
UCLA
UCLA Previously Published Works

Title
Projecting the number of new HIV infections to formulate the "Getting to Zero" strategy in 
Illinois, USA

Permalink
https://escholarship.org/uc/item/4dx9f18s

Journal
Mathematical Biosciences and Engineering, 18(4)

ISSN
1547-1063

Authors
Khanna, Aditya Subhash
Edali, Mert
Ozik, Jonathan
et al.

Publication Date
2021

DOI
10.3934/mbe.2021196

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dx9f18s
https://escholarship.org/uc/item/4dx9f18s#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Projecting the number of new HIV infections to formulate the 
“Getting to Zero” strategy in Illinois, USA

Aditya Subhash Khanna1,2,*, Mert Edali3,4,5, Jonathan Ozik6, Nicholson Collier6, Anna 
Hotton3,4, Abigail Skwara3,4, Babak Mahdavi Ardestani3,4, Russell Brewer3,4, Kayo 
Fujimoto7, Nina Harawa8,9, John A. Schneider3,4

1Center for Alcohol and Addiction Studies, Brown University, Providence RI USA

2Department of Behavioral and Social Sciences, Brown University School of Public Health, 
Providence RI USA

3Chicago Center for HIV Elimination, The University of Chicago, Chicago, IL, USA

4Department of Medicine, The University of Chicago, Chicago, IL, USA

5Department of Industrial Engineering, Yildiz Technical University, Besiktas, Istanbul 34349, 
Turkey

6Decision and Infrastructure Sciences Division, Argonne National Laboratory, Lemont, IL, USA

7Center for Health Promotion and Prevention Research, The University of Texas Health Science 
Center at Houston (UTHealth), Houston, TX, USA

8Department of Psychiatry and Human Behavior, Charles R. Drew University, Los Angeles, CA, 
USA

9Department of Epidemiology, University of California, Los Angeles, CA, USA

Abstract

Objectives: Getting to Zero (GTZ) initiatives focus on expanding use of antiretroviral treatment 

(ART) and pre-exposure prophylaxis (PrEP) to eliminate new HIV infections. Computational 

models help inform policies for implementation of ART and PrEP continuums. Such models, 

however, vary in their design, and may yield inconsistent predictions. Using multiple approaches 

can help assess the consistency in results obtained from varied modeling frameworks, and can 

inform optimal implementation strategies.

Methods: A study using three different modeling approaches is conducted. Two approaches use 

statistical time series analysis techniques that incorporate temporal HIV incidence data. A third 

approach uses stochastic stimulation, conducted using an agent-based network model (ABNM). 

All three approaches are used to project HIV incidence among a key population, young Black 

MSM (YBMSM), over the course of the GTZ implementation period (2016–2030).
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Results: All three approaches suggest that simultaneously increasing PrEP and ART uptake is 

likely to be more effective than increasing only one, but increasing ART and PrEP by 20% points 

may not eliminate new HIV infections among YBMSM. The results further suggest that a 20% 

increase in ART is likely to be more effective than a 20% increase in PrEP. All three methods 

consistently project that increasing ART and PrEP by 30% simultaneously can help reach GTZ 

goals.

Conclusions: Increasing PrEP and ART uptake by about 30% might be necessary to accomplish 

GTZ goals. Such scale-up may require addressing psychosocial and structural barriers to 

engagement in HIV and PrEP care continuums. ABNMs and other flexible modeling approaches 

can be extended to examine specific interventions that address these barriers and may provide 

important data to guide the successful intervention implementation.

Keywords

HIV infections; pre-exposure prophylaxis; computer simulation; sexual and gender minorities; 
preventive medicine

1. Introduction

Two seminal HIV prevention policy guidelines were released in 2010: the UNAIDS strategic 

plan [1] and the United States National HIV/AIDS Strategy (NHAS) [2]. These guidelines 

precipitated the development of “Getting to Zero” (GTZ) and related HIV elimination 

initiatives in the United States (US). Following these guidelines, initiatives that focus on 

HIV elimination within local jurisdictions have been proposed [3]. These plans focus on 

achieving expanded antiretroviral treatment (ART) and pre-exposure prophylaxis (PrEP) 

uptake within defined periods. As more ambitious goals are being set to eliminate new HIV 

infections, the need for improvement at multiple stages of the HIV prevention continuum 

has been increasingly recognized [4,5]. It is also understood that HIV epidemics in different 

countries are composed of “microepidemics”, driven by disproportionately large numbers of 

transmissions occurring within some subpopulations [6]. Indeed, data show lower levels of 

success in the improvement of the ART and PrEP continuums among younger Black gay, 

bisexual and other MSM (YBMSM) in the US compared with younger white MSM [7,8]. 

YBMSM have experienced relatively stable incidence rates, even as overall HIV incidence 

in the United States has declined [9].

Computational models provide tools to predict the trajectory of localized HIV epidemics, 

assess the potential effects of interventions, and inform policies for improved 

implementation of continuums of ART and PrEP care [10,11]. Several computational 

models demonstrating the potential impact of PrEP, ART and other interventions to promote 

HIV elimination efforts have been published [12–16]. These models, however, vary in their 

design, formulation, and input data, and provide predictions that may not always agree 

[17,18]. Understanding the underlying assumptions of various prediction strategies is 

important for the interpretation and contextualization of the conflicting findings.

Applying two or more methodological approaches can help compare the impact of model 

assumptions on model outputs [19–21]. For instance, one can assess the extent to which 
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results from varied approaches are consistent with each other [22] or use data from a variety 

of sources to examine the range of projected efficacies of prevention mechanisms [23,24]. 

Studies that compare multiple modeling approaches have been useful in informing HIV 

prevention policies in Sub Saharan Africa [25,26], but more such studies should be used to 

guide GTZ planning in the US.

This paper aims to compare predictions from three different modeling approaches that 

consider ART and PrEP scale-up among YBMSM in Illinois, a population experiencing an 

ongoing HIV microepidemic. Two of these approaches are derived from statistical time 

series techniques and project the number of new HIV infections given recent trends in 

incidence. A third approach uses stochastic simulations generated from an agent-based 

network model (ABNM), developed previously, that explicitly simulates person-to-person 

HIV transmission within sexual networks that were parameterized using empirical data [27]. 

Results from all three approaches are assessed to determine if a “functional zero” HIV 

incidence is achieved, defined as fewer than 200 new infections annually [28]. Multi-model 

comparison approaches such as this may offer a powerful tool for implementation scientists 

interested in rigorously examining the efficacy of interventions before they are implemented.

2. Methods

Three approaches are used to project the number of new infections over the 2016–2030 GTZ 

implementation period [29]. The two statistical approaches use aggregated incidence data 

obtained through public health surveillance (further information below). These methods are 

less computationally intensive compared to most dynamic simulation methods used in HIV 

intervention planning. The third model type described here is an ABNM, described in detail 

previously [27], that incorporates more of the real-world complexities affecting HIV 

transmission rates, particularly parameters that describe behavioral, sexual network, 

demographic, biological, and treatment-related processes.

All three approaches are used to project HIV incidence among YBMSM over the course of 

the Illinois GTZ implementation period under the following intervention scenarios: (i) PrEP 

uptake increased by 20 and 30 percentage points (with no change in ART uptake from the 

control levels); (ii) ART uptake scaled up by 20 and 30 percentage points (with no change in 

PrEP uptake from the control levels); (iii) both PrEP and ART scaled up by 20 percentage 

points each and 30 percentage points each. The increased levels of ART and PrEP use were 

aligned with the recommended increase in ART and PrEP coverage by the GTZ committee 

[29]. In addition to the intervention scenarios listed above, a “control” setting assuming 

baseline uptake levels for PrEP and ART was implemented over the duration of the GTZ 

implementation. For all interventions, the final outcome was the number of new HIV 

infections in the last year of GTZ implementation.

2.1. Data sources for model inputs

The two statistical approaches used the annual incidences of HIV diagnoses for YBMSM 

(18–34 years) obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a 

database maintained by the Illinois Department of Public Health [30]. Baseline PrEP and 

ART uptake levels were estimated from a population-based cohort study of YBMSM using 
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data collected between June 2013 and July 2016 [31,32]. Input parameters for the ABNM 

were selected from several different sources which included systematically sampled data 

representative of YBMSM. Projected numbers of new infections for each year of the GTZ 

implementation period as per the three interventions considered here were computed using 

scaling factors, as described in 2.2.1 below. Derivations for the model equations are detailed 

in the Appendix.

2.2. Statistical methods

2.2.1. Loess—The Loess technique is a robust local regression technique [33] which 

optimizes a weighted function that accounts for the closeness of two points in a dataset. The 

assigned weight is larger if the two points are close to each other and smaller if the points 

are farther apart. This procedure allows for models to be fit to clusters of data that are close 

to each other, and specification of a global function that fits all the data is not necessary [33–

35]. The flexibility that Loess affords in analyzing trend data has led to its use in a number 

of public health studies, including the incidence of melanoma [36] and celiac disease [37], 

as well as in projecting the impact of an HPV vaccination program [38]. Besides its 

flexibility, Loess is also capable of providing residual standard error, allowing the analyst to 

quantify the uncertainty of predicted values by using the estimated variance of the prediction 

at that point.

In the control scenario (where background ART and PrEP does not change), the number of 

new infections can be projected using the slope parameter which is estimated using existing 

incidence data. To measure the effect of the various interventions this slope parameter is 

adjusted by a scaling factor, derived in the Appendix, that accounts for the annual change in 

ART and PrEP scale-up.

2.2.2. Bonacci-Holtgrave (B&H)—Recent trends in HIV incidence have been used to 

model whether the goals of the 2010 US National HIV/AIDS Strategy (NHAS) were 

achieved and to inform future implementation efforts [39]. This analysis projected US HIV 

incidence from 2013 to 2015, using observed data on HIV incidence from 2010–2012. This 

approach is implemented by computing the ratios of observed year-to-year change in HIV 

incidence using the formula, where the annual change is the ratio of the HIV incidence in 

year t to the HIV incidence in year (t-1), for the three most recent years for which data are 

available. In the work introducing this method [39], the mean of the observed incidence 

ratios from 2010 to 2012 was computed and the incidence for 2013–2015 was projected by 

multiplying this mean by the HIV incidence in the prior year. Studies have used this 

approach to call for revisions to policies to reduce HIV incidence [40–43].

In the current work, observed HIV incidence ratios for YBMSM in Illinois were computed 

using data from 2013–2016. HIV incidence for 2017 was computed by multiplying this 

mean by the observed HIV incidence in 2016. Projected incidences for each of the 

subsequent years were iteratively computed by considering the mean of the observed 

incidence ratios for the previous three years.

2.2.3. Agent-based network model—An agent-based network model (ABNM) was 

used to simulate baseline HIV transmission to capture existing epidemic features among 
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BMSM (age 18 to 34 years). The model was populated with 10,000 individuals at the start of 

the dynamic simulations. The simulation proceeded in daily time step increments. The 

substantive model components included arrivals due to agents aging into the model, 

departures (due to agent mortality or aging out of the model), dynamic sexual network 

structure, the temporal evolution of CD4 counts and HIV RNA (“viral load”), HIV testing 

and diagnosis, dynamics of ART and PrEP use, external HIV infections, and HIV 

transmission dynamics. The ABNM is illustrated in a flow diagram in Figure 1.

The sexual network structure was modeled using exponential random graph models 

(ERGMs) [44], a statistically robust approach to model complex network evolution over 

time, implemented using the statnet [45] suite of packages in the R programming language. 

The ABM components were developed with the C++-based Repast HPC ABM toolkit 

[46,47]. Parameters and computer code to reproduce results are available in a public GitHub 

repository [48]. A full description of these parameters and the process of model calibration 

has been published previously [27], and the modeling of engagement in the ART and PrEP 

continuums, as per the intervention scenarios of interest, is described in the Appendix.

All intervention scenarios and the control were each simulated about 30 times. The primary 

outcome was the number of new infections per year, averaged across the 30 simulations, 

along with standard error values calculated over 30 replications at each time point to 

quantify the uncertainty across the 30 simulations of each scenario (Table 1).

2.2.4. Ethics approval of research—The Institutional Review Board of the Biological 

Sciences Division at The University of Chicago provided approval for the study and waivers 

of the consent process, where necessary. Appropriate Data User Agreements with the 

Chicago and Illinois Departments of Public Health for de-identified eHARS data were 

established.

3. Results

The numbers of new infections, projected over the 14 years of GTZ implementation in 

Illinois, are shown in Figure 2 below. The numbers of new infections in 2030 – the last year 

of GTZ implementation – are given in Table 1. All three models predict somewhat different 

HIV incidences in the last year of GTZ implementation without any PrEP or ART scale-up. 

Therefore, the percent decline associated with all three interventions, relative to the 

infections in the control scenario projected by each approach, is also provided.

As expected, all three approaches are consistent in predicting that increasing both ART and 

PrEP by 20% will be more effective in reducing new HIV infections than increasing only 

one exclusively. The same pattern was observed for the scenarios where a 30% increase was 

considered. The approaches, however, differ in their predictions of the effectiveness of each 

intervention. Except for B&H, the other two approaches suggest that a 20% simultaneous 

PrEP and ART scale-up among YBMSM may not yield a functional zero HIV incidence. 

The Loess approach predicted the smallest declines, and the B&H showed the largest 

declines in the cases when ART was scaled up exclusively and when both ART and PrEP 

were scaled up simultaneously.
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4. Discussion

4.1. Primary findings

We conclude that a 20% increase in current ART and PrEP coverage levels is unlikely to 

eliminate new HIV infections among YBMSM in Illinois by the end of the GTZ 

implementation period. However, all three approaches agree that a 30% scale-up in both 

ART and PrEP uptake levels may help to reach the GTZ targets by 2030. Of the two 

statistical time series approaches, B&H projected greater efficacy than Loess. The ABNM, 

which was based on detailed demographic, behavioral, biological and network parameters, 

projected an intermediate level of efficacy relative to the two time-series approaches. These 

differences in results are likely driven by the fundamental assumptions behind the 

approaches: whereas the projections based on the statistical time series methods are highly 

dependent on trends in recent incidence, the ABNM incorporates a more granular 

representation of the processes, and the interactions between these processes.

Moreover, of the two time series approaches, the B&H method projected a greater decline 

than the Loess method. This is because the B&H method projects forward 

“multiplicatively”, i.e., by computing the mean of the ratios of the HIV incidence for the 

past three years and multiplying this ratio by a factor that accounts for the increase in ART 

and PrEP coverage relative to baseline (Equations (4) and (5) in the Appendix). The Loess 

approach, on the other hand, projects forward “linearly”, i.e., by considering the slope of the 

line fitted through the last cluster of points, determined by their closeness, and modifying the 

slope of this straight line by the increase in ART and PrEP scale-up. The Loess method thus 

projected minimal change in HIV incidence over 14 years, likely driven by the smaller 

declines in HIV incidence among YBMSM over recent years. In populations with larger 

recent declines, Loess would predict greater efficacy of proposed interventions, but using the 

approach as such might mask important considerations that are specific to populations that 

are experiencing a disproportionate burden of HIV.

The finding that ART and PrEP scale-up by 20% points is unlikely to eliminate new HIV 

infections among YBMSM is, however, consistent across all three approaches. Indeed, 

previous research has suggested that exclusively scaling up HIV care and treatment would 

not accomplish NHAS goals [49] and neither would a 20% scale up in PrEP uptake [27]. 

This conclusion suggests that scale-up of biomedical prevention interventions will need to 

be intensified among subpopulations where HIV incidence is highest. Some subpopulations 

where current ART and PrEP scale-up levels have had substantial impact, for instance, may 

need lower than 20% scale-up. Other subpopulations experiencing higher incidence may 

require higher than the 20% scale-up currently planned under the GTZ implementation 

guidelines.

In scenarios where a 30% scale-up was considered, all three methods show that 

simultaneous increase in both ART and PrEP uptake levels might help reach GTZ targets, as 

defined by a functional zero, as described above. Similar to the 20% scale-up level, a 30% 

increase in ART while keeping PrEP uptake at baseline levels is more effective compared to 

a 30% increase in PrEP with baseline ART levels.
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4.2. Benefits of a comparative modeling approach

Applying multiple methodological approaches allows for an assessment of consistency in 

the projected findings. The Loess and B&H methods are easier to implement 

computationally, while the ABNM provides possibilities for a deeper examination of HIV 

and PrEP continuum variables. Determination of the modeling approach likely depends upon 

the availability of data and methodological expertise, as well as the projected timelines for 

modeling findings prior to the implementation of interventions. Our recommended strategy 

for implementation scientists is to first compute statistical time series type models (for 

instance, the Loess or B&H, as described in this work), to generate upper and lower bounds 

of the estimated intervention efficacy. This preliminary work can be followed by longer-term 

development of more complex ABNM-type models that allow for a more granular 

examination of specific processes, subpopulations and interventions. The ABNM’s primary 

advantages are that it provides the capacity to incorporate a wider representation of 

underlying transmission processes, including network mixing, and to examine specific 

interventions mechanisms explicitly, and investigate how these interventions might impact 

different population segments.

Each modeling framework also draws attention to specific contextual considerations. For 

instance, within Loess and B&H, the uptake of PrEP and ART can be directly controlled, but 

neither approach has the capacity to model person-to-person transmission explicitly. The 

impact of ART and PrEP scale-up is realized by considering the multiplicative effects of the 

number of users at any given time. The ABNM, by contrast, accounted for the HIV care 

continuum factors that influence ART uptake: testing, linkage, and adherence, but does not 

provide the flexibility to directly control the number of ART users at any given time. Thus, 

while the two time-series approaches provided the flexibility of directly controlling an 

important parameter and were more quickly implemented, the ABNM provided more fine-

grained control allowing for explicit examination of key input variables. Identification of a 

“gold standard” modeling technique is beyond the scope of this study. Rather, this study 

hopes to compare three modeling frameworks used to project HIV incidence to determine 

how PrEP and ART scale-up may impact projected HIV incidence. Other modeling 

approaches, such as deterministic-stochastic modeling choices are available and might be 

useful in related model comparison studies, depending upon the research questions of 

interest and the availability of input data [50,51].

4.3. Limitations

All of the modeling approaches described here use recent data to make projections over 14 

years of GTZ implementation. Thus, these models assume that other baseline trends will 

continue to hold, and the changes that occur will be limited to scale-up of ART and PrEP as 

per the GTZ strategies considered. Therefore, any structural or policy changes that occur 

over the GTZ implementation period will not be accounted for in the model. Future model 

iterations must account for such policies, especially if these policy goals are revised. 

Computation of all models was based upon approximations about how baseline projections 

might adapt in response to changes in ART and PrEP coverage. Further work in improving 

these approximations might be necessary, especially if the resources to develop agent-based 

simulation models are unavailable. A version of the B&H approach that explicitly allows for 
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a consideration of the 90-90-90 goal to improve engagement the ART continuum has been 

proposed [52]. A similar version for PrEP scale-up, especially to guide GTZ efforts in the 

U.S., might be helpful in guiding HIV elimination efforts. Finally, the definition of the 

functional zero might need to be updated as interventions are rolled out in reality and we 

approach the later stages of the GTZ planning period.

5. Conclusions

Accomplishing GTZ goals will require increased scale-up of ART and PrEP; however, such 

scale-up may be constrained in part because of the many barriers that prevent effective 

implementation. Racism, addiction, criminalization, unemployment, lack of access to quality 

education and health care, and residential segregation are some of the barriers that 

disproportionately impact young Black men and YBMSM in particular [53,54]. Addressing 

these barriers is vital to accomplishing HIV elimination goals [55,56]. Indeed, this need to 

address structural barriers to HIV and PrEP care continuums is recognized in the US [57] 

and globally [58–61]. The ABNM provides the flexibility to model interventions that are 

designed to address these barriers and allows for projected effects of interventions before 

they are implemented. New modeling approaches that can improve our understanding of the 

underlying mechanisms by which socio-structural and systemic factors impact HIV 

transmission and that can quantify the effects of interventions to address them can make a 

critical contribution to the implementation of interventions [62]. The models described here 

are being expanded to begin the process of incorporating socio-structural and systemic 

factors. Next-generation modeling tools can help formulate effective strategies that aid in the 

design of interventions focused on reducing the impact of these barriers. Triangulation 

studies allow for increasing amounts of complexity to be examined iteratively in order to 

make the underlying assumptions behind various approaches more explicit and to derive 

policy prescriptions that utilize the combined strengths of multiple methodological 

approaches and data sources.

Acknowledgments

The authors acknowledge guidance on implementation science provided by Hendricks Brown and the Center for 
Prevention Implementation Methodologies (Ce-PIM). This work was completed with computational resources 
provided by The University of Chicago Research Computing Center. The authors also acknowledge helpful 
feedback from researchers at the Chicago Center for HIV Elimination. The authors acknowledge input from the 
BARS Study Group and Getting to Zero IL Research Evaluation and Data (RED) Committee.

Funding:

NIH R03 DA 049662, R01 DA 039934, P30 AI 117943 and P30 DA 027828, and U.S. Department of Energy 
contract number DE-AC02-06CH11357. The authors acknowledge support from the AIDS Foundation of Chicago 
and the Pritzker Family Foundation. A.S.K. received partial support from the Providence/Boston Center for AIDS 
Research (P30AI042853).

Appendix

A.1. Introduction

This Appendix provides additional methodological details of the models described in the 

main body of the manuscript. Below, model equations for the Loess and Bonacci and 
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Holtgrave (B&H) methods are derived and the modeling of ART and PrEP continuums in 

the agent-based network model is described.

A.2. Loess method

The Loess technique is a robust local regression technique [33], which optimizes a weighted 

function that accounts for the closeness of two points in the dataset. The assigned weight is 

large if the two points are close to each other and small if the points are farther apart. This 

procedure allows for models to be fit to clusters of data that are close to each other, and 

specification of a global function that fits all the data is not necessary [33–35].

A Loess curve was fit to annual incidence data for YBMSM in Illinois, using the loess 

function in R (version 3.5.3). For any given point, the fitting procedure uses points in the 

“neighborhood” of that point, defined here as 75% of the points that are closest to it, in 

accordance with the recommended default value in the R function [63]. These points are 

weighted by their distance from the point in consideration.

Incidence data were obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a 

database maintained by the Illinois Department of Public Health [30]. A slope parameter ρL,t 

was computed from the fitted values obtained from the last three years (2013–2016), under 

the assumption that both PrEP and ART were being used in those years, whereas prior to 

2013 PrEP was not being used. The projected number of new infections is iteratively 

computed as

it + 1 = it + ρL, t + 1 (1)

where it is the HIV incidence in the “current” year t, and it+1 is the HIV incidence in the 

following year, t+1. The slope ρL,t+1 is computed as

ρL, t + 1 = ρL, tαt + 1 (2)

where α is a factor that scales the slope parameter when ART and PrEP are scaled up. The 

parameter αt+1 was set to

1 − kAA0
1 − kAAt + 1

1 − kRR0
1 − kRRt + 1

(3)

where At is the proportion of HIV-positive individuals using ART in year t, Rt is the 

proportion of HIV-negative individuals using PrEP in year t. Thus, parameters At and Rt 

represent ART and PrEP coverage in year t respectively. The parameters A0 and R0 denote 

ART and PrEP coverage in the first year of the projection, respectively. When ART coverage 

is scaled up in year t+1, the number of new infections prevented is assumed to be 

proportional to the relative reduction in the population of the infected individuals, 

approximated as 
1 − A0

1 − At + 1
.

Similarly, when PrEP coverage in a given year, Rt, is scaled up, the number of new 

infections prevented is assumed to be proportional to the population of HIV-negative 
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individuals, approximated as 
1 − R0

1 − Rt + 1
. (Note that when ART and PrEP coverage are not 

scaled up, A0 = A1 = … = At and R0 = R1 = … = Rt , then αt+1 reduces to 1.)

The factor kA is a weighted average of the protection conferred on individuals who are 

always, usually, sometimes, and never adherent to ART. From YBMSM cohort data in 

Illinois, these proportions were estimated to be 32, 28, 30 and 10% respectively [31,32], and 

the four respective groups was assumed to receive 100, 67, 33 and 0% protection. The factor 

kR indicates PrEP protection, where data from a PrEP demonstration project were used to 

estimate that 21.1% of men took 0 pills/week (non-adherent), 7.0% took < 2 pills/week (low 

adherence), 10.0% took 2–3 pills/week (moderate adherence), and 61.9% took 4+ pills/week 

(high adherence) [64]. PrEP use is assumed to reduce HIV infection probability in these 

adherence groups by 0, 31, 81, and 95%, for non, low, moderate, and high adherence, 

respectively, in accordance with previous modeling work [12]. These protection estimates 

were assumed to be constant across all models.

Equation 2 is iteratively solved over the course of the projection period to yield the number 

of new HIV infections for each projection time point.

A.3. Bonacci and Holtgrave method

A recent study modeled trends in HIV incidence to assess whether the goals of the 2010 US 

National HIV/AIDS Strategy (NHAS) were achieved and to inform future implementation 

efforts [39]. This method is implemented by computing the average of the ratios of observed 

year-to-year change in HIV incidence using the formula: [annual change = HIV incidence in 

year t / HIV incidence in year (t-1)] for the three most recent years that data are available for. 

Thus, the incidence can be iteratively projected as

it + 1 = ρBH, tit (4)

where ρBH,t is the average of the annual change values at the three most recent years as 

defined above, and it is the HIV incidence in the “current” year t. The number of new 

infections when ART and PrEP are scaled up is given as

it + 1 = ρBH, tit
1 − kAAt + 1

1 − kAAt

1 − kRRt + 1
1 − kRRt

(5)

where parameters are as defined above. Equation 5 is iteratively solved over the course of 

the projection period to yield the number of new HIV infections for each projection time 

point.

A.4. Agent-based network model

An agent-based network model (ABNM) was used to simulate baseline HIV transmission to 

capture existing epidemic features among adolescents and young adults (age 18 to 34 years). 

The model was populated with 10,000 individuals at the start of the dynamic simulations. 

The simulation proceeded in daily time step increments. The model was calibrated using 
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published HIV incidence and prevalence estimates. A detailed description of the agent-based 

network model (ABNM) and its parameterization is available elsewhere [27].

The ABNM is designed to allow for a deeper examination of PrEP and ART care 

continuums. PrEP uptake was maintained at the base levels by computing a daily initiation 

probability for HIV-negative individuals not using PrEP. Further, it was assumed that PrEP 

initiators were retained for an average of one year, consistent with local PrEP continuum 

data [65]. A dynamic equilibrium was set to balance the PrEP initiation and retention 

processes to maintain uptake at desired levels. Additionally, PrEP users were divided into 

four adherence categories, with protection dependent upon adherence. ART uptake, on the 

other hand, was determined by three care continuum parameters: (a) HIV testing frequency; 

(b) linkage, defined in the model as distribution of times between HIV diagnosis and ART 

initiation; (c) ART adherence, modeled by assuming 32, 28, 30, and 10% of ART initiators 

were always, usually, sometimes, and never adherent, respectively, as estimated from cohort 

data [31,32].

The PrEP scale-up intervention was implemented by considering a uniform annual increase 

from base uptake levels to 30 and 40%. Twenty percent ART scale-up level was modeled by 

assuming an increase in the proportion of individuals who were always adherent to 80% of 

ART initiators, and a decline in the proportion of individuals who were usually and 

sometimes adherent to 10% of ART initiators each. (The impact of increased ART 

adherence on overall ART uptake is further discussed below.) A similar adherence 

adjustment approach was used to model the 30% ART scale-up. The six interventions and 

the baseline scenario were simulated 30 times over the course of the GTZ implementation 

period to account for inherent uncertainty due to the stochastic nature of this model. In 

addition, standard error values were also calculated over 30 replications at each time point to 

quantify the uncertainty (Table 1).

Since ART uptake in the ABNM was determined by three care continuum parameters 

described above, the overall uptake was increased by 20% by assuming an increase in the 

proportion of individuals who were always adherent to 80% of ART initiators, and a decline 

in the proportion of individuals who were usually and sometimes adherent to 10% of ART 

initiators each. In the Loess and B&H methods, on the other hand, ART uptake was 

controlled by specifying the At parameter, as described above. In Figure A1 below, we plot 

the ART uptake over time in the ABNM, to demonstrate that the increased adherence 

resulted in a temporal ART scale-up that was comparable to the assumption in the statistical 

time series methods.
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Figure A1. 
Percentage of HIV-positives using Antiretroviral Treatment under various scenarios of scale-

up.
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Figure 1. 
Flowchart illustrating the various components of the agent-based network model (ABNM). 

Sexual networks are programmed using the statnet [45] package in the R programming 

language. All other model components are programmed in the C++-based Repast HPC 
toolkit [46,47].
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Figure 2. 
Projected numbers of new infections among younger Black MSM (ages 18–34) in each year 

of Getting to Zero implementation in Illinois: (a) Loess, (b) Bonacci and Holtgrave, (c) 

Agent-based network model under baseline and PrEP and ART scale-up interventions.
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Table 1.

Projected numbers of new infections among younger Black MSM, ages 18–34 years, in the final year (2030) 

of Getting to Zero implementation in Illinois. Square brackets show the 1-standard error confidence intervals 

and the round parentheses show the decline in mean number of infections between the control and the 

intervention scenarios.

Loess Bonacci and Holtgrave
f Agent-based network model

Control

Baseline ART and PrEP coverage
a 383 [349, 418] 369 418 [413, 422]

Interventions

ART coverage only increased by 20%
b 362 [308, 417] (5%) 181 (51%) 288 [285, 292] (31%)

PrEP coverage only increased by 20%
c 367 [317, 417] (4%) 202 (45%) 366 [362, 369] (12%)

ART and PrEP coverage increased by 20% 320 [226, 414] (17%) 99 (73%) 252 [248, 256] (40%)

ART coverage only increased by 30%
d 339 [263, 415] (12%) 121 (67%) 246 [242, 251] (41%)

PrEP coverage only increased by 30%
e 351 [287, 416] (8%) 145 (61%) 324 [320, 329] (22%)

ART and PrEP coverage increased by 30% 186 [−35, 406] (52%) 48 (87%) 186 [184, 189] (55%)

a
Baseline ART and PrEP coverage are 50% and 10% respectively

b
ART coverage only increased from 50% to 70%

c
PrEP coverage only increased from 10% to 30%

d
ART coverage only increased from 50% to 80%

e
PrEP coverage only increased from 10% to 40%

f
Bonacci and Holtgrave is a deterministic method and no confidence intervals can be computed.
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