/slot 

combination) available at the time, and future requests are not considered at the time of 

allocation. As a result, the FSFA is a greedy allocation algorithm in that it makes a 

locally optimal choice when each flight submits. The FSFA allocation scheme offers 

flight operators a relatively clear incentive to supply their complete route preferences in a 

timely manner.  

One of the consequences of FSFA is that it allows for early submitters to gain 

major rewards while late submitters can be greatly penalized. It also introduces an 

additional level of competition between the flight operators, in the timing of submissions. 

We consider these issues in Chapters 4 and 5. 

The FSFA scheme can be simulated using the following recursive algorithm. 

1) Assign  ,    and randomly drawn    values to flights          . Recall that 

we assume      are constantly spaced. 

2) Order flights by increasing route preference (    ) submission times. At this point 

we cannot say what this order looks like – it could be completely random and 

independent of any flight or AFP characteristics. Or, it could be correlated to  , 

original scheduled departure time, total distance from origin to destination airport, 

aircraft size, etc. Whatever the order of submissions is, flights are now ordered 

and indexed by that ordering        . 

3) By increasing  , or          :  

a. Find feasible and available slot   that minimizes     .  

b. If        , then assign   to   such that the cost of the assignment is      . 

Flag   as unavailable for all subsequent flights            . 

c. If        , mark slot   as infeasible to  . Go back to (a). 

d. Repeat (a) through (c) until    . 

4) Find       
 
   . 

Repeat (1) through (4)   times (iteration          ) for each value of  , starting with 

   . 

3.2 Parametric (PO) 

Under the Parametric resource allocation scheme, we envision that an FAA mandate 

would require operators to provide cost parameters for their flights to a centrally-

managed FAA database. This requested parameter is the air-to-ground cost ratio   if we 
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assume that traffic managers have adopted the flight cost model of Equation (2.2). 

Operators would be encouraged to update their parameters as necessary. At the time that 

resource rationing decisions must be made (at some time after the AFP is announced 

several hours prior to its actual start time), the set of parameter values contained in the 

database at that time will be used to determine route and ground delay assignments for all 

AFP-affected flights. We assume that airlines are implicitly incentivized to provide their 

most up-to-date cost parameters, in order to maximize their likelihood of obtaining 

desirable allocations in the AFP. In addition, although it is true that detailed route cost 

information (such as that represented by the   values) is proprietary to each airline, it is 

assumed that the parameters of this database are high-level flight cost information 

typically accepted to be general knowledge. Therefore, the FAA would not need to 

provide additional incentives to obtain these parameters from flight operators. 

By assigning flights to resources using the Parametric allocation scheme, the FAA 

traffic managers aim for a system-optimal total AFP flight cost solution. However, the 

only flight-level information that traffic managers have obtained from the operators are   

values, as traffic managers have not obtained the private route preference information 

that would be provided through the stochastic term (as in the OPT scheme). As a result, if 

the stochastic term does not exhibit a high level of variance (i.e.   is low), it means that 

the Parametric resource allocation can be very efficient. It also implies that the 

deterministic portion of the flight cost model is a good reflection of actual cost and/or an 

airline’s preferences for routes are not highly variable or volatile. If, however, the 

stochastic term has a high variance (high  ), resource allocations will be less efficient. 

We would like to ascertain how this approach performs in comparison to the Stated Route 

Preference strategies as the variance of the stochastic utility – and hence the 

incompleteness of the traffic managers’ information about flight operators’ route 

preferences –  increases. 

The mathematical formulation for the Parametric scheme is identical to that of the 

OPT scheme, which is an assignment problem where flights are assigned to slots on 

routes. However, unlike the OPT scheme, the objective function consists only of the 

deterministic part of the flight cost function, because traffic managers only have 

information about deterministic costs in the Parametric resource allocation scheme.   

Decision variables:           ,        if flight   is assigned to slot   and        

otherwise. 

Objective function: 

   
         

              

               

 
(.3) 

Where  

   is the set of flights in the AFP (set   contains   total flights); 

   is the set of slots available over all routes  ; 
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                        , and is the deterministic (known to traffic managers) 

cost of assigning flight   to slot  , and 

    is the departure time associated with slot  . 

Constraints:         ,              ;              ;                . 

We retain the assumptions that AFP departure headways on each route   are constant at 

  , and original scheduled departure times      are constantly spaced. The constraints are 

identical to those of the OPT scheme, which ensure that each flight  ’s ground delay is 

non-negative, each flight is assigned to one slot, each slot is assigned at most one flight, 

and      can only take values of zero or one.  

Remember that the Parametric resource allocation is performed using only the 

deterministic portion of the flight cost model, which is all the flight cost information that 

traffic managers have. Once allocations are made, we can calculate the expected “true” 

cost of the allocation      by adding the stochastic term representing flight operators’ 

private route preferences. Given that we have assumed the stochastic term is distributed 

iid normal with mean zero and standard deviation  , we know that  

                     

 

   
                          (.4)

where            represents the private route preference for flight   assigned to slot  , 

which in turn is associated with route  . To simulate  , randomly generate   values of 

          . 

3.3 Properties 

We construct a simple example to investigate the stochastic properties of the three 

allocation schemes introduced in this chapter. In this example, two flights (   ) can be 

assigned to one of two routes (   ) with one slot each. The cost of flight   taking route 

  is            , where     represents deterministic costs and     is the stochastic 

term. The deterministic costs of a flight taking any route are equal such that         
         , and the total deterministic cost of any allocation is  . It follows that the 

stochastic terms will dictate how resources are rationed in each allocation scheme. 

Table 3.1 Toy Model Allocation 

Allocation Flight 1 takes Flight 2 takes Total Deterministic 
Allocation Cost 

Total Allocation 
Cost 

1 Route 1 Route 2                           

2 Route 2 Route 1                           
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Assume that the stochastic term      is distributed iid normal with mean 0 and standard 

deviation  . Now say that Flight 1 and Flight 2 have different optimal slots, i.e.    
  

      
 . The expected costs of the OPT and FSFA allocations will then be identical, 

                . If Flights 1 and 2 have the same optimal slot,    
        

 , then 

                . Unless            , we cannot say how        will compare to 

the results of the other two models. In any case, we can express the expected costs 

resulting from the application of each resource allocation scheme as follows: 

                     

                           
(.5a) 

         
 

 
 
                                       

                                       

 

 
 

 
 
                                       

                                       

  
(.5b) 

                            (.5c) 

Since     are iid normal, the moments of the maximum of   random variables are easily 

calculated (Bose & Gupta, 1959). The equations are summarized in Clark (1961); if 

                , the expected value of the minimum of    and    can be expressed as: 

                     (.6) 

and we can rewrite Equations (3.5a) and (3.5b) such that 

                 (.7) 

                (.8) 

See Appendix A.1 for the detailed calculations. 

We are interested in understanding how well an allocation scheme performs 

relative to the OPT scheme, which yields the most efficient total user cost solution 

possible under any given situation. As a result, we express the total cost results of the 

FSFA and Parametric schemes as ratios of OPT: 

       
   

         

       
  

     

       
 (.9) 

     
   

      

       
  

   

       
 (.10) 
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Due to the fact that the total deterministic cost of any allocation is always   in this 

simple example, when traffic managers have perfect information about flight operators 

(represented by    , and therefore,            ) the OPT and FSFA models yield 

identical resource allocations and total generalized operators costs for a given set of 

parameters. Therefore,        
     when    . Clearly in more realistic scenarios it 

would be the case that the deterministic results of system-optimal and greedy (such as 

FSFA) assignment algorithms will differ from one another; under    , a FSFA 

allocation will be less cost efficient than a system-optimal allocation. Also, as   

increases, Equation (3.9) increases as well. 

It can be observed from Equation (3.10) that      
     when    ; the OPT 

and Parametric schemes yield identical resource allocations and total operator costs not 

only in this simple example but under any scenario at    . Recall that Parametric 

resource allocations do not utilize the operators’ private route preference information 

provided through the stochastic term. As a result, as traffic managers’ uncertainty about 

operators’ private route preferences increases (represented by increasing  ),      
   will 

also increase. 

Figure 3.2 displays        
   and      

   with respect to  . The  -axis represents 

increasing values of   as a proportion of  , where   is the standard deviation of the 

stochastic term in the flight cost model and   is the deterministic cost of any flight   

taking any route   (identical for all   and  ). For instance, the point “    ” on the  -axis 

indicates that   is     of  , or         . Increasing   represents greater variations 

in the flights’ routing preferences. 

 

Figure 3.2 Total cost efficiency relationship of allocation schemes 
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Some important properties of        
  ,      

  , and their relationship to one another are 

illustrated in the above figure, including those discussed in the previous paragraphs. 

Firstly, both        
   and      

   are increasing convex functions of  .      
   increases 

at a faster rate than        
  , and as both equal one at    ,      

    is greater than 

       
    at any positive value of  .  

Secondly, the slope of      
   is found to be 3.4 times larger than the slope of 

       
   at all positive values of  . However, it is unlikely this is true under other 

sample constructs, as seen in the following section.  

Finally, as mentioned previously, because the total deterministic cost of any 

allocation is always   in this simple example,        
   equals one when    . In more 

realistic scenarios where deterministic allocation costs differ, one can imagine that the 

entire        
   curve would be shifted up because FSFA does not offer a system-optimal 

resource assignment. However, under increasing uncertainty about user cost, we should 

expect that the FSFA results would also improve in comparison to the Parametric results, 

just as the OPT results do. Hence, in the numerical examples of Section 3.4, the FSFA 

total cost results cross the  -axis at a point greater than one, and therefore, the FSFA and 

Parametric total cost curves cross at values of   greater than zero. 

Appendix A.2 contains the calculations pertaining to the discussion of the results 

above. 

3.4 Numerical Examples 

To obtain some insight about the performances of the three allocation schemes under the 

FAA traffic managers’ increasing uncertainty about the flights’ private route preferences, 

represented by increasing  , several numerical examples are presented here. Suppose   

flights must be reassigned routes and departure times as part of the AFP. The nominal 

route remains open, but under a reduced capacity. We assume that air-to-ground cost 

ratios    are evenly distributed in           across all flights. We make this assumption 

because it is commonly cited in the literature that one unit of en route time is equal in 

cost to about two units of delay incurred on the ground. As a result,   is often assumed to 

take on a value of two in existing ATFM models (Mukherjee & Hansen, 2009), but we 

assume a distribution to capture the idea that it most likely varies across different flights. 

We also retain the assumption that the FSFA      submission order is random and 

independent of any flight or AFP characteristics. The competitive aspect of flight 

submission ordering is explored in Chapter 4, specifically Section 4.3. 

We focus our attention to one supply scenario combined with several different 

demand profiles. The supply parameters are listed in Table 3.2, and the demand profiles 

are described below the table. The AFP will have a total of five route options, one of 

which includes the nominal route under a decreased capacity.  
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Table 3.2 Example supply parameters 

Route 
Capacity        

(aircraft per hour) 

Departure Headway 
   (min)a 

En Route Time 
   (min) 

    

(min) 

1 24 2.5 135 35 

2 20 3 130 30 

3 10 6 120 20 

4 12 5 115 15 

5 (nominal) 7.5 8b 100 0 

      73.5    

a This is the arrival (and departure) headway at Fix A. 
b Headways after AFP capacity reduction. 

With the supply parameters above, we investigate three groups of demand profiles: 

Scenario 1: Increasing rate of demand,   ;                       min.    are 

evenly distributed in                

Scenario 2: Fixed       aircraft per hour;                 ,   increases.    are 

evenly distributed in                

Scenario 3:    are evenly distributed in              , for          and  , for the 

following demand profiles: 

     ,      min,       airc/hr 

     ,      min,       airc/hr 

      ,      min,        airc/hr 

Figure 3.3 contains results for demand Scenario 1, for      flights. The axes are 

identical to those of Figure 3.2, where the  -axis represents increasing values of the 

standard deviation of the stochastic term in the flight cost model, which in turn represents 

greater variation in the AFP flights’ routing preferences. Specifically, each point on the 

 -axis represents the value of   as a proportion of the average flight cost using OPT 

under perfect information,       (where    ); for instance, the point “0.10” means that 

  is 10% of      . The  -axis again represents the total cost result of each model as a ratio 

of the OPT total cost, or                     
 . Each point on Figure 3.3 represents 

the average of 5,000 simulation runs.  

We can make two important conclusions from Figure 3.3. As traffic managers 

know less and less about the flight operators, the Parametric (PO) scheme’s allocation 

efficiency degrades at an increasing rate with respect to  , in comparison to the FSFA 

scheme. One can also observe that the PO solution is superior to the FSFA solution only 

when traffic managers have relatively good quality information about the operators 

(represented by smaller variance values, in this case, smaller than approximately   
    ). At values of   larger than 0.18, the FSFA model yields a more user cost efficient 

solution. This result is intuitive: when traffic managers use a more predictive flight cost 

model, a system-optimal allocation with some missing information is superior to a FSFA 

allocation with complete information. However, when the flight cost model’s predictive 
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capabilities are lower, it may be more advisable to collect more information about the 

flight operators and use a FSFA allocation scheme. Identifying trade-off points such as 

this one is a core component of this research. 

 

Figure 3.3 Demand Scenario 1 total cost results 

Results such as those shown in Figure 3.3 could have some important policy 

implications. Say that traffic managers believe the predictive capability of their flight cost 

model is quite good in that it captures a large amount of information about the flights’ 

resource preferences, and other private route preferences are fairly small. In this case, 

traffic managers would be advised to adopt the parametric user input and system-optimal 

resource assignment of the Parametric (PO) allocation scheme. If traffic managers believe 

that their cost model’s predictive capabilities are weaker in that it captures less 

information about flight costs, then they would be advised to use the FSFA allocation 

method. If the traffic managers have no idea about the quality of their cost model’s 

predictive capabilities, they would be better advised to use the FSFA model to control the 

amount of “damage” that could be done by using the PO model at high values of  . 

However, if we assume that the occurrence of information quality level is represented by 

some probability distribution, and traffic managers are risk neutral, we could calculate the 

expected cost of each strategy over all values of  , and then choose a model. 

The following table (Table 3.3) displays the results of a sensitivity analysis on the 

Scenario 1 demand parameters outlined above. The shaded cells contain the results of the 

difference between the Parametric (PO) and FSFA total flight cost results (again, as ratios 

of the OPT total cost results). Each row contains results from demand Scenario 1 with 
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flight population   identified at the very left of the table, over increasing standard 

deviation values. Each column represents results at the given standard deviation value 

listed. The darkest (red) cells at the left of the table represent those results where the 

Parametric total allocation costs are less than FSFA costs, at the value contained in the 

cell. So, for instance, when     , at           the cell contains “-0.10”. This 

indicates that when     , under zero error the Parametric total cost ratio is 0.10 less 

than that of FSFA. The opposite is true at the right side of the table (blue cells): for 

example, when       and            , the value in the cell is “0.49”. This indicates 

that when standard deviation is 40% of the average deterministic flight cost under a 

system-optimal allocation, the Parametric total cost ratio is 0.49 greater than that of 

FSFA. Towards the middle of this table are the lightest cells, where the Parametric and 

FSFA results are similar (near the “crossing point” shown in Figure 3.3). 

Table 3.3 Demand Scenario 1, Parametric vs. FSFA results 

     
       

  

          

N D
0 

< C
AFP

 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

50 y -0.10 -0.09 -0.08 -0.06 -0.03 0.02 0.07 0.13 0.21 

55 y -0.09 -0.09 -0.07 -0.05 -0.01 0.03 0.09 0.16 0.24 

60 y -0.09 -0.09 -0.07 -0.04 0.00 0.04 0.10 0.17 0.26 

65 y -0.09 -0.08 -0.06 -0.04 0.00 0.05 0.12 0.19 0.28 

70 y -0.09 -0.08 -0.06 -0.03 0.01 0.06 0.13 0.20 0.29 

75 n -0.08 -0.08 -0.05 -0.02 0.02 0.07 0.14 0.22 0.31 

80 n -0.07 -0.06 -0.04 0.00 0.04 0.10 0.17 0.25 0.35 

85 n -0.06 -0.05 -0.03 0.01 0.06 0.12 0.19 0.28 0.39 

90 n -0.05 -0.04 -0.02 0.03 0.08 0.14 0.22 0.31 0.43 

95 n -0.05 -0.04 -0.01 0.03 0.09 0.16 0.24 0.34 0.46 

100 n -0.04 -0.03 0.00 0.05 0.10 0.17 0.26 0.36 0.49 

 

The above table clearly shows that as the demand rate    increases, the Parametric 

model’s performance compared to that of FSFA deteriorates, resulting in a lower   

threshold where the Parametric model cost results become higher than those of the FSFA 

model. As the demand rate increases, the average cost per flight increases for all models, 

but most rapidly for the Parametric model, followed by the OPT, and then FSFA. The 

difference between the Parametric and FSFA results is most likely explained in their 

flight assignment mechanisms. The Parametric model does not take into account the 

increasing stochastic term; as the average cost per flight       increases with increasing 

  , the stochastic term   increases as well because it is calculated from      . As a result, 

the Parametric allocation becomes more and more inefficient compared to FSFA because 

while the Parametric scheme does not assign resources using this increasing  , the FSFA 

scheme does. 
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The results for demand Scenario 2, where the demand rate    is constant over all 

flight populations, are contained in Table 3.4. 

Table 3.4 Demand Scenario 2, Parametric vs. FSFA results 

    
       

  

        

N 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

50 -0.06  -0.04 -0.01 0.03 0.08 0.13 0.20 0.29 0.40 

55 -0.06  -0.04 -0.01 0.03 0.07 0.13 0.20 0.29 0.39 

60 -0.06  -0.04 -0.02 0.02 0.07 0.13 0.20 0.28 0.39 

65 -0.06  -0.04 -0.02 0.02 0.07 0.12 0.19 0.28 0.38 

70 -0.06  -0.04 -0.02 0.02 0.07 0.12 0.19 0.27 0.39 

75 -0.06  -0.04 -0.02 0.02 0.06 0.12 0.19 0.28 0.38 

80 -0.06  -0.04 -0.02 0.02 0.06 0.12 0.19 0.27 0.38 

85 -0.06  -0.04 -0.02 0.01 0.06 0.12 0.19 0.27 0.37 

90 -0.06  -0.04 -0.02 0.01 0.06 0.12 0.19 0.27 0.37 

95 -0.06  -0.05 -0.02 0.01 0.06 0.11 0.18 0.27 0.37 

100 -0.06  -0.05 -0.02 0.01 0.06 0.11 0.18 0.27 0.37  

 

The results indicate that the models’ performances are relatively insensitive to increasing 

AFP durations and flight populations, given a constant demand of       aircraft/hour 

and total AFP capacity of           aircraft/hour. The cost results of the Parametric 

and FSFA allocations are similar at         values somewhere between 0.10 and 0.15 

(increasing as   increases). These results also hold true in situations where        . 

In demand Scenario 3, the total cost efficiency results for flight populations with 

higher maximum air-to-ground cost ratio values,     , are investigated. They are 

contained in Table 3.5 below. 
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Table 3.5 Demand Scenario 3, Parametric vs. FSFA results 

    
   

       
  

    
        

            0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

50 60 50 2.5 -0.10 -0.09 -0.08 -0.06 -0.03 0.02 0.07 0.13 0.21 

   
3.5 -0.12 -0.12 -0.10 -0.08 -0.05 -0.01 0.04 0.10 0.17 

   
5 -0.13 -0.13 -0.12 -0.10 -0.06 -0.03 0.02 0.08 0.14 

75 60 75 2.5 -0.08 -0.08 -0.05 -0.02 0.02 0.07 0.14 0.22 0.31 

   
3.5 -0.10 -0.10 -0.08 -0.05 0.00 0.05 0.11 0.19 0.27 

   
5 -0.12 -0.11 -0.09 -0.06 -0.02 0.03 0.09 0.16 0.24 

100 60 100 2.5 -0.04 -0.03 0.00 0.05 0.10 0.17 0.26 0.36 0.49 

   
3.5 -0.07 -0.06 -0.03 0.01 0.06 0.13 0.20 0.29 0.40 

   
5 -0.09 -0.08 -0.06 -0.02 0.03 0.08 0.15 0.23 0.33 

 

The results above indicate that as      increases, the FSFA model’s performance 

compared to that of the Parametric model deteriorates, resulting in higher   at which the 

FSFA scheme begins to outperform the Parametric scheme. Additionally, as      

increases, the Parametric model results improve in comparison to the OPT results. We 

also conjecture that as flight   values increase, the significance of the en route portion of 

the flight cost model increases with respect to the other cost elements. Consequently, the 

Parametric model allocation results do not deteriorate as quickly compared to the OPT 

results with increasing  . The results of demand Scenario 3 suggest that the choice of a 

suitable allocation scheme is highly dependent on the distribution of   values over the 

flight population, and consequently, this choice may vary from one situation to another 

depending on the population of flights involved.    
       

  does not change 

significantly as      increases. 

Recall that the FSFA solutions are generated under the assumption that flights 

submit their preference information as soon as they know it, and this is in some 

independent and random order. Submission times may in fact be correlated to flight 

characteristics and dependent on operator beliefs regarding the time at which other flight 

operators will submit their preference information. Due to this competitive aspect, flights 

may even be inclined to submit their preference information before they are certain what 

it is. As a result, the assumption that flights submit their inputs randomly and 

independently is not likely to be accurate, and the FSFA scheme’s total cost results may 

be better or worse than shown in these examples. We explore these FSFA flight 

preference submission ordering issues in Section 4.3. 
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3.5 Model Approximations 

It was stated in Section 2.2 that a flight’s ground delay in an AFP must be non-negative, 

or                  . We relax this constraint in order to construct analytic and 

quasi-analytic approximations to the Parametric and FSFA allocation schemes. We are 

interested in building these analytic approximations because they can be useful in better 

understanding the allocation schemes’ performance. For instance, these analytic 

formulations are used to investigate flights’ truth-telling behavior in Chapter 4. Because 

the error term is contained within the objective function in the OPT scheme, we do not 

construct an approximation to this scheme. 

By relaxing the ground delay constraint to be non-binding, a flight can be 

assigned to a resource with a slot departure time that occurs earlier than its originally 

scheduled departure time prior to the AFP. Relaxing the constraint gives the FSFA and 

Parametric schemes some convenient properties that make them more analytically 

tractable. Also, the approximations are very good when pre-AFP scheduled demand is 

much higher than the total AFP capacity, or       
 
   . This situation could very well 

occur if capacity on the alternate AFP routes is low – they may have to accommodate 

their regular scheduled traffic demands in addition to the new AFP flights, or these 

alternate routes are weather-impacted like the nominal route. Moreover, even when 

      
 
   , numerical tests have shown that violations of the earliness constraint are 

small, and the approximations provide reasonable estimates of the true solutions. 

For the approximations, we assume that the stochastic term of the flight cost 

function – representing private flight routing preferences – is distributed Gumbel.  We 

assume this for the quasi-analytic FSFA formulation, which is described below. 

3.5.1 First Submitted, First Assigned 

Each time an operator submits their flight’s complete route preferences, the FSFA 

algorithm assigns it the best resources available at the time. This is identical to each flight 

choosing the minimum cost route and slot combination available when it submits its route 

preferences. If we assume that the stochastic term of the flight cost function is iid Gumbel 

with location parameter   and scale parameter  , the FSFA process can be represented 

using the expected received utility concept of the logit discrete choice model (Train, 

2003). Each flight’s expected minimum cost and choice probabilities associated with a 

given set of alternatives can be determined. According to Domencich and McFadden 

(1975) and Ben-Akiva and Lerman (1994), the probability of agent   choosing an 

alternative   is: 

        
           

            
 
   

 

where      is the deterministic utility of option   to agent  . Assuming the flight cost 

function of Equation (2.2), 
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                                        

Let us say that       represents the additional expected cost for flight   due to the AFP, 

based on the assignment options available to this flight because of the AFP. If     
     is 

the expected cost of the set of AFP resources available to  , and     
   is the expected 

cost of  ’s original resource prior to AFP inception, then the difference between the two 

is      . Given that the stochastic term is Gumbel distributed, we can represent       
using the well-known expression for the change in consumer surplus that results from a 

change in alternatives and/or choice set (Train, 2003): 

          
         

  

           
    

 
   

 

   
  –          

  
 

 
     

where   and   are parameters of the Gumbel distribution, and   
  is the deterministic 

utility of  ’s original resource prior to the AFP. As stated previously, we are not 

concerned with a flight’s cost under normal operating conditions but rather the flight’s 

additional costs due to the AFP. As a result, we set   
        , and we rewrite (3.13) 

as: 

                
    

 
 

 

   
  

The location parameter   cancels out of the expression due to its inclusion in both the 

AFP cost and in the original cost. We now describe a recursive, quasi-analytic procedure 

by which the expected minimum AFP cost is found for all flights. This procedure yields 

approximate solutions because we calculate the expected ground delay on a given route   

(based on the probability of the previous flight     having chosen to take route   or 

not) to calculate the expected utility of flight   taking  , which in turn is used to calculate 

the probability of   taking  . To check the use of this assumption, we compared the 

results of this procedure against solutions simulated using a minimum cost slot 

assignment algorithm. It was found that our quasi-analytic procedure consistently 

overestimates total AFP cost in the order of 0.3-1%. In addition, when we compared the 

average flight cost by submission order from the quasi-analytic versus simulation 

methods, the two results were extremely similar in both magnitude and trend. It was 

therefore concluded that the quasi-analytic procedure leads to a satisfactory 

approximation of the true results. The steps of the procedure are described below. 

1) Assign an   value to each flight. Arrange flights in their order of input 

submission, or        . At this point, we cannot say what this order looks 

like – it could be random, or correlated to  ,  , total distance from origin to 

destination airport, aircraft size, etc. 
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2) For flight    , we calculate     ,        , and       using (3.12), (3.11), and 

(3.14) respectively, for each route  . We calculate      under the assumption that 

    will take the first slot on the route it chooses. 

3) For          : 

a. Determine the expected ground delay         on each route   for flight  . 

        is calculated based on the conditional probability that the previous 

flight       took  . Event “      took route  ” is represented by  ; event 

“      did not take route  ” is represented by   .         then becomes: 

                                
        

                                        

      is the probability of agent     taking route  , and was calculated for 

flight 1 in step 2 using (3.11), and flights        in step 3(d) below. 

b. Find the expected utility of each alternative route   for flight  , expressed 

as                             .  

c. Find the expected cost       using (3.14) and              found in the 

previous step 3(b). This calculation step leads to an approximation of the true 

solution because we use expected ground delay (based on the probability of 

the previous flight     choosing to take route   or not) to find the utility of 

flight   taking  , which in turn is used to find the probability of   taking  . 

d. Find  ’s route choice probabilities         using (3.11) and             . 
This calculation step leads to an approximation of the true solution. 

e. Repeat (a) through (d) until    .  

4) Find       
 
   . 

We can perform the above calculations for different values of the Gumbel scale 

parameter  , where increasing   reflects increasing variance of the Gumbel-distributed 

stochastic term     . Both Gumbel distribution parameters   and   are generated as 

functions of   such that         and          . 

3.5.2 Parametric 

To obtain analytic solutions where the decision variable is the number of flights to assign 

to each route  , or   , we solve the deterministic part of Equation (2.3) using properties 

that result from the non-binding schedule constraint. With the schedule constraint 

relaxed, flight  ’s resource allocation is not affected by its original scheduled departure 

time     . Therefore ground delay does not influence a flight’s allocation, and only the 

additional en route time cost influences which resource each flight receives in the 

allocation. It follows that flights with the highest air-to-ground cost ratio ( ) values 



 

38 
 

should be assigned to the routes with lowest en route times, and vice versa, if the 

minimum cost solution is to be obtained (see Appendix B.1). We achieve this by ordering 

flights by increasing   values, and routes by decreasing en route times where       
    . If there are two routes 1 and 2 where      , flights with lower   are assigned 

to Route 1 and those with higher   are assigned to Route 2. If   
    is the largest air-to-

ground ratio belonging to a flight assigned to Route 1, and   
    is the smallest belonging 

to a flight assigned to Route 2, then   
      

   . This is illustrated in Figure 3.4, under 

the assumption that   values are uniformly distributed over the population of flights. 

 

Figure 3.4 Assignment of flights to routes by increasing   values. 

Out of the population of flights assigned to route  , the smallest air-to-ground cost ratio 

value seen within these flights is   
   , and the largest   

        is the number of flights 

on a route, and is also expressed as the number of flights that have air-to-ground cost 

ratio values between   
    and   

    inclusively. If    flights are ordered by increasing   

values between   
   and   

   , then the total en route cost for flights on route   is 

expressed as: 

  
                (.16a) 

where 

             
      

     (.16b)

Based on our assumption that   has a uniform distribution with a minimum value and 

maximum value, using the approximation of Equation (2.4), we have 

  
      

             (.16c)
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where                 . Furthermore, if routes are ordered such that       
         : 

  
               

 

   

   (.16d)

with     , we substitute Equations (3.16c) and (3.16d) into (3.16b) to obtain: 

                  

 

   
  

 

 
       (.16e)

We can now rewrite Equation (2.3) for the objective function of the Parametric resource 

allocation scheme below, to obtain      . 

Decision variables:   , the total number of flights assigned to route    ;    
        . 

Objective function: 

   
       

                 
 

 
             

 

   
      

 

   
 

Constraints:    
 
     ;        . 

The first set of terms in the objective function represents the average cost of additional en 

route time for a flight to travel on route  , while the second and third sets of terms 

represents the total ground delay. The first constraint ensures that the number of flights 

assigned to the available routes sums to the total number of AFP flights ( ), and the 

second constraint ensures that all route counts are non-negative. The objective function of 

(3.17) was checked for convexity (Appendix B.2).    is integer, but this is relaxed in 

order to obtain the analytic solution. Even if solutions are not integer, rounding (to 

preserve  ) will still produce acceptable solutions (Richetta & Odoni, 1993). In a 

practical sense, the headways on each route should be designed to include some buffer 

space that would allow for slightly more aircraft than the capacity permits. As a result, if 

by rounding up    the route capacities were exceeded occasionally, the result would not 

be catastrophic. 

If it is the case that      or      for any  , then interior solutions to the 

objective function of (3.17) do not exist, and solutions lie at the boundaries. In these 

cases,   
    and   

   , respectively. 

If      the optimal solution when        is: 

  
  

                                  

              
  

  
      

  

a
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b

where all terms are as described above. 

Once we have the results of the Parametric resource allocation we can again find 

the expected “true” cost of the allocation      according to Equation (3.4). We now 

assume that the stochastic terms         are iid Gumbel with parameters      , where the 

parameters are generated as functions of  , or         and          . When   

and   are so defined, according to the central limit theorem their sum is asymptotically 

distributed normal with mean     and standard deviation  , such that        . The 

values of the stochastic term can also be randomly drawn to obtain numerical solutions. 

3.6 Concluding Remarks and Future Work 

In this chapter we introduced and evaluated the performances of three resource allocation 

schemes that feature different preference information required from users and resource 

rationing mechanisms. They are designed to offer users a resource allocation method that 

is commensurate to the quality of information requested of them, in order to maximize 

the likelihood of user participation. The results confirm that when FAA traffic managers 

do not have a well-specified flight cost model that includes good quality information 

about the flights’ route preferences, using a FSFA resource allocation scheme is more 

cost effective. Conversely, when traffic managers do have a well-specified flight cost 

model, they can achieve better total cost efficiency by implementing the Parametric 

resource allocation scheme. 

We have stated that these resource allocation schemes are designed to increase the 

likelihood that flight operators submit the preference inputs that are asked of them, but 

we have not systematically assessed whether they do. And if flight operators do indeed 

participate, what is the nature of their participation and the quality of their offered inputs? 

The results of an initial investigation into these questions are discussed in Chapter 4. 

Also, there are many other allocation schemes that could be considered, and we begin to 

explore this topic in Chapter 5. 

The performances of the resource allocation schemes of this chapter may be very 

sensitive to the formulation of the flight cost function. At the end of the previous chapter 

we discussed why flight cost is not likely to be a linear function of delay as assumed by 

the cost function used in this research. Through empirical analyses, Xiong demonstrated 

in her dissertation (2010) that the cost of GDP-assigned Initial Delay (GID) can be well-

represented using a piece-wise linear model. Her results show that the first 15 minutes of 

GID are insignificant, due to the way that airlines are required to report on their 

performance statistics to the FAA. GID between 45 to 90 minutes has the highest per 
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minute cost, and decreases after 90 minutes. She also writes that, after discussions with 

several airlines, the GID cost curve should actually flatten out at high GIDs, because at 

these levels of delay flights have already been cancelled. Hoffman et al. (2004) explicitly 

considered groundcost, aircost, as well as a third term – connectcost – in their flight cost 

function. connectcost is the cost of missing downstream connections by crew and 

passengers to other flights, etc. It represents both the size of a discontinuity in the flight 

cost function, as well as its slope (with respect to ground delay) after the discontinuity 

(should it be different from the slope prior to the discontinuity). The location of the 

discontinuity represents the ground delay after which time the flight has missed a 

connection, and the size represents the cost of missing that said connection. 

Based on the above, we might consider two modifications to the flight cost model 

introduced in this chapter. We might first consider a specification such as the following: 

                        

where  

       
             

       
, or the deterministic cost to flight   taking route  ; 

   is a threshold at which point the deterministic flight costs are so high that a 

flight will be canceled, and  

    . 

The parameter   is zero if total flight cost is to be a linear function of en route and 

ground delay costs. It is likely that        , and therefore    may be another 

parameter input that could be asked of flight operators. We can consider a specification 

like the one above and explore its properties. An alternative approach is to approximate 

this missed connections concept in our flight cost function with a logistics curve. This 

will require a significant change to the overall structure of our cost model. Also, in order 

to use these formulations we must give more thought to the currency used to assess cost. 

For instance, what does one minute of ground delay refer to? A minute of ground delay 

when a flight is delayed less than 15 minutes, or when it is delayed more than an hour? 

The above are two alternate flight cost function specifications we can adopt to 

improve its explanatory power. By using a flight cost structure that captures as much 

information as we know about the flight cost/delay relationship, we can in turn improve 

the explanatory power of our evaluation of candidate allocation schemes.  
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4. Airline Behavior under 

Competition 

4.1 Introduction 

The commercial airline industry is highly competitive, which leads to two main behaviors 

by airlines in the competition for en route resources. Firstly, airlines are reluctant to share 

detailed operating information about themselves with traffic managers – most aspects of 

operational and strategic knowledge are kept proprietary unless they receive an equal or 

greater (perceived) benefit in exchange. Secondly, airlines will game the system if and 

when they can obtain an advantage by doing so. These behaviors are a primary concern in 

air traffic flow management programs, where a lack of truthful information provision can 

undermine fairness and efficiency goals. As a result, resource allocation mechanisms 

should not only be designed to promote efficiency and fairness, but to incentivize airlines 

to provide traffic managers with truthful information. 

In Chapter 3 we assumed that all flight operators provide truthful information in 

the resource allocation schemes introduced. In this chapter, we discuss how gaming and 

competition could affect flight operators’ behavior, and thus, the outcomes of these 

schemes. We first demonstrate that in the OPT and Parametric allocation schemes, the 

system-optimal resource rationing mechanism encourages homogeneous airlines to 

provide untruthfully high preference inputs. In FSFA, airlines have an additional degree 

of freedom in their provision of preference information: the time at which they submit 

this information. Because airlines receive their highest utility option available at the time 

of their submission in the FSFA scheme, we conjecture that they do not have reason to 

submit untruthfully. The incentive to submit truthful information may be a critical 

advantage of the FSFA scheme.  

Some numerical examples of flight utility with respect to rank in the FSFA 

submission order are presented. A formulation that estimates the disutility of early 

submission due to uncertainty regarding internal operations and NAS conditions follows. 

We then use the results from these utility investigations in the setup of a competition 

model of how airlines would behave under the FSFA allocation scheme. We illustrate the 

behavior of the resulting equilibrium submission time function under several numerical 

examples. The chapter closes with a brief discussion of other gaming behaviors and ideas 

for further investigation. 
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4.2 Truth-telling Properties of System-Optimal Resource 

Allocation 

In both the OPT and Parametric schemes, traffic managers minimize the total user costs 

that are known to them, resulting in a system-optimal resource assignment. In a system-

optimal assignment, the resources allocated to flights are typically of varying cost, such 

that some flights end up with more desirable resources than others. As a result, over time 

and many AFPs, flight operators will attempt to minimize the expected cost of their own 

allocations in our user input-based schemes by strategically altering their input behavior. 

We anticipate that this rational behavior will be exhibited by all flight operators, and thus 

lead to equilibrium conditions where no flight can expect to lower their expected 

assignment cost by changing their strategy. 

According to the flight cost model and the two system-optimal strategies (OPT 

and Parametric) introduced in Chapters 2 and 3, flight operators can attempt to control 

their resource allocations through the information they provide to the traffic managers. 

We must determine whether flight operators are incentivized to submit untruthful 

preference information in order to reduce their expected assignment costs. We can take a 

first look at this issue by exploiting the properties of a basic traffic assignment analysis 

(Sheffi, 1985). We present a simple AFP setup with identical flights and two available 

routes (   ). Each route has slots spaced at identical headways ( ), and route 1’s en 

route time is greater than that of route 2 (such that      ). All   AFP flights have 

identical original scheduled departure times (       ), air-to-ground cost ratios 

(     ), and no additional unknown route preferences (such that            ). The 

results of applying the Parametric and OPT schemes are therefore identical; the system-

optimal allocation using truthful air-to-ground cost ratios will result in an assignment of 

  
  flights to route 1, and   

      
  flights to route 2. Equation (3.18a) gives us the 

values of   
  and   

 : 

  
  

             

  
   

      
  

             

  
 (4.1) 

where    is the truthful air-to-ground ratio value for all flights, and all other parameters 

are as described in Chapter 2. 

Figure 4.1 is a graphical representation of our flights’ expected route assignment costs. 

The lightweight dotted lines represent the (truthful) average cost that flights can expect to 

incur by being assigned to a route, as a function of the total number of flights assigned to 

that route. Although in theory each flight is assigned to a distinct slot, after a flight is 

assigned to a given route, slot assignments on that route are completely arbitrary in this 

case. As a result, a flight can only know the expected cost of being assigned to a certain 

route as a function of the total flights assigned to that route. Similarly, each route’s 

expected marginal cost curves with truthful air-to-ground cost ratios (  ) are represented 

by the light solid lines. The system-optimal assignment with    (Equation (4.1)) is found 

from the point where the truthful expected marginal cost curves of routes 1 and 2 are 

identical, represented by point A in Figure 4.1. Since      , it follows that   
    

 .  
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Figure 4.1 Untruthful versus truthful system-optimal solutions 

Also, if one draws a vertical line at point A, one can observe that the expected 

cost of being on route 1 (point A.1 in the figure) is higher than the expected cost of being 

on route 2 at the system-optimal assignment (A.2). As a result, all flights will attempt to 

maximize the probability of being assigned to route 2 instead of route 1 using whatever 

strategic handle is available to them, which in this case are their submitted air-to-ground 

cost ratios. If a flight operator should submit a truthful air-to-ground cost ratio   , the 

probability of their flight being assigned to the lower cost route (route 2) is   
   . 

Instead, imagine they submit some untruthful air-to-ground cost ratio      . By 

submitting   , their flight will be assigned to the lower cost route with probability 1 if all 

others submit truthfully. There is clearly an incentive for flight operators to submit 

untruthfully high   values to traffic managers. The question is, is there a unique 

untruthful air-to-ground cost ratio submitted by flight operators, and what is its value at 

equilibrium? 

Given that all flights are identical and aim to minimize their own costs, we 

imagine that through their submissions they will push the assignment towards a user 

equilibrium (UE) based on their actual cost ratios. At this UE assignment with   , the 

true expected costs of a flight being assigned to either route are equal, or            . 
At this assignment, flights have no incentive to change their inputs as they cannot lower 

their expected assignment costs by doing so. This user equilibrium is represented by the 

following expression: 
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   (4.2) 

  
   and   

   are the user equilibrium flight assignments to routes 1 and 2, respectively, 

with    (Point B in Figure 4.1). We can imagine that over many occurrences of this AFP, 

flights will submit    values that yield a system-optimal assignment with   
   and   

       

– the assignment at the true (with   ) user equilibrium of Equation (4.2). This system-

optimal assignment is found when:  

     
        

             
           

   (4.3) 

The value of    can be determined by drawing a vertical line through point B, and then 

finding the point along this vertical line where the marginal cost curves of Equation (4.3) 

intersect. It is identified as point C in Figure 4.1. We can now find an expression for   , 

the untruthful air-to-ground cost ratio submitted by flights to obtain a truthful user 

equilibrium solution, by solving (4.2) and (4.3): 

       (4.4) 

The equilibrium (where all flights have identical expected assignment costs) is reached 

when all flights submit an air-to-ground cost ratio    that is twice that of their truthful 

cost ratio   . Given the assumption that all flight operators are rational – they make 

choices to maximize their own payoffs – we state the following. 

Proposition 4.1. Under the Parametric scheme and a special case of the OPT 

scheme (where            ), identical flights will submit inputs that consist 

of untruthful cost ratios    to traffic managers. These untruthful values are 

twice as large as the truthful values in cases with two- and three- routes. 

Proof: see above for two-route case and Appendix C.1 for three-route case. 

This simple analysis has demonstrated that traffic managers will not be able to sustain a 

true system-optimal allocation through the Parametric and OPT schemes, as flight 

operators will create a user equilibrium by altering their inputs. A similar result may be 

true in the case of heterogeneous flights. It has been shown in past research that unique 

user equilibriums do exist under certain conditions for heterogeneous commuters in both 

network and single bottleneck models (Newell, 1987) (Daganzo, 1983) (Konishi, 2004). 

However, there may be instabilities due to other gaming behaviors and flight 

characteristics due to heterogeneity, and we must perform a quantitative analysis before 

drawing conclusions. We leave this to future research. 

4.3 Competition in FSFA 

The Chapter 3 numerical examples of the FSFA allocation scheme assume that complete 

route preference inputs are submitted by flight operators in an arbitrary, random order. 

However, another level of competition is encouraged in FSFA through the additional 

degree of freedom airlines have in submitting their route preference information. A 
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flight’s allocation cost may be highly dependent on its place in the preference submission 

order. As a result, the assumption that submission order is completely independent of 

flight characteristics and the AFP itself, as well as random, is likely invalid. Order could 

be correlated to flights’ scheduled time of departure, their air-to-ground cost ratio (  ), 

and/or their special route preferences (    ). We might expect earlier scheduled flights 

and flights with higher    to submit their information earlier. We might expect flights 

that prefer particular routes to submit earlier as well. Also, depending on the nature of 

competition and the conditions in an AFP, the submission process may be beneficial for 

ATFM. For instance, if it seems that flights are inclined to submit at the very start of the 

AFP planning period (which occurs several hours prior to the start of the AFP itself), 

traffic managers can expect to complete the majority of their AFP planning early to 

facilitate better coordination with other ATFM programs in the NAS. We begin 

investigating the effects of competition on the FSFA submission process in this part of 

the research. 

The time that the operator of a flight   submits their complete route preference 

values should be the resulting balance of two opposing objectives. In order to maximize 

the likelihood of obtaining a desired resource before their competitors do, flight operators 

will want to submit their preferences early during the planning period. However, an 

airline’s internal operations and information, as well as NAS operating conditions, can be 

highly volatile and change rapidly prior to a flight’s scheduled and/or actual departure 

time. Preference information thus becomes more accurate as it gets closer to its departure 

time. In this regard, it is more beneficial for operators to submit as late as possible. As a 

result, the utility of a flight’s resource assignment will depend on the resources available 

at the time of their preference input submission, as well as the accuracy of the preference 

inputs submitted to obtain a resource. 

We address the following question: how does uncertainty influence an operator’s 

decision to submit its flight’s route preference information later than it would under 

perfect information? We first explore the characteristics of expected flight utility based 

on a flight’s rank in the FSFA submission process. We then investigate the cost of 

submitting inputs under uncertainty about operating conditions during the AFP planning 

period. Finally, we propose a competitive model to gain some insights into airline input 

submission behavior during the planning period. The FSFA process differs from the 

Parametric and OPT schemes in that airlines can also influence their allocations through 

the timing of their preference submissions. However, in the FSFA scheme, airlines do not 

appear to have reason for submitting untruthful preferences (except to perhaps “hurt” 

other airlines, which we do not consider in this analysis), because the goal is to obtain 

their highest utility option available at the time of submission. As a result, we conjecture 

that gaming behavior in the FSFA scheme is manifest in the time airlines submit, rather 

than in the information they provide. The incentive to offer truthful information may be a 

critical advantage of FSFA over the system-optimal resource allocation schemes. 
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4.3.1 Utility by Rank in Submission Order  

The cost of a flight’s received resource allocation can be dependent on that flight’s rank 

in the route preference submissions order. Here we explore flight utility characteristics as 

a function of submission rank. We designate    to be flight  ’s rank in the preference 

submission ordering;       means flight   was tenth to submit preference inputs. The 

utility of flight   being  th to submit is represented by      . We do not know the 

functional form for     . 

Figure 4.2 is a plot of         for a number of numerical examples, including 

those presented in Chapter 3. Each curve in Figure 4.2 represents the average utility, over 

5,000 simulation runs, of having been  th to submit in a given numerical example. Note 

that there are a total of    possible orderings of flight submissions in each example. 

  

Figure 4.2 Sample average utilities by submission rank 

For the numerical examples shown,         is non-linear and decreasing with respect to 

 . The curves vary significantly depending on the supply and demand characteristics of 

an AFP. For instance, in some examples the average utility of being first is at or near zero 

while in one example it is approximately -20 ground delay minutes. The utility of 

submitting in  th place can also vary significantly from one instance (simulation run) to 

another: again, depending on the particular characteristics of the AFP. In these 

situations,         is not a good representation of     . The variance of      is low 

under situations where flights are more similar to one another in the cost model 
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parameters. When there are   slots that are of the highest deterministic utility to all 

flights in the population, and the variance of the stochastic route preference term is small, 

                 have little to no variance. This is true for small   in several of the 

examples above. 

A flight’s received resource allocation is also dependent on how that flight values 

the offered resources in comparison to how others value those resources. For instance, if 

there is a resource of high utility to two flights, the flight that submits first will “win” the 

high utility resource. Alternatively, two flights might also assign their highest utilities to 

resource sets that do not intersect, and each flight may win their desired resource 

regardless of their place in the submissions order. 

Figure 4.3 is a plot of         curves that were constructed based on a numerical 

example of Chapter 3 (AFP demand Scenario 1, with     ). All demand and supply 

characteristics of the scenario are held constant, except the variance of the stochastic 

error term ( ). Each curve represents the scenario constructed with a given   value, 

which are indicated in the legend. The values in the legend are        , which is also the 

 -axis of Figure 3.3.  

 

Figure 4.3 Average utility by submission rank, range of   (Demand Scenario 1) 

As   increases,         increases (the variance of      does as well, although this is not 

shown in the figure). The inflection points in both figures represent the submission rank   

where slot allocations typically transition from those on one route to the next. At lower 

        values, there is less variability regarding the   values at which these transition 
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points occur, hence the more pronounced inflections in the curves. The utility curves that 

correspond to larger         values are smoother. 

4.3.2 Utility by Submission Time 

Imagine that the operator of flight   is the first to submit their preferences during the 

AFP planning period when the FSFA allocation scheme is used. Flight  , therefore, has 

all AFP slots             available to it. If   had perfect information about NAS 

conditions during the planning period, it would also know the true utilities (relative to 

flying the nominal route with no ground delay, pre-AFP) of the AFP resources to itself, 

or          . We have specified      using the flight cost model of Equation (2.2): 

                                 (4.5) 

Under perfect information, it follows that   will also know which resource option is of 

true highest utility to itself. 

  
                               (4.6) 

However,   is not likely to have perfect information throughout the planning period, as 

NAS conditions can change rapidly in ways that cannot be predicted by airlines or traffic 

managers. These conditions include weather and traffic, as well as how FAA traffic 

managers react to these conditions. It is also true that airline internal operational 

situations can change rapidly, in ways that are dependent as well as independent on NAS 

conditions. Therefore, during the planning period,   only observes that the value of 

resource   to itself is     , rather than its true value,     . Flight  ’s knowledge of NAS 

conditions over the planning period is likely to evolve, and we specify that      is: 

                        (4.7) 

The stochastic term            represents  ’s imprecise knowledge about conditions at  , 

and we assume it is distributed Gumbel. Remember   can only observe     , not      nor 

       . Given that flight   only observes         under conditions of uncertainty at time 

 , it can expect to obtain the following utility from the set of AFP resources available: 

                      
   

 (4.8) 

where         is the probability of choosing some resource   at time  . It can be expressed 

as                                          , where      is the scale parameter of 

          , and indicates how much      may differ from     . A similar probability 

expression was previously introduced in Equation (3.11). 

Flight  ’s uncertainty is likely to be greatest at the beginning of the planning 

period (   ) and decrease as it progresses to  , the end of the planning period and 
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beginning of the AFP itself. We capture this idea by assuming that the variance of 

          , and therefore its scale parameter     , decreases linearly with respect to  : 

             (4.9) 

where   is a parameter that captures the overall uncertainty of conditions for the 

particular AFP in question. Equation (4.9) is constructed with the assumption that flight 

 ’s information is perfect by  , such that      0. Therefore, as the planning period 

approaches  , the probability of   choosing the resource of true highest utility to itself – 

  
  – approaches one. Prior to  , flight   believes that resource   is valued at        , and 

with this information can only expect to gain          with its choice. Flight  ’s loss in 

true utility resulting from its choice under uncertain conditions at   can be expressed as: 

         
           (4.10a) 

Recall that            
  as    , and therefore        . Note that the loss function 

in (4.10a) assumes that all slots are available to all flights at anytime.  

If      is very high,            is highly variable such that         is a poor 

reflection of its true underlying utility     , and the probabilities of choosing one resource 

over another become identical. As a result, at large     ,          approaches    , or the 

average deterministic utility to flight   of all the resources available. The maximum value 

that       can therefore take is   
      

     . We can represent the utility loss 

function as a proportion of the maximum loss possible: 

       
     

  
                (4.10b) 

The shape of      , and therefore      , is highly dependent on the specification 

of     , flight cost parameters (  ,     , and        ) and the set of available resources  . 

It may be convex within the planning period depending on how      is specified, or it 

could have an inflection point after which the function becomes concave. If only one 

resource is available to  ,           . However, if there are several resources of 

differing utilities,      is strictly decreasing and differentiable. 

Figure 4.4 displays the       function for six examples. 
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Figure 4.4 Utility loss through imperfect information 

The first three examples listed in the legend above (                  ) are generated 

for the choice set of a numerical example with      and            . The next three 

examples (                  ) are for the choice set of a numerical example with 

    . The fourth example (                     ) has             and 

the fifth and sixth examples (last two listed in the legend) have            , where 

   . It can be observed that as    and   (and therefore,  ) increase respectively, the 

values and shape of the loss function within the planning period (from       hours, 

in these examples) change significantly. The two flat (dashed) curves near the  -axis 

have smaller   over the planning period. If   were larger, or if the planning period were 

longer, the shape of these curves would approach that of the higher curves. In essence, 

these flatter loss curves correspond to the other curve values in a small time interval at 

high   values (near  ). As the range of   over the planning period increases, the loss 

curve approaches a shape where its values are near one on the  -axis for a majority of the 

planning period, and then decreases very quickly to zero as    . 

This section has introduced a functional form for a flight’s loss in utility due to 

early submission in an AFP, under uncertainty regarding NAS conditions. This loss 

function is used in the competition model that follows.   
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4.3.3 Competitive Model 

4.3.3.1 Assumptions and Payoff Function 

The analysis of the flights’ complete route preference input submission times in the 

FSFA competition requires some assumptions about the participating airlines and the 

competition process itself. Firstly, we continue to ignore the potential effects of 

correlation amongst flights owned by a single airline, such that each flight is considered a 

single non-cooperative player in the competition. This is a significant assumption in a 

model that is constructed for the purpose of understanding airline competition, but 

relaxing it will add a dimension of complexity which we would like not to consider for 

this first analysis. Secondly, players must submit their preference inputs sometime during 

the AFP planning period. Each player is informed about the resource they are allocated 

immediately after making their preference submission, and are not permitted to swap or 

modify it
3
. 

We further assume that players are not informed as to when other players submit, 

what they submit, or the status of resource availability (and therefore, what allocations 

other players receive) at any time during the AFP planning period. The result is that 

players do not have any information, beyond general common knowledge, about their 

competitors’ actions. As stated at the beginning of Section 4.3, all players in a FSFA 

scheme are assumed to submit truthful route preferences, because at the moment they 

submit, they are not competing against others for an allocation any longer. Their gaming 

strategies are manifest in the time at which they submit their preferences, rather than the 

information itself. We also assume that all players have identical flight cost functions (i.e. 

identical parameters   and   ) under perfect information conditions. They only differ 

with regards to their information uncertainty during the planning period. 

There exist several candidate methods in the game theory, and in particular, the 

auctions literature, by which to model the FSFA competition as described above 

(Krishna, 2002). For this analysis we have adapted Moldovanu and Sela’s (2001) analysis 

of player’s strategies in sporting contests, where players’ efforts, or “bids”, are dependent 

on prize values, their personal ability level, and their chances of winning those prizes. We 

assume a three-player game setup with two prizes, one of which is worth more than the 

other. The third and last submitter does not win anything. This is analogous to that third 

player winning the resource of lowest utility, because we distinguish resources by their 

relative values to one another. We do not lose any information when we employ these 

relative utility values; the three resources constitute each player’s entire choice set and 

we are only concerned with players’ actions when faced with one choice against another 

in the set. Although it is certainly true that most AFPs have many more than three flights, 

a three-flight analysis is a starting point to gain some first insights into how players might 

                                                      
3 This rule is enforced to prevent players from submitting inputs at the very start of the planning period simply for the 

purpose of reserving a resource, any resource, with the idea that they can submit again later without cost. This behavior 

can lead to several major problems which we are not prepared to consider now. 
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behave. The analysis can be readily extended to consider larger flight populations in 

future work. Alternatively, this setup can be used to consider players that are airlines with 

groups of flights for which AFP resources must be sought. 

Each player   in this competition is of a certain type that describes the degree of 

their informational uncertainty during the AFP planning period. Player’s types are 

continuously distributed over the player population. Players’ own types are privately 

known only to themselves, although they all share common information about the 

distribution of types within the population. Recall that players are not informed about the 

actions and allocations of their competitors, nor resource availability status, during the 

planning period. To this end, our submission competition is represented as a simultaneous 

incomplete information game, where each player is uncertain about their competitors’ 

types and resulting strategies (Gibbons, 1992). We assume that all players are rational, in 

that they will employ strategies to maximize their own payoff with respect to what they 

know about themselves and their competitors. Players also believe that their competitors 

are rational, and believe that other players believe that they believe that they are rational, 

and so on. We also assume that all players’ types are identically distributed, which results 

in a symmetric game where the expected payoff function and equilibrium submission 

time strategy are identical for all players. Player  ’s expected payoff can be expressed as: 

                                 

                                (4.11) 

where  

    is the cost player   incurs in submitting their preference inputs at the time they 

choose to do so, and 

    and    are the utilities that players can expect to gain by being first and 

second in the submission order, relative to the utility of being third (and last), 

    .  

For example, if the expected utility of being first is     , then             . 

Equation (4.11) assumes that the expected utility of being in a given place in the 

submission order is identical for all players in a particular AFP, and is common 

knowledge. This follows from our assumption (stated at the beginning of this section) 

that all players have identical flight cost functions when they all have perfect information. 

Also, the average utility curves of Figure 4.2 in Section 4.3.1 demonstrate that over many 

AFPs, the  th submitter’s expected utility will be greater than that of the      th 

submitter. Therefore,        . 

   represents the utility that a player can expect in being  th to submit, if they 

have good quality information. If a player   submitted very early in the planning period 

to be  th,  ’s true expected utility from being  th will be lower than   , as  ’s 

information (about NAS conditions and private airline operations) is more uncertain at 

the beginning of the planning period than towards the end of it. We are assuming in 

Equation (4.11) that the amount by which player  ’s expected payoff is degraded by its 

uncertainty at the time of preference input submission is represented by   . This utility 
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loss due to uncertainty is assumed to be additive to the expected utility of submitting first 

or second.    is a linear function of the loss function introduced in Section 4.3.2. 

               (4.12) 

Where 

       is player  ’s cost of submission, as a function of   ;         ; 

            ,         ; 

    is a constant that distinguishes player  ’s type. It determines the rate at which 

 ’s overall informational uncertainty decreases during the planning period as 

    , and  

       is the loss function as defined in Equation (4.10a). 

A larger   corresponds to an earlier submission time, which in turn represents a costlier 

submission. As       is a function of    instead of   , it is increasing,       , and 

        . 

As mentioned above,       is the cost that player   incurs by submitting at    

because of uncertain information.       assumes that the disutility expected from 

uncertainty about external NAS conditions is captured by the loss function. This loss 

function is identical for all players, in that they all observe the same changing 

information about weather, demand, and ATFM actions. However, airlines have different 

capabilities in regards to how they process these external uncertainties through their 

internal operations. Some airlines (or players, in this case) have large and/or high quality 

operations units that can make better decisions under uncertainty, while others do not. In 

fact, some airlines may not even be able to take advantage of the information about 

external conditions that is available. These differing (and private) intra-airline operations 

are captured in the term representing the players’ types, or  . A player with a low   has 

good internal operations and information, and is able to make higher utility decisions 

when faced with the uncertainty represented by     . Conversely, a player with a high   

has inferior internal operations and cannot make very good decisions when subject to 

    . We will assume all players know that   is continuously and uniformly distributed 

between      and     . If        , player  ’s internal operations can handle NAS 

uncertainty better than other players, and their cost of submitting at some early time will 

be smaller than any other player. As a result,   is likely to submit well before the end of 

the planning period. If        , the opposite is true, and in fact we will assume that   

would submit their inputs as close to   as possible.       assumes that  ’s information is 

perfect by  . 

Figure 4.5 displays submission cost functions      for two   values and three 

arbitrary   values. They represent a simple example where there are three resource 

choices in the choice set  , with utilities      ,      (and     ; the relationships 

between these values are analogous to those between   ,   , and   ). The two values 

that   take are proportions of   :      or    . Recall that   defines the value of the 

scale parameter (    ) of the stochastic term representing information uncertainty in the 

loss function.      was represented by Equation (4.9) and modified to be a function of  ; 
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       . We will use these values for some of the numerical examples illustrating the 

equilibrium strategy. 

 

Figure 4.5 Submission cost function      

     is a monotonic (increasing) and differentiable function. It may be strictly increasing 

over the strategy space of our game,        , depending on parameter values.  

Since this is a symmetric game, the functional form of the submission strategy is 

identical for all players and can be represented as a function of a player  ’s type, or 

        . It was also stated that players do not know their competitors’ submission 

strategies because they do not know their types. As a result, we can assume that a 

player’s probability of winning against one competitor is independent of the probability 

of winning against another. The probability that Player 1 submits before Player 2 is 

                                              (4.13) 

For (4.13) to hold, we must assume a-priori that       is monotonic (decreasing) and 

differentiable, and later verify that our assumption is correct. We can also normalize all 

utilities (of those in the choice set  , as well as    and   ) such that the choice of highest 

deterministic utility is one, and then rewrite the payoff function of (4.11) as follows: 
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(4.14) 

where    and    are normalized utilities of having submitted first and second, 

respectively. Our aim is to solve (4.14) in order to obtain the submission strategy 

         that maximizes player  ’s expected payoff, with respect to the parameters of 

the AFP, the information   has about its competitors, and what   knows about itself. 

      is the equilibrium strategy, where   cannot achieve a higher payoff by deviating 

from this submission time strategy. 

4.3.3.2 Equilibrium Submission Strategy 

It is verified that the payoff function is concave with respect to the submission strategy in 

        (Moldovanu & Sela, 2001). Depending on the parameter values, solutions (that 

maximize expected payoff) may lie on the boundaries of the strategy space. By 

rearranging terms and using the assumption that players’ types are uniformly distributed 

according to                , Equation (4.14) is solved to find the expression:  

        
  

   
 

   
 
  

        
  

   
 

   

 
                                                        

           
 

 

(4.15) 

where    are the normalized “true” slot utilities such that the most valuable slot has utility 

    . The above expression cannot be solved for the equilibrium submission strategy 

   in closed form, but it is possible to find solutions using Matlab or Excel. See 

Appendix C.2 for the derivation of (4.15). A third-order Taylor series about        

was calculated, but it yielded poor approximations of the function at the boundaries of the 

planning period (i.e. the farthest points from       , particularly with larger   values. 

As a result the approximation was not used.  

Depending on the values of parameters                    and   , there may not 

exist a solution to Equation (4.15) for values of                    . This is due to 

the fact that the maximum value the left side of (4.15) can take is one. If      , player 

 ’s disutility due to uncertainty is always smaller than the utility they expect from being 

first or second to submit, and they will always submit as soon as they are able. In fact, all 

players with      will submit as soon as the planning period begins, where      . 

All players with      will want to submit at some time after    , depending on the 

parameters of the submission strategy function               and   . We find both    

and    numerically as they also cannot be expressed in closed form. 
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Once we find   ,    is: 

                  (4.16) 

Figure 4.6 displays submission strategies for seven values of  , for a scenario where 

            ,       ,          ,         ,         , and      These values 

were chosen arbitrarily. The  -axis represents values of   from      to     , and the  -

axis represents the AFP planning period, which in this case is two hours in length. It is 

observed that the submission time strategies expressed in   are increasing (decreasing if 

expressed in  ) and differentiable. 

 

Figure 4.6 Example equilibrium submission strategies 

The figure shows that FSFA submission time strategies are very sensitive to  . The 

general uncertainty levels of AFPs can be quite different depending on storm features and 

behavior (if it is indeed inclement weather causing the AFP) and how traffic is managed 

in response to it, both of which can be represented through the parameter  . Given how 

much strategies can differ with respect to  , the results suggest that flight preference 

submission behavior may vary significantly from one AFP to the next. The figure 

demonstrates that the submission strategy is concave over most of the (higher)   values 

shown and is convex at       . If it were true that the graphs represented the behavior 

of flight populations greater than three, when the submission strategy is more concave at 

higher values of  , traffic managers would observe a relatively slow arrival of 
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submissions after a clump of arrivals at    . They would then observe an increasingly 

faster rate of arrivals until the end of the planning period. 

According to the figure, when       , submission strategies become very 

sensitive in that very small increases in   result in large increases in  .  

Recall that we assumed the submission strategy to be increasing and differentiable 

in order to determine the probabilities of being first or second in the submission order. 

The submission strategy is increasing within the planning period for the example shown 

in Figure 4.6; players that desire to submit before the planning period submit at    . 

Moldovanu and Sela (2001) also prove that the bid function is strictly increasing and 

differentiable, and that it maximizes expected payoff. 

All players with      would expect to maximize their payoff by submitting at 

some time before or at the beginning of the planning period; however, it is not possible to 

submit inputs before the planning period begins, and thus all players with      submit 

at the very beginning. As   (i.e. the general uncertainty about NAS conditions) decreases, 

more flights will be inclined to submit at the very beginning of the planning period (and 

therefore, less will submit later during the planning period); also,    increases as well. 

This is of course assuming that   are uniformly distributed over the flight population. 

Again, if it were true that the graphs represented the behavior of flight populations 

greater than three, a smaller   would result in a large proportion of the flight population 

submitting as soon as the planning period begins. Traffic managers could then expect to 

receive more submissions at the beginning of the planning period, the majority of the 

AFP planning could be completed early, and the AFP could be more readily coordinated 

with other air traffic flow management programs in the NAS. Overall, it appears that a 

significant proportion of flights will submit their preference inputs at the beginning of the 

AFP planning period.  

Another point to note is that as       ,     but never actually reaches it. 

This is because the scale parameter   is a function of  , and   enters into the denominator 

of the terms of the loss function. As a result, as   approaches zero, the probability of 

choosing the resource of highest utility    approaches one. 

If the loss function       took on a simpler (i.e. linear or quadratic) form, we 

would have a closed form expression for the submission time strategy. 

4.3.3.3 Sensitivity tests 

The results of Figure 4.6 demonstrated that the submission strategy function is very 

sensitive to   values. Here we further explore the sensitivity of our strategy function to   

and  , as well as    values. Given that we have normalized our utility values to be 

between zero and one,    is always one. Figure 4.7 shows the resulting submission 

strategies for the same example plotted in the previous figure (Figure 4.6). However, the 

 -axis now represents values of   from 0.25 to 3, while each curve corresponds to a value 

of   as labeled in the legend. 
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Figure 4.7 Equilibrium submission strategies,   versus   

When both   and   are high, the equilibrium submission strategy changes little with 

respect to changes in   and  . Conversely, at low values of both   and  , the equilibrium 

strategy changes at much faster rates in response to changes in   and  . This observation 

can be measured by the vertical distances between curves; however, it may be easier to 

observe in the following figure (Figure 4.8), where the contours represent differing 

submission strategies (or rather, the submission strategy “bins” that are demarcated by 

contour lines). 
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Figure 4.8 Equilibrium submission strategies ( , hours),   versus   

The wider contours correspond to   and   levels at which submission strategies change at 

a slower rate with changing   and  . As information grows more uncertain (i.e. high   

and  ), airlines will become increasingly motivated to submit near the end of the 

planning period, and strategies do not deviate greatly at this level of uncertainty. 

Contours become more narrow as  ,  , or both, decrease. This indicates that small 

increases in uncertainty (at lower uncertainty levels represented by these smaller   and   

values) will have a larger impact on the players’ payoff functions, thereby having a 

greater effect on the submission strategy. The black areas represent situations where 

airline preference submissions should be made at the beginning of the planning period. It 

covers a fairly large portion of the figure, indicating that airlines should submit at     

for many combinations and   and  . The  -axis was truncated at       (instead of at 

        ) to reduce the black space. 

Figure 4.9 shows submission strategies when    . The submission strategy was 

evaluated for    values ranging from zero to one (which includes all the values it could 

possibly take), and   values ranging from 0.25 to 3. The left plot of Figure 4.9 shows 

submission time with respect to  , where each curve is generated using a single value of 

  . The frontier curve is for     , and    values of the curves increase in the direction 

of the arrow. The right plot of Figure 4.9 displays the identical example but with 

submission time plotted against   . Each curve represents a single value of  , where   

values increase in the direction of the arrow. The frontier curve represents    . 
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Figure 4.9 Equilibrium submission strategies ( , hours),       

The figures indicate that flights will submit earlier in an FSFA allocation process as    

increases. This observation supports the rationale that when    is larger, the total “prize” 

values are also larger and therefore flights have greater motivation to submit earlier. For 

instance, if we were to draw a vertical line at     in the left plot, when        it is a 

best strategy to submit inputs at      . However, if        it is best to submit at 

   . This is a significant difference; according to the shape of the curves these 

differences decrease as   increases, but they are still significant at larger values of  . 

More easily observed from the right graph is that for all values of   at    , if    is 

larger than approximately 0.65, the players’ submission strategy will be to submit at the 

beginning of the planning period. At smaller values of    the submission strategy varies 

significantly with respect to the range of   values shown. However, when   is large, the 

submission strategy will not change significantly with a unit increase in  , at a given    

value. This last observation is similar to the information that Figure 4.8 imparts.  

Figure 4.10 displays submission strategies when   is held constant (at    ),   

ranges from          to         , and again    ranges from zero to one.  The figure 

is plotted over three axes because the behavior of the submission strategy function, when 

plotted with respect to increasing values of   and   , is more readily observed when 

shown in this manner.  
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Figure 4.10  Equilibrium submission strategies ( , hours),       

It can be observed that when    and   are large, the optimal strategy is to submit later 

than when    is smaller (and   is still large). As mentioned above, more flights will be 

incentivized to submit earlier, and at the beginning of the planning period, when    is 

larger. It appears that the remaining flights will submit at a more constant rate in the 

remaining time (again, given a uniform distribution of  ) than if    is smaller. One might 

observe the lines at the top of the figure for a given value of   (i.e. if you view    on the 

 -axis and   on the  -axis): they are not monotonic with respect to   . This behavior 

contradicts the idea that players are more likely to submit earlier when the prize values 

are higher. However, the behavior is only observed at very high   values; throughout 

these examples it has been shown that the submission strategy is highly sensitive at high 

 , and we should investigate this further to determine the cause of the non-monotonicity. 

The function appears to behave as expected for all other combinations of   and   . 

The last figure – Figure 4.11 – displays    as a function of    and  . Recall that if 

flight   has       they will submit their preferences at the beginning of the planning 

period, and otherwise they will submit at some time later.  
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Figure 4.11    h0 for decision-making and predictability 

For any combination of    and  , the corresponding    value can be found from 

the figure above. For instance if       and       ,        . Given that 

            , this value of    corresponds to 30% of flights submitting at the beginning 

of the planning period (again, assuming that the results represent the behavior of >3 

players). If    is very high, this indicates that, for a large proportion of flight operators, 

the utility of being first or second is greater than the utility loss incurred by submitting 

early. Figure 4.11 can help airlines in making submissions decisions, and also inform 

traffic managers about the FSFA submissions process outcome, for all potential AFP 

scenarios accounted for in the figure. If airlines have access to the information contained 

in Figure 4.11, it can be used to quickly reduce their set of potential strategies in a 

particular AFP. For instance, if     , the airline knows immediately to submit at the 

beginning of the planning period without further analysis efforts. If     , they know 

they must submit at a later time to maximize their utility, and further analysis should be 

employed to determine exactly when. Traffic managers can benefit from the figure as it 

gives some indication of the predictability of the FSFA submissions process in a given 

situation. If    is very high, traffic managers will expect to receive more submissions at 

the beginning of the planning period, such that the majority of the AFP planning will be 

completed early. This can help traffic managers in coordinating the AFP with other air 

traffic flow management programs in the NAS. It is true that early planning efforts (like 

early information) are more likely to become irrelevant under greater uncertainty about 

NAS conditions; however, we know that the submission strategy implicitly accounts for 

this issue as airlines are less likely to submit early when facing greater informational 

uncertainty. 
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Although not presented here, the results of our numerical investigations also 

indicate that a larger proportion of flights will submit at the beginning of the planning 

period when      is smaller. 

4.3.4 Model Extensions 

The results have highlighted the need for a model that represents the competitive 

behavior of more than three players. The model introduced in this chapter can be 

extended fairly easily to account for larger flight populations. Before the model is 

extended in this way, however, there are other issues that should be addressed with 

greater priority. These issues might be better addressed using an alternate auction/contest 

analogy. A good formulation may not require us to assume that prize values and their 

devaluation (due to uncertainty at the time of preference submission) are additive. Also, 

an alternate formulation may help us to more readily incorporate flight heterogeneity into 

our analysis, not only regarding intra-airline operations but also in terms of the cost 

parameters. Flight heterogeneity can affect the competition in several ways. Certain cost 

parameter values (      may incentivize flights to submit later or earlier in the planning 

period. Also, if we assume that not all flights necessarily desire the same resources 

because of their heterogeneity in cost parameters, and they are all aware of this fact, then 

they will likely submit later than the model introduced in this chapter would indicate. 

Valuing resources differently from other flights will dampen the competition for 

resources. Understanding how flight heterogeneity affects submission behavior will help 

us to better evaluate the efficiency of the FSFA resource rationing scheme. 

It will also be helpful to revisit the assumption that player types, in regards to the 

quality of intra-airline information and operations, are uniformly distributed over the 

population, particularly if there is any empirical or anecdotal evidence available on this 

subject. Investigating the applicability of other distributions may give us better insight 

into airlines’ competitive behavior in a FSFA resource allocation scheme.  

4.4 Other Gaming Behaviors and Future Work 

There are a number of ways by which flight operators game the current AFP and will 

likely game future versions. One tactic that an airline may employ is to file more flight 

plans through historically problematic airspace (such as the thunderstorm-prone corridors 

over Pennsylvania/New York and North Carolina/Virginia) than they would actually 

require. Under the CDM concept in which airlines “own” flight slots, by filing excess 

flight plans through airspace regions when resource rationing is anticipated, an airline 

will have reserved more slots and, therefore, more options for their flights that do require 

a resource. Flight plans can be modified at any time before or after a flight has departed, 

and as a result they have no disincentives to filing false flight plans in an AFP. In fact, 

one legacy carrier confirmed that they would file flights (whose optimal routes were 

elsewhere) into chronically constrained airspace, in order to have more slots available to 

them should a constraint arise. This type of behavior will impact all the allocation 
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schemes introduced. It might be discouraged by performing initial allocations based on 

information other than filed flight plans and published schedules. Potential candidates 

include historical flight plans, or a type of market-based system. 

Flight operators may also negatively impact AFP allocation schemes not through 

proactive gaming behavior, but by failing to share information altogether. If a flight is 

scheduled towards the end of an AFP, its operator may feel that the expected utility of a 

wait-and-see approach is higher than the utility they could expect to receive from a 

premature allocation, especially when NAS conditions change rapidly and with high 

instability. Also, although an operator may submit information and receive an allocation 

for their flight, they might ultimately cancel the flight and not inform the FAA. A credit 

system (that extends beyond a single AFP occurrence) may discourage this behavior. 

There are many ways to both improve and extend our analyses of airline truth-

telling in the OPT and Parametric schemes, and preference input submission strategy in 

the FSFA scheme. These future research directions have already been discussed to some 

length in this chapter, and we continue the discussion in Chapter 6.  
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5. Other Resource Allocation 

Schemes 

5.1 Introduction 

In this chapter we consider several additional resource rationing schemes that employ 

Stated Route Preference user input. The purpose is to develop schemes that can provide 

greater total user flight cost efficiency and/or equity between flights. The schemes must 

also aim to minimize gaming behavior by flight operators, where users are encouraged to 

participate in the preference input process and do so with truthful information. There are 

many rationing philosophies that have been developed under the CDM objectives, as 

discussed by Vossen et al. (2003) and Ball et al. (2002), in addition to several others.  

In this chapter we will discuss the Hybrid Stated Route Preference model. As the 

name suggests, the resource rationing mechanism consists of a combination of the OPT 

and FSFA resource allocation mechanisms. We will also introduce the results from an 

application of the Ration-By-Schedule (RBS) rationing algorithm in our model 

framework. RBS is the algorithm currently used to allocate airport arrival slots in Ground 

Delay Programs (GDPs). Investigations of both the Hybrid and RBS models are 

preliminary, and do not include the gaming and truth-telling aspects of flight preference 

input. However, potential directions for research on these aspects are discussed. The 

chapter ends with a brief discussion of other types of resource rationing mechanisms that 

can be explored as part of future research. 

5.2 Hybrid Stated Route Preference Model 

The two rationing schemes that employ the Stated Route Preference user input concept – 

OPT and FSFA – respectively represent the extremes of efficiency and reward. The OPT 

model minimizes total user cost, but it does not offer flight operators any clear incentives 

for providing expedient and truthful information. In addition, because traffic managers 

must collect all user preference submissions before they can allocate resources, allocation 

and notification may not be complete until shortly before the AFP start time. This could 

disadvantage flights that are scheduled at the beginning of the AFP, as they may have 

known their preferences much earlier on and therefore would have preferred allocation to 

take place earlier. Also, these flights may be required to depart only a short time after 

notification. Both these facts could lead to additional costs being imposed on the flight 

operators’ operations planning. Some observations of FAA planning telcons reveal that 
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airlines sometimes prefer uncertain information over no information, such that they can 

begin planning some course of action for their flights. This implies that airlines may 

place a relatively high utility on early notification.  

In the FSFA model, early submitters can gain major rewards while late submitters 

are often severely penalized. This process could be considered unfair in its allocation 

severity, particularly in its penalization of airlines that submit preference inputs 

immediately after others. Also, flight operators may have large incentives to submit very 

early with highly uncertain and/or inaccurate inputs as shown in the previous chapter, due 

to the competitive allocation process. 

To address these issues, a hybrid allocation scheme that preserves the FSFA 

reward structure but offers greater user cost efficiency is developed. In this scheme, flight 

operators are instructed to submit their information whenever they choose within the AFP 

planning period, identical to the FSFA model. However, instead of being promised a 

resource assignment at the time of submission, flight operators will be informed of the 

pre-designated “cut-off”, or “batch allocation” times. At these times, traffic managers 

will perform a system-optimal allocation for all flights whose information was received 

after the time of the previous batch allocation. This process is repeated until all flights 

have been allocated resources, or the end of the planning period is reached – whichever 

comes first. It is clear that if a smaller number of batch allocations are used, the total user 

cost results of this allocation will be closer to that of the OPT model. A larger number of 

batches (and therefore smaller periods between allocations) will yield total user cost 

results that are closer to that of the FSFA model. In addition, the distribution of 

submission times over the AFP planning period will also have a significant effect on the 

resource allocation. 

The Hybrid scheme requires that traffic managers decide the times at which the 

batch system-optimal allocations are made. Suppose the first allocation batch is at   , the 

second is at   , and so on, until the process is stopped at    and allocations have been 

made in   batches. The Hybrid scheme can be simulated as follows: 

1) Randomly assign   values, submission times, and (randomly drawn)   values to 

each AFP flight. 

2) Order flights by these submission times, or        .  

3) For allocation batch          : 

a. Define flight set    as consisting of all flights that made      submissions 

between      and    (when    ,     ). 

b. Run the OPT model on    according to Equation (5.1) below.  

   
         

            

                         

 (5.1) 

Note that the equation specifies that flights      cannot take a slot that has 

been taken by a flight in the previous allocation,       . 
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4) Repeat (1) through (4) for each value of   and iteration          . 

The flights’ input submission times in Step (1) could be independent of any AFP or flight 

characteristics, or they could be correlated to  ,  , distance from origin to destination 

airport, aircraft size, etc. We will continue to assume that they are independent and 

randomly drawn from some probability distribution of our choice. We can investigate the 

results from several different submission time distributions, in order to gain some insight 

into how batch allocation times influence allocation efficiency.  

The figure below shows the results of the Hybrid resource allocation scheme 

using different numbers of batch allocations and with two different distributions of user 

input submission times (uniform and normal) over the planning/submission period. The 

results are for an AFP scenario where there are 40 flights being assigned to slots on three 

routes. The batch allocations are spaced in equal time increments. In the figure, “   ” 

represents an AFP resource allocation made using two batch allocations over an AFP 

planning period of one hour – one system-optimal allocation is made at 0.5 hours, and the 

other is made at the one hour mark. Each point on the figure represents the average of 

1,500 iterations. 

 

Figure 5.1 Example of Hybrid allocation scheme performance. 

Clearly, if there are many allocation batches and the distribution of flight input 

submissions amongst the allocation batches is more or less even (i.e. uniformly 

distributed), the total cost outcome will approach that of the FSFA scheme. However, we 

can imagine that if most (or if not all) flight operators submit their inputs within a small 
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number of batch periods, the Hybrid allocation scheme breaks down and the process 

approaches that of the OPT allocation. For instance, in Figure 5.1, compare Hybrid (U, 

b=3) to Hybrid (N, b=3). The former represents the Hybrid model where each batch has 

an identical number of submissions (modeled using a uniform distribution of 

submissions) and there are three allocation batches. The latter represents the Hybrid 

model where the majority of submissions (~60-75%) are made within the second of three 

batch periods (modeled with a normal distribution). The latter model is more similar to 

OPT in that the majority of flights are assigned resources system-optimally in a single 

batch. Therefore, the allocation costs are closer to the  -axis (and to those of the OPT 

model). 

The results of the FSFA gaming analysis of Chapter 4 suggest that in many cases 

flight operators are more inclined to submit earlier rather than later during the planning 

period, given the relatively high utility of submitting before their competitors relative to 

flight cost uncertainties. In these cases submission times might be represented using a 

right-skewed bell-shaped probability distribution. An analysis of flight submission times 

under competition, similar to that of Section 4.3, should be undertaken specifically for the 

Hybrid scheme. 

5.3 Ration-by-Schedule (RBS) 

The Ration-by-Schedule (RBS) algorithm was first introduced in Section 1.1.2 as the 

resource rationing mechanism currently used to allocate airport landing slots in Ground 

Delay Programs (GDPs). Here we consider the implications of applying RBS to 

determine the order by which airlines are assigned en route resources (routes and slots) in 

an AFP. 

We imagine that when the FAA announces the start of the AFP planning period, 

the flights caught in the AFP would be those whose operators have filed flight plans 

through the affected region or, if they have not filed yet, those that have historically done 

so. We also assume that the operators of all AFP flights are sufficiently incentivized to 

provide their flights’ complete and truthful   values, in order to participate in the 

allocation. The algorithm would order flights by their estimated times of arrival to Fix A 

(Figure 2.1), which would in turn be estimated from their pre-AFP scheduled departure 

times. It would then sequentially assign each flight the lowest-cost resources available to 

it. In the Scenario 1 example of Chapter 3 with      flights, it would perform as 

shown in Figure 5.2. 
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Figure 5.2 Demand Scenario 1 total cost results including RBS 

The above figure demonstrates that the RBS solution, even with the assumption that all 

flights have provided their   values, is inferior to the FSFA solution generated from a 

random ordering of flight submissions. We can state the following: 

Proposition 5.1. Flight-slot assignments using the RBS algorithm will have 

equal or higher costs compared to assignments using the FSFA algorithm assuming 

random flight submissions. 

See Appendix D for the proof.  

The RBS allocation also appears to be similar to an offline, first-fit increasing bin-

packing problem. The first item (or first scheduled flight) is the “smallest” item and has 

much “room to fit”, in that it can take almost any slot on any route given its early pre-

AFP scheduled departure time. The last item is the “largest” and has the least “room to 

fit”, as it cannot take a slot that is earlier than its pre-AFP scheduled departure time. RBS 

is, however, somewhat different from bin-packing in that the earlier scheduled flights 

may fit into any bin, but some fits are more costly than others. In any case, one can see 

that allocation in the RBS ordering will be amongst the least optimal solutions. 

One of the most important points to note about Figure 5.2 above is that, no matter 

how suboptimal an allocation mechanism is, at some   value it will always be more cost 

efficient to allocate resources with more complete information and inferior mechanisms 

compared to using a system-optimal assignment with incomplete information. 

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

0% 5% 10% 15% 20% 25% 30% 35% 40%

PO FSFA RBS

      
  

        



 

71 
 

The RBS result shown above, in addition to its relatively poor comparative 

performance, is the outcome of highly optimistic assumptions about airline participation. 

It may again be difficult to rely on the idea that flight operators will provide complete 

preference information to the FAA. In some cases, airlines know that by providing 

accurate preference inputs they are more likely to receive a resource they desire. 

However, in other cases, the allocation they receive without having provided any 

information may be similar in cost to their allocation had they provided complete 

information. All operators have access to historical OAG (Official Airline Guide) 

schedule information, as well as all flights’ airport arrival times through the Flight 

Schedule Monitor (FSM). As a result, operators can know their flight’s “rank” or 

“priority” in the rationing algorithm, and can make fairly well-informed decisions about 

whether or not to provide their requested preference inputs. In the end, we can assume 

that flight operators would prefer to reveal as little operating cost information as possible, 

and will not offer information if they do not anticipate benefits. Clearly, we must study 

this behavior and understand its impacts on the RBS application to en route resource 

rationing.  

In addition to its poor performance and optimistic assumptions about airline 

participation, RBS has several other practical drawbacks in its application to en route 

resource allocation. Firstly, en route resources are much more uncertain in nature 

compared to airport resources. Strategic planning for en route resources is more difficult 

than for airport resources, because there are typically larger sets of alternate options 

available due to more degrees of freedom in routing compared with landing slots. Flight 

plans can be changed even while a flight is en route, without discernible impact to 

customers. In fact, flight plans are only typically submitted to the FAA by airline 

dispatchers 45 minutes prior to take-off. However, airport scheduled departure and arrival 

times are published as part of the OAG and therefore cannot be changed so easily without 

disrupting customers. Secondly, RBS will certainly encourage airlines to game the 

allocation system by filing an excessive number of flight plans through troublesome en 

route regions, as described in Section 4.4. In fact, the schedule-based rationing logic may 

result in a stronger incentive for this behavior, particularly to those operators that have 

flights scheduled later in an AFP and therefore are likely to have higher cost resource 

allocations. 

In Reverse RBS (RRBS), as suggested by the name, flights scheduled later in the 

AFP are assigned resources first. RRBS is demonstrated to be more efficient than RBS 

and FSFA (with random flight input submission times) in numerical examples. However, 

given that RRBS imposes smaller costs on flights scheduled later in the AFP (and 

therefore inherently subject to more uncertainty than earlier AFP flights), RRBS could 

have great inefficiencies not apparent through the setup of our numerical examples. 

5.4 Future Investigations 

There are many resource rationing mechanisms that could be more effective in obtaining 

desired levels of user cost efficiency, offer greater fairness, and discourage gaming 
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behavior, as well as balancing and trading off these potentially conflicting objectives. 

User flight cost efficiency is only one goal in the service that a governmental 

organization such as the FAA is obligated to provide. The FAA must also aim to serve 

their customers fairly, and consider other costs that are being imposing on society as a 

whole. To balance these different aims, some compromises must be made. Also, by 

providing equity, what may be compromised in explicit system cost efficiency aims can 

be regained through the flight operators’ willingness to submit truthful route preference 

information. In this section we briefly introduce some potential mechanisms that employ 

the Stated Route Preference concept, and discuss directions for future work.  

Firstly, we can investigate modifications to the greedy assignment algorithm used 

for the FSFA and RBS schemes. Both these schemes may benefit from the application of 

online algorithms and Dynamic Traffic Assignment (DTA) concepts. Both these concepts 

involve decision-making under uncertainty or incomplete information. Online algorithms 

are designed to make decisions that are as optimal as possible without knowledge of the 

entire input (Albers, 2003). An online algorithm consists of heuristic service rules that 

attempt to minimize the competitive ratio, which is the performance of the algorithm 

measured against that of the optimal offline algorithm (identical to       
 ). DTA 

forecasts future traffic demands and their impacts on a traffic network, which traffic 

managers then use to manage traffic near optimality. In the case of FSFA (or any other 

sequential assignment process where traffic managers must make decisions without 

knowing the future submissions), DTA and online algorithms may be applied to assign 

resources more optimally (but within some promised tolerance range of the best available 

resource cost, to ensure delivery of flights’ complete route preferences). 

If traffic managers are prepared to offer flight operators some guarantee about the 

maximum cost that can be imposed on any given flight(s) in the AFP, they could aim to 

minimize the largest cost imposed on any such flight. This could be formulated as a 

Linear Bottleneck Assignment Problem. However, traffic managers must be certain they 

are receiving truthful inputs. Also, they might want to aim explicitly for other goals in 

addition to user flight cost efficiency. In this research, equity has been considered 

implicitly in resource rationing mechanism design, one aim being to encourage user 

participation. We can consider incorporating explicit equity measures and constraints into 

the performance assessment, as well as emissions metrics and traditional performance 

metrics (i.e. delay). In order to choose a scheme, however, traffic managers must choose 

their goals a-priori. They must decide how much cost efficiency they are willing to 

sacrifice to gain equity benefits, equity benefits for fuel savings, etc., and therefore 

establish marginal rates of substitution for these measures. There are many well-

established techniques in the multi-objective optimization literature to accomplish this 

(Miettinen, 1999). In addition, there is some existing work on the application of multi-

objective optimization to balance equity and efficiency in the context of Ground Delay 

Programs (GDPs) (Glover & Ball, 2010). The authors investigate the use of different 

objective functions to more precisely balance efficiency and equity compared with RBS, 

RBD (Ration-by-Distance) and E-RBD (Equity-based RBD). 

If the OPT scheme assignment solution is not unique, there may be a solution 

within the set that is more equitable by some pre-established equity measure. However, it 
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is likely that the OPT solution is unique given the user flight cost formulation introduced 

in Chapter 3. We could instead introduce an  -constraint on the objective function 

(Miettinen, 1999), to specify that all other performance measures must fall below (or 

above) some pre-specified limit,  . Certainly this will increase the total user cost of the 

AFP. However, flight operators are typically more concerned with the discrepancies 

between allocations rather than the total AFP cost, and solutions that provide higher but 

more normalized costs and more equity across operators and flights would likely be met 

with greater acceptance. The  -constraint resource rationing method only works 

successfully when traffic managers can be certain that flight operators have submitted 

truthful preference inputs. Otherwise, it would encourage all flight operators to submit 

untruthfully high route preference inputs, thereby defeating the purpose of user 

participation. There are other techniques, such as goal programming, that could be 

explored. Gaming and truth-telling behavior must be considered for all these potential 

resource rationing mechanisms. 
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6. Conclusions and Future 

Research 

This research has investigated how to incorporate systematic user inputs in allocating 

constrained en route airspace capacity, particularly within the context of the Airspace 

Flow Program (AFP). We have specified resource assignment schemes that feature 

different allocation rules and route preference inputs. In some schemes operators are 

offered resource allocations commensurate to the quality of information requested of 

them, to increase the likelihood of user participation. We have evaluated and compared 

the total flight cost efficiency of each assignment scheme under varying assumptions 

about the quality of the central decision maker’s (or traffic manager’s) knowledge about 

the flight operators’ route preferences, through the use of a simple generalized flight cost 

function. The flight cost function consists of two parts. The first part is a simple 

representation of operator flight cost characteristics that the traffic managers have 

adopted. The second part consists of a flight’s routing preferences that are not captured 

by the first, and therefore are privately known to each flight’s operator but not to traffic 

managers, unless the information is offered to them. We represent the first part of the 

flight cost function using deterministic terms and the second part using a stochastic term. 

We identify some basic properties about the relative efficiencies of the three assignment 

models under traffic managers’ increasing uncertainty about the flight operators’ private 

route preferences. Also, numerical examples illustrated situations where sacrificing a 

system-optimal allocation rule to obtain the flight operators’ private information about 

route preferences will result in more efficient resource allocations, and vice versa. If the 

user flight cost model is well-specified such that the stochastic route preference terms are 

small, traffic managers would be advised to adopt the parametric user input and system-

optimal resource assignment of the Parametric scheme. If traffic managers believe their 

cost model does not capture sufficient information about flight route preferences, they 

would be better advised to use the FSFA allocation scheme. If traffic managers have little 

knowledge about the quality of their cost model specification, they would also be better 

advised to use the FSFA method, as the Parametric method becomes very inefficient 

when the flights’ private route preferences are highly variable. We also found the 

performances of the assignment methods to be relatively insensitive to increasing AFP 

durations under a constant demand rate, but more sensitive to changes in the relative cost 

of airborne delay versus ground delay, and changing demand rates.  

The above results were generated under the assumption that flight operators offer 

truthful preference inputs, and that submissions in FSFA are completely random and 

independent of any AFP characteristics. We know these assumptions are unlikely given 

the competition for resources. As a result we have also explored operator behavior in 
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response to the competition characteristics of the resource allocation schemes. These 

investigations have revealed critical issues about resource rationing schemes that rely 

heavily on user preference inputs and assumptions about user cost structures. We 

demonstrated that flight operators are incentivized to provide untruthfully high inputs in 

the Parametric allocation scheme. In the FSFA scheme, flight operators’ submission 

times vary significantly depending on the conditions of the AFP and their private 

information, indicating that they may behave quite differently from one AFP to the next. 

However, the results of the gaming model also suggest that it is often optimal for flights 

to submit at the very beginning of the planning period in FSFA. The gaming model can 

be used by traffic managers to estimate when flights are likely to submit their 

preferences. If the number of flights that submit at the beginning of the planning period is 

very high, traffic managers know that the majority of the AFP planning can be completed 

early such that they can better coordinate the AFP with other air traffic flow management 

programs in the NAS. The results of Chapter 4 suggest that use of the FSFA allocation 

scheme may be more beneficial than the Parametric scheme. However, we must further 

study the relationship between the Parametric user equilibrium solution and the resulting 

utility of FSFA under gaming before making a definitive conclusion. We leave this to 

future research. 

In Chapter 5, two additional allocation schemes based on Stated Route Preference 

input were also introduced. The Ration-by-Schedule (RBS) algorithm applied to en route 

resource allocation is not only difficult to implement, but it was also demonstrated to be 

inefficient from a total flight cost perspective. A hybrid OPT-FSFA model appeared to 

offer more promising results. 

This research can be extended in many directions. Structuring the models and 

analysis on an airline rather than flight basis would better capture the behaviors of 

airlines that own multiple flights. We can also reassess the performances of the allocation 

schemes using a flight cost model specification that considers the non-linear cost of 

delay, as discussed at the end of Chapter 3. It would be beneficial to consider 

heterogeneity in the parameters of the flight cost model (    ) in the truth-telling analysis 

of the OPT and Parametric input schemes as well as the FSFA competition model. For 

the FSFA competition analysis, an alternate formulation that does not require the 

assumption of additive prize value devaluation might be developed. An alternate 

formulation may also help us to more readily incorporate flight heterogeneity into our 

analysis, not only regarding intra-airline operations but also in terms of the cost 

parameters. We also discussed ideas regarding the development of other resource 

allocation mechanisms. Online algorithms and dynamic traffic assignment concepts can 

be explored to obtain greater system efficiency from algorithms like FSFA and RBS. We 

can also more explicitly consider and balance equity as well as emissions and traditional 

performance metrics by applying multi-objective optimization techniques. These schemes 

should also be robust to the gaming behaviors discussed in Chapter 4.  

Another aspect of this analysis will involve understanding the numerous ways that 

uncertainty affects allocation efficiency. In the FSFA gaming analysis of Chapter 4, we 

investigated how uncertainty affects airlines’ input submission behavior. However, we 

must also understand how this same uncertainty affects the overall efficiency of the 
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allocation schemes. If many flight operators are incentivized to submit earlier with low 

quality information in order to “beat” other operators, how does this degrade the true 

efficiency of the FSFA scheme? Also, higher user cost efficiency may be achieved by 

scheduling flights to earlier AFP slots before scheduling flights to the later slots, as 

information changes over the course of the planning period and AFP itself, and later 

flights are inherently subject to more uncertainty than earlier ones. In this way, the RBS 

scheme may not be as inefficient as it appears. If it is true that flights with higher   

values are incentivized to submit earlier, the user cost efficiency of the FSFA scheme will 

be higher than it has appeared in this analysis. 

The concepts of this research were assessed using hypothetical scenarios. There 

exists a large amount of data from past and current AFPs, which not only contains 

information about their size and scope but also the outcomes of rerouting, cancellation, 

and allocation decisions. It would be helpful to use this data to not only assess the future 

concepts of this research on a more realistic scale, but also to compare their performance 

to current AFP performance, as well as better understand the airlines’ cancellation and 

rerouting choices in an AFP. We also continue our discussions with practitioners, in order 

to better understand and represent airline behavior within our modeling framework. 

This research has presented future collaborative concepts for en route resource 

allocation, where flight operators are asked to provide very structured inputs to the 

resource assignment. Also, we have assessed these allocation methods from an operator 

cost perspective. We have employed random utility theory to account for the idea that 

operator preferences are not typically fully known to the traffic managers that perform 

resource assignments, requiring traffic managers to make assignments under uncertainty 

about what users truly want. This research also explored the gaming and truth-telling 

behavior of operators when asked to provide inputs to the resource assignment. The 

results from this work inform critical policy decisions regarding future FAA-airline 

cooperation, and the characteristics of information exchange between these parties. 
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Appendix A:   

Stochastic properties of the allocation schemes 

A.1) Expected value of the minimum of two iid normal random 

variables 

Since     are iid normal, the moments of the maximum of   random variables can be 

calculated (Bose & Gupta, 1959) (Teichroew, 1956). The equations are summarized in 

Clark (1961); the first moment of two independent normal random variables, 

            and             is as follows: 

                                    (A.1) 

where 

    
    

            

     
 

    
     

  

 
   

             
        

Recall that                     . It then follows that       ,          and 

       . Equation (A.1) reduces to 

                     

Since the normal distribution is symmetric around the mean,  

                              

Recall                       . Equation (3.5b) therefore reduces to  

                                       

Next, set            and           . Then, we know that                  

       
 
             

 
       , and                according to the properties 

of normal iid random variables. Equation (3.5a) becomes 
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                                     □  

A.2) Some relationship properties 

Define 

       
   

         

       
  

      

        
 

     

       
  

     
   

      

       
  

 

        
 

   

       
  

We also know that              
                  

    , and            
   

 ,            
    . 

It is clear that as    , the denominators of both        
   and      

   decrease 

at faster rates than the numerators, indicating that         
   and      

   increase non-

linearly. To verify, 

         
   

  
 

         

         
     

          
   

   
          

       
   

  
 

    

         
     

        
   

   
          

Both        
   and      

   are non-linearly increasing functions of  . Their slopes 

increase with respect to   as well. It then follows that, due to the construct of the toy 

model where the total deterministic cost of any allocation is always  ,        
    

     
       . Also, 

     
           

    
  

    
      . □ 

Say the deterministic cost of the FSFA allocation is       and that of the OPT allocation 

is      when    . Then              
             . 
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Appendix B:   

Properties of the Parametric Approximation 

B.1)  Aircraft distribution based on cost parameters 

We show that flights with higher   values should be assigned to routes with lower en 

route times, and vice versa, to obtain the assignment that yields the optimal total AFP 

flight cost solution. This is the assumption on which Equation 3.17 is formulated. 

Let’s assume a two-route case where 

 Route 1 has a higher flying time than Route 2, such that      ; 

 Slots on both routes are spaced at equal (constant) headways, or        ; 

   are distributed uniformly across   flights between            , and 

     
                    

             (as per Equation (2.2)) 

Based on (3.17), the total cost of assignment is 

                                               

                    
 

If we swap the flight having the highest   value assigned to Route 1 with the flight 

having the lowest   value assigned to Route 2, we have 

                                            

                               
 

It must be true that         for the ordering assumption of (3.17) to be true. Taking out 

identical terms, we have           . Because      , the RHS is positive, and 

therefore        . The result clearly also holds if     . 

In the above we have assumed that the assignment and therefore   ,   do not 

change. If we allow that they change, we have  

                                                         
 

                         
                 

             
 

       
                 

   
          

       
   

        

             
      

                           

(B.1) 



 

84 
 

                                                         
 

                         
                 

             
 

       
                 

   
          

       
   

        

                                     
       

             
      

(B.2) 

Designate the identical terms of (B.1) and (B.2) as   such that 

         
      

                           

                                 
       

                   

And show that        . 

             
    

                              
    

  
           

                        
 

  
                     

  

Since      , all terms on the RHS are positive and        . □ 

B.2)  Convexity 

The objective function of the Parametric approximation (and equivalently, OPT when 

   ) can be represented in quadratic form: 

      
 

 
          

where           

           

If   is positive semi-definite then the objective function is convex. There exists a 

global minimum solution        
    

      
   if there is at least one   that satisfies the 

constraints. If   is positive definite then the global minimum solution    is unique. A 

matrix   is positive definite if and only if all its eigenvalues are positive.  

B.2.1) Homogeneous flights 

When        , then                and   is a diagonal matrix. 

   

     
     
    
     

                       . 

Because   is diagonal, the eigenvalues of   are the diagonal values of  . The 

eigenvalues of   are positive, indicating that   is positive definite and the objective 

function is convex with respect to the number of flights assigned to each route, or 

  
    

      
 . □ 
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Flights are not uniquely matched to their original scheduled departure times    

for the formulation of our approximation; as a result, they are identical and therefore not 

uniquely defined within the objective function. This is why the solution is unique – there 

is only one solution   , or the number of flights to each route, that minimizes the 

objective function. Flights themselves can be interchanged between routes within this 

solution. As a result, if we do assume that each flight is uniquely defined by their original 

departure time or even some other feature, then there are many assignment solutions 

within the unique solution   . 

B.2.2) Heterogeneous flights  

When    take unique values that are uniformly distributed in            , then 

                         and   is an upper triangular matrix. 

  

 
 
 
 
 
 
                   

                 

               

          

     
            

 
 
 
 
 

 

Where                and             . 

Set     
         

       
      

            

          

        

    ,  

      

               

             

     
             

        

Since                           ,   is positive definite and the objective function 

is convex with a unique solution. □  
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Appendix C:   

Chapter 4 calculations 

C.1) Untruthful   submissions, 3-route system-optimal case 

According to (3.17) the total cost of a system-optimal allocation using untruthful air-to-

ground cost ratio    is: 

               
               

               
  

where           . 

  

   
                         

  

   
                         

By solving for the above, we find that  

   
 

 
 

  

  
                 

 

 
 

  

  
               

   
 

 
 

  

  
              

The expected cost of flying any route is equal at the truthful user equilibrium with   . 

The following must be satisfied: 

                                    

And we find that 

   
                 

  
 At the UE. 

We solve the two expressions for    shown above and find that       , which is 

identical to the two-route case. □ 
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C.2) Equilibrium FSFA airline preference submission strategy 

         is the probability that Player 1 submits earlier than Player 2. Recall that 

                 . If we assume a-priori that       is monotonic and 

differentiable, then we can say that: 

                       

                   

                     

              

 

where          is the submission time strategy for player  .  

We assume that the probability of winning or losing against other players is 

independent. Therefore, the probability that player   submits earlier than both players is 

              
 

. The probability that player   submits earlier than one player and 

later than the other is                           . The payoff function for   

becomes: 

          
  

    
               

 

 
   
    

                                   

Set              . 

          
  

    
          

 

 
   
    

                         

      

   
  

   
    

                    
  

   
    

          
       

 
   
    

                    
     

       

         
   

      
                     

 
   

      
                    

  

Now we determine boundary conditions. If        (drop the subscript), the highest 

uncertainty level possible, we conjecture that   will submit as late in the AFP planning 

period as possible, at   (or    ). Otherwise, when       ,    . Therefore,  
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We know that the operators’   take values that are uniformly distributed between      

and     . If        and             
   

   
 and       
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Evaluate and replace   and   to obtain 

     
 

                
                                     

                    

Replace               
  

    
     

  
        

    

    
          :  

        
  

  
 

   
 
  

        
  

  
 

   

 
                                                       

            
 

Recall that we assumed the submission strategy to be monotonic and differentiable a-

priori. The numerical example of Figure 4.6 shows that the submission strategy is 

increasing through the planning period. All players that desire to submit before the 

planning period submit at    . Moldovanu and Sela (2001) also prove that the bid 

function is strictly increasing and differentiable, and that it maximizes expected payoff. 

If          then (4.15) becomes: 

        
  

  
 

   
 
  

        
  

  
 

   
 

                         

            
 

If      were linear with a form such as   , we would have a closed form solution: 
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C.3) Submission strategy approximation 

Below is a plot of example submission strategies over six   values, with             , 
      ,         ,          ,          , and    . The solid lines labeled 

“strategy” are exact solutions while the dashed lines labeled “T3(0.55)” are results from 

third-order Taylor series approximations about the point       . The  -axis represents 

values of   from      to     , and the  -axis represents the AFP planning period. 

 

The approximation does not provide good estimates to the expression of (4.15) near the 

boundaries of the planning period (i.e. the farthest points from       ) and at higher   

values. For instance, when     (i.e.   is at least twice that of   ) the approximation 

overestimates the time at which a player   would submit according to (4.15). At   values 

less than about one, the approximation underestimates submission times near the 

boundaries of the planning period. The approximations do not capture the players’ 

strategy to submit closer to   with a high    (i.e. the sharp increase in slope at high   ).  
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Appendix D:   

Ration-by-Schedule 

Proposition 5.1. Flight-slot assignments using the RBS algorithm will always have 

equal or higher costs compared to assignments using the FSFA algorithm.  

This problem may be similar/analogous to an offline, first fit increasing bin 

packing problem – the first item (first scheduled flight) is the “smallest” item and has a 

“lot of room to fit” (i.e., the first scheduled flight can “fit” into many slots). The last item 

is the “largest” and therefore has the least room to fit. As a result, we have some intuition 

that allocation in this order will be amongst the least optimal. 

Proof: 

Let’s assume the following are true: 

 All flights are identical except for their OAG scheduled departure times, which 

we assume are all distinct. 

 Decisions are made at some time prior to start of AFP, before the first flight’s 

OAG scheduled departure time (S1), and are not modified with updated airline 

info. In fact we will assume that all parameters (airline info, AFP characteristics) 

are static. 

Let A1 be an assignment by RBS, and A2 an assignment by FSFA. We argue that 

although A1 and A2 may not be identical, they have the same total cost assignment cost. 

Below, we prove that the above statement is not true in all cases. 

We have 2 flights, on 2 routes with 2 slots each. Flight 1’s OAG departure time is 

S1, and Flight 2’s is S2; S1<S2 by definition. The AFP departure times for each slot on 

each route are listed in the left table, and the cost of taking each slot (not accounting for 

OAG times) are listed in the table on the right.  

 Departure Times   Route Costs 

Slot Route 1 Route 2  Slot Route 1 Route 2 

1 D11 D21  1 C11 C21 

2 D12 D22  2 C12 C22 
 

Let’s assume that D11<D21<D12,D22. This means that Route 1 Slot 1’s departure time 

occurs prior to that of Route 2 Slot 1, and both occur prior to those of Slot 2 on either 

route. We now have five scenarios: 
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1. S1<S2<D11<D21<D12 

2. S1<D11<S2<D21<D12 

3. S1<D11<D21<S2<D12 

4. D11<S1<D21<S2<D12 

5. D11<D21<S1<S2<D12 

In each of these scenarios we can have a) C11<C21<C12,C22 or b) C21<C11<C12,C22. 

1) S1<S2<D11<D21 

a) C11<C21<C12,C22 

If we allocate by RBS, Flight 1 first chooses a slot, then Flight 2. Allocation by FSFA 

includes either ordering. 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 R1 slot1 C11-S1 F2 R1 slot1 C11-S2 

F2 R2 slot1 C21-S2 F1 R2 slot1 C21-S1 

Total  C11+C21-S1-S2 Total  C11+C21-S2-S1 

Also, we can say that the total cost of a system-optimal allocation is: 

                                                     
                                             

We know that            . Because C11<C21,C12, it follows that      . 

Therefore                  . 

Let’s say that                       . The cost of an RBS allocation is 

                                                

And         . The total costs of ordering either way are identical. □ 

b) C21<C11<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C21 C21-S1 F2 C21 C21-S2 

F2 C11 C11-S2 F1 C11 C11-S1 

Total  C11+C21-S1-S2 Total  C11+C21-S2-S1 

Identical. □ 

2) S1<D11<S2<D21<D12 

a) C11<C21<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C11 C11-S1 F2 C21 C21-S2 

F2 C21 C21-S2 F1 C11 C11-S1 

Total  C11+C21-S1-S2 Total  C11+C21-S1-S2 

b) C21<C11<C12,C22 



 

92 
 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C21 C21-S1 F2 C21 C21-S2 

F2 C12 C12-S2 F1 C11 C11-S1 

Total  C21+C12-S1-S2 Total  C21+C11-S1-S2 

Also, we can say that the total cost of a system-optimal allocation is: 

                                      
               

where Flight 1 takes slot 11 and Flight 2 takes slot 21. Let’s say that A is the set of slots 

from which Flight 1 will choose, such that                       . The cost of 

an RBS allocation is 

                                            

Since                 . The RBS assignment costs more than the FSFA 

assignment. □ 

3) S1<D11<D21<S2<D12 

a) C11<C21<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C11 C11-S1 F2 C12 C12-S2 

F2 C12 C12-S2 F1 C11 C11-S1 

Total  C11+C12-S1-S2 Total  C11+C12-S1-S2 

b) C21<C11<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C21 C21-S1 F2 C12 C12-S2 

F2 C12 C12-S2 F1 C21 C21-S1 

Total  C12+C21-S1-S2 Total  C12+C21-S1-S2 

4) D11<S1<D21<S2<D12 

a) C11<C21<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C21 C21-S1 F2 C12 C12-S2 

F2 C12 C12-S2 F1 C21 C21-S1 

Total  C12+C21-S1-S2 Total  C12+C21-S1-S2 

b) C21<C11<C12,C22 

RBS Slot choice Cost FSFA Slot choice Cost 

F1 C21 C21-S1 F2 C12 C12-S2 

F2 C12 C12-S2 F1 C21 C21-S1 

Total  C12+C21-S1-S2 Total  C12+C21-S1-S2 

Same situation for slots 2 and 3 as in scenario 1. □ 

To complete the proof, do this again for flights 1 and  , 2 and         and  . □ 




