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College, Tianjin 300192, China 
2Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA 
*cli32@ucmerced.edu 

Abstract: X-ray luminescence computed tomography (XLCT) has the potential to image the 
biodistribution of nanoparticles inside deep tissues. In XLCT, X-ray excitable nanophosphors 
emit optical photons for tomographic imaging. The lifetime of the nanophosphor signal, 
rather than its intensity, could be used to extract biological microenvironment information 
such as oxygenation in deep tumors. In this study, we propose the design, the forward model, 
and the reconstruction algorithm of a time domain XLCT for lifetime imaging with high 
spatial resolution. We have investigated the feasibility of the proposed design with numerical 
simulations. We found that the reconstructed lifetime images are robust to noise levels up to 
5% and to unknown optical properties up to 4 times of absorption and scattering coefficients. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, 
in which high energy X-ray photons are used to excite X-ray excitable nanophosphors which 
emit optical photons measured for optical tomographic imaging [1]. The XLCT imaging is an 
intrinsic optical imaging with high measurement sensitivity and uses the known X-ray 
excitation region as anatomical guidance for high spatial resolution when imaging deep 
targets inside tissues [2,3]. So far, several XLCT systems have been proposed and validated 
with numerical simulations and experimental studies [4–7]. Currently, all XLCT systems 
work in a mode of continuous sampling, in which continuous-wave (CW) X-ray photons are 
used to excite fluorophores and the emitted optical intensity data is acquired for image 
reconstruction. Therefore, these CW XLCT systems do not have the ability for lifetime 
imaging which is related to many micro-environmental parameters such as oxygen 
concentration, temperature and pH value, etc. 

Up to now, many different techniques including time domain (TD) and frequency domain 
(FD) solutions have been well developed to measure fluorescent lifetimes [8–10]. Although 
fast FD optical imaging systems have been commercially available, TD imaging methods, 
especially the time-correlated single photon counting (TCSPC) technique, which has better 
timing resolution, is considered to be the gold standard for high precision fluorescence 
lifetime imaging, due to its measurement accuracy [11,12]. Although the lifetime is 
independent of the depth, the spatial resolution of TD fluorescence imaging is also degraded 
by the strong optical scattering when imaging deep targets. 

While similar to fluorescence lifetime imaging, phosphorescence lifetime imaging 
exhibits long luminescent lifetimes greater than fluorescent lifetimes due to their long-lived 
excited triplet states. Combined with time gating techniques, acquisition of these long 
emission lifetimes eliminates background fluorescence noise and overall improves the signal-
to-noise ratio (SNR) of the phosphorescent lifetime signal [13]. Lifetime information serves 
as probe for detection and visualization of biomolecules in tissue [14]; analysis of the lifetime 
signal with fractional calculus establishes correlations between the lifetime of the excited 
nanophosphor and the biomolecule. For example, phosphorescent lifetimes are sensitive to 
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and serves as the reference signal for the TCSPC device (SPC-130, Becker & Hickl, 
Germany). Phantoms or other objects for imaging are placed on a motorized rotation stage 
(B4872TS-ZR, Velmex, Inc., New York), which is mounted on a motorized linear stage 
(MB2509Q1J-S3, Velmex, Inc., New York). The scanning X-ray beam pass through objects 
and is then detected by an X-ray detector (Shad-o-Box 1024, GOS scintillator screen, Rad-
icon Imaging Corp., California) with a detection area of consisting of a 1024 1024×  pixel 
photodiode array sensor with a 48 μm  pixel size. The X-ray detector measures the intensity 

of the X-ray beam, from which the phantom boundary is detected. The emitted optical 
photons from the phantom side surface are collected by a 2 meters long fiber bundle with an 
aperture diameter of 3 mm. The fiber bundle is fixed by a mount frame that moves and rotates 
with the phantom or the object being scanned. A fan-cooled photomultiplier tube (PMT) 
photon counting head (PMC-100, Becker & Hickl, Germany) is coupled to the TCSPC 
module for acquiring the time-resolved flux, i.e., the temporal point spread function (TPSF). 
The measurement data is stored and displayed in a personal computer (PC). 

2.2 Laplace transform based time domain XLCT algorithm 

In this paper, we apply the generalized pulse spectrum technique (GPST) method to convert 
the real domain optical diffusion forward model into its Laplace transform, following the 
similar approach described in Ref [20]. for time domain fluorescence molecular tomography 

(FMT). In time domain XLCT, let 
0

( , ) ( , )
+∞ −Φ = Φ ptp t e dtr r be the Laplace transform of the 

time-dependent photon density ( , )Φ tr  at position r in domain Ω  at time t for a complex 

transform factor p. The Laplace-transformed photon diffusion equation is accordingly written 
by the following equation: 

 
[ ( ) ( ) ] ( , ) ( , ),

( , ) 2 ( ) ( , ) 0,

∇ ⋅ ∇ − − Φ = − ∈ Ω
 Φ + ⋅∇Φ = ∈ ∂Ω

a k

n

D c p p S p

c p KD e p

μr r r r r
r r r r

 (1) 

where ( )aμ r  is the absorption coefficient of the media, c is the velocity of light in the media, 
1( ) [3( ( ) ' ( ))]r r rμ μ −= +a sD is the diffusion coefficient, ' ( )sμ r  is the reduced scattering 

coefficient, ne  is the outward unity vector normal to the surface ∂Ω , (1 ) / (1 )f fK R R= + −  

is the Robin boundary condition coefficient, fR  is the internal reflection coefficient at the 

boundary, and ∇  is the gradient coefficient. ( )kS pr,  is the source term which stands for the 

k-th X-ray beam illumination pattern and can be written as: 

 
( )

( , ) ( )
1 ( )

=
+

af
k kS p T

p

ημ
τ
r

r r
r

 (2) 

where ( )kT r  is the X-ray intensity distribution, η  is the quantum efficiency, and ( )afμ r  is 

the absorption coefficient. In Eq. (2), the light yield ( )afημ r and the lifetime ( )τ r are the 

phosphorescent nanoparticle properties to be reconstructed. 
In XLCT, while an X-ray beam scans the object along a straight line, the X-ray beam 

intensity distribution along the scanning line follows the Beer-Lambert law. If we assume a 
uniform X-ray attenuation medium, ( )kT r can be expressed as: 

 0( ) exp( ( ) ( ))= − ×k xT r T Lμ r r  (3) 

where 0T  is the initial X-ray beam intensity, ( )xμ r is the X-ray attenuation coefficient at the 

position r , and ( )L r is the distance from X-ray beam start position to current position r . 
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Based on the finite element method (FEM), the forward model of the time domain XLCT 
can be expressed as [21]: 

 , ,1 ,1( ) ( ) ( )× × × ×=
d dn I J m m n I Jp p pA x b  (4) 

where nd is the number of detector nodes, I is the total number of angular projections, J is the 
number of linear scan for each projection, and m is the finite element mesh node number. 
Here, we define the intermediate quantity, ( , ) ( ) / [1 ( )]= +afx p pημ τr r r . Let 

1
( , ) ( ) ( ) ( ) ( )x u

=
≈ =m T

n nn
x p x p u pr r r with 1 2( ) [ ( ), ( ), , ( )]u =  T

mu u ur r r r and 

1 2( ) [ ( ), ( ), , ( )]T
mp x p x p x p=x  being the shape functions and the unknowns. b is the 

measurement, and A is the system matrix that can be calculated as: 

 

1

1 1

,

1
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( )

( )

( )
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× ×
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in which ⊗  is the element product of row vectors iΦ , jΓ  and jT , where [1, ]di n∈  and 

[1, ]j I J∈ × . 1 2[ ( ), ( ), , ( )]
d

T
np p pΦ Φ Φ  is the sensitivity matrix where each row vector 

iΦ  is solved by Eq. (1) when setting the detector node i to be 1. jT  is the excitation vectors 

from X-ray beam illumination patterns. In XLCT, the excitation regions have the known 
locations along the X-ray beam and can be described as: 

 
1,

( )
0,j

node s is within the X ray beam
s

otherwise

−
Γ = 


 (6) 

The XLCT reconstruction can be solved like what used in FMT [22–24]. The solution of 
Eq. (4) can be obtained by minimizing the following regularized squared measurement misfit 
under the non-negativity constraint: 

 2
2

1
( ) F( ( )) : || ( ) ( ) ( ) || || ( ) ||

2
q
qp p p p p pα

≥
= = − +

x 0
x argmin x b A x x  (7) 

where α is the regularization parameter and || ( ) || ( 0)q
qp q ≥x  is the Lq norm term. In this 

paper, the majorization-minimization (MM) algorithm is applied to minimize the L1 
regularized mismatch between the measurements and the modeled values by updating the 
images iteratively. The details of the MM algorithm have been described elsewhere [23,24]. 

The two unknown distributions, the phosphorescent yield and the lifetime of the phosphor 
particles can be explicitly recovered from the images of 1( , )x pr and 2( , )x pr by employing a 

pair of transform factors: 1,2p , in the Laplace transforms: 
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where the transform factors are: 

 1,2 ( ) ( )
, (0 1)

(2 / )B B
a

k
p k

cμ τ
= ± ≤ ≤

+
 (9) 

In which, ( )B
aμ  and ( )Bτ  are the background optical absorption and lifetime coefficients. The 

transform factors 1p  and 2p  are two specific transform factors of p as defined in Eq. (8). In 

this study, we use a pair of transform factors only. 

2.3 Numerical simulation studies 

To validate our proposed time domain XLCT imaging system and algorithms, we have 
performed numerical simulation cases using a three-target phantom. To simulate the proposed 
imaging system, we took measurements using one optical fiber bundle. For the simulation 
studies, we used a 10 mm long cylindrical phantom with a diameter of 13 mm. The optical 
properties of the phantom were set to be ( ) 10.0072B

a mmμ −= and ( ) 1' 0.72B
s mmμ −= , while, 

the phosphorescent properties were ( ) 10.001B
af mmημ −=  and ( ) 1B psτ = . 

In numerical simulations, we adopted a normalized X-ray beam intensity. Therefore, the 
X-ray intensity at the entry to the phantom 0( )T  was assumed to be equal to 1. The X-ray 

attenuation coefficient was 10.0214x mmμ −=  in the phantom. Then, the X-ray intensity 

along the X-ray beam in the phantom is given by the following equation: 

 ( ) exp( 0.0214 ( ))= − ×kT Lr r  (10) 

where [0, 13]L ∈ was the distance from one side to another side of the phantom. 

All the three-targets had a diameter of 0.4 mm and a height of 6 mm and were embedded 
in the phantom. The positions of the targets are shown in Fig. 2, in which we can see that the 
target center-to-center distance (CtCD) was 0.8 mm. For numerical study, we set the 
phosphor particle concentration to be 1 mg/mL in targets and 0 mg/mL (no phosphors) in the 
background. Targets are divided in two groups: Group #1 including T1 and T2; Group #2 
including T3. 

Table 1. Optical and phosphorescent parameters of the phantom and targets 

Items μa [mm- 1
] μ’s [mm- 1

] ημaf [mm- 1
] τ [ps] 

Background 0.0072 0.72 0.001 1 

Group 1 0.0072 0.72 0.005 400 

Group 2 0.0072 0.72 0.003 600 

 
The fiber bundle was placed at 3 mm under the phantom top surface. The relative position 

of fiber bundle to the phantom was fixed. During the experiments, the fiber bundle and the 
phantom translated and rotated together. We used a focused X-ray beam to scan the phantom 
at a depth of 5 mm. The focused X-ray beam diameter and the linear scan step size were set to 
be 100 μm. We used six angular projections with an angular step size of 30 degrees. For each 
projection, we had 130 measurements. The numerical measurements were generated from the 
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respectively. To further analyze the reconstructed XLCT image quantitatively, we have 
calculated the image quality metrics as shown in Table 2. From the dotted blue line in Fig. 
3(B), line profiles are plotted in Fig. 3(C). From the FWHM, we calculated reconstructed 
target size of 0.4249 mm with a target size error (TSE) of 6.23% and 0.4222 mm with a TSE 
of 5.54% for phosphorescence yield and lifetime, respectively. In addition, the CtCD of yield 
and lifetime are 0.7769 and 0.7742 mm with errors of 2.89% and 3.23%, and DICE were 
evaluated to be 89% and 87.62% for yield and lifetime, respectively. Based on our results, the 
lifetime and yield of multiple targets deeply embedded inside tissues can be successfully 
reconstructed simultaneously using time resolved data. 

To see how robust the proposed time domain XLCT imaging algorithm is to different 
measurement noises from 1% to 10%, we added different Gaussian white noises onto the 
numerical measurements and ran the reconstruction with a fixed projection number of 6. We 
have calculated the image qualify metrics from both the reconstructed lifetime images and 
yield images as listed in Table 3. Reconstruction using lifetime data with noise levels of 1% 
and 2% resulted in equivalent CtCD of 0.7769 mm with 2.89% error. At 5% noise level, the 
CtCD was 0.7755 mm with 3.06% error. At the largest noise level of 10%, the CtCD was 
evaluated at 0.9515 mm with 18.94% error. DICE coefficients remained larger than 86% in 
noise levels 1%, 2%, and 5%. For noise level of 10%, the DICE coefficient decreased to 
27.53%. The reconstructed yield images resulted in similar DICE coefficients to those 
utilizing lifetime images, but the lowest DICE coefficient was 85.14% at the greatest noise 
level. The DICE coefficients at noise levels 1%, 2% and 5% did not fluctuate significantly 
from 86%. In addition, the lowest CDE of 1.17% occurred at 1% noise level while the 
greatest CDE of 27.64% occurred at 5% noise level. At noise levels 2% and 10%, CtCD were 
generated at 0.5844 mm with 26.95% error and 0.6187 mm with 22.66% error respectively. 

 

Fig. 3. The reconstruction results of phosphorescence yield (top) and lifetime (bottom) for 
three targets numerical simulation. A: The reconstructed phosphorescence yield and lifetime 
images, respectively; B: Zoomed in regions of reconstructed targets, the green dotted line 
indicates the exact target size and position, the blue dotted line indicates the profile location; 
C: profile plots across target T2 and target T3. 

Additionally, we reconstructed images of lifetime and yield with measurement data at 
different number of projections with a fixed noise level of 2% as shown in Fig. 4. From these 
images, we calculated the image quality metrics as listed in Table 4. The reconstructed 
lifetime images performed best with measurement data of projections 6 and 12 considering 
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their high DICE coefficients of 87.62% and 86.15% and low CDE of 3.07% and 1.63%, 
respectively. From the reconstructed yield images, we see that DICE coefficients did not vary 
significantly with different projection numbers. The greatest DICE coefficient was calculated 
with 6 projections at 86.32%. The closest CtCD to the actual value was evaluated with 24 
projections at 0.8016 mm with 0.20% error, while the greatest CtCD error arose from 3 
projections at 1.0560 mm with 32.00% error. 

Table 2. Quantitative imaging quality metrics for the numerical simulation with three 
targets. 

 
Diameter (mm)/TSE CtCD (mm)/CDE DICE 

Yield 0.4249/6.23% 0.7906/1.17% 86.49% 

Lifetime 0.4222/5.54% 0.7769/2.89% 86.50% 

 
Lastly, we have investigated the robustness of the reconstructed lifetime and yield images 

to the unknown optical properties. In the forward model, we have set the absorption 
coefficient of 0.0072 mm−1 and the reduced scattering coefficient of 0.72 mm−1. In the 
reconstruction model, we have changed the optical properties to be 2 times absorption 
coefficient (2*µa), 4 times absorption coefficient (4*µa), and 2 times absorption coefficient 
plus 2 times reduced scattering coefficient (2*µa and 2* µs’). In these studies, we had a fixed 
noise level of 2% and a fixed projection number of 6. From both the reconstructed lifetime 
and yield images, we have calculated the image qualify metrics as listed in Table 5, from 
which we see that the reconstructed lifetime images seem independent of the optical 
properties of the object being imaged with the same CtCD of 0.7769 mm with 2.89% error 
and same DICE coefficient of 86.50%, which are very close to the numbers we got with the 
true optical properties. From Table 5, we also see that the reconstructed yield images resulted 
in slightly different metrics with respect to different optical properties. The lowest CDE of 
1.52% occurred at 2*µa and 2*µs’ with a CtCD of 0.7879 mm, and the greatest CDE of 
27.81% occurred at 2*µa with a CtCD of 0.5775 mm. DICE coefficients remained relatively 
constant at 86% for 2*µa, and 4*µa while the greatest DICE coefficient was generated from 
2*µa and 2*µs’ at 87.05%. 

Table 3. Quantitative imaging quality metrics for the numerical simulations with 
different noise levels 

 
Number of 
Projections 

Noise CtCD (mm)/CDE DICE 

Lifetime 6 1% 0.7769/2.89% 86.50% 

 
6 2% 0.7754/3.07% 87.62% 

 
6 2% 0.7755/3.06% 86.50% 

 
6 10% 0.9515/18.94% 27.53% 

Yield 6 1% 0.7906/1.17% 86.49% 

 
6 2% 0.5844/26.95% 86.32% 

 
6 5% 0.5789/27.64% 86.58% 

 
6 10% 0.6187/22.66% 85.14% 
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Fig. 4. The zoomed regions of the reconstructed phosphorescence yield images and lifetime 
images for three targets numerical simulation with measurements at different projections. The 
dotted circles indicate the true target position and size. The bottom row shows the profile plots 
cross the bottom two targets where “1 det” indicates one detector we used in the simulations. 
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Table 4. Quantitative imaging quality metrics for the numerical simulations with 
measurements of different projection numbers 

 Number of 
Projections 

Noise CtCD (mm)/CDE DICE 

Lifetime 3 2% 0.8113/1.41% 84.32% 

 
6 2% 0.7754/3.07% 87.62% 

 
12 2% 0.7870/1.63% 86.15% 

 
24 2% 0.7878/1.52% 82.41% 

Yield 3 2% 1.0560/32.00% 84.36% 

 
6 2% 0.5844/26.95% 86.32% 

 
12 2% 0.7906/1.17% 86.16% 

 
24 2% 0.8016/0.20% 83.35% 

Table 5. Quantitative imaging quality metrics for the numerical simulations with 
mismatched optical properties. The first row indicates the true optical properties with µa 

= 0.0072 mm−1 and µs’ = 0.72 mm−1 

 
µa µs’ CtCD (mm)/CDE DICE 

Lifetime 0.0072 mm−1 0.72 mm−1 0.7754/3.07% 87.62% 

 
2*0.0072 mm−1 0.72 mm−1 0.7769/2.89% 86.50% 

 
2*0.0072 mm−1 2*0.72 mm−1 0.7769/2.89% 86.50% 

 
4*0.0072 mm−1 0.72 mm−1 0.7769/2.89% 86.50% 

Yield 0.0072 mm−1 0.72 mm−1 0.5844/26.95% 86.32% 

 
2*0.0072 mm−1 0.72 mm−1 0.5775/27.81% 86.72% 

 
2*0.0072 mm−1 2*0.72 mm−1 0.7879/1.52% 87.05% 

 
4*0.0072 mm−1 0.72 mm−1 0.5789/27.64% 86.39% 

4. Discussion and conclusions 

In this study, we have, for the first time, proposed a time domain XLCT system design, 
forward model and reconstruction algorithm. We plan to generate high frequency pulsed X-
ray photons by using an optical chopper. The linear GPST method was applied to solve the 
optical diffusion forward model problem. In three-component target numerical simulations, 
three targets were successfully reconstructed. Furthermore, phosphorescence yield and 
lifetime distributions have been recovered simultaneously with good accuracy and resolution. 
Time domain methods usually take a relatively long scanning time. In the future experimental 
system, several TCSPC modules can be employed to achieve multiple channel detection to 
reduce measurement time. 

From the numerical simulation studies, we found that the proposed time domain XLCT 
imaging is robust to measurement noise level up to 5% and to unknown optical properties. In 
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particular, the reconstructed lifetime images are independent of the optical properties, which 
is a major advantage of the lifetime imaging due to the difficulty in estimating the optical 
properties of tissues. 

We applied a 20% of maximum threshold when we calculated the DICE coefficient. It is 
also possible to apply a threshold of 10% of maximum. We have obtained similar DICE 
coefficients for all cases except the cases with the noise level of 5%. We believe it is feasible 
to use either 10% or 20% threshold in the future because the measurement noise should be 
less than 5%. 

In this study, we have also used a pair of transform factors as shown in Eq. (8). In the 
future, more transform factor pairs will be applied from the measured pulses, which should 
result in better image quality due to more measurement data as input for the reconstruction 
algorithm. 

It is worth noting that the proposed time domain XLCT algorithm is a generic 
reconstruction algorithm that works for nanophosphors with a lifetime ranging from 
picoseconds to microseconds. In the numerical simulation studies, we arbitrarily picked up 
the lifetime of 0.4 and 0.6 nanoseconds, which are enough to validate our algorithm. 
However, the experimental system as described in Fig. 1 might only work for measuring the 
lifetime less than hundreds of nanoseconds. For measuring nanophosphors with lifetimes 
around a few nanoseconds, we need an X-ray source such as free electron laser which can 
generate X-ray pulses as short as a fraction of nanosecond [26]. 

We noticed that the DICE dropped slightly when the measurement projection number 
increased as shown in Table 4. To figure out the reason, we have performed another set of 
numerical simulations with only one large target (5 mm in diameter) at different projection 
numbers with a constant noise level. With the large target, we did not observe this issue. A 
possible explanation is that our tdXLCT reconstruction is based on a finite element mesh and 
there are partial volume issues due to the small target size. We have also found that the 
reconstructed image quality could be improved substantially with more detectors instead of 
one detector as described in our simulations. 

The proposed algorithm is a generic reconstruction algorithm that works well for both 
two-dimensional (2D) imaging and three-dimensional (3D) imaging. Due to the 
computational cost, we have demonstrated it with a 2D imaging. For 3D imaging, we can 
scan mice slice by slice of the region of interest. 

In summary, we have proposed a time domain XLCT imaging framework and have 
performed a set of numerical simulation studies to validate its feasibility, which will guide the 
future design of a time domain XLCT imaging system. 
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