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ABSTRACT OF THE DISSERTATION

Electronic Transport Studies of Diamond and Diamond-on-Graphene Heterostructures
and Potential Device Applications

by

Adrian Nosek

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2019

Prof. Marc Bockrath, Co-Chairperson
Prof. Shan-Wen Tsai, Co-Chairperson

This dissertation investigated the electronic transport properties of diamond and

diamond-on-graphene heterostructures. I obtained three main results during the course of

my studies, one regarding the electronic transport in polycrystalline diamond films, and two

regarding its potential device applications. First, I observed dissipative quantum tunneling

in lowly boron-doped polycrystalline diamond by collapse of current-voltage characteristics

onto a single curve, exhibiting universal scaling behavior. One of our main outcomes was

the observation of a quasi-classical to quantum transition of the transport behavior of lo-

calized charge carriers within a series of quantum wells. Within our experiment, quantum

mechanical tunneling was mediated by a composite quasiparticle, consisting of an instanton

and anti-instanton, referred to as the bounce solution within this quantum field theoretical

tunneling model. Second, I realized the first diamond-on-graphene barristor, which exhibits

an optimal operation behavior between room temperature and 100◦C. At room tempera-

ture the tunability of the Schottky barrier is the largest, but with increasing temperature

vi



the tunability degrades and is eventually lost. At 100◦C the diode characteristics of the

diamond-graphene interface is most clearly pronounced. My work layed out the first steps

towards high temperature diamond and graphene based electronics for high power switch-

ing applications. Third, I fabricated the first diamond-based memristor which acts as an

inorganic synapse. My diamond-based memristive inorganic synapse showed effects of a

psychological human memory model with filtering, learning, remembering and forgetting of

incoming signals. Spike-timing dependent plasticity in our inorganic synapse displayed the

frequency dependent effect on learning. Last but not least, I observed that my inorganic

synapse mimicks a refractory period commonly observed when neurons fire off action poten-

tials between neuron cells. My diamond-based memristor has potential device applications

in neuromorphic computing for novel non-traditional computer architectures for in-memory

information processing.
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Chapter 1

Introduction into Graphene and

Diamond

1.1 Graphene: Lattice and Bandstructure

Graphene’s Lattice

Graphene is a two-dimensional, one atom thick, single layer of carbon atoms. It

was for the first time isolated and identified in 2004 by Geim and Novoselov [1]. This dis-

covery very quickly resulted in the Noble Prize of physics in 2010 by the Swedish academy

of sciences, mainly due to the rich physics in graphene and its widereached potential appli-

cations not only in electronics but also in chemistry and biotechnology.

Carbon is the sixth element in the periodic table and has 6 electrons distributed

in the s- and p-orbitals in a 1s22s22p2 configuration. The carbon atoms of graphene are

arranged in a triangular Bravais lattice, also called hexagonal lattice, with two atoms in
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its unit cell and sp2 hybridized interatomic bonds [2]. The length of the unit vector of the

triangular lattice is | a⃗1 |=| a⃗2 |=
√
3 0.142 nm=0.246 nm and the length of the interatomic

bond is 0.142 nm. Each carbon atom has 3 nearest neighbours arranged in a trigonal planar

geometry with a bond angle of 60◦ between any two neighbouring bonds. Figure 1.1 shows

the graphene real space lattice with its lattice vectors a⃗1 and a⃗2 to left. To the right it

shows its reciprocal lattice with high symmetry points K, K’ and Γ.

Figure 1.1: Real space and reciprocal lattice of graphene. Left: Real space lattice of
graphene with its lattice vectors a⃗1 and a⃗2. Right: Reciprocal lattice of graphene with high
symmetry points K, K’ and Γ and reciprocal lattice vectors b⃗1 and b⃗2.

The lattice vectors a⃗1, a⃗2 and the recirpocal lattice vectors b⃗1, b⃗2 satisfy orthonor-

mality a⃗i · b⃗j = 2πδij , where δij is the Kronecker delta, and are given as

a⃗1 = a

 1

0

 , a⃗2 =
a

2

 1

√
3

 , b⃗1 =
2π√
3a


√
3

−1

 , b⃗2 =
4π√
3a

 0

1

 (1.1)

Linear combinations of lattice vectors a⃗1 and a⃗2 give access to any point of graphene’s trian-

gular lattice. At each point of the triangular lattice, graphene’s unit cell will be attached,

where the positions of the unit cell’s atoms are 0⃗ and d · ŷ, with ŷ the unit vector in y

direction.
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Graphene’s Bandstructure

Electronic charge transport in graphene occurs through delocalized π charge carri-

ers originating from pz orbitals of the lattice. Graphene’s electronic band structure can be

derived from a tight-binding Hamiltonian approach with nearest neighbour hopping trans-

port. The eigenenergies derived from diagonalizing the tight-binding Hamiltonian are given

by

ε(kx, ky) = ±t

√
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
(1.2)

where t is the hopping energy with t ≃ 2.7 eV, kx and ky are the reciprocal space lattice

vectors, and a is the lattice constant with a =
√
3c = 0.246 nm where c is the inter carbon

distance of length 0.142 nm.

Figure 1.2: Left: Bandstructure of graphene. Right: Enlarged structure of a Dirac cone at
the K’ point. The position of the Fermi level can be tuned between different positions EF

and E
′
F through an external electric field.
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The K and K’ point at the edge of the Brillouin zone of the band structure exhibit

a cone like structure that precisley intersects at K and K’, widely known as the Dirac point.

It is for this Dirac cone that graphene is referred as a gapless semimetal. A plot of the

eigenenergies is presented in figure 1.2. Interestingly, the Fermi energy of graphene can be

placed below or above the Dirac point by applying an external gate electric field, thereby

effectively choosing whether electrons or holes are the conductive charge carriers of the

system.

1.2 Single Crystal Diamond: Lattice, Bandstructure and Im-

purities

Diamond’s Lattice

Single crystal diamond, just like graphene, solely consists of carbon atoms. Unlike

graphene, single crystal diamond forms sp3 hybridized bonds between carbon atoms. Each

carbon atom has 4 nearest neighbours forming, a tetrahedral bond geometry with a bond

angle of 109.47◦ between any two neighbouring bonds.

Figure 1.3: Left: Carbon-carbon sp3 hybridization in diamond [3]. Middle: Diamond lattice
structure [4].
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The length of the bonds is 0.154 nm. Single crystal diamond has a 3-dimensional

lattice structure. A face centered cubic (fcc) lattice is positioned at the origin and another

fcc lattice is positioned at one fourth of the first cubes diagonal at a/4 (x̂ + ŷ + ẑ), where

a is the length of the cube edge and (x̂ + ŷ + ẑ) are the coordinate unit vectors, see figure

1.3. In other words, one can describe the diamond lattice as a fcc lattice with a 2 point

basis. The two positions of the diamond’s unit cell atoms are 0⃗ and a/4 (x̂ + ŷ + ẑ). The

primitive lattice vectors a⃗1 and a⃗2 and a⃗3 are positioned at the faces of the fcc lattice and

are given by

a⃗1 =
a

2


1

1

0

 , a⃗2 =
a

2


1

0

1

 , a⃗3 =
a

2


0

1

1

 . (1.3)

Diamond’s Bandstructure

Undoped single crystal diamond is a wide bandgap insulator and optically trans-

parent. At room temperature its indirect and direct bandgap are 5.47 eV and 5.8 eV,

respectively. For simplicity, only a schematics of the bandstructure is shown in figure 1.4.

A in-depth band structure diagram can be found in [5, 6]. It is possible to incorporate

impurities into the diamond lattice and effectively dope diamond from insulating to semi-

conductive to metallic to superconducting behavior. Impurities can be either of acceptor

(p-type) or donor (n-type) nature. Most prominently diamond can be doped with boron,

its slightly smaller and lighter neighbour element in the periodic table. Boron acts as an

acceptor in diamond with an actication energy positioned around 0.37 eV above the valence

band [7], as shown in the right of figure 1.4. In an atomistic picture it captures an electron
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from the neighbouring carbon and creates a hole for charge transport.

Figure 1.4: Schematic band structure of undoped and doped diamond, to the left and
right, respectively. For high doping levels, an impurity band can be formed with a certain
bandwidth. Dashed lines represent localized energy levels of donor or acceptor dopants.

Likewise, other elements can be introduced into the diamond lattice to achieve a

similiar effect. Nitrogen is the most common donor impurity with an activation energy of

around 1.7 eV below the conduction band [8]. Furthermore, it is possible to use phosphorus

as a donor, with an activation energy of 0.57 eV below the conduction band [9]. Practically,

it has been proven rather hard to incorporate phosphorus because its low solubilty during

the chemical vapour deposition (CVD) process. Nitrogen is the most common impurity

for single-crystal diamonds and natural diamonds. The Fermi level in doped diamond will

be pinned to the impurity dopant level if only one dopant is present in the material. For

example, if only boron is present in the film the Fermi level would be positioned roughly 0.37

eV above the valence band. If multiple dopants are present, e.g. boron and nitrogen, then

the Fermi level will be pinned at the most abundant impurity level [10]. It is noted, that

other forms of deviation from the ideal single crystal lattice structure, such as dislocations,
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vacancies, etc., can lead to charge trapping and hence charge transport. Dopants can be

introduced into single crystal diamond as well as polycrystalline CVD diamond, which is

more easily accessible due to faster growth rates.

1.3 Polycrystalline Diamond and its Mesoscopic Crystal Struc-

tures

Polycrystalline diamond consists of single crystal diamond grains, oriented spa-

tially in different directions and interconnected via grain boundaries. At first the grains

will be discussed, followed by a short summary of the composition of the grain boundaries.

1.3.1 Morphology of Diamond Grains

Single crystal diamond grains differ in size and morphology. Grain sizes [11, 12, 13]

range from ultrananocrystalline (∼3-15 nm), nanocrystalline (∼100-200 nm) to microcrys-

talline (>1 µm). The morphology can vary from a ball-like structure with a cauliflower

texture [14] to polyhedra with atomic flat surfaces. A micrograph of different polyhedra

grains is shown in figure 1.5. Many different types of polyhedra with flat surfaces and

surfaces with varying step size can be observed. Effects like twinning and creation of stack-

ing faults are of importance in the description polycrystalline diamond films. Such a large

variation in grain size and orientation can be attributed to the relative thin film thickness

of just 500-600 nm of our diamond films. While it was observed that the {111} and {100}

crystallographic faces are grown most commonly in polycrystalline diamond films [15], this

is not the case for our samples. The facet with the fastest growth rate should outgrow all
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Figure 1.5: In-lens scanning electron micrograph of a top surface of a polycrystalline dia-
mond foil desposited on Si/SiO2, showing the crystalline composition of the film. Scale bar
200 nm. Inset: Large area scan of the foil showing illuminated edges. Scale bar 10 µm.

other faces, though this is only possible for sufficiently thick films, usually several µm thick,

which is not the case for our films. Zhou et al [16] presented that carefully choosing the

methane to hydrogen ratio for diamond growth on very densely seeded diamond nanocrys-

tals on single crystal Ni surfaces, results in polycrystalline diamond films with a preferred

facet, either the {111} or {100}. Though, results change with different substrates and will

depend on specific temperature and pressure in the growth chamber [17]. For the case of

crystal growth along different facets, a unitless growth parameter α can be determined from

the shape of diamond grains (figure 1.6) that describes the shape of the diamond grain and
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Figure 1.6: Morphology of Diamond Grains. a) Growth parameter α and corresponding
polyhedral shapes. b) Diamond {100} (1 ≤ α ≤ 1.5) and {111} (1.5 ≤ α ≤ 3) faces and
their relations to α. Reprinted with permission from [17].

relates to the ratio of the growth rates v111 and v100 as

α =
√
3
v100
v111

(1.4)

In figure 1.6a, α = 1, α = 1.5, and α = 3 correspond to a cubic, cubo-octahedral and

octahedral grain shape, respectively. Figure 1.6b dotted lines on the top part show the

square shape of the {100} crystallographic face and on the bottom part the triangular

shape of the {111} crystallographic face with repsective lengths and mathematical relations

to α.
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1.3.2 Grain Boundaries

In solids, grain boundaries are forming whenever crystals with different lattice

parameters or orientations with respect to each other intertwine. In polycrystalline films,

grain boundaries seperate two grains of different size or orientation. Scanning electron

micrographs (SEM) are commonly used to obtain information about the surface morphology

of such films. Figure 1.7 shows a SEM image collected by the in-lens detector of elastically

backscattered electrons. In general, a SEM beam of incoming high energy electrons interacts

with a solid in various ways. In one of them, electrons scatter elastically with the nuclei

of the solid to within a certain depth into the material. Those electrons are referred to as

backscattered electrons and are in general sensitive to the atomic number Z of the nucleus.

A higher atomic number leads to more backscattered electrons and thus appears brighter

in a SEM picture, compared to electrons scattered off atoms with a lower atomic number.

Figure 1.7: Grain boundary dimensions. Left: In-lens scanning electron micrograph of
the top side of a diamond film. Scale bar: 220 nm. Right: Enlarged scan showing the
dimensions of the grain boundaries. Scale bar: 20 nm. The horizontal and vertical arrows
indicate a grain boundary width of 9.1±1 nm and 4.7±1 nm, respectively.

Although, spots appearing brighter in a SEM image can have different origins.

For example, a more conductive pathway could capture electrons instead of backscattering
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them and thus effectively reducing the number of electrons received by the in-lens detector.

The right SEM image in figure 1.7 shows an enlarged scan with arrows indicating grain

boundaries and their size. Grain boundaries as wide as 10 nm can be found on the top

surface of this specific diamond foil and they appear darker on the SEM image then grains

themselves, indicating a change in the mass density. An important question arises now

on the specific chemical structure of the grain boundaries and the type of conductivity

they exhibit, which is still an open question of study nowadays. During the CVD growth

process, ultrananocrystalline grains grow in a columnar structure, intertwine and facets

with the fastest growth prevail. In general, diamond films can be composed of a rich variety

of chemical structures discussed next.

1.4 Composition of Polycrystalline Diamond Films

Even the most purest CVD polycrystalline diamond films contain slight traces of

different amorphous carbons. Ferrari and Robertson [18] presented a ternary phase diagram

for amorphous carbon structures in diamond, shown in figure 1.8. In general, pure graphite

or pure diamond can be found in the corners of the phase diagram. A mix of sp2 to sp3

type of bonds can lead to amourphous carbon (a-C), tetrahedral a-C (ta-C), amorphous

hydrogenated carbon (a-C:H) and tetrahedral a-C:h (ta-C:H), referred to as diamond-like

carbon (DLC). A sp3 content of more than 50% is referred to as tetrahedral, either ta-C or

ta-C:H. Ferrari and Robertson present additional ternary phase diagrams where hydrogen

is replaced with nitrogen, and they note that the phase diagrams should include a fourth

dimension that considers clustering of sp2 sites. Such clusters can form small ring or chain
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like structures, while larger structures can form three-dimensional cage-like structures of

sp2 bonds with inclusion of sp1 chains [18].

Figure 1.8: Amorphous carbons ternary phase diagram. Any point in the diagram corre-
spond to a ratio of sp3 : sp2 : H components in a material. The corners at 1:0:0, 0:1:0
correspond to diamond and graphite, respectively. Pure hydrogenic films (0:0:1) are not
possible, instead a band of hydrocarbon polymers can be formed, for example polyacetylene
structures. Source [18].

Figure 1.9: Amorphization trajectory showing the three-stage model. Reverse direction
along 3→2→ 1 can be understood in terms of an ordering trajectory. Source [18].

In 1999 Ferrari and Robertson published a paper on the interpretation of Raman

spectra of disordered and amorphous carbons [19]. They introduced a three-stage model
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for introducing defects into a graphite sheet and named it amorphization trajectory. The

role of hydrogen is neglected in this model due to the lack of C-H bond signature in the G

or D peak. The classification of carbons and its degree of graphitization or amorphization

dates back to initial works presented by Lespade et al in 1983 [20].

1.5 Metastability of Diamond

Diamond exhibits metastability with respect to graphite [21]. From diagram 1.10

one can see that graphite is the more stable configuration of carbon bonding and if the

barrier is overcome, then a diamond bond transforms into a graphite bond and vice versa.

Figure 1.10: Metastability of diamond.

This somewhat contradicts the common experience that diamond is among the

most hardest and stable materials, especially since graphite is ’weaker’ then diamond in

terms of hardness and durability. Very high activation energies for bond transformation

of a relatively defect free diamond result in extremely low rates of bond transformation

such that within the life time of a human being, transformations from diamond to carbon

bonds are extremely rare if not negligible, but certainly possible. Reznik et al [22] studied

the kinetics of conversion of broken diamond sp3 bonds to graphitic sp2 and extracted
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an activation energy of 0.7 eV for this transformation. Diamond bonds were broken by

bombaring the diamond lattice with high energy Xe ions (320 keV) with a total dosage

D = 5 · 1014 cm−2, hereby introducing a considerable density of defects (vacancies) N .

Earlier studies by Uzan‐Saguy [23] found a critical density of defects NC(N0, DC) = 1022

vacancies/cm3, such that if

N > NC
Annealing
=⇒ Graphitization of broken bonds

N < NC
Annealing
=⇒ Recovery of broken diamond bonds.

If the density of defects is above NC , graphitization occurs upon annealing, while broken

diamond bonds recover if N < NC . This approach has been used to create ohmic graphitic

contacts to diamond. An activation energy of (0.7±0.1) eV for graphitization was measured

upon annealing between 300-600°C [22].

While it is possible to create graphite from diamond, diamond can also be created from

graphite.

For this, Palnichenko [24] demonstrated, that by applying and intense voltage

pulse (1000 A) in vacuum between two graphitic contacts seperated by 5-10 mm and of 0.5

mm diameter, diamond microcrystals can be found on a subtrate beneath the contacts with

sizes ranging from 10 µm to 100 µm. All in all, switching between diamond and graphitic

bonds is possible, but it requires extreme conditions in the laboratory.
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Chapter 2

Material Growth and Device

Fabrication

2.1 Overview

This chapter describes the growth of graphene and polycrystalline diamond as well

as sample fabrication procedures for a diamond-on-graphene heterostructure with comments

and observations on common problems. During the initial stages of this project chemical

vapor deposited (CVD) graphene was grown in a furnace (section 2.2.1). Later on, CVD

graphene was commercially purchased [from Graphenea]. Thin polycrystalline diamond

foils were grown by our collaborateurs in a plasma enhanced chemical vapour deposition

(PECVD) process with the option of incorporating boron as a dopant into the diamond

lattice (section 2.2.2). Device fabrication can be split into following steps. Firstly, transfer

(section 2.3.4) of graphene onto a preferred substrate (section 2.3.1). Secondly, patterning
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of graphene into a desired shape in an oxygen environment in an inductive coupled plasma

(ICP) (section 2.3.9) or reactive ion etching (RIE) chamber. Thirdly, successive transfer of

a diamond flake onto a patterned graphene sample (section 2.3.7). Fourthly, evaporation of

metallic leads onto the diamond-on-graphene device through an electron-beam lithography

(EBL) (section 2.3.8) shaped polymer mask in an electron beam evaporator (section 2.3.10).

Lastly, after a successful lift-off process of the shaped polymer mask, the device is capped

off with a few layers off a protective polymer material (section 2.3.3). Additional EBL is

required to open up windows to the bonding pads on the device substrate for wire bonding

of macroscopic wires which finalizes the device fabrication.

2.2 Material Growth

2.2.1 Chemical Vapor Deposition of Graphene

Chemical vapor deposition of graphene on commercially available 25 µm thick

copper foils (10950 Alfa Aesar) was performed in a Lindberg/BlueM TF55035A quartz tube

furnace. A one-inch quartz tube was connected on one end to a vacuum pump to achieve

a low pressure growth. On the other end, a pressure-based mass MKS Flow Controller was

connected, which regulates the low pressure gas flow. The outcoming gas from the vacuum

pump exhaust was redirected to a fume hood for proper disposal of flammable gases.

Our copper foils were electropolished before graphene growth. Electropolished

copper exhibits higher individual single crystal graphene grains compared to unpolished

samples with intrinsic properties similar to exfoliated graphene [25], which is attributed to

a reduced surface roughness. Electropolishing is performed in an electrochemical cell, which
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consists of two copper foils (the anode and the cathode), suspended in a phosphoric acid

based electrolyte. Details of the electropolishing process can be found in [26].

The electropolished copper was rolled-up into a tubular structure and placed in

the middle of the furnace. Our growth process consists of a ramp stage, an anneal stage, a

growth stage, and a cool down stage. Before the ramp stage was started, the hydrogen flow

rate was set to 50 sccm and the vacuum pump was turned on reaching a pressure of 0.65

Torr. Next, the temperature was ramped up to 1030◦C within 30 minutes where it stayed

constant at 1030◦C for 60 minutes. The growth stage starts by turning on the methane flow

and lasts for 30 mintues with a 0.1 sccm flow rate. During this period the CVD graphene

grows on the copper surface. After 30 minutes the methane flow rate and the furnace heater

were turned off. The furnace was allowed to cool down to around 600◦C before it is opened

to accelerate the cool down time. It is important to keep the heated CVD graphene on

copper within the hydrogen flow since at these elevated temperatures the graphene would

easily oxidize when exposed to atmospheric gases. Once room temperature is reached, the

vacuum pump is turned off.

2.2.2 Microwave Plasma Assisted Chemical Vapor Deposition of Poly-

crystalline Diamond

Growth recipe and parameters

Polycrystalline diamond can be grown at reduced temperature in a microwave

plasma chemical vapor deposition (MPCVD) process. Diamond foils used in this work

were synthesized in a MPCVD system (SEKI Technotron AX5400S) on mirror-polished
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tantalum foils (Sigma-Aldrich Chemie, 0.025 mm thick, 99.9+ % metal basis) by Robert

Bogdanowicz’s group at the Gdansk University of Technology in Poland. Prior to growth,

a diamond slurry was spin-coated (section 2.3.2) on the mirror-polished tantalum foils with

nanodiamond particles of 4-7 nm size.

Figure 2.1: Diamond film on a tantalum substrate.

Nanodiamonds were suspended in a dimethyl sulfoxide (DMSO) with 1 % of

polyvinylalcohol (PVA) solution. During the growth process the temperature of the graphite

stage is kept at 500°C, the microwave power is set at 1000 W and diborane, B2H6, is used

as the dopant precurser. The total gas flow rate is held at 300 sccm with a 1:99 gas ratio

of CH4:H2. A growth time of 120 minutes results in diamond foil film thickness of 600 nm.

Figure 2.1 shows a 600 nm thin diamond film on a 2.5 cm x 2.5 cm tantalum substrate. In

this case, the boron level in the gas phase was 10k ppm of boron to carbon atoms.

The growth mechanics

CVD diamond can be grown by three main growth processes. High pressure high

temperature growth, hot filament activated CVD growth or plasma activated CVD growth.

In this work the plasma activated method is utilized. In general, a diamond or a non-

diamond substrate can be used for CVD diamond growth. If a non-diamond substrate is
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chosen, then nucleation phenomena and seeding need to be taken into consideration. Grow-

ing CVD diamond can be performed with as little as two gases, hydrogen (H2) and methane

(CH4), though other gases can be included to either dope diamond or suppress growth of

sp2 bonded carbons. Matsumoto et al. were the first to present a diamond growth on dif-

ferent substrates in a hydrogen-methane gas environment in a hot filament activated CVD

[27]. A year later Muto et al. [28], as well as Saito et al. [29], independently showed that

plasma activated CVD of a hydrogen-methane gas mixture works for growing diamond.

In a plasma environment, hydrogen gas molecules dissociate into hydrogen atoms fulfilling

two main functions. Once, hydrogen atoms terminate diamonds surface by forming a CH

group to stabilize diamond against growth of graphitic carbon at elevated temperatures.

Secondly, they react with the hydrocarbon source gas (methane) to produce additional hy-

drogen atoms and hydrocarbon species, some of which act as highly reactive radicals. Both,

hydrogen atoms and radical hydrocarbon species will interact with the hydrogen terminated

diamond species, sometimes ’knocking out’ a H atom from the surface. Most frequently,

another hydrogen atom adsorbs to maintain the hydrogen termination. Occasionally, a hy-

drocarbon radical attaches to the dangling C bond to progress the diamond growth. This

is the atomistic standard model for diamond CVD growth.

Although, somewhat of a controversy remains around this growth model. Jeon

et al. [14] showed that larger clusters of hundreds to thousands of atoms can exist in a

CVD diamond growth process, growing in traditional form with flat surfaces and edges or

in a spherical shape with a cauliflower like texture [14]. Hwang et al. [30] proposed the

possibility that diamond growth can also occur through charged clusters that form in the gas
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environment, instead of an atom by atom approach. The necessity for such an alternative

growth process originated from inconsistencies in the standard model for diamond CVD

growth. The latter process includes irreversible simultanous etching of the more stable

carbon phase and deposition of the less stable diamond phase. Hwang argued that such a

process violates the second law of thermodynamics [31, 32]. Such an inconsistency is avoided,

if diamond nucleates in the gas phase and attaches to the substrate in larger clusters. Similar

observations of particles forming clusters have been observed in previous works by Glasner

[33] on the precipitation of molecules in aqueous solutions and by Sunagawa’s work [34].

Sunagawa pointed out that low pressure grown diamond shows step heights of up to 100 nm

and that the {100} face can grow larger than the {111} face, which led him to the conclusion

that the growth units could not only be atomic or molecular but must include larger building

blocks, like clusters of atoms grown in the vapor phase. Furthermore, succesful synthesis of

diamond in vacuum through an intense heat pulse [24] has been demonstrated, which further

supports formation of clustered unit growth. A more in depth review of this alternative

growth process can be found in [32, 35].

2.3 Methods of Heterostructure Fabrication

2.3.1 Substrates

Our experiments, unless otherwise stated, focused mainly on two substrate mate-

rials, silicon with a 300 nm thick insulating silicon dioxide layer, denoted as Si/SiO2 from

hereon, and ST-cut quartz. The 300 nm thick insulating layer has two functions. It acts

as a insulating dielectric for applying a gate voltage to a heterostructure and it provides a
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contrast between the substrate and graphene for enhanced visibility, see figure 2.2. Blake

[36] analyzed the visibility of graphene on a substrate based on Fresnel theory to show

that graphene on Si/SiO2 is particularly visible within specific bands of wavelengths and

thickness of the insulating dielectric. For example, white light illumination of a 200 nm

thick SiO2 does not provide good visibility of graphene, while 300 nm thick SiO2 shows a

good contrast for graphene and multilayers of graphene. In such a way graphene can be

identified and distinguished from the substrate and multilayer graphene flakes through a

simple optical microscope.

The second material is insulating ST-cut quartz. ST specifies the crystallographic

orientation along which the quartz substrate is cut and polished. For this substrate, if

desired, a top gate needs to be fabricated for applying a gate voltage to a heterostructure.

It is possible to identify graphene on quartz through an optical microscope under high

illumination and a black background below the quartz substrate, see right plot of figure 2.2.

Figure 2.2: Graphene etched into squares on top of which one can find diamond flakes on
a Si/SiO2 (left) or ST-cut quartz (right) substrate.

Furthermore, it was observed that if the background below the quartz substrate

was reflecting light well, it was not very easily possible to distinguish graphene from the
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quartz substrate. Hence, we conclude that graphene’s intrinsic reflectance is enough to

provide visibility, albeit it is more pronounced when a thin layer with well chosen thickness

is used for constructive interference between incoming and reflected light, like for Si/SiO2.

Quartz was the preferred substrate for memristor studies in this work, since it allowed to

apply high voltages without worrying about leakage currents towards the backgate.

2.3.2 Spin-Coating

Spin-coating is the process of depositing a thin layer of a viscous solution on top

of a substrate by spinning. The substrate is positioned on the spinner, a droplet of the

viscous solution is drop-casted on top of the substrate. The spin-coating starts by steadily

ramping up to a constant spin-velocity. The ramping stage ensures that the viscous solution

uniformly spreads over the substrate and the constant spin-velocity stage is maintained long

enough for the viscous film to reach its final thickness.

For the case of spin coating Poly(methyl methacrylate) (PMMA) onto a substrate, we

ramped up for 3 seconds with 1000 rpms (rounds per minute per second). A constant spin

velocity of 4000 rpm leads to a thickness of roughly 250 nm. Consecutively, the film is

baked for 2 minuntes at 180◦C in ambient environment on a hot plate. For thicker films

the process of spinning and baking is repeated and it is important to not skip the baking

process, since additional PMMA after the second layer will spin-off completely, not adding

to the total thickness. Lift-off process of 400 nm thick metallic contacts onto 600 nm thick

diamond samples required a PMMA lift-off mask thickness of around 2 µm. PMMA can be

removed in an acetone bath within a few minutes but usually it remained in the acetone

bath overnight to ensure proper removal of the polymer mask on the mesoscopic scale.
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Writing of metallic contact leads onto quartz requires an additional layer on top

of the finished PMMA because of charge accumulation during electron beam lithography.

AR-PC 5090 (Electra 92) is used as such an additional conducing layer with the purpose

of removing accumulated charges at the surface. AR-PC 5090 is spin coated with a final

spin-velocity of 6000 rpm resulting in a thin 40 nm thick conductive top layer which can

easily be washed off with distilled water for 40 seconds after electron beam lithography.

2.3.3 Versatility of PMMA

Through most of this work, unless otherwise stated, Poly(methyl methacrylate)

(short PMMA, Microchem 950 A4) is spinned (section 2.3.2) onto any of the above men-

tioned substrates, where it can fulfill different functions.

Figure 2.3: Left: Finished diamond flake without a PMMA capping layer. Right: Diamond
flake delaminated during electronic measurement.

It can be used as a protective mask during the patterning of graphene, as a lift-off

mask for patterning of macroscopic leads and contacting pads to a heterostructure or as a

capping layer, which protects the final diamond-on-graphene heterostructure. It was found

during the course of this study that a final capping layer of PMMA on the heterostructure
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helps to overcome 3 different issues. First, it enhances the contact between diamond and

graphene, due to its adhesion and surface tension exhibited on diamond. Second, measure-

ments were preformed where diamond happened to deattach from the substrate during the

measurement and was completely removed, see figure 2.3. Third, during high temperature

measurements a capping layer of PMMA serves as an encapsulating layer for the diamond

top surface and graphene, protecting it from oxidization and degradation of graphene at

higher temperatures.

2.3.4 Polymer Assisted Transfer of CVD Graphene

Device fabrication requires the transfer of CVD graphene onto any desired sub-

strate. This is accomplished in the following way. A thin layer of Poly(methyl methacry-

late) (PMMA) resin is either spin-coated, see section 2.3.2, with a thickness of 250 nm

or drop-casted onto one side of the graphene-on-copper foil. Then, an inductive coupled

plasma (ICP) etch or reactive ion etch (RIE) in oxygen followed, to remove graphene on

the PMMA-free side. It is not hard to remove a single atomic layer of carbon and hence

a weak etch is sufficient, e.g. in an ICP for a duration of 5 s at a ”ICP power” of 50

W, a ”forward power” of 50 W and an O2 gas flow of 50 sccm. It is recommended to

optically check that the plasma is turned on during the etch process. After the bottom

graphene (PMMA free) is removed, the copper/graphene/PMMA foil is placed into a cop-

per etchant solution (Transene APS copper etchant 100) with the copper side facing the

copper etchant. Depending on the strength of the copper etchant, the etching time may

vary and it is recommended to observe the copper dissolve. Usually, two hours was enough

to dissolve the copper and find a floating graphene/PMMA layer on top of the solution.
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The PMMA serves with two important functions. Firstly, its hydrophobic properties en-

sure that the stack (graphene/PMMA) remains floating on top of the solution. Secondly, it

prevents graphene from scrumbling and enables the stack to be scooped up with a freshly

cleaned bare silicon wafer and transferred in a beaker filled with deionized water. The bare

silicon wafer is rinsed with acetone, isopropanol and deionized water before scooping up

the stack. Once the stack is transferred, the deionized water removes the copper etchant

from the graphene surface. The transfer process of the stack from one beaker to another

beaker can be carried out successfully as long as a thin aqueaous layer remains between

the stack and the bare silicon wafer. The thin aqueous layer prevents the stack to stick to

the silicon wafer. The stack is transferred to two additonal beakers with deionized water to

remove any etchant residues. Finally, the stack can be scooped up with a desired substrate,

in this study either Si/SiO2 or ST-cut quartz. The substrate/graphene/PMMA structure

is deposited onto a hot plate at 60°C for 30 minutes in air to remove the aqueous layer

between the substrate and the stack. Consequently, the temperature is raised to 120°C to

improve adhesion of graphene and the substrate and to relax existing stress in the PMMA

layer. The PMMA layer is washed off in an acetone bath overnight and rinsed off with IPA.

Before transfer of an additional material for heterostructure fabrication, the graphene on

the substrate will be cleaned in a furnace for 4-6 hours in and 2 sccm Argon flow at 300°C.

Unless otherwise stated, graphene will be patterned into a desired shape before

diamond can be transferred onto graphene. This process consists of spin-coating PMMA

on top of graphene, followed by a hot bake. Electron-beam lithography, see section 2.3.8,

is utilized to shape the mask into the desired pattern. ICP etching with the above recipe
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removes exposed graphene. The PMMA layer is washed off in an acetone bath overnight and

rinsed off with IPA. Now diamond sheets can be transferred onto graphene either through

a polymer assisted or a polymer-free process.

2.3.5 Polymer Assisted Transfer of Diamond

Elvacite acrylic resin is spin coated onto a scotch tape on a glass slide stack at 4000

rpm for 1 minute at 1000 rpm/s acceleration.The stack is baked at 110°C for 10 minutes on

a hot plate in air. The diamond sheets are mechanically downsized with tweezers, picked up

with a pipette tip and positioned onto Elvacite acrylic resin/scotch tape/glass slide stack.

The stack and the desired substrate are placed in a transfer microscope with x, y and z

stage movement and two-axis tilt setup for slope compensation, see figure 2.5. Relative

positioning is monitored through an optical setup, while the substrate and the diamond

are brought into contact. The stage is heated up above the glass transition of the Elvacite

acrylic resin to 65°C. The resin sticks to the substrate and the diamond is transferred. The

resin is removed in a water/acetone bath.

2.3.6 Polymer-Free Assisted Transfer of Diamond - Water Droplet Method

Polymer assisted transfer processes reduce the samples quality and its electronic

characteristics due to leftover residue. Thus, it is desirable to have a polymer-free transfer

process. We utilize deionized water as the transfer medium in our polymer-free transfer

process, which is pictured in figure 2.4. A droplet of deionized water (DI H2O) is deposited

on top of CVD graphene on a Si/SiO2 substrate. Then, diamond flakes are mechanically

downsized, picked up with a pipette tip and deposited into the water droplet.
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Figure 2.4: Polymer-free assisted transfer method, exemplified for the case of a diamond-on-
graphene junction. A) Droplet of deionized water on top of the substrate. B) Mechanically
downsized diamond flakes (shown in grey) deposited into the water droplet with a pipette
tip. C) and D) The deionized water evaporates and a heterostructure is formed.

As the water evaporates, the diamond flakes are pushed onto the graphene due to

the polar forces of the water and a diamond-on-graphene heterostructure is formed. The

drawback of this method is the random nature of deposition of diamond flakes. Only by

chance will a diamond flake end up on the CVD graphene. Another drawback could be

residue present in the water, which can contaminate our materials.

2.3.7 Pick-up and Transfer: The Mechanics of Fabricating a Diamond-

on-Graphene Heterostructure

Instead of using the water droplet method with its randomly distributed diamond

deposition on graphene it is more desirable to perform transfer of diamond flakes determin-

istically. Therefore a transfer procedure similiar to the one presented by Pizzocchero et al.

[37] was adapted. Pizzocchero et al. introduced a technique to pick up two-dimensional
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materials from a substrate and deposit it on another position or another substrate. The

pick up and drop down of materials can be executed consecutively to built stacks of hetero-

or homostructures of materials. This opened up the possibility for a wide range of potential

new material classes by stacking different two-dimensional materials. An adjusted pick-up

and transfer approach is used in this study. The main differences lie in the way the pick-up

and transfer is performed and their respective temperatures. The following segment de-

scribes the specifics of fabricating a diamond-on-graphene heterostructure.

The main components for the pick-up and transfer process are an optical microscope, a

sample stage, a heater and a glass slide holder, shown in figure 2.5. The optical microscope

is equipped with a 10x objective for monitoring the pick-up and transfer process. The sam-

ple stage can be moved in x and y direction, tilted around the x and y direction and rotated

in the sample plane. The substrate with the material to be picked up is positioned on the

sample stage. A current dissipates through a resistive element which is placed right below

the sample stage. There can also be found a hollow cavity where a temperature probe is

positioned. The voltage drop at the temperature probe is monitered with a multimeter and

converted into a temperature reading. A glass slide with polymers is placed in the glass slide

holder and can be moved in x, y and z direction. Such a glass slide with polymers will be

used to pick-up flakes from their substrates. A 0.7 x 0.7 cm2 piece of polydimethylsiloxane

(PDMS) is deposited on the glass slide which is followed by spin-coating a thin layer of 20%

polypropylene carbonate (PPC) in anisole solution, prepared by weight. Spin-coating, see

section 2.3.2, is performed at 4000rpm for 45seconds which results in a film thickness of

a few µm. Subsequent baking of the glass slide/PDMS/PPC stamp is crucial for whether
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Figure 2.5: Transfer stage for heterostructure assembly. Optical microscope with 10x ob-
jective, heated stage and glass slide holder for pick up and transfer process. A temperature
probe is connected to a multimeter displaying the temperature of the stage. Micrometer
positioners for the X, Y and Z axes of the glass slide holder are labelled in white. The X
and Y axes of the heated stage are labelled in black.
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the PPC will be able to pick up hBN or not. It was found that prolonged baking time of

2-5 minutes at 180◦C on a hot plate in ambient environment results in the PPC not being

able to pick up a hBN flake. A backing time of 30-40 seconds was found to provide a good

adhesion of the PPC for pick-up. Though, this only worked for roughly every second stamp.

If the PPC was unable to pick-up a flake, then another glass slide/PDMS/PPC stamp was

prepared.

During the course of this work a problem occurred with the diamond-on-graphene

heterostructure fabrication. Quite frequently, in around 50-70 % of samples the diamond

flake tended to deattach from the graphene during the lift-off procedure of metallic contact

deposition. Therefore, it turned out to be helpful to pin down the diamond flake on the

substrate with a hBN flake. Hence, the schematic representation of the pick-up and transfer

procedure starts with a hBN flake deposited on a Si/SiO2 substrate in figure 2.6A. hBN was

obtained by exfoliation and annealed in a furnace under oxygen flow for 2 hours at 300◦C to

remove leftover residue from the surface from the exfoliation process. Prior to exfoliation,

the Si/SiO2 substrate was high-pressure spray-cleaned with acetone, ultrasonicated in an

acetone bath, rinsed of with IPA and placed in a plasma asher for 1 minute at 100 W power

in oxygen flow to remove organic components from its surface.

Next, figure 2.6 is explained in closer detail. At first, the PDMS/PPC stack is

brought into contact with the hBN at room temperature, shown in schematics A. The

screw that levels the z-position of the glass slide holder is fully unscrewed. It was found,

that the full weight of the glass slide holder enhances the pick-up procedure. In schematics

B, the interface is heated up to 50◦C and cooled down to 24◦C again. The observer will
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notice that the hBN/PPC interface changes its color to a more uniform structure as the

temperature passes PPC’s glass transition temperature between 30-40◦C. Passing PPCs

glass transition temperature changes PPCs material properties from solid to a viscous like

fluid structure, which allows the PPCs to improve the contact to the substrate and the

hBN. Upon cooling below its glass transition temperature, PPC becomes solid again and

sticks to hBN, due to the enhanced contact from the viscous phase. Now the glass slide

holder is retracted and hBN is picked up by the PPC, shown in schematics C. It is noted,

that the heating and cooling cycle is not always necessary to pick up a hBN flake.

Next, diamond flakes are deposited on a Si/SiO2 substrate by the water droplet

method, see section 2.3.6. A suitable sized diamond flake is chosen with no cracks and little

to no graphitic contaminations on its surface. The procedure for pick-up of the diamond

flake is repeated analogously as described previously in schematics A-C. Nonetheless, this

procedure is shown again in schematics D-F to display two important insights about the

mechanics of hBN and the adhesion of the diamond/hBN interface. First, in schematic E

one can see that the diamond flake is not completely covered by hBN during the pick-up. It

turns out, even though the flat side of the diamond flake with a surface roughness of 2-4 nm

(compared to 60 nm on the top side) was facing the hBN, it was not possible to pick up the

diamond flake. This can be pinpointed to a low adhesion of the diamond/hBN interface, as

well as the requirement of atomically flat surfaces for a successful pick-up. Exposing part of

the diamond flake to PPC made it possible to pick-up the diamond flake, see middle image

figure 2.7. The diamond flake in the right image of figure 2.7 was around 600 nm and the

hBN only 200 nm thick.
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Figure 2.6: Schematic representation of the pick up and transfer process, in greater detail
described in the main text body.

One can see, that hBN was stretched over the edges of the diamond flake, since

interference patterns due to elastic stretching of the hBN flake are only visible at the edges
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of the diamond flake. Next, the diamond/hBN stack was deposited onto a quartz/graphene

substrate. This procedure is illustrated in schematics G-I in figure 2.6. Quartz/graphene is

heated up to 90◦C under ambient environment. The glass slide/PDMS/PPC/hBN/diamond

stack is lowered onto the graphene substrate such that a bridge is formed between two

graphene sheets, see schematics H. As the glass slide/PDMS is retracted the PPC/hBN/

diamond sticks to the substrate at 90◦C. The newly formed diamond-on-graphene het-

erostructure is left on a hot plate at 110◦C for 30 minutes under ambient environment to

enhance the contact between the graphene-diamond, graphene-hBN and quartz-hBN inter-

face. Once the sample is removed from the hot plate it is allowed to cool down to room

temperature before the PPC is washed off in an acetone bath for a few minutes. Placing

the hot substrate in the acetone bath can result in removal of the diamond and/or hBN.

A B C

Figure 2.7: Pick-up and transfer of diamond with hBN. A and B:
Si/SiO2/Diamond/hBN/PPC stack. A: hBN completely covers a diamond flake and
the pick-up fails. B: hBN partially covers a diamond flake and the pick-up succeeds. C:
Si/SiO2/Graphene/Diamond/hBN stack with Ti/Au contacts. 200 nm thick hBN lays on
top of 50 nm thick Ti/Au contacts and 600 nm thick diamond flake. Interference patterns
of the hBN flake are only visible at the edges of the diamond flake.
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2.3.8 Electron-Beam Lithography

Electron-beam lithography is used to define patterns on a PMMA resist, which can

be either used as an etching mask or a lift-off layer for contact deposition. The electron-

beam system was either a Leo SUPRA 55 or a Leo XB1540, both with capabilities for

microscopic pattern generation through the nano pattern generation system (NPGS) soft-

ware [38] version 9. Desired microscopic patterns were designed with DesignCAD2000.

Proper preparation of the electron-beam distance, dosage testing, and beam adjustment

were important for a successful pattern generation. After electron-beam exposure of the

PMMA film the desired patterns were developed in MIBK:IPA 1:4 solution for 65 seconds

at room temperature and rinsed off with IPA. The sample is ready for further processing,

either etching or contact deposition.

2.3.9 Dry Etching

Inductive coupled plasma (ICP) etching or reactive ion etching (RIE) can be used

to etch graphene into desired shapes, with oxygen as the etching agent and 500 nm thick

PMMA as the etching mask. The PMMA mask can be prepared through electron-beam

lithography as described in the section 2.3.8. For the ICP etching an Oxford Plasmalab

100/180 model was used, with a base pressure of 20 mTorr, 30 W forward power, 300 W

ICP power and 50 sccm oxygen flow for 10 seconds. For the RIE process an STS Multiplex

RIE system was used, with a base pressure of 20 mTorr, 50 W etching power in 50 sccm

oxygen flow for 10 seconds. The general procedure for either machine consists of loading the

sample into a primary loadlock-chamber, consecutive pumping of the loadlock and flushing
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of the main chamber with nitrogen. After the flushing procedure, the sample is moved into

the main chamber for the etching process. The main chamber gets filled with the desired

gas (here oxygen) and the etching recipe is run.

2.3.10 Electron-Beam Evaporation

Metallic contacts are evaporated through electron-beam evaporation in a Temescal

BJD 1800 system. The sample with a pre-patterned PMMA mask is loaded into the evap-

orator and pumped down to a pressure below 10−6 Torr. An high energy electron beam

sweeps over a pocket filled with a desired metal and heats it up evenly. Increasing the

power of the electron beam over a certain threshold value, leads to emission of atoms from

the metal. The metal deposits on our sample at a controlled rate, reaching averaged values

as low as 0.1 nm/s. As a general rule of thumb, the deposited metal should not be larger

than 1/3 of the pre-patterned PMMA mask thickness.

Figure 2.8: Risk of removing diamond flake. Left: Diamond flake before electron beam
lithography, electron beam evaporation, and lift-off. Right: After prolonged lift-off time the
possibility of the flake to deliminate increases.

After metal deposition, a lift-off procedure is performed by depositing the sample

in acetone overnight. Prolonged lift-off procedures carry the risk of removing the diamond
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flake, see figure 2.8. Therefore, a top hBN flake was used to pinpoint the diamond flake for

long lift off times, in order to enhance the contact of the diamond-on-graphene interface.

2.3.11 Device Geometries

This dissertation showed that diamond films can be used for device application as

a barristor or memristor. The structure of the devices are described shortly. The left plot

of figure 2.9 shows an optical image of a diamond-on-graphene heterojunction, which was

used to show that a barristor behavior is possible. The diamond nanosheet is marked by

a white line, the CVD graphene islands by a black line, and evaporated Ti/Au contacts

are shown in a goldish tone. Blue lines also indicate the region where graphene islands

have been cut by etching away a narrow area to avoid crosscurrents. On the right side, one

can see a schematic side-view of the device structure and setup for electronic measurement

setup. A silicon backgate is used to tune the Fermi level of graphene, which allows usage

as a barristor device structure.

Figure 2.9: Left: Optical image of a diamond-on-graphene heterojunction on Si/SiO2. Taken
from [39]. Right: Schematic diagram of a side-view of the device structure.

36



Figure 2.10 shows an optical image of a hBN/diamond/graphene heterostructure.

Hexgonal boron-nitride is used to prevent the diamond flake from deliminating during lift-

off or measurement procedures. During experiments, a high voltage is applied on undoped

diamond films and hence the Si/SiO2 substrate is replaced by quartz, in order to avoid

leakage currents to the backgate. Such a setup is used for memristor studies of our undoped

diamond films.

Figure 2.10: Memristor device. Left: Optical image of a hBN/diamond/graphene het-
erostructure. Right: Schematic diagram of a side-view.
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Chapter 3

Material Characterization and

Measurement Techniques

3.1 Raman Spectroscopy

Light incident upon a medium (solid, liquid, gas) can be scattered elastically or

inelastically. Elastic scattering of light or electromagnetic waves is referred to as Rayleigh

scattering, which has the same incoming and outgoing wavelength. In contrast, inelastic

scattering results in energy exchange of the incoming light with a medium and thus the

outgoing energy and wavelength differs from the incoming one. This effect was first observed

by Chandrasekhara Venkata Raman in 1928 [40], who was shortly after awarded with the

Nobel prize in 1930 [41]. Successively, inelastic scattering of light was termed Raman

scattering.

In general, Raman spectroscopy allows to access the vibrational modes of atomic bonds
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through the intimate relation of light-electron interactions coupled to vibrations of the

lattice. Over time, it emerged as a very successfully tool for characterizing the structural

properties of matter. A review can be found in [42].

This work utilized Raman spectroscopy to obtain information about the material quality

of graphene and polycrystalline diamond. For this purpose, a Horiba LabRAM HR system

with a 532 nm was used. Optical filters can be chosen to reduce the power incident on

the sample to prevent destruction of sensitive samples. Even though graphene has an

exceptionally high thermal conductivity, applying a high power onto graphene resulted

in burning the material away from the substrate. Applying a high enough power on a

homebuild Raman tabletop laser setup, succeeded to even cut heavily doped diamond thin

films. Lowly doped diamond films remained intact, due to their high transparency.

3.1.1 Raman Spectroscopy of Graphene

Raman spectroscopy allows to determine the number of layers [43], their orienta-

tion, the type and quality of edges, doping, strain, disorder and a plethora of other properties

and effects around graphene. Ferrari and Basko summarize the information that can be ob-

tained on graphene from Raman spectroscopy in their review article [44]. Ferrari et al [43]

were the first to provide Raman spectra of graphene in 2006, shortly after the intial discov-

ery of graphene by Novoselov and Geim. Figure 3.1 shows the Raman spectra of graphene,

multilayers of graphene and graphite. Two signals are characteristic of carbonic sp2 bonds,

namely the G-band around 1580 cm−1 and the 2D band around 2700 cm−1, shown in figure

3.1a. The precise peak position evolves with the number of layers and has different values

for different excitation wavelengths of incoming light, e.g. green light of 514 nm in figure
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3.1b and red light of 633 nm in figure 3.1c. Strain-free and atomically clean graphene has

a G-peak at 1584 cm−1 and the 2D-peak around 2675 cm−1. Now, graphene’s fingerprint

in a Raman spectrum shows in at least two ways. Once, the form of 2D peak is highly

symmetrical compared to two or more layers of graphene. Secondly, one can compare the

intensity of the 2D peak I2D to the intensity of the G peak IG. The ratio of I2D/IG ∼ 2

for monolayer graphene, I2D/IG ∼ 1 for bilayer and I2D/IG < 1 for more then two layers

of graphene. Thus, graphene can be identified unambiguously by one or the other criteria.

Figure 3.1: Stokes Raman spectra for graphene and multiple layers of graphene. Scaled to
show similar height of the 2D peak around 2700 cm−1 [43].

3.1.2 Raman Spectroscopy of Diamond

Individual diamond grains in single- and polycrystalline diamond

Diamond grains exhibit a characteristic and symmetric Raman peak at 1332.5

cm−1 wavenumbers [45]. The Raman line width, full width at half maximum, is a measure

of structural disorder and depends on the diamond growth method. Figure 3.2 shows

the evolution of the linewidth for different growth conditions. GE Diamond was prepared

synthetically under high pressure, natural diamond is a gem quality stone, carbonado is a
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black polycrystalline diamond with interlocked crystallites and the rest of the samples are

CVD diamond films grown under different conditions [45].

Figure 3.2: Stokes Raman spectra of individual diamond grains of single-crystal diamond
and diamond films with a 514.5 nm excitation laser [45].

A linewidth smaller than 2 cm−1 indicates a very small amount of structural

disorder in natural and high pressure grown samples. On the other hand, CVD samples

with the growth of methane as a precursor show a considerable amount of broadening and

structural disorder with linewidths between 5-7 cm−1 within an individual diamond grain.

The grain size of the diamond films in figure 3.2 is between 10-20 µm, with the focus

of the Raman spectrometer ≈ 1-2 µm. Thus, the structural disorder can be understood

in terms of disorder generated inside the grain during CVD growth and not the grain

boundaries. A shift of the peaks position towards lower or higher wavenumbers has been

41



interpreted previously as internal tension or compression of the diamond film with respect

to the substrate [45]. A calibration curve was determined in [46] from measurements in an

anvil cell. Furthermore, the position and the shape of the 1333 cm−1 line depend on the

polarization of the incoming light [47]. Thus, care is required when making conclusions of

the quality of the crystal and its internal stress state.

Undoped polycrystalline diamond films

Revealing the detailed nature and composition of a polycrystalline diamond films

becomes considerably harder. Polycrystalline diamond consists of individual single crystal

grains (section 1.3.1) interconnected through grain boundaries (section 1.3.2). Different

phases of sp2 and sp3 carbon can be observed either within a grain or at the grain boundaries.

Single crystal sp3 diamond can be accompanied by graphitic carbon, disordered sp2 bonds

like amorphous carbon or diamond-like carbon, each with their own characteristic signature

in a Raman measurement. They can be found within the 1000-2000 cm−1 band of the Raman

spectrum excited by a laser source of visible light. Signals between 2500-3000 cm−1 give

insights about natural, polycrystalline or highly oriented graphite as well as glassy carbon

structures in the samples [45]. Raman spectra of the top surface of the polycrystalline

diamond foils on a Si/SiO2 substrate with different doping and surface termination are

shown in figure 3.3. Only the undoped diamond foil is on a quartz substrate. As grown

samples refer to a hydrogen terminated surface, which prevails after removing the foil from

the CVD growth chamber. Oxygen plasma treatment changes the surface termination to

an oxygen termination. The Raman spectra showed different peaks and bands at 521, 1175,

1332, 1450 and 1500-1525 cm−1. The 521 cm−1 silicon Raman line is used to calibrate the
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diamond Raman spectra with respect to each other. A clear sp3 diamond peak is visible at

1332.5 cm−1 with a width of 10 cm−1 and 12 cm−1 [45], for 266 ppm boron doped hydrogen

terminated and 10k ppm oxygen terminated diamond, respectively. The relatively large

linewidths might result from inclusion of grain boundaries in the laser spot (diameter 1-2

µm) during measurement. The grain size ranges anywhere from 10-20 nm (bottom side

of the film) to 50-500 nm (top side of the film). Thus, deviations from a perfect single

crystal signal are expected and result in an enhanced linewidth of the sp3 diamond peak.

Raman peaks at 1175 and 1450 cm−1 usually appear hand in hand and have previously

been attributed to trans-polyacetylene, a polmeric one-dimensional carbon chain at the

grain boundaries [48, 49]. Amophous carbon, more specifically diamond-like carbon in the

form of hydrogenated amorphous carbon (a:C-H, see section ??), is the origin of the 1525

cm−1 peak [50] for an excitation wavelength of 532 nm. Raman signals of amorphous carbon

appear in a range of around 1460 cm−1 to 1560 cm−1.

Figure 3.3: Raman spectra of different polycrystalline diamond foils. ∆ indicates the full
width half maximum of the diamond peak.
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The ratio of the amorphous carbon peak to the 1332 cm−1 sp3 line is a measure

of the diamond film quality. Measurements of even smaller amounts of sp2 carbon bonds

are possible, because the scattering efficiency of sp2 carbon is around 56 times larger than

for sp3 carbon, for an laser wavelength of 514.5 nm [51]. For a short review see [52].

Boron doping of polycrystalline diamond films

Regular Raman spectroscopy for boron doped diamond in the visible light, does

not yield a signal of the B-C vibrational modes. Nonetheless, a qualitative comparison of

Raman spectra can be made. The gas mixture of the dopant during the CVD process is

not a linear function of the actual doping in the grown material and it depends on different

factors. The most important is the growth direction. For example, one order of magnitude

more boron is incorporated in grown {111} facets of single crystals then for {100} single

crystal facets of 4-10 µm size on a Si(100) substrate, as discussed by Ushizawa [53] within

secondary ion mass spectroscopy data. Furthermore, the boron doping level has a strong

effect on the growth direction of the crystal. While for 200ppm boron to carbon (B/C) the

{111} and {100} facets appeared with almost equal numbers, for 5500ppm B/C the number

of {111} facets increased steadily to a degree where {111} facets were found to dominate

in numbers. In the same paper, Raman spectra of 514.5 nm laser excitation have been

provided for facets of single crystal diamond and doping levels from 0 to 10k ppm of B/C.

Figure 3.4 shows their measurements for very low doping from 0 to 40 ppm B/C.
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Figure 3.4: Raman spectra of lowly doped diamond grains. From [53].

Doping above 40 ppm B/C is shown in figure 3.5, for {100} and {111} facets on the

left and right plot, respectively. Ushizawas measurements provide a qualitative guideline

for determining the doping level of boron doped diamond for relatively high concentrations.

Their results can be extrapolated for polycrystalline diamond films to get only a very

rough estimate of the doping level since stress, orientation a crystal facets can strongly vary

within such a film. Infrared spectroscopy or secondary ion mass spectroscopy measurements

provide a more reliable route to determine the boron concentration after film growth.

Figure 3.5: Raman spectra of doped diamond grains over a wide doping range [53].
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3.2 Electronic measurements

3.2.1 High Temperatures

High temperature measurements were performed in a Lindberg/BlueM TF55035A

furnace within a quartz tube under nitrogen flow, as shown schematically in the left picture

of figure 3.6. The device under investigation (DUT) is placed in the middle of the open-

ended quartz tube, which is wrapped with aluminium foil connected to ground. Aluminium

shields the DUT from an electronic feedback loop from within the furnace, controlling the

temperature and coupling into the current voltage measurements.

Figure 3.6: Left: High temperature measurement setup. Right: Sample positioned in
sample holder and connected with wire bonds.

The DUT is mounted on a side braze sample holder (Spectrum Semiconductor

Materials SSM P/N CSB01652), and is connected to low resistive 27% nickel clad copper

wires (Kulgrid 28 Ceramawire) with an outer insulating ceramic high temperature resistant

coating. Connector pins are added to one end of the high temperature wire, in order to

manually connect the wire and the sample holder. The connector pin and the high tem-

perature wire are are epoxied with a two component high temperature silver conductive
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T(°C) 22 100 150 200 250 300 350 400 450 500

R (MΩ) @ 1V 6000 5000 4500 4000 1000 333 100 19 8 3

Table 3.1: Temperature versus resistance between two adjacent pins of a sample holder
caluclated from leakage currents between 22°C and 500°C, which increase around 300°C.

epoxy (Ted Pella H20E Epo-Tek), in order to ensure good electrical conduction at high

temperatures. The measurement setup with the sample holder was tested for possible leak-

age currents, occurring at elevated temperatures in a open circuit configuration between

two adjacent pins of the sample holder, see table 3.1. The measurement procedure versus

time for heating up and cooling down is illustrated in figure 3.7 in a temperature range of

22◦C up to 300◦C. During the heating procedure the sample is hold at constant temperature

for a certain amount of time to allow for measurements of megasweeps, e.g. holding the

backgate voltage constant while sweeping the source drain voltage. Likewise, while the tem-

perature is ramped up to the next temperature plateau, the current-voltage characteristics

are recorded at constant backgate voltage. The heating is set to a constant rate. During

cool down a similar measurement procedure can be performed, or alternatively, the furnace

can be opened which allows the sample to reach lower temperatures faster, see right panel

in figure 3.7. A single function cannot fit the cooling temperature well. Thus, piecewise

fitting of the data points allows to properly extract the temperature.

47



Figure 3.7: Left: Heating procedure with periods of constant temperature and constant
ramp up. Right: Decay of the cool down after the furnace is opened. Piecewise fitting is
required to properly describe the data, since a single fit does not provide a good result.
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Chapter 4

Hopping Conduction

4.1 Impurity Conduction

Doped semiconductors can exhibit thermally activated conduction through impu-

rities which is referred to as impurity conduction. It was first observed by Labhardt and

Busch on silicon carbide in 1945 [54]. During the process of impurity conduction in semicon-

ductors a charge carrier will tunnel or hop from a filled impurity site to an empty impurity

site, due to a small but finite overlap of a localized wavefunction with the empty site. Dur-

ing that process the charge carrier is not entering or activated into the conduction band

[55]. The energy levels of the impurities lie below/above the conduction/valence band for

n-type/p-type conduction, respectively. At elevated temperatures electrons/holes of high

mobility in the conduction/valence band have the largest contribution to the conductivity

while at low enough temperatures impurity conduction dominates, e.g. when the thermal

energy is not enough to excite the electron/hole into the conduction/valence band. Then

impurity conduction will show thermally activated behavior to its closest neighbours, re-
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ferred to as nearest neighbour hopping (NNH), given that the neighbouring site is free. In

general the conductivity of lightly doped semiconductors takes the form

σ(T,N) = σ1 exp(−ε1/kBT ) + σ2 exp(−ε2/kBT ) + σ3 exp(−ε3/kBT ) (4.1)

where ε1(N,K), ε2(N,K), ε3(N,K) are all functions of the number of impurities N and

the compensation K, and represent the activation energies to the conduction band, to the

upper Hubbard band and hopping between impurities, respectively. The Hubbard band is

a result of considering interaction between particles in a lattice. The activation energies

follow the relation ε1 > ε2 > ε3 according to their positions in a band diagram. Fritzsche

and coworkers identified the three different activation regimes for the first time in p- and

n-doped germanium in successive experiments in 1955 [56] and 1958 [57].

Compensation K plays a critical role in which of the activation energies will dominate at

fixed temperatures. Impurity conduction will play a role for lightly doped and compensated

samples and nearest neighbours hopping (NNH) between impurities will occur. Impurity

band conduction is very sensitive to the concentration of the impurities, e.g. for germanium

a change of 30 for the impurity concentration results in a change of 107 for the conductivity.

Heavy doping of the semiconductor can result in metallic behavior, when the impurity

concentration is bigger than a critical density such that n > nC .

4.2 Anderson Localization and the Mobility Edge

In 1977, Anderson, Mott and van Vleck received the Nobel Prize in Physics ”for

their fundamental theoretical investigations of the electronic structure of magnetic and

disordered systems” [58]. In particular, Anderson investigated the question of diffusion
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of electrons in random lattices in 1957 [59] for electronic transport problems that involve

quantum mechanical movement of entities, such as electrons or holes or spins, from one

state |i⟩ to another state |j⟩. Furthermore, randomness was a crucial element involved in

this process, such as a random distribution of the lattice sites, a random energy distribution

P (E)dE of the energy states at different sites or a random distribution of the matrix transfer

element Vij from initial to final state. Anderson specified that the lattice site distribution

or the matrix transfer element can possibly be regular but that the energy distribution of

the states requires randomness. He found that localization of the entity that occupies a

state is possible and that transfer from one to the other site can occur, provided overlap

of the wavefunctions exists. A second conclusion was that no transport at all is possible.

A true stationary state of the entity at hand, in a sense that the probability amplitude of

a particle at a specific site does not diffuse away over time. Nowadays, the localization of

any entity in such a transport problem is referred to as Anderson localization and its

required randomness is called a disordered system. In general, localization is a wave

phenomena and can occur for electromagnetic waves [60], sound waves [61], elastic waves

[62], Bose Einstein condensates [63], et cetera.

The counterpart to a localized entity in a disordered medium is a delocalized

entity in a ordered medium. Around 1928, Felix Bloch [64] considered the movement of the

electron in a perfectly periodic potential V (r⃗ + R⃗) = V (r⃗) for all R⃗ in a Bravais lattice by

solving the Schrödinger equation

H |ψ⟩ =
(
− h2

2m
∇2 + V (r⃗

)
|ψ⟩ = ε |ψ⟩ (4.2)

for eigenstates |ψ⟩ in the form of a planar wave exp(ik⃗r⃗) times a periodic function u(r⃗) with
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the exact same periodicity as the Bravais lattice

|ψ⟩ = exp(ik⃗r⃗)u(r⃗). (4.3)

Such an eigenstate of the electron for the above Hamiltonian corresponds to a delocalized

electron free to move around the lattice and is called a Bloch wave. Including the thermal

motion of the periodic lattice at non-zero T gives raise to a finite free wavelength restricting

the movement of electrons. Hence, with increasing temperature the resistivty of a metal

increases.

In contrast, a localized wave function in the sense of an Anderson localization has

an exponentially decaying envelope

|ψ⟩ = exp(−α(r − r0)) |ψ0⟩ (4.4)

where α is the exponential decay length, 1/α the localization length, and |ψ0⟩ the wave-

function below the envelope depending on the specific system under consideration. In the

limit of 1/α→ ∞ the case of an extended state is recovered.

Figure 4.1: Left: Strongly localized state at a single impurity. Right: Localized state in
close proximity to the metal-insulator transition. Reprinted from [65]
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Figure 4.2: Left: Delocalized charge carrier after the metal-insulator transition. Right:
Delocalized state extending over a wide range. Reprinted from [65]

Now one may inquire about the nature of a system, when it changes from a de-

localized to a localized one. Anderson showed that such a transition is possible in general

and Mott persisted strongly enough to introduce the concept of a sharply defined mobility

edge. The terminology of a mobility edge was chosen such that when the Fermi energy EF

lies above the mobility edge charge, carriers can move with characteristics similar to delo-

calized states, also called extended states. When the Fermi energy lies below the mobility

edge, then transport of charge carriers is dominated by effects of localized nature, such as

variable range hopping. Schematically, this is shown in figure 4.3

Figure 4.3: Density of states versus energy E. Below/above the mobility edge EC conduction
is through localized/delocalized states.

For the case of a polycrystalline wide bandgap semiconductor like diamond, it is

possible to transition between localized states (EF < EC) and delocalized states (EF > EC)

by increasing the amount of disorder through doping. Then, the insulator undergoes a
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transition to a metal, widely referred to as an Anderson transition. Delocalized states

in heavily doped insulators and delocalized states in ordered metals in the form of Bloch

waves originate from two different physical systems. Delocalization in ordered metals is

the result of perfect translational symmetry of the lattice, while Anderson localization is

the result of randomness of the energy distribution of occupied states. Delocalization in

the sense of a mobility edge occurs upon increasing the amount of doping in a disordered

medium. The random distribution of energy states under light doping is discrete, upon

increasing the doping, the discrete distribution transforms into a band of continuous states,

the impurity band (section 4.1). Interesting phenomena have been investigated at the

Anderson transition, like multifractality of critical wave functions or criticality in the power

law, which are just named here and summarized elsewhere. For a review see [66].

4.3 Variable Range-Hopping

4.3.1 Temperature Dependence of Variable Range Hopping

Variable-range hopping (VRH) is an electrical conduction mechanism describing

charge transfer through localized states arranged in a non-periodic manner [67]. It was first

observed in 1967 on studies of amorphous germanium by Clark [68], Walley&Jonscher [69],

and by Walley [70] on germanium/silicon as a characteristic non-linear plot of log(R) vs 1/T .

A constant activation energy EA could not be inferred from their plots as the log resistance

changed non-linearly with the inverse temperature. Such a behaviour is characteristic of

variable range hopping conduction. Mott was the first to derive a temperature dependent
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conductivity σ at low electrical bias (linear regime) for this process [67, 71]

ln(σ) = A−B/T 1/4 (4.5)

where A and B were initially unspecified. It turns out that A exhibits a temperature de-

pendece of the form lnσ0(T ), which is usually masked by the inverse T 1/4 factor and of

weaker dependence on the overall conductivity. This was the starting point of a more rigor-

ous endeavor into VRH transport of localized states with a wide literature body nowadays.

An attempt is made in this chapter to give an overview of the most important works and

phenomena of this and related mechanisms. Mott’s VRH equation (4.5) applies to a specific

case of hopping at constant density of states around the Fermi level in three dimensions.

Hopping at constant density of states around the Fermi level can also occur in quasi one

dimensional nanowires or disordered two dimensional sheets of atoms and hence a more

general form of the temperature dependence of VRH [72] is given by

σ(T ) = σ0 exp−
(
T0
T

) 1
1+n

(4.6)

where n =1, 2, 3 represents the number of dimensions.

Pollak [73] considered percolation theoretical treatment of VRH in three dimensions for the

case of a non-constant density of states N(E) of the form N(E) = A | E − EF |m and

deduced

σ(T,m) = σ0(T,m) exp−
(
T0
T

)m+1
m+4

. (4.7)

Factors σ0(T,m) and T0 were provided for the case of Mott VRH hopping (m = 0) and

thermally activated conduction through an impurity band (m −→ ∞) in which case the

density of states shows a strong and sudden increase somewhere away from the Fermi level.
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In detail,

σ(T,m = 0) = (78Ca)−1(kBTa
3v)−1/4 exp [−1.82(vkBTa

3)−
1
4 ]. (4.8)

where T0 in the exponent is a function of v the denisty of localized states, a the inverse decay

length of an assumed hydrogen like localized state and kB the Boltzmann constant. The

exponential prefactor σ0 depends inversely on the fourth square root of the temperature and

includes a constant C from the derivation of the percolation problem. In the limit m→ ∞

equation (4.7) describes the process of thermally activated impurity band conduction

lim
m→∞

σ(T,m) = (160CrsNsa
3kBT/⟨∆⟩m)−1 exp (2.4rs/a) exp (e

2/κrskBT ) (4.9)

where ⟨∆⟩m, rS , Ns, κ can be found in [73]. For cases other then m = 0 or m → ∞,

the factors T0 and σ0 need to be calculated according to the procedure applied in Pollak’s

approach [73]. The crossover between VRH and impurity band conduction is discussed in

section 4.3.3.

Motivated by Pollak’s calculations, Hamilton [72] confirmed the exponential tem-

perature dependence of VRH in three dimensions and provided a temperature dependence

in two dimensions. His derivation was based off Mott’s original approach instead of a per-

colation treatment of the problem. Apsley and Hughes [74] introduced a simple method

following Mott’s original approach, though without the simplifying relation between hop-

ping energy and hopping distance. They extended their work in [75] to a more general

approach including a non-constant energy-dependent density of states, a Fermi-Dirac dis-

tribution of states above and below the Fermi energy and the effect of an applied electric

field. In comparison to Pollak’s work, Apsley and Hughes calculated a mobility which is

integrated to obtain a conductivity while Pollak calculated a critical conductance from a
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network of resistances. Surprisingly, as will be seen at the end of this section, both ap-

proaches yield very similar results in the case of temperature driven VRH for a constant

density of states. Apsley and Hughes held their approach and expressions general to the

point where progress in their calculation could only be achieved by simplifying assumptions

to obtain analytical closed form solutions. This was only possible for the easiest case of a

constant density of states while any other forms of density of states requires numerical inte-

gration of their expressions. Their calculation resulted in a solution for the temperature T

and electric field F dependence of the conductivity σ(T, F ) for the case of three dimensions.

A unitless parameter β = eFa/2kBT was introduced to distinguish between three scenarios

from where the charge carrier obtains its energy for VRH to occur: For small β the energy

mainly comes from the scalar temperature reservoir, while for large β the energy mainly

comes from the electric field potential. In the intermediate region, for β ∼ 0.5, the energy

contributions from the electric and the thermal energy mix on similar energy scales. For

small β, the Ohmic regime reads

σ(β, T ) ∼
Ne2vph
2α2

(
24α3

NπkBT

)1/4

exp

[
−
(

24α3

NπkB

)1/4 1

T 1/4

(
1− β2

4

)]
(4.10)

with N the density of states, α the decay length of an assumed hydrogen like localized state,

e the electron charge and vph the hopping frequency. Hence in the limit of β → 0 equation’s

4.8 functional dependence is recovered and only the numerical factor in T0 differs slightly

(24/π)1/4 = 1.66 ̸= 1.82, by less then 10%. The case of large β will be covered next.
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4.3.2 Electric Field Dependence on Variable Range Hopping

When the charge carrier obtains most of its energy for a variable range hop from

the electric field, then the unitless parameter β = eFa/2kBT >> 1. Then, the conductivity

can be written as

σ(F, T ) ∼
Ne2vph
4α2

(
64α4

NπeF

)1/4

exp

[
−
(
64α4

Nπe

)1/4 1

F 1/4

]
(4.11)

with the parameters as described in section 4.3.1. Again, the exponential term exp(−1/F 1/4)

has a stronger influence on the overall conductivity and will mask the 1/F 1/4 component in

the prefactor and hence the famous σ(F ) ∼ exp(−1/F 1/4) is obtained. Pollak has obtained

the same functional dependence in the voltage regime through a percolation treatment [76].

4.3.3 Crossover between Impurity Band and VRH conduction

Usually, experimental results for conductivity at low electrical bias (linear regime)

show a crossover between Mott’s VRH at low temperatures and thermally activated impurity

band conduction at higher temperatures. Pollak [73] obtained the crossover temperature

Tc as

Tc = 0.28(E0/kB)a

(
4

3
πNE0

) 1
3

(4.12)

where E0 is the activation energy in the impurity band regime, a the localization radius,

and N the constant density of states. E0 can be extracted from a plot of ln(σ) versus

1/T , as pictured schematically in figure 4.4, where the slope of the straight line in the 1/T

region equates to E0/kB. Care needs to be taken to make sure the activation energy is

extracted from a section that is a straight line over a sufficiently large temperature window.

Otherwise, one might interpret the data to be thermally activated, while in fact the data
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exhibits a different functional form than 1/T . A good method to make sure the Arrhenius

plot actually follows 1/T is discussed around figure 4.6.

Figure 4.4: Schematics of a crossover between impurity band conduction and VRH at the
crossover temperature Tc.

4.4 Conductivity Measurements of Low and High Doping

We fabricated and measured boron-doped diamond polycrystalline films of low

(266 ppm) and high (10 kppm) doping. In figure 4.5, the logarithm of the low bias con-

ductance G versus 1/T is displayed. A schematical side-view and exemplary optical image

can be found in figure 2.9. The plot shows a graphene sample, two diamond samples, and

two diamond-on-graphene heterojunction devices. The low bias resistance of the diamond-

on-graphene heterojunction (10k ppm) varied from 22.05 kΩ at room temperature to �4

MΩ from 20K to 4.2K, where it saturated. It was ≈ 3 orders of magnitude larger than

the bare diamond top surface, which measured 90 Ω and 1300 Ω at room temperature

and 4.2K, respectively, after subtracting the wiring of the electronic setup. Lowly doped

samples follow a similar pattern, where the top surface shows an enhanced conductance.

Though, the overall conductance of lowly doped samples is considerably lower and exhibits

a larger change of its overall conductance by ≈ 12 orders of magnitudes going from room

temperature down to low temperatures. The surface conductivity of diamond is known to
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exhibit an enhanced conductivity of the surface due to a hydrogen termination of the dia-

mond top atoms, which is the regular termination of dangling diamond bonds after PECVD

growth. More precisely, a top layer of adsorbates in combination with a hydrogen termi-

nated diamond surface creates a conductive hole layer [77], which in return enhances the

conductivity. Without adsorbates from the air, no enhancement of the surface conductivity

is observed.

Figure 4.5: Arrhenius plot of lowly and highly doped diamond samples, probing either the
top surface or the bulk electronic properties. A top axis is included for better readability.

Furthermore, the figure shows fitted slopes for 300K to 200K, from which one

can extract activation energies EA. Graphene’s activation energy is zero as expected from

a semi-metal. EA for 10kppm doped surface/bulk sample yields 12.5meV and 17.3meV,

and for the lowly doped sample 62.3meV and 76.0meV, respectively. From consideration of

the slopes, it is evident, that the low temperature activation energies differ from the high

temperature ones, implying that our data does not follow a simple Arrhenius relation of the

form 1/T at low temperatures. A common conclusion drawn in literature is to claim a non-
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linear Arrhenius plot as a fingerprint for VRH transport. Specifically, electronic transport

of doped diamond is commonly explained in terms of VRH down to cryogenic temperatures

[78]. Usually a plot of ln(σ) vs 1/T 1/4 with a straight slope is interpreted as VRH in

3D without Coulomb interactions, according to relation (4.5). Such an interpretation can

turn out to be merely fortuitous. It is more appropriate to perform a data analysis that

determines the exponent of the temperature more precisely.

Figure 4.6: Analysis of exponent.

Zabrodskii [79] performed such an analysis by defining a dimensionless activation

energy w(T ) = ∂ lnG(T )/∂ lnT = m + x(T0/T )
x, where x is the exponent in G(T ) =

G0 exp[−(T0/T )
x] and m is a factor that includes the temperature dependence of the pref-

actor G0. If G0 is only weakly dependent on T , as is commonly assumed throughout the

analysis of VRH, then a plot of ln(w) versus ln(T ) will yield x as the negative slope. Fig-

ure 4.6 shows the analysis of the exponent x for the lowly doped diamond surface, since

only this curve had enough data points for numerical derivatives to yield reliable results.

Two regions are visible. From 20K to 230K the factor of x takes the value 0.63, which

is above the value of 0.5 for VRH in 3D with Coulomb interactions. Furthermore, above
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230K the temperature dependence in the exponent flips such that G(T ) ∝ exp[-(T/T0)
1.23].

Surprisingly, simple impurity conduction where G(T ) ∝ exp[-(T0/T)
1] is not observed.
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Chapter 5

Dissipative Quantum Tunneling

Deep doping of wide bandgap semiconductors provides a unique platform to ex-

plore quantum mechanical effects within condensed matter physics. One such platform is

boron-doped polycrystalline diamond. As we have seen previously (sections ??), diamond

can be doped with different atoms. Most reliably with boron. It can be introduced deep

into the bandgap, 370 meV above the valence band where it acts as an acceptor. Holes be-

come the majority charge carrier in such a system. Below a boron doping concentration of

≈ 2 ·1020 cm−3 diamond remains on the insulator side of the insulator-metal transition and

holes are not free to move like in a metal. They are strongly localized within a quantum well,

in the sense of an Anderson localization. Quantum mechanical effects, like the tunneling

effect coupled to the environment, play an important role in determining charge transport

in such systems. This chapter discusses those effects and is set up in a non-traditional way

such that mathematical relations to understand measurements are presented first and held

to a minimum. This is followed by our experimental measurements. Thereafter, a more
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detailed summary of dissipative quantum tunneling theory and its underlying assumptions

is presented. Agreements and discrepancies of theory and experiments are pointed out,

followed by a discussion of possible mechanisms that could lead to such deviations.

5.1 Closed and Open Quantum Systems

A quantum mechanical system can be considered as either open or closed. The

most prominent example of a closed quantum system is a two-level system like a spin-1/2

particle, e.g. an electron or a hole. Such a two-state quantum system can be described

by the superposition of its two energy eigenstates. Unless the system is initially prepared

in an energy eigenstate or it is degenerate, it will exhibit Rabi oscillations. The system

is considered to be a closed quantum system, because the environment is not taken into

consideration. In general, any physical system will be embedded in an environment, like a

solid, a liquid, a gas, a plasma or vacuum/space itself. Depending on the physical system

and the type of environment at hand, the coupling between each other can be strong, weak

or non-interacting. The coupling will depend on the specific parameters used such as energy,

time, doping, elastic constants etc., where the coupling can be either on or off, or can have

an in between value. If the coupling is turned on, energy can be exchanged between system

and environment, e.g. when energy dissipates away from the system into the environment,

or vice versa is introduced into the system by the environment, see figure 5.1.
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Figure 5.1: Closed and open quantum system. A closed quantum system is solely described
by its Hamiltonian HSys. An open quantum system incorporates the environment and a
coupling term such that the total Hamiltonian HT = HSys +HEnv +HSys−Env.

5.2 The Double Quantum Well Model

Dissipative quantum tunneling is the process of quantum mechanical tunneling of

a particle through a potential barrier, where energy dissipates away into the environment or

can be introduced by the environment into the system. An extensive discussion of dissipation

on quantum tunneling was presented by Caldeira and Leggett in 1983 in their innovative

paper on “Quantum Tunneling in Dissipative Systems” [80] for macroscopic tunneling of, for

example, trapped flux in a SQUID. In particular, they developed techniques and presented

results for quantum tunneling of a system in a localized metastable state into a continuum

of states. One of their main results is, that dissipation suppresses quantum tunneling [80].

Successive papers by Grabert&Weiss [81] and Dorsey&Fisher [82] performed calculations

applicable to microscopic dissipative tunneling from a localized state into another localized

state at finite temperatures. Figure 5.2 illustrates a biased double quantum well with

localized states. The underlying assumptions for both quantum wells are V0 >> E0 >>|

eV | and E0 >> kBT . The ground state energy E0 of the localized particle is considerably
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larger than the energy provided by the electric field. It is also considerably lower than the

potential barrier height, such that thermally activated conduction over the barrier top can

safely be neglected.

Figure 5.2: A biased double quantum well with localized states. The potential well takes
the form V (x) = c0V0(x

2 − x20)
2 − c1eV (x − x0) with the applied external voltage V and

c0 = 1/x40. Small oscillation frequencies in the left and right double well are indicated as
ωL0 and ωR0 with respective ground state energy eigenvalues. The height V0 of the potential
well is reduced due to an applied external voltage V > 0.

Excitation of the ground state into its first excited state can be neglected as well.

The frequency of small oscillations ωL0/R0 = (V
′′

L0/R0/M)1/2 is related to the mass M of

the particle and the curvature V ′′

L0/R0 of the left and right well, respectively. In a realistic

experimental setup ωL0 and ωR0 can be close to each other or potentially deviate from each

other, but for the purpose of this model they are assumed to be the same, ω0 = ωL0 = ωR0.

The distance between the two minima is 2x0 and will be extracted experimentally in section

5.4.

Let’s assume that the charge carrier is positioned in the left well at t = 0 s with
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V > 0. Now, one may ask, what is the probability of finding the charge carrier in the right

or left well after time t? Experimentally, this can be determined by preparing an array

of quantum wells with the same initial conditions, performing an observation at t ̸= 0 s

and counting how many times the charge carrier was in the left or right well. Physically

possible, experimentally unfeasible in a condensed matter experiment with doped solids.

In theory, Grabert&Weiss [81] and Dorsey&Fisher [82] calculated the probability PL(t) to

find the charge carrier in the left well, explicitly including dissipation of energy into the

environment. PL(t) reads

PL(t) =
1

2
− 1

2
tanh

(
eV

2kbT

)
+

1

2

[
1 + tanh

(
eV

2kbT

)]
e−Γt (5.1)

where Γ = Γ++Γ− is the total relaxation rate for forward and backward tunneling rates, Γ+

and Γ−, respectively. Expressions for the tunneling rates are provided in the next section

5.3. Let’s consider the starting condition t = 0 s for which we obtain PL(t = 0s) = 1.

The charge carrier is found in the left well, as expected. For t → ∞ the exponential term

in (5.1) vanishes, and one needs to consider the two limiting cases of the ratio of electric

field energy over thermal energy. For t → ∞ and eV >> kBT the probability PL → 0

and the particle spontaneously decays/tunnels into the right well. The particle is localized

in the right well. On the other hand, if t → ∞ and eV << kBT , then PL → 0.5. The

particle can be found in either well with equal probability, since probability conservation

for a two-well system gives PL(t) = 1 − PR(t). If it is not in the left well it must be in

the right well. Now, from a classical point of view, this does not necessarily mean that

the particle delocalizes in space. It does also not mean that the particle is in both wells at

the same time. It merely means that after time t has progressed, we don’t have knowledge
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of the particles position. We don’t know where to find the particle, since we havn’t been

observing the system. We don’t know until we look for it. From a quantum mechanical

point of view, the particles wavefunction can be found in the left and right well and upon

measurement and collapse of the wavefunction, the particle localizes either in the right or

left well. Somehow this point of view is in contradiction with Anderson’s idea of absence

of diffusion in disordered media. The underlying concept there is that the wavefunction

does not diffuse away and does not spread over the lattice but is localized within a certain

volume. Most probably the equilibrium extension of the wavefunction of the localized charge

carrier is spread over a few quantum wells. Then, initially placing the charge carrier in just

a single quantum well will naturally lead for the wavefunction to delocalize over time in a

certain volume on a microscopic scale until it reaches its spacial equilibrium extension of

an Anderson localized particle. Going back to the discussion of the double quantum well,

zero probability is assigned to find the particle within the potential barrier, even though it

takes a finite time for particles to tunnel through a barrier. The minimum time tmin for

tunneling can be estimated as 2x0/c, where c is the speed of light. Furthermore, it has

been shown recently that tunneling times are finite for electrons tunneling out of argon

and crypton atomic potentials [83]. The tunneling time was around 100 attoseconds. In

contrast to these results, it was found that for the case of atomic hydrogen the tunneling

time was below the experimentally possible resolution of ∼ 2 attoseconds [84]. In principal,

the observer should be able find the particle in neither the left nor the right well given that

the observation is performed faster than the tunneling time. All in all, the tunneling time

is assumed to be very small compared to the average time it takes the particle to decay and
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zero probability is assigned to find the charge carrier below the barrier top. It is noted,

that in the case of no dissipation, when the double quantum well is decoupled from the

environment, formula (5.1) takes a very different form and exhibits oscillatory behavior in

time, similar to Rabi oscillation in a two level-system [81]. This can be viewed as a closed

quantum system (section 5.1) with unitary time evolution.

5.3 Transition Rates and Universal Scaling Behavior

Tunneling transition rates for the biased double quantum well, have been calcu-

lated in [81, 82] and a more detailed derivation and discussion of the underlying assumptions

can be found in [85], which will be discussed in section 5.10, after experimental results have

been layed out in sections 5.4, 5.5 and 5.6. In this section, we focus on the bare minimum

to arrive at universal scaling behavior. The forward transition rate Γ+ is given as

Γ+ =
∆2

4ω0

1

Γ(2α)

(
2πkBT

~ω0

)2α−1

exp

(
eV

2kBT

)∣∣∣∣Γ(α+ i
eV

2πkBT

)∣∣∣∣2 (5.2)

where Γ is the complex gamma function, ω0 is the frequency of small oscillations in the biased

double quantum well, ∆ is the dressed tunneling matrix element, and α is the dimensionless

dissipation constant. Incoherent tunneling transport and onset of dissipaton are expected

for α > 1, coherent transport can be observed for 0 < α < 1/2, and α < 0 corresponds to

an unphysical configuration.

The forward transition rate Γ+ is related to the backward transition rate Γ− by principle

of detailed balance and hence

Γ− = Γ+ exp

(
− eV

kBT

)
. (5.3)
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Then, the current I, which is carried by the biased double quantum well, is described by

the difference of forward and backward tunneling rates

I = e(Γ+ − Γ−) . (5.4)

Putting together formulas (5.2), (5.3), and (5.4) yields

I = e
∆2

4ω0

1

Γ(2α)

(
2πkBT

~ω0

)2α−1

sinh

(
eV

2kBT

)∣∣∣∣Γ(α+ i
eV

2πkBT

)∣∣∣∣2 (5.5)

which constitutes the current-voltage characteristics of a single biased double quantum well.

In an experimental setup, a chain of N double quantum wells will usually be considered

interconnected in series. Then, an additional parameter γ is introduced into equation (5.5),

where γ = 1/N is the average inverse number of biased double quantum wells or the inverse

number of tunneling events and hence

I = I0T
2α−1 sinh

(
γeV

2kBT

)∣∣∣∣Γ(α+ i
γeV

2πkBT

)∣∣∣∣2 (5.6)

where I0 = [e∆2/4ω0Γ(2α)](2πkB/~ω0)
2α−1. Expression (5.6) possesses an universal scal-

ing behavior, since plotting I/T 2α−1 versus eV/kBT should collapse a set of measured

current-voltage characteristics over a wide range of voltages and temperatures onto a single

curve. With this definition of γ, the voltage drop across one tunneling event reads γeV . In

an experimental setup one will not encounter only a single chain of N double quantum wells

in series. A more realistic approximation of an experimental situation will be to consider

M non-interacting parallel chains of N double quantum wells. Essentially this corresponds

to M wires in parallel, separated by an insulating material. Then, the voltage drop across

each single wire will be the same as the voltage V applied to the system. Effectively, only I0

in equation (5.6) will be scaled by M and ultimately absorbed into the prefactor itself. So
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then, γ represents the averaged inverse number of tunneling events of M parallel wires. For

our diamond samples the bottom surface is as smooth as the atomically polished surface of

the growth substrate. On the other hand, the top surface can be very rough exhibiting a

surface roughness of up to 90 nm [39]. Quite considerable when the thickness of the flake

is just ∼ 600 nm thick. With a such a big surface roughness the path of least resistance

between bottom and top surface will be at the valleys of the rough surface landscape on the

top side. The length of the parallel wires is minimized, effectively reducing the deviations

of γ of each single parallel wire.

A wide range of publications has used a slightly modified version of equation (5.6),

where 2α − 1 is replaced with α + 1. This originates from the observation of a universal

scaling behavior in Luttinger liquids in one-dimensional carbon nanotubes [86], which was

later used for quasi-one-dimensional bundles of nanofibers [87, 88] as well as two-dimensional

films of polymers, claiming to observe Luttinger liquid behavior [89, 90], nuclear mediated

polaron hopping [91], or variable range hopping [92] to name a few. In any case, the

equation of the universal scaling behavior is identical for all the above situations leading to

a problematic ambiguity when trying to distinguish between underlying physical models.

We will stick to the form of T 2α−1, since it is not clear how the factor of α+ 1 is obtained.

However, both expressions for the universal scaling behavior are equivalent, with the only

difference that α will vary by a transformation factor.
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5.4 Universal Scaling of Lowly Doped Samples below 100K

We have performed measurements of lowly (266ppm) and highly (10k ppm) boron-

doped diamond-on-graphene heterostructures and single flakes over a wide range of voltages

and temperatures. In this section, we will present our results for the lowly doped samples,

which exhibit highly non-linear characteristics at low temperatures. Current-voltage mea-

surements of a single diamond flake from 4K to 100K are presented in the left plot of figure

5.3. The right plot shows the collapse of our measurements onto a single curve of scaled

current I/T 2α−1 versus eV/kBT , demonstrating universal scaling behavior of expression

(5.6). Three different regimes of the universal scaling behavior can be identified: Ohmic

regime (O), transition region (T), and power law regime (P). They are separated by dashed

line. Regimes defined by dashed lines in the bottom (top) part correspond to our experi-

mental data (best fit), respectively. The best fit of formula (5.6) is shown in black. Three

parameters I0, α, γ were used for fitting and the obtained values are I0 = 5 ·10−11 nA/K6.2,

α = 3.6, and γ = 0.0012. One identifies, that the transition region is extended in our

measurements, compared to what is expected from the theoretical model of the best fit.

The onset of the transition regime can be determined from a change in slope compared to

the Ohmic regime. In the Ohmic regime, the slope of a log-log plot I/T 2α−1 vs eV/kBT

should be identical to one, while it is bigger than one in the transition regime.
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Figure 5.3: Universal scaling behavior of lowly boron-doped diamond. Left: Current-
voltage measurements of a lowly boron-doped (266ppm) diamond polycrystalline flake from
4K to 100K. Temperature color coding can be found in the right plot. Right: Collapse of
current-voltage characteristics onto a single curve demonstrating universal scaling behavior
for α = 3.6 between 4K and 100K. Ohmic (O), transition (T), and power law regime (P)
of the universal scaling behavior are separated through dashed lines, for experimental data
(bottom dashes) and best fit (top dashes).

As discussed in section 5.3, γ yields the average inverse number of tunneling events

for a single chain of 1/γ quantum wells, and hence allows us to easily obtain the average

tunneling distance lT = dγ with the separation of the metallic electrodes d. This is quite

significant, since now we have enough knowledge about the double quantum well to make

at least an order of magnitude estimation for the frequency of small oscillation ω0 at the

potential wells and ωB at the barrier top! For this specific sample we obtain lT = 12.3

nm= 2x0. The minimum tunneling time to transverse the classicaly forbidden barrier is

estimated to be t = (12.3 nm ·√ϵr)/c = 9.8·10−17s, where c is the speed of light and ϵr = 5.7

the dielectric constant of diamond. A model for the effective activation energy of doped

semiconductors as a function of the doping level was suggested by Pearson and Bardeen
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[93]

Eeff
B = EB − βn

1/3
A = 0.37 eV−6.7 · 10−8 eV · cm×(8.77 · 1017 cm−3)1/3 = 315.5meV (5.7)

where β = 6.7 · 10−8 eV·cm is a materials dependent constant [94], Eeff
B is the effective

barrier height to ionize the boron dopant, and nA is the concentration of the dopant. We

set the the potential height V0 in figure 5.2 equal to Eeff
B and find for

ω0 =

(
V (x)

′′ |x=−x0

M

)1/2

=

(
8V0
Mx20

)1/2

= 1.3 · 1014 1
s

(5.8)

ωB =

(
−V (x)

′′ |x=0

M

)1/2

=

(
4V0
Mx20

)1/2

= 9.0 · 1013 1
s

(5.9)

where M = 0.7me is the hole mass in terms of the electron mass me, and x0 = 6.15

nm. The results for ω0 and ωB are on the time scale of non-equilibrium lattice relaxations

(10−12 1
s − 10−14 1

s ) and thus correlation with the environment in terms of memory friction

might come into play [95]. In order to compare the ground state E0 and the first excited state

E1 with the thermal energy and the electric field energy, we assume that the energy levels

in the quantum well can be approximated to zeroth order by a simple quantum mechanic

harmonic oscillator. Strictly speaking this is not correct, since in a quartic potential the

energy levels will have intricate correction factors, which must be computed numerically,

but it suffices for the purpose of a comparison. We obtain E0 ≈ ~ω0/2 = 41.8 meV,

E1 ≈ 3~ω0/2 = 125.5 meV, E2 ≈ 5~ω0/2 = 209.2 meV, and E3 ≈ 7~ω0/2 = 292.9 meV.

A total of four energy eigenstates fit into each of the potential wells. The thermal energy

kBT = 25.7 meV at room temperature and the potential drop across a double well at the

highest voltage applied of 60 V at 4 K gives γeV ≈ 72.0 meV. The ground state energy

E0 stays much bigger than kBT at least up to room temperature (E0 >> kBT ), and the
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effective barrier height Eeff
B = V0 >> E0. Even though the applied potential γeV reaches

the ground state energy level, it does not come to a level crossing of the ground state energy

in left potential well and the first excited state in the right well, even when the thermal

energy at low temperatures is included. Hence, all assumptions leading to a two-state

system in the double quantum well hold. We conclude, that all underlying assumption of

dissipative quantum tunneling in a double quantum well are met experimentally and that

universal scaling is observed in lightly boron-doped diamond up to 100K.

5.5 Ohmic Regime of Dissipative Quantum Tunneling

Qualitatively, the Ohmic regime corresponds to eV << kBT . Approximating what

can be approximated reduces the universal scaling law (5.6) into a linear response regime

I ≈ I0T
2α−1

(
γeV

2kBT

)
Γ2(α) (5.10)

where sinh(γeV/2kBT ) ≈ γeV/2kBT and |Γ(α + iγeV/2πkBT )|2 ≈ Γ2(α). Then, I ≈ V

and the low bias conductance G becomes

G =
I

V
≈ I

′
0T

2α−2 (5.11)

where I ′
0 = [γe2∆2Γ2(α)/8kBω0Γ(2α)](2πkB/~ω0)

2α−1. Now, the slope of a log-log plot of

G versus T should yield 2α − 2. Figure 5.4 gives α = 3.55 in close agreement with the

expected value of α = 3.6 from the universal scaling behavior in figure 5.3.
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Figure 5.4: Log-log plot of low bias conductance vs temperature. α = (slope+2)/2 = 3.55
in agreement with the α from the universal scaling behavior. Top axis is included for better
readability.

Data points for temperatures smaller than what is shown in the plot were below

the noise level of the measurement setup.

5.6 Power Law Regime of Dissipative Quantum Tunneling

The power law regime (eV >> kBT ) turns out to be somewhat trickier than

the Ohmic regime. The scientific literature extracts the dissipation strength α for strong

damping (α > 1) from the power law expression I ≈ V α+1 [87, 88, 89, 90, 91, 92]. I will

show that a I ≈ V α+1 does not sufficiently describe the universal scaling behavior obtained

from equation (5.5).

Let’s assume that I ∝ V α+1 appropriately expresses the universal scaling law.

Then, a log-log plot of I vs V should give a straight line and its slope should be equal to

α + 1. Figure 5.5 (left plot) shows a computer-generated set of current-voltage data from
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formula (5.5) on a log-log scale for different values of α. An exemplary fit is included for

α = 9 which differs from the fitted slope = 17.0.

Figure 5.5: Computer generated data of dissipative quantum tunneling. Left: Current-
voltage traces for 5 different values of α. For α = 9, a fitted slope is included and equals
17.0. Right: Fitted versus expected values of α. I ∝ V 2α−1 describes the fitted slopes the
best.

Evidently, the power law regime is not described by I ∝ V α+1. In the right plot

of figure 5.5, a set of fitted slopes is plotted for α ranging from 1 to 10. One observes that

I ∝ V 2α−1 describes the fitted slopes the best.

Let’s attempt to justify this more rigorously. An expansion of the universal scaling behavior

I = I0T
2α−1 sinh(πx)|Γ(α+ix)|2 is required in the power law regime, where x = γeV/2πkBT

is the ratio of electric field energy per hop over the thermal energy. An algebraic represen-

tation of the Gamma function to high accuracy for real and complex arguments is given by

[96]

Γ(z) ≈
√

2π

z

(
z

e

)z(
z sinh

(
1

z

)
+

1

810z6

)z/2

(5.12)
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where z = α+ix and e is Euler’s constant. One can call this an extended version of Stirling’s

formula. In the power law regime 1/860z6 can be neglected. Complex exponentiation of a

complex number can be simplified by the identity

(a+ ib)X+iY (a− ib)X−iY = (a2 + b2)X e−2Y θ (5.13)

where θ = arctan(b/a). We will make use of the complex property of the gamma function

|Γ(z)|2 = Γ(z)Γ(z) = Γ(z)Γ(z) = A ·B · C (5.14)

and separate the result for pedagogical reasons into three terms A, B, and C. After inserting

(5.12) into (5.14) and applying complex exponentiation we obtain

A =

√
2π

z

(
z

e

)z
√

2π

z

(
z

e

)z

=
2π

e2α
(α2 + x2)α−1/2 e−2x arctan(x/α) (5.15)

B = zz/2zz/2 = (α2 + x2)α/2 e−x arctan(x/α) (5.16)

C = sinhz/2
(
1

z

)
sinhz/2

(
1

z

)
= (α2 + x2)−α/2 e+x arctan(x/α) (5.17)

As it turns out, B and C cancel each other, and could have been omitted from the beginning,

reducing expression (5.12) to the well-known Stirling formula. Terms B and C become more

relevant below the power law regime. Then, the universal scaling law reads

I =
2π

e2α
I0T

2α−1 sinh(πx) e−2x arctan(x/α)(α2 + x2)α−1/2. (5.18)

For large x (power law regime), arctan(x/α) → π/2 and therefore sinh(πx) e−2xπ/2 →

1/2. It is noted that only a slight deviation of the ratio of the arguments of sinh(πx)

and e−πx from −πx
πx = −1 leads to either exponential decay or exponential potentiation of

sinh(πx) e−πx. A very narrow line for the emergence of a power law behavior. In the power
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law regime the universal scaling law simplifies to

I =
π

e2α
I0T

2α−1(α2 + x2)α−1/2 ∝ V 2α−1 (5.19)

where x = γeV/2πkBT , α represents the dimensionless dissipation constant, and γ the

inverse number of tunneling events. To leading order I ∝ V 2α−1, in agreement with our

analysis based on the computer generated data set. For T = 0 this behaviour has explicitly

been stated by [97] (therein, formula 7.20). However, the finite temperature enhancement

in [97] (therein, formula 7.19) is proportional to T 2, which is in contrast to our result in

equation (5.19) where it varies as T 2α−1. This discrepancy remains unresolved, since it is

not clear to me what approximations the authors used to arrived at their formula (7.19).

In summary, the voltage dependence in the power law regime was derived in this section.

5.7 Current-Voltage Data in the Power Law Regime

Next, we compare our experimentally extracted α from the power law regime to

the α from the Ohmic regime and the universal scaling behavior plot. Figure 5.6 shows

a log-log plot of current-voltage data taken at 4.5 K. A slope of 6.4 corresponds to α =

(6.4 + 1)/2 = 3.7, in good agreement with 3.55 (Ohmic) and 3.6 (universal scaling). For

this specific sample, the current was below the noise level for 17 V of applied bias.
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Figure 5.6: Log-log plot of current-voltage characteristics taken at 4.5K. Extracted α =
(slope+1)/2 = (6.4 + 1)/2 = 3.7. Top axis is included for better readability.

5.8 Current-Voltage Characteristics of Lowly Doped Samples

above 100 K

So far we have looked at current-voltage characteristics up to 100 K. Above 100

K, we observe deviations from the universal scaling behavior in the Ohmic regime as well as

a small part of the transition region. Temperatures from 100 K to 300 K are now included

in the universal scaling plot and can be found in the right part of figure 5.7. The curves in

the Ohmic regime have a parallel offset towards lower I/T 2α−1 values above 100 K.
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Figure 5.7: Universal scaling behavior of current-voltage characteristics of lowly boron-
doped diamond. Left: Current voltage characteristics. Right: Universal scaling behavior
with data above 100K shows a constant offset towards lower I/T 2α−1 values.

In order to investigate this downshift along the y-coordinate we want to get an

intuition about what happens when the scaling parameters α, γ and ω0 are varied. Therefore

a set of computer generated universal scaling curves is plotted in figure 5.8, for different

conditions of α, γ and ω0, where T ranges from 4 K to 300 K and V ranges from 1 mV to 60

V. Each of them has a unique effect on the I/T 2α−1 vs γeV/kBT plane. Changing γ, while

holding α and ω0 fixed, shifts the curve horizontally along the x-axis, as you can see in the

left plot. Increasing the inverse number of tunneling events γ, results in a shift to the left.

Changing α (middle and right plot), while holding γ and ω fixed, has a combined effect of

shifting the curve vertically along the y-axis and bending the slope in the power law regime

towards higher or lower values. It is necessary to distinguish the cases of 2πkB/~ω0 > C and

2πkB/~ω0 < C, where C is a critical numerical value on the order of 1.5/Kelvin, as you can

see in the middle and the right plot, respectively. Upon increasing α in the middle plot, a
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shift of the curve in the ohmic regime towards lower I/T 2α−1 values occurs. Physically, this

corresponds to decreasing the tunneling rate Γ, as anticipated when increasing the coupling

to the environment α, tunneling becomes less frequent. In the power law regime the change

in the slope increases in agreement with formula (5.19). The bigger α, the bigger the slope

will be. Now this is true for both cases of 2πkB/~ω0 > C and 2πkB/~ω0 < C. However,

in the Ohmic regime the effect of increasing α reverses when 2πkB/~ω0 < 1, as seen in the

right plot. The tunneling rate increases when the the coupling to the environment increases.

It is not immediately clear whether this constitutes a physical situation or whether such

a case is physically not realizable. Based on the measurements shown in figure 5.7, we

cannot conclude if γ or α is changing, since the data in power law regime above 100K is not

available. Furthermore, it is hard to reach this limit experimentally, since very high applied

voltages tend to break the device. Instead, we will argue now that the deviations from

the universal scaling above 100K arise from a transition from a pure quantum mechanical

transport regime to a classical transport regime with quantum corrections.

Figure 5.8: Universal scaling behavior for different alpha and gamma.

We will close this section with an estimate of T0, the transition temperature at
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which the system changes from quantum (section 5.9.4) to quasi-classical regime (section

5.9.2). Without dissipation, T0 can be obtained from the parabolic curvature ωB at the

barrier top T0 ≈ ~ωB
2πkB

and we obtain a value of 109 ± 10 K with ωB from relation (5.9).

As will be discussed in section 5.9.3, the effect of dissipation is to lower the transition

temperature T0. We assume frequency-independent dissipation γ̂(ω) = γ in formula (5.27),

and the resulting dissipation renormalized frequency-independent crossover temperature

T0 = 95±10 K. The transition temperature is in good agreement with the onset of deviations

from universal scaling behavior starting around 100 K. The value of the classical damping

factor γ (which is a different γ than the inverse number of tunneling events obtained from

fitting procedures) is obtained from the dimensionless dissipation constant α = 3.6 by [85]

γ =
2π~α

M(2x0)2
= 3.6 · 1013 1

s
. (5.20)

where 2x0 = 12.3 nm and M = 0.7me is the hole mass in terms of the electron mass. Our

results suggest that we have observed a smooth crossover from purely quantum mechanical

behavior to a semi-classical regime. The experimentally observed stretching of the transition

region into the Ohmic regime can potentially be understood in terms of memory friction

effects since the time scale for dissipation γ and small frequencies ω0 are on the same order

of magnitude.

5.9 The Classical to Quantum Transition

In this section we investigate the transition from classical hopping transport to

tunneling transport in the quantum regime with the inclusion of dissipation in both regimes.

An important assumption in this chapter is that a metastable localized state decays into
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a continuum of states and not into another localized state. Up to this point, I was not

able to find the analysis, presented in this section, for the particular case of a double

quantum well, with exception to the transition temperature which holds independent of the

nature of the final state. Starting at low temperatures, quantum tunneling prevails up to a

crossover temperature T0, where the system transitions into a classical regime with quantum

corrections. Those quantum corrections sustain for quite a large temperature range before

thermally activated nearest neighbour hopping sets on, as seen in figure 5.9 [98].

Figure 5.9: Different transport regimes for a charge carrier escaping from a localized state to
a continuum of states. Left: Metastable quantum well discussed in this chapter. A localized
charge carrier in the left minimum escapes into a continuum of states to the right. Right:
Different transport regimes to escape from a metasable potential well versus temperature.
Reprinted with permission from [98].

5.9.1 The Classical Regime

It is well-established in disordered materials, that electronic conduction is domi-

nated by thermally activated transport of the form of an Arrhenius factor exp(−EB/kBT )

at high temperatures, see chapter 4.1. Arrhenius [99] was the first to suggest the form

exp(−EB/kBT ) for the temperature dependence of reaction rates in 1889, and ever since it

arose in many different phenomena and fields of science. In Kramer’s transition rate the-

ory [100], a particle of mass M placed in a metstable potential well with small oscillation
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frequencies ω0, escapes into a continuum of states with

Γ = Γcl e
−EB/kBT =

ω0

2π

ωR

ωB
e−EB/kBT (5.21)

where EB corresponds to the barrier height of the potential well, Γcl is the classical attempt

frequency to overcome the potential barrier, ω0 is the frequency of small oscillations in the

metastable state, ωB is the frequency defined by the parabolic curvature at the barrier top,

and ωR = ωB{[1 + (γ/ωB)
2]1/2 − γ/ωB} is the renormalized frequency of small oscillations

of an inverted barrier top including the environmental damping factor γ [101]. The par-

ticle collects enough energy from the environment and its thermodynamic fluctuations to

overcome the potential barrier in a classical manner. For small but finite damping γ, the

expression Γcl reduces to the standard outcome of transition state theory Γcl = ω0/2π [102].

Kramers found that, if the damping does not stay finite and γ → 0, then Γcl ∝ γ and the

escape rate vanishes, because the system decouples from the environment. The heat bath

cannot maintain a thermal equilibrium with the metastable well [100]. On the other hand,

if γ → ∞ the attempt frequency Γcl ∝ ω0/γ and goes to zero, hindering any motion of the

particle by an opposing frictional force. We conclude that at high temperatures, we deal

with a purely classical phenomenon with corresponding analogies to a damped harmonic

oscillator.

5.9.2 The Quasi-Classical Regime: Classical+Quantum Corrections

Next, let’s consider the region of quantum corrections. As temperature is lowered,

the system stays in a classical regime but quantum corrections become important. We

term this region quasi-classical regime. Classically, a particle collects enough energy from
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environmental thermodynamic fluctuations to hop over the barrier top. In analogy, quantum

mechnically, the escape rate of the particle from the potential well can be enhanced by

quantum fluctuation of the barrier top. In both cases the effective barrier height is lowered.

In order to incorporate quantum corrections into the escape rate a functional path integral

approach is chosen. It allows to introduce the environment and the interaction with the

environment through a non-local term Sex in the effective action S. In this quantum field

theoretical framework the imaginary part of the free energy F , which is a function of the

effective action S, gives the transition rate Γ = −(2/~)(T0/T ) Im(F ) [103], valid for T > T0

with T0 the transition temperature between quasi-classical and quantum regime. A detailed

derivation of the resulting transition rate Γ can be found in [101, 98] for temperatures above

T0, and it reads

Γ = ΓclfQC e−EB/kBT

=

(
ω0ωR

2πωB

)( ∞∏
n=1

ω2
n + ω2

0 + ωnγ̂(ωn)

ω2
n − ω2

B + ωnγ̂(ωn)

)
e−EB/kBT

γ̂(ωn)=γ
=

(
ω0ωR

2πωB

)(
ΓG(1− λ+B/ν)ΓG(1− λ−B/ν)

ΓG(1− λ+0 /ν)ΓG(1− λ−0 /ν)

)
e−EB/kBT

(5.22)

where ωn = 2πnkBT/~ are the Matsubara frequencies, fQC the form factor that accounts

for quantum corrections, ΓG is the Gamma function, and ν = ω1 = 2πkBT/~. The quantum

correction form factor fQC can be simplified in the last line of (5.22) in terms of Gamma

functions ΓG if frequency-independent damping γ̂(ωn) = γ is assumed [98] where

λ±B = −γ
2
±
(
γ2

4
+ ω2

B

)1/2

, λ±0 = −γ
2
±

(
γ2

4
− ω2

0

)1/2

(5.23)

The last term in formula (5.22) is valid for the whole temperature range T > T0 and

the quantum correction fQC tends to one for kBT >> ~ω0 which recovers the classical
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limit. The latter statement is only true for extremely high temperatures for boron-doped

diamond, since EB,max ≈ 0.37 eV and the activation temperature TA,max ≈ 4300 K. The

quasi-classical regime easily extends beyond room temperature for boron-doped diamond

samples. Quantum corrections fQC are contributing considerably more than thermally ac-

tivated nearest neighbour hopping over the barrier top at room temperature. A variation

of approximations for fQC in the quasi-classical regime is summarized in table 5.1 for dif-

ferent damping strengths and temperature ranges closer and far away from T0. Particular

care needs to be taken for the case of weak damping γ << ω0, ωB because non-equilibrium

effects influence the transition rate significantly.

T0 << T << 4α2
BT0 T >> 4α2

BT0

γ >> ω0, ωB

fQC = e

[
T0
T

(
1 +

ω2
0

ω2
B

)(
Ψ
(
1 + 4αB

T0
T

)
−Ψ(1)

)]

fQC ≈
(
4α2

BT0

T

)(
1 + ω2

0/ω
2
B

)(
T0/T

)
fQC ≈ e

~
24

ω2
0+ω2

B
(kBT )2

+O4(T, γ)

γ ∼ ω0, ωB fQC =
ΓG(1−λ+

B/ν)ΓG(1−λ−
B/ν)

ΓG(1−λ+
0 /ν)ΓG(1−λ−

0 /ν)
fQC ≈ e

~
24

ω2
0+ω2

B
(kBT )2

+O4(T, γ)

γ ∼ ω0, ωB fQC =
ωB sinh(πω0/ν)
ω0 sin(πωB/ν) e

(
αB

ωB
ν

(Ψ(x+
B) + Ψ(x−

B)−Ψ(x+
0 )−Ψ(x−

0 ) +O(α2)
)

Table 5.1: Approximations of the quantum correction form factor fQC for different tem-
perature scales, strong (γ >> ω0, ωB), moderate (γ ∼ ω0, ωB) and weak (γ << ω0, ωB)
damping stengths. αB = γ/2ωB, ν = 2πkBT/~, ΓG is the complex Gamma function, Ψ is
the Digamma function with x±B = 1± ωB

ν , x±0 = 1± iωB
ν .

Last but not least, let’s quantify the effect of quantum fluctucation on the barrier

height EB in the region of T >> 4α2
BT0 and moderate to strong damping. The renormalized
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barrier height as a function of temperature reads [104]

E
′
B = EB − ~2

24

ω2
0 + ω2

B

kBT
+O4(T, γ) . (5.24)

5.9.3 The Transition Temperature T0

In the limit of T = T0 the denominator of formula (5.22) diverges, indicating a

breakdown of the validity of transport in the quasiclassical regime. Larkin and Ovchinnikov

[105] argued that a second-order phase transition from classical to quantum decay occurs at

T0, which should be visible as an abrupt change of the transition rate Γ in its temperature

dependence and hence experimentally visible from measured currents. In the same paper

they show that quantum fluctuations wash out the second-order phase transition within a

narrow temperature range around T0 and make it continuous. Not suprising, as such an

abrupt transition has not been reported in experimental studies yet. Phenomenologically,

at T = T0, the classical Arrhenius factor exp(−EB/kBT ) is replaced by the quantum

mechanical factor exp(−S/~) [80] with the effective action S such that at T = T0 the

transition rates match smoothly

Γ(T = T0) = ACL e−EB/kBT0 T=T0= AQM e−S/~ = Γ(T = T0) (5.25)

where ACL and AQM are prefactors for the classical and quantum regime, respectively.

This brings us to the definition of T0 originating as a solution of the determinant

DB, a second-order variation operator

DB =
+∞∏

n=−∞
λn =

+∞∏
n=−∞

ω2
n − ω2

B + ωnγ̂(ωn) (5.26)
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where the first eigenvalue to change signs is λ1 and hence [101, 106, 105, 104]

T0 =
~

2πkB
ωR

=
~

2πkB

((
ω2
B +

γ̂(ω)2

4

)1/2

− γ̂(ω)

2

) (5.27)

where ωR is the dissipation renormalized frequency of small oscillations of an inverted bar-

rier top including the environmental classical damping factor γ, similar to what we have

seen above in the classical regime. This yields the dissipation renormalized frequency-

dependent crossover temperature T0, which simplifies if frequency independent dissi-

pation γ̂(ω) = γ is assumed. Without dissipation, T0 can simply be estimated from the

parabolic curvature ωB at the barrier top as T0 ≈ ~ωB
2πkB

. A pictorial physical interpretation

of T0 can be visualized like this: T0 is the first temperature which admits an oscillation of

the localized charge carrier along a periodic trajectory in the classically forbidden region

below the dissipation-renormalized barrier height. This non-classical solution to the tun-

neling problem is referred to as a bounce, first named by Callan and Coleman [107]. Callan

and Coleman were not the first to develop the tool box to tackle tunneling in this way,

but Langer [108] did. He was the first to lay out a field theoretical approach to tunneling

in a heat bath in a study of classical nucleation theory. In the view of this picture, the

result of T0 should hold independent of whether the potential well is a quantum well with

decay into a continuum of states, like discussed in this section, or whether the potential

well is a double quantum well, like observed in our experiment. Differentiating between

the two types of quantum wells is important since they yield different temperature depen-

dences in the quantum regime! Additionally, from our data it looks like the rate limiting

transition process is the volume with its double quantum well structure and not the surface
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where tunneling from a localized state into a continuum of states (the metallic electrode)

possibly occurs. In summary, dissipation hinders the emergence of quantum mechanical

effects by lowering the transition temperature T0. The higher the dissipation γ the lower

the temperatures required to reach the quantum regime.

As explained above, formula (5.22) diverges at the transition temperature T =

T0, and hence a perturbative consideration of the bounce action and fluctuation modes is

required to obtain the transition rate Γ around T0, which goes beyond the scope of this

work. The interested reader is referred to [101, 105] for a detailed discussion of Γ in this

very narrow temperature range at the transition point. For the purpose of completeness,

only the end result will be presented

Γ =
A

2

(
2πSB

′′

~

)0.5

erfc

(
~SB ′′

2

(
1

kBT
− 1

kBT0

))
e
− EB

kBT
+

~SB
′′

2(kBT )2 (5.28)

where erfc is the Gaussian error function, SB ′′ = (1/2π)(Ma2ν/B), and A, a, B, ν can be

looked up in reference [101].

5.9.4 The Quantum Regime

Lowering the temperature of a system below T0 puts it into the quantum regime.

An additional solution to the effective action S arises, the bounce solution. As mentioned

above, the bounce solution is an oscillation of the localized charge carrier in the classically

forbidden region of the potential well along a periodic trajectory, in other words quantum

mechanical tunneling. Now, technically two separate conduction paths exist. Hopping over

the renormalized barrier top (quasiclassical regime) and quantum mechanical tunneling

through the classically forbidden barrier. The principle of least action will decide which
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conduction path dominates. Evaluating the effective action of the two different conduction

paths shows that the effective action due to the bounce solution is strictly lower than

the effective action of the hopping solution [104]. Therefore, hopping transport can be

disregarded and quantum mechanical tunneling is the leading conduction mechanism below

T0. Only in a narrow vicinity of the transition region T0 will both conduction paths be

contributing to charge transport. In the quantum regime the transition rate Γ takes the

form Γ = −(2/~) Im(F ) [103], in slight contrast to what is used in the quasiclassical regime.

Then,

Γ(T )/Γ(T = 0) =
π

6
γM

[
k2

~3

(∫ +∞

−∞
qB(τ, T = 0, γ̂)dτ

)2]
T 2 (5.29)

will be proportinal to T 2 [106, 104], which was measured in macroscopic quantum tunneling

experiments in biased Josephson junctions [109]. This result of Γ ∝ T 2 stands in stark

contrast to Γ ∝ T 2α−1 in equation (5.2). Both cases include dissipation in their derivation.

The difference might stem from the fact that equation (5.2) is derived for a double quantum

well, while equation (5.29) is derived for a metastable quantum well that decays into a

continuum of states, see figure 5.2 and 5.9, respectively.

5.10 Theory of Dissipative Quantum Tunneling in a Double

Quantum Well

In this section the theoretical background and the assumptions for dissipative

quantum tunneling in the quantum regime (T < T0) for strong dissipation are discussed.

Unless otherwise stated, the results presented in this section are a comprehensive summary

of the work published specifically in [85] and references therein. Although [85] was not the
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first publication on dissipative tunneling in a double quantum well, it is very detailed and to

the point. The original works published on a double quantum well appeared simultaneously

in [81, 82].

A sketch of a biased double quantum well can be found in this chapter in figure

5.2. The outline of the task is as follows: A localized charge carrier is placed in the left

well at −x0 and the right well at +x0 stays empty. Dissipation couples the charge carrier

to the environment through a frictional force and only the strong damping regime is to be

considered. The environment is modelled as a many-body system, namely a set of harmonic

oscillators coupled to the charge carrier in the left well. Calculate the transition rate Γ for

the charge carrier to decay away from the metastable state.

The assumptions of the biased double quantum well are V >> E0 >> |eV | and

E0 >> kBT . The ground state energy of the localized particle is considerably higher than

the energy provided by the electric field. It is also considerably lower than the potential

barrier height such that thermally activated conduction over the barrier top can safely be

neglected. Excitation of the ground state into its first excited state can be neglected as

well. In order to calculate the transition rate, the framework of functional path integrals

is chosen. A partition function Z will be setup to describe the system in terms of an

analytically continued action S, also called Euclidean action SE . The classical action Scl can

only describe classical hopping of a charge carrier over the potential well but not quantum

mechanical tunneling through the classically forbidden region below the potential well.

Thus, analytically continuing the path integral with its classical action Scl into imaginary

time τ by a wick rotation (t → iτ), flips the potential landscape upside down and in
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such a way allows for a new solution to the Euclidean action SE [110]. This new solution

is the instanton, a pseudoparticle, which acts as the mediator for quantum mechanical

tunneling. The mathematical framework is presented next where the upcoming derivations

and formulas follow very closely reference [85]. Let’s start with the transition rate Γ, the

analytically continued free energy F , and the partition function Z

Γ = −2

~
Im(F ) (5.30)

F = −(1/kBT ) lnZ (5.31)

Z =

∫
D(x(τ)) e−SE(x(τ))/~ (5.32)

where τ is the imaginary time and D(x(τ)) means to integrate over all classical field con-

figurations. The paths to be summed by this integral require to be periodic, meaning

x(0) = x(θ) with the period θ = (~)/(kBT ). The Euclidean action SE consists of two terms

SE(x(τ)) = S0(x(τ)) + SD(x(τ)) where S0 describes the dynamics of the system

S0 =

∫ +θ/2

−θ/2
dτ

(
M

2
ẋ2 + V (x)

)
(5.33)

while SD constitutes the dissipative term

SD =
1

2

∫ +θ/2

−θ/2
dτ

∫ +θ/2

−θ/2
dτ ′k(τ − τ ′)x(τ)x(τ ′) (5.34)

incorporating the environment as a non-local action. This is accomplished by the quantum

mechanical dissipative kernel k(τ) which is related to the classical damping factor γ through

k(τ) =
M

θ

n=+∞∑
n=−∞

| ωn | γ̂(| ωn |) eiωnτ (5.35)

with ωn = 2πn/θ the Matsubara frequencies and γ̂(ωn) the Laplace transform of γ(t) which

takes the form γ̂(ωn) =
∫∞
0 dt exp(−ωnt)γ(t). Now, the Laplace transform of the classical
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damping factor γ is related to the spectral density J(ω) of the heat bath in microscopic

models by

γ̂(ω) =
2

πM

∫ ∞

0
dω

x

ω2 + z2
J(ω)

ω
. (5.36)

In general J(ω) will take on different shapes and simplifies to J(ω) = γMω in the case of a

Ohmic heat bath (s = 1) where the damping γ is frequency independent at low frequencies.

For subohmic (s < 1) and superohmic (s > 1) heat baths J(ω) takes the form [97]

J(ω) = Aωs e−ω/ωc (5.37)

with a normalization factor A and a cut-off term exp(−ω/ωc) where the cut-off frequency ωc

is chosen above the Debye frequency of the system under consideration such that exp(−ω/ωc)

can be neglected for experimental frequencies. Equations (5.30-5.37) set up the stage for

quantum mechanical tunneling with coupling to a heat bath consisting of a many-body set

of harmonic oscillators.

The instanton solution can be obtained by setting the action S0
!
= 0, separating

and integrating variables dx and dτ , which yields xI(τ) = −q0 tanh(q0(a/M)1/2(τ − τ0)),

where a is a normalization constant, −q0 and +q0 are the positions of the left and right

well, respectively [110]. A graphical representation of the instanton solution is shown in the

left part of figure 5.10. A single instanton solution is sufficient for the case of a subohmic

and superohmic heat bath, but not for an Ohmic heat bath. Within an Ohmic heat bath,

the Euclidean action SE diverges for a single instanton, because the instanton reaches the

right potential well only algebraically slowly in imaginary time τ . This is referred to as

infrared divergence, which does not occur for a non-Ohmic heat bath. Luckily, it is possible

to circumvent this divergence by pairing an instanton with an anti-instanton, to create a
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composite pseudoparticle called the bounce. The anti-instanton can be understood in terms

of an instanton travelling in reversed direction. Suppose a particle is placed in the left well

and a single bounce occurs, then the particle will have tunneled to the right well, sojourned

in the right well, and tunneled back to the left well. The driving force that holds together the

composite pseudoparticle is the dissipative interaction with the environment. Furthermore,

the composite pseudoparticle is said to have a dipolar structure, since instanton and anti-

instanton can be viewed as particles of opposite charge. One underlying assumption of the

bounce is that the flip time or tunneling time τ0 is considerably smaller than the bounce time

τ1, as sketched in the left part of figure 5.10. Now it is possible to think about consecutive

bounces, shown in the right part of figure 5.10, in terms of dipole-dipole interactions, which

might influence the tunneling process. In principle, this could occur if the bounce separation

ρ is on the same time scale as the bounce time τ1

τ1 ≈ τS =
~

πkbT
arccot

(
1

α

γeV

2πkBT

)
∼ ρ ≈ Γ−1 (5.38)

where ρ varies with the inverse tunneling rate, τS is the saddle point solution of the Euclidean

action, and α is the dimensionless dissipation constant phenomenologically introduced in

equation (5.2) and extracted from the universal scaling behavior. For most experiments

it is safe to assume that the bounce time will be shorter than the bounce separation, but

in general a limit could be reached where the opposite is true. All in all, dipole-dipole

interactions of consecutive bounces are neglected, and we arrive at what is called the dilute

bounce gas approximation. Under these assumptions, the one-bounce solution is the first

leading correction to the partition function and consecutive bounces contribute negligibly

small.
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Figure 5.10: Graphical representation of the bounce solution in one dimension. Position of
a charge carrier in the left (x = −q0) or right (x = +q0) quantum well versus imaginary
time τ . Left: A bounce solution consisting of an instanton at τ = −τ1/2 with width τ0 and
anti-instanton at τ = +τ1/2. Right: N bounce solution with an average separation ρ from
each other. Reprinted with permission from [85].

Cranking the mathematical machinery presented above provides different tran-

sition rates for Ohmic and non-Ohmic heat baths. Only the Ohmic heat bath shows a

universal scaling behavior according to

Γ =
∆2

4ω0

1

Γ(2α)

(
2πkBT

~ω0

)2α−1

cosh

(
eV

2kBT

)∣∣∣∣Γ(α+ i
eV

2πkBT

)∣∣∣∣2 (5.39)

where Γ = Γ+ + Γ− is the sum of the forward and backward transition rates, α =

(2Mγx20)/(π~) is the dimensionless dissipation constant, and ∆ is the tunneling matrix

element

∆ = 2ω0

(
Mω0x

2
0

2π~
u(α0)R(α0)

)1/2

e
−S0

B,1/2~ (5.40)

where u(α0), R(α0) are constants depending on α0 = γ/2ω0, where α0 is the dimensionless

damping constant, and S0
B,1 the action of the instanton and anti-instanton on their own

without the interaction between them. S0
B,1 reads

S0
B,1 = 2~

(
αC +

2EB

~ω0
D(α0) +O(1/ω2

0τ
2
S)

)
(5.41)

where C and D(α0) are constants defined in [85]. In order to obtain the current I =

e(Γ+ − Γ−) a minor manipulation is required. From the principle of detailed balance (5.3)
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follows Γ+ ± Γ− = Γ+(1± e−eV/kBT ) and hence

I = eΓ
1− e−eV/kBT

1 + e−eV/kBT
= eΓ tanh

(
eV

2kBT

)
(5.42)

The transition rates for a non-Ohmic heat bath have distinctively different forms and do

not exhibit universal scaling behavior. Thus, it is possible to clearly distinguish an Ohmic

from a non-Ohmic heat bath by collapse of current voltage characteristics onto a single

curve. For purpose of completeness, the general form of the transition rate for non-Ohmic

heat baths (s ̸= 1) is provided

Sub-Ohmic( s < 1 ) : Γ ≈ A1

(
1

V

)(1+s)/2

e(B1/V )(1−s)/s
(
1+C1

(
1

V

)2/s

T 1+s+ ...

)
(5.43)

Super-Ohmic( s > 1 ) : Γ ≈ A2V
−2J(γeV/~) = B2V

s−2 e−V/ωc (5.44)

where A1, B1, C1, A2, and B2 can be found in [97] (see formulas 7.15a&b and 7.24 therein).

The form of sub-Ohmic cases resembles a close similarity to variable range hopping, and

the super-Ohmic formula is only shown within the lowest order expansion.

5.11 Conclusion

Electronic charge transfer in boron-doped diamond at low temperatures is com-

monly assumed to be of variable range hopping nature. In this work, we observed dissipative

quantum tunneling in lowly boron-doped polycrystalline diamond. Current-voltage traces

taken from 4.5 K up to 100 K show an universal scaling behavior as a result of collapse of

our data onto a single curve when plotting T 2α−1 versus eV/kBT . We showed that all as-

sumptions of dissipative quantum tunneling in a double quantum well hold for our system,

with an experimentally obtained ground state energy E0 = 41.8 meV for the localized charge
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carrier. Above 100 K deviations from the universal scaling behavior appear. We found that

the onset of the deviations is in agreement with our calculated dissipation renormalized

transition temperature T0 = 95±10 K, which marks the critical temperature at which the

system transitions from quasi-classical behavior to a purely quantum mechanical transport

regime. Thus, one of our main results is a quasi-classical to quantum transition of the

transport behavior of localized charge carriers within a series of quantum wells. Quantum

mechanical tunneling in this experiment is mediated by a composite quasiparticle, consisting

of an instanton and anti-instanton, referred to as the bounce solution within this quantum

field theoretical tunneling model.
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Chapter 6

Memristor

6.1 What defines a Memristor?

In 1971 Chua proposed a fourth fundamental two terminal electronic element,

purely based on symmetry considerations of the governing equations of a resistor, a capacitor

and an inductor. He labelled it a memristor [111], a contraction between memory and

resistance, relating to the fact, that its resistance is dependent on the history of the device,

the applied voltage and/or the current. Information can be stored in a conducting low

resistive state (LRS) or insulating high resistive state (HRS) and, in addition, the memristor

can switch between both states, all in one unit cell.

In electronic circuit theory four fundamental variables can be used to describe

the operation of a resistor (i-v), a capacitor (q-v) and an inductor (ϕ-i), where v is the

voltage, i is the current, q is the charge and ϕ is the magnetic flux. They are displayed

in figure 6.1. Given the above relations, one can infer a fourth relation between magnetic

flux and charge such that dϕ = Mdq, where M is the memristance given in Ohms. This
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yields the relationship governing a memristor. Furthermore, in his original paper, Chua

showed through a proof-of-concept realization that an active memristor can be built based

on a complex configuration of linear and non-linear resistors, inductors and capacitors. It

was pointed out that passivity (lack of internal power supply) might be one of the most

important properties of the memristor device and that such a passive memristor device has

not been realized yet. From a physical point of view, Chua provided an interpretation of a

passive memristor in terms of an expansion of Maxwell’s equations, concluding that a first

order electric and magnetic field interaction can provide the characteristics of a memristor

device and that such a memristor device will be driven by an alternating current source.

Figure 6.1: Graphical representation of four fundamental circuit variables i,v,q and Φ (cor-
ners), their mathematical relations between each other, and their respective circuit diagram
symbols (edges). Graphic obtained from [112].

In 2008 Strukov et al. [113] published a letter, which claims to have found the

missing memristor, referring to Chua’s preceding 1971 paper. The authors provide their own

physical model for the underlying working mechanism of a memristor, but agree with Chua
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on the functionality of a memristor, which is to store and process memory. Storing memory

is accomplished by the existence of a high and low resistive state, even when the voltage is

turned off (non-volatility), the device remains in its set state. Processing memory is achieved

by switching between high and low resistive states, which is a function of the applied voltage.

The physical model for the memristor presented in [113] is based on coupled electronic and

ionic transport across an ionic conducting layer, which substantially differs from Chua’s

model of coupled electric and magnetic first order fields. In general, Strukov’s paper has

attracted a lot of public attention and scientific scrutiny for several reasons. The underlying

question of importance in this discussion can be reduced to ’What can be viewed or defined

as a memristor?’. The short answer is, whatever we define it to be. On the one side, Chua

provided a very specific definition and physical mechanism for a memristor, which nowadays

is referred to as the real/ideal/perfect memristor. Then, Strukov’s claim that this specific

memristor has been found is misleading, since the real/ideal/perfect memristor according

to Chua’s 1971 model has not been found, as explained in depth by Vongehr and Meng

[114]. This becomes apparent, when one considers the real/ideal/perfect memristor linking

magnetic flux and electric charge flow. Vongehr and Meng [114] go as far as to claim that

the real/ideal/perfect memristor is likely impossible, because magnetic monopoles might

be necessary. On the other side, in 1971 Chua attributed the memristor with certain

functionalities, such as the ability to store information in a non-volatile manner, and exhibit

switching capabilities. This is really how Strukov’s paper interpreted Chua’s paper. Strukov

viewed the memristor defined by what it can do rather then by the underlying physical

principle of operation. Chua clarified in 2011 [115] by stating that a memristor is a two-
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terminal device with non-volatile memory characteristics based on resistance switching,

where the specific physical model or device material is not of importance. Such a concise

statement could have avoided the preceding discussion and confussion of what constitutes a

memristor and might have accelerated the development of memristive technology by years

or even decades, since measurements of memristive devices have been published over the

past 57 years [116, 117, 118], as early as 1962 [119], but they were never characterized as

memristors.

6.2 Continuous Operation of an Undoped Polycrystalline Di-

amond Memristor

It is expected, that undoped diamond stays insulating over a wide range of applied

voltages, due to its large indirect bandgap of 5.47 eV, see figure 1.4. Instead, our mea-

surements paint a different picture. We have performed continuous mode current voltage

measurements of undoped polycrystalline diamond foils for a diamond-on-graphene het-

erostructure as well as the bare surface of a diamond foil. In continuous mode the voltage

is continuously swept up and down during a measurement procedure. An optical image of

a typical device can be found in a previous chapter in the left part of figure 2.10. The right

part shows a schematic side view of the device. A representative current voltage curve of

our diamond memristor is displayed in figure 6.2. The measurement starts with an upward

sweep from 0 → 1 in a high resistive state. After a certain set voltage is passed, the current

shows a sudden jump to a preset current compliance value of 10 µA. The device switches

into a low resistive state and the voltage is increased until it reaches its turning point at 2.
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Figure 6.2: Current voltage trace of an undoped polycrystalline diamond-on-graphene het-
erostructure, operating as a bipolar memristor.

Then, the downsweep begins, where the current first remains at constant compli-

ance value along 2 → 3. After reaching point 3, the current falls off, along 3 → 4, in a

non-linear fashion. As it passes zero, it stays in a low resistive state, before it switches

back into its high resistive state upon passing a certain reset voltage at 5. Moving along

5 → 0 brings it back to its initial starting point. Such a behavior is characteristic of a

bipolar memristor. Our device exhibits a hysteresis loop in a I-V diagram in the 1st

and 3rd quadrant and as such possesses a high and low resistive state. It is referred to

as bipolar, because the reset voltage has an opposite sign compared to the set voltage.

Furthermore, setting a value for current compliance in the experiment is extremely crucial,

since it regulates the current flow upon the switching event. Too much current runs danger

of permanently setting the device into its low resistive state. Next, we performed a series of

100 switching events in order to check for the reliability of our device, which can be found

in the left plot of figure 6.3.
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Figure 6.3: Left: One hundred switching events. Right: Zoom in exhibiting a nanobattery
effect.

One observes, that the set voltage, the reset voltage, and the resistance in the low

or high resistive state exhibit a certain variability. Such a behavior is not uncommon among

memristive devices [120]. In general, variability is detrimental for switching applications,

because a fixed set and reset voltage are required for faultless device operation. However,

it does not always need to be a downside. It was shown recently [121], that variability in

device performance can be exploited to operate an artificial neural network in the context

of extreme learning machine architectures. The black curve shows a single switching event

and the black square box centered around zero is the area which is enlarged in the right

part of figure 6.3. Surprisingly, one finds that the zero crossing between LRS and HRS

does not occur at 0 V, as indicated by the black horizontal line, but at -73 mV. This is in

violation with the passivity requirements of a memristor. The memristor is supposed to

be a passive device with a zero crossing property [115], meaning that for zero voltage, zero
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current is expected. Such a built up internal voltage, points towards a nanobattery effect.

In fact, Valov et al. [122] showed in 2013 that memristive elements based on ionic transport

can show a nanobattery effect due to non-equilibirum states within the device and hence

the zero-crossing property of a memristor can be violated in principle. They extended the

memristor model to account for such an effect and labeled occurrences of memristors with

a nanobattery effect as extended memristor systems.

So far, we showed that our undoped diamond memristor can be used to reliably

switch between a HRS and a LRS. Switching between two distinct states is one of the

requirements for a functional memristor device. Long time memory retention and a high

ratio between on and off state are two additional requirements. The left plot of figure 6.4

shows the memory retention time for the low and high resistive state over a timespan of 20

hours. We prepared the memrsitor in its low resistive state and it remained stable over 20

hours (blue curve) at a fixed voltage of 2 V.

Figure 6.4: Left: Current versus retention time with a typical on and off ratio of 1000.
Right: Maximum on and off ratio around 10000 measured.
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The same is true for the high resistive state. Applying 2 Volts over 20 hours to the

memristor in its HRS leaves it unchanged. Furthermore, we prepared our memristor device

in its LRS and turned the external voltage off for 24 hours. We turned the voltage on and

observed that our device was still in the LRS, demonstrating that our diamond memristor

shows non-volatile memory behavior. A typical on/off ratio achieved in our memristor

device is 103. In the right plot of figure 6.4 we observed a maximum on/off ratio of 104.

All in all, we have shown in this section that our diamond memristor exhibits

the functionality of a memristor in continuous operation mode. It possesses a low and

high resistive state for storing information in a non-volatile manner with sufficient retention

times. Moreover, high on/off ratios and repeatability allow for information processing. An

unusual internal build up voltage points to a nanobattery effect, which classifies our device

as an extended memristive system.

6.3 A Hydrogen Redox-Based Switching Mechanism

In order to obtain a better picture of the underlying switching mechanism it is

instructional to obtain specific information on the chemical composition and structure of

our undoped diamond foils and its electrodes. For our memristor studies we have fabri-

cated metal-insulator-metal devices, with bottom graphene and top Cr/Au (3 nm/400 nm)

electrodes, see figure 2.10. Moreover, devices with two top electrodes of Cr/Au (3 nm/400

nm) were fabricated as well. During the growth of our undoped diamond foil, only two

gases are present in the growth chamber, methane and hydrogen. In consequence, we antic-

ipate our diamond foil to consist of a mix of carbon and hydrogen. Raman measurements
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for undoped diamond, shown in figure 3.3, reveal a sharp charactersitic sp3 diamond peak

with a line width of ∼ 11 cm−1, indicating structural disorder within the diamond phase.

Additionally, a wider band around 1530 cm−1 is observed for an excitation wavelength of

532 nm, which is associated with amorphous carbon, more specifically with hydrogenated

amorphous carbon a-C:H or ta-c:H [50]. Hydrogenated amorphous carbon is called a-C:H

(ta-c:H) if the amount of sp2 bonds is bigger (smaller) then the amount of sp3 bonds.

Hydrogenated amorphous carbon can be differentiated from non-hydrogenated amorphous

carbon a-C, because a-C has a characteristic Raman peak centered around 1560 cm−1 for

an excitation wavelength of 532 nm [50]. Scanning electron microscopy of the diamond

top surface, shown in figure 1.7, reveals that the grain boundaries possess a different mass

density than the grains. This observation leads us to presume that most of the a-C:H is

situated at the grain boundaries. This assumption does not exclude that a-C:H is present

in the grains as well, but with considerable less density. The general picture that we obtain

from growth considerations, Raman measurements, and electron microscopy, is that a-C:H

is rigidly suspended in a matrix of insulating sp3 diamond.

Resistive switching of sputtered amorphous carbon films has been reported pre-

viously for several amorphous carbon phases, like a-C [123, 124, 125], ta-C [126], a-COx

[127], and a-C:H [128, 129, 130, 127]. Specifically, a-C:H memristor devices can be either

unipolar [129] or bipolar [130]. Both operation modes are considered to be due to the for-

mation of a conductive graphitic sp2 filament, as was suggested in [130] by showing that

the resistance is independent of the electrode area, ruling out interface switching due to

charge carrier accumulation over the whole electrode [131]. Yet, the underlying switching
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mechanism is different in each case. In unipolar resistive switching the filament ruptures or

dissociates during the reset process after an even higher current is passed through the fila-

ment than during the formation process. Exceedingly high local temperatures around the

nm thin conductive filament break the filament itself. In bipolar resistive switching, Chen

et al. proposed [130] a hydrogen redox-based resistive switching mechanism through proton

migration for their a-C:H memristor devices. This model is in analogy to the commonly

used redox-based mechanism of ion migration in transition metal oxides [132], like HfO2,

ZnO, TiO2, MoO, Ta2O5, Nb2O5, MnO, NiO, and CuO, where oxygen anions migrate in

terms of oxygen vacancies. Then, in Chen’s model, setting and resetting a state is achieved

according to dehydrogenation and hydrogenation of carbon-carbon bonds, as depicted in

figure 6.5.

Figure 6.5: Hydrogen redox mechanism for resistive switching in a-C:H. Left: A low
resistive state (LRS) and high resistive state (HRS) related through (de)hydrogenation [130].
Right: DLC stands for diamond-like carbon, which is a-C:H in this particular reference.
The schematics show how hydrogen ions accumulate at the top electrode for the LRS and
how they move back onto the conductive filament in the HRS and displace carbon atoms.
Reprinted with permission from [133].

Suppose we start in the HRS. Applying a negative voltage to one of the electrodes

attracts hydrogen ions towards the electrode. Given that enough hydrogen ions are with-
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drawn from sp3 bonds, a conductive sp2 path can be established between top and bottom

electrode. Consecutively, the device will switch into its LRS. This process is called dehy-

drogenation. Turning the voltage off is not sufficient to reverse it. A voltage of reversed

polarity is required to reset the device into its off state, which is referred to as hydrogena-

tion. In this model, atomic bonds undergo a transformation from sp3 to sp2 bonds, and vice

versa. Even though the authors of this model did not explicitly state it in their publications

[130, 133], a conversion of one type of bond to another type of bond over a sufficiently large

area, can be considered a solid-solid phase transition [134]. Microscopically, the position of

the carbon atoms is changed from a disordered towards a more ordered arrangement, which

is referred to as displacive phase transition. See the right plot in figure 6.5 for a schematic

illustration.

In summary, Chen’s hydrogen redox-based resistive switching model allows us to

explain our observed internal build up voltage in figure 6.3, in terms of separation of hy-

drogen ions from its conductive filament when the system is in its LRS. Furthermore, the

hydrogen redox-based switching model allows us to explain observed memristive character-

istics of our polycrystalline diamond films in terms of electronic and ionic charge transport.

6.4 Pulsed Operation of a Diamond Memristor

Next we investigate the switching behavior in pulsed operation mode. During a

pulsed mode measurement the applied voltage is sent out in voltage pulses, as opposed to

continuously sweeping the voltage during a continuous mode measurement. A voltage train

with two pulse sequences and the response of a diamond memristor device can be seen in
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figure 6.6. A single pulse sequence consists of a read (green), write (blue), read, and reset

(magenta) progression. For this particular pulse sequence, the read time is 1 s, the write

time is 0.5 s, and the reset time is 4 s. Hence, the pulse width tW = 0.5 s, the pulse

separation tS = 6 s, the pulse amplitude for set and reset is ∆S = +10 V and ∆R = -3 V,

respectively. High resistive and low resistive states are color encoded in magenta and blue,

respectively.

Figure 6.6: Pulse train and device response. Bottom: Voltage versus time showing two
consecutive pulse sequences. Green, blue, and magenta colored windows correspond to
the read, set, and reset operations. The white background is the ramp up period. Top:
Response of a diamond memristor due to the bottom pulse train. HRS and LRS are color
encoded in magenta and blue, respectively. Time widths and pulse amplitudes are provided
in the legend.

A pulse train with a total of ten pulses and the device’s response is shown in figure

6.7. Our memristor device is switched ten times between on and off state. We observe, that

the duration for the conductive filament to break and switch the memristor into its off state

varies. It either decays steadily (see t = 43 s) over a timescale of seconds or considerably

shorter (see t = 18 s) than the timescales measured here. The on state can also persist (see

t = 12 s) during the reset process, but it eventually decays. In principle, a study on the fault
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tolerance of switching processes can be performed, but in the view of the memristors wide

variability of onset voltages, offset voltages, and low resistive states, instead we continue to

explore its physiological memory properties in the next section.

Figure 6.7: Pulse train and device response. Bottom: Voltage versus time showing ten
consecutive pulses with ∆S = +10 V, ∆R = -3 V, tW = 0.5 s, and tS = 6 s. Top: Response
function of a diamond memristor. HRS and LRS are color encoded in magenta and blue,
respectively. Ten switching events are performed.

6.5 The Diamond Memristor: An Inorganic Synapse and the

Human Memory Model

In 2011, Ohno et al. [135] presented a AgS2 memristor device which acts as

an inorganic synapse and exhibits memory effects according to the psychological human

memory model by Atkinson and Shiffrin [136]. Although, synaptic behavior of memristor

devices was shown previously [137], Ohno made a connection to the human memory model,

which is shown in the left part of figure 6.8. It is a three stage model which possesses a

sensory memory (SM), also referred to as a sensory register, a short term memory (STM),

and long term memory (LTM).
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Figure 6.8: a) Human memory model from [135], developed by Atkinson and Shiffrin [136].
b) Response of an inorganic synapse with respect to the human memory model.

Incoming information enters the SM where it is registered. The sensory register

acts as a filter and most incoming signals decay and vanish. Only a selected subset of

incoming signals is transferred into STM and is stored temporarily. Information in the

STM will eventually be forgotten, unless it is rehearsed. Then, the possibility exists to

enter into LTM. Long term stored memory can also be passed down into short term memory

and can be forgotten. Less frequently incoming information is either sorted out at the SM

or STM and as a consequence forgotten, while higher frequently incoming information can

result in learning and remembering. SM, STM, and LTM are expressions commonly used

in psychology.

In neuroscience a microscopic picture of memory exists in terms of connections

between neurons. The interface between two neurons is called a synapse, illustrated in

figure 6.9. Two physically connected neurons are commonly referred to as a pre- and post-

neuron, with reference to an incoming signal traveling past both neurons. Depending on

the coupling between two neurons, a synapse can be conducting or insulating for either

electronic or ionic charge transfer. The strength of the coupling is referred to as synaptic

strength. Over time, the synaptic coupling between neurons can change, it can become
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weaker or stronger, and this property of the synapse is called synaptic plasticity. In partic-

ular, spike-timing dependent plasticity can adjust the coupling between two neurons. The

more frequently a pre-neuron releases an action potential which reaches the synapse, the

stronger the coupling between pre- and post-neuron will be. This behavior is directly linked

to the psychological human memory model, where less frequent stimulation results in STM

of information, while more frequent stimulation results in LTM storage. In neuroscience the

corresponding expressions are short term plasticity (STP) and long term plasticity (LTP),

referencing the amount of time (short or long) in which the adjusted synaptic coupling will

remain.

Figure 6.9: A sketch of a biological synapse. An incoming action potential triggers ionic
neurotransmitters to cross the interface and establish a conductive electronic coupling be-
tween bottom and top neuron. Reprinted from [135].

6.5.1 Sensory Effects

In our memristor device we measure two different types of sensory effects, upon

applying a voltage train on the memristor in its HRS. The first is shown in figure 6.10.

Applying ten voltage pulses of 8 V for a duration of tW = 0.5 s and a separation of tS = 2 s,

leaves the memristor in its HRS. For the duration of the pulse a small leakage current flows
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through the device. In terms of the filamentary model with its hydrogen redox reaction this

measurement can be interpreted as the filament being not fully hydrogenated. Hence, the

metal-insulator-metal memristor constitutes a leaky capacitor.

Figure 6.10: Sensory effects of a memristor’s high resistive state (type I). Bottom: Applied
voltage pulse train with pulse height ∆S = 8 V. Top: Memristor’s response with tS = 2 s,
tW = 0.5 s.

On the other hand, figure 6.11 shows the behavior of a non-leaky capacitor. Upon

applying the first voltage pulse, two transients are measured. One when the capacitor is

charged and one when the capacitor is discharged. Over a sequence of 10 pulses this behavior

is reproducible, showing that the filament is fully hydrogenated. Distinguishing between

partially and fully hydrogenated filament is important, because a partially hydrogenated

filament reduces the onset voltage for the switching event, leading to an increased variability

of device characteristics. Therefore, future work into properly hydrogenating a conductive

filament could result in improved device performances. In the synaptic picture of our

memristor device, the coupling between the two neurons is only very weak or non-existent.

An incoming signal is not transmitted to the next neuron.
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Figure 6.11: Sensory effects of a memristor’s HRS (type II). Bottom: Applied pulse train
with a pulse height of 2.2 V. Top: The response of the diamond memristor to the bottom
pulse train with tS = 1 s, tW = 0.5 s.

Next we will investigate the voltage pulse height dependence of a fully hydro-

genated filament. At first, a pulse sequence consisting of 15 separate pulses of pulse height

∆S = 2 V, pulse width tW = 0.3 s and pulse separation tS = 3 s is applied and its response

measured. The pulse height is increased to 3 V and the pulse sequence is repeated. This

procedure is continued until a maximum pulse height of 9 V is reached. Our obtained data

is presented in figure 6.12. A single pulse and the pulse train are shown in the left and right

bottom row, respectively. Color encoded are the different pulse heights ranging from 2 to 9

Volts. The top right plot shows the response of the memristor in its HRS to the pulse train

and the top left part shows the response to a single pulse. The transient peak at t = 2.27

s is proportional to the pulse height over the whole range of applied voltages. Up to 7 V

the response of the memristor resembles a fully hydrogenated filament such that no leaky

current passes through the HRS. Only the charging and discharging of a capacitor upon ap-

plying a voltage change is measured. For 8 V the filament becomes more conductive during
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the applied pulse and a small amount of current is allowed to leak between the electrodes,

suggesting the onset of a formation of a conductive sp2 filament. At 9 V the filament starts

to become even more conductive. Dehydrogenation progresses during the pulse to a degree

where the current is increased until a steady state is reached. The current response of the

memristor to the other 15 pulses of the pulse sequence can be found in appendix A.1.

Figure 6.12: Memristor response to a pulse train with varying pulse heights initially pre-
pared in a high resistive state. Bottom left: Single pulse. Bottom right: Applied pulse
train with 15 pulses for different pulse heights ∆S , where tS = 3 s, tW = 0.3 s. Top Right:
Response of the diamond memristor to the bottom pulse train. Top Left: Respond of the
memristor to a single pulse.

6.5.2 Short Term Memory and Short Term Plasticity

In order to switch from a HRS to a LRS one can experimentally increase the

applied voltage, the pulse duration or the total number of pulses. We choose to increase the

total number of pulses and decrease the pulse separation. Figure 6.13 shows a sequence of

30 pulses with ∆S =8 V, tS = 2 s and tW= 0.5 s on a semi-logarithmic plot for the current

flow. As the voltage train proceeds, the measured current potentiates in a non-linear fashion.
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Sudden drops in the measured signal are visible, pointing towards an unstable and short

term potentiation at the synapse. Such an unstable potentiation could be understood as a

precursor for forgetting, but further evidence is required.

Figure 6.13: Short term memory with forgetting. Bottom: Voltage pulse train consisting of
30 pulses with ∆S= 8 V, tS= 2 s and tW= 0.5 s. Top: Memristor response. Eventually the
meristor switches to its low resistive state (blue), but decays into its high resistive state.

Eventually, the memristor switches into its LRS, shown in blue, and decays quickly

into its HRS after the pulse sequence ends. The synapse indeed exhibits short term plasticity

and the pre- and post-neuron only couple for a short amount of time. In a human memory

model this corresponds to forgetting, while switching from the off to the on state corresponds

to learning. The tail at the end of the pulse train is under a 2 V bias and shows a stochastic

behavior. The experimental voltage pulse height in this section is smaller by 1 Volt than in

the previous section 6.12. The question arises of how it is possible that the device switches

to its LRS for this pulse train but not in the previous section. At first, we identify, that the

sensory register of the memristor is of type I in this measurement, corresponding to a leaky

not fully hydrogenated filament. Additionally, the number of pulses is doubled and the
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pulse width increased, so the overall delivered energy is greater compared to the previous

section. Another explanation could be, that multiple filaments contribute to the overall

switching behavior, which results in a variability of the switching process.

6.5.3 Long Term Memory and Long Term Plasticity

Next, the device is turned off by applying a negative voltage of -3 V and then

we send out another pulse train consisting of 30 pulses. This time we increase ∆S slightly

to 9 V, and keep the pulse width and separation constant. We observe that the overall

current baseline during the readout phase increases continuously on a semi-logarithmic

plot, contrary to what was measured in the previous section. From the synaptical point of

view, this corresponds to a long term potentiation of the incoming signal pointing towards a

long term plasticity effect at the synapse. After the memristor switches into its low resistive

state, the result is that it stays in it for an extended time at a constant current level. Indeed,

the coupling between the neurons is for the long term.

Figure 6.14: Long term memory. Bottom: Voltage pulse train consisting of 30 pulses with
∆S = 9 V, tS = 2 s and tW = 0.5 s. Top: Memristor response. Its LRS persists.
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The incoming signal is stored in a stable filament which translates to long term

memory storage in Atkinson and Shiffrin’s psychological human memory model. Applying

a follow-up pulse train, shown in figure 6.15, does not disturb the LRS significantly nor are

any turbulences or stochastic processes visible. The memristor device remains in its LRS.

The incoming signal is stored in a long term memory configuration. The inset shows a dip

in the measured current after each voltage pulse is turned off, which will be investigated in

section 6.7.

Figure 6.15: Persistence of long term memory. A follow-up voltage train with 30 pulses.
The memristor device remains in its low resistive state without bigger turbulences.

6.6 Spike-Timing Dependent Plasticity

There is still one component of the human memory model that needs to be ver-

ified experimentally in our diamond memristor, which is its frequency dependence. In

neuroscience, spike-timing dependent plasticity refers to adjusting the synaptic connection

between two connected neurons. The more frequently a neuron fires a signal, the more

probable it is that a synaptic connection is established or enhanced. Likewise, the lower
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the frequency of the incoming pulse sequence the lower the probability that the system will

change into its LRS. Therefore, we turned the device off by applying a negative voltage of -3

V and then applied the same pulse width of 0.5 s as in the previous section, but we increased

the pulse separation from 2 s to 8 s, the pulse height from 9 V to 10 V, and the number

of pulses to 56. The total time of the pulse train is 480 s, see figure 6.16. We observe,

that the system stays in its HRS over the whole sequence. The baseline increased only

marginally on a semi-logarithmic plot, considerably less than in the case of short term and

long term potentiation. Hence, this observation confirms the last element of Atkinson and

Shiffrin’s human memory model, and we conclude that our diamond memristor exhibits the

building blocks of a human memory model, which in a neuroscience environment translates

into synaptic behavior between physically connected neurons.

Figure 6.16: Spike-timing dependent plasticity. Bottom: 56 consecutive pulses over a time
span of 480 s with ∆S = 10 V, tS = 8 s and tW = 0.5 s. Top: The system stays in its HRS.
The baseline increased only marginally.

I would like to end this section with a short anecdote of a former teacher of mine,

that came into my mind at this point. Teacher speaking to students: ‘Who do you think
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is the best teacher out there?’ While the students react suprised about this question the

teacher continues: ‘Repetition, repetition, repetition.’

6.7 Mimicked Refractory Period

Next, we will investigate the dip observed in the inset of figure 6.15. After the

voltage pulse is turned off a dip occurs in the measured current through the memristor

device. In order to exclude a parasitic effect from external circuitry, we removed the current

compliance and tested a freshly prepared device. The device starts in its HRS and at a

voltage of 29 V a small current peak appears which is followed by a larger peak at 31 V,

reaching almost 1 mA before it decays again, see left plot in figure 6.17.

Figure 6.17: Voltage sweep of a freshly prepared memristor device without current com-
pliance. The right plot shows a zoom in of the left plot. Notice that the current dips below
zero for the small and the large peak.

The right plot shows a zoom in and it becomes visible, that a dip similar to the one

in figure 6.15 appears. Furthermore, the dips goes below zero for both peaks. The larger

the peak, the larger the following dip with up to almost -20 µA. While the voltage sweep

continues, the current converges towards zero from negative values. It can be concluded,

that the observed dip is not due the current compliance and s physical current flows in the
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opposite direction.

Figure 6.18 shows a pulse sequence consisting of three pulses with varying pulse

height, similar to what was presented in section 6.5.1 figure 6.12, with the difference that

here the memristor was initially prepared in its LRS instead of its HRS.

Figure 6.18: Memristor response to a pulse train with varying pulse heights initially pre-
pared in a low resistive state. Bottom left: Single pulse. Bottom right: Applied pulse
train with 3 pulses for different pulse heights ∆S , where tS = 2 s, tW = 0.2 s. Top Right:
Response of the diamond memristor to the bottom pulse train. Top Left: Respond of the
memristor to a single pulse.

The top left plot shows a clearly visible dip which drops below zero. Only a

very low read out voltage of 0.5 V is applied after the pulse. A clear voltage dependence

of the dip is visible. The larger the applied voltage pulse, the larger the dip will be.

Somewhere between 4.5 V and 8.5 V is a crossover voltage and the dip disappears. The

current response of the memristor to the other two pulses of the pulse sequence can be

found in appendix A.3. Furthermore, appendix figure A.2 shows clearly how the current

dips below zero for the first voltage pulse while the system is decaying from an unstable
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short term potentiation state towards the off state of the memristor. A clear separation in

time is visible between the dip and dV/dt at the end of the pulse, excluding dV/dt at the end

of the pulse as the origin of the dip. Such a behavior of the observed dip can have different

origins. Considering the hydrogen redox-based switching model discussed in section 6.5, in

combination with the nanobattery effect measured in figure 6.3, we reach the conclusion,

that the observed dip is the result of a built up internal potential difference, which is opposite

in direction to the applied voltage and which results from the ionic migration of protons

through atomic vacancies. Since the current compliance limits the amount of voltage drop

along the electronic path, the leftover voltage will cause protons to diffuse away towards the

negatively biased electrode. Additionally, this diffusion process is accelerated by the local

high temperatures produced by the current carrying filament. While current compliance

is not necessary for this effect to occur it is certainly helpful. The ionic liquid of protons

produces a build up diffusion potential difference across the device. Based on our results,

it is not conclusive to say whether the dip is solely due to an ionic current or a mix of

electronic and ionic contribution. But, it can be excluded that it is just due to an electronic

current, because protons will relax from their concentrated configuration near the negative

electrode, since otherwise a persistent negative current would be measured. Last but not

least, we point out, that the build up of a potential difference due to migration of ions is

precisely what causes a refractory period when an action potential travels along an axon.

In our case we have only one species of migrating ions, namely protons. For the case of

axons, sodium and potassium ions are transported across the axon membrane through ion

channels, which close and open. Then, the refractory period is a result of build of potential
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difference due to difference in the ion concentrations inside and outside the axon, inhibiting

the occurrence of a follow-up action potential. Such a parallel between the behavior of

our memristor device and the refractory period observed in an action potiental travelling

through an axon might suprise at the first sight. However, Chua claimed that the Hodgkin-

Huxley axon is made of memristors [138], and hence it should not be uncommon to observe

action potential-like behavior in memristive devices.

6.8 Conclusion

We have successfully fabricated the first diamond-based memristor. The underly-

ing switching mechanism is a filamentary hydrogen-redox based hydrogenation and dehydro-

genation process of hydrogenated amorphous carbon within the diamond film. Furthermore,

we showed that our diamond-based memristor exhibits sufficient retention times and high

on and off ratios required for logic operations. An unusual internal nanobattery effect cat-

egorizes our devices as an extended memristive system. We observed resistive switching

behavior on three different devices. Each them showed an undesired device variability,

which needs to be addressed in future studies. Additionally, we found that our memristor

behaves like an inorganic synapse, which shows effects of long time, short time, and sensory

memory, according to the psychological multi-stage human memory model. The effects of

learning and forgetting were demonstrated as well. Spike-timing dependent plasticity in

our inorganic synapse displayed the frequency dependent effect of incoming signals on the

ability to learn and remember. Last but not least, we observed that our inorganic synapse

mimicks a refractory period commonly observed when neurons fire off action potentials. We
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concluded that the origin of this mimicked refractory period results from an internal build

up potential difference due to the migration of protons, very similar to the migration of

ions into and out of an axon during an action potential.
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Chapter 7

Barristor

In this study, we present the first realization of a diamond-on-graphene barristor.

Lowly boron-doped diamond, with 266 ppm boron to carbon atoms, was used in this study

as a p-type semiconductor. In particular, we were interested in the high temperature oper-

ability of the diamond-on-graphene heterostructure up to 300◦C. At elevated temperatures

silicon based electronics breaks down, due to material degradation and due to the fact that

thermally excited charge carriers are able to hop over the barrier height in a semiconduc-

tor. Thus, diamond and graphene should provide enhanced performance characteristics at

elevated temperatures, owing to their exceptionally high thermal conductivities. An exem-

plary device layout and optical image of a diamond-on-graphene device can be found in

section 2.3.11, figure 2.9. Our device is capped of with 3 µm of PMMA in order to prevent

chemical reaction with any surrounding nitrogen flowing through the furnace and to make

sure that diamond sticks well to graphene.
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7.1 Graphene-on-Silicon Barristor

A barristor is a variable barrier height diode. The first barristor was fabricated

by Yang et al. in 2012 in the form of a triode device [139]. Yang et al. showed that

the interface of a two terminal graphene-on-silicon (p-doped or n-doped) heterostructure

constitutes a diode. Furthermore, a third terminal was used as a top gate in order to tune the

Fermi level of graphene through the electric field effect. Tuning the Fermi level of graphene

resulted in adjustment of the barrier height of the diode itself. Therefore, the first operable

graphene-on-silicon barristor, and the first barristor in general, was realized. Moreover,

their barristor showed large enough on/off ratios of ∼ 105 to meet the requirements of logic

transistor operations.

Figure 7.1: Schematics of a barristor device under constant voltage Vbias. Left: The Dirac
cone represents the graphene sheet which is capacitively coupled to the top gate (yellow).
In blue one sees the valence and conduction band of silicon. Right: Upon changing the
Fermi level in graphene the barrier height Φb is lowered and more current flows through the
device. Reprinted with permission from [139].

A schematics showing the barristor’s principle of operation is presented in figure

7.1. The barristor device is under constant bias Vbias and the Fermi level is coupled capac-

itively to the backgate (yellow). Graphene forms a Schottky barrier Φb with silicon, whose
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valence and conduction band are shown in blue. Changing the backgate voltage, while

holding the bias voltage constant, tunes graphene’s Fermi level and changes the Schottky

barrier height, such that either more or less current can flow through the barristor.

7.2 Measurement protocol

Our measurement protocol for high temperature measurements of current-voltage

(IVs) traces has 9 steps and it alternates between holding and sweeping temperatures as

follows:

1. Hold at 22◦C and measure backgate (±60 V) dependence of IVs.

2. Sweep from 22◦C to 100◦C and take IVs at VG = 0 V.

3. Hold at 100◦C and measure backgate (±60 V) dependence of IVs.

4. Sweep from 100◦C to 200◦C and take IVs at VG = 0 V.

5. Hold at 200◦C and measure backgate (±60 V) dependence of IVs.

6. Sweep from 200◦C to 300◦C and take IVs at VG = 0 V.

7. Hold at 300◦C and measure backgate (±60 V) dependence of IVs.

8. Sweep down from 300◦C to 22◦C and take IVs at VG = 0 V.

9. Hold at 22◦C and measure backgate (±60 V) dependence of IVs.

Essentially, the temperature is raised from 22◦C to 300◦C successively with stops at 100◦C,

200◦C, and 300◦C, before the system is cooled down again. A visualization of the temper-

ature sequence can be found in 3.7.
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7.3 Diamond-on-Graphene Barristor

Figure 7.2 shows IV traces of a lowly boron-doped (266 ppm) diamond-on-graphene

barristor at room temperature exhibiting a slightly leaky diode behavior. A clear tunability

of the Schottky barrier height is visible, owing to the adjustment of graphene’s Fermi level

due to a capacitve coupling between graphene and the applied backgate voltage. The

tunability of the barrier height was not strong enough to turn off the device completely

within the range of applied backgate voltages.

Figure 7.2: Step 1. Room temperature tunability of a diamond-on-graphene heterostruc-
ture. The backgate is tuned between ±60 V.

During the next step in the measurement protocol, step 2, the temperature is raised

from 22◦C to 100◦C, the back gate dependence is set to zero, and IV traces are obtained, see

the left plot of figure 7.3. It is observed, that up to 80◦C very little changes in the IV traces

and that upon passing 80◦C the IV characteristics transition towards an enhanced diode

behavior. The current is strongly rectified for a forward bias and suppressed for a backward

bias. The corresponding Arrhenius plot resulting from the low bias conductance is shown

in the right plot of figure 7.3. It shows that the diamond-on-graphene interface exhibits
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a constant conductance up to 80◦C, indicating metallic behavior. This might stem from

the hydrogen terminated diamond surface in combination with a H3O+ adsorbate layer,

which is known to produce a metallic conductive surface layer on diamond [77, 140]. Once

this thin water adlayer, originating from the environment during the fabrication process, is

removed, for example through placing the sample in a high vacuum [77], or potentially, like

in our case, through heating up the sample in an inert and encapsulated environment, the

conductance is expected to decrease. This is what we observe above 80◦C.

Figure 7.3: Step 2. Left: IVs recorded from 22◦C to 100◦C. Right: Arrhenius plot of the
low bias conductance. A top axis is included for better readability.

Step 3 investigates the backgate dependence at 100◦C in figure 7.4. Our diamond-

on-graphene device shows a strong diode behavior and tunability of the Schottky barrier.

This constitutes an operable high temperature diamond-on-graphene barristor. Unfortu-

nately, compared to room temperature the tunability of the Fermi level is decreased and

again no propper off state can be achieved through the backgate. On the other hand, a

proper off state could be achieved by alternating the polarity of the source drain bias, but
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this would simply correspond to a regular diode and burn off a considerable amount of

power, since the direction of charge carriers is constantly changed. Hence, a tunability of

the backgate is desired.

Figure 7.4: Step 3. Barristor behavior at 100◦C.

We continue to increase the temperature from 100◦C to 200◦C, shown in figure

7.5. On the Arrhenius plot the conductivity increases with increasing temperature in a

non-linear fashion. This indicates that electronic transport is semiconducting and differs

from nearest neighbour hopping. A non-linear Arrhenius plot at elevated temperatures is

indicative of variable range hopping, see section 4.3. The conductance reaches a maximum

shortly before 200◦C. From the IV traces we observe that the diode behavior is steadily lost

towards 200◦C, where the IV trace becomes almost symmetric.

Surprisingly, step 5, the backgate dependence at 200◦C, shows and enhanced tun-

ability of the Schottky barrier height, and the diode reversed its direction of operation,

see figure 7.6. Current is preferably transferred at negative VSD and partially blocked at

positive VSD at high positive backgate voltages.
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Figure 7.5: Step 4. Left: IVs recorded from 100◦C to 200◦C. The diode behavior is gradually
lost as the IV traces become symmetric. Right: Arrhenius plot of the low bias conductance
showing semiconducting properties. A top axis is included for better readability.

Figure 7.6: Step 5. Current voltage characteristics at 200◦C.

This behavior continues in step 6, see left plot in figure 7.7 in particular at T =

200◦C. Upon increasing the temperature to 300◦C the IV traces become more noisy. The

Arrhenius plot shows that the low bias conductance stays fairly constant up to 260◦C,

corresponding to metallic behavior, before it slightly increases again. It is not clear at
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this point what initiates the changes in the electronic behavior of the diamond-on-graphene

device for the conductance and the IV traces, but we speculate that possibly a surface

reconstruction at the diamond-graphene interface occurs.

In step 7, the noise of the IV traces is increased and the tunability of the Fermi

level of graphene is lost and the diode behavior as well, since the IV traces are symmetric

around zero.

Figure 7.7: Step 6. Left: IVs recorded from 200◦C to 300◦C. Right: Arrhenius plot of the
low bias conductance. A top axis is included for better readability.

Figure 7.8: Step 7. Barristor behavior is completely lost at 300◦C.

133



In order to make sure that no leakage current occurs between the backgate and

the two terminals connecting graphene and diamond, we measured the current towards the

backgate upon reaching 300◦C and found that leakage currents to be absent, within the

range of applied backgate voltages.

Next, the temperature was lowered from 300◦C to 30◦C. During that process the

samples looses all its conductivity around 260◦C. This can be observed as a sharp dip in the

Arrhenius plot in the right plot of figure 7.9. Likewise, the left plot shows how the noisy

IV traces decay towards zero with decreasing temperature. The signal only recovers after

applying an elevated voltage of 3 V and shows a low noise level (high conductive orange

trace in the left plot). The middle plot shows the remaining temperature range from 246◦C

to 30◦C, where the conductivity follows a linear trend in the Arrhenius plot until 140◦C.

Below 140◦C the conductance is below the noise level of the measurement setup.

Figure 7.9: Step 8. IV traces from 300◦C to 30◦C in the left and middle plot. The right
plot shows the Arrhenius figure with a dip around 260◦C, where the samples looses its
conductivity.

Such a behavior can be explained possibly in terms of thermally annealing the

diamond structure, where a reconstruction of the lattice can occur. For a defect rich di-

amond structure, either the recovery of an insulating diamond lattice or graphitization of

the diamond lattice has been reported [23] upon annealing in a temperature range around
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300◦C to 600◦C [22], where activation energies of ∼ 0.7±0.1 eV have been extracted. See

section 1.5 for further details.

Last but not least, the back gate dependence of IV traces has been measured at

room temperature after one high temperature heat cycle, see figure 7.10. Only after zooming

in a slight backgate dependence becomes visible as well as a diode behavior of the sample.

Therefore, a slight barristor behavior is still observerd even after one high temperature

heat cycle. For larger VSD, the tunability of the Fermi level is not clearly visible anymore

neither is the diode behavior. The diamond-on-graphene interface has degraded after a

heat cycle. This could be due to thermal expansion of diamond and graphene as well as

influence of the PMMA capping layer after it passes its glass transition temperature. Then,

the adhesion between diamond and graphene becomes more loose and more susceptible to

effects of thermal expansion of graphene, diamond, quartz or PMMA.

Figure 7.10: Step 9. Barristor behavior at 22◦C after one high temperature cycle.
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7.4 Conclusion

We have realized the first diamond-on-graphene barristor. Our barristor exhibits

an optimal operation behavior between room temperature and 100◦C. At room temper-

ature the tunability of the Schottky barrier is the largest. With increasing temperature

the tunability degrades and is eventually lost. At 100◦C the diode characteristics of the

diamond-graphene interface is the most pronounced. An unusual behavior occurs at 200◦C,

where the polarity of the diode changes directions. Our barristor device is not able to turn

off the current completely to achieve high on off ratios for logic operations when tuning the

backgate voltage. This will require future work as well as more detailed control of the tem-

perature dependance on the sample properties. Our work layed out the first steps towards

high temperature diamond and graphene based electronics for switching applications.
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Memristor

Figure A.1: Memristor response to a pulse train with varying pulse heights initially prepared
in a high resistive state. Respond of the memristor to a single pulse from the pulse train
applied in 6.12.
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Figure A.2: Measurement showing that the dip is not due to dV/dt. The system is decaying
from an unstable short term potentiation for both pulses. After the first pulse the current
eventualls dips below zero. A clear separation in time is visible between the dip and dV/dt
at the end of the pulse, excluding dV/dt at the end of the pulse as the origin of the dip.

Figure A.3: Reproducibility of the current dipping below zero. Response of the memristor
to the other two pulses of the pulse sequence shown in figure 6.18.

150


	List of Figures
	List of Tables
	Introduction into Graphene and Diamond
	Graphene: Lattice and Bandstructure
	Single Crystal Diamond: Lattice, Bandstructure and Impurities
	Polycrystalline Diamond and its Mesoscopic Crystal Structures
	Morphology of Diamond Grains
	Grain Boundaries

	Composition of Polycrystalline Diamond Films
	Metastability of Diamond

	Material Growth and Device Fabrication
	Overview
	Material Growth
	Chemical Vapor Deposition of Graphene
	Microwave Plasma Assisted Chemical Vapor Deposition of Polycrystalline Diamond

	Methods of Heterostructure Fabrication
	Substrates
	Spin-Coating
	Versatility of PMMA
	Polymer Assisted Transfer of CVD Graphene
	Polymer Assisted Transfer of Diamond
	Polymer-Free Assisted Transfer of Diamond - Water Droplet Method
	Pick-up and Transfer: The Mechanics of Fabricating a Diamond-on-Graphene Heterostructure
	Electron-Beam Lithography
	Dry Etching
	Electron-Beam Evaporation
	Device Geometries


	Material Characterization and Measurement Techniques
	Raman Spectroscopy
	Raman Spectroscopy of Graphene
	Raman Spectroscopy of Diamond

	Electronic measurements
	High Temperatures


	Hopping Conduction
	Impurity Conduction
	Anderson Localization and the Mobility Edge
	Variable Range-Hopping
	Temperature Dependence of Variable Range Hopping
	Electric Field Dependence on Variable Range Hopping
	Crossover between Impurity Band and VRH conduction

	Conductivity Measurements of Low and High Doping

	Dissipative Quantum Tunneling
	Closed and Open Quantum Systems
	The Double Quantum Well Model
	Transition Rates and Universal Scaling Behavior
	Universal Scaling of Lowly Doped Samples below 100K
	Ohmic Regime of Dissipative Quantum Tunneling
	Power Law Regime of Dissipative Quantum Tunneling
	Current-Voltage Data in the Power Law Regime
	Current-Voltage Characteristics of Lowly Doped Samples above 100 K
	The Classical to Quantum Transition
	The Classical Regime
	The Quasi-Classical Regime: Classical+Quantum Corrections
	The Transition Temperature T0
	The Quantum Regime

	Theory of Dissipative Quantum Tunneling in a Double Quantum Well
	Conclusion

	Memristor
	What defines a Memristor?
	Continuous Operation of an Undoped Polycrystalline Diamond Memristor
	A Hydrogen Redox-Based Switching Mechanism
	Pulsed Operation of a Diamond Memristor
	The Diamond Memristor: An Inorganic Synapse and the Human Memory Model
	Sensory Effects
	Short Term Memory and Short Term Plasticity
	Long Term Memory and Long Term Plasticity

	Spike-Timing Dependent Plasticity
	Mimicked Refractory Period
	Conclusion

	Barristor
	Graphene-on-Silicon Barristor
	Measurement protocol
	Diamond-on-Graphene Barristor
	Conclusion

	Bibliography
	Appendices
	Memristor



