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ARTICLE

Accelerated functional brain aging in pre-clinical
familial Alzheimer’s disease
Julie Gonneaud 1,2✉, Alex T. Baria1, Alexa Pichet Binette 1,2, Brian A. Gordon 3, Jasmeer P. Chhatwal 4,

Carlos Cruchaga 3, Mathias Jucker 5, Johannes Levin 6, Stephen Salloway 7, Martin Farlow8,

Serge Gauthier1, Tammie L. S. Benzinger 3, John C. Morris3, Randall J. Bateman 3, John C. S. Breitner1,

Judes Poirier 1, Etienne Vachon-Presseau 9,10,11,105, Sylvia Villeneuve 1,2,105✉, Alzheimer’s Disease

Neuroimaging Initiative (ADNI)*, Dominantly Inherited Alzheimer Network (DIAN) Study Group* & Pre-

symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s Disease (PREVENT-AD) Research

Group*

Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently

develop Alzheimer’s disease (AD) dementia. This impairment may be leveraged to aid

investigation of the pre-clinical phase of AD. We developed a model that predicts brain age

from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well

as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively

unimpaired participants between 18–94 years of age from multiple sites, we showed that

topological properties of graphs constructed from rs-fMRI can predict chronological age

across the lifespan. Application of our predictive model to the context of pre-clinical AD

revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of

functional brain aging. This association was stronger in individuals having significant Aβ
pathology.
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The brain shows major changes over the course of aging. It
is not fully understood how neurodegenerative diseases
affect brain regions and networks that are also affected by

normal aging. However, increasing evidence suggests that neural
systems vulnerable to age are also vulnerable to Alzheimer’s
disease (AD) and other neurodegenerative diseases1. Recent
availability of large-scale neuroimaging datasets has facilitated the
application of machine learning techniques and enabled devel-
opment of models that can predict behavior and characteristics of
brain structure and function known to change with age2–10. We
investigated whether predicted brain age may be a relevant bio-
marker of neurodegenerative disease2, inasmuch as disease may
cause deviations from normal aging trajectories, and the factors
that influence these deviations may be studied. As an example,
brain age predictive models using data from structural magnetic
resonance imaging (MRI) have shown accelerated biological
aging in individuals who develop AD dementia11–14. Similar
phenomena are already apparent in others who have mild cog-
nitive impairment (MCI) that progresses to dementia12,15. Such
inter-individual differences between predicted biological and
chronological age have been studied in relation to lifestyle
variables16–19 and to genetic determinants14,17,20. It is currently
unknown, however, whether accelerated brain aging precedes
evidence of cognitive decline, and whether it can be detected in
the pre-clinical phase of AD.

The dementia of AD is characterized by progressive cognitive
decline that becomes sufficient to impair activities of daily
living21. Prior work has shown that brain changes characteristic
of an AD process can be demonstrated two or three decades
before symptom onset22,23. Typically, this sequence begins with
the accumulation of cerebral beta-amyloid (Aβ), followed by the
deposits of hyperphosphorylated tau (neurofibrillary tangles),
metabolic brain alterations, and other evidence of neurodegen-
eration that precede cognitive and functional symptoms22,24.
Functional brain alterations revealed by MRI measures of resting
state connectivity (rs-fMRI) become detectable almost synchro-
nously with Aβ and tau measured by positron emission tomo-
graphy (PET) and are therefore evident several years before
atrophy can be detected by structural MRI25,26. Conjunction of
such functional and biological changes appears to extend
throughout the development of AD from its pre-clinical to its
dementia stages24. These findings suggest that MRI measures of
resting state functional connectivity may be a more sensitive
modality than structural imaging for detection of brain changes
in pre-clinical AD.

AD dementia symptoms appear only after massive, evidently
irreversible brain changes. Therefore, a more promising
approach, at least in theory, is to prevent such changes. However,
AD prevention requires improved understanding of the pre-
clinical phase of AD27. Identification of individuals in this clini-
cally silent phase of the disease is challenging because it is mostly
unknown who will develop dementia during the lifespan. One
way to circumvent this problem is the study of autosomal
dominant AD (ADAD), a group of rare genetically determined
variants of AD caused by mutations in the amyloid precursor
protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2)
genes, all involved in Aβ production22,28. Because these muta-
tions are fully penetrant, progression to disease is predictable,
making ADAD an ideal model for the study of the pre-clinical
(i.e., pre-symptomatic) phase of AD.

Although it is impossible to determine with certainty who will
develop dementia due to sporadic AD (sAD), some factors are
known to increase the risk of its development. Prominent among
these is the ε4 allele at the polymorphic APOE locus that encodes
apolipoprotein E, known to be involved in Aβ clearance28,29.
More broadly, a strong family history of sAD dementia has also

been associated with a 2- to 4-fold increased incidence of
dementia30,31. Individuals whose brains show Aβ pathology are
also known to experience brain changes and related cognitive
decline over time32,33. Thus, asymptomatic individuals can be
classified as being in the pre-clinical phase of the disease if they
have Aβ pathology27. Likewise, their risk of dementia is increased
if they carry an APOE ε4 allele or other known genetic risk factor
and/or if they have a strong family history of the disease34,35.
Here, we tested whether individuals in the pre-clinical phase of
ADAD, or at risk of pre-clinical sAD, show evidence of acceler-
ated brain aging prior to the symptoms predicted by their genetic
risk or Aβ status.

We studied 1624 cognitively unimpaired participants between
18 and 94 years of age, recruited and scanned in different studies
and centers. Within these, we developed a method that predicts
brain age from rs-fMRI. We relied on measures of network
integration and segregation, known as graph metrics36, to
represent global brain functioning and developed a neural net.
Briefly, we trained this model initially on a cohort of cognitively
unimpaired individuals ranging in age from 18 to 90 years old.
We then validated its generalizability in another group of cog-
nitively unimpaired individuals (in age from 19 to 79 years old)
from another study/site. After such validation, we tested whether
individuals with pre-clinical ADAD showed accelerated func-
tional brain aging in comparison with their age-matched relatives
without a causal mutation. Importantly, none of these latter
participants had been involved in the development or validation
of the brain age model. In these same individuals, we also tested
whether Aβ pathology was a further predictor of brain age.
Finally, in a cohort of asymptomatic individuals having a parental
or other strong family history of sAD, we tested whether APOE ε4
and/or Aβ pathology were associated with predicted functional
brain age.

Our results showed, first, that pre-symptomatic carriers of
ADAD mutations (DIAN cohort) had evidence of accelerated
functional brain aging. Importantly, this finding was stronger in
individuals who already accumulated significant Aβ pathology as
evidenced by PET imaging. In the cohort at elevated risk of sAD
(PREVENT-AD cohort), neither APOE ε4 status nor PET evi-
dence of Aβ pathology was associated with apparent accelerated
brain aging but individuals closer to their parental age of onset
tended to show accelerated brain aging. Secondary analyses in a
third independent cohort including a small subset of individuals
diagnosed with either sAD dementia or MCI (ADNI cohort)
confirmed the expected acceleration in functional brain aging in
patients vs. cognitively normal older adults, suggesting that
functional brain age is accelerated in cognitively impaired indi-
viduals with sAD and therefore validating the sensitivity of our
model to sporadic AD-related processes. We conclude that
asymptomatic persons with strong genetic determinants show a
characteristic pattern of functional brain changes that are asso-
ciated with accelerated biological brain aging. The biological
development of AD is therefore characterized by a pattern of
advanced brain aging that can be detected prior to symptom
onset, at least in individuals having rare genetic mutations that
cause AD and significant Aβ pathology.

Results
Separation of the multisite data into a training, validation, and
test sets. We gathered rs-fMRI data from 1624 cognitively
unimpaired participants between 18 and 94 years of age, provided
by the Dominantly Inherited Alzheimer Network (DIAN), the
Pre-symptomatic Evaluation of Experimental or Novel Treat-
ments for Alzheimer’s Disease cohort (PREVENT-AD), the
Cambridge Centre for Ageing and Neuroscience (CamCAN), the
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1000-Functional Connectomes Project—Cambridge site (FCP-
Cambridge), the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the International Consortium for Brain Mapping
(ICBM) cohorts, to build a “brain age” predictive model (Table 1).
Considering our focus on the pre-clinical phase of AD, indivi-
duals with mild cognitive impairment (MCI) or AD dementia
were excluded from the main analyses. In secondary analyses, we
nevertheless tested whether cognitively impaired individuals with
sAD evidenced accelerated brain aging using our functional
predictive model that was built solely on cognitively unimpaired
individuals.

After processing and quality control, 1340 cognitively unim-
paired individuals remained for the analyses. These were divided
into a training set of 773 persons (large multi-cohorts dataset
covering the lifespan used to build the predictive models), a
validation set (independent lifespan dataset of 46 persons from
ICBM used to test the generalizability of the developed models
and select the final model), and one multi-cohort test set (125
DIAN mutation carriers and 29 without a mutation, 256
PREVENT-AD individuals thought to be at enhanced genetic
risk of sAD, 96 from CamCAN, and 15 cognitively normal
individuals from ADNI). A harmonized pre-processing pipeline
was applied to all individuals, and 26 graph metrics were chosen
based on their ability to quantify whole-brain connectivity and
extracted from each participant’s correlation matrix (see Material
and Methods for details). Further details are shown in Table 1
and Fig. 1.

Feature ranking as a step for reducing the number of features
in the final model. First, to reduce the number of inputs of the
model, we searched for graph metrics that most reliably predicted
chronological age10. To do so, training set data was entered in
parallel in support vector machine (SVM) and regression tree
ensemble models to identify graph metrics with highest weights.

The root mean squared error (rmse) for predicted chronological
age in SVM and the tree ensemble were 16.45 and 16.08,
respectively. Graph metrics were then ranked separately by order
of SVM weights and ensemble model importance (i.e., highest
load corresponding to the most important). We used the average
rank from both models to determine the overall importance of
each metric, as presented in Fig. 2a. Feature rank determined
which metrics would be used as input into the subsequent neural
network models, to build our predictive brain age model.

Building the Brain Age model and improving its general-
izability. We chose the optimal neural net architecture after
having built different neural networks with increasing complexity,
varying in number of input features (5, 10, 15, 20, or 25 most-
important graph metrics, ranked as described previously), hidden
layers, and hidden layer units. Importantly, each graph metric
was only entered once as input for each neural network archi-
tecture tested, and the inputs were kept constant across the
model’s iterations, such that features of more complex models
always included the features of the simpler ones. We used an
average of three determinations of rmse to assess the performance
for each model. The different neural networks were applied
separately in the training and validation set (Fig. 2b). To test the
relevance of the metrics’ ranking, we assessed also the perfor-
mance of neural nets on the training data when including the
metrics randomly (null model, see Fig. 2b, right panel) and
compared it to the models created based on ranked metrics
(Fig. 2b, left panel). This null model suggested that the neural
network performed better when features were ordered using SVM
weights and ensemble feature importance, at least in simpler
models.

To select the optimal neural network architecture for our brain
age model, we generated the different models using the training
set and evaluated which of these provided the best generalizability

Table 1 Dataset characteristics.

Cohorts Training set Validation set Test set

DIAN non-carriers N 105 — 29
Age [range] 38.70 ± 11.41 [19–69] 38.90 ± 11.55 [20–58]
Sex ratio F/M [F] 57/48 [54%] 18/11 [62%]

DIAN carriers N — — 125
Age [range] 34.33 ± 9.66 [18–61]
Sex ratio F/M [F] 68/57 [54%]

PREVENT-AD N 36 — 256
Age [range] 63.5 ± 5.08 [55–78] 63.51 ± 5.37 [55–84]
Sex ratio F/M [F] 25/11 [69%] 189/67 [74%]

CamCAN N 408 — 96
Age [range] 51.12+ 18.27 [18–87] 55.80 ± 19.30 [18–88]
Sex ratio F/M [F] 208/200 [51%] 40/56 [42%]

ADNI N 29 — 15
Age [range] 76.41 ± 6.60 [66–94] 72.73 ± 6.70 [65–90]
Sex ratio F/M [F] 17/12 [59%] 10/5 [67%]

FCP-Cambridge N 195 — —
Age [range] 21.04 ± 2.33 [18–30]
Sex ratio F/M [F] 122/73 [63%]

ICBM N — 46 —
Age [range] 42.28 ± 19.31 [19–79]
Sex ratio F/M [F] 29/17 [63]

Total sample N 773 46 521
Age [range] 43.37 ± 20.45 [18–94] 42.28 ± 19.31 [19–79] 54.49 ± 16.25 [18–90]
Sex ratio F/M [F] 429/344 [55%] 29/17 [63%] 325/196 [62%]

Demographic information by cohort and set.
F Female, M male, DIAN Dominantly Inherited Alzheimer Network, PREVENT-AD Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s Disease cohort, CamCAN Cambridge
Centre for Ageing and Neuroscience, FCP-Cambridge 1000-Functional Connectomes Project—Cambridge site, ADNI Alzheimer’s Disease Neuroimaging Initiative, ICBM the International Consortium for
Brain Mapping.
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to the validation set (i.e., avoiding overfitting). Thus, the
validation set helped us to determine the best balance between
improved age prediction and good generalizability. In general,
increasing model complexity (more features and hidden layers/
units) led to better performance in the training set (Fig. 2b, left
panel). However, as expected, too much complexity resulted in
overfitting as evidenced by improved performance in the training
set, resulting in poorer fit in the validation set (Fig. 2b, middle
panel). The model that produced the lowest rmse in the validation
set (averaged rmse over 3 iterations= 13.89) had 10 inputs (i.e.,
the 10 most important metrics, see Fig. 2a) and 2 hidden layers (5
units in the first layer and 2 in the second). The performance of

this specific model was similar to that obtained in the training set
(averaged rmse over 3 iterations= 13.75). This model was thus
applied to the remaining unseen data (test set) to test whether
genetics or AD pathology accelerated apparent functional brain
aging. Subgraph centrality, clustering/modularity coefficients, and
small-worldness were among the selected graph metrics (10 first
metrics Fig. 2a). For reference, the covariance matrix of the
10 selected graph metrics is presented as Supplementary material
(Supplementary Fig. 1).

Performance of the final brain age model. We show the asso-
ciation between chronological age and the model-predicted brain
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Fig. 1 Methodology overview. a Multiple cohorts covering the lifespan were included in the study. They were separated into a training and validation set,
both used to develop the predictive brain age model, and a test set in which our model was applied. b All participants underwent resting state functional
magnetic resonance imaging that was processed with a uniform pipeline. Functional connectivity matrices were generated from the Power atlas82, from
which graph metrics were calculated. Graph metrics were the input in our brain age model, and thus all possible metrics were of interest. c The first step
toward building the model was to rank the different graph metrics from the most to least related to aging in our training set, to determine an order of
importance to our model inputs using both support vector machine and regression tree ensemble algorithms. Neural networks were then tested to identify
the best brain age model. Different architectures were tested, and the model applied in the training set that best generalized to the validation set was
chosen as the final model (see Fig. 2). d The model was applied to the left-out test set and our measure of interest was the predicted age difference (PAD).
Mut−: mutation non-carriers, Mut+: mutation carriers, MRI: magnetic resonance imaging, PAD: predicted age difference.
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Fig. 2 Features ranking and neural networks performance. a Scatter plots of SVM model weights (y-axis) and ensemble tree feature importance (x-axis).
Model weights are absolute value, and normalized such that 1 indicates highest importance. Numbers next to data points indicate their rank (i.e.,
1= highest average rank between both SVM and ensemble models; orange dots correspond to the top 10 features, blue dots represent lower-ranked
features). b Root mean square error of different neural network models with inputs sorted according to rank for the training set (left), and the validation set
(middle). Values were averaged over 3 iterations of the models. Neural networks trained with randomly-ranked inputs served as our null models (right).
The x-axis indicates the number of inputs into the model (number of graph metrics) while the y-axis indicates the network architecture. For example, 5
means 1 hidden layer with 5 units, 5 2 means 2 hidden layers, the first one with 5 units and the second with 2 units. Darker (blue) colors indicate higher
accuracy, while lighter (yellow) colors indicate lower accuracy. The red square identifying the model that provides the better generalizability in the
validation set (lowest rmse) contains 2 hidden layers of 5 and 2 units, and uses the 10 highest-ranked graph metrics as input. The same neural network
trained on randomly-ranked inputs (null model, gray square) provides lower accuracy. c Brain age model performance across datasets. Correlations
between chronological age (x-axis) and age predicted by the neural network (y-axis) are represented for the training (n= 773), validation (n= 46) and test
(n= 521) sets. Statistical values (c) were obtained from Pearson’s correlations (two-sided test, with no adjustment). Source data are provided as a Source
data file. SVM: support vector machine, rmse: root mean square error, mae: mean absolute error.
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age for each dataset in Fig. 2c. As expected, predicted age was
correlated with chronological age in the training set (R2= 0.53,
p < 0.0001; rmse= 14.01, mean absolute error [mae]= 11.00;
Fig. 2c left) and the validation set (R2= 0.49, p < 0.0001;
rmse= 13.84; mae= 11.90; Fig. 2c middle). Of note, the neural
net model outperformed the simpler models used in our feature
ranking step (rmse= 16.45 for SVM and 16.45 for tree ensemble,
see above). Importantly, the model was able to predict chron-
ological age from functional brain properties in the test set
(R2= 0.36, p < 0.0001; rmse= 13.24; mae= 11.58; Fig. 2c right).
Notably, the same was true when restricting the analyses to the
CamCAN cohort, considered as a lifespan dataset representative
of healthy aging (R2= 0.26; p < 0.001; rmse= 16.70;
mae= 14.32).

Functional brain aging and pre-clinical Alzheimer’s disease. To
assess the characteristics of functional brain aging in pre-clinical
AD and evaluate whether genetic determinants/risk and Aβ
pathology were related to accelerated brain aging, we calculated
the predicted age difference or PAD (Fig. 1d). This was computed
as predicted brain age minus chronological age for each partici-
pant in the test set3. PAD deviation from zero should not be
interpreted in isolation due to the potential existence of site/
cohort effects, and we, therefore, interpret group comparisons
only within cohorts.

Analyses considered DIAN (Fig. 3a–d) and PREVENT-AD
(Fig. 3e, f) participants from the test set (Table 2). We tested
whether genes predisposing to AD, either the ADAD mutation
carriers or the broader familial risk of sAD, were associated with
accelerated brain aging. To do so, we compared PAD between
mutation carriers vs non-carriers from DIAN, and APOE ε4
carriers vsnon-carriers from PREVENT-AD. Considering the
tendency of the model to overestimate younger ages and
underestimate older ages, all subsequent analyses were controlled
for chronological age (see ref. 14 for a similar procedure). The
model’s prediction in DIAN mutation carriers overestimated
their chronological age (i.e., positive PAD= 8.19 years) in
contrast to mutation non-carriers (i.e., negative PAD=−3.54
years; F1,152= 4.88, p= 0.03; Table 3 and Fig. 3a, b). Overall, the
predicted age in the PREVENT-AD cohort overestimated the
chronological age by ~5 years (Fig. 3e), but APOE ε4 status was
not associated with differences in this PAD (F1,253 < 1; p= 0.49,
Table 3 and Fig. 3f).

Given the importance of Aβ deposition in the cascade of events
leading to AD dementia, we investigated whether Aβ burden is
related to functional brain aging. We assessed the effect of Aβ
deposition, measured by PET, on the PAD in both the DIAN and
PREVENT-AD cohorts. Aβ-PET was acquired using 11C-PIB in
DIAN and 18F-NAV4694 in PREVENT-AD, and Aβ burden was
determined for each cohort according to their own processing
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Fig. 3 Predicted age difference in DIAN and PREVENT-AD. Density plot of chronological age vs predicted age in the test set participants in DIAN
(n= 154) (a). Brain age is overestimated in autosomal dominant mutation carriers (n= 125) compared to non-carriers (n= 29) (b). The overestimation in
mutation carriers is in part due to Aβ, with a difference between mutation noncarriers (n= 29) and Aβ+ mutation carriers (n= 39) only (Aβ− mutation
carriers [n= 75] did not differ from the other groups) (c), and an association between Aβ load and predicted age difference across the whole cohort
(n= 154) (d). Light (yellow) colors represent DIAN mutation non-carriers and darker (orange) colors represent DIAN mutation carriers. Density plot of
chronological age vs predicted age in the test set participants in PREVENT-AD (n= 256) (e). In individuals at risk of sporadic Alzheimer’s disease, brain
age is overestimated irrespectively of APOE ε4 genotype (f). Light (salmon) colors represent PREVENT-AD APOE ε4 non-carriers (n= 147) and darker
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shaded (gray) area represents confidence intervals (95%). Statistical values were obtained from general linear models (b, c, f) or partial Pearson’s
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positive; APOE4: apolipoprotein E4, PIB: Pittsburgh compound B, SUVR: standardized uptake value ratio. Source data are provided as a Source data file.
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pipelines and methods (see Methods section for Aβ measure-
ments details). We assessed the influence of Aβ burden on
functional brain aging by comparing Aβ-positive to Aβ-negative
individuals. We also explored the possible influence of Aβ as a
continuous variable by assessing the partial correlation between
PAD and Aβ load. All analyses were controlled for
chronological age.

In DIAN, we found a grading effect of (quasi-continuous) Aβ
on PAD. Higher PAD was observed in Aβ-positive mutation
carriers when compared to the group of non-carriers (F1,65= 6.9,
p= 0.02; Fig. 3c). However, the PAD in Aβ-negative carriers
compared to non-carriers was only marginally higher
(F1,101= 2.73, p= 0.10; Fig. 3c). There were no significant
differences between DIAN Aβ-positive and Aβ-negative mutation
carriers (F1,111= 1.93, p= 0.17; Fig. 3c, Table 3). Partial Pearson
correlations showed that accelerated brain age was associated
with increased fibrillar Aβ load in the entire DIAN cohort
(r140= 0.18, p= 0.04; Fig. 3d), a finding that was no longer
significant when the analysis was restricted to mutation carriers
(r111= 0.14, p= 0.14).

In PREVENT-AD, among the 64 individuals who underwent
Aβ-PET imaging (test set only), 50 were Aβ-negative and 14 were
Aβ-positive (Table 3). The PAD was not associated with Aβ
burden, either when looking at Aβ-positivity (F1,61 < 1; p= 0.33)
or the influence Aβ load (r61= 0.12; p= 0.35). Adding the delay
between PET and rs-fMRI assessments as a covariate provided
similar results (F1,60 < 1; p= 0.36 using Aβ-status and r61= 0.12;
p= 0.37 for the partial correlation with Aβ load).

In supplementary analyses, we explored the association
between PAD and estimated years to symptom onset (EYO).
EYO has been widely used as an estimate of disease progression
in DIAN22,37, and it has been associated with amyloid pathology
in individuals having a parental history of sporadic AD38,39. This
index, calculated as the difference between parental age at
symptom onset and participant’s chronological age, estimates
each individual’s proximity to symptom onset (see Supplementary
Methods for details). A weak but positive association was found
between EYO and PAD in the PREVENT-AD (r= 0.13,
p= 0.05), such that individuals that had higher PAD tended to
also be closer to their expected age of onset. No such association
was found in DIAN mutation carriers (r=−0.13, p= 0.16), or
non-carriers (r=−0.23, p= 0.23).

Finally, we performed additional post hoc analyses to test
whether sAD symptomatic individuals (MCI and dementia) had a
higher PAD than asymptomatic individuals at risk of sAD (APOE
ε4 carriers). This analysis was not initially planned, and was
conducted only in a small subsample of the ADNI dataset (15
asymptomatic APOE ε4 carriers from the test set and

100 symptomatic individuals). The findings do suggest, as
expected, increased PAD among individuals with cognitive
impairment as compared with asymptomatic individuals at risk
of sAD (using parametric, F1,112= 2.85, p= 0.047, or non-
parametric Mann–Whitney-U= 965, p= 0.04, one-tailed test).

Discussion
Variation in notional biological aging has been proposed to
account for inter-individual differences in the way people age40.
Combined with larger and more available datasets, machine
learning methods can improve our understanding of brain
function and our ability to predict health trajectories from brain
properties. Previous models of brain aging have been informed
primarily by characteristics of brain structure41. Accelerated
structural brain aging has been found in individuals with MCI
and AD dementia12,14,15. However, functional brain abnormal-
ities are generally detectable prior to structural changes in the AD
continuum, the latter being typically more proximate to the
expression of clinical symptoms25,42,43. Here we developed a
model that could evidently predict brain age across the entire
adult human lifespan (ages 18–94). This model relied on topo-
logical properties of graphs constructed from rs-fMRI and
demonstrates the feasibility of predicting brain age from rs-fMRI
using global measures of network integration and segregation6,36.
Applying our predictive functional model to ADAD in the DIAN
cohort, we observed that brain aging was apparently accelerated
in individuals with pre-clinical ADAD. This association was
especially clear in individuals who had PET evidence of Aβ
deposition. Among individuals at elevated risk of sAD (PRE-
VENT-AD cohort), neither APOE ε4 nor Aβ was associated with
accelerated brain aging. However, asymptomatic individuals who
were closer to their expected age of symptom onset tended to
show accelerated brain aging. The latter observation was corro-
borated by observations that symptomatic individuals with sAD
showed accelerated brain aging when compared to asymptomatic
individuals at risk (ADNI cohort, secondary analyses).

We developed the described model in participants from dif-
ferent cohorts and sites, and validated its generalizability in an
independent monocentric dataset. While there is undoubtedly a
cost to (internal) accuracy when optimizing model (external)
generalizability, this external validation step is a major strength of
this work. While modest in size, the validation set represented a
completely independent dataset that covers the entire adult life-
span. Although we cannot exclude the possibility that a larger
multicenter validation cohort might have led to selection of a
slightly different network architecture, we note that our model’s
rmse was very similar between the validation and the test sets.
Importantly, the test set was never used in the development/

Table 2 DIAN and PREVENT-AD test set characteristics.

DIAN mutation non-carriers DIAN mutation carriers PREVENT-AD

N 29 125 256
Chronological Age (years; mean ± SD) 38.90 (±11.55) 34.33 (±9.66) 63.51 (±5.37)
Sex Ratio F/M (%) 18/11 (62%/38%) 68/57 (54%/46%) 189/67 (74%/26%)
Education (years; mean ± SD) 14.41 (2.13) 14.89 (±3.10) 15.65 (±3.51)
EYO (years; mean ± SD)a −8.56 (±10.85) −14.18 (±8.94) −10.42 (±7.21)
APOE4 carriers (%)b 11 (38%) 36 (29%) 108 (42%)
Aβ-positive (%)c 0 (0%) 39 (34%) 14 (22%)
MMSE or MoCA (mean ± SD)d 29.36 ± 1.03 29.02 ± 1.27 28.11 ± 1.52

Aβ beta-amyloid, Aβ− amyloid-negative, Aβ+ amyloid-positive; APOE apolipoprotein E, EYO Estimated Years to Symptom Onset, MMSE Mini–Mental State Examination, MoCA Montreal Cognitive
Assessment, SD standard deviation.
aEYO in DIAN was calculated based on the parental age at onset. EYO of PREVENT-AD was calculated only for individuals with a parental history of AD, data was available for 241 participants.
bAPOE genotyping was missing for 1 PREVENT-AD participant.
cAβ-PET data was missing for 2 mutation non-carriers and 11 mutation carriers in DIAN and 192 PREVENT-AD participants.
dGlobal cognitive functioning was assessed using MMSE in DIAN and MoCA in PREVENT-AD.
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validation of the brain aging model. Also, the model was not
modified any further after the hypotheses were tested, i.e.,
hypotheses were only tested once using a model that appeared
(from development and validation work) to be optimal. This
approach ensured that our results regarding brain aging in pre-
symptomatic AD were independent of the way the model
was built.

To assess information integration in the brain, we relied on
global brain function while applying graph metrics6,36. This
approach provides a holistic view of brain function that has been
shown previously to change through aging and AD44. Graph
theory has the advantage that it quantifies and simplifies the
many “moving parts” of dynamic systems inasmuch as every
connection is defined by its relation to all others. We also used
feature selection as an intermediate step to simplify the final
model. We suggest that our approach using graph theory and
feature selection are steps in the right direction toward inter-
pretability of complex models. We are encouraged that the 10
graph metrics suggested as most important by these algorithms
provided much lower error in our final neural network model in
comparison to random choice of graph metrics. Of note, models
using individual functional connections as inputs are also possi-
ble, but such models have been shown to require multiple
dozens45 or hundreds10 of functional connections whose inter-
relationships are not defined.

Compared with structural predictive models, previous model-
ing approaches using rs-fMRI data have found higher
error7,19,46,47. These observations could partly be attributable to
known characteristics of rs-fMRI data. Such data are typically
noisier and experience more dynamic changes than structural
data, and they may be more sensitive to multi-site effects. Despite
these difficulties, we attempted to derive our brain age model
from rs-fMRI because this modality appears better suited to study
of the pre-clinical phase of AD. An extensive literature suggests
that connectivity disruption appears early in the course of sAD as
well as in “normal” aging48–53. Moreover, training, validating,
and testing our predictive model across multiple cohorts also
increased the error of our model compared to the previous
studies3,7,11,13,14. Yet, inclusion of data from different sites should
logically improve the generalizability of the model, a key strength
when the model is applied to new data from different cohorts7,54.
Finally and importantly, brain age models tend to overestimate
younger ages and underestimate older ages19,55. While some
researchers apply an age-bias correction procedure to their
model19, we are showing the non-adjusted model and used
chronological age as a nuisance variable in our PAD analyses
instead of applying this correction prior to the PAD calculation.
In sum, while we recognize that the error of our model is higher
than most previous brain age models, it was derived from rs-fMRI
data, no age-bias correction was applied to test the model accu-
racy, and we suggest that it is more generalizable than previous
models. Crucially, it also appears to be sensitive to the questions
of interest here.

Applying our model in the context of AD, we found evidence
of accelerated functional brain aging in individuals in the pre-
clinical phase of dominantly inherited AD. ADAD is widely
believed to be a disease caused by overproduction of Aβ, and
studies of ADAD have shown that biomarkers such as CSF-Aβ,
start changing in mutation carriers as early as 25 years before
symptom onset22. This is followed by the accumulation of fibrillar
Aβ deposition as measured by PET imaging, alongside changes in
concentrations of tau in the CSF and cerebral atrophy. Later
changes include glucose hypometabolism and episodic memory
decline and global cognitive decline22. Studies employing rs-fMRI
in this disease are relatively rare, however, and have considered
the entire ADAD spectrum48,56–58. One of these studiesT
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compared asymptomatic mutation carriers and non-carriers and
suggested reduction in Default Mode Network functional con-
nectivity among asymptomatic carriers56. This finding is con-
cordant with literature on sAD suggesting that change in rs-fMRI
is one of the earliest biomarkers of the disease25,26. Our rs-fMRI
predictive model implied that functional brain age of ADAD pre-
symptomatic mutation carriers (DIAN) exceeded their chron-
ological age by about 10 years (based on the findings in non-
carriers). This observation alone suggests that the pre-
symptomatic phase of ADAD is accompanied by accelerated
brain aging. The relative importance of Aβ burden on accelerated
brain aging was less clear. While no association was found
between Aβ burden when restricted to DIAN mutation carriers,
the difference between mutation carriers and non-carriers was
stronger (i.e., significant only) in those with fibrillar Aβ as
detected with PET imaging. The observations of accelerated brain
aging in carriers may therefore not be entirely attributable to the
accumulation of Aβ. While Aβ is often hypothesised to be the
starting point of the AD neuropathological cascade59, tau is
believed to be more toxic60,61 and might therefore be more closely
associated with accelerated aging. Mutated genes in ADAD could
also have life-long effects on the brain that are not fully depen-
dent on Aβ accumulation. Consistent with this view, a previous
study in PSEN1 mutation carriers from the Columbian cohort
showed early changes in brain function before evidence of cere-
bral Aβ plaque accumulation62. Finally, we cannot exclude the
possibility that some Aβ-negative individuals would in fact be Aβ
accumulators63,64, or present other forms of Aβ that cannot be
detected through PET. What seems to be clear is that AD genetic
mutations influence functional brain properties in pre-clinical
ADAD. The exact mechanisms that drive this accelerated brain
aging will need further investigation.

When investigating the characteristics of PAD in individuals
with a family history of sAD (PREVENT-AD), we did not find
differences between APOE ε4 carriers and non-carriers, nor
associations with Aβ burden (for similar results with structural
and metabolic brain age, see refs. 11,65). These findings do not
necessarily contradict an extensive literature suggesting associa-
tion between APOE ε4 status, Aβ, and rs-fMRI44,66–69. They seem
instead to suggest that we are capturing different constructs.
While the previous studies tested the direct effect of these two
factors on rs-fMRI metrics, we tested the associations between
these AD risk factors and a proxy of biological aging derived from
rs-fMRI. While we found no association between Aβ and PAD,
we did observe, however, an association between EYO and PAD
such that PREVENT-AD participants who were closer to their
parents’ age of onset tended to have older predicted brain age
when compared with others. In the same cohort, EYO had pre-
viously been associated with functional changes mimicking brain
changes characteristic of AD dementia70.

While our focus was the pre-clinical phase of the disease, we
performed post-hoc analyses using rs-fMRI data from a small
subset of ADNI patients. We found accelerated functional aging
in persons with symptomatic sAD (MCI or dementia) when
compared with others who were asymptomatic, but at increased
risk of sAD (APOE ε4 participants from our test set). These
additional analyses suggest accelerated functional brain aging in
individuals with clinical sAD and further confirm the validity of
our brain age model.

Several limitations should be mentioned. These relate both to
the model and to the cohorts used to test our hypotheses. First,
our choice not to update or tweak the model after it was used to
test our hypotheses (a main strength of our approach) left us with
a few small errors when constructing the model (e.g., two
PREVENT-ADAPOE ε4 carriers were included in the training
set). While these oversights were unlikely to have affected the

final results (APOE ε4 carriers from other cohorts without gen-
otype data were presumably included in the training set), they
nevertheless pose a small threat to the integrity of the model.
Second, we also cannot exclude the possible influence of colli-
nearity when determining the age predictive graph metrics. The
SVM and the tree ensemble were however mostly in agreement,
and it’s unlikely that multicollinearity would have had equal
influence on these two very different algorithms. Also, while we
made great efforts to increase the generalizability of our predictive
model, most of the participants included in this study were
Caucasian (see Supplementary Methods), stressing the need to
increase diversity in both lifespan and AD cohorts. Functional
brain age was also found to exceed chronological age in the
PREVENT-AD cohort, while this was not the case in other sites/
cohorts of similar ages. While it is tempting to interpret these
results as resulting from the participants’ family history, we think
it reflects largely a site effect. To minimize such possible site
effects, we drew on data from a variety of cohorts and sites,
validated the model on a completely independent validation set
(new site) and applied similar processing methods to all data. No
further harmonization procedure was applied. The site effects are
inherently related to the different age composition of the sites (or
cohorts, see Fig. 1), and thus harmonizing by sites would have
removed the age difference between participants (see Supple-
mentary Fig. 2 for an example of sites correction using ComBat;
https://github.com/Jfortin1/ComBatHarmonization). While the
possibility of site effects limits our ability for direct comparisons
across cohorts, it cannot reasonably threaten the integrity of our
main findings, which resulted from within-cohort comparisons.
One obvious limitation of inference from the PREVENT-AD data
compared to those from DIAN, is that we cannot know which
participants will later develop AD dementia. The lack of evidence
for accelerated brain aging in PREVENT-ADAPOE ε4 carriers (vs
non-carriers) might reflect nothing more than the known fact
that not all APOE ε4 carriers will develop AD dementia (i.e., are
in the pre-clinical phase of the disease) while some non-carriers
will develop the disease. The subsample of PREVENT-AD par-
ticipants having Aβ pathology in the test set was also relatively
small, which could likely limit inference.

In sum, using rs-fMRI graph metrics, we developed a model
that can predict brain age across the whole human lifespan.
Applying this model to predict brain aging in the context of pre-
clinical AD revealed that the pre-symptomatic phase of ADAD is
characterized by accelerated functional brain aging. Whether a
similar relationship holds for pre-clinical sAD and by which
underlying mechanisms AD accelerates brain aging will require
further evaluation.

Methods
Cohorts and participants
Dominantly Inherited Alzheimer Network—DIAN. DIAN is a multisite longitudinal
study71, which enrolls individuals age 18 and older who have a biological parent
that carries a genetic mutation responsible for ADAD. They all underwent clinical
and cognitive assessments, genetic testing, and imaging (magnetic resonance
imaging [MRI] and amyloid-positron emission tomography [PET]). Data has been
obtained after request and IRB approval (information can be found at dian.wus-
tl.edu/our-research/observational-study/). Baseline data from cognitively unim-
paired mutation carriers and non-carriers archived in the DIAN data freeze 10
(January 2009 to May 2016) were used in the present study. All selected individuals
had a Clinical Dementia Rating (CDR)72 scale of 0. Baseline data from 280 cog-
nitively unimpaired individuals (mutation carriers and non-carriers) aged between
18 and 69 years old, for whom structural MRI and rs-fMRI data were available,
have been included.

Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s
Disease—PREVENT-AD. The PREVENT-AD (Douglas Mental Health University
Institute, Montréal) is a monocentric longitudinal cohort73. Briefly, 399 cognitively
unimpaired older individuals with a family history of sAD (at least one parent or
multiple siblings) were enrolled between September 2011 and November 2017.
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Inclusion criteria included (i) being 60 or older; 55–59 for individuals who were
less than 15 years from the age of their relative at symptom onset, (ii) being
cognitively normal and (iii) no history of major neurological or psychiatric disease.
Normal cognition was defined as CDR of 0 and a Montreal Cognitive Assessment
(MoCA)74 ≥24. In the few cases of ambiguous results (3 participants having a CDR
of 0.5 and 1 participant with a MoCA of 23 in the present sample), participants
were further evaluated with a more extensive neuropsychological test battery,
which was carefully reviewed by neuropsychologists and physicians to ensure
normal cognition. Participants underwent clinical and cognitive examinations,
blood tests, and MRI annually. Data from the present study were archived in the
Data Release 5.0 and are partially available at https://openpreventad.loris.ca/. PET
scans were acquired in a subset of participants between February 2017 and July
2019. Three hundred and fifty-three participants, aged 55–84, for whom baseline
structural MRI and rs-fMRI were available were included in the present study.

Cambridge Centre for Ageing and Neuroscience—CamCAN. The Cambridge Centre
for Ageing and Neuroscience (Cam-CAN; http://www.cam-can.org/) is a large-
scale collaborative research project, launched in October 2010, using epidemiolo-
gical, behavioral, and neuroimaging data to characterize age-related changes in
cognition and brain structure and function, and to uncover the neurocognitive
mechanisms that support healthy cognitive ageing75. In the present study, 648
individuals aged between 18 and 88, with structural MRI and rs-fMRI data were
included.

Alzheimer’s Disease Neuroimaging Initiative—ADNI. ADNI data used in the pre-
paration of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu)76. ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. Considering the focus on pre-
clinical AD, forty-nine cognitively unimpaired individuals with structural MRI and
rs-fMRI data were included in the present study. An additional 106 (100 after
quality control) individuals with MCI or dementia and structural MRI and rs-fMRI
data were included in post hoc analyses to validate the model in cognitively
impaired sAD individuals.

1000-Functional Connectomes Project (Cambridge site)—FCP-Cambridge. The
1000-Functional connectomes project (FCP) is a large initiative that gathers
functional data from cognitively unimpaired adults recruited worldwide (33 sites)
and makes it publicly available to facilitate discovery science of brain function
(http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html)77. We used the large
dataset from Cambridge-Buckner that includes 198 subjects between 18 and 30
years old, all collected at the Cambridge site ([FCP-Cambridge], PI: Buckner, R.L.).

International Consortium for Brain Mapping—ICBM. The ICBM dataset78 is
publicly available as part of the 1000-FCP repository (see above; see also ref. 79 for
details). The dataset is constituted of 86 cognitively unimpaired older adults from
19 to 95 years old who underwent structural MRI and rs-fMRI at the same site
(Montreal Neurological Institute, Canada).

For the purpose of the brain age model, participants were divided into training,
validation, and test sets. In order to reach the most accurate model of “healthy”
brain aging from our data, cognitively unimpaired individuals from the different
cohorts were assigned randomly to the training set, except when their genetic status
was available (DIAN, PREVENT-AD, and ADNI), in which case only individuals
with no genetic predisposition for AD were included in the training set; the
remaining data (including individuals at increased risk of AD) was assigned to the
test set. Thus, mutation non-carriers from DIAN (~80% of DIAN non-carriers,
randomly selected) were assigned to the training set, along with ADNI APOE4
non-carriers, individuals from FCP-Cambridge, and ~80% of the cognitively
unimpaired individuals selected randomly from CamCAN. While the PREVENT-
AD cohort has an increased risk of sAD, a few individuals from this cohort (~10%)
were assigned to the training set to expose the model to this site’s characteristics;
these individuals were randomly selected from the subsample of APOE4non-
carriers (with the exception of two APOE4 carriers who were included in the
training set by mistake). ICBM was used as an independent sample of healthy
individuals to assess the generalizability of the brain age model to other datasets
(validation set). Finally, the test set included our population of interest (DIAN
mutation carriers, most PREVENT-AD participants) and the remaining
asymptomatic individuals from the other cohorts (remaining ~20% DIAN
mutation non-carriers and CamCAN participants, along with ADNI APOE4
carriers).

Standard protocol approvals, registrations, and participants consents. All
studies were approved by study sites’ respective regional ethics committees.

More specifically, DIAN study procedures were approved by the Washington
University Human Research Protection Office and the local institutional review
boards of the participating sites.

PREVENT-AD study was approved by the Research, Ethics and Compliance
Committee of McGill University (Montréal, Canada).

The Ethics committees/institutional review boards that approved the ADNI
study are: Albany Medical Center Committee on Research Involving Human
Subjects Institutional Review Board, Boston University Medical Campus and
Boston Medical Center Institutional Review Board, Butler Hospital Institutional
Review Board, Cleveland Clinic Institutional Review Board, Columbia University
Medical Center Institutional Review Board, Duke University Health System
Institutional Review Board, Emory Institutional Review Board, Georgetown
University Institutional Review Board, Health Sciences Institutional Review Board,
Houston Methodist Institutional Review Board, Howard University Office of
Regulatory Research Compliance, Icahn School of Medicine at Mount Sinai
Program for the Protection of Human Subjects, Indiana University Institutional
Review Board, Institutional Review Board of Baylor College of Medicine, Jewish
General Hospital Research Ethics Board, Johns Hopkins Medicine Institutional
Review Board, Lifespan—Rhode Island Hospital Institutional Review Board, Mayo
Clinic Institutional Review Board, Mount Sinai Medical Center Institutional
Review Board, Nathan Kline Institute for Psychiatric Research & Rockland
Psychiatric Center Institutional Review Board, New York University Langone
Medical Center School of Medicine Institutional Review Board, Northwestern
University Institutional Review Board, Oregon Health and Science University
Institutional Review Board, Partners Human Research Committee Research Ethics,
Board Sunnybrook Health Sciences Centre, Roper St. Francis Healthcare
Institutional Review Board, Rush University Medical Center Institutional Review
Board, St. Joseph’s Phoenix Institutional Review Board, Stanford Institutional
Review Board, The Ohio State University Institutional Review Board, University
Hospitals Cleveland Medical Center Institutional Review Board, University of
Alabama Office of the IRB, University of British Columbia Research Ethics Board,
University of California Davis Institutional Review Board Administration,
University of California Los Angeles Office of the Human Research Protection
Program, University of California San Diego Human Research Protections
Program, University of California San Francisco Human Research Protection
Program, University of Iowa Institutional Review Board, University of Kansas
Medical Center Human Subjects Committee, University of Kentucky Medical
Institutional Review Board, University of Michigan Medical School Institutional
Review Board, University of Pennsylvania Institutional Review Board, University of
Pittsburgh Institutional Review Board, University of Rochester Research Subjects
Review Board, University of South Florida Institutional Review Board, University
of Southern, California Institutional Review Board, UT Southwestern Institution
Review Board, VA Long Beach Healthcare System Institutional Review Board,
Vanderbilt University Medical Center Institutional Review Board, Wake Forest
School of Medicine Institutional Review Board, Washington University School of
Medicine Institutional Review Board, Western Institutional Review Board, Western
University Health Sciences Research Ethics Board, and Yale University
Institutional Review Board.

The CamCAN study has been approved by the local ethics committee,
Cambridgeshire 2 Research Ethics Committee.

For the 1000-Functional Connectomes Project (ICBM and FCP-Cambridge),
each contributor’s respective ethics committee approved submission of deidentified
data. The institutional review boards of NYU Langone Medical Center and New
Jersey Medical School approved the receipt and dissemination of the data.

All participants gave written informed consent prior to participation.

MRI acquisition and processing. DIAN: DIAN imaging data was acquired at
multiple sites on 3T scanners by applying ADNI parameters and procedures22,71.
T1-weighted MRI (used for rs-fMRI processing) were acquired with the following
parameters: repetition time (TR)= 2400 ms, echo time (TE)= 16 ms, flip
angle= 8°, acquisition matrix= 256 × 256, voxel size= 1 × 1 × 1 mm. Eyes-open
rs-fMRI images were acquired using the following parameters: TR= 2230ms or
3000 ms; TE= 30 ms, flip angle= 80°, voxel-size= 3.3 × 3.3 × 3.3 mm, field of view
(FOV)= 212, 140 volumes; acquisition lasting ~5min or 7 min.

PREVENT-AD: MRI data were acquired on a 3T Magnetom Tim Trio
(Siemens) scanner. T1-weighted images were obtained using a GRE sequence with
the following parameters: TR= 2300 ms; TE= 2.98 ms; flip angle= 9°; matrix
size= 256 × 256; voxel size= 1 × 1 × 1mm; 176 slices. For resting state fMRI scans,
two consecutive functional T2*-weighted scans were collected eyes-closed with a
blood oxygenation level-dependent (BOLD) sensitive, single-shot echo planar
sequence with the following parameters: TR= 2000ms; TE= 30 ms; flip
angle= 90°; matrix size= 64 × 64; voxel size= 4 × 4 × 4 mm; 32 slices; 150
volumes, acquisition time= 5min45s. For consistency with the other cohorts that
only had one run, only the first run was considered for each participant.

CamCAN: Images were acquired on a 3T Magnetom Tim Trio (Siemens). T1-
weighted MRI were acquired using the following parameters: 3D MPRAGE
GRAPPA= 2, TR= 2250 ms, TE= 2.99 ms, TI= 900 ms; flip angle= 9°; voxel-
size 1 mm isotropic; FOV= 256 × 240 × 192mm; acquisition time= 4 min 32 s.
Rs-fMRI data were acquired eyes closed using a T2* GE EPI sequence with the
following parameters: TR= 1970 ms; TE= 30 ms, flip angle= 78°; voxel-
size= 3 × 3 × 4.44 mm, FOV= 192 × 192; 261 volumes of 32 axial slices 3.7 mm
thick with a 0.74 mm gap, acquisition time= 8 min 40 s.
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ADNI: Data were acquired at multiple sites, following the ADNI protocol80.
Structural images were acquired using a 3D MPRAGE T1-weighted sequence with
the following parameters: TR= 2300 ms; TE= 2.98 ms; TI= 900 ms; flip
angle= 9°; voxel size=1.1 × 1.1 × 1.2 mm3; FOV= 256 × 240 mm2; 170 slices. The
rs-fMRI images were obtained, eyes open, using a T2 weighted echo-planar
imaging sequence with the following parameters: TR= 3000 ms; TE= 30 ms; flip
angle= 80°; 48 slices of 3.3 mm; 140 volumes; acquisition lasting ~5 min.

FCP-Cambridge: Images were acquired using a Siemens 3T Trio scanner. High-
resolution T1-weighted images were acquired as follows: MP-RAGE TR= 2200 ms,
TE= 1.04–7.01 ms, flip angle= 7°, voxel size= 1.2 × 1.2 × 1.2 mm,
FOV= 230 mm, 144 sagittal slices. Rs-fMRI were collected, eyes open, with the
following parameters: EPI TR= 3000 ms, TE= 30 ms, flip angle= 85°, voxel
size= 3 × 3 × 3mm, FOV= 216 mm, 47 axial slices, 124 volumes, lasting ~6 min.

ICBM data was acquired on a Siemens Sonata 1.5 T MR scanner at the MNI.
T1-weighted scan was acquired as follows: TR= 2200 ms, TE= 92 ms, flip
angle= 30°, 256 × 256 matrix with a 1 × 1mm2 resolution, 176 contiguous sagittal
slices covering the whole-brain, slice thickness= 1 mm. Three rs-fMRI runs were
acquired eyes-closed with the following parameters: 2D echoplanar BOLD
MOSAIC sequence, TR= 2000 ms, TE= 50 ms, flip angle = 90°, 64 × 64 matrix
with a 4 × 4 mm2 resolution, 23 contiguous axial slices covering the cortex but not
the cerebellum, slice thickness= 4 mm, 138 volumes; each run lasting ~4 min 30 s.
For consistency with the other cohorts that only had one run, only the first run was
considered for each participant.

Rs-fMRI processing. In order to limit site effects, all functional images were
processed in our laboratory (by APB) applying the exact same pipeline and pro-
cessing steps. The NeuroImaging Analysis Kit version 0.12.4 (NIAK; http://
niak.simexp-lab.org/) was used for rs-fMRI preprocessing, following the procedure
applied in the previous publications54,70. Briefly, images underwent slice timing
correction, and rigid-body motion parameters were estimated. T1-weighted images
were linearly and non-linearly normalized to the MNI space. After coregistration to
structural scans, functional images were normalized to the MNI space by applying
parameters from the T1-weighted images and resampled to 2 mm isotropic. Slow
time drifts, average white matter and cerebrospinal fluid signal and motion artifacts
(first principal components of the six realignment parameters, and their squares)
were regressed out from the rs-fMRI time series. Finally, fMRI volumes were
smoothed with a 6 mm Gaussian kernel. Frame displacement was calculated and
those exhibiting displacement >0.5 were removed (scrubbed), along with one
adjacent frame prior, and two consecutive frames after81. Images with less than
40% of their original data after scrubbing were discarded (see Supplementary
Table 1 for the percentage of frames retained in each cohorts).

Overall, 266 individuals (16 DIAN, 60 PREVENT-AD, 130 CamCAN, 4 ADNI,
1 FCP-Cambridge, and 39 ICBM, as well as 6 ADNI patients [included in
secondary analyses]) were discarded due to failing preprocessing standards or
having insufficient data after scrubbing.

Average BOLD signals were extracted from 272 regions corresponding to the
Power and Petersen functional atlas82, to which key regions of the limbic system
were added83. Regions labeled as “uncertain”, or with weak or non-existent signal
in any one image were excluded from all images, resulting in 238 total regions (see
Supplementary Table 2 for the total listing of the regions). For each subject, BOLD
activity time series from these regions were used to construct a 238 × 238 Pearson
correlation matrix, which was then Fisher’s Z-transformed.

Motion-related noise was further mitigated using the mean regression (MR)
technique as outlined previously84. Briefly, the average of all correlation values
within the upper diagonal of the correlation matrix was calculated for each subject
in the training data. A linear fit between these across-subject average values and the
across-subject value at each element of the correlation matrix was generated,
creating a slope and intercept term associated with each element of the matrix. The
final value used in each element of the correlation matrix was equal to the residual
between the MR-model fit and the original correlation value. Importantly, the MR
model was created with only the training data.

For each subject, 26 graph metrics, chosen based on their ability to quantify
whole-brain connectivity, were extracted from the correlation matrix using the
Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/)36, in Matlab.
Both weighted and unweighted metrics were calculated, if applicable. Graph
metrics were chosen because they outperformed models trained directly on the
weighted edges of the matrices. In the case of unweighted metrics, correlation
matrices were thresholded at 5% link density, which ensured only the top 5%
strongest correlation values were counted as connections in the matrix85. Only 5
out of the 26 metrics used binarized matrices and out of those 5, only one was
retained in the final model (i.e., weighted modularity coefficient). One global value
was extracted for each graph metric. In cases where a metric was outputted for each
region (e.g., subgraph centrality), the median or median of log values was used as a
global estimate. Small-worldness and resilience metrics, not included in the toolbox
but both shown to be strong indicators of age, were calculated as previously
determined (see Supplementary Methods for details)6. Briefly, small-worldness was
calculated as the averaged clustering coefficient of the correlation matrix divided by
the averaged clustering coefficient of a random network with same node-edge
count, which was divided by the averaged efficiency of a random network divided
by the averaged efficiency of the correlation matrix. In graph theory, resilience of

network G is defined as the relative number of edges that must be removed for the
network to lose property P, and is a measure of the network’s robustness to
targeted or random attacks. Here, resilience is calculated as the slope of the log-log
degree distribution. Subjects with any graph metric that was 5 standard deviations
beyond the training set group mean was removed from the analysis entirely. A total
of 15 individuals from the training set (1 DIAN mutation non-carrier, 11
CamCAN, 2 FCP-Cambridge, 1 ADNI), 1 from the validation set (ICBM) and 8
from the test set (1 DIAN mutation non-carriers, 3 DIAN mutation carriers, 1
PREVENT-AD, 3 CamCAN) were excluded.

Brain age model. The general procedure for iterating through different models
included 5-fold cross-validation within the training data, and a second validation
with an independent, external-site dataset. Models with the lowest error in pre-
dicting age on this validation set then served as candidates for the final model.
Once the final model was determined, our hypotheses were then tested on the test
set. Of importance, the test set was composed of unseen data that were not used to
create, optimize, or validate the model. Neither the model nor the hypotheses were
modified after the model was considered final and ready for hypothesis testing.

First, in order to reduce the number of inputs to the model, we searched for the
graph metrics that were the most reliably predictive of age. To do so, the training
set data was entered in a support vector machine (SVM) and a regression tree
ensemble model to estimate which graph metrics were the most important to
predict chronological age (i.e., highest weights). For the SVM model, the features
(i.e., the 26 metrics) were standardized by subtracting the mean and dividing by the
standard deviation of the training group. SVM was implemented with the fitrlinear
function using a linear kernel, and Bayesian-optimized ridge regularization. For
ensemble methods, feature standardization is not recommended, and thus the
unstandardized 26 metrics were used as input. The fitrensemble function was used
with Bayesian optimization of hyperparameters including the method (Bag or
LSBoost), number of learning cycles, and the learning rate. In both models,
chronological age was the response vector, and parameter optimization was
determined with the minimum 5-fold cross-validation loss. Feature selection was
not part of cross-validation. Graph metrics were then ranked separately by order of
SVM weights and ensemble model importance (i.e., highest load corresponding to
the most important). Importance in the ensemble model was determined using the
predictorImportance function, which is equal to the sum of changes in mean
squared error due to splits on every predictor, divided by the number of branch
nodes. The average rank from both models was then used to determine the overall
importance of each metric.

In a second step, we aimed at creating an accurate model requiring the fewest
number of features possible. We used training data to generate a neural net model
and assessed its accuracy using the validation set. More specifically, the neural
network was optimized by (i) generating different models using the training set,
each model varying in number of features used as input and network complexity,
and (ii) applying each model to the validation set (independent dataset/site) to
evaluate which one provided the better generalizability (i.e., avoid overfitting and
give the better prediction on an independent set). Graph metrics in both training
and validation sets were standardized by subtracting the training group mean and
dividing by the training group standard deviation. Network models had 5–25 input
features in increments of 5, entered according to their importance, as determined
previously (see above). A null model was also tested by applying the same feature
increment procedure but entering the graph metrics in a random order. Each graph
metric was only entered once as input for each neural network architecture tested,
and the inputs were kept constant across the model’s iterations; features of more
complex models always included the features of the simpler ones. Architecture of
the network was also tested with various number of hidden layers (1 or 2) and
number of units in the hidden layers (2, 5, 7, or 10). Age was modeled on the
training data using the fitnet function with Bayesian regularization
backpropagation. Model accuracy was ultimately determined by the root mean
squared error (rmse) between actual and predicted age on the validation data, with
lower rmse reflecting higher accuracy. Because neural network units are initialized
with random values, the rmse changed slightly each time model error was
measured. Thus, the best model was determined by the lowest rmse, averaged over
three iterations. Once the most accurate model was determined, it was applied on
unseen data (test set).

Additional measures in DIAN and PREVENT-AD samples (test set)
Genetics. DIAN genotyping was performed by the DIAN Genetics Core at
Washington University22. The presence or absence of ADAD mutation was
determined using PCR-based amplification of the appropriate exon followed by
Sanger sequencing. APOE genotype was determined using an ABI predesigned real-
time Taqman assay (C___3084793_20 and C____904973_10 for rs429358 and
rs7412 variants, respectively).

APOE genotype in PREVENT-AD was determined using the PyroMark Q96
pyrosequencer (Qiagen, Toronto, Canada) and the following primers:
rs429358_amplification_forward 5′-ACGGCTGTCCAAGGAGCTG-3′,
rs429358_amplification_reverse_biotinylated 5′-CACCTCGCCGCGGTACTG-3′,
rs429358_sequencing 5′-CGGACATGGAGGACG-3′,
rs7412_amplification_forward 5′-CTCCGCGATGCCGATGAC-3′,
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rs7412_amplification_reverse_biotinylated 5′-CCCCGGCCTGGTACACTG-3′ and
rs7412_sequencing 5′-CGATGACCTGCAGAAG-3′.

The full list of primers is provided in Supplementary Tables 3 and 4.

PET acquisition and processing. In DIAN, 28 mutation non-carriers and 117
mutation carriers from the test set had an Aβ-PET scans available at baseline. Aβ-
PET scans were acquired in different centers, following ADNI protocol86. Briefly,
participants were injected intravenously with 8 mCi to 18 mCi of 11C-PIB. Part of
the participants underwent a full dynamic acquisition of 70 min, starting at the
time of injection. The remaining part of the sample underwent a 30-min scan after
a rest period of 40 min. A standard brain transmission scan (or computed tomo-
graphy [CT] transmission scan for PET/CT scanners) was obtained for attenuation
correction. Aβ-PET data was motion corrected and registered to their MRI87.
Standardized uptake value ratio (SUVR) were calculated using the cerebellar gray
matter as a reference and a global measure of Aβ burden was calculated by aver-
aging SUVRs from the prefrontal cortex, temporal lobe, gyrus rectus, and pre-
cuneus of the Desikan-Killiany atlas88. A threshold of 1.31 was used to determine
Aβ-positivity87.

In the PREVENT-AD cohort, Aβ-PET scans were performed at the MNI
(Montréal, Canada) on a Siemens HRRT. Sixty-four individuals from the test
set underwent this examination, at a mean of 10.30 ± 5.63 months from their
closest MRI session and 43.10 ± 17.95 months after their baseline session. A
30-min acquisition scan started 40 min after intravenous injection of ~5.4 mCi
of 18F-NAV4694. Transmission scans were acquired for attenuation correction.
Data were processed using a standard pipeline (see ref. 38 and https://
github.com/villeneuvelab/vlpp for details). A global index of neocortical Aβ
burden was derived by extracting, in native space, the mean standardized
uptake value ratio (SUVR) of the frontal, temporal, parietal, and posterior
cingulate cortex of the Desikan-Killiany atlas88, using the cerebellum grey
matter as reference region. A threshold for positivity was determined using
Gaussian Mixture modeling38 and scans with global neocortical Aβ burden
≥1.39 were considered positive.

Estimated years to onset. Estimated years from expected symptom onset (EYO) was
calculated in each cohort taking the parental age at onset as a reference (see Sup-
plementary Methods for details).

Statistical analyses on the predicted age difference (test set). To analyze the
specificities of brain aging in the context of pre-clinical AD, we calculated the
predicted age difference for DIAN and PREVENT-AD participants in the test
set, as previously detailed3, by subtracting the actual chronological age from
the predicted brain age (output from the model). We were particularly inter-
ested in the influence of the genes involved in AD, which are either responsible
for ADAD or increase the risk of sAD. We compared, in the test set, the
predicted age difference (i.e., PAD) between (1) mutation non-carriers and
mutation carriers from DIAN, and (2) APOE4 carriers vs non-carriers in the
PREVENT-AD. We were also interested to further understand the influence of
Aβ accumulation on functional brain aging in asymptomatic individuals. To do
so we assessed the effect of Aβ deposition, measured by PET, on the PAD in
both the DIAN and PREVENT-AD cohorts, both by comparing Aβ-positive
and Aβ-negative individuals (dichotomous variable) and by assessing the
correlation between PAD and Aβ load (continuous variable). All analyses were
controlled for chronological age14.

Exploratory analyses were conducted to assess the correlation between the PAD
and estimated years to onset (EYO). Finally, we validated that our model was
capturing advanced brain aging in sAD patients with cognitive impairment by
comparing our cognitively unimpaired ADNI participants (15 APOE4 carriers
from the test set) to a subset of 100 ADNI participants with MCI or dementia using
a general linear model (one-tailed test), controlling for chronological age.
Considering the small sample size in the control group, analyses were also
replicated using nonparametric test (Mann–Whitney).

Analyses were conducted using Statistical Package for the Social Sciences
(SPSS), and statistical significance was set at p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the present study are either publicly available (PREVENT-AD MRIs and
demographics: https://openpreventad.loris.ca/; CamCAN: http://www.cam-can.org/;
FCP-Cambridge and ICBM: http://fcon_1000.projects.nitrc.org/fcpClassic/
FcpTable.html) or can be shared upon reasonable request and approval by the study
scientific committees and/or institutional review boards (DIAN: dian.wustl.edu/our-
research/observational-study; PREVENT-AD additional measurements, including PET:
https://registeredpreventad.loris.ca/; ADNI: adni.loni.usc.edu). Sensitive (e.g., genetic,
clinical) data are protected and are not provided due to data privacy laws. Source data are
provided with this paper.

Code availability
Custom codes of the neural networks developed in this study are provided at https://
github.com/villeneuvelab/projects/tree/master/Gonneaud_2021_BrainAgeModel.
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