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Abstract

Designing Machine Learning-Enhanced Tools and Physics-based Techniques for Force
Field and Electrostatic Models

by

Xingyi Guan

in Chemistry

University of California, Berkeley

Professor Teresa Head-Gordon, Chair

In recent years, the landscape of molecular science has been profoundly transformed
by the integration of data-driven methodologies alongside traditional deterministic
and stochastic approaches. Historically, the study of molecular behavior and inter-
actions relied heavily on deterministic algorithms, which follow a fixed sequence of
computational steps to simulate molecular dynamics, and stochastic simulations,
which incorporate randomness to explore various molecular states and pathways.
These methods were complemented by physical models grounded in the established
principles of chemistry and physics, forming the backbone of theoretical molecular
science. However, these conventional approaches often faced limitations in scalability,
computational cost, and generalizability for complex systems. The improvements in
computational hardware, coupled with the accumulation of vast amounts of molecular
data, have enabled the development of models that can surpass traditional methods
in both accuracy and e�ciency, leveraging both physics-based and machine learning
(ML) approaches. This dissertation focuses on the development of new models uti-
lizing more accessible data, provides guidelines for computational data generation,
and explores the synergy between data acquisition strategies and data-driven models.
These studies demonstrate that by carefully designing data acquisition strategies and
integrating data-driven models with physics-based approaches, it is possible to en-
hance the predictive capabilities of computational methods in chemistry, particularly
in force field development and electrostatic modeling. Through a series of studies,
this work illustrates the potential of combining the strengths of both traditional and
modern computational techniques to achieve more accurate and e�cient predictions
in molecular science.
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The accurate prediction of electrostatic interactions is a critical aspect of understand-
ing molecular behavior. The electrostatic potential (ESP) is a property of great
research interest for understanding and predicting electrostatic charge distributions
that drive interactions between molecules. However, traditional approaches often
rely on detailed quantum mechanical calculations, which can be computationally
expensive. In Chapter 2, I introduce a coarse-grained electron model (C-GEM), whose
parameters are fitted to computationally generated high-quality Density Functional
Theory (DFT) data, that o↵ers a balance between accuracy and computational
e�ciency. Extensive validation against high-level quantum mechanical calculations
demonstrates that C-GEM can reliably predict electrostatic potentials and interaction
energies in proteins. The model’s implementation in large-scale molecular simulations
shows significant reductions in computational cost, making it a viable tool for studying
complex biological systems.

The generation of reference data for deep learning models poses significant challenges
for reactive systems, especially for combustion reactions due to the extreme conditions
that produce radical species and alternative spin states. In Chapter 3, intrinsic reac-
tion coordinate (IRC) calculations are extended with ab initio molecular dynamics
(MD) simulations and normal mode displacement calculations to comprehensively map
the potential energy surface (PES) for 19 reaction channels involved in hydrogen com-
bustion. This extensive dataset comprises approximately 290,000 potential energies
and 1,260,000 nuclear force vectors, evaluated using a high-quality range-separated
hybrid density functional, !B97X-V. The dataset includes detailed information on
transition state configurations as well as geometries along the reactive path way that
links reactant to product, providing a robust reference for training deep learning
models aimed at studying hydrogen combustion reactions. This benchmark dataset
not only serves as a valuable resource for understanding the intricate mechanistic
pathways of hydrogen combustion but also provide a paradigm for building dataset
that facilitates the development and validation of machine learning models for reactive
chemistry.

Building on the extensive benchmark dataset for hydrogen combustion detailed in
Chapter 3, an initial machine learning model is trained to predict energies and forces for
hydrogen combustion reactive system using NewtonNet, a physics inspired equivariant
message passing neural network(MPNN). This reactive gas phase chemistry network
is particularly challenging due to the need for comprehensive potential energy surfaces
that accurately represent a wide range of molecular configurations. Traditional
approaches often rely on chemical intuition to select training data, which can result
in incomplete PESs in an ML setting. To address this challenge, I employ an
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active learning strategy to systematically explores diverse energy landscapes using
metadynamics simulations and continuously adding unseen data for retraining, helping
to create a ML model that avoids unforeseen high-energy or unphysical configurations.
By integrating metadynamics, the active learning process more rapidly converges
the PES, also allowing a hybrid of ML and ab initio molecular dynamics (MD) that
initiates rare calls to external ab initio sources when discrepancies are detected by the
query by committee models. This hybrid ML-physics approach reduces computational
costs by two orders of magnitude and eliminates the need for excessive ML retraining.
The enhanced model accurately predicts free energy changes and transition state
mechanisms for several hydrogen combustion reaction channels, demonstrating the
e�cacy of combining advanced data acquisition strategies with robust ML techniques
to achieve high precision and e�ciency in molecular simulations.

To summarize, this dissertation underscores the potential of combining data-driven
models with physics-based approaches to overcome the limitations of traditional
computational methods in molecular science. Through the development of the coarse-
grained electron model (C-GeM), the creation of a comprehensive benchmark dataset
for hydrogen combustion, and the implementation of an active learning workflow for
reactive force field development, insights are provided in developing new computational
tools and leveraging them to better understand molecular interactions and reactivity.
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Chapter 1

Introduction

1.1 Overview

Theoretical studies of molecular behavior and interactions have primarily relied on a
combination of deterministic algorithms, stochastic simulations, and physical models
of the potential energy surface. Deterministic algorithms, such as molecular dynamics
(MD),[17, 44] and stochastic simulations, including Monte Carlo methods,[42, 8] are
ways to explore the configurational space of molecules and study thermodynamic
properties, time-correlation observables, and rare events [8, 40]. These techniques are
used to explore the potential energy surface, which can be described by solving the
Schrödinger equation for electrons.[76] The combination of ab initio methods with
molecular dynamics (AIMD) is often a powerful approach for simulating chemical
reactivity,[52] but the high computational cost of wavefunction quantum mechanical
calculations scales poorly with system size,[32] and lower-cost Density Functional
Theory (DFT)[39] is still often impractical for very large molecules or extensive
conformational sampling. Physical force fields, while e�cient and sometimes quite
accurate for thermodynamics and transport properties,[43] are poorly suited to the
accuracy needed to capture electronic e↵ects, and popular pairwise additive models
fail to generalize well to di↵erent chemical environments.[59]

These traditional approaches have formed the backbone of theoretical molecular
science, and must balance tradeo↵s of computational cost, scalability, and accuracy,
particularly when applied to large and complex systems [17]. In Chapter 2 of my
dissertation, I will discuss a new electrostatic model that achieves this balance in
predicting the electrostatic potential of protein systems.[25] First, I will give an
overview of the past e↵orts to model electrostatic potential surfaces and introduce the
coarse-grained electron model (C-GeM)[46, 25], with a detailed explanation of how
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the model works and how the model parameters are fitted with selected tripeptide
data. This model represents a significant advancement in the e�cient and accurate
prediction of electrostatic interactions in proteins, peptides, and small molecule drugs.

Recently, modern data-driven methods, particularly those based on machine
learning (ML), have started to infiltrate various fields of molecular science[63, 74,
67, 16, 83, 27, 5, 4, 14]. ML models rely on three critical components: data, feature
representation, and model architecture, and the interplay of these three factors
crucially decides the ability to make chemical prediction, as demonstrated in Figure
1.1.

Figure 1.1: Data, feature representation, and machine learning methods are three
fundamental components of a machine learning study, and their interplay crucially
decides the ability to make chemical prediction†

The potential of ML in chemistry was first highlighted by Behler and Parrinello’s
work on neural network representations of PES,[7] inspiring a wave of research focused
on improving the accuracy and e�ciency of these ML models and methods. Graph
convolution networks (GCNs) have been used extensively for their ability to handle the
connectivity of molecules.[37, 20] The first message passing neural network (MPNN)

†Figure reproduced with permission from: Haghighatlari, M.; Li, J.; Heidar-Zadeh, F.; Liu,
Y.; Guan, X.; Head-Gordon, T. Learning to Make Chemical Predictions: The Interplay of Fea-
ture Representation, Data, and Machine Learning Methods. Chem 2020, 6 (7), 1527–1542.
https://doi.org/10.1016/j.chempr.2020.05.014.
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for molecular systems introduced a framework where information is passed along the
edges of a graph, e↵ectively capturing the relationships between atoms.[20] SchNet is
another notable model that employs continuous-filter convolutional layers to learn
molecular representations from data, providing high accuracy for molecular property
predictions.[66, 67] In recent years, equivariant models such as PaiNN[68], NequIP[18,
5], and NewtonNet[29] further leverages the principles of equivariance to rotations,
translations, and permutations, improving the performance on tasks involving 3D
molecular structures.

In addition, the dataset often sets the limit for model performance because ML
models interpolate within the space defined by their training data.[66, 82] High-
quality and comprehensive datasets are essential for the success of ML models,
especially for complex reactive systems.[48, 5] Currently, most ML datasets used
for model development are non-reactive, focusing on stable molecular configurations.
Prominent examples of common ML model benchmarks include the ANI dataset,[74]
which provides a large number of molecular conformations for organic molecules,
the MD17 dataset,[11] which o↵ers molecular dynamics trajectories for a small set
of organic molecules, and the GDB-17 and QM9 datasets,[62, 60] which contain
quantum chemistry calculations for small organic molecules. These datasets have
been instrumental in advancing ML models but do not address the complexities of
reactive systems.

The hydrogen combustion dataset presented in my thesis work serves as a crucial
benchmark for ML model development in reactive chemistry. It captures a wide range
of configurations, including high-energy transition states and metastable intermediates,
under realistic reaction conditions. This dataset will significantly enhance the training
and validation of ML models designed to predict energies and forces in reactive
systems, enabling more accurate simulations of combustion and other chemical
processes. However, compared with ML in other field such as computer vision and
natural language processing, the amount of chemical data is still limited,[49] making it
necessary to continue generating new data and explore data e�cient ML architectures.

In this introduction chapter of my dissertation I will also describe my research work
at the frontline of combining data-driven models with physics-based approaches for
ML. I will describe the creation of a comprehensive benchmark dataset for hydrogen
combustion,[26, 22] highlighting the challenges of generating high-quality reference
data for reactive systems and how this dataset facilitates the development of accurate
ML models. Finally, I will discuss the implementation of an active learning workflow
for ML-physics force field development,[24] emphasizing the importance of combining
ML with traditional ab initio methods to achieve robust and e�cient molecular
simulations of chemically reactive systems.
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1.2 Modeling Electrostatics through the Course
Grained Electron Model

Electrostatic interactions are crucial for understanding and predicting the behavior
of molecules in various chemical and biological contexts.[71, 73] The electrostatic
potential (ESP) describes the distribution of electric charges in a molecule, influencing
how molecules interact with each other. These interactions are vital for numerous
phenomena, including protein-ligand binding, enzyme catalysis, molecular recognition,
and material properties. In biochemistry, the ESP is essential for determining the
binding sites of proteins and their interactions with ligands or other proteins, which
is critical for drug design and understanding cellular processes.[53] In materials
science, electrostatics are key to the function of nanoporous materials like zeolites
and metal-organic frameworks, which are used for gas storage and separation.[47] In
electrochemistry, the e�ciency of electrochemical cells relies on the accurate modeling
of ion di↵usion and double-layer formation at electrode surfaces.[65].

Given the central role of electrostatics, accurate prediction and modeling of the
ESP are vital for many applications. Traditional methods for calculating ESP include
quantum mechanical calculations, which o↵er high accuracy but are computationally
intensive and limited to small systems.[15] This has led to the development of various
models and methods to approximate ESP with greater computational e�ciency while
maintaining reasonable accuracy, each with its strengths and limitations.[12]

• Electrostatic Potential Fitted Charges (EPFC): These approaches involves
fitting partial charges on atoms to reproduce the QM-calculated ESP. Methods
such as the CHELPG (Charges from Electrostatic Potentials using a Grid) and
RESP (Restrained Electrostatic Potential) are commonly used.[9, 6] While these
methods can accurately reproduce ESP, they are computationally expensive as
they require initial QM calculations.[15]

• Empirically Derived Charges (EDC): Models like the AM1-BCC (Austin
Model 1-Bond Charge Corrections) [35, 36] use semi-empirical methods and
empirical corrections to derive atomic charges. These are less accurate than
QM-based methods but more computationally e�cient.

• Density-based Quantum Mechanical Partitioning Techniques: Tech-
niques such as Mulliken, Hirshfeld, and Bader’s Atoms in Molecules (AIM)
partition the electron density to assign charges to atoms.[57, 33, 2] These
methods provide a physically grounded way to derive atomic charges but still
rely on QM calculations, making them computationally demanding for large
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systems. More modern methods based on similar principle such as the Additive
Variational Hirshfeld (AVH)[30, 31] and the Minimal Basis Iterative Stockholder
(MBIS)[79] have been developed to further improve accuracy.

• Charge Equilibration Methods (CEM): Methods such as the Electroneg-
ativity Equalization Method (EEM) predict partial charges based on atomic
electronegativity and hardness.[55] While fast and suitable for large-scale ap-
plications, they often su↵er from inaccuracies such as unphysical long-range
charge transfer and poor representation of out-of-plane polarization.

Each of these methods has been instrumental in advancing our understanding of
molecular electrostatics, but they often fall short when applied to large or complex
systems due to computational constraints or inherent inaccuracies. The Coarse-
Grained Electron Model (C-GeM) [46, 25] represents a significant advancement in
the e�cient and accurate prediction of electrostatic interactions in molecules. Unlike
traditional methods, C-GeM coarse grains the representation of electron density by
modeling atoms with a positive core and a negatively charged electron shell, described
by Gaussian distributions. This allows C-GeM to capture essential electrostatic
properties without the need for computationally expensive QM calculations, and
allow it to access larger system such as protein-ligand complexes as shown in Figure
1.2.

Figure 1.2: A schematic illustration of how C-GeM model initialize core and shells
on atom and predict electrostatic potential for a protein.
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The accuracy of any electrostatic model heavily depends on the quality and
comprehensiveness of the data used for its development and validation. For physics-
based models, data must accurately capture the underlying physical interactions, which
often involves high-quality QM calculations of the ESP for a diverse set of molecules,
covering various chemical environments and configurations.[15] In the development
of C-GeM, I curated a dataset of small protein analogs and tripeptides fragmented
from real protein PDB structures, and utilized high-fidelity DFT calculations with
!B97X-V functional[51] and def2-QZVPP basis set[80]. The protein C-GeM model is
trained and validated with this dataset and further validated with larger protein to
ensure accurate model prediction of protein ESP.

Protein C-GeM was benchmarked against a series of common methods including
the electronegatitivy equalization methods (EEM)[56, 55], the original Hirshfeld[33]
method, Iterative Hirshfeld (HI)[10], Minimal Basis Iterative Stockholder (MBIS)[79]
and Additive Variational Hirshfeld (AVH)[30, 31], and it is found to provide compa-
rable accuracy to ab initio charge partitioning methods but with orders of magnitude
improvement in computational e�ciency, making it suitable for large-scale molecular
simulations. Moreover, C-GeM can accurately describe complex electrostatic phenom-
ena such as sigma holes and out-of-plane polarization, which are often inadequately
represented in simpler models that are comparable in speed.

Given its computational e�ciency, C-GeM can be applied to large biological
systems like proteins, making it a valuable tool for biochemistry and drug design. The
model can be integrated with molecular dynamics (MD) simulations to provide real-
time updates to the electrostatic potential, facilitating more accurate and dynamic
simulations of molecular interactions.[45]

Beyond protein ESP prediction, C-GeM also o↵ers a robust and e�cient approach
to modeling electrostatics in molecular systems in general, bridging the gap between
high accuracy and computational feasibility. Fitting the model to energy decomposi-
tion analysis (EDA)[38] data can improve upon description of molecular interactions,
and enable wider applications in more areas such as protein-ligand docking. By
leveraging high-quality training data and innovative modeling techniques, C-GeM
provides a powerful tool for advancing molecular ESP representations.

1.3 Building a Benchmark Dataset for Hydrogen
Combustion

Accurate modeling of reactive systems poses significant challenges, especially in
capturing data near transition states. In hydrogen combustion, these challenges are
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compounded by the extreme conditions of high temperature and pressure, leading to
the formation of radical species and alternative spin states.[19, 72, 78] In Chapter 3,
I provide an approach to create a comprehensive dataset for reactive systems using
hydrogen combustion as a prototype example. The dataset aims to facilitate the
development of accurate deep learning models for predicting molecular energies and
forces, crucial for understanding and optimizing reaction processes.

The PES data for hydrogen combustion were organized into four categories based
on the reaction mechanisms involved in the elementary steps: association/dissociation
reactions, substitution reactions, oxygen transfer, and hydrogen transfer. This
organization facilitates targeted studies of di↵erent reaction types and their respective
energy landscapes, especially transition states that represent high energy points along
a reaction pathway and are pivotal in determining reaction kinetics and mechanisms.
However, capturing data near transition states is challenging due to their fleeting
nature and high energy, and yet are essential for constructing reliable potential energy
surfaces that can be used in machine learning models and molecular simulations.[77,
54, 64] This work addresses this challenge by systematically collecting data o↵ the
intrinsic reaction coordinate (IRC)[34] using short ab initio molecular dynamics
(AIMD) and normal mode sampling, which ensures that important geometries near
the reaction pathway are thoroughly explored for 19 reaction channels of hydrogen
combustion.

The short AIMD simulations were performed to sample configurations around the
IRC structures, starting from the transition state as the initial configuration for each
reaction channel. Simulations were conducted at four di↵erent high temperatures (500
K, 1000 K, 2000 K, and 3000 K), generating configurations that capture the dynamic
behavior of the system under realistic reaction conditions. In addition to AIMD,
normal mode displacement calculations [70, 61] were performed to systematically
sample geometries along the IRC. Starting from each IRC structure, vibrational
frequencies were calculated, and atoms were displaced along each normal mode
to generate additional configurations. This method helps diversify the dataset by
including configurations that compress or expand the IRC structures, capturing a
wide range of molecular geometries and ensuring comprehensive coverage of the PES.
The final data set includes approximately 290,000 potential energies and 1,270,000
nuclear force vectors, evaluated using a high-quality range-separated hybrid density
functional, !B97X-V.[50] This level of theory is known for its accuracy in describing
thermochemistry and reactive barriers, making it suitable for capturing the intricate
details of hydrogen combustion reactions.[21]

The approach we take to build the hydrogen combustion dataset underscores the
importance of systematic data collection in building reliable datasets for reactive
systems. However, there are more considerations in the data creation for a ML force
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field, which requires a more thoroughly covered data distribution and an inclusion of
unphysical geometries, which will be discussed in detail in Chapter 4.

1.4 Active Learning for Machine Learning Force
Field Development

Building upon the comprehensive dataset established in Chapter 3 for hydrogen
combustion, in Chapter 4 I delve into the application of using this data to develop
a machine learning force field (MLFF) for hydrogen combustion. The methods and
strategies employed in this study provide a blueprint for future e↵orts in the field,
highlighting the potential of combining advanced computational techniques with
high-quality data to advance our understanding of complex chemical reactions. The
dataset acquisition strategy introduced in this dissertation also allows us to explore
building a complete ML-physics reactive force field for the hydrogen combustion
system, to use the model to perform commitor analysis, and to drive metadynamics
simulations to determine free energy surfaces of chemical reactivity.[24]

In this work, I utilized our physics-inspired NewtonNet model we published in
2021[28] and 2022[29]. NewtonNet took inspiration from physical principles into its
architecture to learn interatomic potentials and forces. It has demonstrated strong
predictive capabilities for the energy and forces in the hydrogen combustion system.
However, challenges arise when using any ML model for molecular dynamics (MD)
simulations, where the ML model can sometimes produce unphysical configurations,
a phenomenon known as model hallucination. Machine learning is not physics, and
thus ML models require extensive and diverse datasets because they do not inherently
understand the underlying physics and must learn all aspects of the system’s behavior
from the data.[81] Consequently, ML models need not only ”physical” data along
the reactive pathway but also data that seem unreasonable to learn that these are
high energy states cannot be accessed at finite temperature and pressure. ML models
can also develop ”holes” in the PES, where predictions can be significantly incorrect
due to insu�cient or biased training data. In contrast, physics-based models, while
potentially inaccurate, do not have such holes because they are grounded in physical
laws that provide a continuous description of the PES. The uncertainty of a particular
point in the PES is not as problematic for physical models as it is for ML potentials,
where such uncertainty can significantly a↵ect the model’s reliability.

Active learning is a strategy where the model actively selects the most informative
data points for training.[13, 58, 75, 1] Here we use this strategy to identify ”holes”
on the PES while improving model performance. Initially, an ML model is trained
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using the dataset from Chapter 3, which includes ab initio molecular dynamics
(AIMD) and normal mode displacement data near the intrinsic reaction coordinate
(IRC).[23] To identify areas of uncertainty in the PES, a committee of multiple ML
models with di↵erent initializations is trained to predict energies and forces, with
the variance among these models indicating regions where the model predictions are
less reliable.[69] To e�ciently explore high-energy configurations and rare events,
metadynamics simulations are employed. This technique biases the system to sample
new configurations by adding a history-dependent potential, helping to fill gaps in
the PES and improve model coverage.[41, 3] Configurations where the committee
models disagree are selected for additional ab initio calculations, and these new data
points are added to the training set, improving the model iteratively. The ML models
are retrained with the expanded dataset, enhancing their ability to predict diverse
configurations accurately.

The active learning-enhanced ML model demonstrates significant improvements in
accuracy and e�ciency compared to the initial model trained solely on the Chapter 3
dataset. The iterative process of sampling, data selection, and retraining ensures that
the model covers a broad range of configurations, reducing errors in energy and force
predictions. However it remains that the PES may never be completed with an active
learning process, especially when coupled with enhanced sampling methods that
continuously seek to explore unseen regions, which over many iterations is of great
expense to continually create new and expensive ab initio data. My final solution
was the creation of a hybrid approach, where ML predictions are supplemented with
infrequent ab initio calculations in areas of high uncertainty, ensuring the stability
and accuracy of the simulations while reducing the exorbitant hidden cost of data
acquisition and constant ML retraining. The resulting ML force field driven by the
enhanced dataset and hybrid physics shows stable and accurate performance, even
in high-energy regions and near transition states, allowing us to perform reliable
committor analysis and free energy transition states of all hydrogen combustion
reactions.
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Chapter 2

Protein C-GeM: A coarse-grained
electron model for fast and
accurate protein electrostatics
prediction †

2.1 INTRODUCTION

The electrostatic potential (ESP) is fundamental for understanding and predicting
biomolecular recognition between molecules[60, 48] For proteins in particular, the
ESP is often crucial for predicting contact sites of protein-protein association,[32]
and the electrostatic complementarity between protein and small molecule ligands or
peptide therapeutics is considered critically important to obtain optimal a�nity and
selectivity in structure-based drug discovery.[45, 8]

An ESP is generated by evaluating the work to move a unit charge probe from
infinity to an area of interest on or near the protein surface. Numerically this is
achieved by defining a grid, either on the molecular surface of the protein or by
drawing equipotential contours in the region around the protein. [38] At each surface
point r, the ESP energy of the probe is calculated and the molecular surface is then
displayed to indicate regions of negative or positive electrostatic potential of the
protein molecule. An accurate way of obtaining the molecular ESP is through ab

†Reproduced with permission from: Guan, X.; Leven, I.; Heidar-Zadeh, F.; Head-Gordon, T.
Protein C-GeM: A Coarse-Grained Electron Model for Fast and Accurate Protein Electrostatics
Prediction. J. Chem. Inf. Model. 2021, 61 (9), 4357–4369.
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initio calculations, for which the ESP is defined as

V (r) =
X

A

ZA

|RA � r| �
Z

⇢(r’)dr’

|r’� r| (2.1)

where ZA and RA are the charge and position of nucleus A, and ⇢(r’) is the electronic
density at position r’. However, the computational cost of a full quantum mechanical
(QM) ESP increases rapidly with the number of atoms, and becomes prohibitive for
systems such as large macromolecules.

Instead a large macromolecule can be partitioned in such a way that the electro-
static potential can be reproduced by assigning partial charges to every atom in a
molecule, {qA}Natoms

A=1 , i.e.,

V (r) ⇠
NatomsX

A=1

qA
|r�RA|

(2.2)

Atomic charges derived from fitting a classical Coulomb model to reproduce the
ab initio molecular electrostatic potentials (so called ESP-charges) are frequently used
in simulations of macromolecules, [50, 61, 10, 7], and they are the main electrostatic
description used for all major fixed charge force fields such as AMBER[59, 47] and
CHARMM[24], and utilized in large molecule ESP solvers using the Poisson-Boltzmann
equation such as APBS.[22] One widely used ESP charge is the AM1-BCC model[21],
which captures the underlying features of the electron distribution including formal
charge and delocalization using the semi-empirical AM1 method, and applies bond
charge corrections (BCCs) that are fitted to ab initio ESP. While more cost-e↵ective
than full QM, the ESP-charges are numerically ill-conditioned such as being overly
sensitive to conformational changes and restricted to applications where the electron
density changes are relatively small.[17] While ESP-fitted charge models such as
CHELPG [5] can be more robust, and can accurately reproduce the molecular ESP,
they are not competitors to the prediction application because they require the ESP
as its input.

Alternatively, QM-based partitioning methods divide a molecule into atomic
subsystems by partitioning either the molecular wave-function in Hilbert space (i.e.,
orbital-based methods) or molecular electron density in real space (i.e., density-based
methods). The first and most prevalent orbital-based partitioning method is the
Mulliken[37] scheme which divides each molecular orbital into its atomic pieces.
The original Mulliken partitioning su↵ered from excessive basis-set sensitivity, but
subsequent refinement alleviated this shortcoming by defining atomic pieces in more
sophisticated ways.[46, 29, 23] Unfortunately, the orbital-based charges are generally
inferior for reproducing the electrostatic potential, as compared to density-based
partitionings.[55]
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The density-based QM partitioning exhaustively divide the molecular electron
density distribution, ⇢(r), between its constituent atoms according to

⇢A(r) =
NatomsX

A

wA(r)⇢(r) (2.3)

NatomsX

A

wA(r) = 1 and wA(r) � 0

where the electron density of atom A at point r in space, ⇢A(r), is dictated by its
share wA(r) at that point. Subsequently, the atomic charge of atom A is computed
by,

qA = ZA �
Z

⇢A(r)dr (2.4)

The quality of these charges in reproducing the electrostatic potential heavily depends
on the definition of atomic weights, wA(r). The atomic weights used in density-based
methods are either binary as in Bader’s Quantum Theory of Atoms in Molecules
(QTAIM)[2] or fuzzy as developed in the Hirshfeld partitioning schemes and its
variants[19, 6, 28, 30, 54, 53, 55, 17]. Among these, the latter results in nearly-
spherical atomic regions, so they have rapidly converging atomic multipole expansions
and give a good approximation of V (r) based on Eq. (2.2).

The Hirshfeld-family of methods use a set of proatom atomic densities {⇢0A(r)}Natoms
A=1

to assign the atomic weights through [19, 39, 16, 15],

wA(r) =
⇢0A(r)PNatoms

B=1 ⇢0B(r)
(2.5)

The original Hirshfeld[19] method uses neutral proatom densities as the reference; this
choice is arbitrary and results in very small atomic charges. To fix these shortcomings,
various Hirshfeld-inspired methods have been developed to select optimal proatom
densities.[6, 55, 15, 17] The first, and most prevalent, method is Iterative Hirshfeld
(HI)[6], which refines the proatoms self-consistently so that they have the same
charges as the atoms. Two more recent and promising methods are the Minimal
Basis Iterative Stockholder (MBIS)[55] and Additive Variational Hirshfeld (AVH)[15,
17] which variationally optimize the proatom densities so that they best reproduce
the molecular density. When the atomic partial charges are determined from the
population of these atomic subsystems, the more accurate reproduction of V (r) is a
measure of the partitioning scheme’s quality and utility[55, 17], and thus we consider
them here. Of course there is a very large and extensive number of ab initio charge
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partitioning methods that we have not considered here, and the interested reader
can refer to a recent review by Martin and co-workers[9] to learn more about these
approaches. While QM based partitioning approaches have the advantage of being
physically grounded and generally applicable to a wide range of systems of interest,
and have proven e↵ective for modelling intermolecular interactions[52], they still
su↵er from the underlying expense of QM calculations and thus are not extensible to
large systems such as proteins.

The electronegatitivy equalization methods (EEM) is an alternative approach that
straddles the boundary of empirical fitting but formulated within the QM foundations
of atomic hardness and electronegativity.[36, 35] It has been used as the electrostatic
model for reactive force fields[12] and has been adapted for fast electrostatic screening
applications for large molecular databases as well as protein electrostatics applications
due to its relative e�ciency.[14, 20, 41] However, although elegant, EEM has some
significant shortcomings including unphysical long-range charge transfer, non-integer
molecular charge at large molecular separations, lack of out-of-plane polarization,
poor parameterization, and lack of transferability that makes EEM methods less
accurate than desired but which are analyzed here for completeness.[3, 4, 25]

Hence, an accurate but fast method for protein ESP prediction is still highly
desirable. In this study, we evaluate the coarse-grained electron force field model,
C-GeM for which atoms are represented by a positive core and an electron shell
described by Gaussian charge distributions.[26]. Integration of the Coulombic inter-
actions of the Gaussian densities yields an analytical form for the electrostatic energy
between arbitrary core-core, core-shell, and shell-shell interactions. By minimizing the
electronic shell positions in the field of atomic core positions, the model can provide
accurate electrostatic properties of molecules and their interactions. A schematic of
this process is shown in Figure 2.1.

Figure 2.1: Schematic illustration of how C-GeM generates the electrostatic potential
from given molecular geometry.
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Previous models which share similarities to C-GeM include the core-shell model
developed to account for polarization in ionic crystals[33], the PQEq method which
utilizes a Gaussian Drude oscillator model together with charge equilibration[40], and
the ACP method which partitions the electron density according to the core and
valance shell electrons[58]. C-GeM di↵ers from these previous models through its
unique ability to predict permanent electrostatics, polarization, and charge transfer
without having to perform computationally expensive ab-initio calculations. While
the C-GeM model has been previously parameterized for the atomic elements carbon,
hydrogen, oxygen and chloride[26], in this work we have expanded the C-GeM
parameterization for the nitrogen and sulfur atomic elements for a complete protein
level chemistry. When optimized with tripeptide and small molecule training data,
C-GeM is found to perform better than ESP-fitted charges, EEM, and Hirshfeld
charges in reproducing the ESP of the protein test set that is comprised of tripeptides
of di↵erent sequences and the crambin protein. To improve accuracy of the C-GeM
model further we also introduce atom typing, i.e. optimization of di↵erent parameters
for aliphatic and polar carbon and hydrogen atoms and for primary, secondary and
tertiary amines for nitrogen. This atom typing approach thus makes the C-GeM model
as accurate as HI charges and competitive with MBIS and AVH density partitioning
methods when evaluated on the protein test set. Altogether the C-GeM model o↵ers
a new way to do high-throughput electrostatic screening with ab initio accuracy with
orders of magnitude less computational expense since it does not require the electron
density or ESP but instead predicts these quantities.

2.2 THEORY

The C-GeM model divides atoms into positive cores and negative shells, both of which
are represented as Gaussian distributed charges. The properties of a core depend on
its atom type i, while all of the electrons (shells) are treated equivalently. The charge
density of a core of atom type i (⇢i,c) and that of a generic shell (⇢s) is given by the
following functional form

⇢i,c(r) = qi,c(
↵i,c

⇡
)3/2e�↵i,c(|r�ri,c|2)) (2.6)

⇢s(r) = qs(
↵s

⇡
)3/2e�↵s(|r�rs|2)) (2.7)

where (r) is an arbitrary position in space and ri,c and rs are position vectors for the
core and shell centers, respectively. The shell charge (qs) is always set to -1, while the
core charge(qi,c) is usually set to +1 but can vary based on the chemical conditions
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of charge as we illustrate below. The width of a Gaussian charge is controlled by ↵i,c

for cores and ↵s for shells:

↵i,c =
�

2R2
i,c

↵s =
�

2R2
s

(2.8)

where � is a global fitting parameter, Ri,c is the atomic covalent radius [10] of atom
type i that is further fine tuned to reflect the atomic radii in actual molecules, and
Rs is the e↵ective radius of the shells.

The Coulombic interaction between two elements (core-core, core-shell and shell-
shell) can be expressed as the integration over two Gaussian densities, which has the
following analytical form:

Eelec
ij (rij) =

Z Z
⇢i(ri)⇢j(rj)

|ri � rj|
dridrj

=
qiqj
rij

erf(
r

↵i↵j

↵i + ↵j
rij)

(2.9)

where rij is the distance between the two elements. In the limit of rij ! 0, the
pairwise Coulombic interaction can be rewritten as

lim
rij!0

Eelec
ij (rij) =

2qiqjp
⇡
(
r

↵i↵j

↵i + ↵j
) (2.10)

In addition to electrostatics, a Gaussian energy term is used that reflects the strength
of core-shell or shell-shell interaction, taking into account the electronegativity of
specific atom types:

Egauss
ij (rij) = �ie

��ir2ij + P (rij) (2.11)

where �i is a parameter accounting for the magnitude of the interaction energy, P (rij)
is a penalty term for shell-shell distances that are too close, and � is a parameter
that controls the radial range of the interaction, which is defined as

�i,c =
!c

2Ri,c
(2.12)

for core-shell Gaussian interactions, controlled by a global parameter !c and atomic
parameter Ri,c for atom type i. The radial range for shell-shell interaction is controlled
by global parameter �s.

With the theoretical idea that the C-GeM energy between a core of atom type
i and its shell j should match the ionization potential of that atom type (�i), we
demand that

�i = Eelec
ij (rij = 0) + Egauss

ij (rij = 0) (2.13)
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where �i is the ionization potential of atom type i. In the case of a shell-shell
interaction, we use a global fitting parameter �shell to represent the e↵ective shell-
shell interaction energy that leads to following definition for the magnitude of Gaussian
interaction �i:

�i = lim
rij!0

�i � Eelec
ij

e��ir2ij

= �i �
2qiqjp

⇡
(
r

↵i↵j

↵i + ↵j
)

(2.14)

To avoid shell configurations that optimize to the exact same position and become
inseparable, we introduced a penalty term for shell-shell interaction at very short
range. This term e↵ectively help shells avoid each other so that they experience
distinct forces at all time.

P (rij) =

(
10e�200rij , if i 2 shells and j 2 shells

0, otherwise
(2.15)

The total C-GeM energy of a given system with fixed cores involves an optimization
of the shell positions to minimize the energy,

ECGeM =
X

i

X

j<i

Eelec
ij (rij) + Egauss

ij (rij) (2.16)

as per a usual Born-Oppenheimer assumption. The resulting shell configurations is
used to generate the electrostatic potential on a set of given points using the following
equation:

V (r) =
X

i2cores

qi
(|r� ri|)

+
X

i2shells

qi
(|r� ri|)

(2.17)

where all of the core and shell Gaussian charges are approximated by point charges
at their center to speed up the ESP evaluation.

2.3 METHODS

To address both neutral and charged systems, we require an identification of the
formal charge on each atom. All neutral atoms are initialized with a +1 core and a -1
shell at atomic center; a negatively charged atom receives an additional -1 charge
shell based on its formal charge, and these additional shells are randomly displaced
within 10�3Å distance to avoid overlaps; a positively charged atom is initialized with
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an incremented core charge (qc = 1 + formal charge) and a -1 shell at the atomic
center.

C-GeM training and testing protocol. There are five global parameters (� ,!core,
�shell, �shell and Rshell) and two atom-specific parameters per atom type (�i and Ri)
in the C-GeM model. These parameters are fitted by minimizing the average mean
absolute error (MAEavg) over the training set with respect to ab initio ESP, where
the MAE for one molecule is computed as:

MAE =
1

n

nX

i

|VC�GeM(ri)� VDFT (ri)| (2.18)

where n is the total number of grid points, VC�GeM (ri) and VDFT (ri) are the C-GeM
and the DFT ESP computed for a grid point at position ri.

The training set consists of 54 small molecules and 38 tripeptides, with an
additional 19 tripeptides defining the validation set. The protein analogs are small
molecules that represents the chemistry of amino acids, and a list of these molecule is
provided in Supplementary Table 2.A.3 and Table 2.A.4. The 57 larger and more
complex tripeptides are formulated by fragmentation of larger proteins culled from
the PDB, [27] and uniformly sampled by amino acid residue types to capture the
diversity of peptides. Three models are trained by minimizing the mean MAE of
all of the small protein analogs and 2/3 of the tripeptides using the Nelder-Mead
algorithm [13], with one set of 19 tripeptides used as a validation set. The final model
is obtained by the average of parameters from these three training models. The
parameters for charge related atom types C+1, N+1, HC , CC and OA are optimized
while fixing all other parameters obtained from the neutral model with a charged
training set (Table 2.A.5) of 17 molecules including small charged molecules and
tripeptides, and tested on a charged test set (Table 2.A.6) of 18 tripeptides that are
positively charged, negatively charged or zwitterionic. Finally we also test the various
models on the crambin protein (PDB ID 1CRN [51]), whose hydrogens are added
using the Reduce (3.23) software.[62]

ESP generated by Gaussian charges vs point charges. There are two approaches to
generate the ESP from a set of core and shell positions. One is the Gaussian charge
approach, where the ESP is computed by

V (r) =
coresX

i

Eelec
ik (|r� ri|) +

shellsX

j

Eelec
jk (|r� rj|) (2.19)

where a point(k) in space is treated as a fictitious core with qk = +1 and ↵k = 1569.8,
which is a Gaussian sharply peaked at position r. This approach is the natural
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approach arise from the Gaussian definition of cores and shells. The other approach
is to treat all cores and shells as point charges when calculating the ESP:

V (r) =
X

i2cores

qi
(|r� ri|)

+
X

i2shells

qi
(|r� ri|)

(2.20)

Note that this treatment of approximate cores and shells as point charges at their
Gaussian center is only done in the process of generating the ESP, not in the
optimization of shell positions. The two approaches gives essentially indistinguishable
prediction in ESP as shown in Figure 2.2a), where the mean ESP generated with
Gaussian charges aligns perfectly (R2 = 0.99999993) with that generated with point
charges. The average MAE between ESP generated with Gaussian charges and ESP
generated with point charges is only 3.97 ⇤ 10�4 eV, which is trivial compared to
the average magnitude of ESP at 0.755 eV. However, the point charge approach
is advantageous in terms of calculation speed as it avoids the relatively expensive
operation of erf function evaluation. This is demonstrated in Figure 2.2b), where the
ESP time (the time to compute ESP from fixed core and shell positions) is plotted
against the number of grid points for all molecules used in for training and testing
process for parameter optimization. The ESP time for the point charge treatment is
clearly faster than the Gaussian charge treatment by roughly a factor of 10. When the
number of points is a large number, this di↵erence can be significant to influence the
e�ciency of ESP evaluation. As both methods provide essentially the same accuracy
and the point charge treatment is clearly faster, in the following discussion of this
paper, we will adopt the point charge approach to calculate the ESP. In the cases
where the ESP grid points of interest is closer to the atomic center, we switch back
to the Gaussian charge implementation.
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Figure 2.2: a) The mean ESP generated with Gaussian charges aligns perfectly with
that generated with point charges. b) The time to compute ESP from core and shell
positions with respect to number of grid points for di↵erent molecules using point
charge and Gaussian charge treatment.

DFT reference and other methods for computing the ESP. The reference ab initio
ESP for all molecules except crambin are generated with the Q-Chem 5.2 software
package[49] using the !B97X-V functional [31] with the def2-QZVPP basis set; the
ESP of crambin is generated using !B97X-V with the cc-pVDZ basis set. We also
compare the results of C-GeM with other available methods including EEM, AM1-
BCC, Hirshfeld, Iterative Hirshfeld, MBIS and AVH. The EEM-derived charges are
obtained from the LAMMPS[42] ReaxFF[1] implementation of EEM using the peptide
and protein parameters.[34] The AM1-BCC charges are obtained from antechamber
tool part of AMBERTools. The Hirshfeld, Iterative Hirshfeld, MBIS and AVH
charges are computed with IOData[57], ChemTools[18] and HORTON 2.1.1 software
packages.[56]

In addition, the electrostatic potential for crambin has been performed with
continuum electrostatic calculations using the Adaptive Poisson–Boltzmann Solver
(APBS) v3.0.0. [22] For APBS the hydrogen added crambin structure was prepared
with PDB2PQR v3.1.0 [11] using the AMBER force field, and enabling the generation
of pqr files with atomic charges and radii. APBS computations were carried out
with the linearized PB equation with a 1.0 dielectric constant for solvent and solute
(protein) to mimic the vacuum condition in other calculations. Temperature was set
to 298.15 K, and a single Debye–Hückel boundary condition was applied. The grid
dimension was set to 353 x 353 x 353 such that the grid spacing is 0.149 x 0.125 x
0.150 Å, similar to the grid spacing in the molecular surface grid we used in the ab
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initio calculations. The ESP generated with APBS was mapped onto the molecular
surface grid through the multivalue utility in APBS software package.

Grid resolution and timing metrics. The grid points on which electrostatic
potentials are evaluated are generated following the Merz-Singh-Kollman (MK)
scheme [50] on 10 evenly distributed layers of range from 1.4-2.54 vdW radii distance.
Here we report the ESP generated on an average of 37,000 grid points for small
protein analogs (average 12.4 atoms) and 90,000 grid points for tripeptides (average
37.4 atoms). The computation times are measured with the timeit python module on
a single core Intel XEON Gold 6230 CPU unless otherwise mentioned. The times for
DFT calculations are obtained from QChem output files.

2.4 RESULTS AND DISCUSSIONS

Neutral small protein analogs and tripeptides

In this study, we trained three protein C-GeM models that share common global
parameters !core, �shell, �, Rshell and �shell: 1) C-GeM without atom typing, where
each element (H, C, N, O, S, Cl) has its own atomic parameters for the ionization
potential and atomic radius. 2) C-GeM with C and H atom typed, where C is
classified into polar carbon (CA) and aliphatic carbon (CB) based on whether it
has an electronegative neighboring atom (N,O,S,Cl), and H is classified into polar
hydrogen (HA) and aliphatic hydrogen(HB) in the same way. 3) C-GeM with C, H
and N atom typed, where on top of model 2, we further classify nitrogen according to
the number of H neighbors it has, into NA for N with 2 H neighbors, NB for N with 1
H neighbor and NC for N with no H neighbor. These three models are referred to as
CGem, CGem CH and CGem CHN respectively, and their parameters are shown in
Table 2.1.
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Table 2.1: Parameters for C-GeM models CGem, CGem CH and CGem CHN. HA

for polar hydrogen, HB for aliphatic hydrogen, HC for hydrogen directly bonded to
positive atoms; C+1 for carbon with a positive formal charge, CA for polar carbon,
CB for aliphatic carbon, CC for carbon directly bonded to positive atoms; N+1 for
nitrogen with a positive formal charge, NA for N with 2 H neighbors, NB for N with 1
H neighbor and NC for N with no H neighbor; OA for oxygens in negatively charged
acetate group

global parameters

!core(Å�1) �shell(Å�2) � Rshell(Å) �shell (eV)

0.152 5.220 2.103 0.708 19.956

C-GeM atomic parameters

CGem CGem CH CGem CHN

atom type R(Å) � (eV) R(Å) � (eV) R(Å) � (eV)

H 0.67 -16.33 - - - -
C 0.59 -19.12 - - - -
N 0.44 -21.85 0.55 -23.08 - -
O 0.34 -24.26 0.54 -22.83 0.51 -23.35
S 0.66 -21.28 0.86 -18.43 0.84 -19.29
Cl 0.31 -25.43 0.63 -21.73 0.56 -22.87
HA - - 0.22 -12.97 0.20 -13.79
HB - - 0.68 -16.42 0.65 -16.95
HC 0.81 -15.49 0.52 -13.35 0.57 -13.52
CA - - 0.77 -15.12 0.75 -15.74
CB - - 0.57 -19.48 0.57 -19.49
CC 0.60 -19.52 0.71 -13.26 0.72 -14.32
NA - - - - 0.54 -23.65
NB - - - - 0.61 -20.04
NC - - - - 0.50 -24.43
OA 0.62 -22.78 0.58 -23.50 0.60 -23.57
C+1 0.55 -31.93 0.68 -30.15 0.74 -31.50
N+1 0.88 -27.99 0.73 -38.02 0.72 -39.13

To sample the protein chemistry space, we developed the models with data from
small protein analogs that covers the basic functional groups and sca↵olds for peptides,
along with tripeptides that describe actual protein chemistry but are small enough for
high quality ab initio computation. The performance of these models was evaluated
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with respect to MAEavg and RMSEavg between the ESP of the reference !B97X-
V/def2-qzvpp theory and the ESP generated by the various models, as well as the
dipole error obtained as the norm of the di↵erence vector by subtracting the ab
initio reference dipole from the approximate dipole. In Figure 2.3 we present the
MAEavg and mean dipole error of the C-GeM models as well as empirically derived
partial charge method EEM and QM-calculation-based atomic partial charge methods
Hirshfeld, HI, MBIS and AVH. The statistics of the results including RMSEavg are
listed in Table 2.A.1. Among the C-GeM models, atom typing hydrogen and carbon
improves the MAEavg from 0.067 eV to 0.059 eV and RMSEavg from 0.094 eV to
0.082 eV in terms of ESP quality for small protein analogs, and improves the MAEavg

from 0.122 eV to 0.084 eV and RMSEavg from 0.166 eV to 0.117 eV in terms of ESP
quality for tripeptides. Nitrogen atom typing further improves the ESP MAEavg

and RMSEavg down to 0.053 eV and 0.077 eV for small protein analogs, and 0.070
eV and 0.101 eV for tripeptides respectively. Oxygen atom typing were explored,
but it showed minimal improvements on the training molecules while introducing an
overfitting problem that degrades the results for the validation set. Therefore, oxygen
was kept as its elemental type.

All three C-GeM models significantly outperform the EEM model (0.094 eV
MAEavg, for small protein analogs and 0.185 eV MAEavg for tripeptides), which is
the only method of comparable computational cost to C-GeM. The C-GeM models
are also more accurate for tripeptides than the AM1-BCC charges (0.96 eV MAEavg)
that relies on the semi-empirical AM1 method and thus is computationally slower
than C-GeM. All C-GeM models are significantly better than Hirshfeld (0.106 eV and
0.176 eV MAEavg respectively), whereas the best CGem CHN model also outperforms
the AVH method(0.086 eV and 0.100 eV) by 30%, and slightly outperforms the HI
method (0.058 eV and 0.080 eV ), while MBIS (0.040 eV and 0.053 eV) remains the
best among all methods, albeit with much greater expense and thus not a↵ordable
for proteins.
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Figure 2.3: Average mean absolute error electrostatic potential and average dipole
error of di↵erent atom typed C-GeM models, EEM, Hirshfeld, iterative Hirshfeld,
MBIS and AVH partial charges with respect to !B97X-V/ def2-qzvpp reference for
a) 54 small protein analogs and b) 57 tripeptides, labeled with the average error and
standard deviation within the set.

While producing an accurate ESP description that is comparable to ab initio cal-



Chapter 2 33

culation based charges, the C-GeM models produce excellent prediction for molecular
dipoles, which is a property that the model was not parameterized for, but arises
naturally from o↵-centered shell positions. Atom typing improves the mean dipole
errors for C-GeM models, from 0.525 Debye in CGem to 0.415 Debye in CGem CH to
0.362 Debye in CGem CHN for the small protein analogs set, and from 1.755 Debye in
CGem to 1.216 Debye in CGem CH to 0.892 Debye in CGem CHN for the tripeptide
set, similar in trend as to how atom typing improves the ESP MAEavg and RMSEavg.
In the small protein analogs set, the mean dipole error of CGem CHN is only inferior
to that of MBIS (0.158 Debye), and superior to all other QM based or empirically
derived methods including EEM (0.890 Debye), AM1-BCC (0.397 Debye), Hirshfeld
(0.751 Debye), HI (0.421 Debye) and AVH (0.433 Debye). For the tripeptide set,
CGem CHN produces the best mean dipole error among all of the methods including
MBIS (1.028 Debye), HI (1.106 Debye), AVH (1.032 Debye), whereas EEM (3.788
Debye), Hirshfeld (2.623 Debye) and AM1-BCC (1.914 Debye), have errors larger
than all of the C-GeM models.

For all of the methods, the tripeptides are more challenging to predict than
the small protein analogs because of their intrinsically larger size. For instance,
the mean absolute ESP value is 0.190 eV for small protein analogs and 0.415 eV
for tripeptides, and the mean dipole magnitude is 1.569 Debye for small protein
analogs but 7.389 Debye for tripeptides. However, the relative performance among the
methods we compared is quite stable across the two di↵erent datasets. The fact that
the performance of the C-GeM models are relatively stable compared to QM based
charge partitioning method, which are general methods that does not distinguish
sizes or specific protein chemistry, reflects that C-GeM is transferable with respect to
system size for protein like molecules.

While having similar accuracy, the C-GeM models are orders of magnitude faster
than the QM charge partitioning approaches that are based on high quality ab initio
calculations. The DFT benchmark calculation (!B97X-V/def2-qzvpp) on average
takes 8.4 minutes and 6.9 hours per molecule for small protein analogs and tripeptides,
respectively, even after taking advantage of OpenMP parallelization techniques, and
the QM based charge partitioning methods require additional steps to partition atomic
densities on top of the QM calculation. The AM1-BCC method takes 8.38 seconds
for small protein analogues and 5.77 minutes for tripeptides using antechamber
program, and although more e�cient than the QM-based methods, is also 2-3 orders
of magnitude slower than our C-GeM models.
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Table 2.2: Computation time per molecule of C-GeM, CH atomtyped C-GeM, CHN
atomtyped C-GeM on small protein analogs and tripeptides. Charge time is the time
to initialize and optimize shell positions for C-GeM models, and ESP time is the time
to map C-GeM cores and shells onto predefined grid points for electrostatic potential.

Small Protein Analogs

Charge Time (sec) ESP Time (sec) Total Time (sec)

CGeM 0.053 0.010 0.064
CGeM CH 0.047 0.009 0.057
CGeM CHN 0.044 0.009 0.053

Tripeptides

Charge Time (sec) ESP Time (sec) Total Time (sec)

CGeM 0.126 0.081 0.207
CGeM CH 0.133 0.080 0.213
CGeM CHN 0.121 0.080 0.201

By contrast, the C-GeM models can predict the ESP on the order of tenth of a
second on a single core of Intel XEON Gold 6230 CPU, and all C-GeM models have
very similar computational timings for the ESP, about 0.01 seconds for small protein
analogs and about 0.08 seconds for tripeptides (Table 2.2), which is comparable
to the EEM class of methods. The actual timing comparisons between EEM and
C-GeM models are not directly comparable because the EEM times were obtained
with a C++ code in LAMMPS and the C-GeM times were obtained with our in-house
Python code, but EEM is the same order of magnitude for the system sizes we’ve
investigated until this point; we return to timings again later in the crambin protein
case. The internal comparisons among C-GeM models shows that atom typing did
not slow down the calculation, despite adding additional step to classify the atoms.
The charge time decreases in the order of CGem, CGem CH, and CGem CHN in
both the small protein analogs set and the tripeptides set, which suggests that atom
typing of C,H and N helps the shell optimization process to converge faster.

To demonstrate that the C-GeM model can deal with the conformational variations
of a molecule, we compute C-GeM ESP for a tripeptide molecule randomly selected
from the PEPCONF[44] dataset. The error of C-GeM models relative to the !B97X-V
/ def2-qzvpp reference on the 6 conformations of tripeptide LEU TYR GLN(Figure
2.B.1) are shown in Table 2.3, which supports the fact that all C-GeM models yield
stable predictions on varied conformations of the same molecule.
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Table 2.3: Mean absolute error (MAE) in eV on electrostatic potential (ESP) of
di↵erent atom typed C-GeM models with respect to !B97X-V / def2-qzvpp reference
on 6 conformations of tripeptide LEU TYR GLN.

molecule CGem MAE CGem CH MAE CGem CHN MAE

CONF 1 0.087 0.072 0.063
CONF 2 0.108 0.067 0.083
CONF 3 0.105 0.073 0.075
CONF 4 0.109 0.077 0.078
CONF 5 0.088 0.064 0.061
CONF 6 0.114 0.075 0.081

Charged small protein analogs and tripeptides

In the previous section, we demonstrated that C-GeM models can predict the ESP
of molecules at accuracy comparable to ab initio generated charges but orders of
magnitude faster for neutral small protein analogs and tripeptides. However, proteins
under physiological conditions have residues that are charged under neutral pH, which
would need specialized treatment in the C-GeM models. We considered two residues
that are negative under neutral pH, aspartic acid (Asp) and glutamic acid (Glu), and
two residues that are positive under neutral pH, arginine (Arg) and lysine (Lys). For
the negatively charged residues, an extra shell is added onto the negatively charged
atom (OA for negative oxygen) as shown in Figure 2.4(a), which creates a net charge
of -1 localized around the negatively charged atom. For positively charged residues,
the idea is to assign the core of the charged atom a +2 charge and mark it as a
di↵erent atom type(C+1 for carbon and N+1 for nitrogen as shown in Table 2.1), while
still having a shell on that atom to allow for shell movements. As shown in Figure
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Figure 2.4: Demonstration for C-GeM on charged molecules a) Methylammonium
(net -1 charge) b) Tripeptide ARG-LYS-ILE (net +2 charge)

2.4(b) for Lys, the positive nitrogen carries a +2 core, and for Arg, we placed the +2
core on the guanidino carbon instead of the formally charged nitrogen to account for
the equivalence of the two guanidino nitrogens. We also find it useful to have separate
atom type for the hydrogens (HC) and carbons (CC) that are directly bonded to the
positive atoms.

With this protocol, we trained the parameters for the charged atoms, and fixing
all of the parameters we obtained from the neutral model, using a training set of 17
molecule consisting of 4 small side chain analog molecules and 13 tripeptides that are
positive, negative of zwitterionic (Table 2.A.5). The resulting models were tested on
another 18 tripeptides (Table 2.A.6) with charged residues that the model has not
seen. The MAEavg and mean dipole errors C-GeM models on the charged dataset
compared to QM based charges are presented in Figure 2.5 and Table 2.A.2. EEM
charges are not included because the LAMMPS implementation of EEM fails to deal
with non-zero charges. The charged molecules in general have larger mean ESP values
(2.26 eV for the charged training set and 2.24 eV for the charged test set) and much
larger dipoles (78.1 Debye and 137.1 Debye for the charged training and test set,
respectively), which could make the prediction more di�cult.

In general Figure 2.5 and Table 2.A.2 show that the C-GeM models exhibit a
stable performance on these di�cult charged molecules that are not too far from their
corresponding performance on the neutral molecules. The basic CGeM model yields
0.102 eV MAEavg for the charged training set and 0.116 eV MAEavg while the best
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CGem CHN model yields 0.081 eV MAEavg for the charged training set, and 0.076
eV MAEavg for the charged test set. This is a significant improvement in MAEavg for
charge training and test set, respectively, over Hirshfeld charges (0.154 eV and 0.174
eV), and comparable to HI (0.060 eV and 0.071 eV), MBIS (0.060 eV and 0.065 eV)
and AVH (0.078 eV and 0.086 eV). The dipole errors exhibit a similar trend: the
best C-GeM model CGem CHN reports a dipole error of 1.34 Debye for the charged
training set and 1.15 Debye for charged test set, which is comparable to MBIS (1.33
Debye and 1.36 Debye) and significantly improved over Hirshfeld (1.96 Debye and
2.50 Debye), but worse than HI (0.88 Debye and 1.10 Debye) and AVH (0.88 Debye
and 0.88 Debye). Both the trend and the numbers are very similar across the charged
training set and testing set, which shows the generality of the models. The AM1-BCC
charges are relatively accurate in the neutral molecule case, but clearly have some
di�culty in predicting charged protein chemistry molecules, giving rise to a MAE
of 0.161 eV and 0.149 eV, and dipole error at 3.67 Debye and 3.36 Debye for the
charged training and test set, respectively.

It is worth noting that the overall dipole error is amplified due to the large
magnitude, as we are defining dipole error as the norm of the di↵erence vector between
C-GeM or partial charge derived dipoles and the DFT dipole |µDFT �µC�GeM |, which
captures both the magnitude and directional information. Hence with a large dipole,
a small deviation in the angle ✓ between µDFT and µDFT can result in large errors in
the norm of the di↵erence vector, even if the error in magnitude ||µDFT |� |µC�GeM ||
is small. For instance, the 1.23 Debye dipole error in CGem CHN can be decomposed
into 0.65 Debye error in magnitude and 0.91 � in ✓.
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Figure 2.5: Mean absolute error (MAE) on electrostatic potential (ESP) and dipole
error of di↵erent atom typed C-GeM models, AM1-BCC, Hirshfeld, iterative Hirshfeld,
MBIS and AVH partial charges with respect to !B97X-V / def2-qzvpp reference for
a) training set for charged side chains b) testing set for charged side chains.
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Evaluation of C-GeM model on the crambin protein

As the C-GeM models worked well to reproduce the DFT benchmark for the ESP and
dipole directions in both the neutral and the charged cases of small molecules and
protein fragments, we precede to examine C-GeM models on a full protein, crambin,
which is di�cult in terms of resources for the QM based partial charge methods, but
totally accessible for C-GeM models as they are orders of magnitudes faster.

The ESP map of crambin is shown in Figure 2.6 with their minimum and maximum
ESP value labeled. The C-GeM models give qualitatively correct predictions for
the ESP compared to the DFT reference computed ESP with !B97X-V / cc-pVDZ,
with MAE of 0.13, 0.12 and 0.11 for CGem, CGem CH and CGem CHN respectively.
These predictions are superior to the EEM method (0.49 eV MAE), which fails to
describe the ESP qualitatively correctly due to unphysical long-range charged transfer,
and APBS (0.25 eV MAE), which essentially is due to the AMBER ESP fitted partial
charges (the dielectric constant was set to 1 to account for protein in vaccuum of all
methods). The CGem CHN predicts -4.26 eV and 3.02 eV as minimum and maximum
on the ESP surface, which is very close to -4.37 eV and 3.03 eV predicted by the
DFT reference at the same position in space. By contrast the EEM method yields a
more featureless ESP, predicting a minimum and maximum of -1.42 eV and 0.71 eV,
whereas the APBS result exaggerates the extremes with -5.15 eV and 3.67 eV for the
minimum and maximum, respectively. Finally, the best C-GeM model CGem CHN
also gives a relatively acceptable dipole error of 6.45 Debye compared to the total
37.8 Debye for crambin as determined by the DFT benchmark. In this case the EEM
dipole moment is egregiously incorrect.
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MAE (eV) RMSE(eV) Dipole error (Debye)

HF / 6-31G* 0.06 0.08 1.77
CGem 0.13 0.17 7.03
CGem CH 0.12 0.16 7.53
CGem CHN 0.11 0.15 6.45
EEM 0.49 0.65 33.19
APBS 0.25 0.32 -

Figure 2.6: Predicted ESP figure for crambin(1CRN) with !B97X-V / cc-pVDZ,
HF/6-31G*, EEM, CGem, CGem CH, CGem CHN and APBS. The electrostatic
potential (in eV) at points with maximum and minimum ESP value for !B97X-V /
cc-pVDZ are labeled. The table presents the MAE and RMSE on ESP and the dipole
error of these methods with respect to !B97X-V / cc-pVDZ reference for crambin.

The advantage in computational e�ciency for the C-GeM models is very significant
in the case of this larger molecule of more than 600 atoms. The C-GeM models can
predict the ESP on more than 500,000 grid points within 20 seconds, which is five
orders of magnitude faster than the !B97X-V / cc-pVDZ reference. The C-GeM
models are also faster than APBS at the same grid resolution, noting that the speed
of APBS su↵er from first computing the ESP on a full-space grid of similar spacing,
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and then interpolation onto the molecular surface grid. The best C-GeM model,
CGem CHN (13.7 sec) is faster than CGem (15.6 sec) and CGem CH (17.4 sec)
despite it requiring additional steps of atom typing, which again shows that atom
typing speeds up the convergence of the shell position in the optimization cycles.

2.5 CONCLUSIONS AND OUTLOOK

The ability to generate accurate electrostatic potential surfaces for predicting protein
binding motifs with high computational e�ciency for high-throughput screening of
drug molecules is an important area for structural based drug discovery. At present
this dual goal of accuracy and e�ciency has been di�cult to achieve. Here we have
introduced a new method for generating the ESP that is both accurate and fast
using the C-GeM approach. We have shown that it o↵ers accuracy comparable to
the expensive ab initio methods with orders of magnitude reduction in expense, and
is far more accurate than cheaper computational alternatives such as EEM or PBE
approaches.

We have also shown that the EEM model and the density partitioning Hirshfeld
schemes are the least competitive in regards accuracy, which is not surprising, but are
compared here because of their continued popularity. The AM1-BCC model, usually
thought of as an e�cient method, was found to be inferior to the C-GeM models in
both e�ciency and accuracy, and is found to be unstable when computing charged
protein fragments. While more first principle approaches such as HI, MBIS, or AVH
are relatively accurate, they are computationally expensive and thus unsuitable for
high-throughput computation on large proteins or for the many molecules required
for high throughput screening applications.

In summary, the C-GeM force field accuracy comes in part from eliminating
unphysical long-range charge transfer, by accounting for out-of-plane polarization, and
charges are not required to be centered on atoms, thereby accounting for electrostatic
features such as sigma holes that define important binding motifs for biomolecules.
The C-GeM model is light-weight in parameters compared to other many-body
force fields such as AMOEBA [43], which has many more atom types and many
more parameters such as the atomic multipoles up through quadrupoles, atomic
polarizability parameters, and damping functions. By contrast the protein C-GeM
model has at most 15 atom types each with 2 atomic parameters that represent the
electronegativity and ionization potential, and a common set of 5 global parameters
for all atoms. In future development work we will advance C-GeM further to account
for more complicated solvent environments and physiological salt conditions that
are important for biomolecular recognition, and apply the model to more diverse
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applications beyond ESP predictions.
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Koča. “Rapid Calculation of Accurate Atomic Charges for Proteins via the
Electronegativity Equalization Method”. In: Journal of Chemical Information
and Modeling 53.10 (Oct. 2013), pp. 2548–2558. issn: 1549-9596, 1549-960X.
doi: 10.1021/ci400448n.

[21] Araz Jakalian, David B. Jack, and Christopher I. Bayly. “Fast, E�cient Gener-
ation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization
and Validation”. In: Journal of Computational Chemistry 23.16 (Dec. 2002),
pp. 1623–1641. issn: 0192-8651. doi: 10.1002/jcc.10128.



Chapter 2 45

[22] Elizabeth Jurrus et al. “Improvements to the APBS Biomolecular Solvation
Software Suite”. In: Protein Science 27.1 (2018), pp. 112–128. issn: 1469-896X.
doi: https://doi.org/10.1002/pro.3280.

[23] Gerald Knizia. “Intrinsic Atomic Orbitals: An Unbiased Bridge between Quan-
tum Theory and Chemical Concepts”. In: Journal of Chemical Theory and
Computation 9.11 (2013), pp. 4834–4843. doi: 10.1021/ct400687b. eprint:
https://doi.org/10.1021/ct400687b. url: https://doi.org/10.1021/
ct400687b.

[24] Anmol Kumar, Ozge Yoluk, and Alexander D. MacKerell Jr. “FFParam: Stan-
dalone Package for CHARMM Additive and Drude Polarizable Force Field
Parametrization of Small Molecules”. In: Journal of Computational Chemistry
41.9 (2020), pp. 958–970. issn: 0192-8651. doi: https://doi.org/10.1002/
jcc.26138. url: https://doi.org/10.1002/jcc.26138.

[25] G. Lee Warren, Joseph E. Davis, and Sandeep Patel. “Origin and Control of
Superlinear Polarizability Scaling in Chemical Potential Equalization Methods”.
In: The Journal of Chemical Physics 128.14 (Apr. 2008), p. 144110. issn:
0021-9606. doi: 10.1063/1.2872603.

[26] Itai Leven and Teresa Head-Gordon. “C-GeM: Coarse-Grained Electron Model
for Predicting the Electrostatic Potential in Molecules”. In: The Journal of
Physical Chemistry Letters 10.21 (Nov. 2019), pp. 6820–6826. doi: 10.1021/
acs.jpclett.9b02771.

[27] Jie Li, Kochise C. Bennett, Yuchen Liu, Michael V. Martin, and Teresa Head-
Gordon. “Accurate Prediction of Chemical Shifts for Aqueous Protein Structure
on “Real World” Data”. In: Chemical Science 11.12 (2020), pp. 3180–3191.
issn: 2041-6520. doi: 10.1039/C9SC06561J. url: http://dx.doi.org/10.
1039/C9SC06561J.

[28] Timothy C. Lillestolen and Richard J. Wheatley. “Atomic Charge Densities
Generated using an Iterative Stockholder Procedure”. In: The Journal of
Chemical Physics 131.14 (2009), p. 144101. doi: 10.1063/1.3243863. eprint:
https://doi.org/10.1063/1.3243863. url: https://doi.org/10.1063/1.
3243863.

[29] W. C. Lu, C. Z. Wang, M. W. Schmidt, L. Bytautas, K. M. Ho, and K.
Ruedenberg. “Molecule Intrinsic Minimal Basis Sets. I. Exact Resolution of ab
initio Optimized Molecular Orbitals in Terms of Deformed Atomic Minimal-
Basis Orbitals”. In: Journal of Chemical Physics 120.6 (2004), pp. 2629–2637.
doi: 10.1063/1.1638731. eprint: https://doi.org/10.1063/1.1638731.
url: https://doi.org/10.1063/1.1638731.



Chapter 2 46

[30] Thomas A. Manz and David S. Sholl. “Chemically Meaningful Atomic Charges
That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materi-
als”. In: Journal of Chemical Theory and Computation 6.8 (2010), pp. 2455–2468.
doi: 10.1021/ct100125x. eprint: https://doi.org/10.1021/ct100125x.
url: https://doi.org/10.1021/ct100125x.

[31] Narbe Mardirossian and Martin Head-Gordon. “!B97X-V: A 10-parameter,
Range-separated Hybrid, Generalized Gradient Approximation Density Func-
tional with Nonlocal Correlation, Designed by a Survival-of-the-fittest Strategy”.
In: Physical Chemistry Chemical Physics 16.21 (May 2014), pp. 9904–9924.
issn: 1463-9084. doi: 10.1039/C3CP54374A.

[32] Neil Q. McDonald, Risto Lapatto, Judith Murray Rust, Jennifer Gunning,
Alexander Wlodawer, and Tom L. Blundell. “New Protein Fold Revealed
by a 2.3-Å Resolution Crystal Structure of Nerve Growth Factor”. In: Na-
ture 354.63526352 (Dec. 1991), pp. 411–414. issn: 1476-4687. doi: 10.1038/
354411a0.

[33] P J Mitchell and D Fincham. “Shell Model Simulations by Adiabatic Dynamics”.
In: Journal of Physics: Condensed Matter 5.8 (Feb. 1993), pp. 1031–1038. doi:
10.1088/0953-8984/5/8/006. url: https://doi.org/10.1088/0953-
8984/5/8/006.

[34] Susanna Monti, Alessandro Corozzi, Peter Fristrup, Kaushik L. Joshi, Yun
Kyung Shin, Peter Oelschlaeger, Adri C. T. van Duin, and Vincenzo Barone.
“Exploring the Conformational and Reactive Dynamics of Biomolecules in So-
lution using an Extended Version of the Glycine Reactive Force Field”. In:
Physical Chemistry Chemical Physics 15.36 (Aug. 2013), pp. 15062–15077. issn:
1463-9084. doi: 10.1039/C3CP51931G.

[35] Wilfried J. Mortier, Swapan K. Ghosh, and S. Shankar. “Electronegativity
Equalization Method for the Calculation of Atomic Charges in Molecules”. In:
Journal of the American Chemical Society 108.15 (1986), pp. 4315–4320. issn:
15205126. doi: 10.1021/ja00275a013.

[36] Wilfried J. Mortier, Karin Van Genechten, and Johann Gasteiger. “Electronega-
tivity Equalization: Application and Parametrization”. In: Journal of the Amer-
ican Chemical Society 107.4 (1985), pp. 829–835. doi: 10.1021/ja00290a017.
eprint: https://doi.org/10.1021/ja00290a017. url: https://doi.org/10.
1021/ja00290a017.

[37] R.S. Mulliken. “Electronic Population Analysis on LCAO-MO Molecular Wave
Functions. I”. In: Journal of Chemical Physics 23.10 (1955), pp. 1833–1840.
doi: 10.1063/1.1740588.



Chapter 2 47

[38] Jane S. Murray and Peter Politzer. “The Electrostatic Potential: an Overview”.
In: WIREs Computational Molecular Science 1.2 (2011), pp. 153–163. issn:
1759-0884. doi: 10.1002/wcms.19.

[39] Roman F. Nalewajski and Robert G. Parr. “Information Theory, Atoms in
Molecules, and Molecular Similarity”. In: Proceedings of the National Academy
of Sciences 97.16 (2000), pp. 8879–8882. issn: 0027-8424. doi: 10.1073/pnas.
97.16.8879. eprint: https://www.pnas.org/content/97/16/8879.full.
pdf. url: https://www.pnas.org/content/97/16/8879.

[40] Saber Naserifar, Daniel J. Brooks, William A. Goddard, and Vaclav Cvicek.
“Polarizable Charge Equilibration Model for Predicting Accurate Electrostatic
Interactions in Molecules and Solids”. In: The Journal of Chemical Physics
146.12 (2017), p. 124117. doi: 10.1063/1.4978891. eprint: https://doi.org/
10.1063/1.4978891. url: https://doi.org/10.1063/1.4978891.

[41] Yongzhong Ouyang, Fei Ye, and Yizeng Liang. “A Modified Electronegativity
Equalization Method for Fast and Accurate Calculation of Atomic Charges in
Large Biological Molecules”. In: Physical Chemistry Chemical Physics 11.29
(2009), pp. 6082–6089. doi: 10.1039/B821696G.

[42] Steve Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynam-
ics”. In: Journal of Computational Physics 117.1 (Mar. 1995), pp. 1–19. issn:
0021-9991. doi: 10.1006/jcph.1995.1039.

[43] Jay W. Ponder et al. “Current Status of the AMOEBA Polarizable Force Field”.
In: The Journal of Physical Chemistry B 114.8 (Mar. 2010), pp. 2549–2564.
issn: 1520-6106, 1520-5207. doi: 10.1021/jp910674d.

[44] Viki Kumar Prasad, Alberto Otero-de-la-Roza, and Gino A. DiLabio. “PEP-
CONF, a Diverse Data Set of Peptide Conformational Energies”. In: Scientific
Data 6.1 (2019), p. 180310. issn: 2052-4463. doi: 10.1038/sdata.2018.310.

[45] Prakash Chandra Rathi, R. Frederick Ludlow, and Marcel L. Verdonk. “Practical
High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-
Convolutional Deep Neural Network”. In: Journal of Medicinal Chemistry 63.16
(Aug. 2020), pp. 8778–8790. issn: 0022-2623, 1520-4804. doi: 10.1021/acs.
jmedchem.9b01129.

[46] Alan E. Reed, Robert B. Weinstock, and Frank Weinhold. “Natural Population
Analysis”. In: The Journal of Chemical Physics 83.2 (July 1985), pp. 735–746.
issn: 0021-9606. doi: 10.1063/1.449486.



Chapter 2 48

[47] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. “An Overview
of the Amber Biomolecular Simulation Package”. In: WIREs Computational
Molecular Science 3.2 (2013), pp. 198–210. issn: 1759-0884. doi: https://doi.
org/10.1002/wcms.1121.

[48] Eolo Scrocco and Jacopo Tomasi. “The Electrostatic Molecular Potential as
a Tool for the Interpretation of Molecular Properties”. In: New Concepts II.
Topics in Current Chemistry Fortschritte der Chemischen Forschung. Springer,
1973, pp. 95–170. isbn: 978-3-540-37729-0. doi: 10.1007/3-540-06399-4_6.

[49] Yihan Shao et al. “Advances in Molecular Quantum Chemistry Contained in
the Q-Chem 4 Program Package”. In: Molecular Physics 113.2 (Jan. 2015),
pp. 184–215. issn: 0026-8976. doi: 10.1080/00268976.2014.952696.

[50] U. Chandra Singh and Peter A. Kollman. “An Approach to Computing Elec-
trostatic Charges for Molecules”. In: Journal of Computational Chemistry 5.2
(1984), pp. 129–145. issn: 1096-987X. doi: https://doi.org/10.1002/jcc.
540050204.

[51] M. M. Teeter. “Water Structure of a Hydrophobic Protein at Atomic Resolution:
Pentagon Rings of Water Molecules in Crystals of Crambin”. In: Proceedings
of the National Academy of Sciences 81.19 (Oct. 1984), pp. 6014–6018. issn:
0027-8424, 1091-6490. doi: 10.1073/pnas.81.19.6014.

[52] Steven Vandenbrande, Michel Waroquier, Veronique Van Speybroeck, and
Toon Verstraelen. “The Monomer Electron Density Force Field (MEDFF):
A Physically Inspired Model for Noncovalent Interactions”. In: Journal of
Chemical Theory and Computation 13.1 (2017), pp. 161–179. doi: 10.1021/
acs.jctc.6b00969. eprint: https://doi.org/10.1021/acs.jctc.6b00969.
url: https://doi.org/10.1021/acs.jctc.6b00969.

[53] T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M. Waroquier. “Hirshfeld-
E Partitioning: AIM Charges with an Improved Trade-o↵ between Robustness
and Accurate Electrostatics”. In: Journal of Chemical Theory and Computation
9.5 (2013), pp. 2221–2225. doi: 10.1021/ct4000923. eprint: https://doi.
org/10.1021/ct4000923. url: https://doi.org/10.1021/ct4000923.

[54] T. Verstraelen, P.W. Ayers, V. Van Speybroeck, and M. Waroquier. “The
Conformational Sensitivity of Iterative Stockholder Partitioning Schemes”.
In: Chemical Physics Letters 545 (2012), pp. 138–143. issn: 0009-2614. doi:
https://doi.org/10.1016/j.cplett.2012.07.028. url: https://www.
sciencedirect.com/science/article/pii/S0009261412008184.



Chapter 2 49

[55] Toon Verstraelen, Steven Vandenbrande, Farnaz Heidar-Zadeh, Louis Van-
duyfhuys, Veronique Van Speybroeck, Michel Waroquier, and Paul W. Ayers.
“Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Develop-
ment”. In: Journal of Chemical Theory and Computation 12.8 (2016), pp. 3894–
3912. doi: 10.1021/acs.jctc.6b00456. eprint: https://doi.org/10.1021/
acs.jctc.6b00456. url: https://doi.org/10.1021/acs.jctc.6b00456.

[56] Toon Verstraelen et al. HORTON 2.1.1, 2017. url: http://theochem.github.
com/horton/,.

[57] Toon Verstraelen et al. “IOData: A python library for reading, writing, and
converting computational chemistry file formats and generating input files”.
In: Journal of Computational Chemistry 42.6 (2021), pp. 458–464. doi: https:
//doi.org/10.1002/jcc.26468. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/jcc.26468. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/jcc.26468.

[58] Alexander A. Voityuk, Anton J. Stasyuk, and Sergei F. Vyboishchikov. “A
Simple Model for Calculating Atomic Charges in Molecules”. In: Phys. Chem.
Chem. Phys. 20 (36 2018), pp. 23328–23337. doi: 10.1039/C8CP03764G. url:
http://dx.doi.org/10.1039/C8CP03764G.

[59] Junmei Wang, Wei Wang, Peter A Kollman, and David A Case. “Automatic
Atom Type and Bond Type Perception in Molecular Mechanical Calculations”.
In: J. Mol. Graph. Model. 25.2 (2006), pp. 247–260.

[60] P. K. Weiner, R. Langridge, J. M. Blaney, R. Schaefer, and P. A. Kollman.
“Electrostatic Potential Molecular Surfaces.” In: Proceedings of the National
Academy of Sciences 79.12 (June 1982), pp. 3754–3758. issn: 0027-8424, 1091-
6490. doi: 10.1073/pnas.79.12.3754.

[61] R. J. Woods and R. Chappelle. “Restrained Electrostatic Potential Atomic Par-
tial Charges for Condensed-Phase Simulations of Carbohydrates”. In: Theochem
527.1–3 (Aug. 2000), pp. 149–156. issn: 0166-1280. doi: 10.1016/S0166-
1280(00)00487-5.

[62] J. Michael Word, Simon C. Lovell, Jane S. Richardson, and David C. Richardson.
“Asparagine and Glutamine: using Hydrogen Atom Contacts in the Choice
of Side-Chain Amide Orientation; Edited by J. Thornton”. In: Journal of
Molecular Biology 285.4 (Jan. 1999), pp. 1735–1747. issn: 0022-2836. doi:
10.1006/jmbi.1998.2401.



50

Appendix

2.A Results on individual molecules

Table 2.A.1: Mean absolute error (MAE) and root mean square error (RMSE) on
electrostatic potential (ESP) and dipole error (|µDFT � µmethod|) of di↵erent atom
typed C-GeM models, EEM , Hirshfeld, iterative Hirshfeld, MBIS and AVH partial
charges with respect to !B97X-V / def2-qzvpp reference for a) 54 small protein
analogs b) 57 tripeptides.

Small Protein Analogs Tripeptides

MAE RMSE Dipole error MAE RMSE Dipole error

CGem 0.065 0.091 0.504 0.119 0.162 1.743
CGem CH 0.058 0.082 0.383 0.084 0.117 1.177
CGem CHN 0.053 0.077 0.362 0.070 0.101 0.892
AM1-BCC 0.053 0.073 0.397 0.096 0.125 1.914
EEM 0.094 0.125 0.890 0.185 0.236 3.788
Hir 0.106 0.143 0.751 0.176 0.224 2.623
HI 0.058 0.077 0.421 0.080 0.104 1.106
MBIS 0.040 0.058 0.158 0.053 0.073 1.028
AVH 0.084 0.113 0.433 0.100 0.136 1.032
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Table 2.A.2: Mean absolute error (MAE) and root mean square error (RMSE) on
electrostatic potential (ESP) and dipole error (|µDFT � µmethod|) of di↵erent atom
typed C-GeM models, EEM , Hirshfeld, iterative Hirshfeld, MBIS and AVH partial
charges with respect to !B97X-V / def2-qzvpp reference for a) 18 molecules in charge
training set b) 17 tripeptides in charge testing set.

Charged Train Charged Test

MAE RMSE Dipole error MAE RMSE Dipole error

CGem 0.099 0.140 1.228 0.107 0.151 1.474
CGem CH 0.105 0.137 1.930 0.097 0.132 1.558
CGem CHN 0.082 0.110 1.310 0.080 0.110 1.234
AM1-BCC 0.161 0.206 3.667 0.149 0.193 3.358
Hir 0.154 0.200 1.960 0.174 0.222 2.506
HI 0.060 0.082 0.878 0.071 0.094 1.099
MBIS 0.060 0.079 1.327 0.065 0.086 1.357
AVH 0.078 0.109 0.882 0.086 0.120 0.875
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Table 2.A.3: MAE on electrostatic potential (ESP) for CGem, CGem CH,
CGem CHN, AM1-BCC, EEM , Hirshfeld, iterative Hirshfeld, MBIS and AVH partial
charges with respect to !B97X-V / def2-qzvpp reference for individual molecules in
small protein analogs set.

molecule CGem CGem CH CGem CHN AM1-BCC EEM Hir HI MBIS AVH

24-dimethylphenol 0.056 0.042 0.045 0.044 0.112 0.108 0.051 0.038 0.097
3-methylbutan-2-one 0.058 0.034 0.035 0.035 0.083 0.085 0.027 0.035 0.061
3-methylindole 0.137 0.090 0.078 0.056 0.148 0.110 0.047 0.031 0.119
4-methylimidazole 0.194 0.122 0.042 0.049 0.246 0.142 0.052 0.039 0.105
benzene 0.028 0.010 0.010 0.015 0.014 0.098 0.041 0.016 0.123
chloromethane 0.037 0.043 0.033 0.038 0.258 0.102 0.091 0.040 0.054
cyclohexylamine 0.084 0.052 0.039 0.055 0.076 0.109 0.049 0.055 0.074
diethyl disulfide 0.034 0.029 0.033 0.057 0.044 0.123 0.135 0.041 0.081
diethyl sulfide 0.031 0.034 0.033 0.044 0.058 0.106 0.098 0.044 0.076
diethylamine 0.061 0.081 0.101 0.063 0.054 0.091 0.035 0.037 0.079
dimethyl disulfide 0.053 0.042 0.043 0.061 0.052 0.145 0.180 0.042 0.088
dimethyl ether 0.060 0.049 0.039 0.057 0.054 0.080 0.034 0.041 0.070
dimethyl sulfide 0.044 0.045 0.044 0.057 0.060 0.137 0.156 0.042 0.092
dimethylamine 0.070 0.087 0.121 0.082 0.063 0.109 0.053 0.050 0.098
ethanamide 0.050 0.069 0.060 0.067 0.138 0.128 0.035 0.025 0.072
ethane 0.021 0.013 0.012 0.029 0.050 0.030 0.040 0.043 0.034
ethanediol 0.059 0.053 0.042 0.062 0.093 0.134 0.039 0.045 0.074
ethanethiol 0.047 0.052 0.050 0.057 0.064 0.120 0.098 0.047 0.086
ethanol 0.029 0.062 0.049 0.052 0.072 0.121 0.041 0.037 0.068
ethyl methyl sulfide 0.036 0.039 0.038 0.050 0.069 0.119 0.124 0.042 0.083
ethylamine 0.095 0.065 0.059 0.054 0.076 0.127 0.046 0.045 0.089
imidazole 0.213 0.133 0.065 0.054 0.269 0.169 0.058 0.040 0.121
isobutane 0.030 0.026 0.021 0.038 0.028 0.035 0.024 0.033 0.048
methane 0.030 0.021 0.016 0.025 0.007 0.023 0.007 0.008 0.040
methanethiol 0.054 0.069 0.064 0.073 0.084 0.141 0.130 0.055 0.096
methanol 0.036 0.050 0.037 0.053 0.085 0.135 0.046 0.047 0.074
methylamine 0.104 0.062 0.049 0.065 0.088 0.146 0.056 0.053 0.105
n-butane 0.021 0.015 0.015 0.035 0.039 0.035 0.034 0.044 0.038
n-butylamine 0.081 0.054 0.047 0.051 0.077 0.108 0.051 0.054 0.079
N-methylacetamide 0.062 0.095 0.039 0.071 0.123 0.101 0.029 0.040 0.063
naphthalene 0.025 0.048 0.041 0.033 0.019 0.107 0.044 0.025 0.141
o-cresol 0.065 0.053 0.058 0.064 0.110 0.124 0.050 0.038 0.107
p-cresol 0.058 0.035 0.039 0.049 0.115 0.122 0.048 0.039 0.109
phenol 0.067 0.045 0.052 0.059 0.125 0.138 0.050 0.030 0.124
propan-2-ol 0.047 0.049 0.039 0.050 0.071 0.105 0.050 0.037 0.064
propane 0.024 0.019 0.018 0.033 0.039 0.031 0.035 0.039 0.037
propane-1-thiol 0.044 0.058 0.054 0.068 0.076 0.125 0.112 0.059 0.087
propanone 0.084 0.042 0.042 0.028 0.060 0.103 0.034 0.029 0.057
pyridine 0.083 0.040 0.035 0.049 0.116 0.127 0.054 0.041 0.129
pyrrole 0.155 0.153 0.141 0.030 0.178 0.118 0.049 0.027 0.112
pyrrolidine 0.063 0.072 0.099 0.078 0.065 0.089 0.052 0.053 0.078
thiophenol 0.037 0.049 0.046 0.043 0.047 0.136 0.074 0.033 0.138
toluene 0.023 0.020 0.019 0.035 0.022 0.082 0.042 0.029 0.106
...

...
...

...
...

...
...

...
...

...
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molecule CGem CGem CH CGem CHN AM1-BCC EEM Hir HI MBIS AVH

...
...

...
...

...
...

...
...

...
...

trimethylbenzene 0.020 0.030 0.026 0.042 0.024 0.061 0.030 0.039 0.084
Propionamide 0.045 0.072 0.066 0.065 0.177 0.114 0.033 0.044 0.066
1,2-Dimethylpyrrolidine 0.061 0.051 0.047 0.092 0.035 0.055 0.037 0.038 0.069
Acetic acid 0.093 0.093 0.104 0.029 0.112 0.101 0.071 0.030 0.059
Glycine 0.118 0.114 0.120 0.043 0.176 0.149 0.059 0.045 0.074
N-Methylpropionamide 0.071 0.093 0.044 0.071 0.153 0.091 0.034 0.052 0.056
Trimethylamine 0.058 0.074 0.059 0.118 0.035 0.068 0.051 0.038 0.083
Alanine 0.108 0.103 0.108 0.040 0.160 0.143 0.066 0.041 0.096
1-Methylpyrrolidine 0.062 0.052 0.047 0.111 0.038 0.056 0.038 0.041 0.069
Propionic acid 0.076 0.094 0.103 0.037 0.162 0.094 0.062 0.041 0.057
Methylguanidine 0.207 0.092 0.117 0.058 0.251 0.166 0.058 0.044 0.124
Avg 0.067 0.059 0.053 0.053 0.094 0.106 0.058 0.040 0.084

Table 2.A.4: MAE on electrostatic potential (ESP) for CGem, CGem CH,
CGem CHN, EEM , Hirshfeld, iterative Hirshfeld, MBIS and AVH partial charges
with respect to !B97X-V / def2-qzvpp reference for individual molecules in tripeptides
set.

molecule CGem CGem CH CGem CHN AM1-BCC EEM Hir HI MBIS AVH

MET-THR-LEU 0.104 0.092 0.077 0.067 0.132 0.151 0.126 0.042 0.095
ASN-PHE-GLY 0.109 0.071 0.072 0.107 0.228 0.207 0.075 0.068 0.113
ASN-THR-THR 0.117 0.069 0.069 0.144 0.237 0.194 0.080 0.068 0.092
ASN-PRO-ALA 0.112 0.061 0.084 0.073 0.233 0.177 0.083 0.053 0.096
GLN-PHE-THR 0.082 0.061 0.053 0.103 0.156 0.162 0.080 0.049 0.117
THR-PHE-THR 0.124 0.089 0.074 0.088 0.213 0.180 0.057 0.046 0.114
GLY-PRO-GLY 0.155 0.102 0.088 0.129 0.191 0.227 0.057 0.061 0.101
VAL-TYR-PRO 0.109 0.068 0.070 0.078 0.208 0.161 0.066 0.042 0.106
TRP-ALA-PRO 0.130 0.082 0.090 0.088 0.114 0.132 0.074 0.039 0.113
ALA-ASN-GLN 0.112 0.086 0.080 0.087 0.148 0.172 0.088 0.049 0.089
GLY-ALA-THR 0.138 0.096 0.072 0.067 0.211 0.203 0.084 0.059 0.091
MET-VAL-TYR 0.118 0.079 0.070 0.085 0.223 0.156 0.107 0.050 0.102
SER-HIS-HIS 0.180 0.117 0.062 0.100 0.205 0.184 0.066 0.051 0.102
PRO-ALA-LEU 0.106 0.097 0.081 0.093 0.155 0.171 0.093 0.058 0.079
ILE-ALA-ILE 0.083 0.078 0.050 0.089 0.153 0.172 0.067 0.045 0.085
ALA-GLN-GLN 0.104 0.089 0.081 0.193 0.241 0.248 0.097 0.063 0.109
GLY-VAL-LEU 0.128 0.097 0.070 0.086 0.159 0.159 0.084 0.052 0.078
LEU-ASN-MET 0.085 0.063 0.063 0.111 0.176 0.139 0.102 0.054 0.086
HIS-GLY-VAL 0.195 0.109 0.074 0.090 0.242 0.167 0.083 0.043 0.110
HIS-HIS-GLY 0.243 0.156 0.076 0.144 0.327 0.253 0.080 0.060 0.124
ILE-THR-ALA 0.117 0.063 0.052 0.064 0.232 0.149 0.079 0.044 0.081
GLY-SER-VAL 0.111 0.094 0.068 0.125 0.197 0.221 0.058 0.067 0.084
ALA-ILE-GLY 0.106 0.096 0.073 0.070 0.165 0.197 0.084 0.053 0.108
THR-PHE-ILE 0.086 0.060 0.048 0.099 0.121 0.150 0.086 0.054 0.110
...

...
...

...
...

...
...

...
...

...



Chapter 2 54

molecule CGem CGem CH CGem CHN AM1-BCC EEM Hir HI MBIS AVH

...
...

...
...

...
...

...
...

...
...

TRP-PHE-PRO 0.134 0.087 0.072 0.075 0.183 0.157 0.059 0.056 0.123
GLN-ASN-ILE 0.134 0.092 0.112 0.069 0.227 0.174 0.079 0.046 0.075
GLY-SER-MET 0.135 0.089 0.073 0.071 0.159 0.191 0.107 0.049 0.097
GLN-PHE-TYR 0.113 0.065 0.077 0.080 0.214 0.177 0.077 0.054 0.117
GLN-LEU-ILE 0.091 0.077 0.056 0.077 0.142 0.161 0.071 0.061 0.088
TRP-THR-VAL 0.128 0.077 0.057 0.096 0.129 0.144 0.076 0.051 0.099
LEU-SER-LEU 0.085 0.068 0.045 0.119 0.126 0.165 0.055 0.055 0.064
PHE-THR-ASN 0.119 0.068 0.058 0.157 0.189 0.201 0.079 0.066 0.118
LEU-SER-HIS 0.140 0.091 0.052 0.133 0.219 0.220 0.067 0.059 0.114
ILE-TRP-THR 0.131 0.085 0.062 0.099 0.185 0.152 0.066 0.056 0.095
ASN-TRP-ALA 0.123 0.087 0.081 0.106 0.202 0.194 0.087 0.052 0.128
LEU-ASN-TRP 0.109 0.073 0.075 0.096 0.197 0.163 0.084 0.058 0.108
VAL-VAL-ASN 0.117 0.073 0.064 0.122 0.195 0.176 0.092 0.054 0.080
ILE-TRP-THR 0.108 0.076 0.067 0.124 0.156 0.184 0.085 0.065 0.110
PRO-GLN-ILE 0.107 0.078 0.080 0.088 0.177 0.142 0.074 0.044 0.081
PRO-SER-MET 0.138 0.086 0.092 0.078 0.218 0.136 0.107 0.049 0.089
TRP-GLY-LEU 0.128 0.095 0.076 0.111 0.172 0.158 0.060 0.053 0.103
VAL-LEU-PRO 0.109 0.066 0.076 0.067 0.147 0.129 0.069 0.042 0.076
ALA-TYR-TRP 0.140 0.069 0.065 0.093 0.154 0.183 0.070 0.056 0.126
CYS-SER-VAL 0.131 0.082 0.072 0.086 0.137 0.173 0.104 0.056 0.113
GLY-THR-CYS 0.137 0.079 0.069 0.075 0.175 0.181 0.095 0.048 0.106
LEU-GLY-ALA 0.098 0.079 0.061 0.107 0.246 0.150 0.061 0.059 0.074
GLY-ILE-PRO 0.113 0.092 0.100 0.087 0.162 0.191 0.074 0.053 0.088
THR-LEU-ILE 0.103 0.062 0.046 0.092 0.118 0.125 0.066 0.040 0.076
HIS-GLY-ALA 0.167 0.144 0.081 0.078 0.186 0.166 0.078 0.046 0.099
THR-MET-ALA 0.098 0.070 0.062 0.078 0.130 0.169 0.100 0.052 0.091
THR-CYS-SER 0.131 0.087 0.074 0.085 0.210 0.183 0.092 0.041 0.096
ILE-SER-CYS 0.111 0.095 0.070 0.071 0.212 0.177 0.089 0.047 0.108
LEU-HIS-HIS 0.222 0.137 0.072 0.115 0.349 0.207 0.070 0.051 0.112
VAL-SER-PHE 0.108 0.061 0.051 0.072 0.178 0.157 0.061 0.040 0.114
PHE-TYR-ASN 0.092 0.057 0.044 0.084 0.146 0.195 0.077 0.061 0.125
ASN-GLN-SER 0.118 0.088 0.082 0.104 0.145 0.193 0.073 0.057 0.102
SER-CYS-THR 0.127 0.096 0.083 0.108 0.120 0.219 0.102 0.055 0.132
Avg 0.123 0.084 0.070 0.096 0.185 0.176 0.080 0.053 0.100
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Table 2.A.5: MAE on electrostatic potential (ESP) for CGem, CGem CH,
CGem CHN, Hirshfeld, iterative Hirshfeld, MBIS and AVH partial charges with
respect to !B97X-V / def2-qzvpp reference for individual molecules in charged train
set.

tripeptide CGem CGem CH CGem CHN AM1-BCC Hir HI MBIS AVH

Methylammonium +1 0.037 0.033 0.019 0.032 0.043 0.034 0.040 0.039
Carbamimidoyl-

propylazanium +1
0.129 0.093 0.180 0.048 0.125 0.046 0.048 0.086

Ethylammonium +1 0.031 0.049 0.037 0.036 0.038 0.036 0.047 0.046
Acetate -1 0.071 0.072 0.068 0.046 0.167 0.032 0.041 0.031
ILE-ARG-ASP 0.106 0.107 0.071 0.141 0.170 0.058 0.059 0.082
ILE-ASP-ARG 0.097 0.089 0.067 0.150 0.169 0.068 0.065 0.103
LYS-ALA-GLU 0.100 0.128 0.091 0.867 0.139 0.054 0.055 0.073
LYS-ALA-GLU 0.105 0.146 0.087 0.240 0.175 0.075 0.073 0.080
GLU-ILE-LYS 0.118 0.078 0.073 0.101 0.168 0.056 0.057 0.076
HIS-GLY-VAL 0.180 0.237 0.149 0.155 0.158 0.054 0.071 0.098
ARG-LYS-ILE 0.121 0.113 0.085 0.093 0.151 0.058 0.044 0.096
ASP-ARG-ASN 0.100 0.069 0.060 0.227 0.220 0.071 0.084 0.101
LEU-ASP-GLU 0.120 0.109 0.086 0.139 0.204 0.057 0.067 0.061
LYS-ASP-ALA 0.103 0.091 0.060 0.117 0.157 0.059 0.069 0.081
LYS-VAL-ALA 0.082 0.081 0.058 0.116 0.152 0.056 0.057 0.081
MET-LYS-ASN 0.102 0.077 0.073 0.138 0.162 0.120 0.067 0.087
MET-ARG-GLU 0.104 0.130 0.089 0.150 0.201 0.083 0.069 0.090
GLU-THR-ARG 0.139 0.117 0.102 0.106 0.176 0.065 0.058 0.094
AVG 0.102 0.101 0.081 0.161 0.154 0.060 0.060 0.078
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Table 2.A.6: MAE on electrostatic potential (ESP) for CGem, CGem CH,
CGem CHN, Hirshfeld, iterative Hirshfeld, MBIS and AVH partial charges with
respect to !B97X-V / def2-qzvpp reference for individual molecules in charged test
set.

tripeptide CGem CGem CH CGem CHN AM1-BCC Hir HI MBIS AVH

GLU-ASP-PHE 0.118 0.075 0.066 0.209 0.208 0.078 0.097 0.095
ARG-ALA-ALA 0.088 0.103 0.065 0.145 0.174 0.072 0.049 0.092
ARG-VAL-THR 0.102 0.087 0.060 0.131 0.160 0.065 0.061 0.089
SER-ILE-ARG 0.105 0.097 0.078 0.119 0.144 0.072 0.060 0.085
TRP-GLU-LYS 0.143 0.087 0.082 0.141 0.171 0.069 0.069 0.097
ASP-THR-ARG 0.131 0.099 0.087 0.102 0.197 0.068 0.055 0.097
ARG-HIS-LYS 0.144 0.100 0.078 0.197 0.167 0.063 0.063 0.099
THR-ASP-ALA 0.122 0.090 0.061 0.126 0.199 0.072 0.059 0.087
GLN-GLY-LYS 0.116 0.079 0.072 0.199 0.159 0.068 0.076 0.076
LYS-ASP-THR 0.109 0.115 0.099 0.152 0.165 0.057 0.065 0.073
ILE-GLU-ILE 0.111 0.073 0.057 0.088 0.155 0.064 0.056 0.059
PHE-LEU-GLU 0.099 0.093 0.059 0.210 0.201 0.075 0.068 0.095
ASP-VAL-ALA 0.123 0.076 0.077 0.094 0.160 0.098 0.077 0.079
GLN-GLU-ILE 0.101 0.083 0.056 0.221 0.208 0.069 0.072 0.095
ASN-GLN-ASP 0.123 0.104 0.124 0.156 0.190 0.099 0.068 0.091
PRO-VAL-LYS 0.123 0.075 0.099 0.114 0.118 0.062 0.055 0.071
LYS-GLU-GLY 0.111 0.102 0.078 0.120 0.183 0.058 0.058 0.080
AVG 0.116 0.090 0.076 0.149 0.174 0.071 0.065 0.086
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2.B Conformations of LEU TYR GLN tripeptide

Figure 2.B.1: Six conformations of LEU TYR GLN tripeptide

2.C APBS parameters

APBS computation uses the following set of parameters:
mg-auto, dime 353 353 353, cglen 52.4501 44.1626 52.7887, fglen 50.8530 44.1626

51.0522, cgcent mol 1, fgcent mol 1, mol 1, lpbe, bcfl sdh, pdie 1.0, sdie 1.0, srfm
mol, chgm spl2, srad 0.0, swin 0.30, temp 298.15
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Chapter 3

A benchmark dataset for Hydrogen
Combustion†

3.1 BACKGROUND & SUMMARY

The expectation behind training deep learning models to predict molecular energies
and atomic forces of molecules is the requirement of large data sets. However, very
recently it has become recognized that deep learning methods that are designed
with rotationally equivariant operators o↵er a significant reduction in data needed
for training relative to invariant ML models[2, 20, 19, 12], and often outcompete
even kernal methods that have traditionally been considered advantageous due to
their low data requirements[11]. However, the promise in regards equivariant deep
learning models must be further validated by construction of more challenging data
sets than encountered up until now. For example, the recent SN2 data set provides
reference energy and forces for more than 450,000 structures calculated using Density
Functional Theory (DFT), but ultimately is data on highly similar individual reactions
of methyl halides with one of four substituted halogens, F, Cl, Br, and I.[27]

Capturing the energy release in hydrogen combustion is a proposed energy solution
for zero CO2 emissions, and many of the elementary reactions of H2 combustion are
also present in other types of fuel generation.[5] Under realistic reaction conditions
of very high temperature and high pressure make it extremely di�cult to study
H2 combustion reactions experimentally. Because hydrogen combustion is di�cult
to study experimentally under these extremes[13], theoretical models must play an

†Reproduced with permission from: Guan, X.; Das, A.; Stein, C. J.; Heidar-Zadeh, F.; Bertels,
L.; Liu, M.; Haghighatlari, M.; Li, J.; Zhang, O.; Hao, H.; Leven, I.; Head-Gordon, M.; Head-Gordon,
T. A Benchmark Dataset for Hydrogen Combustion. Sci Data 2022, 9 (1), 215.
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active role in filling the breach, but fundamentally relies on an accurate potential
energy model of not only the elementary reactions[9] but the excursions away from
the reaction coordinate.

Hydrogen combustion, despite being the simplest combustion system, is nonethe-
less still quite chemically complicated because it can encounter one or more 19
reaction channels during the combustion event depending on the physical conditions
of high temperatures and pressures.[13] This compounds the need for high quality
data that is expensive to generate given the need for extensive sampling and the
presence of metastable points such as transition states. For non-reacting chemical
systems, conventional MD simulations are well-suited for generating a large number
of configurations, which are then used as input into single point quantum-chemical
energy and force calculations.[3, 23, 24] However, for reactive systems, conventional
force-field based MD simulations are not useful as they don’t allow breaking and
forming of chemical bonds. Recent work has attempted to address this deficiency
through graph-based methods that generate reference data for reactive systems,[18,
25] but they are also prone to produce large numbers of specious chemical states
and unrealistic intermediates such as highly unstable radicals. Therefore fully ab
initio sampling methods are a necessity for creation of the many molecular fragments
involved in combustion chemistry, including the presence of stable and unstable
intermediates, high energy transition states, and a variety of product molecules that
can be formed during the reaction that is dependent on the reactive channel.[13, 7,
22, 26, 30, 9].

Our goal here is to characterize the potential energy surface (PES) of hydrogen
combustion through the reaction channels proposed by Li et al.[14] using a systematic
approach in ab initio data generation that samples o↵ the intrinsic reaction coordinate
(IRC). This study provides a data set of ⇠290,000 potential energies and ⇠1,270,000
nuclear force vectors for structures that are sampled near and far from the IRC
for 19 hydrogen combustion sub-reactions, some of which are barrierless transitions,
others that are dominated by large activation barriers, and even reactions involving
changes in spin state.[14] This data set o↵ers a new ML benchmark set that allows
systematic investigation of data reduction when using emerging equivariant deep
learning model, as well as being of interest in its own right as a source of data for
machine learning of energy and forces that drive an MD engine for combustion under
extreme thermodynamic conditions.
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3.2 METHODS

We have used fully ab initio methods for sampling 19 reactive channels for hydrogen
combustion as summarized in Table 3.2.1. For each reaction we used the !B97X-V
DFT functional[16] with the cc-pVTZ basis set. All calculations were performed as
unrestricted open shell, using an ultrafine integration grid of 99 radial points and 590
angular points, with an SCF convergence of 10�8 using the GDM method[29]. All
potential energies for each configuration of the 19 reactions are reported as �E

�E = Etotal �
X

i

Eatom, (3.1)

using the atomic energies EH=-0.5004966690 a.u. and EO=-75.0637742413 a.u., and
with �E converted to units of kcal/mole. All calculations were performed using the
Q-Chem program.[21, 6]

We have organized the PES data into four categories that classify the reaction
mechanism involved in the elementary steps for each reactive channel: associa-
tion/dissociation reactions (channels 5-9 and 15), substitution reactions (channel 16),
oxygen transfer (channels 1, 11, and 12), and hydrogen transfer (channels 2-4, 10, 13,
14, 17-19). We have kept the same numbering scheme as Li and co-workers[14] in
these categories so that readers can refer back to any particular IRC of that work if
desired.

The PES for each reaction channel are visualized by means of two collective
variables of coordination numbers (CN) represented by

CN =
X

i

2.0

1 + exp(� ⇤ (ri � r0,i))
, (3.2)

where r0 is the equilibrium distance and � = 3.0 controls the sharpness of the function.
Reaction channels 5-7 involve only two atoms, and thus only a 1-D distance scan is
performed.

Finally, we developed a strategy for extensive sampling of the PES for the 19
reaction channels for hydrogen combustion as follows:

1. Transition States and IRCs. Approximate TS structures were found using the
freezing string method[4, 15], and refined by the partitioned-rational function
optimization eigenvector following method (P-RFO).[1] An IRC scan is then
generated, and vibrational frequency analysis was performed to confirm that
reactants and products have no imaginary frequencies and the TS has only
one imaginary frequency. As the IRC configurations connect the minimum
energy pathway, and therefore span a meaningful fraction of the configurational
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Table 3.2.1: Data Summary for the Potential Energy Surface of Hydrogen Combustion.
Tabulated are the number of structures generated for each hydrogen combustion
reaction channel using di↵erent methods: IRC, normal mode displacements, and MD
simulations at various temperatures. All 19 reaction channels are classified into four
mechanistic groups: association/dissociation, substitution, O-transfer and H-transfer.
For each configuration, energies and nuclear force vectors were computed and their
numbers are tabulated.
No. Reaction Atoms IRC MD simulations Normal mode Total energies Total forces
Association/Dissociation
5. H2 �! 2H 2 53 53 318
6. O2 �! 2O 2 71 71 426
7. OH �! O +H 2 71 71 426
8. H +OH �! H2O 3 137 10000 5754 15891 143019
9. H +O2 �! HO2 3 60 10000 2520 12580 113220
15. H2O2 �! 2OH 4 105 10000 8820 18925 227100
Substitution
16. H2O2 +H �! H2O +OH 5 81 10000 10206 20287 304305
O-transfer
1. H +O2 �! OH +O 3 58 10000 3248 13306 119754
11. HO2 +H �! 2OH 4 94 10000 7896 17990 215880
12. HO2 +O �! OH +O2 4 49 10000 4116 14165 169980
H-transfer
2. O +H2 �! OH +H 3 29 10000 1624 11653 104877
3. H2 +OH �! H2O +H 4 336 10000 30492 40828 489936
4. H2O +O �! 2OH 4 51 10000 4284 14335 172020
10. HO2 +H �! H2 +O2 4 58 10000 4872 14930 179160
13. HO2 +OH �! H2O +O2 5 51 10000 6426 16477 247155
14. 2HO2 �! H2O2 +O2 6 71 10000 11928 21999 395982
17. H2O2 +H �! HO2 +H2 5 58 10000 7308 17366 260490
18. H2O2 +O �! HO2 +OH 5 55 10000 6930 16985 254775
19. H2O2 +OH �! H2O +HO2 6 74 10000 12432 22506 405108
Total 290418 1267977

space of a given reaction, they serve as useful starting geometries for systematic
normal mode displacements and stochastic generation of structures using AIMD
at finite temperatures to explore the PES for each reaction channel in more
detail.

2. AIMD Simulations. We employed AIMD simulations to sample configurations
around the IRC structures using the TS as the initial configuration for each of the
reaction channels. The AIMD simulations were performed at four di↵erent high
temperatures by initializing the Maxwell-Boltzmann distribution of velocities
at temperatures of 500 K, 1000 K, 2000 K and 3000 K. Furthermore at each
temperature three di↵erent simulation timescales are performed using a 1.21 fs
(1.au.) time step: 10 independent (i.e. reinitialized velocities) long simulations
of 121 fs, 20 independent short trajectories of 60.5 fs, and finally 25 very short



Chapter 3 62

simulations of 24.2 fs. In summary, the AIMD calculations yielded a total of
10000 configurations along with their potential energies and nuclear forces for
each reaction channel (see Table 3.2.1).

3. Normal Mode Displacements. Systematic normal mode displacements along
the IRC is performed. Starting from each IRC structure, the frequencies were
calculated and all atoms were displaced along each normal mode (NM) with
a ±0.01, ±0.025, ±0.05, ±0.075, ±0.1, ±0.125, and ±0.15 increment. These
sampled structures that compress or expand the IRC structures help to diversify
the AIMD geometries for each reaction, yielding ⇠ 130,000 configurations as
summarized in Table 3.2.1. The IOData Python library was used for parsing
the Q-Chem output files in generating these geometries. [28]

3.3 TECHNICAL VALIDATION

Figure 1 provides a representative ab initio sampling of one of the hydrogen transfer
reactions, O+H2 �! OH+H, in which two collective coordinates reasonably capture
the potential energy surface of this reaction channel. Upon analyzing the AIMD
generated geometries and their energies, it is noticed that both the reactant and
product endpoint regions are well sampled (Figure 1(a)). However, near the transition
state or in regions of high slope on the potential energy surface, data points from
the AIMD simulations are more sparse. The addition of normal mode displacement
points greatly improves sampling the configuration space of the PES along the IRC
path (Figure 1(b)).

Figure 2 shows that the AIMD and NM calculations are complementary for
sampling di↵erent areas away from the IRC, particularly evident for reaction channel
1 involving oxygen transfer(Figure 2(a)), reaction 8 that probes the association reaction
mechanism(Figure 2(b)), and for reaction channel 16 pertaining to a substitution
mechanism(Figure 2(c)). In all cases the use of two collective coordinates is su�cient
to capture the IRC and its AIMD and NM extensions, borne out in the supplementary
information Figure S1-S4 that provides the potential energy surfaces generated for
the remaining reaction channels for these classes of hydrogen combustion reactions.

Figure 3.3.3 shows the nature of the alternative potential energy surfaces that
are represented by the changes in spin state from doublet to quartet for the oxygen
transfer reaction channel 12. Fig. 3.3.3(a) shows that the energy di↵erence between
the two spin states is very small near the reactant, less than 0.2 kcal/mol, but favors
the quartet state substantially around the product. Fig. 3.3.3(b) plots the IRC using
either the doublet or quartet spin state energies using the quartet spin state static
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Figure 3.3.1: Potential energy surface for the hydrogen transfer reaction 2 (O+H2 �!
OH +H). (a) showing IRC and AIMD sample data only and (b) including normal
mode data. CN1 represents the breaking of the H-H bond and CN2 represents the
formation of the O-H bond. All energies are reported with respect to the atomization
energies as given in Eq. (1) in units of kcal/mole. The red dots on the energy surface
are configurations with energies larger than 10 kcal/mol of the energy of the TS
structure. The points denoted with R, TS and P are corresponds to the reactant,
transition state and product, respectively.

structures, and similarly Figure 3.3.3(c) represents the two spin state energies using
the doublet energy configurations. Figure 3.3.3(d) shows the minimum energy of
the two spin states along a single generated IRC. These di↵erences indicate that
while the geometric e↵ects may be small, the electronic energy di↵erences between
spin states are significant. In the supplementary information we also provides the
potential energy surfaces generated for reaction channel 6 which also undergoes a
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Figure 3.3.2: Representative potential energy surfaces for oxygen transfer, association,
and substitution reactions along two reaction coordinates CN1 and CN2. (a) oxygen
transfer reaction 1 (H +O2 �! OH +O), (b) association reaction 8 (H +OH �!
H2O), and (c) substitution reaction 16 (H2O2 + H �! H2O + OH). Each CN
represents the formation or breaking of respective bond involved in the reaction
process mentioned in the axes.

spin state change.
In summary, we generated high quality DFT data for hydrogen combustion reaction

channels using range separated hybrid meta-GGA functional !B97X-V with the cc-
pVTZ basis set. This level of theory is considered highly accurate for thermochemistry
and reactive barriers[17, 8], and the IRC profiles compared against the gold standard
CCSD(T)/cc-pVTZ methods determined very small errors with the DFT level of
theory.[5] This work moves beyond benchmarks such as the IRC for H2 combustion
by extensive sampling o↵ the reaction coordinate using ab initio MD simulation
and normal mode analysis for each of the 19 reaction channels. Furthermore, we
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Figure 3.3.3: The changes in the PES for reaction channel 12 involving changes
in spin state. (a) the spin cross over between the two closely spaced doublet and
quartet spin state energy levels around the reactant region with widening di↵erences
progressing to product. (b) the IRC path defined by the doublet energy but geometries
from the quartet (green), and from the doublet energy and geometries (red). (c) the
IRC path defined by the quartet energy but geometries from the doublet (green) and
from the quartet energies and geometries (red). (d) Resultant PES obtained reaction
channel 12 (HO2 +O �! OH +O2) by choosing the minimum energy between the
two spin states. Each CN represents the formation or breaking of respective bond
involved in the reaction process mentioned in the axes.

also consider multiple spin states of the species formed in the hydrogen combustion
process. This high quality data is now available to benchmark deep learning models
for chemical reactivity, and as a model of the PES for generating kinetic models of
H2 combustion, especially at high pressure.
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3.4 DATA RECORDS

All data can be found in the figshare repository.[10] For each reaction channel
the IRC, AIMD and NM generated configurations and corresponding energies and
atomic forces are provided in .npz file format; for reaction channel 5, 6 and 7 only
IRC generated data are provided as discussed above. Each .npz file contains six keys
including, ”R” (atomic Cartesian coordinates), ”Z” (atomic numbers), ”N” (number
of atoms), ”�E” (reference potential energy), ”F” (atomic force vectors), and ”RXN”
(reaction number). All the atomic position are in Å and energy and force vectors are
provided in kcal/mol and kcal/mol/Å, respectively. Reaction channels such as 6 and
12 involve nuclear spin changes during the reaction, and therefore IRC calculations
are performed for both spin states, with the data sorted to either (1) retain energies
and forces consistent with one spin state, or (2) retaining the lowest energy spin state
along the IRC for each channel. Furthermore, for reactions 6 and 12 two sets of data
are provided namely 06a/06b and 12a/12b corresponding to two di↵erent spin states
involved in the reaction process.

3.5 USAGE NOTES

The data set contains 19 folders corresponding to each of the reaction channels.
Each reaction channel has three .npz files storing the geometries and corresponding
potential energies energies and atomic force vectors obtained from IRC, AIMD and NM
simulations separately. Each .npz file contains the ”R” (atomic Cartesian coordinates),
”Z” (atomic numbers), ”N” (number of atoms), ”�E” (reference potential energy),
”F” (atomic forces), and ”RXN” (reaction number) keys and the corresponding values
for each configuration.

3.6 DATA AND CODE AVAILABILITY

All the data and python scripts used to generate coordination number based
PES surface to analyze the data for each reaction channel is provided at https:
//doi.org/10.34974/0jr1-pb24.
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Figure 3.A.1: Additional association/dissociation reaction channels. (a)1D pathway
for reaction channel 5 (H2 �! H + H),(b) reaction channel 7 (OH �! O + H),
(c) for reaction channel 6 (O2 �! 2O) along O-O bond for two spin states triplet
and singlet. (d) reaction channel 9 (H +O2 �! HO2) and (e) reaction channel 15
(H2O2 �! 2OH) are described well along the two reaction coordinates CN1 and
CN2, defined as the coordination numbers for the formation or breaking of relevant
bond as per the axis label (bottom). All the red dots on the PES are the configuration
having 10 kcal/mol larger energy than the TS structure.



Chapter 3 73

Figure 3.A.2: Additional oxygen transfer reaction channel. PES for reaction channel
11, HO2+H �! 2OH, along the two reaction coordinates CN1 and CN2 representing
the formation or breaking of respective bond labeled in the axes. All the red dots
on the PES are the configuration having 10 kcal/mol larger energy than the TS
structure.



Chapter 3 74

Figure 3.A.3: Additional hydrogen transfer reaction channels. PES for (a) reaction
channel 3 ( H2 + OH �! H2O + H) ,(b)reaction channel 4 (H2O + O �! 2OH)
,(c) reaction channel 10 (HO2 + H �! H2 + O2) and (d) reaction channel 13
(HO2 + OH �! H2O + O2) along the two reaction coordinates CN1 and CN2
defined by the formation or breaking of bonds described in the axes. All the red
dots on the PES are the configuration having 10 kcal/mol larger energy than the TS
structure.
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Figure 3.A.4: Additional hydrogen transfer reaction channels (continued). PES for (a)
reaction channel 14 (2HO2 �! H2O2 +O2) ,(b) reaction channel 17 (H2O2 +H �!
HO2 +H2) ,(c) reaction channel 18 (H2O2 + O �! HO2 + OH) and (d) reaction
channel 19 (H2O2 +OH �! H2O +HO2) along the two reaction coordinates CN1
and CN2 defined by the formation or breaking of bonds described in the axes. All
the red dots on the PES are the configuration having 10 kcal/mol larger energy than
the TS structure.
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Chapter 4

Using machine learning to go
beyond potential energy surface
benchmarking for chemical
reactivity†

†Reproduced with permission from: Guan, X.; Heindel, J. P.; Ko, T.; Yang, C.; Head-Gordon,
T. Using Machine Learning to Go beyond Potential Energy Surface Benchmarking for Chemical
Reactivity. Nat Comput Sci 2023, 3 (11), 965–974.
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4.1 INTRODUCTION

Machine learning (ML) methods are emerging as an alternative to ab initio molecular
dynamics (AIMD) and physical-based potential energy functions (or force fields), once
trained on high quality ab initio energies and forces associated with a given confor-
mation of nuclei. Starting with the generalized neural network representation of high
dimensional potential energy surfaces (PESs) proposed by Behler and Parrinello[5],
their work inspired additional state-of-the-art approaches for chemical systems[43, 44,
46, 8, 10, 37]. A key development more recently are ML models that are equivariant to
translations and rotations through their architectures, showing testing superiority in
accuracy benchmarks with greatly reduced quantities of reference data for training.[47,
12, 1, 33, 4, 16, 38, 49, 20] In what follows we use NewtonNet [20], a physics inspired
message passing equivariant neural network, as the underlying deep learning model for
energy and force prediction for the surprisingly di�cult case of hydrogen combustion.
We have recently developed the HCombustion dataset [19] of energies and forces
generated using the !B97X-V [30] density functional theory (DFT) functional with
the cc-pVTZ basis set. In the case of hydrogen combustion there are at least 19
reaction channels, multiple stable and unstable intermediates that are dependent on
a given reactive channel, and complications that can arise due to creation of radical
species and alternative spin states during the combustion process[6, 29].

Regardless of the architecture, the reliability of the ML model still heavily relies on
the diversity of the training data, especially for chemically reactive systems that must
visit high energy states when undergoing chemical transformations. ML models by
their nature interpolate between known training data, but its extrapolation capability
is limited, thus predictions can be unreliable when molecular configurations are
dissimilar to those in the training set, and are error-prone when applied to MD
simulations, especially in the case for gas phase chemical reactivity in which energy
configurations are highly diverse. Thus, in order to achieve meaningful chemically
reactive simulations with ML potentials, the training sets should cover a wide range
of structural space with variable energy stability.[26] However, it is challenging to
formulate a priori a dataset that is balanced and diverse for a given reactive system.
Traditionally, active learning (AL) is a powerful strategy for reducing the amount
of labeled data required to develop an ML potential, and selecting informative
configurations for labeling.[41, 39, 44, 36, 2, 52, 22, 51, 26] Typically AL uses a
query by committee strategy[39, 44], in which variance among a set of identical
architectures but stochastically initiated ML models select the most informative data
points for labeling, reducing the data generation e↵ort and improving the accuracy of
the ML model. However AL informed ML is still not a panacea without having more
information.
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In this study, we propose an active learning workflow for chemical reactivity that
utilizes a di↵erent information source - namely the sampling e�ciencies that are
inherent in statistical mechanics methods for rare events. In particular, we have
formulated an AL workflow that expands on the original HCombustion dataset [19] by
formulating collective variables (CVs) to first systematically sample a lower manifold
of all the intrinsic reaction coordinates (IRCs) of the 19 reactive channels, and then
to stochastically sample with metadynamics to take advantage of its known better
ergodicity.[27, 3] The idea of using metadynamics to sample physically relevant but
high energy transition states was also explored by Yang and co-workers[51], which
aimed to select a good selection of CVs to quickly learn the PES in physically relevant
regions for reactivity. While the smaller subspace metadynamics fills the free energy
wells to more rapidly find transition states, we require more such that the ML model
learns about configurations which are not relevant or whose energies are simply
inaccessible. In this work we show that in early to mid-stages of active learning using
metadynamics it is mostly irrelevant whether the CVs are ”good”. That is, even bad
CVs can help systematically sample in directions orthogonal to the IRC and hence
determine regions to avoid. After this AL exploration stage, we can more rapidly
build labelled data in the physically relevant regions near the IRC.

This AL-metadynamics strategy allows us to reach a final hydrogen combustion
ML model that is more diverse and balanced, and more importantly, an energy surface
that is relatively smooth. We then utilize the variance of the ML committee models
to report back on additional but much fewer PES rough spots, for which we substitute
a direct call to an ab initio force to complete a local in time molecular dynamics
update, until the ML models recover accurate forces to continue the trajectory, all
without further and expensive retraining. We illustrate the completeness of the ML
hydrogen combustion model with a metadynamics application using well formulated
CVs inspired by di↵usion maps[25] to discover the entropic contribution of free energy
transition states for hydrogen combustion reaction channels.

4.2 RESULTS

NewtonNet Initial Training†

†Partly reproduced with permission from: Haghighatlari, M.; Li, J.; Guan, X.; Zhang, O.;
Das, A.; J. Stein, C.; Heidar-Zadeh, F.; Liu, M.; Head-Gordon, M.; Bertels, L.; Hao, H.; Leven,
I.; Head-Gordon, T. NewtonNet: A Newtonian Message Passing Network for Deep Learning of
Interatomic Potentials and Forces. Digital Discovery 2022, 1 (3), 333–343.
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We train NewtonNet on the complete reaction network by sampling training,
validation, and test sets randomly formulated from the total Hydrogen Combustion
data in Chapter 3. The validation and test sizes are fixed to 1000 data per reaction,
and the size of training data varies in a range of 100 to 5000 data points per reaction.
The resulting model accuracy on the hold-out test set for both energy and forces is
reported in Figure 4.2.1. It is seen that NewtonNet can outperform the best invariant
SchNet model[37] with slightly more than one order of magnitude smaller training
data (500 vs 5000 samples per reaction), and is capable of achieving the chemical
accuracy goal with as little as 500 data points per reaction.

Figure 4.2.1: The learning curve of NewtonNet for the hydrogen combustion data,
with MAEs of energy and forces averaged over the 16 independent reactions and with
respect to the number of training samples used for each reaction. The dashed lines
show the performance of SchNet when trained on all 5k data per sub-reaction.
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In conventional deep learning approaches for reactive chemistry, abrupt changes
in the force magnitudes can give rise to multimodal distributions of data, which
can introduce covariate shift in the training of the models. Here we posit that a
better representation of atomic environments using the latent force directions can
increase the amount of attention that one atom gives to its immediate neighbors. As a
result the performance of NewtonNet in prediction of forces for hydrogen combustion
reactive systems, compared to other single small molecule dataset[42, 45, 8, 9, 11] we
tested, benefit most from the directional information provided by atoms that break
or form new bonds.

Active Learning Workflow

NewtonNet was trained on the HCombustion dataset[19](which we refer to as the
original dataset) comprised of AIMD sampling around the IRC at 0K, near the
transition state, as well as systematic normal modes with respect to the IRC to
produce PES curvature data, all specific to 19 elementary reactions (Supplementary
Table 1).[6, 29] Using ⇠5k data per reaction, the trained NewtonNet model reaches
very good accuracy for energies (mean absolute error (MAE) of 0.14 kcal/mol) and
forces (MAE of 0.33 kcal/mol/Å).

However, when the ML model is applied to molecular simulation, we find it to be
highly error-prone, requiring for example new data corresponding to the atomization
process to understand the inherent stability of molecules. Furthermore, while the
model is trained on relatively stable geometries as well as metastable transition states,
it lacks the knowledge of any highly unstable state, and thus predicts configurations
with the wrong energy ordering as well as unphysical geometries that were predicted
by the ML model to be energetically stable. In Supplementary Figure 1, we show
representative structures with geometries close to dissociation, with a DFT energy of
-129.16 kcal/mol, but the ML model predicts -324.05 kcal/mol, or the appearance
of the hydronium ion with an artificially low energy of -295.56 kcal/mol, while its
actual DFT energy is -189.98 kcal/mol. As pointed out by previous active learning
studies[32], the MD trajectory can get trapped in these unphysical states or even
become unstable numerically for normal step sizes in time. Figure 4.2.2(a) shows
a trajectory that started from the transition state of reaction(rxn) 16, proceeding
through a series of unphysical states, and eventually ending in configurations where
all the bonds are broken.

Hence an MD simulation driven with the ML model will quickly generate trajec-
tories that go to unphysical regions because the QM data will always be small-scale
and insu�cient for generating a complete PES. It also emphasizes how unintuitive
data acquisition is in regards creating a robust ML model of the PES, especially for
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chemical reactivity, which requires negative design principles to add unphysically
high energy species to the training of the ML model. To make negative design data
acquisition systematic and tractable, we formulate an IRC dilation dataset within a
lower manifold of collective coordinates that encapsulates the IRC for each reaction
channel. Using the example of Rxn16 whose AIMD and normal mode data are
shown in Figure 4.2.2b, each geometry along the IRC curve is proportionally scaled
with multiple ratios of CVs to generate new high energy species as shown in Figure
4.2.2c. This addition to the dataset helps the models to learn bond dissociation and
contraction, as well as spanning a more diverse chemical space than the original
dataset.
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Figure 4.2.2: Observations of the missing data in the machine-learned model for
hydrogen combustion and the addition of dilation data. (a) A trajectory for Rxn16
driven with the original ML model visualized on two reaction coordinates CV1:
CN1 (O2-H3) and CV2: CN2(O1-O2). (b,c) Rxn16 DFT potential energy surfaces
visualized on two reaction coordinates CV1: CN1 (H4-H5) and CV2: CN2(O2-H5).
(b) the original HCombustion dataset with AIMD and normal mode data (c) the
dialation dataset. We use the coordination number(CN) between atom i and j
CN(ij) = 2

1+exp(3(rij�req))
to denote the CV, where rij is the actual distance between

atom i and j and req is equilibrium distance between i and j, usually selected as the
equilibrium bond length unless otherwise specified. Energy of each point is color
coded in (b) and (c), with red color meaning points with energy higher than the
Boltzmann weighting threshold.

Although the dilation data is helpful, the PES for hydrogen combustion remains
incomplete. We thus introduce an active learning workflow in which we trained
four models with 1000 structures from the HCombustion dataset and 200 structures
from the dilation dataset for each reaction using the same architecture but di↵erent
initial parameters. These four models serve as a starting point of an iterative
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process, outlined in Figure 4.2.3, to systematically improve the ML model through
metadynamics to more e�ciently sample previously unseen and unstable structures
through an external biasing potential that forces the system to explore regions of
high (free) energy. While in the usual context poor selection of the low-dimensional
descriptors a↵ects the rate at which transitions are enhanced, in this particular
context we are using metadynamics as a tool to fill in the holes in the ML PES in
which the goodness of the CVs is less important than the ability to sample diverse
conformations of high energy variance.



Chapter 4 84

Figure 4.2.3: Schematic illustration of active learning workflow using query by com-
mittee and metadynamics. The four NewtonNet models serve as a starting point of
an iterative process, where each round of active learning consists of the following
steps: (i) Perform several short metadynamic simulations to explore the configuration
space in a lower dimension. (ii) When the four models disagree outside standard
deviation, collect a representative subset of structures to be included in the training
set through downsampling. (iii) Perform DFT calculation of energies and atomic
forces. (iv) Retrain the ensemble of ML models with the updated training set. N in
the figure refer to the number of frames above the standard deviation (std) threshold.
To allow for a fast turn around time, we use relatively small epoch size and large
learning rate in the training through the active learning rounds. The details of each
of the steps are described in the method section 4.2-4.6. The CVs used during the
active learning phase is given in Supplementary Table 2.

To illustrate the active learning approach, we consider Rxn18 as an example in
which the potential energy surface is projected onto CV1: CN(O2-O5) and CV2:
CN(O5-H4), with results shown in Figure 4.2.4. The ML model performance was
tracked by analyzing both the original data points derived from AIMD and normal
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modes calculations, and the newly added data points accumulated during the AL
procedure. Because we used longer metadynamics simulations for sampling as the
active learning rounds proceeded and as errors decreased, we show this by dividing the
active learning data into four batches: the original data derived from normal mode and
AIMD near the transition state of the IRC (Figure 4.2.4(a,b)), data sampled with 2ps
metadynamics between active learning round 1-20 (Figure 4.2.4(c,d)), data sampled
with 5ps metadynamics between active learning round 21-33 (Figure 4.2.4(e,f)),
data sampled with 10ps metadynamics between active learning round 34-48 (Figure
4.2.4(g,h)). Furthermore, these points were Boltzmann weighted in training to make
sure the models have some information of higher energy states while focusing most
on the regions with physically relevant energies. The decrease in model prediction
error on both energy and forces for the reactive pathway data confirms the validity of
this approach as shown in Figure4.2.4(b).
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Figure 4.2.4: Potential energy surface in collective coordinates (left) and change in
energy and force mean absolute error (MAE) as active learning round proceeds (right)
for Reaction 18. The potential energy surface projected onto CV1: CN(O2-H4) and
CV2: CN(O5-H4).
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Figure 4.2.4: (continued) Energy of each point is color coded; red points have
energy higher than the Boltzmann weighting threshold. Shaded regions show one
standard deviation above and below the mean.(a,b) Original data test set of rxn18.
The IRC dilation data are not shown in (a) because of their high energy nature. (c,d)
Data added between AL rounds 1-20, sampled with 2ps metadynamics. (e,f) Data
added between AL rounds 21-33, sampled with 5ps metadynamics. (g,h) Data added
between AL rounds 34-48, sampled with 10ps metadynamics. The total number of
data points generated during AL for training is given in Supplementary Table 3.

As shown on the left side of Figure 4.2.4, active learning spans more of the reaction
coordinate space; the lack of points in the upper right quadrant in early stages of
active learning indicates that the dilation dataset was su�cient (Figure 4.2.4c) as
the model learned to avoid the regions with high energy due to nuclear repulsion.
The model also became more accurate near the reaction pathway basins reflected by
reduced sampling in this region in later rounds of the active learning workflow(Figure
4.2.4(e,g)). The right side of Figure 4.2.4 shows that there is a very substantial
improvement in model error when predicting on the newly added data. Using the
original ML model these new sampled points from active learning created large energy
and force errors as high as ⇠8 kcal/mol and ⇠12 kcal/mol/Å respectively, which
of course would create an untenable MD trajectory if those geometries were visited
during an actual application. But after ⇠50 rounds of active learning, the model
prediction on new geometries are hugely improved, with 0.97 kcal/mol/Å error in
forces on the data points collected between round 21-33, and 1.24 kcal/mol/Å force
error on the data points collected between round 34-48.

The somewhat larger errors are still excellent given the much larger energy range
required to generate physically meaningful trajectories, which derives from the more
substantial improvements of the new data points added with the active learning
workflow. It also reflects another important strategy in AL, which is that high energy
configurations must be learned but they do not have to be as accurate, and can be
manifested in the loss function through Boltzmann weighting (see Methods section
4.3). This is supported by the fact that the original data points are still predicted
with relatively small errors in energy and forces with the active learning model (⇠0.4
kcal/mol energy MAE and ⇠0.8 kcal/mol/Å force MAE).
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Committer Analysis and the Free Energy Surface

To investigate the outcome of the active learning to create an ML potential for
hydrogen combustion, we performed committer analysis on the elementary reaction
channels for hydrogen combustion, starting the trajectories from the IRC transition
state of the reaction with temperature set to 300 K. Table 4.2.1 presents the committer
results for both the original model without active learning and the final model after
all active learning rounds.

Table 4.2.1: Committer statistics at 500K with (a) the original model (b) the final
model after active learning with IRC dilation and active dynamics. The committer
ratio to reactant and product for each reaction are reported. Diatomic reactions
(reactions 05, 06, 07 and 08) and barrierless reaction 15 were not considered. Reaction
12 has two spin states doublet and quartet in the original dataset, and only the
transition state with lower energy (12b quartet) was considered because the model
was trained with energy and forces from the lower energy spin state.

Original Model Final Model
rxn reactant(%) product(%) reactant(%) product(%)
01 12 88 25 75
02 0 100 44 56
03 48 49 50 50
04 100 0 44 56
09 86 14 62 38
10 58 41 55 45
11 91 9 55 45
12 28 72 45 55
13 55 44 65 35
14 7 93 40 60
16 0 100 48 52
17 96 4 49 51
18 22 78 43 57
19 95 5 52 48

The final AL model gives quite di↵erent committer statistics than the original
model, in which the AL model shows a more even chance to commit to reactant and
product for a majority of the reactions. Hence although the AIMD and normal modes
sampling provided data representation in the tube around the IRC, it is insu�cient
such that the commitor analysis is qualitatively di↵erent in a majority of the reactions.
But once the model is more complete using our AL strategy, there is a shift in the
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forward/backward committer distribution in most of the reaction channels in which
the 0 K IRC is still a good estimator, meaning the transition state is mostly enthalpic.
Even so, for reactions 01, 09, 14, and 18 simulated at finite temperature, the commitor
analysis provides evidence that there is either a non-negligible entropy component to
the free energy transition state, the CVs are wrong, and/or the ML model is incorrect.

With a more complete ML PES obtained through the active learning procedure,
we ran long metadynamics trajectories and reconstructed their free energy surface to
determine the transition state free energy for these reactions. Unlike in the exploration
phase where any CV can help discover new structures, in the real application to
reconstruct the free energy surface, a good choice of CVs is important. Due to the
di↵usive nature of gas phase reactions, the distance between two fragments can be
arbitrary and lead to convergence problem if we directly use distance as the collective
variable. Here we use CVs inspired by our recent study of di↵usion maps in order to
assess CVs suitable for each reaction as evaluated through their correlations with the
di↵usion coordinates.[25] We found that the coordination number (CN) is often a
good CV, and restraints on certain bond distance and bond angles are also necessary
to keep the metadynamics trajectory inside the relevant chemical space defined by
the CVs.

We also exploit the strength of having an ensemble of ML models in which the
standard deviation between the models measures the reliability in the prediction of
ML forces on a given configuration. We therefore devise a hybrid mode of running a
simulation in which we we use ML forces when the standard deviation among models
is relatively small, and with ab initio forces at the same level of theory used for ML
training when the model predictions are not as reliable (Figure 4.2.5). This hybrid
mode can be (1) much less expensive than fully retraining the ML models with the new
DFT data, and (2) can be more accurate and maintain stability when uncertainties
arise, and involves a tradeo↵ between how complete is the AL process vs. the relative
cost of the ML and DFT forces. Because retraining the model varies between 10
hours to 2 days, in late stages of AL the tradeo↵ favors the ⇠12 seconds to generate
the ab initio forces instead. As we support further below, a vast majority of the MD
trajectory is advanced through ML forces that only cost ⇠0.11 seconds/step and thus
the promised e�ciencies of ML are still realized. While there is still a possibility that
the query-by-committee models agree but give a wrong prediction, in Supplementary
Figure 2 we see that the error is in acceptable range when models agree, while the
points of disagreement recognized by the procedure are indeed error-prone. Another
way to mitigate this concern would be to increase the number of ML models, so that
there’s smaller chance for models to agree accidentally on unseen data.
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Figure 4.2.5: Schematic illustration of the new workflow for rebuilding the free energy
surface. The metadynamics proceeds with a model that utilizes query by committee
ML trajectories to signal when forces have degraded. In lieu of retraining, the AIMD
forces are directly substituted to complete the MD time step. Plumed calculator
updates the force according to existing bias to keep the system away from the kinetic
traps in the potential energy surface and out into the unexplored parts of the energy
landscape.

Figure 4.2.6 shows the reconstructed free energy surfaces using the hybrid model
for reaction channels where the reactant-to-product ratios are uneven. For reaction
09, when we use CN(O1-H3) and CN(O2-H3) as the collective variables we find that
the IRC transition state leans towards the reactant side on the free energy surface,
consistent with the 62:38 committer ratio, and thus shifts quite significantly on the
free energy surface toward the product well (Figure 4.2.6a). For Rxn 18 shown in
Figure 4.2.6b we can clearly see that the IRC TS is leaning towards the product
side, which explains the 43:57 reactant-to-product ratio in the committer analysis.
However a lower transition pathway also exists on the free energy surface that resides
closer to the reactant. The IRC transition state of both Rxn14 and Rxn01 lean very
heavily toward the product side (Figure 4.2.6c, d), as is consistent with the more
skewed committor reactant-product ratios (Table 1). Accordingly, the free energy
transition state shifts dramatically in both reactions, with saddle point regions that
exhibit very large free energy stabilization of 8-12 kcal/mole relative to the IRC
transition state arising from entropic e↵ects.
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Figure 4.2.6: Free energy surface reconstructed from metadynamics using the hybrid
model for hydrogen combustion. (a) Reaction 09, (b) Reaction 18, (c) Reaction 14, (d)
Reaction 01, (e) Reaction 17, (f) Reaction 10. Reactant, transition state and product
geometry are shown above the free energy surface, with oxygen in red and hydrogen
in silver and atomic index labeled. The original IRC pathway is labeled with a red
dot for the transition state and the free energy transition state is labeled as a purple
star. The CVs used for the free energy are given in Supplementary Table 2.
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As a control we tested reactions 17 and 10 in which the reactant-to-product
ratio in the committer analysis is close to 50-50 (Figure 4.2.6e, f). For Rxn 17 the
IRC and free energy transition state are consistent, indicating that the coordination
numbers tend to be good collective variables and that the entropic factors governing
these reactions are small. For Rxn 10 we found CN(O2-O3) and CN(O2-H4) to
be good collective variables, where CN(O2-O3) monitors the reaction progress and
CN(O2-H4) helps separates the transition state from the stable wells. Consistent with
the 55:45 reactant-to-product committer ratio the IRC transition state leans towards
the reactant side, but on the free surface two possible transition pathways are evident
(Figure 4.2.6f). One pathway is very similar to the IRC but with the transition
state moving closer to the product well, while the other pathway demarcated by
a smaller CN(O2-H4) value involves breaking the O2-H3 and forming the H3-H4
molecule in an asynchronous manner. It is important to consider whether the hybrid
model is generating sensible free energy transition states. Therefore we have taken
the putative transition states for reactions 01, 09, 10, and 14 generated by the hybrid
model (shown in Figure 5), and ran committor analysis using DFT as reported in
Supplementary Table 4. It is evident that the AIMD confirms the predictions of the
hybrid model.

Through this process, we find that the number of unreliable region of PES are
relatively infrequent. For Rxn 18 the full DFT force was called 1364 times over a
total of 1 million steps, which means 99.86% of the trajectory is driven by the ML
model, and only 0.14% of steps calculated through the ab initio update. For Rxn10
the DFT force was called only 136 times, which means that 99.99% of the total MD
steps were generated by the ML forces. The small chance to go through ab initio
updates reflects that the learned PES after our negative design and metadynamics
active learning procedures is largely complete. But it is important to emphasize that
without the ab initio calls the MD trajectories would become corrupted beyond repair
and this hybrid ensemble approach allows for highly e�cient simulation with a time
scale similar to the pure ML run but with more stability, o↵ering a preventative and
alternative to occasional model hallucinations.

4.3 DISCUSSIONS

ML methods have traditionally aimed to train a faithful surrogate model of ab
initio energy and forces for di↵erent configurational arrangements of a system in
order to explore reaction chemistry more e�ciently than AIMD.[43, 31, 20] For real
applications it is likely that the interpolative nature of ML will always su↵er from
data insu�ciencies that will limit its total replacement of physics based methods.
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While AL approaches can mitigate data insu�ciency by sampling and adding new
data, it is still hard to converge to a complete ML-PES as the cost of retraining is far
from trivial. Ultimately to address real world application studies using ML potentials,
any a priori formulated reference dataset, even with active learning approaches, will
be too small-scale for true PES completeness.

One alternative approach could be delta learning that learns the di↵erence between
a lower level theory and a higher level theory[34, 7]. This type of simulation would
require calling both the lower theory method and the ML correction at each time
step, and can also avoid the detrimental e↵ect from ML-PES rough spots. However,
the quality and cost of this type of simulation would highly depend on the underlying
lower level theory method, and switching between the two surface can a↵ect the
energy conservation in the trajectory.

Alternatively we have shown that any large variance among ML models provides
a nice strategy to invoke a hybrid model, which smooths over rough spots on the
ML PES with calls to the original ab initio data source. We envision that further
improvements to the hybrid ML-physics model would be warranted. First is that the
energy drift rate in the microcanonical(NVE) ensemble for a single ML PES is quite
acceptable at 7e-5 kcal/mol/step, but averaging across the 4 member committee,
which is common practice in this area currently, gives a relatively poor drift rate of
3e-3 kcal/mol/step. We believe dynamics and transport properties would improve
if we increased the number of ML committee members N, with statistical errors
decreasing by N1/2, and made feasible by trivial parallelization. Although we showed
that the hybrid ML-AIMD model allowed us to realize hoped for ML computational
e�ciencies by reaching two orders of magnitude improvement over AIMD, we note
that we could have optimized this tradeo↵ by stopping AL training sooner with an
increase in calls to the ab initio source from 1% to 10% without impacting e�ciency.

4.4 METHODS

NewtonNet Model†

Given a molecular graph G with atomic features ai 2 Rnf (where nf is the number
of features) and interatomic attributes eij 2 Rb, a message passing layer can be
defined as[15]:

†Partly reproduced with permission from: Haghighatlari, M.; Li, J.; Guan, X.; Zhang, O.;
Das, A.; J. Stein, C.; Heidar-Zadeh, F.; Liu, M.; Head-Gordon, M.; Bertels, L.; Hao, H.; Leven,
I.; Head-Gordon, T. NewtonNet: A Newtonian Message Passing Network for Deep Learning of
Interatomic Potentials and Forces. Digital Discovery 2022, 1 (3), 333–343.
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mij = Ml

�
ali, a

l
j, eij

�
(4.1)

mi =
X

j2N (i)

mij (4.2)

at+1
i = Ul

�
ali,mi

�
(4.3)

where Ml is the message function and Ul is called the update function, and the
sub-/super-script l accounts for the number of times the layer operates iteratively.
A combination of explicit di↵erentiable functions and operators with trainable pa-
rameters are the common choice for Ml and Ul. The core idea behind the iterative
message passing of the atomic environments is to update the feature array ati that
represent each atom in its immediate environment.

NewtonNet considers a molecular graph defined by atomic numbers Zi 2 R1 and
relative position vectors # »rij =

#»rj � #»ri 2 R3, as input and applying operations that
are inspired by Newton’s equations of motion to create features arrays ai 2 Rnf that
represent each atom in its immediate environment with edges defined by force and
displacement vectors, f and dr, respectively, (Fig. 1a). NewtonNet takes advantage
of multiple layers of message passing which are rotationally equivariant, described in
detail below, in which each layer consists of multiple modules that include operators
to construct force and displacement feature vectors, which are contracted to the
feature arrays via the energy calculator module (Fig. 1b). We emphasize the critical
role of projecting equivariant feature vectors to invariant arrays since one goal of the
model is to predict potential energies, which are invariant to the rotations of atomic
configurations. We also provide the proof of equivariance of the NewtonNet model in
the Supplementary Information as well.

Atomic Feature Aggregator. We initialize the atomic features based on
trainable embedding of atomic numbers Zi, i.e., a0i = g(Zi) and g : R1 ! Rnf . We
next use the edge function e : R3 ! Rnb to represent the interatomic distances using
radial Bessel functions as introduced by Klicpera et al.[24]

e( # »rij) =

r
2

rc

sin(n⇡rc k
# »rijk)

k # »rijk
(4.4)

where rc is the cuto↵ radius and k # »rijk returns the interatomic distance between
any atom i and j. We follow Schutt et al.[38] in using a self-interaction linear layer
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Figure 4.4.1: (a) Newton’s laws for the force and displacement calculations for atom i
with respect to its neighbors. (b) Schematic view of the NewtonNet message passing
layer. At each layer four separate components are updated: atomic feature arrays ai,
latent force vectors F , and force and displacement feature vectors (f and dr).

�rbf : Rnb ! Rnf to combine the output of radial basis functions with each other.
This operation is followed by using an envelop function to implement a continuous
radial cuto↵ around each atom. For this purpose, we use the polynomial function
ecut introduced by Klicpera et al.[24] with the choice of degree of polynomial p = 7.
Thus, the edge operation �e : R3 ! Rnf is defined as a trainable transformation of
relative atom position vectors in the cuto↵ radius rc

�e(
# »rij) = �rbf (e(

# »rij)) ecut(rc, k # »rijk) (4.5)

The output of �e is rotationally invariant as it only depends on the interatomic
distances. Following the notation of neural message passing, we define a message
function to collect the neighboring information and update atomic features. Here,
we tend to pass a symmetric message between any pair of atoms, i.e., the message
that is passed between atom i and atom j are the same in both directions. Thus, we
introduce our symmetric message passing mij by element-wise product between all
feature arrays involved in any two-body interaction,

mij = �a(a
l
i) �a(a

l
j) �e(

# »rij) (4.6)
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where �a : Rnf ! Rnf indicates a trainable and di↵erentiable network with a nonlinear
activation function SiLU [13] after the first layer. Note that the �a is the same
function applied to all atoms. Thus, due to the weight sharing and multiplication of
output features of both heads of the two-body interaction, the mij remain symmetric
at each layer of message passing. To complete the feature array aggregator, we use the
equation 4.2 to simply sum all messages received by central atom i from its neighbors
N (i). Finally, we update the atomic features at each layer using the sum of received
messages,

al+1
i = ali +

X

j2N (i)

mij. (4.7)

Force Calculator. So far, we have followed a standard message passing that
is invariant to the rotation. We begin to take advantage of directional information
starting from the force calculator module. The core idea behind this module is to
construct latent force vectors using the Newton’s third law. The third law states
that the force that atom i exerts on atom j is equal and in opposite direction
of the force that atom j exerts on atom i. This is the reason that we intended
to introduce a symmetric message passing operator. Thus, we can estimate the
symmetric force magnitude as a function of mij, i.e., k

#»
F ijk = �F (mij). The product

of the force magnitude by unit distance vectors r̂ij =
#»r ij/k #»r ijk gives us antisymmetric

interatomic forces that obey the Newton’s third law (note that #»r ij = � #»r ji),

#»
F l

ij = �F (mij) r̂ij (4.8)

where �F : Rnf ! R1 is a di↵erentiable learned function, and
#»
F l

ij 2 R3. The total

force at each layer
#»
F l

i on atom i is the sum of all the forces from the neighboring
atoms j in the atomic environment,

#»
F l

i =
X

j2N (i)

#»
F l

ij, (4.9)

and updating the latent force vectors at each layer,

F l+1
i = F l

i +
#»
F l

i. (4.10)

We ultimately use the latent force vector from the last layer L, FL
i 2 R3 in the

loss function to ensure this latent space truly mimics the underlying physical rules.
To complete the force calculator module, we borrow the idea of continuous filter

from Schut et al.[37] to decompose and scale latent force vectors along each dimension
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using another learned function �f : Rnf ! Rnf . This way we can featurize the vector
field to avoid too much of abstraction in the structural information that they carry
with themselves,

�fi =
X

j2N (i)

�f (mij)
#»
F l

ij. (4.11)

As a result, the constructed latent interatomic forces are decomposed by rotationally
invariant features along each dimmension, i.e., �fi 2 R3⇥nf . We call this type of
representation feature vectors. Following the message passing strategy, we update
the force feature vectors with �fi after each layer, while they are initialized with
zero values, f 0

i = 0,

f l+1
i = f l

i +�fi. (4.12)

Momentum Calculator. This is the step that we try to estimate a measure
of atomic displacement due to the forces that are exerted on them. We accumulate
their dispalcements at each layer without updating the position of each atom. The
main idea in this module is that the displacement must be along the updated force
features in the previous step. Inspired by Newton’s second law, we approximate the
displacement factor using a learned function �r : Rnf ! Rnf that acts on the current
state of each atom presented by its atomic features ali,

�ri = �r(a
l+1
i )f l+1

i . (4.13)

We finally update the displacement feature vectors by �ri and a weighted sum of all
the atomic displacements from the previous layer. The weights are estimated based
on a trainable function of messages (�

0
r : Rnf ! Rnf) between atoms,

drl+1
i =

X

j2N (i)

�
0

r (mij)dr
l
i + �ri. (4.14)

The weight component in this step works like attention mechanism to concentrate on
the two-body interactions that cause maximum movement in the atoms. Since forces
at l = 0 are zero, the displacements are also initialized with zero values, i.e., dr0

i = 0.
Energy Calculator. The last module contracts the directional information to

the rotationally invariant atomic features. Since we developed the previous steps
based on the Newton’s equations of motion, one immediate idea is to approximate the
potential energy change for each atom using f l

i and �rli, resembling f l
i ⇡ ��U/�rl

i in
the higher dimensional space (Rnf). Thus, we find energy change for each atom by
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�U i = ��u(a
l+1
i )

⌦
f l+1
i · drl+1

i

↵
, (4.15)

where �U i 2 Rnf and �u : Rnf ! Rnf is a di↵erentiable learned function that operates
on the atomic features and predicts the energy coe�cient for each atom. The dot
product of two feature vectors contracts the features along each dimension to a single
feature array. We finally update the atomic features once again using the contracted
directional information presented as atomic potential energy change,

al+1
i = al+1

i + �U i. (4.16)

This approach is both physically and mathematically consistent with the rotational
equivariance operations and the goals of our model development. Physically, the
energy change is the meaningful addition to the atomic feature arrays as they are used
to predict the atomic energies eventually. Mathematically, the dot product of two
feature vectors contracts the rotationally equivariant features to invariant features
similar to euclidean distance that we used in the atomic feature aggregator module.
Note that none of the force, displacement or energy modules are directly mapped
to the final energy and force predictions. These are intermediate steps that update
atomic features iteratively beyond the immediate neighborhood of each atom.

Dilation Data Preparation

To address the problem that the initial Dataset from Ref. [19] is missing high
energy states, we prepared additional data by proportionally scaling each geometric
coordinate in the IRC with multiple ratios (0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4 , 1.6,
1.8, 2.0, 2.4, 2.8, 3.2). The energy and forces of these new geometries were obtained
with QChem[40] 5.2 using range separated hybrid meta-GGA functional !B97X-V
[30] with the cc-pVTZ basis set.

Active Learning: Query by Committee

Here we exploit the query by committee active learning method to find a label with
the most informative data points through this iterative process:

1. Perform short metadynamic simulations to explore the configuration space in a
lower dimension.
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2. When the four models disagree outside standard deviation, collect a representa-
tive subset of structures to be included in the training set through downsampling.

3. Perform DFT calculation of energies and atomic forces to label the new data.

4. Retrain the ensemble of ML models with the updated training set.

The details of each of the steps are described in the following subsections.

Training of the NN PES

The NewtonNet model was used to train the NN potential in this work. Details of
this method can be found in Ref. [20]. Four NewtonNet models, initialized with
di↵erent weights, were trained for 2000 epochs with 1000 data points per reaction
from the original dataset with an additional 200 data points from dilation (Section
4.1). The cuto↵ radius was set to 5.0 Å. The initial learning rate was set to 0.001
and with 0.7 learning rate decay.

We train the model using small batches of data with batch size M . The loss
function penalizes the model for predicted energy values Em, force components Fmi,
and the direction of latent force vectors from last message passing layer FL

i . These
three terms of the loss function L are formulated as:

L =
�E

M

MX

m

wm

⇣
eEm � Em

⌘2

+
�F

M

MX

m

wm

3Nm

NmX

i

��� eFmi � Fmi

���
2

+
�D

M ⇥Nm

MX

m

wm

NmX

i

 
1� FL

mi · Fmi��FL
mi

�� kFmik

!

where Nm is the total number of atoms. The prefactor of the energy error �E is
set to 1, the prefactor of force error �F is set to 20, and the prefactor �D for latent
force direction is set to 1. We also use the following Boltzmann weighting factor wm,
defined as

wm =

(
1 if Em <= Ethresh

exp( (�(Em�Ethresh)
kBT )) if Em > Ethresh,

to bias the training towards data points within a relevant energy scale. Ethresh is
a per-atom quantity that puts less weighting on all data points with energy higher
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than 16.744 kcal/mol/atom, which is 10 kcal/mol/atom higher than the highest per
atom energy among all reaction channels of the IRCs. To completely converge the
ML model, we added one final training step with all previously added data, using
a larger epoch size (5000 steps), and a more patient learning rate decay to give the
final model that we later use for determining predictions on the free energy surface.
Subsequent ML models are trained with exactly the same protocol but with additional
data sampled from short metadynamics simulations (next Section).

Metadynamics

New structures are sampled through short metadynamics trajectories for 6 reaction
channels: rxn09, rxn10, rxn13, rxn16, rxn17 and rxn18. For each step in the
metadynamics simulation, the atomic forces are evaluated by four NN PES models
simultaneously. Outliers among the 4 predictions are removed if the absolute di↵erence
between the outlier in question and the closest number is larger than the 95%
confidence limit value of the Dixon Q’s test. Then the mean of model predicted forces
is modified by plumed [48] to allow for enhanced sampling. In this work, all enhanced
sampling simulations are performed with the well-tempered metadynamics, in which
a Gaussian centered at the visited point is periodically added to the potential. The
simulation is driven through the atomic simulation environment(ASE)[28] with a
specifically tailored calculator that provide energy and forces for a given structure
through the above protocol. The simulation is conducted at 300K with increasing
length as we obtain more active learning rounds: 2ps between active learning round
1-20, 5ps round 21-33 and 10ps between round 34-48.

During the simulation, standard deviation on atomic forces over an ensemble of NN
potentials is monitored. Whenever the maximum over the atoms exceeds a predefined
threshold (2 kcal/mol/Å), the configuration is selected for further downsampling.

Clustering and Down Selection

Each molecule is first represented as a Coulomb matrix[35] that includes the nuclear
charges (Zi and Zj) of atom i and j along with their Cartesian coordinates (Ri and
Rj).

Cij =

(
0.5Z2.4

i , i = j
ZiZj

|Ri�Rj |
, i 6= j

(4.17)

To reduce the dimension of the dataset while retaining the majority of structural
information, the Coulomb matrix was transformed into the eigen-spectrum by solving
the eigenvalue problem Cv = �v subject to the constraint �i � �i+1. The Mini Batch
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KMeans clustering algorithm was then applied to categorize the sub-datasets into
smaller clusters based on the eigen-spectrum. The value of K (the number of clusters)
is chosen automatically with a scaled inertia approach [21]. The scaled inertia is
formulated as

Scaled Inertia =
I(K)

I(K = 1)
+ ↵K (4.18)

where the inertia(I) is the sum of squared distance of samples to their closest cluster
center:

I(K) =
NX

i=1

(xi � Ck)
2 (4.19)

where N is the number of samples and Ck is the centroid of a cluster. ↵ is a manually
tuned factor that gives penalty to the number of clusters, here we chose ↵ = 0.0002.
We chose the K value that gives the minimum scaled inertia among all K¡300 to do
the mini batch K-means clustering on all molecules from a given reaction channel.
Afterward, we randomly picked a structure from each cluster, whose energy and forces
will be calculated and then be included into the new training set. The final data set
had 48,582 data points sampled in the AL procedure.

DFT Single Point Force Calculations

The structures that pass the clustering and downselection process are gathered for
labeling and retraining. They are labeled via DFT force calculations using the
!B97X-V functional[30] with the cc-pVTZ basis set as generated from the Q-Chem
5.2 software package.[40, 14] All calculations were performed as unrestricted open
shell, using an ultrafine integration grid of 99 radial points and 590 angular points,
with an SCF convergence of 10�8 using the Gometric Direct Minimization method[50]
All potential energies for each configuration of the 19 reactions are reported as �E

�E = Etotal �
X

i

Eatom, (4.20)

using the atomic energies EH=-0.5004966690 a.u. and EO=-75.0637742413 a.u.,
and with �E converted to units of kcal/mole. Some of the structures are tricky to
deal with due to the di↵usive nature of a gas phase simulation. Therefore, for all
structures with atomic oxygen that is separated from the rest of the structure more
than 2 Å, we introduced and additional run with FRAGMO initial guess for SCF
calculation. [23] We compared the final energy obtained from a calculation with
fragmo initial guess and the one with the usual superposition of atomic densities(SAD)
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initial guess, and take whichever one with lower energy to give the final energy and
forces for labeling the data.

Reconstructing the Free Energy Surface with Metadynamics

The free energy surfaces were calculated from longer metadynamic simulations. The
Langevin thermostat was used to maintain temperature at 300K, with a friction
coe�cient of 0.002 a.u. In the metadynamics simulations, the Gaussians adopted
have an initial height of 5 kJ/mol and width of 0.05 for the CVs. A Gaussian was
deposited every 100 step with a bias factor equal to 10. The simulations were 200
ps long with step size of 0.2 fs. The free energy were calculated using the sum hills
utility in Plumed[48] and its surface plotted with python matplotlib.

4.5 DATA AVAILABILITY

Coordinates of geometries, energy and forces for hydrogen combustion original
dataset[19] is available at https://doi.org/10.6084/m9.figshare.19601689. IRC diala-
tion data and active learning generated data[18] used in the training are available
at:
https://doi.org/10.6084/m9.figshare.23290115.v1. Source data for Figures 1, 3, and 5
is available with this manuscript.

4.6 CODE AVAILABILITY

The full workflow code[17] can be found in https://github.com/THGLab/H2Combustion AL.
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Appendix

4.A Proof of Equivariance and Invariance

We prove that our model is rotationally equivariant on the atomic positions
Ri 2 R3 and atomic numbers Zi for a rotation matrix T 2 R3⇥3. In the equation 1,
the euclidean distance is invariant to the rotation, as it can be shown that

kTrijk2 =
kTRj � TRik2 =

(Rj �Ri)
> T>T (Rj �Ri) =

(Rj �Ri)
> I (Rj �Ri) =

kRj �Rik2 =
krijk2 ,

(4.21)

which means that the euclidean distance is indi↵erent to the rotation of the
positions as it is quite well-known for this feature. Consequently, feature arrays mij,
ai, and all the linear or non-linear functions acting on them will result in invariant
outputs. The only assumptions for this proof is that a linear combination of vectors
or their product with invariant features will remain rotationally equivariant. Base
on this assumption we claim that equation 5 to 11 will remain equivariant to the
rotations. For instance, the same rotation matrix T propagates to equation 5 such
that,

�F (Tmij)T r̂ij = �F (mij)T r̂ij = T �F (mij) r̂ij = T
#»
F l

ij. (4.22)

The last operator, equation 12, will remain invariant to the rotations due to the
use of dot product. The proof for the invariant atomic energy changes is that,
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(4.23)

This is how we contract equivariant features to invariant arrays. The addition
of these arrays to atomic features preserves the invariance for the final prediction of
atomic contributions to the total potential energy.

4.B Supplementary Figures

Figure 4.B.1: Two representative structures that the original ML model predicts with
large error. Structures are shown as ball-and-stick with oxygen in red and hydrogen
in silver. Energy predictions from the original ML model and DFT reference are
provided to show that the original ML model predicts substantially lower energy
values.
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Figure 4.B.2: Spot checking the hybrid mode model for Rxn18 for energies and forces.
On the left are ML points with standard deviations under 10 kcal/mol in energy or
10 kcal/mol/Åfor forces selected from the trajectory. We can see that the ML model
is in good agreement with the DFT reference. On the right are ML model standard
deviations that are larger than 10 kcal/mol/(Å) and requiring DFT replacement.
We see that poor predictions can be high energy states that are predicted to be low
energy, and vice versa. Using the hybrid model, it is necessary to consider standard
deviations regardless of their origin to flag high ML error, and to replace forces by
directly calling the DFT calculation.

4.C Supplementary Tables



Chapter 4 113

No. Reaction Atoms DoF DoFint

Association/Dissociation
5. H2 �! 2H 2 6 1
6. O2 �! 2O 2 6 1
7. OH �! O+H 2 6 1
8. H+OH �! H2O 3 9 3
9. H+O2 �! HO2 3 9 3
15. H2O2 �! 2OH 4 12 6
Substitution
16. H2O2+H �! H2O+OH 5 15 9
O-transfer
1. OH+O �! H+O2 3 9 3
11. HO2+H �! 2OH 4 12 6
12. HO2+O �! OH+O2 4 12 6
H-transfer
2. O+H2 �! OH+H 3 9 3
3. H2+OH �! H2O+H 4 12 6
4. H2O �! 2OH 4 12 6
10. HO2+H �! H2+O2 4 12 6
13. HO2+OH �! H2O+O2 5 12 9
14. 2HO2 �! H2O2+O2 6 18 12
17. H2O2+H �! HO2+H2 5 15 9
18. H2O2+O �! HO2+OH 5 15 9
19. H2O2+OH �! H2O+HO2 6 18 12

Table 4.C.1: The 19 reactions contained in the hydrogen combustion benchmark
dataset. The number of atoms involved in each reaction, the total number of degrees
of freedom (DoF) in Cartesian coordinates, and total number of degrees of freedom
in ICs ( DoFint.)
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rxn Old CV1 Old CV2 Final CV1 Final CV2
09 CN(O1-H3) Angle(O2-O1-H3) CN(O1-H3) CN(O2-H3)
10 CN(O2-H3) CN(H3-H4) CN(O2-H3) CN(O2-H4)
13 CN(O1-H3) CN(O5-H3) CN(O1-O5) CN(O5-H3)
16 CN(O2-H3) CN(O1-O2) CN(O3-H5) CN(O2-H5)
17 CN(O2-H4) CN(H4-H5) CN(H4-H5) CN(O2-H5)
18 CN(O2-H4) CN(O5-H4) CN(O2-O5) CN(O5-H4)

Table 4.C.2: Metadynamics collective variables used in the active learning and free
energy reconstruction. As stated in the main text of the paper, in the sampling stage
the method is not very sensitive to CV selection. Thus, we have used some di↵erent
set of CVs throughout the active learning process and later for free energies. Here we
list the CVs we have used in the sampling stage of the active learning. Old CVs are
at the start of active learning and final CVs are for the later rounds of active learning
as well as free energy surface recontruction.

rxn n data added
09 6686
10 6777
13 8175
16 8234
17 8230
18 8480

Table 4.C.3: Total number of data points added in active learning for each reaction.
Throughout the 50 active learning cycles, a total of 46,182 data points each with
DFT energy and forces are added into the dataset that trained the final model.
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rxn Reactant (%) product(%)
01 44 56
09 53 47

10(TS1) 49 51
10(TS2) 50 50

14 44 56

Table 4.C.4: AIMD Committer Analysis on identified Free Energy Transition State
from the hybrid model at 500K. We further validated the free energy transition states
we identified using the hybrid model by running committer analysis with AIMD. All of
these gives a close to 50-50 committer statistics for reactant and product, suggesting
the ML predicted free energy transition states are accurate.




