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A PARTITION METHOD FOR THE QUANTUM-MECHANICAL EQUATION OF MOTION
Robert W. Schmiedef

Lawrence Radiation Laboratory'
__University:of California
. Berkeley, California 9L720

April 1970

ABSTRACT
A method is developed for determining the effect of an additional
time-dependent interaction v(t) on a quantum mechanical system described

by a wave function Y(t) satisfying ihdy(t)/3t = Hd(t)w(t). It is shown

that if an operator €(t) can be found such that the wave function Y(t)

saﬁisfying ih3W<t)/3t = [Ho(t) + V(t)]¥(t) can be obtained from Y(t) as

¥(t) = Q(t)w(t), then separating Y(t)  into two parts [wl(t), wg(t)] allows

(t), ¥,(t)], each satisfying the

the separation of ¥(t) .into two parts [Wl_

equation

. 8\Pn’ 1 . 1
ih 9t ={ Hn * Vnn * Vnmgmn an lPn * Vnm [Qmm B an an Qnm:]wm

with n = l,-é',and m =2, 1, and in which & ., 1/Q = Q ~, etec. are known
, . T mn nn nn

time-dependent operators. Under certain weakly reétrictive'conditions, the

second term vanishes, and Wn satisfies

in which 6Hn is an "effective hamiltonian" for level n (Wm is still’

governed by_a more complicated equation). 6Hn gives rise to energy level
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'shifts, transitions, énd other effects attributable té the“additiqnal intef—
action V{t). These'results.are exact. So long as Q(ﬁ) is small compared to
Ho(t), an expliéit formula for Q(t) is obtained from ordinary>perturbation
theory. An épplication ofvthese formulas to'opticalveffects in free atoms is

presented.

-
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INTRODUCTION
There exists in mathematical physics a powerful‘tééhnique of broad
applicability for calculating properties of systems that'divide themselves

naturally into two {(or more) relativély‘non—interacfing'parts, each. of which

'has relatively simple properties. This technique, called partitioning, con-

sists of'éeparétihg_the gbverning eQﬁations intontwo'(br;ﬁéfe)'éoupled
equations, oné_for eadh part of the system; each:conﬁaiﬁiﬁg tefms describing_
the independent_péfts and terms describihg interacﬁions‘betwéeh the parts.
Perhaps the beét example of this technique is the sepgration_of'the,Dirac
equation into two equations, one describing élecﬁrons Qf'pOSitiVQ eﬁergy, the
other deséribing electrons_of_negative energy.. Recenflj§(L6Wdinl’has
extensively expiored the partitiqnihé method forlboundestatefpértqrbations.'
In this paper we apply'thiévtechnique to thelquénfum—mechaniéal
equation of motion ip hamilténian fdrm. The resul£ is a pair oftQﬁaSi—
coupled equétions'of é rather unusual form. We éhow héw the_iﬁtéraction terms
can lead to an efféctive:hamilfoﬁian,which can bevsimply'interpreﬁed; We
also present-éh_ekamplé of the éppiicatioh of theéeiéqu;tiéné to én atomié

system.
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DERIVATION
Ccnsidef‘a quantum-mechanical system-described by a wave function
Y(t) which obeys'the.equatioh of motion

in W) oy () y(o) | o (1)
v o |
where Ho(t)_.is a (possibly) time-dependent hamiltonian;' We assume Eq. (1)

).

can be solvéd~exéctlyfin terms of an evolution operator2 U(t,to

Now bohsider the addition ofian'interaction V(t) to this systen,
resulting in-é'new system'described by a neW’wave'funétion 'W(t)‘ which

satisfies

i 28D = g (6) + V)] ¥(e) : B | =

Again, we'assume the general'solution of Eq. (3) is expressible in terms of

):

an evolution bpefator L((t,to

Y(e) = Uls,50) ¥(e) . o (1)

Now let us assume that there exists an operator Q(t) that producés

the system ¥(t) from the system . Y(t), i.e., such that

¥(t) = 2(t) ¥(s) - | - (5)

W
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the conditions of existence or behavior of Q(t).

is satisfied for all times t. We defer fof'the-moment’any”discussion of

At this point we partition Egs. (1), (3), and (5). We assume that the

system w(t)>'caﬁ be separated naturally into two parté,
| [ ()
plt) =] - )
: A\ v, (t)

and that VY(t). can be correspondingly separated:

¥, (t)

W(t) ¥',_
: Wz(t)

We assume that the operator Ho(t)» has no matrix eleménfsvbetween

¥, (t), and so can be written
2° _ )

o H2(t)

. whe}eas the additional operator V(t) has the general form

[V, (8) v (%)

1
v(t) =

Vor (8 Vpp(t)

~Finally, the opérator Q(t) is written .

(6a)

(6b)

'Wl(t) “and

(8
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Q. (t) Q. .(¢)

at) = 2 e (9)

' 921(t) QQZ(t)

The elements of the 2 X 2 matrices in Egs.(7)-(9) are themselves -
matrices. The. matrices Hn’ Vnn’ and Qﬁn are square and of the dimension of
i , whereas V : and £ are not necéssarily square.

n nm nm

Combining Eqs. (3), (6v), (7), and (8)’yiélds

awl - i S

h =g = () + V) ¥+, ¥ . o - (a0
3?2 , S o .

ih 5= (B, +V5,) ¥y + Vo ¥y B (100)

where we now omit the argument t for brevity. Combining Egs. (5), (6),(T)

and (9) yields

Y= 800+ 850, (11a)
Vo= Q0 + 000, - | . _ (11v)
' - L . -1 -1 .
Now let us assume that the inverse operators Qll and 922 exist, o
so that we can invert Egs. (11) to obtain )

b= 0t (v - a ) (10a)
1 11. 71 1272

Y, = ol (v. -9 V. ) ; - (12b)
2 " ez ‘2 T Main - : ,
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Finally, combining Egs. (10a), (11b), and (12a), and Egs. (10b),

(11a), and (12b), we find

¥ - 1 , 1 |
i = | B+ V0 g Y VR = Ry 5T Opp) ¥, (138)
| L g | 11
ih —& = —— ] - ——
o= | Hy vV VR g7 ] Yo * Vg Ry = Oy, g 0¥ (330)
S\ , 02 | 20
where we used 1/Qnrl = Q;i. Equations (13a) and (13b) can both be written as
v | - .
in at | By * Von * Voo @ o S v (14)
. nn.
v (o -9 L-q )y
nm\ mm mn nm m
nn _

. : . ) F] :
for n=1, 2 and m=2, 1. Equations (1) constitute the principle results
of this paper.  These equations; plus the equations of motion for vwl and we

(from Eqs. (1), (6a), (1))

_ lawh . . S . : ' o .o
lh-j5€-% Hn¢n  : A . | .<1§)

constitute a complete description of the system VY goVerned by Egs. (1),

(3), snd (5).
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DISCUSSION

Equéﬁions (14) aré'exact; they are valid for any'.V(t) sé long as
Q(t) and Q;i(t) exist. It is not necessary that V(t) be considered a
small perturbation on Ho(t), although fbr tﬁat>case (discussed below), Q(t)
is easily found and is well-behaved. | |

The two equations (1l4) fof states 1, 2 are coupled; i.e., each involves
both states 1, and 2. However, the coﬁpling is of a very unusual nature,
since.it is only via the states for V(t) = 0. That is, the state V¥, is
coupled to lével 2 only via wl, and Wz to level 1 only via wl. But wl
and w2 efolVe-totally indépendently (Egs. (15)); sq'there-ié no noniinear
recoupling of Wn- (through Wm) back to .Wn. This is quite different than
the ‘usual sét of'éoupied equafions (10a, b). In fact, since we assume thé

solution for 'wn is available (from Egs. (15)), the levels 1, 2 are not .

really coupled in Egs. (1k), which are in the form

¥ (t) - '
ih —5— 4 £(t)¥ () = g(t) (16) .

3t
in which f£(t) ‘is an operator and 'g(t) is a function of t. Thus, we
have completely decoupied levels 1, 2, since we have two independent equations,

one involving 1W', the other involving ‘YQ, but neither involving both.

Naturally, we pay a price for decouplihg the states VY., ¥, : The

1?2
differential equations now involve very complicated (operator) functions of
t, and it is necessary not only to find Q(t) but to invert its diagonal part

as well. Even more important is the fact that homogeneity has been lost--the

homogeneous - equation (3) is replaced by the inhomogeneous equation (16). We
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could also see this in Egs. (15), where addition of V(t) converts wn(t)
into Wn(t), and makes the right hand side iﬁhomogenebus.' Finally, we have
" also given up hermiticity, since the operators V_ U Q—l will have anti-
- - . nm mn nn
hermitian parts.
An especially interesting aspect of Egs. (14) is the occurrance of
s S0, etc. in the particular combination.in the coefficient of Y . 1In
mm’ " mn L : ) _ m

fact this 1s related to the inverse of a partitioned matrix:

A B\ T (A-Bp"t )‘l .A‘“lB(D-CA"le)'l '
= . ' : (17)
¢ p/ - _pte(a-mp o)t (D-ca™B)7H

in which A, B, C,-and vD are matrices,-'Equatioh (17) can be proved by

direct multiplication.
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EFFECTIVE HAMILTONIAN
For a very general class of problems, Egs. (14) simplify considerably.

Suppose in the distant past, for t < t_, the system was entirely in level 1. A

OS

That is, before the application of V(t), wg(t) was zero and wl(ﬁ) was
unityﬂ Such is the case, for instance, for an ensemble.of étoms in their
ground state before the application of an external field; But since wl and
v ¢2 evolve totally indepéndently, we.can séy that any state wm(t) that is
zero at t = ty» remains zero for t > td.
Egs. (15) and:(2); ‘Thus we may drop. the wg(t) _term in Eq. (13a) and write

This follows immediately from

W ‘ ' 3 (18)

in which we define the effective hamiltonian

_ BESR | | ' -
631 =Vt Vigfogfhy - - (19)

It is clear why we call SHl an "effective" operator: its domain of operation
is restricted to leével 1, whereas it produces all the physiéal effects within

that domain as does the actual interaction Hl + V. Furthermore, Eq. (18) is

bl

in precisely the hamiltoﬁian form of the equation of motion, hence the inter-
pretation of GHi as ‘a hamiltoniag operator. .No suqh'interpretation is
possible for the more general case of Eq. (l3a). Thus, only when wg(t) is
Zero, can Qe ascribe physical‘meaning fo SHl in termsvof level shifts,
transitions, ete. Of course, Tl(t) is correctly governed by Eq. (lja) even
when wg(t) # 0, but ip that case; GHi is not simply related tdvthe energy

levels, etc., of level 1.
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. The wéﬁe:functionv yg(t), obeys Eg. (l3b), Which does not reduce tq
the simple form Qf Eq. (18). By considering the relative mégnitudes of each
operator onlﬁﬁefr.h.s., it should be possibie to obtgin an equation simple
enough to be sleed, even if only apprbiimately.

There is.another general class of problems for which an équation of
" the form
oY

i on - , : o c ,
ih ot ;f.(Hn + 6Hn)wn ‘ (20)

is obtained. - This occurs when 'wm satisfies
o -o g Yy =0 | (21)
mm mn £ nn m :
. nn .
/which We.may wri£e:as an operator identity:

=1 . o | (22)

This conditiQn imposes éerious_constraints on .V(t)  but is independent of any
assumed initial conditions. it‘remains to be seen whether any physically

interesting interaction V(t) can be found that satisfies Eq. (22).
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~ PERTURBATION THEORY

We now consider the particular case when V(t) can be regarded as

o : ~
small and treated by perturbation theory. Substituting Eq. (4) into Eq. (3)
yields the differential equation satisfied by d(t,to):v : o
i = [Ho(8) + V(e)] ©t,t) , (23) ‘
subject to the initial condition
u.(to,to) =1 . | | | (2k)
The iterative solution of Egs. (23), (24) is well’known3 to be
wltst) =U(t,t,) + o [ at! Ult,t") V(£ )U(t" ) : (25)
%o
+ ("h)é fdtjdt”U(t,t’)V(t')U(t',t")V(t")U(t",tO) + o
i | v
o %o %o ' _ -
_ £
where the perturbation V(t) is assumed small enough so the series converges,
()

and also V(% <'£O) = 0. The general solution for ¥(t) (Eq. (4)) requirés

we know W(tO). However, since the perturbation is "off" until tog'the : |
perturbed state at the onset of the perturbation is simply the unpefturbed'

state:
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W(to?-= w(to) . j - | (26)
@ Furthermore We require the continuity condition
‘. ult',,) = Ule' tdule,t,) , - - (27)

and recalling the definition

U<t=?b)w(to) = ¥(t) . S _(28)
we find
. ot o
Wt)=Ufht&w&o)+E%J(dtﬂU&;V)WtWU&‘JXNmt&w&O)+--- (29a)
. v
0
£ | : : | v | |
= (t) + g [t (e VU ) F e - (290)
- tb ’ .
= Q(t)Y(t) | o | (29¢)

.where we defined

<y

(30
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In order to simplify notation, we use a bar to denote the time integrals .

and powers of.'(ih)—l:
Q=1+ UVU + UVUVU + **- . ' - (31)
The partitioning of { into Qll’ ng, ... 1s easy if we note that the

unperturbed evolution operator is diagonal:

u={ _ ] ' (32)

We also assume V is only off—dlagonal (Vnn = 0). From Egs. (31) and (32),

we find

Q =1+0%V UV U - » : | (33)
nn nnmmmnn , -

+ UV UV UV UV U + -
nnommpnnnmmm n

Q. =UV U +UV UV UV U + - (34)
mn mmnn mmnnnm‘mmnn

for n=1, 2 and m‘=_2, 1. It is clear that an involves only even
multiples of V, and an only 0dd multiples. Note that the general Egs. (1)
require Q;i but not Q;i. The former exists due to the presence of the 1, but

~latter does not exist, in the limit V - 0.

I8
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For the former;IWe can use the operator identityh,

At oAl (a e B)7T

A+t

PN Y T Y -7 N

fo find the approximate expression

QL= o TV OV T o+ ---
nn m nnm m mn - n

Finally, substituting Egs. (33), (34) and (36) in Eq. (1k4) we

Y

ih—2=(H +v_ UV U +v_UV UV UV U
0t "\ n nm mmn n nm mmn n nmmmnn

V UV U UV UV U -+ |V
nmmmnn nnmmmnn .I'l

+
<.

1 +0V U V_ -0V U UV U :
mmn n n nmm

 + UV UV UV UV U
mmnnnmmmnnnmm

+UV U UV UV U UV U
mmn nnmmmnn nnmm

§

U V U U V uv UV U
_n-nm mmn n nmu

TV UV UV U UV U+ - |1
m mn n-'nm;m‘mnn nnmn m

in which we have kept terms up to. fourth brdef in V.

UCRL-19582

(352)

(350)

find
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APPLICATION: OPTICAL RADIATION IN AN ATOMIC VAPOR

To illustrate the usefulness of these formulas, we examine a fairly
simple system: an atomic vapor is irradiated with a beam of light. We are

interested in such effects as how the light affects the atomic energy levels

and how the vapor affects the intensity and polarization of the light. If

. ! - 3 + ) )
we write the atom-light coupling as V(t) = - g(t)-p, where &(t) 1is the

(classical) elecfric field of‘the light, and »E' is the atomic electric dipole

moment operator, and if we assume that all the atoms were in their ground
state when the light was applied in the distant past, Eq. (37) gives the

(approximate) equation of motion of the atomic ground state

where

' __ 1 R |  > .. '  S, ,.
8H, . = W | at E(t) p Uy(t,t ) (YD U, (tht,)

-—fXD

is the effective ground state opersator. If»we use

2(4) = %_g it %_g* JHwt

(terms oscillating at 2w will

and save only the DC components of - GHl

average to zero); we can write Eq. (39).as

(ho)v
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where

Tiwt -

e p~Ug(t,t—T)‘5fUl(t—T,t) S - (k2)

is a polariza£ion dyadic operator for the atomic ground étaté. ‘The proPerties
of the individual:atoms are contained eﬁtirely in g;; I£ is necessafy to
solve Egs. (i), (2) for U2 _apd Uy, and tq perform’éollisiénéivand velociﬁy
distribution averages of' g;- to obiaihithe polarizability of the vapor.

Performing the integration over T will produce a resonant denominator in

B 4

o, but a non-resonant denominator in a_, so the latter contribution to GHl
can be neglected for W near resonance. The hermitian part of GHl gives
the energy leveibshifts of the'atomic.states,'whereas_the antihermitian parts

represent a loss of ground state atoms due to photon absorption. The macro-

scopic average of oy is the electric susceptibility of the vapor, from which

we can Tind the dieiectric constant. The presence of magnetic fields is

accounted for in u, 1(t,to),‘and if these fields are sinusoidally varying we
,

find. o, is modulated at multiples of the field frequency, giving rise to
sidebands chafacteristic'of-magnetic resonance phenomena. These relations
have been discussed in detail by Happer and Mathur5 for zero magnetic field,

T

by Happer6 and Happer andechmieder for a:static field, and by Schmieder8

for static:plus:rotating or oscillating fields.
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