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Abstract: 

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that 
functions as a key regulator of cell growth, division, and survival. Many 
hematologic malignancies exhibit elevated or aberrant mTOR activation, 
supporting the launch of numerous clinical trials aimed at evaluating the 
potential of single-agent mTOR-targeted therapies. While promising early 
clinical data using allosteric mTOR inhibitors (rapamycin and its 

derivatives, rapalogs) have suggested activity in a subset of hematologic 
malignancies, these agents have shown limited efficacy in most contexts. 
Whether the efficacy of these partial mTOR inhibitors might be enhanced 
by more complete target inhibition is being actively addressed with second 
generation ATP-competitive mTOR kinase inhibitors (TOR-KIs), which have 
only recently entered clinical trials. However, emerging preclinical data 
suggest that despite their biochemical advantage over rapalogs, TOR-KIs 
may retain a primarily cytostatic response. Rather, combinations of mTOR 
inhibition with other targeted therapies have demonstrated promising 
efficacy in several preclinical models. This review investigates the current 
status of rapalogs and TOR-KIs in B cell malignancies, with an emphasis on 
emerging preclinical evidence of synergistic combinations involving mTOR 

inhibition. 

  

 

 

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

 
 
David A. Fruman, Ph.D. 
Professor, Department of Molecular Biology & Biochemistry 
Associate Director, UC Irvine Cancer Research Institute 
dfruman@uci.edu 

UC Irvine, 3242 McGaugh Hall 
Irvine, CA 92697-3900 

(949) 824-1947 TEL 
(949) 824-8551 FAX 

 
January 19, 2016 

Editorial Office 
British Journal of Clinical Pharmacology 
 
Dear Editor, 
 

Thank you for providing reviewer comments and inviting a revised version of our review 
article, entitled “Targeting mTOR for the treatment of B cell malignancies”. We are grateful for 
the positive feedback and the helpful suggestions. We have prepared a point-by-point reply that 
addresses all of the concerns raised by the referees as well as the comments of the editor. We 
have also prepared the revised figures according to the instructions. We hope that these changes 
are acceptable to the journal. 

As requested by the Editorial Office, the name of the Principal Investigator is David Fruman. 
 

Sincerely, 
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Point by Point Response to Reviewers and Editor 
Lee, Vo and Fruman 
British Journal of Clinical Pharmacology  
RT-00761-15 

Referee: 1 
 
Minor suggestions: 
1. Page 8: The authors describe studies of mTOR inhibitors (MTIs) with an emphasis upon 
studies performed in pediatric ALL. Consider citation addition & brief update for everolimus + 
chemo trials (AE Place ASH 2015 abstract #3765) for most current information. 
This has now been updated on page 6, lines 196-199. 
 
2. Reference #167 appears incomplete in citation and should be updated. 
This is now reference #172 and has been updated.  
 
3. Figure number is generous. Consider condensing into smaller number of figures, as they are 
very similar and individually highlight relatively minor points/data. In particular, consider 
deletion of Figure 5, which adds minimal information above that described in the main text. 
To reduce the overall figure number, we chose to remove former Figure 4. We felt that this was 
largely redundant with previous figures and the new points about PIM and MNK kinases were 
described sufficiently in the main text. Former Figure 5, now Figure 4, contains conceptual 
information that we feel is important for the reader to view in Figure format. 
 
4. Table 1: please define ORR in footnote and also on page 18/line 369 if not previously done. 
Consider changing Table 1 column title "Notes" to "Outcomes" or "Results." Consider adding 
column for class of inhibitor (e.g., MTI, TOR-Ki, etc.) after the drug names and updating title 
name.  
ORR has been defined in a footnote. It is also defined in the main text on line 213. 
Table 1 column 6 title has been changed to “outcomes”. 
A column has been added for drug class. 
We did not alter the main title of the Table, which seems to adequately describe the content:  
“Published trials of mTOR-targeted therapies in ALL and NHL” 
 
Typographical corrections: 
1. page 6, line 19: change "relapse" to "relapsed" 
Fixed. This is now on page 5, line 167. 
 
2. Please remove erroneous commas placed before non-independent clauses in compound 
sentences. 
We have checked the text thoroughly and attempted to remove unnecessary commas. 
 
 
  

Page 2 of 82

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

Referee: 2 
 
Minor points: 
1. Highlighting or circling the mTORC1 and mTORC2 complexes in Figure 1 will make the 
figure more understandable. 
Boxes have been placed around mTORC1 and mTORC2 in a revised version of Figure 1. 
 
Provide a brief background explanation of how mTOR senses ATP and amino acids to maintain 
cellular homeostasis. Explain in detail the regulation sequence between mTORC1, 4EBP1 and 
eIF4E. Add an explanation of PDCD4 function in mTOR signaling.  
These requests are all addressed in the revised text, page 3, lines 59-72. We also briefly 
expanded the description of mTORC2 regulation on page 2, lines 45-48. 
 
2. Include FKBP12 along with rapalogs in Figure 2 and add an inhibiton arrow directed at 
mTORC1.  
This has been added. 
 
3. The title “Rapalogs: partial mTORC1 inhibitors” (line 91) should be replaced with 
“ Rapamycin and Rapalogs: partial mTORC1 inhibitors”; the subtitle “Rapalogs in B-ALL” (line 
103) should be replaced with  “ Rapamycin and Rapalogs in B-ALL”. 
Done. 
 
4. Add reference after “…in vitro or in xenograft models” (line 110). 
Three new references have been added here. Now line 157. 
 
 
 
Executive Editor's comments: 
Executive Editor 
Comments to the Author: 
Please revise your manuscript according to the comments of the reviewers. Thank you. 
Done, please see above. 
 
 
Comments Regarding Format from the Editorial Office: 
 
1) The submission guidelines for the British Journal of Clinical Pharmacology have changed 
slightly. We now request a brief statement in the cover letter which clearly states the name of the 
Principal Investigator. 
This statement have been added to the cover letter. 
 
2) Abstract: A structured summary must appear before the Introduction and include the 
following headings: Aim(s), Methods, Results (some numerical data, including confidence 
intervals on differences, when appropriate, must be included), Conclusions 
The summary should be a maximum of 250 words. Please ensure the summary within the 
manuscript matches the one requested in the separate box during submission. 
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This submission is a review article, not a research study. Therefore there were no aims, methods 
or results to include in a structured summary. We have included an abstract of 176 words. We 
believe this might have been overlooked because it was labeled “summary” rather than 
“abstract”, and because there was no header for the next section. We have now added 
“Introduction” as a header to the section immediately following. 
 
3) Please amend your conflict of Interest Statement. The statement should follow the format used 
by the British Medical Journal (BMJ) and must contain all three of the statements included 
below: 
 
“All authors have completed the Unified Competing Interest form at 
www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and 
declare: no support from any organisation for the submitted work OR [author initials] had 
support from [name of organisation] for the submitted work; no financial relationships with any 
organisations that might have an interest in the submitted work in the previous 3 years OR 
[author initials] [had specified relationship] with [name of organisation] in the previous 3 years; 
no other relationships or activities that could appear to have influenced the submitted work OR 
[initials of relevant authors] [had specified relationships or activities of this type]” 
An appropriate Conflict of Interest statement has been added after the acknowledgements, before 
the References. All authors have completed the Unified Competing Interest form. 
 
4)  Title Page: 
– title should give an informative and accurate indication of the content of the paper. It should be 
no longer than 150 characters (including spaces); 
This was already present; no changes have been made. The title is 55 characters, including 
spaces. 
 
– a running head of no more than 75 characters, including spaces 
The title page now provides a running title of 38 characters:  
“mTOR inhibitors in B cell malignancies” 
Please note that the main title is less than 75 characters so this could be used as well. 
 
– keywords (these are used to identify potential referees and as indexing terms) 
These were already present; no changes have been made. 
 
– the word count, excluding the title page, summary, references, tables, and figures 
– the numbers of tables and figures. 
These have been added. 
 
5)  Figure Files: Please upload files as GIF, JPEG, TIFF or PICT files [images >300dpi and 
graphs >600dpi]. PDFs and PPTs are not accepted. This is because should your manuscript be 
accepted for publication the Production Editor will need to edit the files in order to prepare them 
for print. Figures in the request resolution have been provided as .jpg files 
 
Tables: Please upload tables as DOC or EXCEL files which are editable. Do not embed the 
tables as pictures. The Tables are uploaded as .docx files in landscape view. 
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Abstract 23 

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key 24 

regulator of cell growth, division, and survival. Many hematologic malignancies exhibit elevated 25 

or aberrant mTOR activation, supporting the launch of numerous clinical trials aimed at 26 

evaluating the potential of single-agent mTOR-targeted therapies. While promising early clinical 27 

data using allosteric mTOR inhibitors (rapamycin and its derivatives, rapalogs) have suggested 28 

activity in a subset of hematologic malignancies, these agents have shown limited efficacy in 29 

most contexts. Whether the efficacy of these partial mTOR inhibitors might be enhanced by 30 

more complete target inhibition is being actively addressed with second generation ATP-31 

competitive mTOR kinase inhibitors (TOR-KIs), which have only recently entered clinical trials. 32 

However, emerging preclinical data suggest that despite their biochemical advantage over 33 

rapalogs, TOR-KIs may retain a primarily cytostatic response. Rather, combinations of mTOR 34 

inhibition with other targeted therapies have demonstrated promising efficacy in several 35 

preclinical models. This review investigates the current status of rapalogs and TOR-KIs in B cell 36 

malignancies, with an emphasis on emerging preclinical evidence of synergistic combinations 37 

involving mTOR inhibition. 38 

 39 

Introduction 40 

The mTOR Signaling Pathway 41 

mTOR is a serine/threonine kinase that functions as a master regulator of cell growth, 42 

proliferation, metabolism, and survival. mTOR is active in two distinct multi-protein complexes 43 

(mTORC1 and mTORC2) that are characterized by the defining subunits RAPTOR and 44 

RICTOR respectively [1,2]. Each complex is differentially regulated and has a distinct set of 45 

substrates (Figure 1). Activation of mTORC2 is incompletely understood, but has recently been 46 

shown to be dependent on the generation of PI(3,4,5)P3 by phosphoinositide 3-kinase (PI3K) 47 

[3]. Upon activation mTORC2 functions to amplify the activity of AKT, a key oncogene involved 48 
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in cell survival and metabolism [4,5]. On the other hand, mTORC1 activation is coordinately 49 

regulated by growth factor signals (i.e. from the PI3K/AKT pathway), nutrient availability (amino 50 

acids),  and cellular energy status (ATP levels). Under conditions of low nutrients, amino acid 51 

sensors (such as SLC38A9 [6,7]) suppress mTORC1 activation. Similarly, under conditions of 52 

low energy (low ATP), 5’ AMP-activated protein kinase (AMPK) can also suppress mTORC1 53 

activation [8]. This multifaceted regulation ensures that the cell is at an appropriate bioenergetic 54 

state to support cell growth and division [9,10] (Figure 1).  55 

Upon activation, mTORC1 promotes key biosynthetic pathways including translation, 56 

transcription, and lipogenesis, while suppressing apoptotic and autophagic processes [11,12]. 57 

The most well-characterized downstream targets of mTORC1 are the p70 ribosomal-S6 kinases 58 

(S6Ks) and eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs). Phosphorylation of 59 

S6Ks induces its activity, which is critical for lipid and ribosome biogenesis pathways and 60 

promotes translation via suppression of PDCD4 and activation of eIF4B [13,14]. In contrast, 61 

phosphorylation of 4E-BPs suppresses their ability to inhibit eIF4E, which promotes translation 62 

initiation [15]. Together, these effectors coordinately increase protein synthesis rates, a process 63 

whose dysregulation is a central driving mechanism in cancer [16,17]. Importantly, hyper-64 

activating mutations in mTOR itself have been identified in many cancers and further indicates 65 

the importance of mTOR activity to tumorigenesis [18].  66 

 67 

Evidence of mTOR activation in B-ALL and NHL 68 

Aberrant activation of mTOR is frequently associated with poorer prognosis and has been 69 

well described in B cell malignancies including B cell acute lymphoblastic leukemia (B-ALL) and 70 

non-Hodgkin’s lymphoma (NHL). Given that mTOR is a convergence point for many distinct 71 

signaling pathways, there are many mechanisms by which it may become inappropriately 72 

activated (Figure 2). In B-ALL, the most common mode is through activation of upstream 73 

kinases. For example, the Philadelphia chromosome (Ph+), characterized by the BCR-ABL 74 
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translocation, induces robust activation of several parallel pathways leading to mTOR activation. 75 

Similarly, genomic profiling has recently identified a Ph-like subset of B-ALL, which exhibits a 76 

similar kinase activation signature to that of Ph+ B-ALL. Notably, these mutations are strongly 77 

associated with poorer outcomes in both children and adults [19-22]. Empirical evidence has 78 

also shown a direct correlation between AKT and/or mTOR activation and poor prognosis in 79 

patients with pediatric and adult B-ALL [23-25].  80 

Among NHL subtypes, activation of mTOR is consistently a reliable indicator of more 81 

aggressive disease and poorer prognosis [26-30]. Similar to B-ALL, activation of mTOR follows 82 

through direct mutations in key upstream pathways. In mantle cell lymphoma (MCL), 83 

amplification of PIK3CA (the gene encoding the catalytic subunit of PI3K) and/or PTEN loss (the 84 

negative regulator of PI3K activity) have been observed in a large fraction of primary tissue 85 

samples [31]. In diffuse large B cell lymphoma (DLBCL), activation may be similarly achieved 86 

via mutations in PIK3CA  [32,33] or chronic B cell receptor activation [34]. In follicular lymphoma 87 

(FL), mTOR is aberrantly activated by way of PKCζ or Syk kinases [35-38]. Collectively, these 88 

data highlight the impact of elevated mTOR activity on patient outcomes, and provide a solid 89 

rationale for the use of mTOR-targeted therapies in these B cell malignancies. 90 

 91 

Rapamycin and Rapalogs: partial mTORC1 inhibitors  92 

Mechanism of action 93 

Upon entry into a cell, rapamycin binds to FKBP12 forming a complex that potently and 94 

selectively suppresses mTORC1 kinase activity by limiting substrate access to the active site 95 

[39,40]. Importantly, the rapamycin-FKBP12 complex cannot bind to mTORC2 [2,41], though in 96 

some cases prolonged exposure may limit the assembly of mTORC2 [42]. In this manner, 97 

rapamycin behaves as a highly potent and selective inhibitor of mTORC1 (Figure 3). However, 98 

poor solubility and pharmacokinetics spurred the development of rapamycin analogs (termed 99 

rapalogs) for oral dosing in cancer patients [43]. Most notable among these rapalogs are 100 
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temsirolimus (CCI-779, Wyeth Pharmaceuticals [44]), everolimus (RAD001, Novartis 101 

Pharmaceuticals [45]), and ridaforolimus (AP23573, Merck and ARIAD Pharmaceuticals [46]). 102 

 103 

Rapamycin and Rapalogs in B-ALL 104 

Early testing with rapamycin unveiled potent anti-proliferative efficacy in several preclinical 105 

models of ALL. In an Eµ-RET model of murine B-pre ALL, rapamycin as a single agent potently 106 

inhibited proliferation of leukemia cells both in vitro and in vivo [47,48]. Similar efficacy was later 107 

observed in models of Ph+ B-ALL [49,50] as well as in Ph-like B-ALL driven by JAK pathway 108 

mutations or CRLF2 rearrangement [51]. Rapalogs also demonstrated marked preclinical 109 

efficacy in primary human ALL samples grown in vitro or in xenograft models [50-52]. Notably, 110 

rapamycin demonstrated single-agent cytotoxicity in primary pediatric ALL samples and 111 

sensitized cells to doxorubicin in vitro [52]. Both everolimus and temsirolimus have shown 112 

similar efficacy in xenograft models of adult and pediatric primary human ALL as single agents 113 

[53] and in combination with chemotherapy [54,55].  114 

Clinically, rapamycin as a single agent exhibited no dose-limiting toxicities, but had 115 

lackluster efficacy compared to standard chemotherapeutic options (Table 1). In an early trial, 116 

rapamycin yielded stable disease in only three out of nine pediatric patients with relapsed ALL 117 

[56]. As a result, several trials have been launched to determine whether rapalogs can combine 118 

safely and effectively with standard chemotherapies. An early pilot trial combining rapamycin 119 

with glucocorticoids in relapsed ALL patients found that rapamycin effectively reduced the anti-120 

apopotic protein MCL-1 in various patients. This promising outcome suggested that rapamycin 121 

might sensitize ALL cells to apoptosis-inducing drugs. Indeed, in another study combining 122 

temsirolimus with intensive multi-drug re-induction therapy (dexamethasone, mitoxantrone, 123 

vincristine, and PEG-asparaginase) in relapsed childhood ALL yielded complete response in 124 

seven of sixteen patients, of which three had less than 0.01% minimal residual disease (MRD) 125 

by the end of treatment [57]. However, a separate trial evaluating everolimus combined with 126 
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intensive chemotherapy (hyper-CVAD) in relapsed B-ALL yielded complete remission rates that 127 

were similar to standard salvage chemotherapies (~35%) [58-60]. These trials highlight how the 128 

efficacy of rapalogs seem to be dependent on which chemotherapeutics are used, warranting 129 

further investigation. 130 

A key question that remains to be answered is whether rapalogs combined with 131 

chemotherapy will demonstrate acceptable toxicity profiles. In the aforementioned trial 132 

combining temsirolimus with re-induction chemotherapy, the treatment was associated with 133 

unacceptable toxicities including severe infections that led to one death due to sepsis [57]. 134 

However, a recent multi-center study testing the combination of everolimus with prednisone, 135 

vincristine, PEG-asparaginase and doxorubicin demonstrated that the combination was well 136 

tolerated in pediatric patients with first relapse [61]. Further trials are being performed, including 137 

an expansion of the aforementioned trial as well as one testing the safety of temsirolimus with 138 

less intensive re-induction (etoposide and cyclophosphamide; NCT01614197). Together, these 139 

results show that rapalogs have some potential in combination therapy, but an effective and 140 

tolerable regimen in B-ALL has yet to be identified. Moving forward, it will be important to 141 

identify which chemotherapeutics are best combined with rapalogs and whether modifications to 142 

the dose and/or schedule may alleviate dose-limiting toxicities.  143 

 144 

Rapalogs in NHL 145 

Similar to B-ALL, preclinical testing of rapalogs in NHL revealed promising cytostatic effects 146 

both in vitro and in vivo, yet clinical responses were limited in most contexts. For example, in 147 

MCL, FL, and DLBCL, rapamycin potently suppressed the proliferation of cell lines and primary 148 

patient cells in vitro [62-66]. However, the clinical use of rapalogs has only made progress in 149 

MCL where responses to standard chemotherapies are limited (Table 1). In phase II trials of 150 

relapsed MCL, single agent administration of either temsirolimus or ridaforolimus yielded overall 151 

response rates (ORR) of 38% [67] and 33% [68] respectively. Notably, a subsequent phase II 152 
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trial using a 10-fold lower dose of temsirolimus revealed that similar responses could be 153 

obtained with lower toxicity [69]. Based on these results, a randomized phase III trial was 154 

conducted. Strikingly, the ORR and progression free survival were significantly higher in 155 

patients treated with temsirolimus compared to investigator’s choice agent. These results 156 

ultimately led to approval for temsirolimus as a single agent therapy for relapsed/refractory MCL 157 

in Europe [70]. A subsequent phase II trial has also been completed combining temsirolimus 158 

with rituximab in relapsed/refractory MCL. Despite demonstrating higher response rates than 159 

single agent temsirolimus, the combination was also associated with higher toxicities including 160 

thrombocytopenia and neutropenia in a significant fraction of patients [71]. Rapalog 161 

monotherapy has also elicited responses in a subset of patients with other NHL subtypes. In a 162 

phase II trial of everolimus in relapsed lymphoma, the ORR in DLBCL was 30% (14/47) and 163 

38% (3/8) in FL [72]. Similar results were seen with temsirolimus where the ORR was 28% for 164 

DLBCL and 53% in FL [73]. While these studies highlight that rapalogs have some activity, the 165 

availability of better therapeutic options in both DLBCL and FL has limited the clinical progress 166 

of rapalogs in these diseases. Thus, across NHL subtypes it will be important to determine 167 

whether the addition of rapaogs to standard chemotherapy can provide additional benefit to 168 

patients, without increasing toxicities.  169 

 170 

Outlook: 171 

Overall, despite showing promising preclinical activity in hematologic malignancies, rapalogs 172 

have only gained regulatory approval for use in one disease setting (MCL) where standard 173 

chemotherapies have limited efficacy. A major issue is that rapalogs given as single agents tend 174 

to elicit primarily cytostatic responses in hematologic malignancies [62,63,66,74]. Clinically, the 175 

lack of inherent cytotoxicity is problematic since discontinuation of treatment may permit tumor 176 

cell regrowth [75-77]. While continued treatment may combat this issue, whether rapalogs at 177 

anti-leukemic doses will be safe for long-term use also remains to be seen. Clinical evidence of 178 
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several toxicities including thrombocytopenia, mucositis, and hyperlipidemia suggests that 179 

prolonged treatment will be difficult to manage [43]. Alternatively, combinations with 180 

chemotherapy are actively being investigated and may reposition rapalogs as an adjuvant to 181 

improve chemotherapeutic responses. On this note, it is important to point out that the cytostatic 182 

activity of rapalogs will likely limit its potential to combine with certain chemotherapies, 183 

necessitating the identification of cytotoxic drugs that will synergize with rapalogs productively 184 

while maintaining acceptable tolerability.  185 

While rapalogs provided proof-of-concept for effective mTOR targeted anti-cancer therapies, 186 

they exhibit many unfavorable biochemical properties that may also limit their clinical potential. 187 

Most notably, failure to suppress mTORC2 kinase activity allows maintained survival signaling 188 

through AKT and other related kinases. This issue is exacerbated by the existence of a negative 189 

feedback loop downstream of mTORC1 (Figure 3). Selective inhibition of mTORC1 induces 190 

robust feedback activation of upstream PI3K/AKT and MAPK pathways allowing cancer cells to 191 

escape from the effects of rapamycin [57,78-82]. Additionally, rapalogs are known to 192 

incompletely inhibit the phosphorylation of a subset of mTORC1 substrates (Figure 3). Despite 193 

restricting access to the active-site, rapalog-induced suppression of 4E-BP1 phosphorylation is 194 

refractory to long-term treatment compared to phosphorylation of p70S6K [83]. The cause of 195 

this differential sensitivity has recently been attributed to distinct substrate sequences near the 196 

phosphorylation sites [84]. This incomplete suppression of mTORC1 may significantly impact 197 

the anti-cancer potential of rapalogs as sustained activation of eIF4E is known to promote 198 

oncogenesis [85]. Consequently, sustained 4E-BP phosphorylation may allow cancer cells to 199 

escape from rapamycin-induced cell cycle arrest [86]. Thus, more complete mTOR inhibition 200 

may be required to elicit more promising clinical responses.  201 

 202 

TOR-KIs: complete mTORC1/2 inhibitors 203 

Page 12 of 82

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

 9

The timely development of mTOR kinase inhibitors (TOR-KIs) directly addressed the 204 

biochemical disadvantages of rapalogs. By competing with ATP for binding to the mTOR active 205 

site, not only do TOR-KIs more completely block mTORC1 substrate phosphorylation (namely 206 

4E-BPs), but they also inhibit mTORC2 activity [87,88]. This results in reduced phosphorylation 207 

of AKT at Ser473 (Figure 3), dampening the feedback activation of PI3K/AKT that is known to 208 

limit rapalog efficacy [89-91]. It is important to note that by competing with ATP, TOR-KIs are 209 

capable of inhibiting several kinases at higher doses, including the structurally related protein, 210 

PI3K. Conversely, several compounds that are often used pre-clinically as PI3K inhibitors 211 

(wortmannin, LY294002) directly inhibit mTORC1 and mTORC2 at similar concentrations. Thus, 212 

it is important to fully understand the pharmacologic properties of ATP-competitive mTOR and 213 

PI3K inhibitors when interpreting their preclinical and clinical efficacy.  214 

Several structurally distinct mTOR-selective inhibitors have been reported and tested in 215 

models of B cell malignancies. Most notable among them are PP242 [88], Torin1 [87], Ku-216 

0063794 [92], AZD8055 [93], AZD2014 [93], MLN0128 (previously INK128 [94]), and CC-223 217 

[95]. In preclinical testing, these TOR-KIs proved superior to rapalogs in terms of cytostatic and 218 

cytotoxic potential. For example, in a mouse model of AKT-driven lymphangiogenesis, PP242 219 

strongly suppressed both 4E-BP1 phosphorylation and tumor growth compared to rapamycin 220 

[96]. These findings were also recapitulated in vitro using leukemia and DLBCL cell lines where 221 

TOR-KIs had a greatly improved biochemical effect on downstream 4E-BP phosphorylation [97-222 

99].  223 

Despite the broader biochemical impact of TOR-KIs over rapalogs, whether complete mTOR 224 

kinase inhibition is sufficient to elicit cytotoxic responses is yet to be established. Two reports of 225 

structurally distinct TOR-KIs in B-ALL demonstrated that mTOR kinase inhibition was sufficient 226 

to induce apoptosis in B-ALL cell lines compared to rapamycin [100,101]. However, in both 227 

studies, apoptosis was only observed at doses of TOR-KI that greatly exceed what was needed 228 

to fully suppress mTOR kinase activity as measured by western blot. At lower doses that still 229 
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fully suppress mTOR activity, our lab has found that both AZD8055 and MLN0128 maintain a 230 

primarily cytostatic response profile (that is greater than rapalogs) [98,102-104]. Notably, low 231 

doses of PP242 were sufficient to kill murine bone marrow cells immortalized by p190-BCR-ABL 232 

[99], suggesting that fully transformed B-ALL cells with additional oncogenic lesions may 233 

respond differently to mTOR inhibition. Thus, it remains unclear whether TOR-KIs will be 234 

effective in B-ALL or NHL as a single agents at doses that are highly selective for mTOR kinase 235 

activity.  236 

Early clinical trials have suggested that while TOR-KIs are more effective than rapalogs at 237 

suppressing tumor growth, they may also be less tolerable [78]. A single agent tolerability test of 238 

AZD2014 showed dose-limiting toxicities that were similar to rapalogs including mucositis and 239 

fatigue [105]. Both CC-223 and MLN0128 also presented similar toxicities, but hyperglycemia 240 

also occurred and necessitated close monitoring of patient blood [106,107]. Several additional 241 

clinical trials are currently in progress to address the efficacy and tolerability of TOR-KIs and are 242 

summarized in Table 2. However, a key question is to investigate whether TOR-KIs will retain 243 

anti-cancer efficacy at lower doses that minimize these toxicities. While it is likely that lowering 244 

the dose of TOR-KIs may improve their tolerability, it will also impinge on their ability to fully 245 

suppress mTOR kinase activity. Moving forward, it may be important to determine whether 246 

these potentially suboptimal doses, which only partially inhibit mTOR, will be more effective than 247 

clinically tolerable doses of rapalogs, which potently inhibits phosphorylation of some, but not 248 

all, mTORC1 substrates.  249 

 250 

Emerging Combinations with mTOR Inhibitors: 251 

Recent research efforts have been dedicated to identifying promising combinations that can 252 

synergistically kill cancer cells. The rationales behind these emerging combinations can be 253 

loosely categorized into two broad groups. The first approach seeks to exploit known resistance 254 

mechanisms to mTOR inhibition; either by targeting feedback pathways or using apoptosis-255 
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sensitizing agents. The second approach seeks to evaluate the potential of mTOR inhibitors as 256 

adjuvants to augment the effects of other agents targeting known oncogenic drivers. While both 257 

approaches have yielded several promising combinations, whether they can be translated to 258 

significant clinical responses with acceptable toxicity still remains to be determined.  259 

 260 

Combinations targeting resistance mechanisms 261 

Targeting parallel and downstream pathways 262 

As with all targeted therapies, an understanding of how cells maintain survival in the 263 

presence of mTOR inhibitors has been crucial to the identification of promising combinations. 264 

Currently, there are several known acquired and de novo mechanisms of resistance to mTOR-265 

targeted therapies. For example, in addition to feedback activation of PI3K/AKT, mTORC1 266 

inhibition may also activate the parallel MAPK/ERK pathway in B-ALL. In a similar fashion, 267 

PI3K/AKT/mTOR inhibition can also induce up-regulation of receptor tyrosine kinases (RTKs) 268 

leading to resistance in some solid tumors [108]. In agreement with these induced resistance 269 

mechanisms, the addition of MAPK inhibitors and RTK inhibitors have demonstrated 270 

significantly more efficacy in combination with both rapalogs and TOR-KIs in preclinical settings 271 

[80,109,110]. However, in other instances resistance to mTOR inhibition may be a result of 272 

sustained downstream effector activity, particularly cap-dependent translation. For example, our 273 

laboratory has noted resistance to TOR-KIs in DLBCL cell lines lacking expression of 4E-BPs 274 

[98] or over-expressing eIF4E [111]. Furthermore, recent evidence has indicated that PIM and 275 

MNK kinases can maintain cap-dependent translation downstream of mTORC1 inhibition [112]. 276 

In these situations, targeting cap-dependent translation indirectly using combinations of PIM or 277 

MNK inhibitors with TOR-KIs has shown cytotoxic activity in AML cell lines [113,114] as well as 278 

in cutaneous T cell lymphoma cell lines in vitro [115]. Additional work is required to evaluate the 279 

potential of directly targeting the cap-dependent translation initiation machinery. It is likely that 280 
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other mechanisms of resistance will arise as our experience with mTOR inhibitors increases, 281 

and these may ultimately support the study of additional combinations. 282 

While clinical data regarding the efficacy of these combinations in B cell malignancies has 283 

not reached maturity, similar combinations have been successfully deployed in non-hematologic 284 

malignancies. For example, inhibition of the upstream tyrosine kinase, HER2, significantly 285 

improved the efficacy of mTORC1/2 inhibition in patients with refractory breast cancer 286 

compared to single agent treatment [116]. Similarly, combinations of PI3K/AKT/mTOR and 287 

Ras/MAPK/ERK pathway inhibition yielded improved response rates in patients with advanced 288 

refractory solid tumors, but did so at the cost of significantly higher toxicities [117]. Collectively 289 

these studies highlight the potential of using mTOR inhibitors in combination with agents 290 

targeting known resistance pathways to mTOR inhibition or as an adjuvant therapy to augment 291 

the effects of other rational targeted therapies. However, it will be important to determine 292 

whether these combinations targeting multiple key survival pathways will remain selective for 293 

cancer cells as toxicity will be a major concern.  294 

 295 

Targeting apoptosis 296 

 Another straightforward approach to directly enhance the apoptotic potential of mTOR 297 

inhibition is to target the pro-survival BCL-2 family proteins. Apoptosis is regulated through 298 

dynamic and competitive binding interactions between anti-apoptotic proteins (e.g. BCL-2, BCL-299 

XL, BCL-w, and MCL-1) and pro-apoptotic sensitizers (e.g. BAD, PUMA, and NOXA), activators 300 

(e.g. BIM and BID), and effectors (BAX and BAK) (Figure 4). While mTOR inhibition is known to 301 

suppress survival signaling through both mTORC1 (e.g. MCL-1 expression [96]) and AKT (e.g. 302 

inhibition of BAD and down-regulation of BIM [118,119]), TOR-KIs are insufficient to induce 303 

apoptosis through this pathway. Thus, a simple approach would be to use antagonists of the 304 

pro-survival proteins to disrupt their binding capacity, and subsequently lower the threshold for 305 

BIM to activate BAX/BAK-mediated MOMP and apoptosis [120]. 306 
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ABT-737, and its orally bioavailable analog, ABT-263, represent the most potent and 307 

selective small molecule inhibitors of BCL-2 and BCL-XL. Both of these compounds 308 

demonstrated remarkable cytotoxic potential that was significantly enhanced when combined 309 

with mTOR inhibitors in DLBCL [121], FL [122], AML [123], and B-ALL [124]. However, due to 310 

on-target toxicity associated with BCL-XL inhibition [125], a more promising clinical candidate is 311 

ABT-199 [126]. ABT-199 is a selective inhibitor of BCL-2 and has elicited substantial clinical 312 

responses in patients with CLL as a single agent [127], leading to its designation as a 313 

breakthrough therapy for CLL patients with a 17p deletion (p53). Importantly, we and others 314 

have recently reported that ABT-199 synergizes with mTOR inhibition comparably to dual BCL-315 

2/BCL-XL inhibitors [104,128], suggesting that the rationale established using first generation 316 

BCL-2 antagonists will hold true for ABT-199. However, a key concern is whether the addition of 317 

TOR-KIs to BCL-2 antagonists will enhance its toxicity towards non-cancer cells. In an effort to 318 

address this question, our lab has recently demonstrated that the combination does not 319 

synergize to kill peripheral blood mononuclear cells obtained from normal healthy donors [104]. 320 

Further work must be done to ensure that these potent combinations will maintain favorable 321 

tolerability when administered to patients. 322 

 323 

 324 

mTOR inhibition as an adjuvant 325 

Targeting oncogenic drivers 326 

In contrast to targeting resistance mechanisms, others have found that combining 327 

oncogene-targeted therapies with mTOR inhibition also holds promise in B cell malignancies. 328 

For example, in Ph+ B-ALL driven by the BCR-ABL translocation, both rapamycin and PP242 329 

strongly synergized with imatinib to suppress leukemia growth [99]. Similarly, in 330 

myeloproliferative disorders characterized by JAK2 mutations, combinations of TOR-KIs or 331 

rapalogs with JAK2 inhibitors synergistically killed cells whereas single-agent treatments were 332 
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primarily cytostatic [129,130]. In the activated B cell like (ABC) subtype of DLBCL, which is 333 

driven by sustained activation of the B cell receptor (BCR) [34], inhibition of the downstream 334 

kinase, Bruton’s tyrosine kinase (BTK), also synergized strongly with PI3K/AKT/mTOR inhibitors 335 

[131]. However, the limitations of this approach are also becoming apparent. In particular, the 336 

germinal center B cell-like (GCB) DLBCL subtype is unresponsive to combinations of BTK and 337 

mTOR inhibitors likely because BCR activation is not an oncogenic driver in this setting [132]. 338 

More alarmingly, in some cases the addition of mTOR inhibitors may antagonize the effects of 339 

other agents either through suppression of proliferation or through induction of autophagy 340 

[133,134]. Studies like these serve as powerful reminders that a sound biological understanding 341 

supporting the use of these combinations must precede their clinical use. 342 

  343 

Targeting histone deactylases (HDACs) 344 

HDAC inhibitors are another promising class of drug that may benefit from the addition of 345 

mTOR inhibitors. In addition to modulating histone function and gene expression, HDACs also 346 

regulate the activity of non-histone proteins with relevance to B cell cancers (e.g. STAT, Hsp90, 347 

and FOXO) [135-138]. Importantly, mutations in genes regulating protein acetylation have been 348 

described in both B-ALL and NHL. For example, mutations in the CREBBP histone 349 

acetyltransferase (HAT) domain have been identified in a subset of patients with relapsed 350 

pediatric B-ALL where it may confer glucocorticoid resistance [139]. Similar mutations in HAT 351 

activity were identified as frequent mutations in both FL and DLBCL where their inactivation 352 

promotes aberrant up-regulation of BCL-6, a protein known to promote B cell malignancies 353 

[140-142]. Given the pervasive importance of protein acetylation, it is unsurprising that HDAC 354 

inhibitors have elicited promising responses in various leukemias and lymphomas. For example, 355 

in lymphomas with a t(14;18) translocation, HDAC inhibitors were shown to markedly reduce 356 

expression of BCL-2 leading to apoptosis [143]. In other contexts, HDAC inhibition can induce 357 

mitochondrial apoptosis via epigenetic regulation of other BCL-2 family proteins [144,145], 358 
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production of reactive oxygen species and ceramide [146], or activation of death receptors 359 

[147]. Potent anti-proliferative effects have also been described [145,148]. Importantly, recent 360 

evidence has suggested that the addition of mTOR inhibition may augment the effects of HDAC 361 

inhibitors. For example, our lab has recently identified synergy between HDAC inhibitors and 362 

TOR-KIs in B-ALL cell lines and primary patient samples [103]. Also, both temsirolimus and 363 

everlomius have demonstrated synergistic anti-proliferative and apoptotic effects when 364 

combined with the HDAC inhibitors in MCL [149,150]. In DLBCL, combining HDAC inhibitors 365 

with rapalogs or TOR-KIs also synergistically induced apoptosis [65,151]. While there is still 366 

debate as to the exact mechanism of synergy, it is clear that in a preclinical setting this 367 

combination has marked potential in B cell malignancies. However, in a phase I trial combining 368 

panobinostat and everolimus in relapsed/refractory lymphoma, the combination yielded ORRs 369 

similar to everolimus alone but with higher incidence of thrombocytopenia [152]. As this 370 

combination moves forward, it will be important to identify the exact mechanism of action so as 371 

to better predict which patients may benefit from these combinations. It may also be useful to 372 

explore compounds targeting selected subsets of cellular HDAC enzymes. 373 

 374 

Targeting the proteasome 375 

Another class of inhibitors that has shown promise in B cell malignancies are proteasome 376 

inhibitors [153]. Interestingly, even across several cancer subtypes these inhibitors have been 377 

most promising in B cell malignancies [154-159] as evidenced by FDA approval for bortezomib 378 

in both relapsed MCL and multiple myeloma [160]. By suppressing degradation of proteins, 379 

these inhibitors induce a plethora of cellular responses leading to anti-proliferative and pro-380 

apoptotic effects [161,162]. Most notable among these effects are its ability to suppress NF-kB 381 

activity and modulate expression of BCL-2 family proteins [162-164], which provides the basis 382 

for single agent bortezomib efficacy in ABC-DLBCL [165,166]. However, in other B cell 383 

malignancies, single agent proteasome inhibition is not as effective [167-169]. While preclinical 384 
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data has suggested some synergy between rapalogs and bortezomib [150,170], whether 385 

combined proteasome and mTOR inhibition will have generalizable efficacy is still unclear. A 386 

major clinical concern with bortezomib is neurological toxicity [171,172], and while dose 387 

management may alleviate some risks, it is unclear what effects the addition of mTOR inhibitors 388 

may have on patient outcomes. 389 

 390 

Outlook  391 

While the initial discovery of mTOR inhibitors yielded a flood of promising and exciting 392 

preclinical data, the initial wave of rapamycin-based therapies have not elicited widespread and 393 

durable patient responses. Consequently, rapalogs have only achieved regulatory approval in 394 

one subtype. With the development of TOR-KIs that offered a distinct biochemical advantage 395 

over rapalogs, there was an expectation of much greater responses. While the clinical data are 396 

not yet mature, it is becoming more apparent that while TOR-KIs may indeed have higher 397 

efficacy, it comes with the cost of higher toxicities. Whether dose modifications or altered 398 

schedules can lower the toxicity while maintaining efficacy is still unknown, but is a critical 399 

question in determining the future of mTOR-targeted therapies. Given the modest performance 400 

of single-agent mTOR inhibitors, it is likely that identifying combinations, either with targeted 401 

agents or with chemotherapy, may be the key to unleashing the full potential of mTOR inhibition 402 

in cancer. While the preclinical data strongly support this claim, it is still unclear whether this 403 

approach will translate to improved clinical responses, and more importantly, whether it will do 404 

so with acceptable toxicities. Given the generally well-tolerated nature of rapalogs, it seems 405 

prudent to initiate these combination studies using rapalogs. It will also be important to 406 

emphasize the preclinical evaluation of cancer selectivity, specifically to address whether these 407 

combinations will synergize to kill normal cells. Thus, the field of mTOR targeted therapies has 408 

progressed rapidly over the past few decades, and as our knowledge of the biology increases, 409 
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so too will our capacity to augment and fine-tune these therapies to effect positive patient 410 

outcomes. 411 
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Figure Legends 1067 

Figure 1: mTOR signaling pathway 1068 

mTOR exists in two distinct complexes (mTORC1 and mTORC2) that are regulated separately 1069 

and have distinct substrates. Whereas mTORC2 is regulated downstream of PI3K, mTORC1 is 1070 

coordinately regulated by growth factor signals, nutrient availability (amino acids), and cellular 1071 

energy status (ATP levels). The outputs of their downstream effectors coordinate processes 1072 

required for cell growth including survival, inhibition of autophagy, protein translation and cell 1073 

cycle progression.   1074 

 1075 

Figure 2: Mechanisms of aberrant mTOR activation in B-cell malignancies 1076 

Different proteins are amplified or activated (shown in red) in B-cell malignancies that result in 1077 

increased mTOR activity.  Where as the loss of the tumor suppressor PTEN (shown in blue) 1078 

promotes mTOR activation.  These mutations negate the normal constraints on mTOR activity 1079 

to promote cancer cell proliferation. 1080 

 1081 

Figure 3: Different effects of rapamycin and TOR-KI on mTOR activity 1082 

Rapamycin (and all rapalogs) only partially inhibits mTOR activity.  Rapamycin forms a complex 1083 

with FKB12 to inhibit TORC1 activation of S6K activity and only partially reduces effects on 1084 

4EBP.   S6K normally negatively feeds back to inhibit the activation of PI3K.  By suppressing 1085 

S6K, rapamycin negates the feedback inhibition resulting in increased PI3K, TORC2 and AKT 1086 

activation.  Thus, survival signals from AKT highly active and 4EBP is partially active.  1087 

Conversely, TOR-KIs suppresses all mTOR survival outputs. 1088 

 1089 

Figure 4: Combination of targeting BCL-2 and mTOR 1090 

(A) The BCL-2 family of proteins consists of pro- and anti-apoptotic members that interact 1091 

antagonistically to determine cell fate.  Survival signaling through AKT and mTOR increases the 1092 
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anti-apoptotic family members and decreases the pro-apoptotic members.  (B) By inhibiting 1093 

mTOR activity the balance is shifted where anti-apoptotic family members are reduced and pro-1094 

apoptotic members are increased.  This reduces the capacity of anti-apoptotic proteins to 1095 

sequester the pro-apoptotic proteins.  Addition of ABT-199, a BCL-2 inhibitor, further shifts this 1096 

balance to release the pro-apoptotic proteins and cause cancer killing. 1097 

 1098 
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SummaryAbstract 23 

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key 24 

regulator of cell growth, division, and survival. Many hematologic malignancies exhibit elevated 25 

or aberrant mTOR activation, supporting the launch of numerous clinical trials aimed at 26 

evaluating the potential of single-agent mTOR-targeted therapies. While promising early clinical 27 

data using allosteric mTOR inhibitors (rapamycin and its derivatives, rapalogs) have suggested 28 

activity in a subset of hematologic malignancies, these agents have shown limited efficacy in 29 

most contexts. Whether the efficacy of these partial mTOR inhibitors might be enhanced by 30 

more complete target inhibition is being actively addressed with second generation ATP-31 

competitive mTOR kinase inhibitors (TOR-KIs), which have only recently entered clinical trials. 32 

However, emerging preclinical data suggest that despite their biochemical advantage over 33 

rapalogs, TOR-KIs may retain a primarily cytostatic response. Rather, combinations of mTOR 34 

inhibition with other targeted therapies have demonstrated promising efficacy in several 35 

preclinical models. This review investigates the current status of rapalogs and TOR-KIs in B cell 36 

malignancies, with an emphasis on emerging preclinical evidence of synergistic combinations 37 

involving mTOR inhibition. 38 

 39 

Introduction 40 

The mTOR Signaling Pathway 41 

mTOR is a serine/threonine kinase that functions as a master regulator of cell growth, 42 

proliferation, metabolism, and survival. mTOR is active in two distinct multi-protein complexes 43 

(mTORC1 and mTORC2) that are characterized by the defining subunits RAPTOR and 44 

RICTOR respectively [1,2]. Each complex is differentially regulated and has a distinct set of 45 

substrates (Figure 1).  Activation of mTORC2 activation is incompletely understood, but has 46 

recently been shown to be directly dependent on the generation ofregulated by the levels of 47 

PI(3,4,5)P3 produced by phosphoinositide 3-kinase (PI3K) [3]. Upon activation mTORC2 48 
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functions to amplify the activity of AKT, ,a key oncogene involved in cell survival and 49 

metabolism [4,5] and is required for full activity of AKT [4], a key oncogene involved in cell 50 

survival and metabolism [5]. On the other hand, mTORC1 activation is coordinately regulated by 51 

functions by integrating growth factor signals (i.e. from the PI3K/AKT pathway), and nutrient 52 

availability (amino acids),  and cellular energy status (ATP levels). Under conditions of low 53 

nutrients, amino acid sensors (such as SLC38A9 [6,7]) suppress mTORC1 activation. Similarly, 54 

under conditions of low energy (low ATP), 5’ AMP-activated protein kinase (AMPK) can also 55 

suppress mTORC1 activation [8]. This multifaceted regulation to ensures that the cell is at an 56 

appropriate bioenergetic state to support cell growth and division [9,10][6,7] (Figure 1).  57 

Upon activation, mTORC1 promotes key biosynthetic pathways including translation, 58 

transcription, and lipogenesis, while suppressing apoptotic and autophagic processes 59 

[11,12][8,9]. The most well-characterized downstream targets of mTORC1 include are the p70 60 

ribosomal-S6 kinases (S6Ks), which are critical for lipid and ribosome biogenesis pathways, and 61 

eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs)., Phosphorylation of S6Ks 62 

induces its activity, which is critical for lipid and ribosome biogenesis pathways and promotes 63 

translation via suppression of PDCD4 and activation of eIF4B [13,14]. In contrast, 64 

phosphorylation of 4E-BPs suppresses their ability to inhibit eIF4E, which promotes translation 65 

initiationwhich promotes translation of cap-bound mRNA transcripts (Figure 1). Whereas 66 

mTORC1 activates S6Ks directly, it activates eIF4E indirectly by suppressing the inhibitory 67 

function of eIF4E binding proteins (4E-BPs) [15][10]. Together, these effectors promote 68 

coordinately increased protein synthesis rates, a process whose dysregulation is a central 69 

driving mechanism in cancer [16,17][11,12]. Importantly, hyper-activating mutations in mTOR 70 

itself have been identified in many cancers ands, further indicatesing the importance of mTOR 71 

activity to tumorigenesis [18][13].  72 

 73 

Evidence of mTOR activation in B-ALL and NHL 74 
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Aberrant activation of mTOR is frequently associated with poorer prognosis and has been 75 

well described in B cell malignancies including B cell acute lymphoblastic leukemia (B-ALL) and 76 

non-Hodgkin’s lymphoma (NHL). Given that mTOR is a convergence point for many distinct 77 

signaling pathways, there are many mechanisms by which it may become inappropriately 78 

activated (Figure 2). In B-ALL, the most common mode is through activation of upstream 79 

kinases. For example, the Philadelphia chromosome (Ph+), characterized by the BCR-ABL 80 

translocation, induces robust activation of several parallel pathways leading to mTOR activation. 81 

Similarly, genomic profiling has recently identified a Ph-like subset of B-ALL, which exhibits a 82 

similar kinase activation signature to that of Ph+ B-ALL. Notably, these mutations are strongly 83 

associated with poorer outcomes in both children and adults [19-22][14-17]. Empirical evidence 84 

has also shown a direct correlation between AKT and/or mTOR activation and poor prognosis in 85 

patients with pediatric and adult B-ALL [23-25][18-20].  86 

Among NHL subtypes, activation of mTOR is consistently a reliable indicator of more 87 

aggressive disease and poorer prognosis [26-30][21-25]. Similar to B-ALL, activation of mTOR 88 

follows through direct mutations in key upstream pathways. In mantle cell lymphoma (MCL), 89 

amplification of PIK3CA (the gene encoding the catalytic subunit of PI3K) and/or PTEN loss (the 90 

negative regulator of PI3K activity) have been observed in a large fraction of primary tissue 91 

samples [31][26]. In diffuse large B cell lymphoma (DLBCL), activation may be similarly 92 

achieved via mutations in PIK3CA  [32,33][27,28], or chronic B cell receptor activation [34][29]. 93 

In follicular lymphoma (FL), mTOR is aberrantly activated by way of PKCζ or Syk kinases [35-94 

38][30-33]. Collectively, these data highlight the impact of elevated mTOR activity on patient 95 

outcomes, and provide a solid rationale for the use of mTOR-targeted therapies in these B cell 96 

malignancies. 97 

 98 

RapalogsRapamycin and Rapalogs: partial mTORC1 inhibitors  99 

Mechanism of action 100 
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Upon entry into a cell, rapamycin binds to FKBP12, forming a complex that potently and 101 

selectively suppresses mTORC1 kinase activity by limiting substrate access to the active site 102 

[39,40][34,35]. Importantly, the rapamycin-FKBP12 complex cannot bind to mTORC2 103 

[2,41][2,36], though in some cases, prolonged exposure may limit the assembly of mTORC2 104 

[42][37]. In this manner, rapamycin behaves as a highly potent and selective inhibitor of 105 

mTORC1 (Figure 3). However, poor solubility and pharmacokinetics spurred the development of 106 

rapamycin analogs (termed rapalogs) for oral dosing in cancer patients [43][38]. Most notable 107 

among these rapalogs are temsirolimus (CCI-779, Wyeth Pharmaceuticals [44][39]), everolimus 108 

(RAD001, Novartis Pharmaceuticals [45][40]), and ridaforolimus (AP23573, Merck and ARIAD 109 

Pharmaceuticals [46][41]). 110 

 111 

Rapamycin and Rapalogs in B-ALL 112 

Early testing with rapamycin unveiled potent anti-proliferative efficacy in several preclinical 113 

models of ALL. In an Eµ-RET model of murine B-pre ALL, rapamycin as a single agent potently 114 

inhibited proliferation of leukemia cells both in vitro and in vivo [47,48][42,43]. Similar efficacy 115 

was later observed in models of Ph+ B-ALL [49,50][44,45], as well as in Ph-like B-ALL, driven 116 

by JAK pathway mutations or CRLF2 rearrangement [51][46]. Rapalogs also demonstrated 117 

marked preclinical efficacy in primary human ALL samples grown in vitro or in xenograft models 118 

[50-52]. Notably, rapamycin demonstrated single-agent cytotoxicity in primary pediatric ALL 119 

samples, and sensitized cells to doxorubicin in vitro [52][47]. Both everolimus and temsirolimus 120 

have shown similar efficacy in xenograft models of adult and pediatric primary human ALL as 121 

single agents [53][48] and in combination with chemotherapy [54,55][49,50].  122 

Clinically, rapamycin as a single agent exhibited no dose-limiting toxicities, but had 123 

lackluster efficacy compared to standard chemotherapeutic options (Table 1). In an early trial, 124 

rapamycin yielded stable disease in only three out of nine pediatric patients with relapsed ALL 125 

[56][51]. As a result, several trials have been launched to determine whether rapalogs can 126 
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combine safely and effectively with standard chemotherapies. An early pilot trial combining 127 

rapamycin with glucocorticoids in relapsed ALL patients found that rapamycin effectively 128 

reduced the anti-apopotic protein MCL-1 in various patients. This promising outcome suggested 129 

that rapamycin might sensitize ALL cells to apoptosis-inducing drugs. Indeed, in another study 130 

combining temsirolimus with intensive multi-drug re-induction therapy (dexamethasone, 131 

mitoxantrone, vincristine, and PEG-asparaginase) in relapsed childhood ALL yielded complete 132 

response in seven of sixteen patients, of which three had less than 0.01% minimal residual 133 

disease (MRD) by the end of treatment [57][52]. However, a separate trial evaluating everolimus 134 

combined with intensive chemotherapy (hyper-CVAD) in relapsed B-ALL yielded complete 135 

remission rates that were similar to standard salvage chemotherapies (~35%) [58-60][53-55]. 136 

These trials highlight how the efficacy of rapalogs seem to be dependent on which 137 

chemotherapeutics are used, warranting further investigation. 138 

A key question that remains to be answered is whether rapalogs combined with 139 

chemotherapy will demonstrate acceptable toxicity profiles. In the aforementioned trial 140 

combining temsirolimus with re-induction chemotherapy, the treatment was associated with 141 

unacceptable toxicities including severe infections that led to one death due to sepsis [57][52]. 142 

However, a recent multi-center study testing the combination of everolimus with prednisone, 143 

vincristine, PEG-asparaginase and doxorubicin demonstrated that the combination was well 144 

tolerated in pediatric patients with first relapse [61]. Further trials are being performed, including 145 

an expansion of the aforementioned trial as well as As a result, a trialone testing the safety of 146 

temsirolimus with less intensive re-induction with (etoposide and cyclophosphamide is currently 147 

underway ; (NCT01614197). Additionally, a multi-center study is also testing the combination of 148 

everolimus with prednisone, vincristine, PEG-asparaginase and doxorubicin (NCT01523977). 149 

Together, these results show that rapalogs have some potential in combination therapy, but an 150 

effective and tolerable regimen in B-ALL has yet to be identified. Moving forward, it will be 151 
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important to identify which chemotherapeutics are best combined with rapalogs and whether 152 

modifications to the dose and/or schedule may alleviate dose-limiting toxicities.  153 

 154 

Rapalogs in NHL 155 

Similar to B-ALL, preclinical testing of rapalogs in NHL revealed promising cytostatic effects 156 

both in vitro and in vivo, yet clinical responses were limited in most contexts. For example, in 157 

MCL, FL, and DLBCL, rapamycin potently suppressed the proliferation of cell lines and primary 158 

patient cells in vitro [62-66][56-60]. However, the clinical use of rapalogs has only made 159 

progress in MCL where chemotherapeutic responses to standard chemotherapies are limited 160 

(Table 1). In phase II trials of relapsed MCL, single agent administration of either temsirolimus 161 

or ridaforolimus yielded overall response rates (ORR) of 38% [67][61] and 33% [68][62] 162 

respectively. Notably, a subsequent phase II trial using a 10-fold lower dose of temsirolimus 163 

revealed that similar responses could be obtained with lower toxicity [69][63]. Based on these 164 

results, a randomized phase III trial was conducted. Strikingly, the overall response ratesORR 165 

and progression free survival were significantly higher in patients treated with temsirolimus 166 

compared to investigator’s choice agent. These results ultimately led to approval for 167 

temsirolimus as a single agent therapy for relapsed/refractory MCL in Europe [70][64]. A 168 

subsequent phase II trial has also been completed combining temsirolimus with rituximab in 169 

relapsed/refractory MCL. Despite demonstrating higher response rates than single agent 170 

temsirolimus, the combination was also associated with higher toxicities including 171 

thrombocytopenia and neutropenia in a significant fraction of patients [71][65]. Rapalog 172 

monotherapy has also elicited responses in a subset of patients with other NHL subtypes. In a 173 

phase II trial of everolimus in relapsed lymphoma, the ORR in DLBCL was 30% (14/47) and 174 

38% (3/8) in FL [72][66]. Similar results were seen with temsirolimus where the ORR was 28% 175 

for DLBCL and 53% in FL [73][67]. While these studies highlight that rapalogs have some 176 

activity, the availability of better therapeutic options in both DLBCL and FL has limited the 177 
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clinical progress of rapalogs in these diseases. Thus, across NHL subtypes it will be important 178 

to determine whether the addition of rapaogs to standard chemotherapy can provide additional 179 

benefit to patients, without increasing toxicities.  180 

 181 

Outlook: 182 

Overall, despite showing promising preclinical activity in hematologic malignancies, rapalogs 183 

have only gained regulatory approval for use in one disease setting (MCL) where standard 184 

chemotherapies have limited efficacy. A major issue is that rapalogs given as single agents tend 185 

to elicit primarily cytostatic responses in hematologic malignancies [62,63,66,74][56,57,60,68]. 186 

Clinically, the lack of inherent cytotoxicity is problematic since discontinuation of treatment may 187 

permit tumor cell regrowth [75-77][69-71]. While continued treatment may combat this issue, 188 

whether rapalogs at anti-leukemic doses will be safe for long-term use also remains to be seen. 189 

Clinical evidence of several toxicities including thrombocytopenia, mucositis, and hyperlipidemia 190 

suggests that prolonged treatment will be difficult to manage [43][38]. Alternatively, 191 

combinations with chemotherapy are actively being investigated and may reposition rapalogs as 192 

an adjuvant to improve chemotherapeutic responses. On this note, it is important to point out 193 

that the cytostatic activity of rapalogs will likely limit its potential to combine with certain 194 

chemotherapies, necessitating the identification of cytotoxic drugs that will synergize with 195 

rapalogs productively while maintaining acceptable tolerability.  196 

While rapalogs provided proof-of-concept for effective mTOR targeted anti-cancer therapies, 197 

they exhibit many unfavorable biochemical properties that may also limit their clinical potential. 198 

Most notably, failure to suppress mTORC2 kinase activity allows maintained survival signaling 199 

through AKT and other related kinases. This issue is exacerbated by the existence of a negative 200 

feedback loop downstream of mTORC1 (Figure 3). Selective inhibition of mTORC1 induces 201 

robust feedback activation of upstream PI3K/AKT and MAPK pathways, allowing cancer cells to 202 

escape from the effects of rapamycin [57,78-82][52,72-76]. Additionally, rapalogs are known to 203 
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incompletely inhibit the phosphorylation of a subset of mTORC1 substrates (Figure 3). Despite 204 

restricting access to the active-site, rapalog-induced suppression of 4E-BP1 phosphorylation is 205 

refractory to long-term treatment compared to phosphorylation of p70S6K [83][77]. The cause of 206 

this differential sensitivity has recently been attributed to distinct substrate sequences near the 207 

phosphorylation sites [84][78]. This incomplete suppression of mTORC1 may significantly 208 

impact the anti-cancer potential of rapalogs as sustained activation of eIF4E is known to 209 

promote oncogenesis [85][79]. Consequently, sustained 4E-BP phosphorylation may allow 210 

cancer cells to escape from rapamycin-induced cell cycle arrest [86][80]. Thus, more complete 211 

mTOR inhibition may be required to elicit more promising clinical responses.  212 

 213 

TOR-KIs: complete mTORC1/2 inhibitors 214 

The timely development of mTOR kinase inhibitors (TOR-KIs) directly addressed the 215 

biochemical disadvantages of rapalogs. By competing with ATP for binding to the mTOR active 216 

site, not only do TOR-KIs more completely block mTORC1 substrate phosphorylation (namely 217 

4E-BPs), but they also inhibit mTORC2 activity [87,88][81,82]. This results in reduced 218 

phosphorylation of AKT at Ser473 (Figure 3), dampening the feedback activation of PI3K/AKT 219 

that is known to limit rapalog efficacy [89-91][83-85]. It is important to note that by competing 220 

with ATP, TOR-KIs are capable of inhibiting several kinases at higher doses, including the 221 

structurally related protein, PI3K. Conversely, several compounds that are often used pre-222 

clinically as PI3K inhibitors (wortmannin, LY294002) directly inhibit mTORC1 and mTORC2 at 223 

similar concentrations. Thus, it is important to fully understand the pharmacologic properties of 224 

ATP-competitive mTOR and PI3K inhibitors when interpreting their preclinical and clinical 225 

efficacy.  226 

Several structurally distinct mTOR-selective inhibitors have been reported and tested in 227 

models of B cell malignancies. Most notable among them are PP242 [88][82], Torin1 [87][81], 228 

Ku-0063794 [92][86], AZD8055 [93][87], AZD2014 [93][87], MLN0128 (previously INK128 229 
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[94][88]), and CC-223 [95][89]. In preclinical testing, these TOR-KIs proved superior to rapalogs 230 

in terms of cytostatic and cytotoxic potential. For example, in a mouse model of AKT-driven 231 

lymphangiogenesis, PP242 strongly suppressed both 4E-BP1 phosphorylation and tumor 232 

growth compared to rapamycin [96][90]. These findings were also recapitulated in vitro using 233 

leukemia and DLBCL cell lines where TOR-KIs had a greatly improved biochemical effect on 234 

downstream 4E-BP phosphorylation [97-99][91-93].  235 

Despite the broader biochemical impact of TOR-KIs over rapalogs, whether complete mTOR 236 

kinase inhibition is sufficient to elicit cytotoxic responses is yet to be established. Two reports of 237 

structurally distinct TOR-KIs in B-ALL demonstrated that mTOR kinase inhibition was sufficient 238 

to induce apoptosis in B-ALL cell lines compared to rapamycin [100,101][94,95]. However, in 239 

both studies, apoptosis was only observed at doses of TOR-KI that greatly exceed what was 240 

needed to fully suppress mTOR kinase activity as measured by western blot. At lower doses 241 

that still fully suppress mTOR activity, our lab has found that both AZD8055 and MLN0128 242 

maintain a primarily cytostatic response profile (that is greater than rapalogs) [98,102-243 

104][92,96-98]. Notably, low doses of PP242 were sufficient to kill murine bone marrow cells 244 

immortalized by p190-BCR-ABL [99][93], suggesting that fully transformed B-ALL cells with 245 

additional oncogenic lesions may respond differently to mTOR inhibition. Thus, it remains 246 

unclear whether TOR-KIs will be effective in B-ALL or NHL as a single agents at doses that are 247 

highly selective for mTOR kinase activity.  248 

Early clinical trials have suggested that while TOR-KIs are more effective than rapalogs at 249 

suppressing tumor growth, they may also be less tolerable [78][72]. A single agent tolerability 250 

test of AZD2014 showed dose-limiting toxicities that were similar to rapalogs including mucositis 251 

and fatigue [105][99]. Both CC-223 and MLN0128, also presented similar toxicities, but in 252 

addition to hyperglycemia, also occurred and necessitatedting close monitoring of patient blood 253 

[106,107][100,101]. Several additional clinical trials are currently in progress to address the 254 

efficacy and tolerability of TOR-KIs and are summarized in Table 2. However, a key question is 255 
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to investigate whether TOR-KIs will retain anti-cancer efficacy at lower doses that minimize 256 

these toxicities. While it is likely that lowering the dose of TOR-KIs may improve their tolerability, 257 

it will also impinge on their ability to fully suppress mTOR kinase activity. Moving forward, it may 258 

be important to determine whether these potentially suboptimal doses, which only partially 259 

inhibit mTOR, will be more effective than clinically tolerable doses of rapalogs, which potently 260 

inhibits phosphorylation of some, but not all, mTORC1 substrates.  261 

 262 

Emerging Combinations with mTOR Inhibitors: 263 

Recent research efforts have been dedicated to identifying promising combinations that can 264 

synergistically kill cancer cells. The rationales behind these emerging combinations can be 265 

loosely categorized into two broad groups. The first approach seeks to exploit known resistance 266 

mechanisms to mTOR inhibition; either by targeting feedback pathways or using apoptosis-267 

sensitizing agents. The second approach seeks to evaluate the potential of mTOR inhibitors as 268 

adjuvants to augment the effects of other agents targeting known oncogenic drivers. While both 269 

approaches have yielded several promising combinations, whether they can be translated to 270 

significant clinical responses with acceptable toxicity still remains to be determined.  271 

 272 

Combinations targeting resistance mechanisms 273 

Targeting parallel and downstream pathways 274 

As with all targeted therapies, an understanding of how cells maintain survival in the 275 

presence of mTOR inhibitors has been crucial to the identification of promising combinations. 276 

Currently, there are several known acquired and de novo mechanisms of resistance to mTOR-277 

targeted therapies. For example, in addition to feedback activation of PI3K/AKT, mTORC1 278 

inhibition may also activate the parallel MAPK/ERK pathway in B-ALL (Figure 4). In a similar 279 

fashion, PI3K/AKT/mTOR inhibition can also induce up-regulation of receptor tyrosine kinases 280 

(RTKs) leading to resistance in some solid tumors [108][102]. In agreement with these induced 281 
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resistance mechanisms, the addition of MAPK inhibitors and RTK inhibitors have demonstrated 282 

significantly more efficacy in combination with both rapalogs and TOR-KIs in preclinical settings 283 

[80,109,110][74,103,104]. However, in other instances, resistance to mTOR inhibition may be a 284 

result of sustained downstream effector activity, particularly cap-dependent translation. For 285 

example, our laboratory has noted resistance to TOR-KIs in DLBCL cell lines lacking expression 286 

of 4E-BPs [98][92] or , and over-expressiong of eIF4E limits the efficacy of TOR-KIs [111][105]. 287 

Furthermore, recent evidence has indicated that PIM and MNK kinases can maintain cap-288 

dependent translation downstream of mTORC1 inhibition [112][106] (Figure 4). In these 289 

situations, targeting cap-dependent translation indirectly using combinations of PIM or MNK 290 

inhibitors with TOR-KIs has shown cytotoxic activity in AML cell lines [113,114][107,108] as well 291 

as in cutaneous T cell lymphoma cell lines in vitro [115][109]. Additional work is required to 292 

evaluate the potential of directly targeting the cap-dependent translation initiation machinery. It 293 

is likely that other mechanisms of resistance will arise as our experience with mTOR inhibitors 294 

increases, and these may ultimately support the study of additional combinations. 295 

While clinical data regarding the efficacy of these combinations in B cell malignancies has 296 

not reached maturity, similar combinations have been successfully deployed in non-hematologic 297 

malignancies. For example, inhibition of the upstream tyrosine kinase, HER2, significantly 298 

improved the efficacy of mTORC1/2 inhibition in patients with refractory breast cancer 299 

compared to single agent treatment [116][110]. Similarly, combinations of PI3K/AKT/mTOR and 300 

Ras/MAPK/ERK pathway inhibition yielded improved response rates in patients with advanced 301 

refractory solid tumors, but did so at the cost of significantly higher toxicities [117][111]. 302 

Collectively these studies highlight the potential of using mTOR inhibitors in combination with 303 

agents targeting known resistance pathways to mTOR inhibition, or as an adjuvant therapy to 304 

augment the effects of other rational targeted therapies. However, it will be important to 305 

determine whether these combinations targeting multiple key survival pathways will remain 306 

selective for cancer cells as toxicity will be a major concern.  307 
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 308 

Targeting apoptosis 309 

 Another straightforward approach to directly enhanceing the apoptotic potential of mTOR 310 

inhibition is to target the pro-survival BCL-2 family proteins. Apoptosis is regulated through 311 

dynamic and competitive binding interactions between anti-apoptotic proteins (e.g. BCL-2, BCL-312 

XL, BCL-w, and MCL-1) and pro-apoptotic sensitizers (e.g. BAD, PUMA, and NOXA), activators 313 

(e.g. BIM and BID), and effectors (BAX and BAK) (Figure 45A). While mTOR inhibition is known 314 

to suppress survival signaling through both mTORC1 (e.g. MCL-1 expression [96][90]) and AKT 315 

(e.g. inhibition of BAD and down-regulation of BIM [118,119][112,113]), TOR-KIs are insufficient 316 

to induce apoptosis through this pathway. Thus, a simple approach would be to use antagonists 317 

of the pro-survival proteins to disrupt their binding capacity, and subsequently lower the 318 

threshold for BIM to activate BAX/BAK-mediated MOMP and apoptosis [120][114]. 319 

ABT-737, and its orally bioavailable analog, ABT-263, represent the most potent and 320 

selective small molecule inhibitors of BCL-2 and BCL-XL. Both of these compounds 321 

demonstrated remarkable cytotoxic potential that was significantly enhanced when combined 322 

with mTOR inhibitors in DLBCL [121][115], FL [122][116], AML [123][117], and B-ALL 323 

[124][118]. However, due to on-target toxicity associated with BCL-XL inhibition [125][119], a 324 

more promising clinical candidate is ABT-199 [126][120]. ABT-199 is a selective inhibitor of 325 

BCL-2, and has elicited substantial clinical responses in patients with CLL as a single agent 326 

[127][121], leading to its designation as a breakthrough therapy for CLL patients with a 17p 327 

deletion (p53). Importantly, we and others have recently reported that ABT-199 synergizes with 328 

mTOR inhibition comparably to dual BCL-2/BCL-XL inhibitors [104,128][98,122], suggesting that 329 

the rationale established using first generation BCL-2 antagonists will hold true for ABT-199. 330 

However, a key concern is whether the addition of TOR-KIs to BCL-2 antagonists will enhance 331 

its toxicity towards non-cancer cells. In an effort to address this question, our lab has recently 332 

demonstrated that the combination does not synergize to kill peripheral blood mononuclear cells 333 
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obtained from normal healthy donors [104][98]. Further work must be done to ensure that these 334 

potent combinations will maintain favorable tolerability when administered to patients. 335 

 336 

 337 

mTOR inhibition as an adjuvant 338 

Targeting oncogenic drivers 339 

In contrast to targeting resistance mechanisms, others have found that combining 340 

oncogene-targeted therapies with mTOR inhibition also holds promise in B cell malignancies. 341 

For example, in Ph+ B-ALL driven by the BCR-ABL translocation, both rapamycin and PP242 342 

strongly synergized with imatinib to suppress leukemia growth [99][93]. Similarly, in 343 

myeloproliferative disorders characterized by JAK2 mutations, combinations of TOR-KIs or 344 

rapalogs with JAK2 inhibitors synergistically killed cells whereas single-agent treatments were 345 

primarily cytostatic [129,130][123,124]. In the activated B cell like (ABC) subtype of DLBCL, 346 

which is driven by sustained activation of the B cell receptor (BCR) [34][29], inhibition of the 347 

downstream kinase, Bruton’s tyrosine kinase (BTK), also synergized strongly with 348 

PI3K/AKT/mTOR inhibitors [131][125]. However, the limitations of this approach are also 349 

recently becoming apparent. In particular, the germinal center B cell-like (GCB) DLBCL subtype 350 

is unresponsive to combinations of BTK and mTOR inhibitors, likely because BCR activation is 351 

not an oncogenic driver in this setting [132][126]. More alarmingly, in some cases the addition of 352 

mTOR inhibitors may antagonize the effects of other agents, either through suppression of 353 

proliferation or through induction of autophagy [133,134][127,128]. Studies like these serve as 354 

powerful reminders that a sound biological understanding supporting the use of these 355 

combinations must precede their clinical use. 356 

  357 

Targeting histone deactylases (HDACs) 358 
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HDAC inhibitors are another promising class of drug that may benefit from the addition of 359 

mTOR inhibitors. In addition to modulating histone function and gene expression, HDACs also 360 

regulate the activity of non-histone proteins with relevance to B cell cancers (e.g. STAT, Hsp90, 361 

and FOXO) [135-138][129-132]. Importantly, mutations in genes regulating protein acetylation 362 

have been described in both B-ALL and NHL. For example, mutations in the CREBBP histone 363 

acetyltransferase (HAT) domain have been identified in a subset of patients with relapsed 364 

pediatric B-ALL where it may confer glucocorticoid resistance [139][133]. Similar mutations in 365 

HAT activity were identified as frequent mutations in both FL and DLBCL where their 366 

inactivation promotes aberrant up-regulation of BCL-6, a protein known to promote B cell 367 

malignancies [140-142][134-136]. Given the pervasive importance of protein acetylation, it is 368 

unsurprising that HDAC inhibitors have elicited promising responses in various leukemias and 369 

lymphomas. For example, in lymphomas with a t(14;18) translocation, HDAC inhibitors were 370 

shown to markedly reduce expression of BCL-2 leading to apoptosis [143][137]. In other 371 

contexts, HDAC inhibition can induce mitochondrial apoptosis via epigenetic regulation of other 372 

BCL-2 family proteins [144,145][138,139], production of reactive oxygen species and ceramide 373 

[146][140], or activation of death receptors [147][141]. Potent anti-proliferative effects have also 374 

been described [145,148][139,142]. Importantly, recent evidence has suggested that the 375 

addition of mTOR inhibition may augment the effects of HDAC inhibitors. For example, our lab 376 

has recently identified synergy between HDAC inhibitors and TOR-KIs in B-ALL cell lines and 377 

primary patient samples [103][97]. Also, both temsirolimus and everlomius have demonstrated 378 

synergistic anti-proliferative and apoptotic effects when combined with the HDAC inhibitors in 379 

MCL [149,150][143,144]. In DLBCL, combining HDAC inhibitors with rapalogs or TOR-KIs also 380 

synergistically induced apoptosis [65,151][59,145]. While there is still debate as to the exact 381 

mechanism of synergy, it is clear that in a preclinical setting, this combination has marked 382 

potential in B cell malignancies. However, in a phase I trial combining panobinostat and 383 

everolimus in relapsed/refractory lymphoma, the combination yielded ORRs similar to 384 
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everolimus alone, but with higher incidence of thrombocytopenia [152][146]. As this combination 385 

moves forward, it will be important to identify the exact mechanism of action so as to better 386 

predict which patients may benefit from these combinations. It may also be useful to explore 387 

compounds targeting selected subsets of cellular HDAC enzymes. 388 

 389 

Targeting the proteasome 390 

Another class of inhibitors that has shown promise in B cell malignancies are proteasome 391 

inhibitors [153][147]. Interestingly, even across several cancer subtypes, these inhibitors have 392 

been most promising in B cell malignancies [154-159][148-153], as evidenced by the FDA 393 

approval for bortezomib in both relapsed MCL and multiple myeloma [160][154]. By suppressing 394 

degradation of proteins, these inhibitors induce a plethora of cellular responses leading to anti-395 

proliferative and pro-apoptotic effects [161,162][155,156]. Most notable among these effects are 396 

its ability to suppress NF-kB activity and modulate expression of BCL-2 family proteins [162-397 

164][156-158], which provides the basis for single agent bortezomib efficacy in ABC-DLBCL 398 

[165,166][159,160]. However, in other B cell malignancies, single agent proteasome inhibition is 399 

not as effective [167-169][161-163]. While preclinical data has suggested some synergy 400 

between rapalogs and bortezomib [150,170][144,164], whether combined proteasome and 401 

mTOR inhibition will have generalizable efficacy is still unclear. A major clinical concern with 402 

bortezomib is neurological toxicity [171,172][165,166], and while dose management may 403 

alleviate some risks, it is unclear what effects the addition of mTOR inhibitors may have on 404 

patient outcomes. 405 

 406 

Outlook  407 

While the initial discovery of mTOR inhibitors yielded a flood of promising and exciting 408 

preclinical data, the initial wave of rapamycin-based therapies have not elicited widespread and 409 

durable patient responses. Consequently, rapalogs have only achieved regulatory approval in 410 
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one subtype. With the development of TOR-KIs that offered a distinct biochemical advantage 411 

over rapalogs, there was an expectation of much greater responses. While the clinical data are 412 

not yet mature, it is becoming more apparent that while TOR-KIs may indeed have higher 413 

efficacy, it comes with the cost of higher toxicities. Whether dose modifications or altered 414 

schedules can lower the toxicity while maintaining efficacy is still unknown, but is a critical 415 

question in determining the future of mTOR-targeted therapies. Given the modest performance 416 

of single-agent mTOR inhibitors, it is likely that identifying combinations, either with targeted 417 

agents or with chemotherapy, may be the key to unleashing the full potential of mTOR inhibition 418 

in cancer. While the preclinical data strongly support this claim, it is still unclear whether this 419 

approach will translate to improved clinical responses, and more importantly, whether it will do 420 

so with acceptable toxicities. Given the generally well-tolerated nature of rapalogs, it seems 421 

prudent to initiate these combination studies using rapalogs. It will also be important to 422 

emphasize the preclinical evaluation of cancer selectivity, specifically to address whether these 423 

combinations will synergize to kill normal cells. Thus, the field of mTOR targeted therapies has 424 

progressed rapidly over the past few decades, and as our knowledge of the biology increases, 425 

so too will our capacity to augment and fine-tune these therapies to effect positive patient 426 

outcomes. 427 
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Figure Legends 1083 

Figure 1: mTOR signaling pathway 1084 

mTOR exists in two distinct complexes (mTORC1 and mTORC2) that are regulated separately 1085 

and have distinct substrates. Whereas mTORC2 is regulated downstream of PI3K, mTORC1 is 1086 

coordinately regulated by growth factor signals, nutrient availability (amino acids), and cellular 1087 

energy status (ATP levels). The outputs of their downstream effectors coordinate processes 1088 

required for cell growth including survival, inhibition of autophagy, protein translation and cell 1089 

cycle progression.   1090 

 1091 

Figure 2: Mechanisms of aberrant mTOR activation in B-cell malignancies 1092 

Different proteins are amplified or activated (shown in red) in B-cell malignancies that result in 1093 

increased mTOR activity.  Where as the loss of the tumor suppressor PTEN (shown in blue) 1094 

promotes mTOR activation.  These mutations negate the normal constraints on mTOR activity 1095 

to promote cancer cell proliferation. 1096 

 1097 

Figure 3: Different effects of rapamycin and TOR-KI on mTOR activity 1098 

Rapamycin (and all rapalogs) only partially inhibits mTOR activity.  Rapamycin forms a complex 1099 

with FKB12 to inhibits TORC1 activation of S6K activity and only partially reduces effects on 1100 

4EBP.   S6K normally negatively feeds back to inhibit the activation of PI3K.  By suppressing 1101 

S6K, rapamycin negates the feedback inhibition resulting in increased PI3K, TORC2 and AKT 1102 

activation.  Thus, survival signals from AKT highly active and 4EBP is partially active.  1103 

Conversely, TOR-KIs suppresses all mTOR survival outputs. 1104 

 1105 

Figure 4: Combination of targeting BCL-2 and mTOR 1106 

(A) The BCL-2 family of proteins consists of pro- and anti-apoptotic members that interact 1107 

antagonistically to determine cell fate.  Survival signaling through AKT and mTOR increases the 1108 
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anti-apoptotic family members and decreases the pro-apoptotic members.  (B) By inhibiting 1109 

mTOR activity the balance is shifted where anti-apoptotic family members are reduced and pro-1110 

apoptotic members are increased.  This reduces the capacity of anti-apoptotic proteins to 1111 

sequester the pro-apoptotic proteins.  Addition of ABT-199, a BCL-2 inhibitor, further shifts this 1112 

balance to release the pro-apoptotic proteins and cause cancer killing. 1113 

 1114 
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Table 1:  Published trials of mTOR-targeted therapies in ALL and NHL 

Study Phase Drug Drug Class Disease Outcomes 

Witzig et al. [67]  II Temsirolimus Rapalog Relapsed MCL 13/34 ORR1 

Ansell et al. [69] II Temsirolimus Rapalog Relapsed MCL 11/27 ORR 

Hess et al. [70] III Temsirolimus Rapalog Relapsed/refractory MCL 12/54 ORR compared 
to 2/54 ORR for 
investigator’s choice 

Tobinai et al. [173] I Everolimus Rapalog Relapsed/refractory NHL 4/13 ORR 

Smith et al. [73] II Temsirolimus Rapalog DLBCL 9/32 ORR 

    FL 21/39 ORR 

Witzig et al. [72] II Everolimus Rapalog DLBCL 14/47 ORR 

    MCL 6/19 ORR 

    FL 3/8 ORR 

Rizzieri et al. [68] II Ridaforolimus Rapalog ALL 0/1 ORR 

    MCL 3/9 ORR 

Rheingold et al. [56] I Sirolimus Rapalog Relapsed/refractory ALL 3/9 ORR 

Rheingold et al. [57] I Temsirolimus with intensive 
re-induction chemotherapy 

Rapalog Pediatric relapsed ALL 7/15 CR with 3/7 MRD 
< 0.01%. High 
toxicities. 

Daver et al. [58] I/II Everolimus with hyper-CVAD Rapalog Relapsed/refractory ALL 8/24 ORR 

Ansell et al. [71] II Temsirolimus with rituximab Rapalog Relapsed/refractory MCL 41/69 

Oki et al. [152]  I Everolimus with panobinostat Rapalog Relapsed/refractory NHL 10/30 ORR 

Barnes et al. [174] II Everolimus with rituximab Rapalog DLBCL 9/24 ORR 

Infante et al. [107]  I MLN0128 TOR-KI Multiple Dose escalation 

Basu et al. [105] I AZD2014 TOR-KI Multiple Dose escalation 

Bendell et al. [106] I CC-223 TOR-KI Multiple Dose escalation 
1 Overall response rate 
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Table 2: Ongoing trials of mTOR targeted therapies/combinations in ALL and NHL 

mTOR-targeted drug Combination Study Phase Disease 

Everolimus  NCT00790036 III DLBCL 

Everolimus Panobinostat NCT00918333 I/II NHL 

Everolimus Panobinostat NCT00978432 II DLBCL 

Everolimus Multiagent re-induction NCT01523977 I ALL 

Temsirolimus Etoposide and cyclophosphamide NCT01614197 I Relapsed ALL and NHL 

Sirolimus Hyper-CVAD NCT01184885 I Relapsed/refractory ALL 

Temsirolimus Rituximab and DHAP NCT01653067 II Relapsed/refractory DLBCL 

Everolimus Bortezomib NCT00671112 I Relapsed/refractory lymphoma 

Temsirolimus Rituximab and bendamustine NCT01078142 I/II Relapsed FL and MCL 

Temsirolimus Bortezomib NCT01281917 II Relapsed/Refractory NHL 

Temsirolimus Rituximab and cladribine NCT00787969 I/II Newly diagnosed MCL 

Sirolimus Multiagent chemotherapy NCT01658007 I Relapsed/refractory ALL and lymphoma 

Everolimus Rituximab NCT01665768 II Lymphoma 

Temsirolimus Vinblastine NCT02343718 I Recurrent/refractory lymphoma 

Temsirolimus Inotuzumab Ozogamicin NCT01535989 I Relapsed/refractory NHL 

CC-115  NCT01353625 I NHL and solid tumors 

MLN0128  NCT02484430 II Relapsed/refractory ALL 

PQR309  NCT02249429 I Relapsed/refractory lymphoma 

CC-223  NCT01177397 I/II NHL and solid tumors 

CC-223 Rituximab NCT02031419 I DLBCL 
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