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Abstract

This paper proposes a nonparametric test of conditional independence based on the notion that
two conditional distributions are equal if and only if the corresponding conditional characteristic
functions are equal. We use the fuctional delta method to expand the test statistic around the
population truth and establish asymptotic normality under S—mixing conditions. We show that the

“1/2p (d1tds)/4 The cases

test is consistent and has power against local alternatives at distance n
for which not all random variables of interest are continuously valued or observable are also treated,
and we show that the test is nuisance-parameter free. Simulation results suggest that the test has
better finite sample performance than the Hellinger metric test of Su and White (2002) in detecting
nonlinear Granger causality in the mean. Applications to exchange rates and to stock prices and
trading volumes indicate that our test can reveal some interesting nonlinear causal relations that the

traditional linear Granger causality test fails to detect.

Key words: 3 — mixing, Conditional characteristic function, Conditional independence, Functional
delta method, Granger non-causality, Nonparametric regression, U-statistics.
JEL Classification: C12, C14.



1 Introduction

In this paper, we investigate a nonparametric test of conditional independence. Let X, Y and Z be

random variables. As in Su and White (2002), we write
Y 1LZ|X (1.1)

to denote that Y is independent of Z given X, i.e., Pr{f(Y|X, Z) = f(Y|X)} =1, where f(y|z, 2) is the
conditional density of Y given (X, Z) evaluated at (y, (z,2))and f(y|z) is that of Y given X evaluated
at (y,x).

There are many nonparametric tests of independence or serial independence in the literature, starting
with Hoeffding (1948), and followed by those based on empirical distribution functions such as Blum et
al. (1961), Skaug and Tjostheim (1993) and Delgado (1996), and those based on smoothing methods like
Robinson (1991), Skaug and Tjostheim (1996), Zheng (1997) and Hong and White (2000)." Nevertheless,
there are few nonparametric tests for conditional independence of continuous variables.? Linton and
Gozalo (1997) propose two nonparametric tests of conditional independence between variables of interest
based on a generalization of the empirical distribution function. Since the asymptotic null distributions of
their test statistics are complicated functionals of a Gaussian process and depend on the underlying dis-
tributions, i.e., neither test is distribution free, a bootstrap procedure is needed for calculating the critical
values. This hinders its potential application; to date no applications have appeared that we are aware
of. Fernandes and Flores (1999) employ a generalized entropy measure to test conditional independence,
but the asymptotic normal null distribution relies heavily on the choice of suitable weighting functions.
Simulation results indicate that their test has poor size properties and low or no power against causality
in variance. Recently, Su and White (2002) have proposed a test for conditional independence based on
a weighted version of the Hellinger distance between the two conditional densities f(y|x,z) and f(y|x),
and they show that the asymptotic null distribution of their test statistic is normal. Although their test
is easy to implement, it has some limitations in that it uses the same bandwidth sequence in estimating
all required joint and marginal densities nonparametrically, and such a procedure is unsatisfactory when
the dimension of (X,Y, Z) is above three.

Motivated by the notion that two conditional distributions are identical if and only if their respective
conditional characteristic functions are equal, we propose a new test that is closely related to conditional
characteristic functions but avoids estimating them directly. The empirical characteristic function (ECF)
has a long history in testing hypotheses in both statistics and econometrics literature. It has been
mainly used to test for goodness-of-fit, symmetry and homogeneity (e.g., Feuerverger and Mureika, 1977;
Koutrouvelis, 1980; Koutrouvelis and Kellermeier, 1981; Baringhaus and Henze, 1988; Henze and Zirkler,
1990; Ghosh and Ruymgaart, 1992; Heathcote, 1995; Naito, 1996a, 1996b; Fan, 1997; Gurtler and Henze,
2000; Alba et al., 2001). In most cases, the resulting null distribution is not normal or chi-squared, and
simulation is required to obtain the critical values. Early papers that use ECF to test for independence
include de Silva and Griffiths (1980) and Csorgo (1985). The latter test parallels that of Blum et. al.
(1961) and evaluates the difference between the joint and product ECFs where it is most variable. The

Tt seems that the correlation integral based BDS test (Brock et al., 1987) does not belong to either category here.
2For categorical data there are also numerous tests of independence and conditional independence, see Rosenbaum

(1984), Agresti (1990) and Yao and Tritchler (1993), among others.



test statistic has an asymptotic x2 null distribution. Feuerverger (1987) notes the possibility of using the
ECF to test serial independence. In a sequence of papers, Brett and Pinkse (1997) and Pinkse (1998, 2000)
use a characteristic function principle and a weighted integral approach to test for spatial independence,
serial independence and independence, respectively. In all cases, the resulting null distribution is x%. In
contrast, Hong(1999) proposes a generalized spectral density approach with numerical integration over
a pair of auxiliary parameters to conduct hypothesis tests in time series. The approach essentially uses
ECFs and their derivatives in a time series framework in a clever way, and the resulting null distribution
for the test statistic is asymptotically normal.

In this paper we borrow ideas from both Pinkse’s and Hong’s approach. Like them, we base our test
upon the properties of conditional characteristic functions and use a weighted integral approach. We
also borrow ideas from Bierens (1982) and its various following papers. As a result, our test is consistent
against all deviations from conditional independence on a compact subset of the support of the density
of (X, 7). Nevertheless, our approach differs from those of Pinkse, Hong and Bierens in fundamental
ways. Specifically, we exploit a particular weighting function and the properties of nonparametric kernel
regression to obtain a test statistic that has asymptotically normal null distribution as in Hong (1999),
and in contrast to the difficult asymptotic null distributions arising in using the approach of Bierens
(1982) and his followers.?

Our paper offers a convenient approach to testing for distributional hypotheses via an infinite number
of conditional moment regressions, and by relying on the properties of conditional characteristic functions,
it unifies the two branches of the literature in an insightful way. A variety of interesting and important
hypotheses other than conditional independence in economics and finance, including conditional goodness-
of-fit, conditional homogeneity, conditional quantiles and conditional symmetry, can also be studied using
our approach.* These tests are naturally suited to helping answer such questions as “Are the distributions
of assets, consumption or income implied by a particular dynamic macroeconomic model close to the
actual distributions in the data?” “Is there any significant difference in wage distributions between
blacks and whites (or any two of the ethnics) conditional on their characteristics such as age, education
and experience?” or “Does the stock market react symmetrically to positive and negative shocks after
taking into account the influence of all fundamentals?”

It is well known that distributional Granger non-causality (Granger, 1969, 1980) is a particular case
of conditional independence (see Florens and Mouchart, 1982; Florens and Fougere, 1996). Our test can
be directly applied to test for Granger non-causality without the need to specify a particular linear or
non-linear models.®

3Conditional moment tests of a finite number of conditional moments as proposed by Newey (1985) and Tauchen (1985)
do not posses the property of consistency against all possible alternatives. Consistency can be accomplished by employing
a nuisance parameter not identified under the null as in Bierens (1982, 1984, 1987, 1990), Bierens and Hartog (1988), de
Jong(1996), and Stinchcombe and White (1998). The use of the nuisance parameter effectively permits the test to examine
an infinite number of conditional moments.

4For a different approach, see Inoue (1998) who borrows ideas from Bierens (1990) and de Jong (1996) and proposes a
unified approach for consistent testing of linear restrictions on the conditional distribution function of a time series. As in
Bierens (1990) and de Jong (1996), the asymptotic null distribution is not standard and the proposed test is conservative
for small and moderate sample sizes.

5TIn the same spirit, Baek and Brock (1992) propose a nonparametric test for causality based on the so called correlation
integral, an estimator of spatial probabilities across time. Hiemstra and Jones (1994) generalize their approach to allow for
data dependence and apply the test to aggregate daily stock prices and trading volumes data, revealing significant nonlinear



Additionally, our test can be applied to the situation where not all variables of interest are continuously
valued or observable. In particular, our test applies to situations where limited dependent variables
or discrete conditioning variables are involved. Also, it is common in econometrics that conditional
independence test would naturally be conducted using estimated residuals or other estimated random
variables, which are a function of the observed data and some parameter estimators. For motivational
examples, see Linton and Gozalo (1997) and Su and White (2002). Under some regularity conditions, we
show here that parameter estimation error has no effect on the asymptotic null distribution of our test
statistic.

The remainder of this paper is organized as follows. In Section 2, we describe the basic framework
for our nonparametric test for conditional independence where there is no parameter estimation problem
involved and all random variables are continuously valued. In section 3 we study the asymptotic null
distribution of the test statistic and the consistency and local power properties of our test. In Section 4,
we extend the results to allow for parameter estimation error and discuss certain other relevant issues.
We examine the finite sample performance of our test via Monte Carlo simulation in Section 5. We apply
our test to exchange rate data and to stock price and trading volume data in Section 6. Final remarks
are contained in Section 7. All technical details are relegated to Appendices A through C.

2 Basic framework

In this paper, we are interested in the question of whether Y and Z are independent conditional on X,
where X, Y and Z are vectors of dimension dy,ds and ds, respectively. The data consist of n identically
distributed but weakly dependent observations (X, Yz, Z;), t =1,...,n

The joint density (resp. cumulative distribution function) of (X;, Y;, Z;) is denoted by f (resp.
F). Below we make reference to several marginal densities from f(x,y, z) which we denote simply using
the list of their arguments — for example f(z,y) = [ f(z,y,2)dz, f(z,z) = [ f(z,y,z)dy and f(z) =
J f(z,y, z)dydz where | denotes integration on the full range of the argument of integration. This
notation is compact, and, we hope, sufficiently unambiguous.

Further, let f(:|') denote the conditional density of one random vector given another. The null of
interest is that conditional on X, the random vectors Y and Z are independent, i.e.,

Hy: Pr{f(Y|X,Z) = f(Y]|X)} = L (2.1)

The alternative hypothesis is that f(y|z,z) # f(y|x), over a non-negligible range of the support of the
joint density f, or, more precisely,

Hy: Pr{f(Y|X,Z) = f(Y|X)} < 1. (2.2)

The proposed test is based on characteristic functions. It is well known that two (conditional) distri-
bution functions are equal almost everywhere (a.e.) if and only if their respective (conditional) charac-

teristic functions are equal (a.e.). To state this precisely, let ¢ be the difference between the conditional

causal relations between them.



characteristic functions (c.c.f.) ¢y |x, 7 of Y conditional on (X, Z) and ¢y |x of Y conditional on X, i.e.,
Y(uyz,2) = ¢Y|X,Z(u; T,2) — ¢Y|X(U; )
= Elexp(iv'Y)|X = 2,7 = 2] — Elexp(iv/Y)|X = ],

where i = v/—1 and u € R% is a real-valued vector. Y and Z are independent conditional on X if and
only if ¥ (u; x,z) = 0 a.e.-(x, z) for every u € R%.
Consider the following smooth functional®

ren=/ [

where a(z, z) is a given known nonnegative weighting function with compact support A on R%+93; and

/w(u;x,z)e”/“dGo(u) a(x, z)dF(x, 2)dG(T), (2.3)

dGy(u) = go(u)du and dG(7) = g(7)dr where we choose gg to be a density function with full support on
R% and the choice for g is arbitrary except that it must be nonnegative, integrable and bounded on R%
with support S. For the moment, one can take S = R%.

The choice of the above functional is intuitive. Under the null, ¥(u;z,2) = 0 a.e-(x, z) for every
u € R% and consequently I'(f, F) = 0. The following lemma says essentially that the converse is also
true.

Lemma 2.1 fw(u;x,z)e”l“dGo(u) =0 a.e.-F on A for every 7 € R®% if and only if ¥(u;x,2) = 0
a.e.-Gop x F on R% x A.

The proof of the above lemma is relegated to Appendix C. It is a modification of the proof of
Theorem 1 in Bierens (1982). Bierens (1982, 1990) proposed consistent tests for functional form of
nonlinear regression models based on a Fourier transform of conditional expectations. Consider a generic
regression model Y = g(X) + ¢, where Y is the dependent variable (with do = 1), X is the independent
variable and ¢ is the error term. Suppose one has specified the regression function g(x) as f(x,6), where
f(z,0) defines a known real-valued Borel measurable function on R% x © and © is a parameter space
containing the unknown parameters 6 if the specification is true. Under the null of correct specification,
ie., Plg(X) = f(X,00)] = 1 for some 0§y € O, Bierens (1982) shows that the test based on the sample
analogue of E[(Y — f(X,00))e™ X] (which is 0 for every 7 € R% under the null) is consistent. The test
function ™' X depends on the nuisance parameter 7; Stinchcombe and White (1998) generalize this idea
to allow the test function to be any non-polynominal analytic function.

An especially important point concerning (2.3) is that it is straightforward to develop asymptotic
theory for the resulting test statistic. Note that under some regularity conditions (to allow the change of
order of integration), one can write [ (u;z,2)e’™ “dGo(u) = [ [ @D [f(ylz,2) — fly|z)|dGo(u)dy.
Define H(y) = [e"¥dGo(u), the characteristic function of the probability measure dGo(u). Then one
can obtain

D(f,F) = //|E[H(Y+T)|x,z]fE[H(Y+T)|x]|2a(x,z)dF(x,z)dG(T)
_ [Hy+Df @y 2)dy  [Hy+1)f (@ y)dy o oo o
S it A o, 2)dF (2. )G (7). (24

6 Alternatively, one can consider the smooth functional I'(f, F) = [ [ |¢(u;z,2)|2g%(u)du a(z, z)dF(z,z) as in Pinkse
(1998, 2000). But we find it is difficult to study the asymptotic theory in this case.



This integral facilitates the application of the convenient asymptotic distribution theory for U—statistics.
To introduce the test statistic of interest, we first introduce kernel estimators for the unknown condi-
tional expectations above. For a kernel function” K and bandwidth h, we define®

Kn(u) = h 4K (u/h), (2.5)

where d is the dimension of the vector u. Specifically, we estimate m(z,z;7) = E[H(Y +7)|X =z, Z = 2|
by the standard Nadaraya-Watson (NW) kernel regression estimator,

Zt 1Kh1( Xt7Z_Zt)H(Yt+T)

mp, (z,2;7) = E[H(Y +7)|x, 2] = S Rn(e— Xz -2 , (2.6)
and m(z;7) = E[H(Y + 7)|X = 2] by
Mipy (2;7) = E[H(Y + 7)|2] = =1 Ky (x = X)HYVi +7) (2.7)

Zt:l Kh, (x - Xt)

Note that we have used different bandwidths in estimating the two conditional expectations. In the
sequel we will refer to mp, (z, z; 7) as the unrestricted regression estimator and mp, (x; 7) as the restricted
regression estimator.

Next, it is convenient to introduce the two density estimates:

o (2,9, 2 ZK,H - X,y —Yi,2— Z1), (2.8)

Fuo () = Zwa - X1,y —Yy). (2.9)

Similarly, we define the estimates fhl (z,z) of f(x,z), calculated with bandwidth h;, and ﬁm () of f(x),
calculated with bandwidth hs. Finally, let ﬁ(x, z) denote the empirical distribution function of (X, Z).
The form of the test statistic we consider is

/\

F=1(f,F) = //|E (Y + )|z, 2] — BIH(Y +1)[2]Palz, 2)dF (z, 2)dG(7)

1 . ~
E / |, (Xe, Ze; 7) — iy (Xos 7)Pa(Xe, Z4)dG(7), (2.10)
-1

that is, we compare My, (z, z; T) to My, (x; 7) by their integrated squared distance weighted by a(z, z)g(7).
It is straightforward to show that T is a consistent estimator of I' under mild conditions.

Note that because H is a characteristic function and thus uniformly bounded on its support, the
appearance of kernel density estimators in the denominator in estimating the conditional expectations
does not necessitate using the weighting function, a (see Lemma B.2 in Appendix B). Nevertheless,
the use of a facilitates the proof of our theorems in several places. Moreover, it allows us to focus the

"For simplicity only, we will take the multivariate kernel function K to be a product of the univariate kernel function k.
8To keep the notation simple, we do not explicitly indicate the dependence of the bandwidth parameters h on the sample
size n. We also adopt the same notational convention for kernel K as for density f, namely, to indicate which kernel by the

list of its arguments or by specifying the dimension of its arguments.



conditional independence test on particular ranges of the data. By choosing an appropriate a, the test can
be tailored to the empirical question of interest. For example, one may be interested in whether Y and
Z are conditionally independent only for positive values of X. Here, we will consider functions a which
are bounded with compact support A C R%+4 strictly contained in the support of the density f(z,2).
In typical examples, a will be either the indicator function of a compact set A or a density-type function
with compact support A. As a result, we shall only detect deviations between f(y|x, z) and f(y|x) that
arise on A. °

We will show that the properties of our test statistic can be derived from the properties of (2.4).
Two observations are of particular importance: (a) the first order terms in the functional expansion of
I‘(f, F) around T'(f, F) are degenerate under the null, and (b) the distance between I‘(f, ﬁ) and I‘(f, F)
is asymptotically negligible. The latter is important in that it is easier to study the asymptotic behavior
of ].“(J?7 F) than that of I‘(f, F). The former is useful in that it underlies the distribution theories for a
variety of tests for independence, serial independence, significance, correct specification, etc.. The usual
\/n—asymptotics (e.g. Robinson (1991)) do not apply and different normalization schemes need to be
adopted, as in Hong and White (2000).

3 The asymptotic distribution of the test statistic

In this section we focus on the case for which conditional independence test is based on a stochastic
process that has an observable series of continuously-valued realizations. Cases for which a subset of the
random vector (X', Y’ Z’)" is discretely valued or unobserved are deferred to Section 4.

3.1 Asymptotic null distribution

We work with the dependence notion of f—mixing. See Appendix A for its definition and other technical
material. Our assumptions are as follows.

Assumption A.1 (Stochastic Process)

(i) {W, = (X[, Y/, Z]), t > 0} is a strictly stationary absolutely regular process on R¥1+d2+ds = Rd
with mixing coefficients 3,,, that satisfy 3,, = O(p™) for some 0 < p < 1.

(#7) For some even integer r > 2, W; = (X;,Y/,Z;) has a joint distribution F' and joint density f
such that f € Wi(r + 1), i.e., f has continuous partial derivatives up to order 7 + 1 which are bounded
and integrable on RY. Furthermore, f satisfies a Lipschitz condition: |f(w+u)— f(w)| < D(w)||u|| where
D has finite (2 + n)th moment for some n > 0 and ||| is the usual Euclidean norm.

(¢43) The joint probability density function (p.d.f.) fi,,.. ¢, of (Wo, Wy, ..., W4,) (1 <1 <5) is bounded
and satisfies a Lipschitz condition: |f, . ¢ (wo+uo,  , witw)—fi, .1, (wo, ", wr)| < Dy, g (wo, ... wp)||u,
where u = (ug, ...,w;) and D, is integrable and satisfies the conditions that [ Dy, ., (wo, ..., wy)||w||?¢
dw < M < oo and J Dty .ot (W0 ooy wi) fry oty (w0, s wy)dw < M < oo for some & > 1.

90ne can choose the compact subset of the support of (X, Z) so that it expands as the sample size increases. In this

sense, our test is fairly general and may lose power agaist deviations in the extreme tails.



Assumption A.2 (Kernel and bandwidth)
(1) The kernel K is a product kernel of the same univariate symmetric kernel &k : R — R satisfying
Jpu'k(u)du =60 (i=0,1,...,7—1),
Co = [pu"k(u)du < oo, [pu?k(u)*du < co,and
E(u) = O((1 4 |u|"t1+®)~1) for some § > 0,
where 6;; is Kronecker’s delta. (For example, for u € R, K(u) = H?;lk(uz) for 7 =1,2,3 or 4 with
dy =d.)
(#7) The bandwidth sequences hy = O(n~='/%1) and hy = O(n=1/%2) are such that 2(d; + d3) < §; <
2r + (dl +d3)/2, di < 69 < 2r +dy and 51d1/(d1 + dg) < 6y < 61.

Assumption A.3 (Weight functions )
(¢) The nonnegative weight function a is chosen such that f(z,z) is bounded away from zero on the

compact support A of a(x, z), i.e.,( iI?;f Af(ac,z) =b>0.
x,z)€

(1) The weight function g, has full support on R is bounded, even, integrable and everywhere
positive, and is chosen such that its corresponding characteristic function H is real-valued and boundedly
(r 4 1)- differentiable.

(7i1) The weight function g is uniformly bounded, integrable and nonnegative everywhere on its
support S.

Remarks.

Assumption A.1(%) requires that {W;} be a stationary absolutely regular process with geometric decay
rate. This is standard for application of a central limit theorem for U-statistics for weakly dependent
data (e.g. Fan and Li 1999a). This condition is not stringent because it is weaker than ¢—mixing,
and many well-known processes are absolutely regular with geometric decay rate.'® For example, linear
stationary ARMA processes satisfy this condition provided the innovation process {e;} satisfies certain
conditions (e.g. one sufficient condition is that {e;} has absolutely continuous distribution with respect
to Lebesgue measure). Moreover, under certain conditions, a large class of processes implied by numerous
nonlinear models such as bilinear models, NLAR models and ARCH models satisfy absolute regularity
with geometric decay rate (see Fan and Li 1999b)). A.1(ii) and (¢i¢) are primarily smoothness conditions,
which are weak in the sense that they are similar to those for the case of independent data. Similar
conditions are used in Li (1999).

Assumption A.2(7) requires that the kernel be of second order or higher. Unless d; + d3 = 2, a high
order kernel has to be used, which is nevertheless common in the literature. See Robinson (1988) and Li
(1999) among many others. Assumption A.2(i7) specifies conditions on the choice of bandwidth sequences.
Under the assumptions made on the bandwidth sequences, we have in particular that nhgdﬁdz)/ 2or 0,
nh§d1+d3) — 00, nhd' — 0o and nhH " — C for some C € [0,00), ha/hy — 0 and h{"T%) /pd 0.
Thus asymptotically we have that h% > h' > h§d1+da).

Assumption A.3(7) is discussed above. A.3(i%) is not as strict as it appears. The uniform boundedness

of H comes free as one important property of characteristic functions. That H is real-valued and bound-

107t is well known that the ¢—mixing condition has limited applications; for example, an ARMA process is never ¢—mixing
but generally geometrically absolutely regular (Harel and Puri, 1996).



edly (r + 1)- differentiable is also easily met in practice by choosing gy appropriately.'! For example,
one can choose gy as a standard normal density function on R%. Alternatively, one can choose it to be
a double exponential density function with mean zero and arbitrary finite variance. The main aspect
of Assumption A.3 that is of potential concern in applications is how to choose gg and g so that any
numerical integration can be done quickly or one can work out the integration analytically. We return to
this point in Section 5.

Our first main result is that the test statistic is asymptotically normally distributed with asymptotic
bias terms that can be consistently estimated. To state the result, we define the following notation:

a(y; Ty 2, 7—) = [H(y + T) - m(x, Z; T)]/f(:l}, Z)?

Blysw.7) = [H(y + 1) — m(z; 7))/ (),

o?(z,z;7) = B{{HY +7) —m(X, Z;7)?|X = 2,7 = 2},

oX(x;7) = E{{HY +71) —m(X;7))| X =z},

By = Cy (4t d) [ [ 02(2,27) a(z, 2) d(z, 2)dG(7),

By = —2Cy" [g [ 0% (x, 1) [f(x,2)/ f(2)] a(z, 2) d(x,z)dG(T), and

By= Oyt [ [, 0*(i7) [f(2,2)/ f(2)] a(a, 2)d(z, 2)dG(7),
where

C1 = [ k(u)?*du and Cs = k(0).
For simplicity, we will often omit the integration ranges. Further, define

02 = 2050 Fds) [ [ [[0%(z, 2;7,7")]2a(z, 2)2d(z, 2)dG(T)dG(T"),
where

Cs = [p( [ k(u+v)k(u)du)?dv and

o(z,z;7,7) =cov(H(Y +7), HY +7) | X = 2,7 = 2).

Assumptions A.1 — A.3 guarantee that the C!s and o2 are well defined and bounded away from zero

and infinity. For any given univariate kernel satisfying Assumption A.2(7), the C;’s can be calculated
explicitly. Take r = 4 as an example. If the fourth order kernel k(*) is constructed from ¢(-), the p.d.f.
of the standard normal distribution, then k(u) = (3 — u?)p(u)/2, and the C/s can be obtained as follows:
Cy =27/(32/7), Cy = 3/(2¢/27), and C3 = 7881/(81921/27).

We can now sate our first result.

Theorem 3.1 Under Assumptions A.1 — A.3 and under Hy, then,
nh{" D g R By T By — nthy D Bs} L N(0,03).

Remarks.

The proof of the above theorem relies on the expansion of the functional I'(*, F) around T'(f, F') as
done by Ait-Sahalia et al. (2001) and the use of some preliminary results in Tenreiro (1997). In studying
goodness-of-fit tests for kernel regression, Ait-Sahalia et al. derive the expansion of their functional for
the sum-of-squared departures between the restricted regression and the unrestricted regression. As in
their case, we carry out the second order expansion, because the first order terms vanish under the null
hypothesis. Tenreiro (1997) uses U-statistic theory to study the asymptotics for the integrated squared

1 One can relax the assumption that H be real-valued using somewhat more complicated notation.



error of kernel density estimators (see also Tenreiro, 1995, and Gourieroux and Tenreiro, 2001), and his
result can be adapted to our framework.
To implement the test, we require consistent estimators of the bias terms. We denote the consistent
estimators of these bias terms as BJ, j=1,...,3, which are:
By = Cyitdan =ty f{Uhl Xt, Zg;7)a( Xy, Zt)/fhl (X, Z) }dG(7)
=20, 1S f{ail (X1, Zi; 7Va(Xe, Z2) ] Fro (X)) YAG(7)
By=Cyhn f{oh2 Xiim)a(Xys, Z4)/ Fy (X0)}dG(7),
CHE 203(d1+d3)n_1 S [ 6h (Xe, Zo T, 7)) 2a( Xy, Z:)2/ F (X+, Z2)dG(T)dG(7"),
where

¥
|

2
52 (2:7) = e 1Kh2($—Xt)H2(Yt+T)[ ;L—lliilz(x_Xt)H(}/t'i_T)}
: Zt:l Kh2 (x - Xt) t=1 Khz (l‘ - Xt) 7

0_2 (l‘ o 7_) Zt 1Kh1( Xt,Zth)HZ(Y;#»T) _ |:Z?—1 Khl(xXtszt)H(}/;ﬁ+T):|2
M ;LZI Khl(x_X“Z_Zt) Z;;l Khl(x_Xt,Z_Zt) ’
and
e v K (2= Xy, 2= Z)H(Y, + 1)H(Y, +7')

R A
O @z T) I K (o = X0,z = )

_Z?:l Kp(x—Xe,2 = Z)HY, +7) Y p Kpy (v — Xy, 2 — Z ) H(Y; + 7)
Zyzl Khl (l‘ - X,z — Zt) Z?:l Khl (x - X,z — Zt) -

It is easy to show that &5 and Bj, =1, 2, 3 can be substituted for o3 and the B;’s in Theorem 3.1 with
no effect on the asymptotic distribution.

We then compare
Ty, = nh§d1+d3)/2{f - nilhf(dﬁdf‘)él - nilhfdléz - nflh;dlgg}/\/ﬁf (3.1)

with the one-sided critical value z, from the N(0,1) distribution, i.e., z0.01 = 2.327, 29.05 = 1.645 and
z0.10 = 1.282, and reject the null when T} ,, > 2,.

3.2 Consistency and local power properties

In this section, we start by studying the consistency of the test, i.e., its ability to reject a false null hy-
pothesis with probability approaching 1 as n — co. We then examine its local power, i.e., the probability
of rejecting a false hypothesis, against sequences of alternatives that get closer to the null as n — oco.
This is given more precisely as follows.

Proposition 3.2 Under Assumptions A.1 — A.3, the test based on the statistics (3.1) is consistent for
all F' such that T'(f,F) > e > 0.

Remarks.

Note that the above proposition is equivalent to saying that {E[H(Y + 7)|z, 2] — E[H(Y + 7)|z|}
xa(x, z) # 0 in a region of positive density -F X G. In theory, we would like the support A of a(-) to be as
large as posable In practlce it is usually taken that A = A} x Ay C R" x R Ay = {x = (11, ...,24,) €
Rb oz € [X; —c SX , Xi+c SX] for some positive constant ¢, with X; and SX being the sample
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average and standard deviation of X;, respectively; and A, is defined analogously.'?> Note that here the
support A is data-dependent, but this has no asymptotic impact on the distribution of our test statistic.

We now examine the power of our test against the sequence of local alternatives defined by a sequence
of densities fI"l(z,y, z) such that, for f("(z,y) = ff[”] (z,y,2)dz, fI(x,2) = ff[”] (z,y, 2)dy, f"(z) =
[ "z, y, 2)dydz, we have

110 @,y 2) — f(2,y, 2)||oo = o(n~ /2Ry (BT,

Let o, — 0 asn — oc. Let E,, denote expectation under the law associated with f[™. Define m"(z, z;7) =
E JH(Y +7)|X = x,Z = 2] and m!"(z;7) = E,[H(Y +7)| X = z]. Given our setup, the local alternative

can be specified as'?
Hy(ay,) : sup{|m["] (x,2;7) — ml" (z;7) — anA(z, 2;7)| : (2,2) € ROT 1 ¢ Rd2} =o(an) (3.2)

where A(x, z; 7) satisfies

n—oo

6= lim // A%(z, z;7)alz, 2)dFM (2, 2)dG(T) < oo,
A
where FI"(z, 2) is the c.d.f. associated with fI"(z, 2).

The following proposition shows that our test can distinguish local alternatives Hi( «,) at rate

a, =n~Y th_(lerdB)/ * while maintaining a constant level of asymptotic power.

Proposition 3.3 Under Assumptions A.1-A.8, suppose that o, = n’l/zhl_(dl+d3)/4 in Hi( o). Then,
the power of the test satisfies

Pr(Tyn > zo|Hi( ap)) = 1 — (24 — 6/01).
Remarks.

Proposition 3.3 says that our test statistic 71, has nontrivial power against Hy( o) with o, =

n= 12 (/A whenever § # 0. The rate oy, = n~1/2hy “179)/% g glower than the parametric rate

n~1/2 as hy — 0, but is faster than n~!/%. For example, when d; = d3 = 1, one can choose hy x n~ /6,
—1/5 *1/2h1_(d1+d3)/4 —5/12

—1/2

ho x n , and have n xn . which converges to zero faster than n~/3. The rate

a, could be made even closer to n but is always slower than n~1/2. In practice, we need to choose
hy and hs to balance the level and power in finite samples, and data-driven methods will be desirable in

choosing the h's for simulation and empirical applications.

4 Extensions

Theorem 3.1 covers the asymptotic null distribution of the test statistic when the null hypothesis involves

a stochastic process that has observed continuously-valued realizations. While this case suffices for many

12 Alternatively, one can use the Bartlett kernel function (or other density-form function) as the weighting function a. For
example, if the i'th element in U = (X, Z), U;, has mean zero and standard deviation one (perhaps after being recentered
and rescaled), for i = 1, ...,d, one can use a(u) = IIL_; [(1/2 + 1/4u;)1{—2 < u; <0} + (1/2 — 1/4u;)1{0 < u; < 2}]. In this
case, a has compact support [—2, Z]d.

13 Alternatively, one can specify local alternatives in terms of densities as in Su and White (2002): f[™(y|z,z) =
" (yl2)[1 + anA(z, y, 2) + 0(an)An(z,y, 2)]. Then A(x, z;t) = nllmwf H(y + t)A(z,y, 2) f" (y|z)dy in (3.2).
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empirical applications (e.g., a nonparametric test of Granger non-causality), our testing procedure is
potentially applicable to a much wider range of situations. We now discuss several cases that generalize
the basic result in the last section but focus on the case of testing for conditional independence with

parameters estimated.

4.1 Conditional independence test with unobservables

In this subsection, we consider the case for which W = (X', Y’, Z’)’ is not observed but can be estimated
using a finite-dimensional parameter estimator.!* Asymptotic results for this case are useful when the
conditional independence test is conducted using residuals or other estimated random variables. An
example is given in the introduction of Su and White (2002), in which a sample selection model is
parametrically specified.

Now the observed process is written {M; € RF, t > 0}. Of interest are certain residual or index
functions calculated from M, that is, W(M,0) = (X(M,0),Y (M,0), Z(M,0)) € Rh+d2tds = R4 where
the parameter 6 belongs to © C RP. The null hypothesis to be tested is that

H() : Y(M, 90) 1 Z(M, 90)|X(M, 90) (41)

for some particular 8y € ©, whose value is unknown to us.

Denote the probability density function of W = (X,Y, Z), (X,Y), (X, Z) and X by f(w;0), f(x,y;0),
f(z,2;0) and f(x;0), respectively. Let F(w;0) be the c.d.f. of W. Also, let f(w) = f(w;6p), f(x,y) =
flx,y;00), f(z,2) = f(x,2;00), f(x) = f(x;0p) and F(x,z) = F(x,z;0p). Let Ey be the expectation
under the law associated with f(-;0). Define m(z, z;7,0) = Eg(H(Y +7)|X = x,Z = 2z) and m(z;7,0) =
Ey(H(Y + 7)|X = x). Under the null, we have

Ty(f, F:0) = / / im(z, 7 7,0) — m(: 7, 0)]2 a(z, 2 0)dF (x, 2 0)dG () = 0, (4.2)

for & = 0y, the pseudo-true underlying parameter, where a(z,z;6) = a(x(0),2(0)) is a nonnegative
weighting function which depends on 6 only through (z, z) and is otherwise the same as a(z, z) used in
Section 3.

We suppose that there is an estimator 0 of 6 that is /n—consistent under the null hypothesis.'> In
some cases, there are many candidate estimators. In particular, Linton and Gozalo (1997) show how one
can obtain y/n—consistent estimates with the null hypothesis imposed. To implement the test, we replace

s (f, F;0) by its sample analogue

2

~

T'5(6) a(z, z,0)dF (z, 2, 0)dG(T)

rz(f,ﬁ;@)z//A[mhl(x,z;Tﬁ)fth(x;T,é)}

- Y / [0, (@), Z4(@) ) = 0, (X(0); 7)) a(X,0), Z2(6))G(r) (4.3)
T=1

M4 Extension to the case in which an infinite-dimensional parameter estimator is allowed is underway. This is very
important in some semi- or non-parametrically specified simutaneous models. The major difficulty lies in the establishment
of stochastic equicontinuity (SE) for the underlying empirical process with a sharp convergence rate. Results in Andrews
(1995) need to be strengthened by using some primitive conditions for SE in Andrews (1994).

15This assumption can be relaxed. We only need to requre that the estimator 9 converge to 0 at a sufficiently fast rate.
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where, for example, my, (z, z; 7,5) = mp, (x(@), z(@), 7) is the standard N-W kernel estimator of m(z, z; 7',5)
by using “observations” {W;(0) = (X:(0),Y:(0), Z:(0)),1 <t < n}.
Under some regularity conditions, we will show that

T2 (6) = T'2(60) + op(n~hy (B F9)/2), (4.4)

in which case we can say that our test for conditional independence is nuisance-parameter free.

Specifically, we make use of the following additional assumptions.

Assumption A.4

(i) V(6 — 00) = Op(1).

(i) {M; € R, t > 0} is a strictly stationary absolutely regular process with mixing coefficients 3,,
that satisfy 3,, = O(p™) for some 0 < p < 1.

(1ii) Wy(6p) satisfies Assumptions A.1(i7) and (¢it).

(tv) The joint density f(w;0) of W3(0) is (r+1) times continuously differentiable in 6 in a neighborhood
O C O of by.

(v) The weighting function a(u) = a(z, z) is twice continuously differentiable a.e.-u on its support A
and Wy (0) = W (M, 0) is twice continuously differentiable in 6 in a neighborhood ©g C © of 6y a.s..

Moreover,

) da 8?2
E — W (M,,0 E —— Wi (M, 0 ;
e |50 (M, )H<°°’ gsﬁgo‘awiaeae’ (M, )H<°°
and 52 5 P
a
Eeseué)o M%M(Mtﬁ)wwj(Mtﬁ)H < 00,

where W; (M, 0) is the ith element of the random vector W (M, 0).

Assumption A.4(iv) implies 0y is an interior point of ©. Assumption A.4(v) is standard in the
literature of nonparametric kernel estimation with estimated random variables; see Assumption NP9 in
Andrews (1995). Like Linton and Gozalo (1997), we require that W (m;#) be second order continuously
differentiable in 6. The difference is that we don’t assume that W (m;#0) is uniformly continuous in m.

The large sample behavior of fg (/9\) is given in the following corollary, which is proved in Appendix

C.

Corollary 4.1 Under Assumptions A.1 — A.4 and under Hy, if nh?(dﬁdg)/%r2 — 00, then
i HTY(fL F30) = To(f, Fi00)} = 0, (1).

Note that the above corollary implies that the variance of the \/n—consistent estimator 8 does not
affect the limiting distribution of Fg(f, F ,5) and that we can ignore the fact that 0 is estimated for
the purposes of testing. The proof of the above corollary relies on the second order Taylor expansion of
T, (5) = I‘g(f, ﬁ,@) around 6. Unsurprisingly, due to the finite dimensionality of § and the smooth nature
of the functional I's, high level tools like stochastic equicontinuity are not required for our purposes. We
remark that our problem is quite different from the situations discussed in White and Hong (1999) where
stochastic equicontinuity plays an indispensable role. In our case, 9 is not separable from my, ('; /9\) In
other words, when 6 = 6y, My, (';7, 6p), j = 1,2, are the estimators for the true conditional expectations,
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as desired. In contrast, White and Hong (1999) treat the nonparametric kernel estimators (7’s in our
notation) themselves as an infinite-dimensional parameter, and what makes the difference is that their
finite-dimensional parameter estimator (7, in their notation) is separable from the infinite-dimensional

o~

parameter estimator (6, in their notation), whereas this is not satisfied in our case.

4.2 Further Extensions
4.2.1 Limited dependent variables and discrete conditioning variables

As mentioned in the introduction, our test is also applicable to situations where not all variables in
(X,Y, Z) are continuously valued. Although we have made reference to the joint density f(x,y,z) to
facilitate the functional expansion in a natural way, there is no explicit use of the continuity of the random
variable Y in our derivations. In particular, the joint density f(z,y,z) can be replaced everywhere by
f(z, 2)dF (y|z, z) without changing any of the derivations. This is more than a superficial change, as it
allows the application of our test to any situation involving limited dependent variables. For example, Y
may be a discrete response, or a more complicated censored or truncated version of a continuous (latent)
variable. For a different approach, see Su and White (2002). Also, one can allow a mixture of continuous
and discrete conditioning variables. The modification can be done by following the approach of Racine
and Li (2000).

4.2.2 Nuisance parameter

Our results produce a testing procedure based on a direct comparison of two sequences of nonparametric
regression estimators My, (z, 2; 7) and My, (2; 7) indexed by the nuisance parameter!® 7. Instead of taking
finitely many gridpoints over the support of dG(7), we integrate out T over a compact support as in Hong
(1999). This ensures a reasonable ominibus test which has a nice limiting null distribution. As Bierens
(1990) shows, if (X, Z) is bounded on its support, we can limit 7 to a neighborhood of zero. Let ® be
an arbitrary Borel measurable bounded one-to-one mapping from R*+93 into R%*%; then conditioning
on (X, Z) is equivalent to conditioning on the bounded random vector ®(X, 7Z), for ®(X, Z) and (X, Z)
generate the same Borel field. Thus it is not restrictive to limit one’s attention to the case where (X, 7)
is a bounded random vector.

4.2.3 Bias correction

There are three bias terms to be corrected in our test statistic. However, if the data are i.i.d., it
can be shown easily that the second and third terms of the bias can be removed in our setting by
appealing to the clever centering device of Hardle and Mammen (1993). Given 7, we can first compute
the conditional expectation estimator M, (x;7), then compute the kernel regression of mp,(z;7) on

(z,2), say §mp, (z, z;7), and base the test on the difference between My, (z, z; 7) and smy, (v, 2;7) . Note

16Strictly speaking, (x,z) are also nuisance parameters.
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that for U{L = (X17 -~-7Xn; Zl, ---7Zn)7

Elmn, (z, 2 7)|UT] = %ZKhl(l‘—Xtaz—Zt)E[H(YHrT)IU{L]/ﬁn(%Z)

= > K (o Xez — Zom(Xe, Zi 7]/, 2),

where the last equality follows from the i.i.d. assumption (in fact only independence is needed). Under
the null, m(Xy, Zy; 7) = m(Xy; 7) as. for every 7 € R% and we are thus led to replace iy, (z;7) in our
statistic by

Smp, (@, 2;7) ZK’“ — Xy, 2 — Z)ny (X 7)) fn, (3, 2)

to form T = LS ([, (X, Ze;7) — 870n, (Xe, Zos )2 a(Xe, Z4)dG (7).

This procedure differs from our previous approach in that the restricted regression my, (x; 7) is replaced
by a kernel-smoothed version of it. As a result, the last two of the three bias terms in Theorem 3.1 become
asymptotically negligible. In practical terms, this would reduce the need to do bias correction from three
terms to one term. When the i.i.d or independence assumption fails, the above intuitive argument does

not go through but the procedure still works. The following corollary is formally established in Appendix
C.

Corollary 4.2 Under Assumptions A.1-3, we have that under Hy,

Ty = nh\TE/2T _ g1yt gy, 525 N(0,1). (4.5)

4.2.4 Testing for independence

It is possible to extend our procedure to the case where d; = 0, i.e., testing for independence of Y and
Z. In this case, the null hypothesis reduces to

Hy - Pr{f(Y|2) = f(Y)} = L.

The alternative is that f(y|z) # f(y) over a non-negligible range of the support of the joint density
f(y,z). To test HY, we suggest the following test statistic

s =T(f, F) = % 3 / |ny (Zei7) = H)|* a( Xy, Z)dG(7), (4.6)
t=1

where H(t) =n~t3 1 H(Y; + 7), and iy, (z;7) is the NW kernel estimator of E(H(Y; + 7)|Z; = 2)
using bandwidth h; and a product kernel of k, say. Note that we still use the bandwidth /i, mean-
ing that it satisfies Assurnption A.2 (ii) where d1 = 0 and the condition on hy is redundant. Let B =

Crlan=t o0 [{5h, (Zi7) Zt)/fin (Z0)}dG(7), 51 = 2C5%n = Y0, [ [[57, (Zi 7, 7)2a(Zx)?/ fi, (Z)
dG(1)dG(1"), where Uil (z;7) and & O'hl (z,T,T) are deﬁned as Uil (x,2;7) and Uhl(l‘,Z,T,TI). One can
readily modify the other assumptions in Section 3 and show that

Ty = nh /2Ty — n~'h7% B}/\/5 (4.7)

is asymptotically distributed as N(0,1) under the null. For brevity, we don’t repeat the argument.

15



4.2.5 Relation to the bootstrap

One can develop suitable versions of the bootstrap or other resampling methods which may improve the
small sample performance of our test. In a similar but i.i.d. context, Hardle and Mammen (1993) show
the validity of the wild bootstrap for obtaining the critical values for their goodness-of-fit test statistic.
It is routine to justify that subsampling works in our context (Politis et al. 1999). Simulation results
suggest that subsampling produces correct critical values but does not result in significant improvement

despite its high computational cost.

5 Monte Carlo experiments

In this section we report results of some Monte Carlo simulation experiments designed to examine the
finite sample performance of our nonparametric conditional independence test. We conduct simulation
experiments extensively on testing for Granger causality and choosing the right order of nonlinear autore-
gressive (NAR) processes. For each DGP under study, we standardize the data {(X;, Yz, Z;), t = 1,..n}

before implementing our test so that each variable has mean zero and variance one.

5.1 Testing for Granger noncausality

For Granger noncausality, our simulation covers three cases. We set d; = dy = d3 = 1 in the first case,
d; =2 and dy = d3 = 1 in the second case, and d; = 3 and dy = d3 = 1 in the third case.

We use the following data generating processes (DGPs) for the first case:

DGP1: Wy = (e14,€2,4,€3.¢), where {€14, €24, €3} are i.i.d. N(0, I3).

For DGP2 through DGP7, W = (Y;—1, Y}, Zi—1), where Z; = 0.5Z,_1 + 24, and

DGP2: Y; =0.5Y;_1 +¢€1,4;

DGP3: Y; =0.5Y;_1 +aZ;_1 + €1,t;

DGP4: Y; = 0.5Y;_1 + aZf | +e14;

DGP5: Yy =Y, 1Zi—1 + €145

DGP6: Y; = 0.5Y;_1 + (0.5 + 0.5a) Z;_1€1 4

DGPT: Y; = Vhier s, he = 0.01 +0.5Y2, + 0.5aZ7 1; and

DGP8: Wy = (Yi—1,Y:, Zy—1), where Y; = \/hy 614, Zp = \/haea,e, hay = 0.0140.1hy 1 +0.4Y2  +
aZ} |, hat = 0.01+0.9ho 1 +0.05Z7_,, where {1+, e2+} are i.i.d. N(0,I>) in DGPs 2-8 and o = 0.5
in DGPs 3-8.

DGP1 and DGP2 allow us to examine the level of the test. DGPs 3-8 cover a variety of linear
and nonlinear time series processes commonly used in time series analysis. Of these, DGPs 3-5 (resp.
DGPs 6-8) are alternatives that allow us to study the power properties of our test for Granger-causality
in the mean (resp. variance). DGP3 studies Granger linear causality in the mean whereas DGPs 4-5
study Granger nonlinear causality in the mean. In DGPs 6-8, {Z;} Granger-causes {Y;} only through
the variance. A conditional mean-based Granger causality test, linear or nonlinear, may fail to detect
such causality. Note that DGP7 is an ARCH-type specification and DGP8 specifies a bivariate GARCH
process. Consequently, the study of such processes indicates whether our test may be applicable to
financial time series. These DGPs are identical to those used in Su and White (2002).
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We use a fourth order kernel in estimating all required quantities: k(u) = (3 — u?)p(u)/2, where
©(u) is the p.d.f. of the standard normal distribution. We choose the weighting function a(z, z) to be an
indicator function on the compact set A = {u = (u1,...,Ug,+ds) © |wi| < 1.5,i=1,...,d1 +d3} and choose
both go(*) and ¢(*) (see Assumption A.3) to be a standard normal p.d.f., which is in accordance with
Assumption A.3. For this particular go, the corresponding characteristic function H(y) = [ e™¥dGo(u)
has the simple form H(y) = exp(—y?/2). Given our choice of gy and g, we can work out the integration
analytically so that no numerical integration over dG(7) is required.

Since we have two parameters to choose, namely, the bandwidth sequences, h; and hs, and it is
difficult to pin down the optimal bandwidth sequences, we choose h; = n=6 and he = cn~5 and let ¢
vary over an interval to be specified later. Note that that hy (resp. hs) is proportional to the optimal
bandwidth for estimating the joint density f(x,z) (resp. the marginal density f(z)) if a second order
kernel were used instead. Both choices are allowed by Theorem 3.1 or Corollary 4.2. In some preliminary
simulations, we find that the averages of ¢ chosen by leave-one-out least squares cross validation for the
marginal density f(x) range between 0.7 to 1.1 across different DGPs. Also, we find through preliminary
simulations that finite sample improvement can result if we ignore the second and the third bias correction
terms in calculating T4 ,,. One possible explanation is that these two terms are of smaller order than the
first bias term in (3.1), and their estimation error is relatively large in small samples. For this reason, in
all the following simulations, we only correct the first bias terms in 77 .

For DGPs 1 and 2, we first conduct 1000 repetitions for each sample size and each value of ¢ under
study. Specifically, we choose n to be 100 and 200 with ¢ equally spaced on [0.5, 2], which includes the
range of the averages of cross-validated values for c¢. Figure 1 and Figure 2 plot the empirical rejection
frequency of our tests 17, and 7% ;, as a function of ¢ where the sample sizes are 100 and 200, respectively.

First, we comment on the test 77 ,. From the figures it appears that the level of T} ,, is well behaved
over a large range of values for ¢ and the test is not sensitive to the choice of ¢ . For both sample sizes,
the 1% test is well behaved and the 5% and 10% tests are a little undersized. Note that the level curves
are not smooth for either DGP; we think this is because our number of repetitions is somewhat small.
Second, we comment on the test 15 ,,. Surprisingly, for both sample sizes under study, the level curves
are trending for all of the 1%, 5% and 10% tests. For the 1% test, it tends to be undersized for small
values of ¢ and oversized for large values of c¢. For the two other levels, the tests are undersized for the
range of ¢ under our study.

Third, when we increase the sample size to 500 or 1000, we find that the level of the test 77 ,, tends to
decrease for fixed values of ¢ and the level of the test 1%, diminishes even faster. So we propose to use a
tuning parameter a,, = log(n/25) to prevent the level from diminishing too fast asymptotically. Namely,
we use hy = (nan)_% and hy = c(nan)_% where we adjust ¢ when the sample size doubles. For example,
for n < 200, ¢ = 1.5 is a good choice for a variety of DGPs that we study but don’t report here. For
n = 500 or so, ¢ = 2 is a good choice. For n = 1000 or so (resp. 2000 or so), ¢ = 2.5 (resp. 3.5) works well
in simulations. This device is used in obtaining the empirical rejection frequency in the following study.

We now compare our tests with two tests proposed by Linton and Gozalo (1997) and a test by Su and
White (2002). Linton and Gozalo (1997) base their nonparametric tests of conditional independence on
the functional A, (w) = {n ™' 3} 1(W; S w)} {n ' Y} 1(Xy < 2)}—{n '3/ 1(X; <2)1(Y; <)}
x {n7tY 01Xy < @)1(Z < 2)}, where w = (x,y,2). Specifically, their test statistics are of the
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Cramer von-Mises and Kolmogorov-Smirnov types: CM,, = n=t >0 | A2(W;), KS,, = maxi<i<y, [An (Wy)].
The asymptotic null distribution of both test statistics is non-standard so that a local bootstrap proce-
dure is needed to obtain the critical values.!”To implement the tests, we set the number of bootstrap
resamples as 100, use the product kernel of k& as before and choose the bandwidth parameter, b,,, for the
local bootstrap procedure according to b, = n=/5.

Su and White (2002) base a test for conditional independence on the Hellinger distance between the
two conditional densities f(y|x,z) and f(y|x), using the same bandwidth sequence h in estimating all
required densities, namely, f(x,y,2), f(z,9), f(z,2), and f(z). Let @ : R" x R®2 x R % — R be a
nonnegative weighting function with compact support AcC R, where d = dy + dy + ds, such that the
joint density f(z,y, z) is bounded below by b on A. Specifically their a is defined as in our Footnote 12.

2
Further define I'* = 2 30" | [1 - \/fh(XhY;t)fh(Xt;Zt)/fh(Xth;tht)fh(Xt)] a(Xy, Yy, Zy), B =
Cii fg Zi(xaya z)d(x,y,z), EQ = Cf1+d2n_l lezl |:6(Xt7}/t7 Zt)/ﬁL(Xta}/t)] ) §3 = Cld1+d3n_1 Z;;l

[5(Xt,Yt,Zt)/ﬁL(Xt,Zt)} , and 03 = 2CY [;a(z,y, 2)%d(z,y, z). For di = dy = d3 = 1, the test statistic
of Su and White (2002) can be written as

H, = nh?{ar* —n'h=B, + n~'h~(@+d) By 4 n~1p=(d1tds) By, /o2,

which is asymptotically distributed as N(0,1) under the null.

The simulations in Su and White (2002) are conducted for a variety of bandwidth sequences: h =
n~1/% where § = 8, 8.5 and 9, but here we only report the case § = 8.5 because the resulting level and
power tend to behave better than the other two cases. Table 1 reports the empirical rejection frequency
of the five tests, namely, CM,,, KS,, H,,T1,, and T3 ,, for nominal sizes 5% and 10%. We set ¢ = 1.5,
2, 2.5 for our tests 17, and T3, for sample size n <= 200, = 500 and =1000, respectively. Given the
computational burden of our experiments, for all tests but H,,, there are 1000 Monte Carlo replications
in the experiments for n = 100, 200 and 500, and 500 repetitions for n = 1000 when the null is true. The
number of repetitions is 250 when the null is false. For the test H,, the number of repetitions is 1000 for
all sample sizes no matter whether the null is true or not.

From Table 1, we see that all three tests have reasonably good size properties for small to moderate
sample sizes. For large samples, say n = 1000, the levels of all five tests are still well behaved. As
far as power is concerned, both 77, and 15, exhibit significantly greater empirical power in detecting
conditional dependence (Granger-causality) implied by DGPs 3 through 6 than H,,. In terms of empirical
power, CM,, and KS,, are dominated by both T} ,, and T ;, in all DGPs but DGP 3 and by H,, in DGPs
4 and 6-8. Even though there are some differences between T} ,, and 15 ,, across different DGPs, we think
that this is largely due to finite sample variation and the limited number of repetitions we use in our
study. Note that both T} ,, and T3, have slightly worse power in detecting deviations from conditional
independence that result from GARCH-type processes than H,,. For our small sample size (say n = 100),
we find that the power of H,, from DGPs 7 and 8 is extremely sensitive to the choice of bandwidth. We
emphasize that Su and White’s test can work as well as our test in large samples (n > 1000), but this

17The setup of Linton and Gozalo (1997) is with i.i.d. data. Their bootstrap procedure can be easily modified to account
for data dependence. The resulting bootstrap is a version of local bootstrap. See Paparoditis and Politis (2000) for more
about local bootstrap.
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does not necessarily hold for cases other than d; = dy = d3 = 1 because of the disadvantage of using the
same bandwidth sequence h in estimating all required densities in their approach.'®

To see how the above tests are sensitive to the pseudo-true parameter o that controls the degree of
dependence in DGPs 3-8, we choose 40 different o's , equally spaced values on the compact interval [0
0.7], in all the above DGPs. For each value of o, we conduct 2000 repetitions and calculate the empirical
rejection frequency for the tests CM,,, KSy, Hy,T1 ., and 15 .

Figure 3 reports the results for the above six sets of DGPs, with cases (a) through (f) corresponding
to DGPs 3-8 when « varies over [0 0.7]. Also reported in Figure 3 is the empirical power function for
the conventional linear Granger causality test with one lagged term. In the graphs, Lin stands for the
linear causality test, and CM, KS, Chfl, Chf2 and Hel stand for the tests CM,,, KS,,, Hy, 11 ,and 15 ,,
respectively. When the processes are truly linear, one expects the linear Granger test to be most powerful.
This is verified in Figure 3 (a). Except in this case, one can see that the linear Causality test performs
worst. From Figure 3, we see that T4, and T4, perform equally well (almost indistinguishable in most
cases) and both outperform H,, for non-GARCH type processes and CM,, and KS,, for all DGPs but
the linear one (DGP 3). For GARCH-type processes, H,, outperforms all other tests.

Since our test is fairly general, one can choose the weighting functions go(*) and g(*) (see Assumption
A.3) differently. One set of weighting functions may have better power properties than another set in
certain directions of deviations from the null hypothesis. Thus one may expect that for some weighting
functions, our test can also outperform H, for GRACH-type processes. We leave this investigation for
future research.

Next, we test for Granger non-causality with d; = 2 and dy = d3 = 1. We consider the following
DGPs:

DGPYI: Wy = (e1,¢,€2,¢,€3,t), where both {e1} and {e2,e3+} are i.i.d. N(0, I2).

For DGP2’ through DGP7’, W, = ((Y;-1,Y:—2),Y:, Z;—1), where Z, = 0.5Z;_1 + €2, and

DGP2: Y; =0.5Y;_1 4+ 0.25Y;_2 + €145

DGP3’: Y; = 0.5Y;_1 +0.25Y; o + aZi_1 +€14;

DGP4’: Y; = 0.5Y;_1 + 0.25Y;_2 + aZ2 | + €14

DGP5: Yy =aY;_1Z;1 +0.25Y5 o + €1 4;

DGP6": V; = 0.5Y;—1 + 0.25Y;_2 + (0.3 + aZi_1)e14;

DGP7: Y; = Vler s, he = 0.01 + 0.5Y,2 | + 0.25Y2, + 0.5aZ% ;; where a = 0.5, {e1,4, 0,4} is i.i.d.
N(0,I5).

DGP8’: same as DGP8.

Since the implementation of H,, becomes difficult here because of the previously mentioned bandwidth
selection problem, we only study the finite sample behavior of the tests CM,,, KS,,, T} nand 15 ,,. We use
the same kernel and weighting functions and number of bootstrap resamples as in the first case. The only
difference is that now we choose the bandwidth sequences differently. Specifically, we set h; = 1ln"7
and hy = n~% for the test Tiny h1 = 1.15(ann)~7 and ha = (ann)~5 for the test Ty, and b, = n~'/6 for
the CM,, and K S, tests. Sample sizes n = 100, 200, 500 and 1000 are studied. When the null is true,

18 The choice of bandwidth for these other cases becomes an extremely difficult task for the test of Su and White (2002).
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there are 1000 Monte Carlo replications in the experiments for n = 100, 200 and 500, and 500 repetitions
for n = 1000. The number of repetitions is 250 when the null is false.

Table 2 reports the empirical size and power properties of the four tests. As in the first case, both
T1,, and T3 ,, dominate C'M,, and K S,, for all nonlinear DGPs under investigation. The test 17 ,, tends to
behave a little better than 715 ,, for small sample sizes; they perform almost identically well for moderate
to large sample sizes. As the dimension of the conditioning variable increases, one might expect that the
power of the tests is adversely affected. Table 2 suggests this conjecture is valid for small sample sizes
but the effect of dimensionality is not severe. For the tests T4 , and 75 ,, the power is 1 or close to 1 for
all DGPs under study when n is 500 for the 10% test, whereas for the tests CM,, and K S,, the power is
less than 1 for GARCH-type processes even with n = 1000.

In the third case (d; = 3, d2 = d3 = 1), we use the following DGPs:

DGP1”: Wy = (€1,4,€2,4,€3,¢),where {e14} is i.i.d. N(0,1I3) and {e24,€3.} is i.i.d. N(0, I2).

For DGP2” through DGP7”, W} = ((Yi—1,Yi—2,Yi—3),Y:, Z;_1), where Z; = 0.5Z;_1 + €24, and

DGP2": Y; = 0.5Y;_1 + 0.25Y;_o + 0.125Y; 3 + €1.4;

DGP3": Y, = 0.5Y;_1 4+ 0.25Y;_o + 0.125Y; 3 + aZ;—1 + €143

DGP4”: Y, = 0.5Y;—1 + 0.25Y; 5 + 0.125Y;_3 + aZ? | + €14;

DGP5”: Y = aY;—1Z;-1 +0.25Y; 5 4+ 0.125Y;_3 + €143

DGP6”: Y; = 0.5Y;_1 + 0.25Y;_5 + 0.125Y;_3 + (0.3 + aZ;—1)e1 45

DGP7": Y; = Vhers, by = 0.01 +0.5Y;2, + 0.25Y,2, + 0.125Y;2 5 + aZ? ;; where a = 0.5 and
{81,“ Eg,t} is 4.4.d. N(O, IQ)

DGPS8”: same as DGPS.

We use the same kernel and weighting functions as in the first case. The only difference is that we
choose the bandwidth sequences differently and only consider sample sizes'® n = 200, 500 and 1000.
Specifically, we set hy = 1.15n_§, hy = n=% for both Ty, and T3, and b, = n~Y7 for the CM,, and
K S, tests. The number of repetitions is set as in the above two cases.

Table 3 reports the empirical size and power behavior of our tests. As we can see, the results are
similar to the second case above. The tests 11, and T, outperform the C'M,, and K., tests for all
nonlinear DGPs in terms of empirical power. The curse of dimensionality also exerts its expected effect.

5.2 Testing for the order of nonlinear time series

During the last two decades, interest in nonlinear models in economics, econometrics and statistics has
increased significantly. One area of wide interest is nonlinear time series model identification, and more
specifically, lag selection. See Auestad and Tjostheim (1990), Cheng and Tong (1992), Tjostheim and
Auestad (1994a, 1994b), Tschernig and Yang (2000), Finkenstadt et al. (2001), Lobato (2003), among
many others. In this subsection, we apply our test to determine the order d of a strictly stationary
[-mixing univariate autoregressive time series model of the form

}/t :g(}/lf—].?}/t—Za"-a}/t—dagt)a (51)

19We don’t consider the n < 200 case because we need to estimate nonparametrically a 4-dimensional density (d; +d3 = 4)

and this cannot be done with desirable accuracy with less than 200 observations.
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where the function g is unknown and {e;} is a noise process. If the model (5.1) is of the linear autoregres-
sive form, then the Akaike (1972) information criterion and its variations provide an appropriate toolkit
for determining the order of the process. Nevertheless, these methods are often not suitable if the process
is nonlinear. Auestad and Tjostheim (1990) and Cheng and Tong (1992), among others, have proposed
nonparametric order selection methods for the more general model

i =EYi|Yi—1,Yi—2,....Yi—a) +&¢ (5.2)

where the order of the process can be determined from estimating the conditional mean of Y; given its
past observations. Tjostheim and Auestad (1994a, 1994b) and Tschernig and Yang (2000) generalize the
order determination of ( 5.2) to the case

Yi=01(Yi—1,Yi—2, ... Yip,) + 52 (Yic1, Yioo, ..., Yiop, )er. (5.3)

Using a conditional density approach, Finkenstadt et al. (2001) consider order selection under the general
setting (5.1) in which the noise term &; may not be additive, which includes (5.3) as one special case.
Our work here is closely linked to this latter approach. The difference is that we offer a theory that
pertains to the conditional distribution, not just the conditional location or multiplicative conditional
standard deviation. As before, let f(:|') be the conditional density of one random variable given another.
The null of interest is
Ho(d) : f(Y3|Yi-1, .., Yica—1) = f(Yi]Yi-1, ..., Yia), (5.4)

i.e., conditioning on (Y;_1, ..., Y;_4), the random variable Y;_4_; has no explanatory power for Y;. If d* is
the minimum of d such that (5.4) is true, we say the nonlinear time series is of order d*. In the following,
we write Hy(d) : d* = d to represent (5.4). In the special case when d = 0, the test reduces to test of
serial independence of first order: Hy(0) : f(Yz|Yi—1) = f(Y;) and the test statistic T3, (see Eq. 4.7 in
Section 4) is used.

We consider the following DGPs in our Monte Carlo study.

DGP9: Y; = g4

DGP10: Y; =0.3Y;_1 + &4

DGP11: Yy = (/1 + 0.5Y% &5

DGP12: Y; = (—0.5Y;—1 +&1)1(Yee1 < 1) + (0.4Y—1 +e4)1(Yi—1 > 1);

DGP13: Y; = 0.8]Y;_1|%® +¢;

DGP14: Y; = 0.6®(Y;—1)Y;—1 + &+, where ® represents the cumulative distribution of a standard
normal distribution;

DGP15: Y; = 0.6Y;—1 4+ 0.35Y;_2 + €4;

DGP16: Y; = —0.5Y;_1 + 0.5Y;_o {1 + exp(—0.5Y;_1)} ' + ey

DGP17: Y, = 0.11log(Y;21) 4+ /0.1 + 0.9Y,2 yey;

DGPs 18-20: Y; = exp(—Y2 ;) + |bY;—2(16 — Y;_2)|e; with ; = 0.05,0.1 and 0.2 respectively.

In DGPs 9-16, {e;} are i.i.d. N(0,1). They are the i.i.d. sum of 30 uniformly independently dis-
tributed random variables each over the range [-0.1, 0.1] in DGP 17, and the i.i.d. sum of 10 uniformly
independently distributed random variables each over the range [-1/7, 1/7] in DGP 18-20.

DGPs 9 through 13 are studied in Hong and White (2000) in testing for serial independence. DGPs
14 and 16 are studied in Lobato (2003) in testing for nonlinear autoregression. DGPs 17-20 are used in
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Finkenstadt et al. (2001) in determining the order of nonlinear time series. DGP 9 is of order 0, DGPs
10-14 are of order one, and DGPS15-20 are of order 2. Note that all DGPs but DGPs 9, 10 and 15 are
nonlinear in the mean or in the variance or in both.

We test for Hy(d) : d* = d, where d = 0,1 and 2 sequentially. For each case, we use sample sizes
n = 100, 200 and 500 with 500 replications for each experiment to obtain the empirical rejection frequency
of the 5% test in Table 4. In testing for Hy(0): d* = 0, only DGP1 satisfies the null. We choose the same
kernel functions and weighting functions as in the previous subsection. The bandwidth is chosen to be
hy = 0.8n~1/5. From the top panel in Table 4, we see that our test can correctly reveal that the processes
are not of order 0 for DGPs 10-20. The power is excellent for second order stochastic processes (DGPs
15-20) for sample sizes as small as 100.

DGPs 9-14 satisfy the null Hy(1): d* = 1 and all DGPs satisfy the null Hy(2) : d* = 2. Nevertheless,
in testing for the former null, DGP 9 is not among the most informative nulls in the sense the true order
(0 here) of the underlying process is smaller than the tested order (1 here). Similarly, in testing for
the latter null, DGPs 9-14 are not among the most informative null in the sense the true orders (0 or
1 here) of the underlying process are smaller than the tested order (2 here). To check the robustness
of our testing procedure in the previous subsection, we use the same kernels, weighting functions and
bandwidth sequences corresponding to the right dimension. For example, in testing the null Hy(1):
d* =1, di = d2 = d3, and thus the bandwidth is chosen according to the first case above. For this case,
we see from the middle panel in Table 4 that the test behaves reasonably well for both level and power
for all DGPs under study. When testing for Hy(2): d* = 2, the level of our tests is well behaved for
small sample sizes but tends to be inflated for most DGPs with large sample sizes. Finding a suitable

explanation for this behavior is an interesting topic for future research.

6 Applications to financial time series

Although many studies conducted during the 1980s and 1990s report that financial time series such as
exchange rates and stock prices exhibit nonlinear dependence (e.g., Hsieh, 1989, 1991; Sheedy 1998),
researchers often neglect this when they test for causal relationships. As documented by Hiemstra and
Jones (1994), all prior studies of causal relationship rely exclusively on the traditional linear Granger
causality test, which unfortunately has little power in detecting nonlinear relationships as revealed in our
simulation studies.

In this section, we first study the dynamic linkage between pairwise daily exchange rates across five
industrialized countries, namely, Canada, France, Germany, Italy and the UK by using both our test T3 ,,
and the traditional linear Granger causality test. Then with the same technique, we study the dynamic
linkage between three US stock market price indices (Dow Jones 65 components, Nasdaq, and S&P
500) and the trading volumes in the New York Stock Exchange (NYSE), Nasdaq, and NYSE markets,

respectively.

6.1 Application 1: exchange rates

The data for the daily exchange rates in the six industrialized countries are obtained from Datastream
with the sample period from January 3rd, 1995 to December 17th, 2002 with 2077 observations total. The
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exchange rates are the local currency against the US dollar. Nevertheless, due to national holidays and
certain other reasons, some observations of exchange rates are missing but entered in Datastream with the
realizations from the previous trading day. Moreover, different nations have different national holidays
and thus different missing observations. Because we do causality tests with exchange rates from pairwise
countries, if the observation for one country is missing, we also delete that for the other country of the
pair. This results in varying numbers of observations for each pairwise test. Following the literature, we
let E; stand for the natural logarithm of exchange rates multiplied by 100.

Since both the linear Granger causality test and our nonparametric test require that all time series
involved be stationary and we are interested in the relation between the changes in the exchange rates,
we first employ the augmented Dickey-Fuller test to check for stationarity of exchange rates (E;) for all
five countries under investigation. The test results indicate that there is a unit root in all level series but
not in the first differenced series. Therefore, both Granger causality tests will be conducted on the first
differenced data, which we denote as AE; in the following text. Next, since the appropriate formulation
of a linear Granger causality analysis may need to incorporate an error correction term into the test if the
underlying variables (pairwise E; here) are cointegrated, we employ Johansen’s likelihood ratio method
to examine whether or not exchange rates for pairwise countries are cointegrated. The conclusion is that
there is no cointegration between any pair of exchange rates. Consequently, no error correction terms

need to be included in the linear Granger causality test.

6.1.1 Linear Granger causality test results

Let DX be the first differenced exchange rate in Country X and DY the first differenced exchange rate
in Country Y. Loosely speaking, the time series {DX;} does not (linearly) Granger cause the time series
{DY:} if the null hypothesis

Hop:p,=..=0,, =0 (6.1)

holds in
DYy =ap+a1 DYy 1+ ... +ap, DYy, + B, DXy 1+ .08, DXy, + € (6.2)

where ¢; ~ 4.i.d.(0,0?) under Hp, 1. An F—statistic can be constructed to check whether the null Ho , is
true or not.
Nevertheless, in order to make a direct comparison with our nonparametric test for nonlinear Granger

causality in the next subsection, we focus on testing for a variant?® of Hy f, :
Hyp:B=0 (6.3)
in
DY, =ayg+a1DY;_1+...+ OlLyDY—thy + ﬂDXt,i +e€, 1 =1,..., L. (64)

The results of linear Granger causality tests between pairwise exchange rates are given in Table 5,
where we choose L, to be 1, 2 or 3. When it is 1, we also choose L, to be 1 so that we only check
whether DX;_; should enter (6.4) or not. This corresponds to the first row in each panel of Table 5.

20Clearly, the null Hj ; is nested in the null Hy n1. The rejection of Hy 5, indicates the rejection of Hg nz but not the

other way around.
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When L, is 2, we choose L, to be 2. In this case, we check whether DX;_; or DX;_5 (but not both)
should enter (6.4) or not, which corresponds to the second and third rows in each panel of Table 5. The
case for L, = 3 is done analogously, corresponding to the fourth to sixth rows in each panel of Table 5.
To summarize the results in Table 5, we focus on the case of 5% significance level only. First of all,
most causal links are associated with the Italian and French exchange rates. The Italian exchange rate is
led by both the exchange rate in Canada and that in Germany at a variety of lags, and the exchange rate
in France links closely with that in Germany and the UK. Secondly, no other causal links are detected by
the linear Granger causality test at the 5% significance level. In particular, at one to two days’ lag, no
bidirectional causality is found and at three days’ lag, there is one bidirectional link between the exchange
rate in Germany and that in France. The question is whether there are some causal links that the linear
causality test fails to detect and others that cannot be detected by our nonparametric test for nonlinear

Granger causality.

6.1.2 Nonlinear Granger causality test results

To implement our test, we set all smoothing parameters according to those used in the simulations of
Tables 2-4. The null of interest is now

HO,NL . Pr(f(DYt|DYt,1, ...,DY;,Ly;DXt,h ...,DXt,LI) == f(DYHDYYt,l, ...,DY;,Ly)) =1. (65)

Due to the curse of dimensionality, we must choose L, to be small. Specifically, we study the cases
in which L, =1, 2 and 3, respectively. Further, for each test we only include one lagged DX, in the

t21

conditioning set. So we actually test for a variant*" of Hy nr, :

Hi yp  Pr(f(DY4| DYy, ..., DYy 1, DXy iy) = f(DY4| DY 1, ..., DYy r,)) =1, i=1,..., L. (6.6)

When L, is 1, we also choose L, to be 1 so that we only check whether DX;_; should enter (6.6) or
not. This corresponds to the first row in each panel of Table 6. When L, is 2, we choose L, to be 2. In this
case, we check whether DX;_1 or DX;_o (but not both) should enter (6.6) or not, which corresponds to
the second and third rows in each panel of Table 6. The case for L, = 3 is done analogously, corresponding
to the fourth to sixth rows in each panel of Table 6.

The results in Table 6 are interesting. First, the first row in each panel suggests that if we set L, =1
and L, = 1 in (6.6), our nonparametric test yields results different than the linear Granger causality
test. At the 5% significance level, the test reveals causal links between pairwise exchange rates in three
pairs of countries, each in both directions, although some links are stronger than others, according to
the magnitudes of the test statistics. They are (France, Germany), (France, Italy) and (Germany,
Italy). This suggests that at a one day lag, the exchange rates across the European countries (other than
the UK) interact with each other strongly and in most cases the dependence between exchange rates is
nonlinear, which the linear causality test fails to reveal.

One may argue that the above bidirectional causal relations are potentially spurious in that we have
not included enough lags of the dependent variable in the test. To check this, we increase L, to 2. The
results in Table 6 reveal that the causal relations are robust. Further, more causal links are detected

21The null HS,NL is nested in the null Hy nr. The rejection of HS,NL indicates the rejection of Ho nr but not the other
way around. In this sense, our test is conservative.
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at the two day lag. For example, the Canadian exchange rate is led by that in both Italy and Japan
and the exchange rate in Italy is led also by that in Canada. The UK exchange rates tend to lead all
other four exchanges by 1 or 2 days. When we increase L, further to 3, the results suggest that further
causal linkages between pairwise exchange rates may exist at various lags. One obvious reason for the
failure of the linear Granger causality test in detecting such causal linkages is that exchange rates exhibit
unambiguously nonlinear dependence. Hong (2001) studies the causal link between German and Japanese
weekly exchange rates and concludes that for causality in mean, there exists only strong simultaneous
interaction between the two exchange rates, whereas for causality in variance there are both simultaneous
and asynchronous interactions between them.

To facilitate further comparison between the linear and nonlinear test results, we use boldfaced num-
bers in Table 6 to denote the causal relations which are revealed by our nonparametric causality test but
not by the linear causality test at the 5% significance level. Similarly, the boldfaced numbers in Table 5
denote the causal relations which are revealed by the linear causality test but not by our nonparametric
causality test at the 5% significance level. From Table 5, we see that our nonparametric test fails to
reveal 6 linear causal relations at various lags, which suggests that our test can have less power than a
test specifically designed to exploit linearity. From Table 6, we see that our nonparametric test reveals
40 linear causal relations that can’t be detected by the linear Granger causality test, which is strong

evidence in favor of the nonlinear dependence between exchange rates.

6.2 Application 2: stock prices and trading volumes

Daily data for the three major stock market price indices and trading volumes have been obtained from
Yahoo Finance with the sample period from January 2nd, 1995 to January 10th, 2003. After excluding
weekends and holidays, the total numbers of observations are 2022 for the Dow Jones 65 composite and
Nasdaq series and 2020 for the S&P 500 series. Following the literature, we let P, and V; stand for the
natural logarithm of stock price indices and volumes multiplied by 100, respectively.

We first employ the augmented Dickey-Fuller test to check for stationarity of {P;} and {V;}. The
test results indicate that there is a unit root in all level series but not in the first differenced series.
Therefore, both Granger causality tests will be conducted on the first differenced data, which we denote
as AP; and AV; in the following text. Next, we employ Johansen’s likelihood ratio method to examine
whether P; and V; are cointegrated or not. The conclusion is that there is no cointegration between them.

Consequently, no error correction term needs to be included in the linear Granger causality test.

6.2.1 Linear Granger causality test results

We first let AP, and AV, play the roles of DX; and DY; in (6.4) and test the null that stock price does
not linearly Granger cause trading volume. Then we reverse their roles to test for the null that trading
volume does not linearly Granger cause stock price. The results of the linear causality test between stock
prices and volumes are given in Panel A of Table 7. At all levels of L,, we find causal links from stock
prices to trading volumes for the Nasdaq and S&P 500 data but not for the Dow Jones data at the 5%
significance level. Unambiguously, no causality from trading volume to stock price is revealed by the
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linear causality test.??

6.2.2 Nonlinear Granger causality test results

We first let AP, and AV; play the roles of DX; and DY; in (6.6) and test the null that stock price does
not Granger cause trading volume. Then we reverse their roles to test the null that trading volume does
not Granger cause stock price. The results for our nonparametric test are reported in Panel B of Table
7. From Panel B, we see that our nonparametric test reveals bidirectional causal relations between stock
prices and trading volumes at various levels of L, for all stock series. For L, = 1 and 2, bidirectional
causal links also exist between the Dow Jones price index and the NYSE trading volume.

To facilitate the comparison between the linear and nonlinear test results, we use boldfaced numbers
in Panel A of Table 7 to denote the causal relations which are revealed by the linear Granger causality
test but not by our nonparametric test at the 5% significance level. Similarly, the boldfaced numbers in
Panel B of Table 7 denote the causal relations that are revealed by our nonparametric test but not by the
linear Granger causality test at the 5% significance level. From Panel A, we see that our nonparametric
test fails to detect two causal relations revealed by the linear causality test. From Panel B, one can
tell that our nonparametric test can reveal 10 extra causal relations at various lags between stock prices
and trading volumes besides those revealed by the linear causality test, strong evidence in favor of the
nonlinear dependence between the two economic variables. One obvious reason for the failure of the linear
Granger causality test in detecting such causal links is that trading volumes may only have nonlinear
predictive power for stock returns.

7 Concluding remarks

This paper develops asymptotic distribution theory for a consistent nonparametric conditional indepen-
dence test. It is based upon properties of the conditional characteristic functions and transforms the
notion of conditional independence into the equivalence of two infinite collections of conditional moment
restrictions. Together with Su and White (2002), this resolves the long standing need in econometrics
for an asymptotic theory for a practical and powerful nonparametric test for conditional independence.
It is directly applicable to testing for Granger non-causality for strictly stationary absolutely regular
processes. It is applicable for both discretely and continuously valued random variables in the time series
context. Moreover, it is nuisance-parameter free in the situation where an unknown finite-dimensional
parameter can be consistently estimated at certain rates.

We also conduct some Monte Carlo experiments for our test. We find that the size of our test behaves
well and its power is considerable for a variety of DGPs under study, including both Granger causality in

the mean (linear or nonlinear) and Granger causality in the variance. Moreover, we compare our test to

22 As is done for the case of exchange rates, we also conduct the linear Granger causality test for the null (6.1) by using
the BIC and AIC to choose the numbers of lags, Lz and L, the maxima of which are set to be 10. Accoding to the BIC,
only one linear causal relation is found at the 5% significance level. That is, the S&P 500 stock price index tends to lead
the NYSE volume. According to the AIC, all the three stock price indices tend to lead the corresponding trading volumes
at the 5% significance level. No other causal links are found.
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that of Su and White (2002) and that of Linton and Gozalo (1997). We find that our test outperforms the
former significantly in all cases but the GARCH-type processes and dominates the latter in all nonlinear
DGPs in terms of empirical power.

To improve the asymptotic approximation to the finite sample distribution of the test statistic, one
could consider higher order refinements. However, it is well known that estimation of higher order
refinements is tedious, and this may not necessarily provide a sufficiently good approximation in finite
samples. An alternative procedure is to use some resampling techniques. The bootstrap may offer a finite
sample improvement. If the distributions of our test statistic and its bootstrap analogue admit Edgeworth
expansion (Hall 1992), we conjecture that the bootstrap distribution approximates the null distribution
of the test statistic with an error rate that can be arbitrarily close to O(n~'/?), and this will significantly
improve the normal approximation rate. Recently, Nishiyama and Robinson (2000) and Linton (2002)
establish the validity of Edgeworth expansion for a degenerate U-statistic with variable kernel. This
suggests that a rigorous proof for establishing the validity of Edgeworth expansion in our context should
be possible. Also, such an expansion will offer a solution to the choice of optimal bandwidth and we hope
to tackle this technical issue in the future.

There are certain issues that remain. First of all, our theory requires stationarity of the underlying
process, which may not be satisfied in some applications in economics. In particular, structural breaks can
invalidate our test procedure. Secondly, our test does not allow heterogeneity which may be prevalent in
cross-section data. Extension to this case can be accomplished by using a CLT for degenerate U-statistics
for independent but not identically distributed data (e.g. de Jong 1987). Third, as remarked earlier, there
is also room to extend our test to the case in which some of the random variables are nonparametrically
estimated. For this, stochastic equicontinuity (Andrews 1994, 1995) is an indispensable tool. Fourth,
there is a lot of latitude concerning the choice of weighting functions, and further research is required to
determine what weighting functions for our test can improve power against deviations from conditional
independence in GARCH-type processes. Finally, we have not addressed the optimality of the test
proposed here. The work of Andrews and Ploberger (1994), Bierens and Ploberger (1997) and Boning
and Sowell (1999) should provide useful tools in answering this issue.

27



Appendix

A Some Useful Definitions, Lemmas and Theorems

In this appendix, we introduce a definition, two lemmas and one theorem which are used in the proof of
the main theorems and propositions in the text.

Definition A.1 Let {U;, t > 0} be a d—dimensional strictly stationary stochastic process and F: denote
the sigma algebra generated by (Us, ..., Uy) for s <t. The process is called B—mixing or absolutely regular,
if as m — oo,

ﬁngg}\)[E[ sup {|P(A|F*)— P(A)[} — 0.

Ae]::im

The following Lemma is due to Yoshihara (1976); see also Li (1999).

Lemma A.2  Let {Uy, t > 0} be a d—dimensional stochastic process satisfying Assumption A.1(i) in
the text. Let h(vi,...,vy) define a Borel measurable function on R* such that for some § > 0 and given

J;

M = max{ [ |h(ve, ..., vi) P TOdF (v k)s | [rra Ih(v1, ey U)[THAF D (v, o, 0 ) AF P (041, o vp) }
exists. Then
|kad h(vl, .. ’Uk)dF Vi, .. fkad h Ul, ...,Uk)dF(l)(’Ul, ...,’L)j)dF(2)(’L)j+1, ...,’Uk)|

< 4M1/(1+5)ﬁ%(1+5)7
where m = ij41 — 5, F, FM) and F® are distributions of random vectors Uiy - Usp,), Vi = (Ui ., Usy)
and Vo = (U;

NSRRI

U.,.), respectively; and iy < ig < ... <.
The next lemma is due to Yoshihara (1989).

Lemma A.3 Let h be defined as above; then
E|E[h(Vi, Va)[Vi] = By, h(V, V)| < AMY (40 g1 (40,
where By, h(V1, Vo) = H(V) with H(v1) = Elh(vy, Va)].

Now, let g,(-) and h,(-,-) be Borel measurable functions on R¢ and R? x R?, respectively. Suppose
E[gn(Uo)] =0, E[hy,(Up,v)] = 0 and hy,(u,v) = hy(v,u) for all (u,v) € R? x RY. Define

G, =n"1/2 S 9n(Us), and

H, =n"" i<ici<nlln (Ui, Us) — Ehy (Us, Uj)]. B

Clearly, G,, and H,, are degenerate U—statistics of respective orders 1 and 2. Let p > 0 and {Uy,
t > 0} be an i.i.d. sequence where Uy is an independent copy of Uy. Define

un(p) = maX{ maX ||hn(Uia Uo)llp, ||hn(U07U0)||;D}

un(p) = max{ max IIGno(Uz,Uo)IIp,IIGno(Uo,Uo)IIp}

wn( ) = ||G7LO(U07UO)||1)7

zn(p) = Og% 12&2}( {||GnJ (Ui, U0)||pv ||G7LJ(U07 i)”p: ||G7LJ(U07U0)||;U}7

where G,.i(u,v) = E[h, (Ui, w)hy, (Uo,v)], and || - ||, = {E| - [P}/
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Theorem A.4 (Tenreiro 1997). Given the above notation, suppose there exists 6o > 0, vy < 1/2 and
v1 > 0 such that
(1) 11gn(Uo)lla = O(1);
(”) [gn( )gn(UO)] =c¢i+ 0( )7 1=0,1,2,..;
(#44) un (44 6o) = O(n);
(iv) vn(2) = o(1);
(v) wn(2+ 60/2) = o(n'/?);
(vi) zn(2)n" = O(1);
(vii) Elh

vii)
01

~2
0
Then (Gn, Hy) is asymptotically normally distributed with mean zero and covariance matriz l 9 ] ,

2 (Uo, Uo)]? = 253 + o(1).

~2
where 7 =co+2> 0 ¢

B Proof Theorem 3.1

We begin by studying the asymptotic properties of the functional " evaluated at (]?, F), using the func-
tional delta method. The only difference between I‘(f, F) and I= I‘(f, ﬁ) is that the latter is an average
over the empirical distribution function F instead of F. We will show in Lemma B.6 that this difference
is inconsequential for the asymptotic distribution of the test statistic. To bound the remainder term in
the functional expansion of F(]?, F'), we define the seminorms

l|g1]]s = max (( sup | [H(y+7)g1(z,y,2)dy|, sup Igl(w72)|> ,

z,2)EA, TES (z,2)€A
|lg2|ls = max ( sup | [H(y+7)g2(2,y)dyl, sup |g2()]
z€ANRYM ;7€ R2 zeAdel
where by convention g1 (z,z) = [ g1(z,y,2)dy and g2(z) = [ ga(x, y)dy.

Define Q; = {g; : Rhtdtds R g is bounded, J g1 =0, and ||g1]|s < b/2}, and Q2 = {go :
R&itdz — R gy is bounded, [ go =0, and ||ga||s < b/2}. Throughout this appendix, C' denotes a generic
constant which may vary from one place to another. The bar notation denotes an i.i.d. process. For
example, {W;,t > 0} is an i.i.d. sequence having the same marginal distributions as {W;,t > 0}. See
Lemmas B.5 and B.7 for details.

One of the main ingredients in the proof of Theorem 3.1 is the functional expansion of I'; summarized
as follows.

Lemma B.1 Let F be a c.d.f. on R%. Let g1 and gy belong to 0, i = 1,2, respectively. Then under
Assumption A.1(ii), A.3 and Hy, T'(-, F') has the following expansion:

T(fg; F / / { / (552, 2, 7)n (2, 2)dly — / B(y; 2, 7)gala, y)dy}2a<x,z>dF<x,z>dG<r>+R<g,F)

where
sup{ |R(g, F)|/([lg113 +[lg2112) : (g1, 92) € Q1 x Qa} < o0.
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Proof. Define

JHy+7)f(x,y,2) +1oi(2,y,2)]dy [ H(y +7)[f(,y) + 7g2(x, y))]dy
f(z,2) + 791 (2, y) f(@) + 7g2(2)

Nz, 2,7) =

)

and

) = / / oz, 2,7 a(z, y)dF (2, y)dG(r),

where (g1, ¢g2) are such that (Agy, Ag2) € Q1 X Qs for all 0 < A < 1. From the explicit expression for W(\)
and the properties of f and g¢’s, it follows that ¥ is three times continuously differentiable in A on [0,1].
Applying Taylor’s formula with Lagrange remainder to ¥, we get:

T(N) = W(0) + AW (0) + A2W"(0)/2 4+ N0 (1) /6,

where 0 < A* < . Note that ¥(0) = 0 under Hy and it is immediate to compute

N = [ [ 2ot 28R ED o0, yar .G,

and

(A // {{8‘” A2,z T)r +¢(A;x,z,f)W}a(x,y)dF(x,y)dG(T).

Under the null, ¥/(0) = 0 and

(0 //{/ oy . 2, 7)gr (@, , 2)dy — /ﬁ yiz, 7)ga(x, y)dy}2 % a(z, 2)dF (z, 2)dG(r).

One can characterize the remainder term by first computing ¥ (). The explicit formula for ¥ ())
is lengthy. By the Cauchy-Schwartz inequality and Assumption A.2 (ii) and A.3, we can bound this
remainder by a factor of (||g1]]2 + ||g2]|3).

Consequently, for A = 1, we have obtained that under the null

2
~ [ [{ ] atseznme i~ [ et a0
+O(|lg1]I2 + [192112),
and the lemma follows. m

Lemma B.2 Under Assumptions A.1 — A.3,

(e, z7) —m(a, 20l = sup (e, z7) = mz,z7)] = Opn~2hy 2 Vi + i),
(z,z)€A,TES
(B.1)
and
[(z;7) —m(z, 7). = sup |l T) —m(z;7)| = Op(n~2hy ™/*Vinn + ). (B.2)

rEANRY r€8
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Proof. We only prove (B.1). Let M(z, z;7) = [ H(y+7) f(x,y, 2)dy and ]\//Th1 (x,z;7) = m(x, z;T)f;Ll (z, 2).

Note that m(z, z;7) = M(x, z;7)/ f(x, 2), so by the triangle inequality,

sup  m(x,z;7)

PN (z,2)€A,TES n
e, z7) = m(e, 2 1)l < 2D sup |f(,2) = fu (2. 2)]]
inf f(5,2) (o
(z,2)EA
1

——  sup ‘J/\J\h T, 2T —Ml‘,Z;T‘.
(IlggAf(xv Z) (z,2)€A,TES 1( ) ( )

Note that inf B f(x,z) > b > 0 by assumption and that S—mixing implies a—mixing. The bound on

(z,z)€
the Lo, deviations of the Nadaraya-Watson kernel density estimator of f(x,z) over a compact subset A

of its support is standard (e.g., Theorem 4.3 in Liebscher 1996) and given by

[fiste2) = fa2)| = swp [Fon2) = flaa)] = Opln 20T VR B (B3)

So it suffices to show

sup  m(z,z;7) = 0p(1), (B.4)
(xz,2)EA,TES
and
sup My, (x,2;7) — M(x,2;7)| = Op(n_l/zhf(lerda)/Z\/lnn + hY). (B.5)

(z,2)€A,TES

Let Co = [ |k(u)|du < oo (by assumption A.2(ii)), and C = 2(C§**% /b)  max  f(z,2). Noticing that

(z,z)€R%1+d3
H is uniformly bounded by 1, we have

~ S g (p— Xy 2 — 7
P( sup |m(x,z;7)| > C) < P( sup n 2| S (v = Xp 2= Z1)]
(z,2)EA,TES (z,2)€A fh1 (l’, Z)

> 0).

The right side converges to 0 by the LLN, the fact that f(z, z) is bounded on R4+ (implied by Assump-

tion A.1 (ii)) and fy, (x,2) > b/2 for sufficiently large n. To show (B.5), write  sup |J\/4\h1(x, z;T)—
(z,2)€A,TES

M(z,z;7)| < sup J\/Zhl (x,2;7) — E]\/Ihl(x, z;7)|+  sup E]\//lth1 (x,2z;7) — M(x,z;7)|. By stan-
(x,z)€A,TES (z,2)€A,TES
dard argument and Assumptions A.1 — A.3, the second term of the latter expression is O(hY). For the

first term, using the uniform boundedness of H, one can modify the proof of Theorem 3.2 in Bosq (1996)
(see also Collomb and Hardle 1986 for ¢—mixing processes) and show it is O,(n~1/ th_(d1+d3)/ *VInn).
Thus we have shown (B.1). m

Lemma B.3 Under Assumptions A.1 — A.3 and Hy, we have for any c.d.f. F,

F(]/C\,F) = //{/a(y;x,zm)ﬁ“(ac,y,z)dy—/ﬂ(y;x,T)ﬁL2(x,y)dy}2a(ac,z)dF(x,z)dG(T)
ol o[+ )
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Proof. We are going to apply Lemma B.1 with g¢1(z,y,2) = fhl (x,y,2) — f(z,y,2), g2(x,y) =
fro(x,y) — f(x,y). First note that by the triangle inequality,

Sup /H y+7— |:fh1(x Y,z ) f(x7yvz):| dy‘
(z,2)€EA,TES
< swp ZK;“ 22— 25) [IH(y+7) = B + D) (o = Y)dy
(z,2)eA,res |1
o EZK;LI 07 *ZJ)H(YJ’+T)]/Khl(y*E’)dy*/H(y+T)f(x,y,Z)]dy
x,z)cA,TE j=1

= An,l + An,27

where A, 1 = Op(h}) because [[H(y+ 1) — H(Y; + 7)|Kp, (y — Y;)dy = [[H(Y; + 7+ hu) — H(Y; +
)] K(u)du = h’”Cd2M-LT)+op(h71') uniformly in 7 on S, and 4 > iy Kny (=X, 2~ Z;) OHI (Vi 47) _

oy Irl oy Irl
O, (1) for (z,z) € A uniformly in 7 on S. For the second term, we have, A, 2 =  sup | Z; 1 K, (-
(z,z)€A,TES
Xj, 2= Z)H(Y; + 7)) [ Kn, (y = Y;)dy — m(z, z;7) f(x, 2)] = P im(z, 2 7) fn (2, 2) — m(z, 2 7)
r,z)EA, TES

X f(x, 2 |7 Hfh1 x,2) — f(x, Z)H [m(x, 2;7)|| ., =Op(n~Y2hy (did)/2\ inn + hY) by (B.3). Conse-

fH = 0,(n~ Y2y N T)/2 iy 4 hr) = 0,(1) under our assumptions.
(d1+d3)

Note that under Assumption 2.(ii), we have h%" > h' > h{
variance of fp,(x) are smaller than those of f, (z,2) and thus all the norms involving fs,(z) — f(z) are

so both the asymptotic bias and

strictly smaller than those involving fhl (x,2) —f(x, 2).

Lastly let F = {Hfhl (x,2) — f(x, z)H >b/2, ‘fhz - f(x)
Pr[(g1,92) € Q1 X Q2] — 1 and the result follows. m

> b/2}. Then Pr[F] — 0 so that

To state and prove the next four lemmas, we introduce some new notation to facilitate the presentation.
Denote

I’IL

//{/ (52, 7) s 2)y /6 v ) fa y)dy}za(fc,Z)dF(x,z)dG(T)
//Tn(w;T)2a(x,z)dF(x,z)dG(T),

We can decompose I, as follows:

L= | flra(e, 57) - Era(e, 1) Pala, AP (z, 2G(r)
+2 [ [[rn(x, 2;7) — Erg(z, 2;7)| Erg (z, 2, 7)a(z, 2)dF (2, 2)dG(T)
+ [ [[Ern(z, z;7))%a(z, 2)dF (z, 2)dG(T)

SO
I, — E[L) =2 [ [[ro(z,z;7) — Erp(z, 2;7)|Ery(z, 2; 7)a(x, 2)dF (z, 2)dG(T)
+ [ [{lrn(z,2;7) = Erp(z,2;,7)]* = Elrn(z, 2;7) — Erp (2, 2;7)]* Ya(z, 2)dF (2, 2)dG(T).
For w = (z',%/,2') € R x R% x R% and v = (7,7, 2) € R" x R% x R% | we define R(w;x,z,7) =
[alysz, 2, 1)K, (x — 2"y =y, 2 = 2)dy — [ Bly; 2, 7) K, (x — o',y — y/')dy,
R(w;z,2,7) = R(w;x,2,7) — ERW1;2,2,7),
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Gn(w) = [ [ R(w;x, 2, 7)hy" Ery(x, 2 7)a(x, 2)dF (x, 2)dG(7),
and
Hy(w,v) = plB )72 [ [ R(w;z, z,7)R(v; x, 2, 7)a(x, 2)dF (z, 2)dG(T).
Note that we have suppressed the dependence of R and R on n.
Then we can write
L = BlL) = 20725 {n =12 S0, G(W))}
+2n—1hf(d1+ds)/2{ Y i jen Ha (Wi, W) — EHH(VVi,Wj)]}
T {n’l S [H (Wi, W;) — EH,, (Wi, Wi)]}
=20 20U, 1 + 20 Ry dl”*)/QUn, T R
We have Uy, 3 = 0,(1) by the WLLN under Assumptions A.1 — A.3 (e.g. White, 2000). We are going to
use Theorem A.4 to study the asymptotic normality of U, ; and U, with G,,(*) and H, (-, ) in place
of gn(*) and h,(-, ) in the theorem, respectively. Moreover, the term involving U, ; is asymptotically
negligible given our restriction on the choice of bandwidth and the order of the kernel (Lemma B.4) .
To get the asymptotic distribution of our test statistic, we need to calculate both asymptotic variance
(Lemma B.5) and bias correction terms (Lemma B.6).

Lemma B.4 Under Assumptions A.1 — A.3 and Hy, U, 1 LA N(0, 52),
where 5° = Var(y(Wo)) +2 > ey Cov(y(W)),v(Wo)) with y() defined by Equation (B.6).

Proof. First, we find the limit of A1 " Er,(z,2;7) :
hi"Erp(xz,z;7) = hi"ER(Wyx,2,7))
= 7 [ atgsaz o - 2 - o K (2 = )y

- / By 2, 1) Ky (& — ) Ky (y — )y} £ o/ ) 2)

7] 7]
O P oacie ACY T SO R U ACY T
ozl PR

) O H (y +7) f(x,y,2)
w0 [ S o)
= F(z,2z7) + 0(1),

where Cy = [, u"k(u)du is defined in Assumption A.2.
Notice that EG, (W) = 0, and
E[Gn(Wi)gn(WO)]
= E{ffR(VKi;ac,z,T)hl_TErn(x,z;T)a(x,z)dF(ac,z)dG(T)
x [ [ R(Wo;z, 2, 7)h™"Ery(z, z;7)a(x, 2)dF (z, 2)dG(T)}
= [[[[[[[R(ws;z, z,7)R(wo; 2,2, 7")F(x, z;7)a(z, 2)3(2', 2'; 7' )a(a!, 2"))]
X dF(x,2)dF(2',2") fi(wo,w;)dw;dwodG(T)dG(1")
—{J [ [ R(w;z,z,7)(x, z; 7)a(x, 2)dF (z, 2) f (w)dwdG(T } +o(1
= Cov(y(Wi),7(Wo)) + o(1),

where for u = (z,y, 2),

’Y(W:/{a(y;w,z,f)ﬂ(y;x,f) fz:9)

m Y(x, z;7)a(x, 2) f(x, 2)dG(T). (B.6)
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Consequently, Conditions (i) and (4¢) in Theorem A.4 are satisfied and thus U, 1 KR N(0,5°). m
Lemma B.5 Under Assumptions A.1 —A.3 and Hy, 2U,, 2 KR N(0,0%), where 02 is defined in the text.

Proof. Note that 2U,, » = 2n~! Yicici<n [H,(W;,W;)—EH, (W;, W;)]. By construction, H, (w,v) =
H,(v,w), and EH,(Wy,v) = 0. We are going to verify conditions (i#¢) — (vii) in Theorem A.4.

First, H,(W;,Wy) = hgdl+d3)/2ffﬁ(m;x,z,ﬂ')E(WO;ac,z,T)a(x,z)dF(x,z)dG(T). Notice that for
wo = (2o, Yo, 20) and w; = (4, Yi, 7i),

Hawo) = WP [ ] ooz n - 2= ) = 55,7 o - )
x{a(y; @, 2, T)éfm (x -2, 2= 2) = By 2, 7)Kn,(z — D)} al, 2)dF (z, 2)dG(7) (1 + O(hY)),
and
Bl [ [{a(Via.20m) Ky (@ = XKl = 20) = BV, )i = X0}
x{a(Yo; 2,2, 7)Kn, (x — Xo)Kn(z — Zo) — B(Yo; 2,7)Kp, (v — Xo)}a(z, 2)dF (z, 2)dG(T)|P
< C’// // alyisx, 2z, 7)a(yo; @, 2, T) Kp, (x — 23) Kp, (2 — 2) Kny (€ — 20) Kp, (2 — 20)
xa(x, z)dF (z,2)dG(7)|P fi(wo,w;)dwodw;
< ChyHFd) =1 / / |K (u1) K (uy + us2)|Pduy dus,
Rav+ds J ar+ds
so we have

| H, (W;, Wo)l|p < CRI T2 =(ditda)(v=1)/p — ¢ (p{B1F8))(A/p=1/2),

Let Wy be an independent copy of Wy; one can show by similar argument that
[ Ho(Wo, Wo)llp < C(R§ o) /e=t/2),

Consequently, one obtains u,(p) < C(h%*4)1/P=1/2) for some C > 0.

Now we show v, (p) < C(h$T9)1/P Note that Gpo(w,v) = E[H,, (W, w)H, (Wo,v)]

= hd”LdSE{ffE(W();1’,Z,T)E(’LL);.I’,Z,T)E(W();1'/,Z/,T/)E(’U;wl,z/,T/)a(x,Z)a(l'/,Z/)

xdF(z,z)dF (', 2)dG(T)dG(7")}

< C iy sag [rarvas [paras KWK (w+w")K(@)K(@ +w' + (u—v)/h)dwdw'dw + O(h{ %),
50 [|Gro(Wi, Wo)llp < C((R{ ) Y/P + h{**%) and ||Gro (Wi, Wo)|lp < O (R 4)1 /7.

Similarly, one can show ||Gro(Wo, Wo)l|, < C(h$*T4)1/P.and thus v, (p) < C(h$T9)1/P, By the same
argument, we have, w,,(p) = ||Gno(Wo, Wo)||, < C and z,(p) < Ch§* T4,

For some fixed §p > 0, Conditions (iv) and (v) in Theorem A.4 are satisfied. Take v, = (24 80)/(8+
260) € (0,1/2) and v, € (0, 7,] by Assumption A.2(i7). Conditions (ii7) and (vi) in Theorem A.4 are
also satisfied.

Finally, E[H,,(Wy, Wo)?]

= BR[| [ R(Wo;z,2,7)R(Wo; 2.2, 7)R(Wos o, 2/, 7 YR(Wo; 2/, 2/, 7')a(z, 2)a(z!, 2')

xdF (x,2)dF (', 2")dG(T)dG(T")}

— Oyl itds) [ [ [ [o%(x, 2;7,7)]° a(x, 2)2d(x, 2)dG(7)dGC(') + o(1),
where C3 and o?(x, z;7,7') are defined in the main text (Section 3.1).

It follows that Uy 5 > N(0,02). m
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Lemma B.6 Under Assumptions A.1 — A.3 and Hy,
A oF M e - A e - A i ey - MR GO N

Proof. Write
EIl, = //[Ern(ac,z;T)]za(ac,z)dF(x,z)dG(T)

B { [ [ratez5m) = Bra ez )Pate, 2)ar G z)dGm}
= A1+ A

From the proof of Lemma B.3, we obtain

Apr = h%’“//?(x,z;T)Qa(x,z)dF(x,z)dG(T)+0(h%7’)

= polpg ()2 ldrds) 2 / / Y(z, 2, 7)2a(z, 2)dF (z, 2)dG() + o(h¥)  (B.7)
_ O(n—lh;(dﬂrds)/?)_

Now write

Aps=n 2E{fA (S R(Wisz, 2 T)ra(x,z)dF(x,z)dG(T)}

=n2Y " E {fA Wl,x z,7)]%a(x, z)dF(x,z)dG(T)}
2 icici<n E{fA (Wi z, 2, T)R(W;; z, 2, 7)a(x, 2)dF (x, 2)dG(T)
_ nflhl (d+d3))2 {EHR(WO, Wo) + 201 Sy oo EHA(Wi, Wj)} .
We want to show

EH,(Wy, Wo) = {h;<d1+d3)/231 4 plda=d/2p, 4 h§d1+d3>/2h;d133} {1+0(*¥)}  (BS)

and
Dp=2n"" > EH,(W;,W;) = o,(1). (B.9)
1<i<j<n
Now
EH,(Wo, Wo) = E [h§d1+d3>/2ff1§ Wo; z, 2, 7)2a(z, 2)dF (z, 2)dG(r )]
= h§d1+d3)/2E {] [ RWo;z,2,7)%a(z, 2)dF (z, 2)dG() } {1 + O(hi")}
= W2 [T [la(yos o, 2, 7) K, (2 = 0,2 = 20) = Blyos 2, 7) K, (2 — o)
xa(x, 2)dF (x, 2)dG(T) f (20, Yo, 20)d(x0, Yo, 20){1 + O(h3")}
— {h§d1+d3)/2 [ [ [ (o, 2, T)K}%l (x — xg,2 — 20)a(x, 2)dF (x, 2)dG(T)dF (20, Yo, 20)
—2hgdl+d3)/2fffOé(y();JJ,Z,T)ﬂ(yo;l’,T)Khl (x—m0, 2—20) Kn, (x—x0)a(z, 2)dF(x, 2)dG(T)dF (20, Y0, 20)
FRSFTEE L g2y TV KR (a0 — o)alx, 2)dF (x, 2)dG(T)dF (20, yo, 20) H{1 + O(h2")}
= {Bn1 + Bna + B H1+ ORI}
Simple algebra shows that

Bn1= hl—(d1+da)/20§d1+d3)// 02(%z;T)a(x,Z)d(x,Z)dG(T){lJrO(h%T)},
A
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By :—thdafdl)/zC’gl// 02(x,z;7)a(x,z)f}( )) d(z,2)dG(T){1 + O(h3")}, and

Bps = h{hT®) /2h_d1// (z;7)a(z)dzdG(T){1 + O(h3")}.

Combining the last three terms, we have (B.8).

We next show D,, = 0,(1). Let m = [Blogn| (the integer part of Blogn), where B is a large positive
constant so that n*3%/(F9 = (1) for some 6§ > 0 by Assumption A.1(i)23. We consider two different
cases for Dy, : (a) j—i>m and (b) 0 < j —i < m. We use D,, , and D,, ;, to denote these two cases. For
case (a), we use Lemma A.2 and the bound wu,(p) < C’(hgdﬁdf‘))l/pfl/2 with p = 1+ & (see the proof of
Lemma B.5) to obtain

Dpo=n"1t Za‘—i>m EH,(W;, W) < Cn=1n z(h(d1+d3))1/(1+6) 1/2ﬂ5/(1+5) (nh;(d1+d3)/2ﬁ%(1+5))

=o(1).
For case (b), using the bound w, (1) < C’hgdl+d3)/2, we have

Db =n"" S icn EH(Wi, W)) < O lranh{" 992 = O(mn{™ /%) = o(1).
Consequently, we have (B.9). Combining (B.7), (B.8) and (B.9), the conclusion thus follows. =

-~

Lemma B.7 Let A, = I'(f,F) — I'(f,F), then under Assumptions A.1 — A.3 and Hy, 7”Lh§d1+d3)/2
A, = o0y(1).

Proof. By the same argument as used to obtain the expansion of I‘(f, F), one can obtain under Hy,

rih - [ { [ate.sznh ey — [ 57t y)dy}zau,z)dﬁ(x,z)dG(ﬂ
0, 1]

So it suffices to show that A,, = op(nflhl_(dﬁd:*)/z), where

A, = / / { / (@9, 5 7) P (2,4, 2)dy — / B(x,y:7) o (2, y)dy}2a<x G d[F(a, z) = F(x, 2)).

Ay = [ [yral@, 27)2a(z, 2)dG(r)d[F (x, 2) — F(x, 2) ~

=n"2 St [ RWys @, 2, T)R(Wi; x, 2, 7)a(x, 2)dG(T)d[F(x, 2) — F(x,2)]

=n3 ZJ k=1 { f R(Wj; X, 71, T)R(Wk, X, 7, T)G(Xl, Zl)dG(T)

— [ [RWj; 2,2, 7)R(Wy; z, 2, 7)a(z, 2)dF (x, 2)dG(T)}

=it B

where
A =n33000 A S RWys X, 21, 7) R(Wi X1, Zi, 7)a( X0, Z1)dG ()
— [ [R(Wj;z, 2 T)R(Wk;l‘,Z,T)a(l‘,z)dF(l‘,Z)dG(T)}

is the summation of the centered terms with [ # j,1 # k;

Ao =20730 [[ROWy; X, Z5, ) R(Wis X, Z;)a(X;, Z;)dG(7)
is the summation of the terms with [ = j # k;

Apz=n3 Z;;l JRW;; X;, Z;, 7)*a(X;, Z;)dG(T)

23For example, for fixed § > 0, if p < 1/2.71828 in Assumption A.1(7), B = 4(1 + 6)/§ would suffice.
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is the summation of the terms with [ = j = k; and
Apa=-n3"0 ) [ [RWjx, 2, 7)R(Wy; x, 2,7)a(x, 2)dF (z, 2)dG(T)
is summation of the centering terms for A, 5 and A, 3.
Dispensing with the simpler terms first, we have
—Apa= n~'I, =n"(I, — El,) +n"'EI,
_ n72h1—(d1+da)/2 {nhgdl+d3)/2(1n _ Efn):| +nlO(h3 + nflhl—(dl-i-da))
_ Op(n_zh;(dl+d3)/2)+0(n_lh;(dl+d3)/2hgd1+d3)/2+2T)+O(n_2h;(dl+d3)) _ Op(n_lh;(dl+d3)/2).
E|An73| = 77,73 Zyzl fR(WJ, Xj, Zj, T)QG(XJ', ZJ)dG(T) = 7172E [f R(Wo; X(), Zo, T)QG(XO, Z())dG(’T)]
= O(n=2hy 2 BHD)) = o(n~1py (BTRIZ),
Consequently, by the Markov inequality, A,, 3 = op(n_lhf(d1+d3)/ 2).
It is difficult to show that the other two terms are small. Our strategy is to use Lemmas A.2 — A.3
repeatedly and show asymptotically negligibility in that A,, ; = op(nflhl_(dﬁda)/ 2), for i =1 and 2.

For j # k, we can show that (recall that the bar notation denotes an i.i.d. sequence)
E [/R(Wj;vazjaT)R(Wk§Xjazj)a(Xj,Zj)dG(T):| = O(hy B9y,

and
E [ / R(Wj;yj,z,T)R(Wk;Yj,7j)a(7j,7j)de(7)} = O()~(drtda)y

To bound Dy, = E(A,2) = 20730 E [ [ R(Wj; X, Zj, ) R(Wi; X;, Z)a(X, Z;)dG(7)] , we con-
sider two different cases for Dy, : (a) |j — k| > m and (b) |j — k| < m. We use D,, , and D, to denote
these two cases. For case (a), we use Lemma A.2 to obtain

D’n,a =92n3 Z\jfk'|>1n E [f R(WJ, Xj, Zj, T)R(Wk; Xj, Zj)a(Xj, ZJ)dG(T)]

< C{n‘lhf(dﬁd‘"’) + n—3n2(h;(dl+d3))(1+25)/(1+6)ﬂ5/(1+5)}

_ O(n—lh;(d1+d3)/2h71‘*(d1+d3)/2) + O(R_lh;(d1+d3)ﬁf,{(l+5)) — O(n_lh;(dl+d3)/2).

For case (b),

Dn,b =2n"3 Z|j—k\§m E [f R(Wj; Xj, Zj, T)R(Wk; Xj, Zj)a(Xj, Zj)dG(T)}

< Cn=3nmhy DT = O(n=2mhy (BT)) = o(pm1p (DTd)/2)

In consequence,
E(An,Q) _ 0(n_1h;(dl+d3)/2)-

Now, we want to show
E,=E(A,2)? = o(n*Zhl_(lerda)),

where
En =407 0 3, LS [ ROWos Xay, Ziey, T)R(Ways Xoyy Zity s T)( Xy, Ztey ) R(Ways Xt Zitg, ')
XR(Wh,; Xty Ztyy T')( Xty Zty )AG(T)dG (") }.
We consider two cases: (a) for all ¢ € {1,2,3,4},[t; — t;| > m for all j # i; and (b) all the other
remaining cases. We will use E,, s to denote these cases (s = a,b).

37



Using Lemma A.2 three times, we have:

En,a S 4n76 Z Z E{/R(th;ytl,7,51,7')R(Wt2;yt1,7t1,T)a(7t1,7tl)dG(T)}

t17#t2 t3F£ty
xE {/ R(th ; Yts s 7t3 y TI)R(Wt3 ; 7t3 s 7t3; Tl)a(7t3 ,7t3)dG(7I)}

+C(n 72( _(d1+d3))45/(1+5)5é/(1+6))

m

_ O( —2h r—d;— d3))_|_0( 5/(1+§)) (n_2h;(dl+d3)).

m

For all the other remaining cases, there exists at least one i € {1,2,3,4}, such that |t; — ¢;| < m for
some j # . The number of such terms is of the order O(n®m). For t; # t, and t3 # t4, one can bound
E| f f R(Wh ; th? Ztl ) T)R(Wtz ; th ) Zt1 ’ T)a(tha Zt1)R(Wt3; Xt3 ) Zts? 7—,) R(Wm; th? Zt3 ) Tl)a(Xt37 Zt3)

xdG(T)dG(T")| by Chl_2(d1+d3) if {t1,t2}N{t3,t4} # {t1,t2} and by Chl_S(d1+d3) otherwise. Consequently,

Enp < O(n~Snmhy X GFd) =62, 300kds)y =2 ~(datds)y

Insum, E(A,,2)* = o(n_th(lerdS)), and by Chebyshev’s inequality, we have A, o = op(n_lhf(lerdS)/Q).
Lastly, we want to show
An,l _ Op(nflhl—(dl-‘rds)/?)

where
A 1= =n3 Zl;&] & { fR(Wj;Xl, Zl,T)R(Wk;Xl, ZZ,T)a(Xl, Zl)dG(T)
— [ JRWj;z, 2, 7)R(Wy; z, 2, 7)a(z, 2)dF (x, 2)dG(T)}
=n"3 Z;;éj,k { fR(Wj; X1, Z1, 1) R(Wy; Xi, Zi, m)a( Xy, Z2)dG(T)
—E [f R(Wj; Xl, Zl, T)R(Wk; Xl, Zl, T)a(Xl, Zl)dG(T)|WJ, Wk)} }
_3 Zl;ﬁ; k {E [f R(Wj; Xl, Zl, T)R(Wk; Xl, Zl, T)a(Xl, Zl)dG(T)|Wj, Wk)}
— [ [ RWj;x, 2, 7)R(Wy; z, 2, 7)a(x, 2)dF (x, 2)dG(T)}
=Ap 1+ Apio
Using Lemma A.3, we can show

n
ElAn1] < n® > E|E [/ R(W;; Xy, Zi, ) R(Wy; Xy, Zi, T)a( Xy, Z1)dG(T) W, Wy)
1#5,k

// (Wisa, 2, ) RWy; x, 2,7) dG(T)a(x, 2)dF(x, 2)|
( 71h d1+d3)/2)

implying A, 12 = 0,(n"thy (dr+ds)/ 2) by the Markov inequality.
Now let

Sj,k,l = /R(Wj, Xl, Zl,T)R(Wk; Xl, ZI,T)a(Xl, Zl)dG(T)

B [/R(Wj;Xl,Zl,T)R(Wk;Xl,Zl,T)a(Xl,Zl)dG(THWj,Wk) ;
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then
Api1 = n=3 Z;;Lk Sk with E(Ay, 11) = 0 because E(S; ;) = 0 for all [ # j and [ # k. We shall
show

Fn = E(An,ll)2 =n"° Z Z E{Stlytz,tSSt%ts,tﬁ} = 0(n72h1_(d1+d3)).

t1#ts,taFt3,ts taFte,ts#te,te

We consider four different cases:(a) for all i’s, |t; —t;| > m for all j # 4; (b) for exactly four different
i's, |t; — tj| > m for all j # 4; (c) for exactly three different ¢'s, |t; — t;| > m for all j # i;(d) all the
other remaining cases. We will use F), s to denote these cases (s = a,b, ¢, d). For each case, one can use

(n=2hy )

Lemma A.2 and Lemma A.3 to show F, s = o . For example, for case (a), noting that

E(St, t5,t5) = E(St4.15,65) = 0, we have by Lemma A.2
[Fral < C(hy TSI 50040 — o(n? 3/ (149)) = o(n~2hy 5.

For case (d), the number of terms in the summation is of order O(n®m3) and each term can be bounded
by Chl_(d1+d3) for some finite positive constant C' if there are at least three distinct elements in {t1, to,
ts, ta, t5 te} and C’hIQ(dﬁdB) otherwise. So

Fn,d _ O(n76n3m3h1—(d1+d3) + n76n2h1_2(d1+d3)) _ O(n72h1—(d1+d3))'

(n—2h;(d1+d3)) (n_lh;(d1+d3)/2)

In sum, F,, = o and thus Ay 11 = 0p by the Chebyshev inequality.
The conclusion thus follows. =

3

. op(1).
Proof. This follows from the proof of Lemma B.3 and the fact that
nhgdl+d3)/QOp(n—3/2h;3(d1+d3)/2(lnn)3/2 + h%r)

= 0, (n=Y2h (B (1 n)3/2 4 ppd2Hy =5 (1), =

Putting Lemmas B.3-B.8 together, we have proved Theorem 3.1 in the main text.

Lemma B.8 Under Assumptions A.1 — A.3 , nh&dﬁd”” Hﬁ“ - f

C Proof of Lemmas, Propositions and Corollaries

Proof of Lemma 2.1. The “if” part is trivial. Now suppose that [ ¢ (u;z, z)e”,“ng(u) =0ae—F
on A for every 7 € R%; we must show that 1 (u;x, 2) =0 a.e.—Go x F on R% x A.

Denote Re(¢)) and Im(¢)) as the real and imaginary part of ¢ respectively. Put ¢, () = max(Re(¢ (")), 0),
$a() = max(~ Re($(),0), $5() = max(Im(()), 0), and 1,(-) = max(~Im(()),0). Then obviously
¥;, j = 1,...,4, are nonnegative Borel measurable real functions on R? satisfying Re(¢) = ¢, — ¢, and
Im(¢) = g — 1y

Now assume for the moment ¢; = [, (u; 2, 2)dGo(u) > 0 for j = 1,...,4. We define four conditional

probability measures

vj(Byx,z) = /Bwj(u;x,z)ng(u)/cj, j=1,...,4,where B is a Borel set on R%. (C.1)
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Then?*

J W(us @, 2)e’™ M dGo(u)

_[fwluxz) TUudGo(u) — [y (u; x, 2)e'  dGo(u }—l—l [ s(usx, 2)e'™  dGo(u) — [y(u;z, 2)

el udGo(u)]

= ler [ €7 vy (us , 2) — e fe”/“dvz(u;x,z)l +1 [C3fe”/“dv3(u;x,z) - fe”/“dm(u;x,z)]

= [y (152, 2) — cany (T3 2, 2)] + @ [cans (T3 2, 2) — cany(T; 2, 2)],
where 1;(7;2,2) = fe”/“dvj(u;x, z), j = 1,...,4, are conditional characteristic functions of the condi-
tional probability measures v; respectively.

If [ V(u;z, 2)e’™ “dGo(u) = 0 a.e.—F on A for every 7 € R®, ¢1n(;2,2) = cony(7;x,2) and
cans (T3, 2) = cany (T3 2, 2) a.e.—(x, 2) for every 7 € R%. Note that 1, (0;, 2) = n5(0; 2, 2) = n3(0; 2, 2) =
n,(0;z,2) =1, so

€1 =C2, €3 =cC4, (C.2)

and
0 (752, 2) = no(T; 2, 2) and n3(7; 2, 2) = ny(7; 7, 2) a.e. — F on A for every 7 € R%. (C.3)
Consequently, for every Borel set B on R%, we have
v1(B;x, z) = va(B;x, z) and v3(B;x, 2) = v4(B;x, 2) a.e. — F on A.

From (C.1), (C.2) and (C.3), we obtain that for every Borel set B on R%,

/ ¥y (u; 2, 2)dGo(u / Yo(u; z, 2)dGo(u),

/ Vs (u; z, 2)dGo(u / Yy(u; z, 2)dGo(u),
and consequently,

/ (s 2, 2)dGo(u) =
B

Note that B; = {u € R% : Re( ¢(u;x, 2)) > 0} is a Borel set, fBl Re( ¥(u;x, 2))dGo(u) = 0, which is
only possible if Bj is a null set with respect to dGo(u) a.e.—F on A. Similarly, one concludes that the
Borel sets By = {u € R% : Re(¢(u; 7, 2)) < 0}, B3 = {u € R : Im(¢)(u; x,2)) > 0} and By = {u € R% :
Im(¢(u;, 2)) < 0} are all null sets with respect to dGo(u) a.e.—F on A. Hence, Ut_, B; = {u € R% :
P(u;z, z) # 0} is a null set with respect to dGo(u) a.e.—F on A. This means ¢(u;x,2) =0 a.e.—Go x F
on R x A. If ¢; = fqu(u;x,z)ng(u) =0 for some j € {1,2,3,4}, our conclusion still holds, as an

easy exercise. This completes the “only if” part of Lemma 2. 1. m

Proof of Proposition 3.2. The analysis is similar to that of Lemma B.1 and Lemmas B.2-B.7,
keeping now the additional terms that were not present under the null. That is, as before,
T(N) = T(0) + 78 (0) + N2”(0)/2 + NPT (\*) /6
for some A" € [0, A], where U(0) =T'(f, F),
24Here, dv;(u;z,2) = vj(du; T, 2) for j = 1,2,3 and 4.
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//250 (0;,2,7) (Oax)\z .7) a(z,y)dF(x,y)dG(T),

(0 // {[6“’0“’7)} +¢(0;x,z,7)%}a(ac,y)dF(x,y)dG(T).

and

The expression for \Ifm(/\*) is lengthy. However, it can be bounded as before by the same upper

bound which is op(n’lhl_(lerda)/ %). Consequently,

D(f, F) =D(f,F) + W'(0) + ©(0)/2 + oy (n~"hy " +%)/?)

Furthermore, ].“(J?7 F) = I‘(f, F) + 0,(n"'h=%/2) continues to hold, and thus I‘(f, F) =T(f,F) +
U'(0) + U”(0)/2 + 0p(n~thy (N9,

Notice that when I'(f, F) > 0, n'/2¥/(0) = O,(1) and \IJ’( ) dominates ¥”(0) . So

Ty = b\ )20 f P /\/_+n1/2h(d1+d3 120,(1) & 00 if T(f,F) > & > 0.

Hence, the test is consistent. m

Proof of Proposition 3. 3. First, for the double array stochastic process {W,:,0 < t < n},
the functional expansion of I'(f Flnl , FI") and subsequent lemmas in Appendix B continue to hold, when

P
accommodating the additional terms arising under the local alternative. Under H(ay,), 55 — o2 and

Ty, — nh{dtds)/2(fInl plnly/ /52 N(0,1).

Moreover, under Hj(a,),
r(F) = [ [t - i) ate, )dE @, )6 ()
= ai//A(x,z;T)Qa(x,z)dF["](x,z)dG(T)+0(ai).

For oy, = n~1/2p  (Hda)/d - plditds) 2 gln] | pind) = [ [ Az, 2z;7)%a(x, 2)dF)(z, 2)dG(T)
— ffA(ac,z;T)2a(x,z)dF(x,z)dG( ) =6 asn — oc.
Consequently, Pr(Th,, > zo|Hi( o)) = 1 — ®(2q — 6/01)). W

Proof of Corollary 4.1. To ease the notational burden, let U;(0) = (X;(0), Z;(9)), v = (z, z) and
f@,y,20) = f(y,w0). R o

Theorem 3.1 applies to I'y(6y) where I'y(0) = T'y(f, F';0) and 0y is the true parameter. Consider the
statistic fz (5), we apply a second order Taylor expansion to it around 6y :

T(00) + 7'T2(00) (6 — 60) + (0 — 6)/ V2T2(6°)(6 — 6) /2

T(0) = T
f2(90) + Dn,l + Dn,27

where Vfg and szg are first and second order derivatives of fz with respect to 0, 6™ lies on the segment
connecting 0 and 0o, and primes denote transposition. It suffices to show that D,, ; = op(n_lh;(d1+d3)/ 2),
i=1and 2.

First, we show

La(00) = 0p(n /2y (B H)/2), (C.4)
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Write

vFg(f,ﬁ;G) = 2//Al(u;T,G)Az(u;T,G)a(u,O)dﬁ(u;9)dG(7’)

YW 5g Au; -~
+//A1(u;7,9)2 *dF(u;0)dG(T),

2~ Bu; 08
where
Ai(w;T,0) = m(x,z;7,0) —m(x;T,0)
_ JH@+1)f@wl)dy [ H(y+7)f(y2:0)dy
fu; 0) f(a:;0) ’
and
As(w,0) = 24Tl (50;7,9)
_ JH@+ Dy w0 + foly.wOldy [ H(y + 1) f (v, us 0)dy[fu(us 0) G + fo(us 0)]
f(w;0) f2(u; 0)
S H A D) oy 230) 55 + foly, 2Oy [ Hy +7)(y, 23 0)dylfol(@:0) 5 + fo(w; 0)
f(a:0) f2(;0) '

Clearly, T2 (f, F; 0p) = 0 because A;(u;7,00) =0 a.e. — u for every 7 € R%. Similarly,

vfg(f,ﬁ;ﬁ) = //A\l(u;T,Q)A\Q(U;T,Q)G(U,Q)dﬁ(u;e)dG(T)

" da ou
A (- 2 LT ).
+//A1(u,7',9) 2 Bu; 00 dF (u;0)dG(T)

= dn,ll(e) + dn,lZ(a)a
where, for i = 1,2, El(u, 7,0) is obtained from A;(u;T,#) by replacing the unknown densities and their
derivatives in the expression by their kernel estimators (e.g., f;(u, 0) = (nhy) ™1 Z?Zl VEn, (u—"Uj;(0)),
and fp(u;0) = (nhy)~! Z;L:l %Uj(ﬂ) v Kn, (u—Uj;(9)).)
By the argument used in the proof of Theorem 3.1, we have
dn12(00) = Op(n™"hy W2 T BED)) = 0 (U ), (C-5)

1h;(d1+d3)

where n~ is the order of the dominant bias term before correction. To bound d,, 11(6p), write

dun(00) = [ [ Aa(uim00) [Aatusr, 00) — As(ui 7.600)] alu, G0)dF()dCi(r)
+/El(u;7',HO)Ag(u;T,Go)a(u,eo)dﬁ(u)dG(T).

Notice that  sup | Ay (u;7,00) = O,(n=1/2hy /2 /ln 4 ht) under the null by Lemma B.2 and
u€eA,TeS
the assumptions on the bandwidth sequences. By similar argument as used in proving Lemma B.2, we
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can show that  sup )Eg(u; 7,00) — Aa(u;7,0p)| = Op(nfl/th_(dﬁdS)/z_l\/lnn + hT). Further notice

ucA,7eS
that \/nh{® %) [ [ Ay (u; 7, 00) Ay (u; 7, 00 )a(u, ) dF (1) = 0,(1), so
dn,11(90) _ Op(n_lh;(dl+d3)71 Inn+ h%r + n—1/2h;(d1+d3)/2)_ (CG)

(C.5) and (C.6) then imply (C.4).
Next, we show that

sup 2 Ta(0) = op(hy M7/, (C.7)
[ASSH)
S2(0) = / / Ao(u: 7,0) Ao (s 7, 0) alu, 0)dF (u, 0)dG(7)

+//gl(u;T,G)%gg(u;T,H)a(u;T,G)dﬁ(u,@)dG(T}

di+d,
1+38 auL

+2//A1u7-9A2u7-0 Za S AF (u,0)dG(7)

di+d3 di+ds 92a aui aui ditds Oa 82UL
//A1 . 0)? Z Z Gun 99 60 " ; 5w, 9600 dF (u, 0)dG(r)

= dp21(0) + dn22(0) + dp23(0) + dn 24(0)

Noting that A\Z‘(U;T, ), i = 1,2, depend on # only through {W;(0)}, we can use Theorems 2(c) and

2(d) in Andrews (1995) (with n = 00) to obtain

O,((n —1/2h (d1+ds)— 1—|-h7 1 2) op(h] (d1+d3)/2)

Y

sup |dp,21(0)| = )
[ASISH)

sup |dn,22(9)| =0 (( —1h (d1+ds3)— 1nn—|—h7)( —1/2h (d1+ds3)—2 h710_2)) zop(h;(d1+d3)/2)7
[ASISH)

Sup | 23(0)] = Op(n ™2k ™ ™ I 4+ ) (02207 P4 BT = 0, (M F)72), and
[ASISH)

sup |dn,24(0)] = Op((n 71/2]1, (di+ds)— 1_|_h7 1) ) = o (h
IS

Consequently, (C.7) is satisfied. (C.4) and (C.7) together conclude the corollary. m

d1+dg)/2)

Proof of Corollary 4.2. For simplicity, we only prove the case for which the kernel function K
is compactly supported.?® Define smy, (z,2;7) = fh_ll (z,2)n 'S0 Kp, (v — X4, 2 — Zi)m(X;;7), and
25We use the compactness of the support of K to simplify the proof of (C.9) and (C.10).
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write
Bz a0 [ (0,25 7) 5, (5, Z3s 7)ol X, 2,)dG ()
j=1
n~! Z/[ﬁlhl(Xj,Zj;T) — s, (X, Zj;7)2a(X;, Z;)dG(r)
i=1
+n! Z/[smm (Xj, Zjim) — 5, (X5, Zj;7))%a(X;, Z;)dG (1)
j=1

+2n71 Y /[ﬁlhl(Xij; 7) = smun, (X, Zj; 7)l[smn, (X5, Z37) — s, (X, Zj; 7)]a( X, Z;)dG(T)
j=1
= Gn,l =+ Gn,Z + Gn,3-

We want to show that

nhgd1+d3)/2{Gn,1 7n—1h1—(d1+da)Bl} A N(0,02), (C.8)
nhgdl+d3)/2Gn,2 — Op(l)a and (Cg)
nhgdﬁrd@/sz3 =0,(1). (C.10)

Let Klji = Kh1 (XJ — Xi,Zj i\Zl), If(w,z),j = Kh1 (1‘ — Xj,Z 7?j), K/Q\ﬂ = Kh2(Xj — Xl), Kz,i =
Kn,(x — X3), fij = [(X5,2)), fij = (X5, Z5), fo5 = [(Xy), fo5 = [ra(Xy), a; = a(X;,Z;) and
gi(r) = H(Y; +7) — m(Xj;7). Let A° = {u € R1F4 : |lu — || < € for some v € A} with € being an
arbitrarily small positive number. Then the uniform consistency results for the kernel density estimators
hold also on A€ by the continuty of the density functions. We can write

Gn,l = n71Z/{n71ZKljiSi(T)}zf/‘\l_j?ajdG(T)
j=1 i=1

= Y [ K a1+ o,(1)
= Tha{l+op(1)}

We can decompose T, 1 as follows: T,,1 = n~2 Z;L:l Yoy [ [Kiei(r)?] ajfl_fdG(T) +2n73 Z};l
J{ Z:;k Klinlkjé‘i(T)&k(T)}ajfszdG(T) =Tn1a + Tn1p- As done in Lemma B.7, it can be shown that

Thia = Tnia+op(n=thy B 9)/2) here Tp 10 = n2 S J S KE, Ly 8 (1) [ (@, 2)a(w, 2)dF (2, 2)dG(7)
= n_lhf(lerd:‘)Bl{l + 0p(1)}, with By being defined in the text, the only bias term that needs to
be corrected in Corollary 4.2. Similarly, it can be shown that T, 1, = Tn,lb + op(n_lhf(d1+d3)/2),
where Tp1p = n 230, Sz | ) K2y i (a2 wi(T)er(T) 2 (2, 2)a(x, 2)dF (z, 2)dG(T). Again, using
the U—statistic theory, it is easy to show nhgdﬁds)/zfn,lb 4, N(0,02). Consequently, nhgdl"_dg)/2
{Gna =0 hy B 4 N(0,03).

Next, write smp, (Xj, Z;; 7)—smp, (X, Zj;7) = ]?fjln’2 DD Dy f{ilKljiKgik{sk(T)+[m(Xk; T)—
m(X )]} = fiin 0 Y far Kagilandei(r) + [m(Xps7) — m(Xy;m)]H1 + 0p(1)}, where the
0p(1) holds uniformly for ((X;, Z;),7) € S x R. Define St(l) (1) = fl_t; fz_tllKltoth%thEtQ (7’)(1,}0/2 and

0,t1,t2
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Sfi)tlh (1) = fft; Fort Kitgty Koty [m(Xeys ) — m( Xy, 7))y, /2 Then by the Cauchy-Schwarz inequality,

wa = AT RN LS (TS k4, (T)AG(T)

to,t1,t2,t3,t4

—44 (d1+ds)/2 2 2)
+n Atz N S, (TS, 4, (1)dG(r)

to,t1,t2,t3,t4

Fon TN LS (1) Stk 1 (TG HL + 0,(1)}

to,t17t27t3,t4

= {G,12+G +2G }{1+o,,(1)}.

nh(1d1+d3)/2G

Note that Gnl)2 + Gn 9+ G(32 is nonnegative, it suffices to show that E {GEL)Z} =o0(1),7i=1, 2, and
3. To show EG!) = E[GS)Q] = o(1), we consider two different cases: (a) for each i € {0,1,2,3,4},

n,2 =

|ti —t;| > m for all j # i; and (b) all the other remaining cases. We will use EGS;) to denote these cases
(s = a,b). For case (a), noting that ES%?EE(T) = 0 (recall that bar notation means 4.i.d. sequence),
we have by Lemma A.2, EG;{;) < C’n(hidﬁds))45/(1+5)ﬁi{(1+5) = o(n?B%/ 19y = o(1). For case (b),
the number of terms in the summation is of order O(n*m). One can use Lemma A.2 repeatedly to get
EG 1b) <Cn 74h(d1+d3 /2(n m—+ndm2+n mhl_(d1+d3) +n2h1_2(d1+d3)) +o(n5ﬁ%(l+6)) = 0(1). Next, let
S,fj}tm,m =E [SZ,, 1, (NSE, 1, (1)dG(7). This term is bounded by Ch3" if {t1, t2}N{ts, ta} # {t1,t2}
and t; # to # t3; by CRE U if {t1, ¢} N {ts,ta} = {t1,t2} and 1 # to # ts; by Chy @ )p2r if
{t1,t2} N {ts,ta} # {t1,t2} and either ¢; or ¢t3 = to but not both. The other cases are of smaller orders
after summation. Consequently, F [GSLZ)Q} = hgd1+d3)/2n_40(n5h%r +nBha M 4 n4hf(d1+d3)h%7') =o(1).

Similarly, one can show that E [GS’)Z] = 0(1) and (C.9) follows.
To show (C.10), we write

nhgd1+d3)/2G1L,3
= hgdl+d3)/2n_3 Z ﬁ;}ﬁ;;K1t1t2K1t1t3K2t3t45t2 (T){gtii (T) + [m(th; ) Xt47 ]}atldG )
t1,t2,t3,t4
= {hgd1+d3)/2n—3 Z flt f2t3 K1t1t2K1t1t3K2t3t48t2( )5753 (T)a‘tldG(T)
t1,t2,t3,t4

R{TFd)/ 2 =3 Z /f1t1f2t3K1t1t2K1t1t3K2tat45t2( MM (Xey; 7) — m(Xey;7)]ar, dG(T) H1 + 0, (1)}

t1,t2,t3,t4
= {GUh+ G+ 0,(1)},

Straightforward but tedious calculations show that E(GS,):),) = o(1) and E(Ggi)g)2 =o(1) for i =1 and 2,
implying that (C.10) holds. The proof is complete. ®
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Table 1: Comparison of Tests for Causality (d1=d2=d3=1)

5%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGPS
n=100
CM, 0.054 0.058 0.920 0.548 0.504 0.412 0.384 0.188
KS, 0.042 0.056 0.780 0.404 0.380 0.288 0.292 0.156
H, 0.072 0.055 0.412 0.658 0.454 0.920 0.728 0.560
Tin 0.078 0.079 0.792 0.844 0.592 0.944 0.656 0.420
Ton 0.065 0.067 0.768 0.888 0.620 0.960 0.656 0.412
n=200
CM, 0.045 0.056 0.992 0.748 0.788 0.680 0.476 0.360
KS, 0.067 0.053 0.952 0.552 0.660 0.532 0.336 0.284
Ho 0.045 0.025 0.829 0.870 0.485 1 0.984 0.852
Tin 0.063 0.062 0.940 0.968 0.848 1 0.864 0.604
Ton 0.050 0.076 0.954 0.99 0.882 1 0.872 0.608
n=500
CM, 0.025 0.046 1 0.984 0.992 0.984 0.824 0.728
KS, 0.042 0.044 1 0.884 0.976 0.912 0.76 0.592
Ho 0.034 0.030 0.994 0.997 0.909 1 1 1
Tin 0.048 0.032 1 1 1 1 1 0.876
Ton 0.050 0.032 1 1 1 1 1 0.88
n=1000
CM, 0.048 0.042 1 1 1 1 0.976 0.904
KS, 0.042 0.044 1 0.992 1 1 0.952 0.804
Ho 0.052 0.026 1 1 1 1 1 1
Tin 0.036 0.024 1 1 1 1 1 1
Ton 0.039 0.048 1 1 1 1 1 1
ISELR, 0.063 0.052 1 1 1 1 1 1




Table 1: Comparison of Tests for Causality (d1=d2=d3=1, cont.)

10%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8
n=100
CM, 0.094 0.101 0.964 0.652 0.644 0.480 0.472 0.304
KS, 0.100 0.111 0.868 0.492 0.496 0.428 0.408 0.232
Ho 0.106 0.085 0.468 0.718 0.529 0.928 0.772 0.636
Tin 0.122 0.115 0.844 0.888 0.688 0.976 0.728 0.552
Ton 0.117 0.114 0.828 0.932 0.696 0.98 0.744 0.558
n=200
CM, 0.095 0.100 1 0.856 0.904 0.752 0.592 0.508
KS, 0.096 0.089 0.988 0.676 0.756 0.676 0.484 0.404
Ho 0.08 0.05 0.889 0.912 0.602 1 1 0.904
Tin 0.100 0.101 0.960 0.988 0.908 1 0.924 0.708
Ton 0.092 0.117 0.98 0.996 0.918 1 0.928 0.72
n=500
CM, 0.052 0.065 1 0.992 1 0.992 0.896 0.792
KS, 0.066 0.068 1 0.944 0.992 0.960 0.836 0.696
Ho 0.075 0.055 0.996 0.997 0.951 0.998 1 1
Tin 0.068 0.052 1 1 1 1 1 0.924
Ton 0.069 0.057 1 1 1 1 1 0.932
n=1000
CM, 0.112 0.076 1 1 1 1 0.992 0.936
KS, 0.088 0.074 1 1 1 1 0.968 0.872
Ho 0.078 0.070 1 1 1 1 1 1
Tin 0.080 0.076 1 1 1 1 1 1
Ton 0.068 0.092 1 1 1 1 1 1




Table 2: Comparison of Tests for Causality (d1=2, d2=d3=1)

5%

DGP1' DGP2' DGP3' DGP4' DGP5' DGP6' DGP7' DGP8'
n=100
CM, 0.029 0.040 0.684 0.368 0.204 0.608 0.248 0.344
KS, 0.032 0.045 0.440 0.304 0.108 0.512 0.200 0.312
Tin 0.071 0.072 0.708 0.812 0.532 0.800 0.396 0.396
Ton 0.058 0.048 0.566 0.716 0.402 0.700 0.352 0.324
n=200
CM, 0.053 0.028 0.964 0.656 0.352 0.872 0.336 0.432
KS, 0.040 0.025 0.792 0.480 0.196 0.780 0.292 0.388
Tin 0.049 0.051 0.920 0.972 0.800 0.988 0.588 0.640
Ton 0.076 0.064 0.912 0.968 0.788 0.968 0.596 0.620
n=500
CM, 0.068 0.028 1 0.936 0.692 0.992 0.632 0.764
KS, 0.056 0.040 0.996 0.784 0.456 0.988 0.552 0.656
Tin 0.018 0.052 1 1 0.996 1 0.872 0.944
Ton 0.078 0.077 1 1 0.996 1 0.896 0.94
n=1000
CM, 0.076 0.033 1 1 0.952 1 0.912 0.968
KS, 0.062 0.048 1 0.952 0.856 1 0.832 0.944
Tin 0.014 0.076 1 1 1 1 1 1
Ton 0.068 0.076 1 1 1 1 1 1




Table 2: Comparison of Tests for Causality (d1=2, d2=d3=1, cont.)

10%

DGP1' DGP2' DGP3' DGP4' DGP5' DGP6' DGP7' DGP8'
n=100
CM, 0.068 0.088 0.788 0.472 0.332 0.712 0.344 0.428
KS, 0.064 0.076 0.632 0.408 0.224 0.624 0.296 0.400
Tin 0.106 0.114 0.756 0.880 0.624 0.892 0.524 0.504
Ton 0.099 0.074 0.668 0.776 0.496 0.832 0.448 0.432
n=200
CM, 0.104 0.060 0.984 0.756 0.468 0.908 0.456 0.528
KS, 0.104 0.064 0.896 0.588 0.332 0.848 0.408 0.468
Tin 0.084 0.105 0.956 0.992 0.872 1.000 0.716 0.792
Ton 0.136 0.107 0.946 0.982 0.850 0.984 0.720 0.744
n=500
CM, 0.127 0.056 1 0.952 0.824 1 0.732 0.824
KS, 0.104 0.061 1 0.876 0.62 1 0.644 0.772
Tin 0.042 0.082 1 1 0.998 1 0.904 0.968
Ton 0.133 0.132 1 1 0.996 1 0.936 0.976
n=1000
CM, 0.112 0.066 1 1 0.992 1 0.964 0.984
KS, 0.092 0.065 1 0.992 0.924 1 0.920 0.960
Tin 0.016 0.104 1 1 1 1 1 1
Ton 0.116 0.136 1 1 1 1 1 1




Table 3: Comparison of Tests for Causality (d1=3, d2=d3=1)

5%

DGP1" DGP2' DGP3" DGP4' DGP5" DGP6" DGP7"  DGPS8"
n=200
cM, 0.036 0.044 0.724 0.368 0.236 0.772 0.320 0.440
KS, 0.052 0.04 0.344 0.276 0.128 0.684 0.256 0.408
Tin 0.039 0.021 0.872 0.960 0.612 0.904 0.408 0.480
Ton 0.052 0.017 0.842 0.914 0.574 0.872 0.348 0.454
n=500
CM, 0.044 0.055 1.000 0.852 0.464 0.996 0.544 0.808
KS, 0.047 0.042 0.872 0.656 0.280 0.976 0.472 0.740
Tin 0.044 0.020 1 1 0.964 1 0.792 0.884
Ton 0.044 0.015 1 1 0.96 1 0.724 0.836
n=1000
CM, 0.056 0.032 1 0.976 0.804 1 0.776 0.960
KS, 0.078 0.016 1 0.864 0.576 1 0.752 0.944
Tin 0.040 0.088 1 1 1 1 0.884 1
Ton 0.032 0.046 1 1 1 1 0.856 0.996
10%

DGP1" DGP2' DGP3" DGP4' DGP5" DGP6" DGP7"  DGPS8"
n=200
cM, 0.084 0.068 0.832 0.532 0.380 0.832 0.416 0.540
KS, 0.116 0.06 0.572 0.420 0.248 0.788 0.376 0.480
Tin 0.061 0.042 0.888 0.976 0.696 0.952 0.492 0.636
Ton 0.099 0.038 0.892 0.934 0.666 0.952 0.456 0.566
n=500
CM, 0.081 0.068 1.000 0.892 0.656 0.996 0.640 0.856
KS, 0.096 0.057 0.944 0.784 0.444 0.988 0.588 0.824
Tin 0.074 0.038 1 1 0.976 1 0.816 0.960
Ton 0.09 0.035 1 1 0.972 1 0.776 0.880
n=1000
CM, 0.08 0.072 1 0.992 0.888 1 0.846 0.976
KS, 0.112 0.044 1 0.920 0.704 1 0.800 0.966
Ton 0.100 0.144 1 1 1 1 0.892 1
Ton 0.058 0.066 1 1 1 1 0.912 0.996




Table 4: Test of the order of nonlinear AR processes (5% test)

DGP9 DGP10 DGP11 DGP12 DGP13 DGP14 DGP15 DGP16 DGP17 DGP18 DGP19 DGP20

Ho(0): d* = 0
n=100 Ty 0.032 0.248 0.172 0.272 0.238 0.494 0.998 0.97 1 1 1 0.996
Ton 0.034 0.202 0.174 0.292 0.23 0.504 1 0.978 1 1 1 0.992
n=200 Ty 0.03 0.474 0.318 0.622 0.454 0.83 1 1 1 1 1 1
Ton 0.044 0.438 0.314 0.624 0.508 0.802 1 1 1 1 1 1
n=500 T 0.048 0.904 0.804 0.992 0.916 0.996 1 1 1 1 1 1
Ton 0.052 0.92 0.792 0.988 0.928 1 1 1 1 1 1 1

Ho(1): d* = 1
n=100 Ty 0.062 0.08 0.104 0.072 0.084 0.084 0.568 0.242 0.324 0.212 0.716 0.864
Ton 0.072 0.066 0.088 0.084 0.060 0.080 0.262 0.204 0.222 0.092 0.556 0.824
n=200 Ty 0.06 0.052 0.092 0.078 0.056 0.084 0.928 0.5 0.634 0.514 0.982 0.99
Ton 0.060 0.072 0.094 0.070 0.060 0.088 0.594 0.434 0.508 0.406 0.958 0.974
n=500 T 0.056 0.064 0.104 0.064 0.044 0.068 0.960 0.820 0.948 0.940 0.996 0.960
Ton 0.022 0.034 0.076 0.066 0.058 0.058 0.984 0.776 0.884 0.936 0.988 0.972

Ho(2): d* = 2
n=100 Ty 0.078 0.054 0.076 0.07 0.052 0.076 0.026 0.036 0.022 0.01 0.014 0.02
Ton 0.05 0.058 0.058 0.06 0.064 0.056 0.022 0.018 0.032 0.016 0.004 0.016
n=200 Ty 0.052 0.036 0.08 0.066 0.056 0.058 0.07 0.036 0.106 0.038 0.026 0.088
Ton 0.084 0.064 0.096 0.07 0.082 0.086 0.036 0.042 0.052 0.024 0.028 0.062
n=500 T 0.036 0.044 0.102 0.04 0.04 0.036 0.44 0.096 0.108 0.096 0.098 0.132
Ton 0.076 0.094 0.106 0.1 0.072 0.104 0.104 0.118 0.124 0.096 0.048 0.122

DGP 9 is of order 1, DGPs 10-14 are of order 2 and DGPs 15-20 are of order 3. Consequently, only DGP 9 satisfies Hy(0): d*= 0, DGPs 9-14 satisfy Hy(1):
d* =1 and all DGPs here satisfy Hy(2): d* = 2.



Table 5: Bivariate linear Granger-Causality test between exchange rates

Ho: Row doesn't cause column Canada France Germany Italy UK
Canada L,=1, DX.4 used - 2.65 2.34 7.36° 3.47°
L,=2, DX used - 2.65 2.35 7.56 3.47°
L,=2, DX, used - 0.22 1.62 2.77 0.66
L,=3, DX used - 2.59 2.27 7.56° 3.52°
L,=3, DX, used - 0.22 1.61 2.68 0.62
L,=3, DX.s used - 0.15 0.29 0.00 0.40
France L,=1, DX, used 2.24 - 0.03 3.19° 0.00
L,=2, DX;; used 2.37 - 0.04 3.57° 0.00
L,=2, DX, used 2.67 - 0.77 3.16° 3.88°
L,=3, DX used 2.40 - 0.05 3.59° 0.00
L,=3, DX, used 2.59 - 0.73 3.27° 3.89°
L,=3, DX5 used 0.00 - 5.51° 0.06 2.16
Germany L,=1, DX.4 used 1.51 4.52° - 3.95° 0.55
L,=2, DX, used 1.58 4.53° - 4.18° 0.54
L,=2, DX, used 1.82 1.48 - 2.09 1.91
L,=3, DX.; used 1.70 4.61° - 4.31° 0.52
L,=3, DX, used 1.69 1.47 - 2.22 1.91
L,=3, DX.s used 0.12 8.79% - 0.24 3.05°
Italy L,=1, DX used 2.18 2.75° 0.03 - 1.84
L,=2, DX used 2.32 2.76° 0.03 - 1.90
L,=2, DX, used 0.16 0.52 0.07 - 0.17
L,=3, DX used 2.48 2.76° 0.03 - 1.80
L,=3, DX, used 0.11 0.54 0.08 - 0.15
L,=3, DX.s used 0.00 0.49 2.00 - 0.69
UK L,=1, DX.4 used 0.48 0.20 0.38 0.16 -
L,=2, DX used 0.50 0.19 0.38 0.12 -
L,=2, DX, used 0.64 0.45 0.02 0.18 -
L,=3, DX used 0.51 0.21 0.39 0.10 -
L,=3, DX, used 0.62 0.46 0.02 0.16 -
L,=3, DX.5 used 0.00 0.70 0.05 1.12 -

The superscripts a, b and ¢ denote rejection of the noncasusality hypothesis at 1%, 5% and 10% significance
levels, respectively. The bold elements indicate thecausal links detected by the linear causality test but not by the
our nonparametric causality test at the 5% significance level.



Table 6: Bivariate nonparametric Granger-Causality test between exchange rates

HO: Row doesn't cause column Canada France Germany Italy UK
Canada L,=1, DX, used - 0.77 -0.06 -0.07 0.04
L,=2, DXy used - 0.59 0.18 2.76° 0.29
L,=2, DX, used - 0.93 1.19 0.22 0.87
L,=3, DX.; used - 1.27 0.18 1.78° -0.60
L,=3, DX, used - 0.35 1.25 0.37 0.30
L,=3, DX5 used - 0.34 0.38 1.83° -0.13
France L,=1, DXy used -0.23 - 3.23° 4.31° 0.64
L,=2, DXy used 0.51 - 2.53% 5.41% 3.73%
L,=2, DX, used 0.59 - -1.06 -2.23 0.79
L,=3, DX used -0.34 - -0.58 4.47° 1.44°
L,=3, DX, used -0.23 - 2.00° 1.69° -0.59
L,=3, DX.3 used -1.12 - 3.29° 5.28% 3.39%
Germany L,=1, DX used 0.54 3.34° . 3.57° 1.05
L,=2, DX used 1.54° -0.87 - -3.64 2.50°
L,=2, DX, used -0.16 3.15° - -5.51 1.41°
L,=3, DX, used 0.30 -0.20 - 4.81° 1.98°
L,=3, DX., used 0.34 -2.29 - 2.23° -0.03
L,=3, DX used -1.08 2.10° ; 6.50° 2.02°
Italy L,=1, DX,y used 0.30 3.56° 3.10° - 0.70
L,=2, DX.; used 2.06° -1.00 44.93° - 2.02°
L,=2, DX, used 0.39 3.92° 3.19° - 1.73°
L,=3, DX, used 1.57° 3.92° 3.54° - 1.66°
L,=3, DX, used 2.16° 3.67° 3.64° ; -0.42
L,=3, DX,5 used -0.81 -5.22 -1.13 - 0.82
UK L,=1, DX, used -0.28 0.80 1.06 0.25 -
L,=2, DX used 2.05° 1.99° 3.43° 2.82° -
L,=2, DX, used 2.18° 1.30° 3.39° 1.93° -
L,=3, DXy used -0.42 5.44° 5.27% 5.20° -
L,=3, DX, used 0.31 -1.49 0.73 -0.21 -
L,=3, DX5 used -1.44 -0.35 -0.73 -1.05 -

The superscripts a, b and ¢ denote rejection of the noncasusality hypothesis at 1%, 5% and 10%
significance levels, respectively.The bold elements indicate the causal links detected by our nonparametric
causality test but not by the linear causality test at the 5% significance level.



Table 7: Granger causality tests between stock prices and trading volumes

Panel A: Linear Granger causality test between AP and AV

Ho: AP doesn't cause AV

Ho: AV doesn't cause AP

Dow Jones Nasdaq S&P 500 Dow Jones Nasdaq S&P 500
L,=1, DX,y used 0.11 8.28° 8.63° 0.66 0.32 0.02
L,=2, DX used 0 6.85 9.84° 0.65 0.15 0.04
Ly=2, DX, used 1.22 3.63° 3.69° 0.1 0.11 0.03
L,=3, DX.; used 0.05 5.78° 10.82° 0.65 0.15 0.05
L,=3, DX., used 1.85 3.21° 4.88° 0.1 0.11 0.07
L,=3, DX, used 3.83° 0.02 6.49" 0.07 0 0.02

Panel B: Nonlinear Granger causality test between AP and AV

Ho: AP doesn't cause AV

Ho: AV doesn't cause AP

Dow Jones Nasdaq S&P 500 Dow Jones Nasdaq S&P 500
L=1, DX, used 2.17° 2.20° 0.80 1.79° -0.04 1.78"
L,=2, DX, used 1.29° 4.18° 2.02° 3.87° 3.24° 1.27
L,=2, DX, used 2.07° 4.06° 4.33° 2.12° 1.49° 0.93
L,=3, DX,y used -0.39 1.59° 3.54° -1.90 1.38° 0.81
L,=3, DX, used 9.63° -0.40 3.53° 0.46 0.85 -0.05
L,=3, DX,3 used -2.31 1.45° 3.23° -0.33 -0.29 0.33

(1)The superscripts a, b and ¢ denote rejection of the noncasusality hypothesis at 1%, 5% and 10%
significance levels, respectively.

(2)The bold elements in Panel A indicate the linear causal links that our nonlinear Granger causality test fails to
detect at the 5% significane level and those in Panel B indicate the nonlinear causal links where the linear
Granger causality test fails at the 5% significance level.
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Figure 1: Level of the Tests T, and T,, (n = 100)
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Figure 3: Power Comparison for Linear and Nonlinear Causality Tests (d; = 1, n = 100, 5%)
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Figure 3: Power Comparison for Linear and Nonlinear Causality Tests (d; = 1, n = 100, 5%, cont.)





