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ABSTRACT OF THE DISSERTATION

Shortest Path Approximation and
Optimal Transport with Flow-rate Constraints

By

Anqi Dong

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Distinguished Professor Tryphon T. Georgiou, Chair

In an increasingly interconnected world, the efficient and economical transportation of in-

dividuals and commodities has emerged as a cornerstone of modern society. Optimizing

transportation plans has a huge potential for journey planning, congestion reduction, supply

chain management, and data exchanges. These strategies hold immense relevance not only

in the realm of engineering and transportation, but also in other fields, such as physics,

computer science, economics, and several subject areas in mathematics. The present thesis

aims to elucidate the optimization of transportation strategies, with a particular focus on

two classical problems, finding short paths in large networks and solving optimal transport

problems with flow-rate constraints.

The so-called shortest path problem seeks an optimal path of transporting one unit of

mass between pairs of vertices on graphs. We present a novel formulation of the problem as

an l1-regularized regression, often referred to as lasso (Least Absolute Shrinkage and Selection

Operator). Based on this formulation, we draw a connection specifically between trees that

grow as active edge-sets in the least angle regression (LARS) algorithm of the lasso problem,

and respective shortest-path trees that emerge using the bi-directional Dijkstra algorithm.

Then, to overcome the dimensionality challenge in large graphs, we explore the alternating

direction method of multipliers (ADMM) in the lasso formulation. The resulting derivative

xiii



proximal algorithm speeds up the search for the short paths, trading off optimality (i.e.,

finding shortest paths) that may not be absolutely essential in a variety applications.

The basic transport problem is motivated by the need to transport resources/mass

between end-point distributions (supply and demand). We consider the classical Monge-

Kantorovich optimal transport problem with a quadratic cost functional to penalize distance

of transport, with an added constraint that transported mass is required to pass through

constriction points while abiding by specified allowable flow-rate; constriction points may be

conceptualized as toll stations with limited throughput. Our contributions in this topic are

as follows: (1) we provide a precise Monge formulation for the optimal transport problem

with flux constraint at constriction sites along the path that is amenable to generalization

in higher dimensions. We work out in detail the case of transport in one dimension by

proving existence and uniqueness of solutions. Under suitable regularity assumptions we

give an explicit construction of the transport plan; (2) we provide a Kantorovich-type re-

formulation of the problem by introducing a marginal probability density for the time that

mass-elements cross toll stations –a probability density that is to be determined so as to

meet given flow-rate constraints. Interestingly, the Kantorovich-type formalism leads to

multi-marginal optimal transport problem that is readily solvable by using linear program-

ming. Moreover, existence and uniqueness of solutions are also established in this setting.

Then, (3) we propose an entropic penalty term to regularize and reduce the computational

cost of resulting multi-marginal problems. Entropic regularization of standard optimal trans-

port leads to an efficient algorithm, the Sinkhorn algorithm, which applies in the present

case as well. Leveraging the splittable nature of the cost in our formulation, we proposed a

Gluing Sinkhorn algorithm for the multi-marginal optimal transport problem, which reduces

the computational cost to a level comparable to that in standard two-marginal problems.
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Notation

For the convenience of the readers, frequently used notations are listed

Symbols Definitions

G graph G := (V , E)
V vertex set with
E edge set
W weight set
A adjacency matrix
D incidence matrix
L graph Laplacian

µ, ν, σ marginal
Supp (·) support of probability distribution

T push-forward map T : x→ y
c(x, y) cost between x and y

π(x, y), π(µ, ν) coupling/ transportation plans
ρ probability density
Xt flow at time t

W2(µ, ν) Wasserstein-2 distance between µ and ν
vi/vt(x) vertex i of a graph/ velocity at time t
1n/1{·} all-one vector/ indicator function
M Computational domain
h/r momentum/flow-rate bound
ξ location of the toll

H(·) entropy
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Chapter 1

Introduction to transportation

In this thesis, we would like to address a common (maybe one of the most frequently asked)

question:

–Does there exist an optimal path/map between given origin and destination?

–If so, how can I find it?

The significance of such a problem not only shows up in our daily life (especially when

we are using Google Maps or Uber Eats), but echoes in control, economics, and computer

science research. Transportation can happen between (a group of) robots/drones, goods,

information and data, so that the theory we developed can be applied in numerous fields.

In particular, we discuss two well-known problems over the past century,

1. The shortest path problem

2. Optimal transport problem

Before we formulate the problem and talk about technical results, let us expand on the

fundamental idea of these two problems:

2



The problem of determining paths was first considered by Leonhard Euler [39], who

proved that the solution of the Seven Bridges of Königsberg does not exist in 1735. The

characterization of the city, using a graph with vertices and edges, laid the foundation of

graph theory.

Figure 1.1: Seven Bridges of Königsberg (Historic Cities Research Project)

The shortest path problem, by its name, seeks the shortest path between two vertices

(starting/targeting) over a graph. The length of the path is defined as the summation of

weights of all the edges along the path. Thus, the shortest path problem is a point-wise1

transportation from one location to another along the shortest route. Even though the prob-

lem has a long history, the solution of finding the shortest path emerged in the last century

with the contributions (almost at the same time) of Ford [43], Edsger W. Dijkstra [35],

Richard Bellman [7], Dantzig [34], and many others [45, 93].

Forty-six years later, the optimal transport problem was formalized by the giant Gaspard

Monge in 1781. The Monge problem [74], seeks an optimal plan for transporting the soil(e.g.,

1The original problem is from one vertex to another (one-pair), the all-pair shortest path problem has
also been considered, but is known as an NP-hard problem

3



from a hill to a hole) when constructing forts and roads. Distinguished from our first problem,

the optimal transport problem is an inherently group-wise problem, i.e., transportation takes

place between a group of supplies and demands. An optimal plan is assigned with a given

cost and varies with the choice of the cost. For example, the cost between every supply and

demand can be the length of the path. Similar to the shortest path problem, after 155 years

of waiting, the original Monge problem was advanced by Leonid Kantorovich [59] in 1942,

with the Kantorovich relaxation and Kantorovich duality, which allows the mass to be split.

Our work is organized as follows: In Chapter 1, we introduce the two transportation

problems with some preliminaries. In Chapter 2, we briefly review some fundamental con-

cepts in the topic of optimization. In Chapter 3, the l1-regularized shortest path problem

is presented. In Chapter 4, the optimal transport problem with tolls is solved in its Monge

formulation. In Chapter 5, the toll problem abiding the flow-rate constraint is formulated as

a Kantorovich relaxation of the Monge problem under the framework of the multi-marginal

transport problem. In Chapter 6, the entropic regularization of the Kantorovich problem is

proposed with a modified gluing Sinkhorn algorithm for efficient computation.

In the following sections, we formally introduce the two problems in their standard form,

along with the corresponding notations.

1.1 Transportation on a graph

Transportation happens in multiple forms over graphs in different settings. Besides the pair-

wise shortest path problem we studied, a close variant will be the all-pair shortest path [93].

Moreover, transportation like the traveling salesman problem [67, 4] considers visiting all

the vertices with minimum cost, and the idea of moving with randomness is introduced as

random walks on graph [69, 22], and basically building the foundation of Google’s searching

engine [13].

4



1.1.1 Graph and matrices

A graph G is specified by a pair of sets,

G := {V , E}

where V represents the set of nodes/vertices, herein always assumed to have finite cardinality

|V| = n, i.e.,

V := {v1, v2, . . . , vn},

and where E represents the set of edges

E = {e1, e2, . . . , em},

with cardinality |E| = m. Graphs are specified further to be directed or undirected. For

specificity, we often denote edges with a double index, to indicate the vertices they link,

i.e., eij = (vi, vj) represents an edge that connects vertices vi and vj, that may also encode

the directionality vi → vj with vi vj being the head and tail of the edge in the case of a

directed graph, respectively. In the case of an undirected graph, the order is inconsequential

as transport along both directions is permitted.

Edge-weights (e.g., wij corresponding to edge eij) are often used to quantify cost or ease

of flow along the corresponding edge. A graph with uniform edge-weights is known as an

unweighted graph. A weighted graph is specified by a triple

G = {V , E ,W},

by adjoining the weight set W = {w1, w2, . . . , wm}, corresponding to the edge set E .

5



The graph can coincide with more complex scenarios, e.g., we may consider the self-loop

for vertices and multi-edges between one pair of vertices. Another important concept is the

connectivity of the graph, the graph is said to be connected if there always exists a path

between any pair of vertices. A connected subgraph is also known as a component. Herein,

we always consider positive-weighted connected graphs without self-loops and multi-edges.

Alternatively, the graph can be characterized by associated matrices, which is under-

stood under the framework of linear algebraic graph theory. We refer to [5] for a comprehen-

sive survey on this topic. Herein, we hand out the definition and some nice properties of the

adjacency matrix, incidence matrix, and graph Laplacian.

Definition 1.1 (Incidence matrix). The incidence matrix D is a n-by-m matrix with

elements

[D]ij =


−1 if vi is the head of edge ej,

1 if vi is the tail of edge ej,

0 otherwise.

The incidence matrix directly characterizes the relationship between vertices and edges.

A pair of vertices is incident if they are connected by an edge. By its definition, each column

of the incidence matrix has only two nonzero elements, and thus the matrix is sparse. The

incidence matrix is generically defined for a directed graph since the direction of the edges

is considered (head and tail). For the undirected graph, a 0 − 1 incidence matrix can be

similarly defined with only 0 and 1.

The adjacency of the graph can be also represented by the adjacency matrix as follows

Definition 1.2 (Adjacency matrix). The adjacency matrix is an n-by-n (square) matrix
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with elements

[A]ij =


1 if vertex vi and vj are adjacent,

0 otherwise.

It can be instantly observed that the adjacency matrix is symmetric, i.e., [A]ij = [A]ji.

Moreover, the row/column sum of the ith row/column is the degree (the number of neigh-

bors) of vertices vi. The power of the adjacency matrix is fruitful as well, in the sense of

understanding how well the graph is connected.

Lemma 1.1 (Power of A). The value of i, j-th elements of Ax,∀ x ∈ N, i.e., the x power

of the adjacency matrix A, equals to the number of paths between vi and vj with x edges.

Finally, with arbitrarily assigned orientation, the graph Laplacian (also, Laplacian ma-

trix) can be then obtained according to the following definition.

Definition 1.3 (Graph Laplacian). The graph Laplacian L is a n-by-n matrix so that

L = DDT where D is the incidence matrix.

[L]ij =


degree of vertex i, if i = j

−1, if eij ∈ E

0, if eij /∈ E

From the Definition 1.1, we can easily observe some properties of the graph Laplacian.

For instance, L is a symmetric matrix and also positive semidefinite. Moreover, the graph

Laplacian can capture the Laplacian quadratic form, i.e.,

xTLx =
∑
i,j

(xi − xj)2.
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where x ∈ Rn is the state vector of vertices. The state vector x can capture physical features

such as voltage assigned to every vertex. Also, for general states, the Laplacian characterizes

a first-order system as

ẋ = −Lx

Below, we also summarize some graphs with specific structures to give a better view of this

topic.

Remark 1.1. There exist some graphs with a specific structure, that have more fruitful prop-

erties than general ones. Herein we list some of them for readers’ interests.

1) Random graph: the random graph, by its name, introduces a certain level of randomness

to the graph structure. For instance, an edge can be assigned to a pair of vertices with re-

spect to some probability. One of the most famous examples is the Erdős–Rényi model. See,

e.g., [38].

2) Tree: the graph is known as a tree when loops do not exist. Equivalently, for a connected

tree with only one component, the path between any pair of vertices is unique.

3) Planar graph: The planar graph is the group of the graph that can be embedded in a plane.

4) Regular graph: the graph is a regular graph if each vertex has the same number of neigh-

bors. More specifically, the graph is a k-regular graph is every vertex has k neighbors.

There are many good references to understanding graph theory/network science. For

example, [78] gives a nice overview of various applications; [1] provides a comprehensive

study of network work problems; [5] focus more on the matrices of the graph and their

properties; in [73] the multi-agent network are considered in the language of control. Also,

the spectral graph theory [29].
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1.1.2 Network flow problems

Network flow problems are well-studied in the field of computer science and have a natural

connection to transportation. In this section, we would like to explain two kinds of flow

problems and their variants in a nutshell. The flow problems can be categorized into two main

streams, i.e., the minimum cost flow problem and the maximum flow problem. Herein, we will

briefly review them for the readers. Needless to say, both problems are salient in computer

science and graph theory. We refer the readers to [1] for a comprehensive study on them.

The readers can always consider the example (Fig.1.2) below, where transportation starts

from vertex vs(= v1) and arrive at vt(= v9). The weights on each edge can be interpreted

as the capacity in the maximum flow problem, the transportation cost in the minimum cost

flow problem, and the length in the shortest path problem.

v1

v2

v3

v4

v5

v6

v7

v8

v9

3

6

7

4

1

2

3

4

1

1
2

5

2

Figure 1.2: Example: Nicholson’s graph

The maximum flow problem/ minimum cut problem

The Max-flow problem [42] of a network is to consider a digraph G = {V , E}, for each edge

e ∈ E , there exists a capacity c(e), and we consider maximizing the flow that can go through

the whole network from a given vertex vs to a target vertex vt.

Problem 1.1. Denote fi,j as the flow goes through vi to vj, we can then propose the linear
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programming formulation to maximize the flow fs,t:

max fs,t∑
i

fi,j =
∑
j

fj,i, ∀ vi, vj ∈ V/{vs, vt} (Capacity conditions)

0 ≤ fi,j ≤ c(eij) (Conservation conditions)

where the flow is defined as

fs,t =
∑
vj∈V

f out(vs, vj)−
∑
vj∈V

f in(vs, vj) (1.1)

with fin(vs, vj) is the in-flow from neighborhood of vs and f
out(vs, vj) is the out-flow.

The constraints guarantee the following: first, the quality of the out-flow is equal to the

in-flow for the rest vertices except vs and vt; secondly, the flow is bounded by the capacity

of the edge; finally, only positive flow is allowed. The well-known algorithm to solve the

max-flow problem is the Ford–Fulkerson algorithm.

Algorithm 1 Ford–Fulkerson algorithm

Input: Graph G, Gf
Output: flow f
1: while there exists an (s, t) path P in Gf do
2: Consider (f, c, P ), do δ ← bottleneck capacity of augmenting path
3: for each e ∈ P
4: if e ∈ E then
5: f(e) + δ → f(e)
6: else
7: f(ereverse)− δ → f(ereverse)
8: end if
9: Update Gf
10: end while
11: return f

The residual graph Gf allowed us to undo the bad path and adjust it by the bottleneck
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capacity so that we can choose another path P . The result from [1, Theorem 6.5 (Integrality

Theorem)] for the maximum flow problem guarantees the existence of an integer maximum

flow.

Example 1.1. Considering Nicholson’s graph and seeking the maximum flow from v1 to vt,

we have fs,t = 8. The edges are highlighted in red in Fig. 1.3.

v1
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Figure 1.3: Maximum flow from v1 to v9 over Nicholson’s graph

The minimum cost flow problem

The minimum cost flow, considering the case of transporting a certain amount of mass (say,

b) from a supply vertex vs to a demand vertex vt. The weight cij assigned to each is the cost

of passing one unit of mass through eij. The problem then has the form

Problem 1.2 (Minimum cost flow). Given the transporting cost of every edge e ∈ E and

mass b, determine the flow f(eij),∀ eij ∈ E that minimizes

∑
i,j

cijf(eij)

obeying the constraints

f(eij) + f(eji) = 0,
∑

vs,vt /∈V

f(eij) = 0,
∑
vj∈V

f(es,j) = d,
∑
vj∈V

f(et,j) = d.
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The integrality of the minimal flow can be then obtained by [1, Theorem 9.10 (Integrality

property)] using the result of [1, Theorem 6.5 (Integrality Theorem)], and the cycle-canceling

algorithm connects the two problems.

1.1.3 Shortest path problem

Now we are in the position to define a path for undirected graphs2, and hence formulate the

shortest path problem.

The shortest path problem can be considered as a special case of the minimum cost

flow problem by assuming the supply of s equals 1 and the demand of t = −1 (transporting

one unit of mass). For this problem, we aim to find a path of minimum cost (or length)

from a specified vertex vs to a targeting vertex vt. Some of the simplest applications of the

shortest path problem are to determine a path between two specified vertices of a network

that has minimum length, a path that takes the least time to traverse, or a path that has

the maximum reliability. A path p(s, t) between vs and vt can be defined as a set of edges,

p(s, t) = {(vs, v1), (v1, v2), (v2, v3), . . . , (vn−1, vt)}.

Thus, the shortest path problem is then defined as follows,

d(s, t) = min
p(s,t)∈Pst

length p(s, t) (1.2)

where Pst denotes the set of all the admissible paths and d(s, t) is known as the distance

between the two vertices. Even though the formula seems trivial, finding the optimizer is

not so easy. We will detail this problem and our new approach in Chapter 3.

2We will show that the definition of path can be easily generalized for a directed graph in Chapter 3
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Dijkstra’s algorithm

Dijkstra’s algorithm [35] to find the shortest path from vs to vt requires maintaining and

updating values for the following variables,

dist : an array of distances from the root vertex vs to all

the other vertices in the graph,

S : the set of visited vertices up to the present step, and

Q : the queue of vertices to be visited.

The algorithm begins with an initial value of +∞ for all distances. It updates the values at

each step as follows:

Algorithm 2 Dijkstra’s algorithm

Input: source vertex vs and target vertex vt.
Output: the shortest path and the length of the path.
1: dist(0)[vs]= 0, dist(0)[vi]=∞,∀vi ̸= vs,
S = ∅, Q = V .

2: while vt /∈ S do
3: pick u from Q with minimum distance:

u = argmin
v∈Q

dist[v]

4: Remove u from Q: Q← Q \ {u}
5: Add u to S: S ← S ∪ {u}
6: for vi ∈ neighbors[u] do
7: if dist [vi] > dist [u]+wu,vi then
8: dist[vi]← dist[u] + wu,vi
9: end if
10: end for
11: end while
12: return dist [vt]

1.2 Transportation between distributions

The topic of optimal transport (OT), as we previously discussed, has a long history and raises

interest in diverse fields, e.g., machine learning and thermodynamics. The goal of optimal

transport is to find a transportation map T that takes mass from the supply distribution µ
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to the demand distribution ν. Of course, transportation is not free in general, and thus a

cost c is always introduced to our problem.

In this section, we will briefly review the three most classical formulations of the problem:

the Monge problem, its Kantorovich relaxation, and an equivalent dynamical formulation

when having a quadratic cost. In the end, we briefly review a generalized multi-marginal

problem.

Now we are in the position to formulate the optimal transport problem. Denote the

probability spaces as (X , µ) and (Y , ν), where µ, ν are the probability measures and X ,Y

are the measure space. The cost function is then defined on a product space X × Y , which

is a measurable map from X × Y → R+ ∪ {+∞}.

1.2.1 Monge problem

The Monge problem considers the transportation of non-splittable mass, i.e., the mass at

location x must be transported to a unique destination y. The transportation map is thus

introduced as the push-forward map T : X 7→ Y , so that3

ν = T♯µ,

meaning the push-forward map transport µ onto ν and ν is known as the push-forward.

Moreover, the push-forward map is defined as

ν(B) = µ(T−1(B)) for any measurable set B ⊂ Y . (1.3)

Let the transportation cost be c(x, T (x)), the Monge transport problem reads

Problem 1.3 (Monge transport). The Monge problem minimizes the transportation cost

3As it is standard, the notation ♯ denotes the “push forward”.
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Figure 1.4: Monge problem

functional

argmin
T

∫
X
c
(
x, T (x)

)
dµ(x) (1.4)

over all the admissible T satisfying (1.3).

Two fundamental questions of the Monge transport can be thus answered:

1. Does the Monge solution (T ) always exist?

2. If the Monge solution exists, is it unique?

Unfortunately, the answers to both of the questions are negative, and we give two classic

counter-examples (Remark 1.2 and 1.3) for the readers. We will revisit these questions for

different formulations (multiple times) throughout.

Remark 1.2 (Existence of Monge solution). The existence of an optimizer for the

Monge problem is not guaranteed. For instance, consider the supply is a Dirac delta at x

while the demands are two Dirac deltas at y1 and y2, since the mass is not splittable at x,

the map T is not well-defined.

On the other side, even if the optimal map exists, it may not be unique. To see this,

we introduce the case of book shifting from [91, Example 2.16]
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Remark 1.3 (Book shifting). In the one-dimensional book shifting, we consider the trans-

portation cost c(x, y) = |y − x|, and let X = [0, 2] and Y = [1, 3]. The maps

T (x) := x+ 1 and T ′(x) :=


x+ 2, if x ∈ [0, 1]

x, if x ∈ (1, 2]

are both optimal so that for (not strictly convex) costs c(x, y), the optimal transport map is

not unique.

Since the Monge problem “matches” the mass between x and y, a related problem is

the stable matching problem (also, stable marriage problem [50]), where the cost function is

replaced by preference lists4.

1.2.2 Kantorovich problem

The Kantorovich formulation, as a relaxation of the original Monge problem, allows the

mass to split by defining the coupling π on the product X × Y with marginals µ and ν.

Thus, dπ(x, y) represents the amount of mass transported from x to y, and c(x, y) is the

corresponding cost. Next, we formally define the coupling and formulate the Kantorovich

problem.

Definition 1.4 (Coupling). The coupling π(x, y) is defined as a probability measure of the

product space X ×Y. Moreover, the projection of π(x, y) onto X coincides with the marginal

dµ(x), and the projection of π(x, y) onto Y coincides with marginal dν(y), meaning

∫
Y
dπ(x, y) = dµ(x),

∫
X
dπ(x, y) = dν(y).

4In the stable marriage problem matching between a two side market, e.g., men and women, with respect
to their individual preference list, the matching is considered to be stable if and only if the no pair of men and
women can be both matched to better candidates in their preference list. Similar to the Monge problem, the
matching is, in general, not unique. The well-known solver for the problem is the Gale-Shapley algorithm [46]
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We can then define the set Π of all the admissible couplings with marginals µ and ν by

Π(µ, ν) =

{
π : X × Y → R+

∣∣∣∣ ∫
Y
dπ(x, y) = dµ(x),

∫
X
dπ(x, y) = dν(y)

}
.

Figure 1.5: Coupling with marginal µ and ν

The gluing lemma below allows to glue two Kantorovich maps sharing a common

marginal together and becomes a useful tool in proving the triangle inequality of the Wasser-

stein distance, and its significance shows up in the analysis of the multi-marginal transporta-

tion as we will show later

Lemma 1.2 (Gluing lemma [105, Lemma 7.6] ). Let µ, ν, σ be the three probability

measures, with support in spaces X1,X2,X3, respectively. Let the couplings

π ∈ Π(µ, σ) and π′ ∈ Π(ν, σ),

which share the common marginal σ. Then there exists a probability measure π⋆ on the

product space X1 ×X2 ×X3 with marginals π on X1 ×X3 and π′ on X2 ×X3.

Problem 1.4 (Kantorovich transport). Given the cost c(x, y), the Kantorovich problem
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can then be written as

argmin
π∈Π

∫
X×Y

c(x, y)dπ(x, y)

with given marginals µ and ν.

Remark 1.4 (Relaxation). The Kantorovich formulation can be considered as a relaxation

of the Monge problem. In the sense that the formulation allows the mass to be split, and the

variable changes from T (x) to π(x, y), the coupling π can be rewritten in terms of the map

T (when T exists) as dπ(x, y) = dπT = dµ(x)δy=T (x) with δ denotes the Dirac delta function.

Next, we see the dual of the Kantorovich problem reads

Problem 1.5 (Dual problem). For integrable functions φ ∈ L1(X .µ) and ψ ∈ L1(Y .ν),

the dual problem has the form

argmin
φ,ψ

∫
X
φ(x)dµ+

∫
Y
ψ(y)dν

with φ and ψ satisfying

φ(x) + ψ(y) ≤ c(x, y).

The Kantorovich dual problem has an insightful economics/transportation interpola-

tion, known as the shipper’s problem [105, Section 1.1.3.], in which the function φ and ψ

are interpreted as the loading and unloading prices for the supply and demand. Now we

formally introduce the Kantorovich duality

Theorem 1.1 (Kantorovich duality). For functions (φ, ψ) ∈ L1(dµ)×L1(dν) and lower

18



semi-continuous cost function c : X × Y → R+ ∪ {+∞}, we have

inf
π∈Π

∫
X×Y

c(x, y)dπ(x, y) = sup
φ,ψ

∫
X
φ(x)dµ+

∫
Y
ψ(y)dν.

Proposition 1.1 (Existence). Kantorovich transport always admits a minimizer.

Proof. For detailed proof, see, e.g., [105, Proposition 2.1]. The idea is basically to show that

the set Π of admissible couplings is non-empty.

Knowing the optimizer of Kantorovich transport always exists, we now discuss the

condition for a unique optimizer. If the minimizer π is unique, then π must be supported

on a graph of a function, i.e., a thin line in Fig. 1.5. We start from the simplest one-

dimensional case, i.e., when X = Y = R, and define the Monge condition (also known as the

Spencer-Mirrlees condition in economics [27, 91]) of the cost function c is as follows

Definition 1.5 (Monge condition). In one dimension, the cost function c(x, y) : R2 → R

satisfies the “Monge” condition [88] if ∀(x, x′, y, y′) ∈ R4, with x′ ≥ x, y′ ≥ y, the cross

difference

∆(c) := c(x, y) + c(x′, y′)− c(x, y′)− c(x′, y)

is either quasi-antitone (∆(c) ≤ 0), or quasi-monotone (∆(c) ≥ 0).
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Figure 1.6: For a matching (x′, y) and (x, y′), where x′ > x and y′ > y, if the cost c satisfies
the Monge condition, there always exist a better pairing, namely, (x, y) and (x′, y′) having a
lower cost.

Let µ and ν be two probability measures on R with cumulative distribution functions

F and G,

F (x) =

∫ x

−∞
dµ(x), G(y) =

∫ y

−∞
dν(y),

and also the inverse of F and G with variable u ∈ [0, 1],

F−1(u) = inf{x, F (x) > u}, G−1(u) = inf{y,G(y) > u}

The Hoeffding-Fréchet Theorem states that function H(x, y) : R2 → R+ is in the class
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of joint cumulative distribution functions with marginal F (x) and G(y) if and only if5

F (x) +G(y)− 1 ≤ H(x, y) ≤ min{F (x), G(y)}. (1.5)

Define H−(x, y) := F (x) + G(y) − 1 and H+(x, y) := min{F (x), G(y)}, and thus arrive at

the first important result.

Theorem 1.2. If the cost c(x, y) satisfies the Monge condition, for all the admissible H(x, y)

that satisfy (1.5), we have

∫
X×Y

c(x, y)dH+(x, y) ≤
∫
X×Y

c(x, y)dH(x, y) ≤
∫
X×Y

c(x, y)dH−(x, y),

so that the transportation map π associated with the joint cumulative distribution functions

H+(x, y) := min{F (x), G(y)} is optimal.

The above result can be found from [105, Theorem 2.18] and [88, Theorem 1.4.11 and

Chapter 3], and the π associated toH+ is optimal for convex costs that take the form c(x−y).

The key idea is to apply monotone arrangement of µ onto ν.

For the higher dimensional case (X ,Y = Rn, n > 1), an alternative argument for

transportation on the graph of a function is based on the cyclic monotonicity as below:

Definition 1.6 (Cyclic monotonicity ([104, Definition 5.1],[105, Definition 2.22])).

A subset Γ ⊂ Rn×Rn is a cyclic monotonic set if, for any family of points (x1, y1), (x2, y2), . . . ,

(xN , yN) and N ≥ 1, the inequality

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1),

holds with the convection yN+1 = y1

5We use the notation dπ(x, y) = dH(x, y) and H is non-decreasing,right-continuous in both of the argu-
ments.
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From now on, we will restrict ourselves to the Monge-Kantorovich problem with the

strictly convex cost c(x, y) = |x − y|2. Optimizing with respect to the quadratic cost is

equivalent to finding the Wasserstein-2 distance between the measures µ and ν

W2(µ, ν) = inf
π∈Π(µ,ν)

∫∫
X×Y
|x− y|2dπ(x, y)

1.2.3 Benamou-Brenier formulation

In the Benamou-Brenier formula of the OMT problem [8], the transportation happens be-

tween ρ0dx = dµ(x) and ρtfdy = dν(y) over the spaceM. The following dynamical formula-

tion, where the transportation happens in a fixed time interval [0, tf ] so that all the particles

leave at time t = 0 and arrive at t = tf

W2(ρ0, ρ1) = inf
ρ,v

∫
M

∫ tf

0

ρ(t, x)∥v(t, x)∥2dxdt

s.t.
∂

∂t
ρ(t, x) +∇(ρ(t, x)v(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(tf , x) = ρtf (x),

ρ(t, x) ≥ 0, ∀ t ∈ [0, tf ].

(1.6)

Consider ρ(t, x)v(t, x) as the momentum m(t, x) = ρ(t, x)v(t, x) of particles, then 1.6 can be

rewritten as

W2(ρ0, ρ1) = inf
ρ,v

∫
M

∫ tf

0

m(t, x)2

ρ(t, x)
dxdt

s.t.
∂

∂t
ρ(t, x) +∇(m(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(tf , x) = ρtf (x),

ρ(t, x) ≥ 0, ∀ t ∈ [0, tf ].

(1.7)

Noticing the current two formulations are in the Eulerian form, we can convert the problem in

the Lagrangian form by introducing the trajectory Xt of the particle labeled by the starting

location x = X0, and we have ∂tXt = v(t,Xt(x)).
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The Benamou-Brenier formulation, in its Lagrangian form, now reads

inf
Xt

∫
X

∫ tf

0

|∂Xt(x)|2ρ0(x)dxdt

s.t. X0(x) = x, Xtf (x) = y.

Moreover, the optimal velocities ∂tXt are constant, i.e., ∂tXt =
(
T (x)− x

)
/tf , and thus

Xt = x+
t

tf
(T (x)− x)

In general, we always assume tf = 1 without loss of generality. An alternative version

of the above property is also characterized by McCann’s interpolation (also, displacement

interpolation)[71], [105, Section 5.1.3].

1.2.4 Multi-marginal Optimal transport

A newly developed branch is the multi-marginal optimal transport (also known as multi-

variate optimal transport) [87, 82, 16], where a coupling of more than two marginals. A

standard multi-marginal optimal transport problem, with three marginals, can be charac-

terized as follows

Problem 1.6 (Multi-marginal optimal transport). Given n marginals µ1, µ2, . . . , µn

and cost c(x1, x2, . . . , xn), the optimal transport problem minimizes the objective

∫∫∫
x1,x2,...,xn

c(x1, x2, . . . , xn)dπ(x1, x2, . . . , xn)

over all the admissible couplings π ∈ Π(µ1, µ2, . . . , µn), where
6

Π :=

{
π ∈ X1 ×X2 × . . .Xn → R+

∣∣∣∣ Pxi(π(x1, x2, . . . , xn)) = µi(xi), i = 1, 2, . . . n

}
.

6The operator Pxi
(π) project the coupling π onto the xi marginal.
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The difficulty of solving the multi-marginal optimal transport problem is twofold: deter-

mining the uniqueness of the coupling may be hard for a general cost; numerically solving the

problem is expensive (just think about the size of the variable π). Specifically, for the one-

dimensional case, i.e., x1, x2, . . . , xn ∈ R, the uniqueness can be determined by a generalized

Monge condition.

Proposition 1.2 (General Monge condition). To have a unique minimizer, the cost

function c(x1, x2, . . . , xn) needs to satisfy the generalized Monge condition [88, Page 24] which

says that any two of the arguments in c(x1, x2, . . . , xn) have to satisfy the Monge condition.7
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brogio [91], Carlier [17], Peyré [83]. The optimal transport can surely happen on graphs.

For instance, [98] considers continuous flow over graphs, and more general, on discrete sur-

faces [66]. On the practical side, the idea of optimal transport has a wide application in

image processing [80], matching [26].

7A simple example to check is the cost c(x1, x2, . . . , xn) = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
2 + · · · +

(xn−1 − xn)
2
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Chapter 2

Introduction to optimization

In this chapter, we will go through elementary mathematical optimization in order to refresh

the readers with some fundamental ideas. The chapter can be skipped if the readers are

familiar with the topic. The outline is as follows: we first formalize the linear and convex

programming; secondly, we discuss the l1 norm and entropic regularization; finally, we derive

two popular optimization solvers.

Throughout this chapter, we denote x ∈ Rn as the unknown optimizer, and x can be a

vector such that x = [x1, x2, . . . , xn] with a slight abuse of notation. Additionally, assume

the function f(x) : Rn → R is the objective function (the function to be minimized) and

function g(x) : Rn → R is the subjective function (the constraint to be obeyed).
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2.1 Linear and convex programming

Herein, we consider the linear and convex problem. The problem has a general form with

the objective function f(x) and m constraints as

min
x

f(x) s.t. gi(x) ≤ b, i = 1, . . . ,m.

where, for x ∈ Rn, f(x) : Rn → R and gi(x) : Rn → R, which can satisfy either equality or

inequality criteria.

2.1.1 Linear programming

For linear programming (LP), both the objective and subjective functions are linear, and

the optimization problem can be written in the explicit form.

Problem 2.1 (Linear programming). Given a cost vector c = [c1, c2, . . . , cn], the linear

programming has the form

min cTx s.t. Ax ≤ b

Accordingly, by its definition, the maximum flow and the minimum cost flow (shortest

path) can be formulated as linear programs. Similarly, the discrete version of the Kantorovich

formulation can be solved by linear programming

Problem 2.2 (Discrete Kantorovich problem). Given the cost matrix c, where the i, j-

th element cij is the cost transporting from xi to yj, the discrete optimal transport plan πij

can be obtained by minimizing

∑
i

∑
j

cijπij
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with respect to the marginal (linear equality constraint) and subject to element-wise inequality

∑
i

πij = νj,
∑
j

πij = µi, and πij ≥ 0.

However, the discrete Monge problem can not be formalized as linear programming since

the mass is not splittable, and thus the nonzero elements in π must be 1 (the problem mini-

mizes over all the permutation matrix). This problem is known as integer programming [108],

which is an NP-hard problem [60]. We recommend the readers to [70] for a survey on the

early works.

2.1.2 Convex programming

Now we explore linear programming in a more general setting by introducing the connectivity

of the function.

Definition 2.1 (Convex function). A real-valued function f(x) : Rn → R is convex if, for

all x1, x2 ∈ Rn and α ≥ 0, the condition

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

holds.

The convex optimization problem reads

Problem 2.3 (Convex programming). Given the convex functions f(x), g(x), minimiz-

ing f(x) with respect to the gi(x) ≤ ri, i = 1, 2, . . . ,m.

The applications of convex programming can be found everywhere in the field of static,

machine learning, and control. We list a few examples of the objectives below:
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1. Least-square cost: ∥Ax− b∥22.

2. 1-norm cost in [101] 1: ∥x∥1 =
∑

i |xi|.

3. 2-norm cost: ∥x∥22.

4. Elastic Net cost in [111]: ∥Ax− b∥22 + λ1∥x∥22 + λ2|x|1.

2.2 Regularization

An extra penalty term is frequently added to the cost as the regularization term, which is

used later. We revisit two kinds of regularization which are used in the later of our discussion.

2.2.1 l1-regularization

An interesting property of the optimizer is the sparsity, i.e., we would like the optimizer to

have as many zeros as possible so that x is sparse. Such a property is extremely important for

certain groups of problems. For instance, in feature selection and model reduction [94, 55],

one crucial question to answer is “what are the most important features/parameters?”.

However, seeking the sparest optimizer requires minimizing the 0-norm, which is NP-hard [76]

and the problem becomes impractical. Due to the convexity of the l1 norm, the following

problem is proposed as a relaxation for sparse solutions.

Problem 2.4 (l1-norm minimization). Given a matrix A and a vector r, the problem

reads

argmin
x

∥x∥1

s.t. Ax = b

1Note that the l1 norm is convex but not differentiable, dealing with such function requires the usage of
the splitting operator and the sub-differentibility introduced in Chapter 3
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The l1 regularization (also, lasso) is to penalize the constraints with a weight of 1/λ and the

l1-norm cost, i.e.,

argmin
x

∥x∥1 +
1

λ
∥Ax− b∥22, λ > 0.

The problem above is known as lasso (least absolute shrinkage and selection operator) in

statistics and later gained a lot of attention in machine learning.

2.2.2 Entropic regularization

Compared to convex optimization, solving linear programming comes with a higher price

tag, and one may add a regularization term and arrives at a convex relaxation and suitable

for proximal algorithms.

Entropic regularization considers an additional convex penalty term, which is the en-

tropy of the coupling
∫∫

X ,Y π(dx, dy)dxdy = 1 as

H(π) =
∫∫

X ,Y
−π log(π)dxdy,

or the discrete version for the stochastic matrix πij

H(π) =
∑
i

∑
j

−πij(log(πij)− 1),

see also [31] for more. The entropic regularization of Problem 1.4 has the form

argmin
π

∫∫
X ,Y

(1
ϵ
cπ −H(π)

)
dxdy =

∫∫
X ,Y

π log(
π

π̂
)dxdy

where π̂ = exp(−c(x, y)/ϵ) is the prior and

KL(π∥π̂) :=
∫∫

X ,Y
π(dx, dy) log(

π(dx, dy)

π̂(dx, dy)
)dxdy
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is the Kullback-Leibler divergence [65] between π(dx, dy) and π̂(dx, dy). Similarly, for the

discrete problem, the optimal coupling can be approximated by solving

argmin
π∈Π

KL(πij∥π̂ij) = argmin
∑
i,j

−πij log(
πij
π̂ij

). (2.1)

over π in the set

Π(µ, ν) =

{
π ∈ Rn×n+

∣∣∣∣∑
i

πij = νj,
∑
j

πij = µi,
∑
ij

πij = 1

}
.

2.3 Optimization methods

Knowing the optimization problem has a unique optimizer, the optimization methods offer

a chance to solve/approximate the optimal solution. The framework of optimization is not

only for linear/convex programming, but also for more complicated scenarios like non-convex

programming. There are numerous methods have been proposed, for example, the gradient

descent (GD) method [11, Section 9.3], the stochastic gradient descent (SGD) method [77],

the Alternating Direction Method of Multipliers (ADMM) [9], Lagrange multipliers, Aug-

mented Lagrangian Method, etc.

2.3.1 Karush–Kuhn–Tucker (KKT) conditions

The Karush–Kuhn–Tucker (KKT) condition can be traced back to the work [64], which was

first discovered by William Karush and rediscovered by the giants in game theory Harold

W. Kuhn and Albert W. Tucker. To understand the KKT condition (also, first-order opti-

mality condition), we start with a standard form of convex programming with equality and

inequality constraints.

min f(x) s.t. g1(x) ≤ 0, g2(x) = 0.
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Introducing the Lagrangian multipliers (dual variables) for the two constraints λ1 and λ2,

the Lagrangian of the problem reads

L(x, λ1, λ2) = f(x) + λ1g1(x) + λ2g2(x),

and thus the corresponding dual problem has the form

max
λ1,λ2

f(x⋆) + λ1g1(x
⋆) + λ2g2(x

⋆)

where λ1 ∈ R+, λ2 ∈ R, and minimizer x⋆ can be obtained according to

x⋆ = argminL(x, λ1, λ2).

The KKT condition leads to

∂xf(x) + λ1∂xg1(x) + λ2∂xg2(x) ∋ 0.

Note that the objective function f(x) is not necessarily convex and differentiable. For exam-

ple, the KKT condition can also be derived for the sub-differentiable function f(x) = |x|1.

Example 2.1. To see the KKT condition of Problem 2.1, we first derive the Lagrangian,

introducing the Lagrangian multipliers u and v for the marginal equality constraints as

L(π, λ1, λ2) =
∑
i,j

cijπij +H(π) + uT (π1− µ) + vT (πT1− ν),

and thus the first-order optimality condition gives

∂L(π, λ1, λ2)
∂πij

= cij + ϵH(πij) + vi + uj = 0.

which has a closed-form expression of π, and further leads to the well-known Sinkhorn algo-
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rithm by updating u and v with respect to the marginals µ and ν.

The above result leads to the famous Sinkhorn algorithm – a powerful tool for efficient

approximate the map π by repetitively updating a prior map given by the cost. The history

of such a method can be traced back to the works of Sinkhorn [95, 96], and further developed

by [33, 25].

2.3.2 Augmented Lagrangian Method

Without loss of generality, we consider the optimization problem with only the equality

constraint, i.e.,

min f(x), s.t. g(x) = 0.

The augmented Lagrangian method, originally discussed in [86, 56], includes a weighted

augmentation term, and hence the augmented Lagrangian is

L(x, λ) = f(x) + λg(x) +
r

2
∥g(x)∥2

where ρ > 0 is the weight of the augmentation term. The variables are updated by the

method of multipliers

xk+1 := argmin
x
L(xk, λ)

λk+1 := λk + rg(xk+1)

A novel connection between such a method and optimal transport is addressed by Benamou

and Brenier [8] to numerically solve the Monge-Kantorovich mass transfer problem.
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2.3.3 Alternating direction method of multipliers

Consider the problem with the objective function f1(x) + f2(x), where f1(x) and f2(x) are

proper convex functions. Its consensus form reads

min f1(x) + f2(z) s.t. x = z.

The corresponding augmented Lagrangian of the above problem is

L(x, z, λ, r) = f1(x) + f2(z) + λ(x− z) + r

2
∥x− z∥22

The updates in ADMM can be expressed as

xk+1 := argmin
x
L(xk, zk, λk, r),

zk+1 := argmin
x
L(xk+1, zk, λk, r),

λk+1 := λk + r(xk+1 − zk+1).

The advantage of the ADMM is that the variables x, z split the objectives into two and are

updated independently.
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Chapter 3

The Shortest path

We shall not cease from exploration,

And the end of all our exploring,

Will be to arrive where we started,

And know the place for the first time.

– T.S. Eliot, from “Little Gidding,” Four Quartets, 1943.

The main contribution of this work is to formulate the shortest path problem as ℓ1-

regularized regression, a convex optimization problem [102, 101]. This formulation is, to the

best of the authors’ knowledge, original.

A second contribution stems from exploring at depth a popular ℓ1-regularized-regression

solver, known as Least Angle Regression (LARS), as applied to the shortest path problem.

Specifically, we have shown (Theorem 3.1) that the LARS implementation of our “lasso-

shortest-path” formulation replicates a defining feature of the so-called bi-directional Dijkstra

algorithm, to iteratively build two shortest-path trees, starting from the two specified vertices

and until the two trees connect. Through this connection, we present a new perspective of

the Dijkstra’s algorithm that is completely different than the common presentation as a
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greedy algorithm or a dynamic programming viewpoint [97].

Lastly, we explore the Alternating Direction of Multiplier Method (ADMM)[9, 11], and a

variant (InADMM) [109], for reducing the computational cost in identifying an approximate

shortest path for very large graphs. A useful feature of ADMM is that it admits distributed

implementation, initialized with any suitable path, if one is available. This feature, which

speeds up convergence, is especially useful when a short path needs to be updated following

topological changes in the graph. A comparison of the computational cost of these imple-

mentations to those of Dijkstra’s algorithm is given in Table 3.2.

The ADMM algorithm proposed here is completely different than earlier proposals on

the subject, e.g., the self-stabilizing approach in [19] and the consensus-based approach

in [110]. The proposed algorithm aims at identifying an (approximate) shortest path be-

tween specified vertices, allowing for better computational complexity and relatively efficient

updates to topological changes.

The outline of the work is as follows. Section 3.1 introduces notation along with basic

concepts and a brief account of Dijkstra’s algorithm. Section 3.2 casts the search for short

paths in a network as a convex optimization problem as discussed. Section 3.3 details the

algorithmic steps for updating state-values on edges, that turn out to coincide with the

so-called lasso solution in the LARS algorithm. Section 3.4 highlights the commonality

of features between the LARS algorithm and bi-directional Dijkstra algorithm. Finally,

Section 3.5 explores the application of the ADMM method to our lasso formulation, and

highlights its relevance in identifying short, but not necessarily shortest, paths in very large

graphs.
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3.1 Preliminaries

3.1.1 Graph theoretic notations and definitions

Throughout we consider a weighted undirected graph G that is connected and has no self-loops

or multi-edges. We write G = (V , E ,W), where V = {v1, . . . , vn} is the set of vertices/nodes,

E = {e1, . . . , em} is the set of edges, and W = {w1, . . . , wm} a set of weights corresponding

to the edges.

We will consistently use n = |V| and m = |E| for the cardinality of these two sets. When

labeling edges, we also use the notation (vi, vj) for the edge that connects vertices vi and vj,

without significance to the order.

However, as is common, in defining the incidence matrix of the graph, denoted by D(G)

an arbitrary but fixed orientation is assigned to edges that has no bearing on the results. To

this end, the incidence matrix is defined as the n×m matrix with (i, j)th entry

[D]ij =


+1 if the ith vertex is the tail of edge ej,

−1 if the ith vertex is the head of edge ej,

0 otherwise.

It is convenient to define the weight matrix W = diag(w1, . . . , wm) as the diagonal matrix

formed by the weights in W , consistent with the ordering in E .

A path from vertex vs to vertex vt is a sequence of connected edges

p = {(vi0 , vi1), (vi1 , vi2), . . . , (vil−1
, viℓ)}

that “starts” at vi0 = vs and “terminates” at vil = vt. An alternative representation of

the path, which now encodes edge-orientation that is consistent with that in specifying
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D, is in terms of the incidence vector x(p). This is an m-dimensional vector defined as

follows: the ith entry (x(p))i is +1, or −1, depending on whether an edge (vik−1
, vik) (for

some k ∈ {1, . . . , ℓ}) in the path is the ith edge in E and is listed with orientation consistent

or not with the tail/head designation in specifying D, respectively; if the ith edge is not in

the path, (x(p))i = 0. The length of the path is defined as the sum of edge-weights, i.e.,

length(p) ≜
∑
ei∈p

wi = ∥Wx(p)∥1,

where ∥ · ∥1 denotes the ℓ1-norm.

A graph is said to be a tree if it has no cycle, i.e., it has no path where s = t. If G is

connected, there is always a subgraph which is a tree. When G is a tree, m = n−1 and there

is a unique path from any given vertex to any other. Any vertex can be designated as root,

and the structure of graph encapsulated by all paths connecting vertices to the root (n− 1

paths). The (n− 1)× (n− 1) matrix of incidence vectors of all such paths is referred to as

path matrix (often with reference to the root) and denoted by Pv1 , or simply P , when the

root is clear from the context. Interestingly, P is closely connected to the incidence matrix

D. This is the content of the following lemma which is key for results in Section 3.4 but also

of independent interest.

Lemma 3.1. Let G be a tree rooted at v1 with n vertices and P its path matrix. The

pseudoinverse of its incidence matrix D, denoted as D+, is1

D+ =

[
− 1
n
P1n−1, PJ

]
,

where

J = (In−1 −
1

n
1n−11

T
n−1)

1Throughout, 1k denotes the k-column vector with entries equal to 1, and Ik the k × k identity matrix.
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Proof. See [5, Theorem 2.10 & Lemma 2.15].

3.1.2 Shortest path problem and Dijkstra’s algorithm

Let Ps,t denote the set of all paths between vs and vt. This set is non-empty because the

graph is connected. The shortest path problem is to find a path with minimum length over

all the paths between vs and vt, i.e.,

arg min
p∈Ps,t

length(p). (3.1)

The minimum value is known as the distance between vs and vt. A well-known search

algorithm - Dijkstra’s algorithm, has been proposed for this problem.

Dijkstra’s algorithm [35] begins with the “starting” vertex vs, and initially assigns a

distance of 0 to vs and +∞ to all other vertices. It iteratively labels the vertex with the

lowest distance estimate as visited and updates the distance estimates of its neighbors that

have not yet been visited (unvisited). The distance estimates are updated by summing up

the distances of visited vertices and the weights of the edges linking these vertices to their

unvisited neighbors. Dijkstra’s algorithm terminates when vt is visited and produces the

shortest path from source vertex vs to others vertices in the form of shortest-path tree.

The essential feature of Dijkstra’s algorithm is that it iteratively constructs the shortest-

path tree rooted at vs to all the visited vertices before reaching the target vt. Similarly,

bi-directional Dijkstra algorithm constructs two shortest-path trees rooted at vs and vt and

terminates when the two trees connect.

Later on in Section 3.4, we will point out analogies between the bi-directional Dijk-

stra algorithm and properties of the LARS algorithm applied to the shortest-path problem

advocated herein.
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The main contribution in this work is to point out that short paths in graphs, sought via

formulation as a lasso problem, has computational and implementation advantages. Specif-

ically, the use of ADMM algorithms for large graphs reduces computational complexity and

allows for distributed implementation.

Extension of the framework to one that can cope with negative weights is desirable, but

at present, not available.

3.2 Problem formulation

We now cast the shortest path problem (3.1) as a linear program. To this end we will use

a well-known technique for finding sparse solutions to linear equations by minimizing the ℓ1

norm of a vector as a surrogate for the count of its non-vanishing entries [101].

In our setting, constraints are expressed in terms ofD (incidence, also constraint matrix)

and x, the incidence vector of a sought path p from vs to vt, in that,

p ∈ Ps,t ⇒ Dx(p) = y(s,t). (3.2)

Here, y
(s,t)
i = 1{s} − 1{t} is the indicator vector in Rn of a virtual edge directly connecting vs

to vt; the path together with the virtual edge form a closed cycle. Throughout, 1{·} denotes

the indicator function of set {·}.

Remark 3.1. An alternative justification can be provided by noting that closed cycles, i.e.,

paths that begin and end at the same node, form a basis for the null space of the incidence

matrix of the graph [5, 73]. If we attach a virtual direct link (i.e., a new edge) between

vertices s and t, we need to update the incidence matrix to

[
D −y(s,t)

]
so that this virtual

edge is included. Now a path from s to t “closes” into a cycle by including this extra virtual

edge. Any cycle that includes the virtual edge corresponds to a null vector of

[
D −y(s,t)

]
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with a 1 as the last entry (indicating that the virtual edge is included), and therefore, to a

solution of [
D −y(s,t)

]x(p)
1

 = 0.

This is precisely (3.2), while the first component x(p) of the solution vector corresponds to a

sought path from s to t.

Note that linear combinations x = ax(p1)+(1−a)x(p2) with a ∈ (0, 1) of incidence vectors

of two distinct paths p1 and p2 between vs and vt, also satisfy the constraint Dx = y(s,t).

That is, although an exact correspondence between the two sides of (3.2) does not hold,

it does hold between the shortest path and a corresponding integer vertex of the polytope

defined by the constraint matrix D). Thus, we propose

arg min
x∈Rm

∥Wx∥1, s.t. Dx = y(s,t) (3.3a)

as a way to solve the shortest path problem.

To gain insight as to the nature of the minimizer, problem (3.3a) can be recast as the

linear program:

argmin
ξ≥0

2m∑
i=1

ξiwimod(m), s.t. Dξ = y(s,t) (3.3b)

with D := [D,−D] and ξ ∈ R2m. The solutions to (3.3a) and (3.3b) correspond via

ξ =

[
x′+, x′−

]′
,

where x+ (x−, resp.) is the vector of positive (negative, resp.) entries of x, setting zero for

the negative (positive, resp.) entries, i.e., in Matlab notation, x+ = x(x ≥ 0), x− = x(x ≤ 0).

The constraint matrix D in (3.3b) is totally unimodular (i.e., all minors have determinant
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in {0,±1}) [5, Lemma 2.6], and therefore, application of [1, Theorem 11.11 (Unimodularity

Theorem)] shows that, provided the shortest path is unique, the solution ξ (and, hence, x) is

integer-valued, actually, {0,±1}-valued. Thus, x in (3.3a) corresponds to a valid incidence

vector.

3.2.1 Lasso formulation

Returning to (3.3a), rewritten in the form

argmin
β
{∥β∥1 | ∥Qβ − y∥22 = 0} (3.3a′)

in new variables β = Wx, y = y(s,t), and Q = DW−1, leads us a relaxation as the ℓ1-

regularized regression

β(λ) := arg min
β∈Rm

1

2
∥y −Qβ∥22 + λ∥β∥1, (3.4)

with (regularization parameter) λ > 0. The formulation (3.4) is known as lasso [102].

The limit β0 := limλ→0 β(λ) from (3.4), for λ > 0, provides the indicator vector x0 =

W−1β0 of a path. For λ > 0, β(λ) may not correspond to a path. However, due to

continuity and the fact that x0 in the limit must be {0,±1}-valued, for sufficiently small

λ, x(λ) = W−1β(λ) reveals the shortest path (e.g., by rounding the values to the nearest

integer).

Thus, the lasso formulation represents a viable and attractive approach for solving

the shortest path problem. Interestingly, as we show in Section 3.4, the LARS algorithm

– a popular solver for lasso (3.4), shares features of the bi-directional Dijkstra algorithm.

Most importantly, the lasso formulation (3.4), as discussed in Section 3.5, allows the use

of proximal optimization methods for obtaining satisfactory approximations of the shortest

path in large graph settings.
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3.2.2 Uniqueness of the lasso solution

A sufficient condition for uniqueness of solution to (3.4) is that rank(Q) = m, the size of β

and number of edges [102, Lemma 2]. However, recall that WQ = D, the incidence matrix.

It follows that rank(Q) = m only holds when the graph is a tree (or possibly, a disjoined set

of trees, cf. [5, Theorem 2.3]).

Evidently, such an assumption is too restrictive, also since the shortest path problem in

this case becomes trivial.

Herein we introduce a fairly general sufficient condition for the uniqueness of solution

to (3.4) (as we claim next), that is in fact generic, for generic weights.

Assumption 3.1. The shortest path between vertex vs and any other vertex is unique, and

the same applies to vt.

We note that β(λ) from (3.4) turns out to be piece-wise linear (see Section 3.3). The

values of λ where the slope changes are referred to as breakpoints. With this in place, the

implications of the assumption to our problem can be stated as follows.

Lemma 3.2 (Uniqueness). Under Assumption 3.1, Problem (3.4) admits a unique solution

for all λ > 0.

It is important to note that the quadratic expression in (3.4) is not strictly convex, since

Q may have a nontrivial null space. The key idea in proving uniqueness under the conditions

of the lemma requires a discussion of the LARS algorithm that is explained next. Hence the

proof is deferred to Appendix B.4.
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3.3 The LARS algorithm

3.3.1 Karush-Kuhn-Tucker (KKT) conditions

The solution β(λ) of (3.4) must satisfy the KKT condition [102, Section 2.1]

QT (y −Qβ(λ)) = λγ, (3.5)

where the vector γ is in the sub-differential of ∥β(λ)∥1, with jth component given by

γj ∈


{sign(βj(λ))} if βj(λ) ̸= 0,

[−1, 1] if βj(λ) = 0.

The KKT condition in (3.5) motivates us to divide the indices {1, 2, . . . ,m} into two set:

an active set (also, equicorrelation set [102]) A and, a non-active set Ac, i.e.,

A ≜ {j | βj(λ) ̸= 0},

Ac ≜ {j | βj(λ) = 0}.
(3.6)

Let βA(λ) denote the vector β(λ) with the non-active (or equivalently, zero) entries removed

and, likewise, QA be the matrix Q with the columns corresponding to the non-active set

removed. Then, the KKT condition (3.5) can be expressed as

QT
j (y −QAβA(λ)) = sjλ, ∀j ∈ A, (3.7a)

|QT
j (y −QAβA(λ))| ≤ λ, ∀j ∈ Ac, (3.7b)

where Qj denotes the jth column of Q and the sign vector

s := sign
(
QT

A(y −QAβA(λ))
)
= sign (βA) , (3.8)
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with jth element the sign (±1) of the jth entry of βA.

3.3.2 The LARS algorithm

The LARS algorithm, as formulated in [102, Section 3.1] to solve lasso, finds the solution

path of β(λ) that meets the KKT condition (3.5) for all λ > 0. The algorithm is initialized

with λ0 =∞, A0 = ∅, and s0 = ∅. The solution path βA(λ), in (3.9) below, is computed for

decreasing λ, and is piece-wise linear and continuous with breakpoints λ0 > λ1 > . . . > 0.

Breakpoints are successively computed at each iteration of the algorithm, and the linear

segment of βj(λ) is determined to satisfy the element-wise KKT condition as detailed in (3.7).

As λ crosses breakpoints, the active (non-active) set (3.6) and the sign vector (3.8) are

updated accordingly.

We now detail the kth iteration of the LARS algorithm, initializing λ = λk, A = Ak,

s = sk, and seeking the next breakpoint λk+1. The lasso variable βAk
(λ), as a function of λ,

is calculated as the minimum ℓ2-norm solution of (3.7a), and is given by:

βAk
(λ)=(QT

Ak
QAk

)+(QT
Ak
y −λsk)=a(k) − b(k)λ, (3.9)

where (·)+ denotes the pseudoinverse and

a(k) := (QT
Ak
QAk

)+QT
Ak
y,

b(k) := (QT
Ak
QAk

)+sk.

(3.10)

The next breakpoint λk+1 is determined as the largest value at which the KKT condition

(
QT
j (y −QAk

βAk
(λ)) = λγj

)
is violated by λ. Such violation occurs in two circumstances (“crossing/joining” in the
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language of [102]), either (3.7a) or (3.7b) fails.

i) The “joining” case is when condition (3.7b) is violated for some j ∈ Ack, i.e., |QT
j (y −

QAk
βAk

(λ))| ≤ λ no longer holds. For each index j ∈ Ack, this happens at λ = tjoinj given by

tjoinj,k =
QT
j (QAk

a(k) − y)
QT
j QAk

b(k) ± 1
, (3.11)

where the choice ± is the one for which tjoinj,k ∈ [0, λk]. We set “joining time” λjoink+1 :=

maxj∈Ac
k
{tjoinj,k }.

ii) The “crossing” case is when condition (3.7a) is violated for some j ∈ Ak so that one of

the element of βAk
(λ) crosses zero (changes its sign), i.e. a

(k)
j − λb

(k)
j = 0 for some λ < λk.

For each index j ∈ Ak, the crossing happens at λ = tcrossj given by

tcrossj,k = (a
(k)
j /b

(k)
j ) · 1{0<(a

(k)
j /b

(k)
j )<λk}

. (3.12)

We set “crossing time” λcrossk+1 = maxj∈Ak
{tcrossj,k }.

The next breakpoint is

λk+1 = max{λjoink+1, λ
cross
k+1 }. (3.13)

If the joining occurs, the joining index is added to the active set and the sign vector is

updated. If a crossing happens, the crossing index is removed from the active set. The

overall algorithm is summarized as blow.

3.4 Theoretical result

Both the LARS as well as the bi-directional Dijkstra algorithm iteratively construct shortest-

path trees with roots at vs and vt, and terminate when the two trees meet. We prove our

main result below by induction. The induction hypothesis is specified next.

Assumption 3.2 (Induction hypothesis). At (k−1)th iteration of LARS, the edges in the
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Algorithm 3 LARS algorithm for the lasso

Input: matrix Q = DW−1, vector y = y(s,t).
Output: incidence vector x0=W

−1β0, distance ∥β0∥1.
1: k = 0, λ0 =∞, A = ∅, s = 0, a(0) = 0 and b(0) = 0.
2: while λk > 0 do
3: Compute the joining time λjoink+1 (3.11) for j ∈ Ack.
4: Compute the crossing time λcrossk+1 (3.12) for j ∈ Ak.
5: Compute λk+1 according to (3.13) and

i) if join happens, i.e., λk+1 = λjoink+1, add the joining index j to Ak and its sign to
sk;

ii) if cross happens, i.e., λk+1 = λcrossk+1 , remove the crossing index j from Ak and its
sign from sk.

6: k = k + 1.
7: Compute a(k) and b(k) according to (3.10)
8: Set βAk

= a(k) − λkb(k) and βAc
k
= 0.

9: end while

active set Ak−1 = A(s)
k−1 ∪ A

(t)
k−1, where A

(s)
k−1 and A(t)

k−1 are disjoint subsets of edges forming

trees on vertices T
(s)
k−1, T

(t)
k−1 ⊂ V, rooted at vs and vt, respectively. The two trees are the

shortest-path trees from the roots. Moreover, crossing does not occur at this iteration, i.e.,

no edges are removed from the active set.

Our induction starts with the base case k = 1, where the active set is empty and both

trees consist of a single root vertex, T
(s)
0 = {s} and T (t)

0 = {t}. The crossing does not occur

since the active set is empty. The proof is based on the following two propositions that

provide simplified expressions for the joining and crossing times, derived from Lemma 3.1

and Assumption 3.2 that the graph is a tree. The proofs are given in Appendices B.2 and B.3.
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3.4.1 Joining and crossing times

Proposition 3.1 (Joining time). For the edge ej = (v1, v2) where ej ∈ Ack, the element-

wise joining time is

tjoinj,k =



0 if (v1, v2) ∈ Ω2
k ∪ T

(s)
k

2
∪ T (t)

k

2

(
|T (s)
k |l

(s)
v2
−
∑
v∈T (s)

k

l(s)v
)−1

if (v1, v2) ∈ T (s)
k × Ωk

(
|T (t)
k |l

(t)
v2
−
∑
v∈T (t)

k

l(t)v
)−1

if (v1, v2) ∈ T (t)
k × Ωk

(
|T (s)
k |+ |T

(t)
k |
)
/γ if (v1, v2) ∈ T (s)

k × T
(t)
k

where Ωk = V \ (T (s)
k ∪ T

(t)
k ), l

(s)
v and l

(t)
v denote the distance of vertex v to the root s and t

respectively, and

γ = |T (s)
k ||T

(t)
k |l

(s)
t − |T

(t)
k |

∑
v∈T (s)

k

l(s)v − |T
(s)
k |

∑
v∈T (t)

k

l(t)v .

Proposition 3.2 (Crossing time). For an edge ej = (v1, v2) where ej ∈ Ak, the expression

a
(k)
j /b

(k)
j that appears in the definition of crossing time (3.12) is

a
(k)
j

b
(k)
j

=



(
(|T (s)

k |/|R
(s)
j |)

∑
v∈R(s)

j

l
(s)
v −
∑

v∈T (s)
k

l
(s)
v

)−1
, if (v1, v2) ∈ T (s)

k

2

(
(|T (t)

k |/|R
(t)
j |)
∑

v∈R(t)
j

l
(t)
v −

∑
v∈T (t)

k

l
(t)
v

)−1
, if (v1, v2) ∈ T (t)

k

2

where R
(s)
j and R

(t)
j are the subsets of vertices in the tree T

(s)
k and T

(t)
k respectively, whose

path to the root contains the edge ej.
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3.4.2 Toward the equavalence

Assuming the induction hypothesis in Assumption 3.2 holds, we show that the hypothesis

also holds at iteration k through the following lemmas.

Lemma 3.3 (Edge adding). At iteration k, either the edge connecting v
(s)
min to tree T

(s)
k ,

or the edge v
(t)
min to tree T

(t)
k will be added to the active set, where v

(s)
min and v

(t)
min are vertices

with minimum distance to roots vs and vt among all other vertices outside the two trees,

respectively.

Proof. First, assume no edge connects the two trees, i.e., the last case of joining time does

not happen (the case when it does is studied in Lemma 3.5). The joining time λjoinj,k now

reads

max

{(
|T (s)
k |lv(s)min

−
∑
v∈T (s)

k

l(s)v
)−1
,
(
|T (t)
k |lv(t)min

−
∑
v∈T (s)

k

l(s)v
)−1
}
,

where the first expression is achieved by the edge that connects v
(s)
min to tree T

(s)
k and the

second is achieved by the edge that connects v
(t)
min to tree T

(t)
k . Hence, one of these two edges

is joined to the active set, if crossing does not occur.

Remark 3.2 (No cycles). Cycles may be created in the following two scenarios: (i) An

edge that connects two vertices of a tree is joined; (ii) Two edges that connect the tree to a

single vertex, say v, are joined simultaneously. Scenario (i) can not happen because tjoinj = 0

for such edges ( first case of joining time). Scenario (ii) can not happen, because in order

for two edges to join simultaneously, we must have two distinct shortest paths from v to the

root, which is not possible according to Assumption 3.1.

Lemma 3.4 (No edge removed). At iteration k and if λ > 0, crossing does not take place.

Proof. To prove that crossing does not take place before the algorithm terminates, we show

that a
(k)
j /b

(k)
j ≥ λk−1 and hence a

(k)
j /b

(k)
j ≥ λk for all ej in the active set, so that crossing
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time is zero according to its definition (3.12).

First, we obtain an expression for λk and then compare it to crossing times. The value

λk is determined by the maximum of joining time and crossing time at (k − 1)th iteration

according to (3.13). Under Assumption 3.2, the breakpoint λk is the maximum joining time,

which takes two possible values, corresponding to the edge that connects to either tree T
(s)
k−1

or tree T
(t)
k−1 as proved in Lemma 3.3.

Without loss of generality, we now assume the joining happens to the tree T
(s)
k−1. Then,

λk−1 =
(
|T (s)
k−1|lv(s)min

−
∑

v∈T (s)
k−1

l(s)v
)−1

. (3.14)

Next, we show a
(k)
j /b

(k)
j ≥ λk−1 for all ej that belong to the tree T

(s)
k . From Proposition 3.2,

we can write (a
(k)
j /b

(k)
j ) as

a
(k)
j

b
(k)
j

=
(1 + |T (s)

k−1|
|R(s)

j |

∑
v∈R(s)

j

l(s)v − lv(s)min
−
∑

v∈T (s)
k−1

l(s)v
)−1

≥
(
|T (s)
k−1|lv(s)min

−
∑

v∈T (s)
k−1

l(s)v
)−1

,

where we used |T (s)
k | = |T

(s)
k−1| + 1,

∑
v∈T (s)

k
l
(s)
v = l

v
(s)
min

+
∑

v∈T (s)
k−1

l
(s)
v , and l

v
(s)
min
≥ lv for all

v ∈ T (s)
k . The inequality above holds because v

(s)
min is the latest vertex that is added to the

tree and other vertices that have been already added have a shorter distance to the root.

The proof of a
(k)
j /b

(k)
j ≥ λk−1 for all ej that belong to the other tree T

(t)
k is conceptually

similar. One needs to compare a
(k)
j /b

(k)
j with the joining time of the last edge that has been

added to the tree T
(t)
k at a certain past iteration, say k′ < k, and use the fact that λk < λk′ .

The details are omitted on account of space.

Lemma 3.5 (Termination Criteria). The LARS algorithm terminates when the two trees
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connect.

Proof. Assume the two trees T
(s)
k and T

(t)
k become connected at iteration k. This happens

when the last expression of joining achieves the maximum joining time, hence λk =
(
|T (s)
k |+

|T (t)
k |
)
/γ, as depicted in Fig 3.1. The objective is to show that the algorithm terminates

after this, i.e. λk+1 = 0. We show this by proving the joining time and crossing time are

both zero.

The derivation of element-wise joining time in Proposition 3.1 reveals that tjoinj,k+1 =

0, ∀ej ∈ Ack+1. For the crossing time, the derivation of Proposition 3.2 yields that for all

ej ∈ Ak+1,

a
(k+1)
j

b
(k+1)
j

=


0, if ej /∈ ps,t

( ∑
v∈Rj

l(s)v −
|Rj|

|T (t)
k |+ |T

(s)
k |

∑
v∈T (s)

k ∪T (t)
k

l(s)v
)−1

,

where ps,t ⊂ Ak+1 is the path from vs to vt. Therefore, it remains to show that the crossing

time for the edges in Ak+1 ∩ ps,t are zero. We show this by proving a
(k+1)
j /b

(k+1)
j ≥ λk for all

edges ej ∈ Ak+1 ∩ ps,t. Considering the edges that belong to the tree A(s)
k , we have

|T (s)
k |+ |T

(t)
k |

(a
(k+1)
j /b

(k+1)
j )

= γ + |T (s)
k |

∑
v∈R(s)

j

l(s)v − |R
(s)
j |

∑
v∈T (s)

k

l(s)v

− |T (t)
k |

∑
v∈R(s)

j

l(t)v + |R(s)
j |

∑
v∈T (t)

k

l(t)v

where R
(s)
j are the vertices in the tree T

(s)
k such that their path to the root vs contains ej.

Because l
(s)
v ≤ l

(s)
v2 and l

(t)
v ≥ l

(t)
v2 for all v ∈ R(s)

j , we have the inequality

|T (s)
k |+ |T

(t)
k |

(a
(k+1)
j /b

(k+1)
j )

− γ ≤ |Rj|
(
|T (s)
k |l

(s)
v2
−
∑
v∈T (s)

k

l(s)v − |T
(t)
k |l

(t)
v2

+
∑
v∈T (t)

k

l(t)v
)
.
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We claim that the expression in parentheses is negative

|T (s)
k |l

(s)
v2
−
∑
v∈T (s)

k

l(s)v − |T
(t)
k |l

(t)
v2

+
∑
v∈T (t)

k

l(t)v ≤ 0, (3.15)

and if the claim is true, we have

a
(k+1)
j /b

(k+1)
j ≥

(
|T (s)
k |+ |T

(t)
k |
)
/γ = λk,

so that the crossing time is zero for edges ej ∈ A(s)
k .

vs v1 v2 v3 v4 vt
ep ei es

Figure 3.1: Path Ps,t

Finally, we show the claim (3.15) is true by considering the two possible cases of the orders

of edges are added:

i) The edges are added in the order es→ep→ei, the joining time for ep and ei are:

tjoinp,k−1=(|T (s)
k |l

(s)
v2
−
∑
v∈T (s)

k

l(s)v )−1
, tjoini,k−1=(|T (t)

k |l
(t)
v2
−
∑
v∈T (t)

k

l(t)v )−1
.

The assumption that ep is added before ei implies tjoinp,k−1 > tjoini,k−1 concluding the claim (3.15).

ii) The edges are added in the order ep→es→ei, the joining time for ep and es are:

tjoinp,k−2=(|T (s)
k |l

(s)
v2
−
∑
v∈T (s)

k

l(s)v )−1
, tjoins,k−2=(|T (t)

k |l
(t)
v2
−
∑
v∈T (t)

k

l(t)v )−1
.

The order ep is added before es concludes the claim (3.15) because tjoinp,k−1 > tjoins,k−1.

The proof that the crossing times for the edges that belong to the tree A(t)
k is by symmetry
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and interchanging s and t.

We now establish a parallel between the LARS algorithm and the bi-directional Dijkstra

algorithm, in that they share the defining feature, terminating when two trees built from

opposite directions meet.

Theorem 3.1 (Equivalence). The LARS algorithm iteratively builds two shortest-path

trees, starting from roots vs and vt, and terminates when these two trees connect.

Proof. Assuming the induction hypothesis in Assumption 3.2 holds true, we have shown that

in the kth iteration: i) edges connecting to vertices with the shortest distance to vs and vt

are added to the active set (Lemma 3.3); ii) crossing, where edges are removed from the

active set, does not occur when λ > 0 (Lemma 3.4). Finally, iii) the algorithm terminates

when the two shortest-path trees connect and λ = 0 (Lemma 3.5).

3.4.3 Numerical example

We consider Nicholson’s graph [84, p. 6] and seek the shortest path between vertex v1 and

v9. The iterations of the LARS algorithm (with breakpoints λ0 = +∞, λ1 = 1/2, λ2 = 1/3,

λ3 = 1/5, λ4 = 0.1489) are depicted in Fig 3.2a. It is observed that, at each iteration, edges

highlighted in the same color as the corresponding λ are added to the active set and are never

removed prior to the last step λ5 = 0, as we prove later on in Lemma 3.4. The algorithm

terminates after four iterations when λ5 = 0 and a path between vertex v1 and v9 is formed.

The element-wise path of the lasso solution β(λ) as λ decreases, is drawn in Fig 3.2b.

Example 3.2 highlights the correlation between the LARS algorithm and Dijkstra’s

algorithm. Specifically, the LARS algorithm builds two shortest-path trees, with roots at

vertices v1 and v9. This echoes the steps in the bi-directional Dijkstra algorithm discussed

in Section 3.1.2. In Theorem 3.1, we highlight similarities between the LARS and Dijkstra’s
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(a) Nicholson’s graph: Edges are added according to breakpoints λ in the same color as in Fig. 3.2b.

(b) Entries (β(λ))(i) (corresponding to edges) dawn as functions of λ. Values of λ, where the active
edge-set changes, are marked with dashed vertical lines.

Figure 3.2: The LARS algorithm successively identifies a set of active edges while reducing
the tuning/control parameter λ. A vector β(λ) with information of the length-contribution
of the active edge-set is also successively being updated.

algorithms.

3.5 Proximal algorithm

The LARS algorithm may provide a computational advantage if the desired path only con-

tains a few edges. For large graphs, the number of breakpoints (proportional to the number

of edges in the active set), tends to be very large, rendering β(λ) intractable. The ADMM
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algorithm, on the other hand, is particularly well-suited for solving large-scale convex opti-

mization problems in a distributed manner due to its scalability [11, 9, 109].

3.5.1 ADMM and InADMM algorithm

Application of the ADMM to the lasso, as presented in [9, Section 6.4], is based on the

reformulation of the lasso problem (3.4) as follows:

min
β,α∈Rm

1

2
∥y −Qβ∥22 + λ∥α∥1 +

ρ

2
∥β − α∥22, s.t α=β, (3.16)

where α ∈ Rm is an additional optimization variable, and ρ is a positive constant.

The Lagrangian Lρ(β, α, u) corresponding to the constrained optimization problem (3.16)

is

Lρ =
1

2
∥y −Qβ∥22 + λ∥α∥1 + uT (β − α) + ρ

2
∥β − α∥22,

where u ∈ Rm is the Lagrange multiplier. Let v ≜ u/ρ, the ADMM algorithm consists of the

α, β-minimization steps and the step updating the dual variable v. Specifically, the optimal

variables β, α, v is computed as

βk : = argmin
β
Lρ(β, α

k−1, vk−1) = (QTQ+ ρI)−1
(
QTy + ρ(αk−1 − vk−1)

)
(3.17)

αk : = argmin
α
Lρ(β

k, α, vk−1) = Sλ/ρ(β
k +

1

ρ
vk−1)

vk : = vk−1 + ρ(βk − αk),

in the (k − 1)th iteration. The β-update can be found in [9, Section 4.2] and Sλ/ρ is the

element-wise interpreted proximity operator of the ℓ1 norm, known as the soft-thresholding

operator in [9, Section 4.4.3].
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To reduce the size and complexity of ADMM, we replace the matrix inversion (QTQ+

ρI)−1 by

(QTQ+ ρI)−1 =
1

ρ
(I −QT (QQT + ρI)−1Q), (3.18)

using the matrix identity, which instead involves (QTQ + ρI)−1. We will show this step

significantly reduces the complexity of the algorithm in the next section.

To further reduce the complexity of ADMM for large-scale graphs, we use the InADMM

algorithm introduced in [109] whose key idea is to approximately solve a system of linear

equations instead of evaluating the matrix inversion exactly, using the matrix identity (3.18)

to replace the β update in (3.17) with

hk−1 := QTy + ρ(αk−1 − wk−1)

ηk := (QQT + ρI)−1Qhk−1),

βk :=
1

ρ
(hk−1 −QTηk)

and computes ηk approximately using the conjugate gradient (CG) method [57].

3.5.2 Worst-case complexity analysis and comparison

Throughout, we use the worst-case complexity, denoted as O(·), to evaluate the algorithms’

performance. Worst-case complexity quantifies the operations of the algorithm in the worst

case, see [11, Appendix C], [30].

The complexity of ADMM is dominated by the matrix inversion (QTQ+ρI)−1
m×m, which

is of order O(m3) (e.g. using Cholesky decomposition). However, by utilizing the matrix

identity (3.18), this complexity is reduced to O(n3). The most costly step in the CG method

is the matrix-vector multiplication (QQT + ρI)x where x ∈ Rn. This has a complexity of

O(m) because the weighted incidence matrix Q has 2m nonzero elements.
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Assuming the CG algorithm terminates in TCG iterations, the complexity of the CG step

in InADMM algorithm is of order O(mTCG). Noticing the complexity of other operations

in InADMM is at most O(m), we summarize the complexities of ADMM and InADMM in

Table 3.1 as below.

Variables η β(Cholesky) α v

ADMM O(nm) O(n3) O(m) O(m)

InADMM O(mTCG) O(m) O(m) O(m)

Table 3.1: Complexities of ADMM and InADMM per iteration.

The comparison in complexity of the above methods with the Dijkstra’s algorithm and

its best improvement by Fibonacci heap is shown in Table 3.2.

ADMM6 InADMM6 Dijkstra Fibonacci

O(n3) O(mTCG)7 O((m+ n) log2 n) O(m+ n log2 n)

Table 3.2: Complexity comparison with Dijkstra and its variant.

3.5.3 Numerical experiments

We use “intelligent scissors”(also, “live-wire”), an image segmentation technique that is

commonly used in computer vision [75]. It creates a grid graph over the image with each

pixel represented by a vertex, and is connected to its 8 neighboring pixels through edges.

The edge weights are assigned by a cost function [75, Section 3] based on image features. The

objective is to identify a boundary between the portraits and the background, which turns out

to be equivalent to finding the shortest path between selected pixels (marked in green) over

the generated graph. The segmentation is obtained by identifying the edges in the shortest

6Per iteration, both methods convergence within 40 steps for a graph with 17291 edges, see Fig 3.4
7TCG ≪ n and scalable with respect to the size of the graph. Empirically, we have TCG = 350 for graph

with 4422 vertices and TCG = 320 for graph with 5694 vertices.
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path. Herein, we use images with 5694 and 4422 pixels respectively. The edges, detected by

constructing shortest paths using three different methods and colored in red, are drawn in

Fig. 3.3 (Code is available at https://github.com/dytroshut/Lasso-shortest-path.git

with functions from [10]).

For the InADMM, we utilized the CG method from [57], see also [109] for more details.

The convergence rates of ADMM, InADMM, and Basis Pursuit9 [9, Section 6.1], are shown

in Fig 3.4. Further, to highlight the efficiency of lasso’s distributed implementation, we used

InADMM (with a pre-specified path as input).

(a) Dijkstra (b) ADMM (c) InADMM

Figure 3.3: “Edge detection” in an image as a short path, highlighted in red, and obtained
using Dijkstra’s algorithm (Fig. 3.3a), as well as using the lasso solution β in ADMM and
InADMM in Fig. 3.3b and Fig. 3.3c, respectively.

9Basis Pursuit is a technique to obtain sparse solution to an underdetermined system of linear equations.
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Figure 3.4: Example based on the Van Gogh painting (4422 vertices and 17291 edges): “Edge
in image” identified via InADMM, InADMM with initializer, ADMM, and Basis pursuit.
These converge in 36, 34, 29, 47 steps, respectively, with running times 1.7308, 1.7618,
4.0249, 35.7527 seconds in MATLAB clock. Also, the running times for solving the linear
program (3.3b) using three methods (dual-simplex and interior-point(-legacy)) are 26.6145,
29.3866, 32.2845 seconds.

Bibliographical notes

The problem of finding the shortest path between two vertices of a graph has a long

history[107, 100] and a wide range of applications [106, 75]. A classical algorithm to de-

termine a shortest path is due to Dijkstra [35]. Since Dijkstra’s early work, a variety of

alternative methods have been developed to reduce complexity and address variants of the

problem [6, 2, 19, 103, 45, 110]. A salient issue in applications involving graphs of con-

siderable size, which motivated the present work, is that identifying a shortest path is not

absolutely essential, whereas identifying a reasonably short path may suffice [106, 85].

Driven by such considerations and inspired by the effectiveness of convex optimization

techniques to address large-scale problems [11, 9], we introduce a formulation of the shortest

path problem as an ℓ1-regularized regression, known as the Least Absolute Shrinkage and

Selection Operator (lasso)[101]. This type of regularization/relaxation is ubiquitous in in-

verse problems throughout engineering, statistics and mathematics, with a rich library of

numerical implementations for high-dimensional problems.

58



Chapter 4

Monge transportation through toll

In the chapter, we formulate and address a natural variant of the standard optimal mass

transport problem by imposing a hard constraint on the flux rate at a point along the path

between distributions. Specifically, we pose and resolve the most basic such problem where

the restriction on throughput of the transport plan takes place at a single point. With this

constraint in place, we seek to minimize a usual quadratic cost functional.

The analysis we provide focuses on one-dimensional distributions, with transport taking

place on R. We prove existence and uniqueness of an optimal transport plan, and under

suitable regularity conditions, give an explicit construction. A slight generalization of our

formulation, where the distributions have support on Rd but the transportation is to take

place through a specified “constriction” point, with a similar throughput constraint, can

be worked out in the same manner and it is sketched in the concluding remarks. The

more general case where the transport takes place on higher dimensional manifolds with

the throughput through possibly multiple points, curves, or surfaces similarly restricted is

substantially more challenging and much remains open.

The problem formulation and ideas in the mathematical analysis that follows can be
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visualized by appealing to Figure 4.1. We begin with two probability densities ρ0, ρ1 having

support on R and finite second-order moments, and seek to transport one to the other, ρ0

to ρ1, within a window of time (herein, of duration normalized to 1) while minimizing a

quadratic cost in the local velocity. That is, we seek to minimize the action integral of

kinetic energy along the transport path. The minimal cost of the unrestricted transport is

the so-called Wasserstein distanceW2(ρ0, ρ1) (a metric on the space of probability measures);

we refer to standard references [104, 105] for the unconstrained optimal transport problem.

The schematic in Figure 4.1 exemplifies a constraint at a pre-specified point, x0, that can

be seen as the location of constriction, or, of a toll along the transport, where throughput is

bounded. That is, the flow rate across x0 for mass times velocity is bounded by a value h. A

vertical axis pointing downwards at x0 marks the time when a specific mass-element crosses

the toll, necessitating at least 1/h duration for the unit mass of the probability density ρ0

to go through, in the most favorable case where the throughput rate is maintained for the

duration (that is normalized to 1 time unit).

In the body of the chapter, we prove existence and uniqueness of an optimal trans-

port plan and, assuming suitable regularity of the distributions, we provide an explicit

construction for the solution. We further explore consequences of the toll being kept maxi-

mally “busy” while mass is being transported through, in conjunction with minimizing the

quadratic cost criterion on the kinetic energy, and we highlight ensuing properties of the

optimal plan.

Specifically, in Section 4.1 we develop the formulation of the flux constraint and give

a precise definition of the problem (Problem 4.1). In Section 4.2 we prove existence and

uniqueness (Theorem 4.1) of solution, while conveniently recasting the problem in terms of a

flux variable (Problem 4.2). Section 4.4 deals with the structural form of the transport and

properties of solutions. We summarize the basic elements that allow an explicit construction

of the solution in Theorem 4.2. Section 4.5 provides a rudimentary example of transporting
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between uniform distributions, that highlights the essential property that speed needs to

be suitably adjusted so as to fully utilize the throughput of the toll, while minimizing the

quadratic cost. We close (Section 4.6) with a discussion on possible extension of the problem

to higher dimensions and multiple tolls. While the theory may be readily extended in

certain cases, much remains to be understood. Such problems are of natural engineering and

scientific interest.

ρ0 ρ1

x

t
h

1
h

x0

Figure 4.1: Illustration of optimal transport through a toll with finite throughput

4.1 Problem formulation

We consider two probability densities ρ0, ρ1 on R having finite second-order moments. For

X : [0, 1]× R→ R such that1 X0#ρ0 = ρ0 and X1#ρ0 = ρ1, we are interested in minimizing

J(∂tX) :=

∫ 1

0

∫
R
(∂tXt(x))

2ρ0(x)dxdt. (4.1)

1As is common, Xt#ρ0
denotes the push-forward of ρ0 under Xt, see [104].
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In the absence of any additional constraint on X, the solution is

X⋆
t (x) = x+ t(T (x)− x)

for T the optimal transport map between ρ0 and ρ1 and J(∂tX
⋆
t ) =W2

2 (ρ0, ρ1), the squared

Wasserstein-2 distance between the two [104]. Here however, for a certain x0 ∈ R, we

introduce a constraint on the flux passing through x0, as explained below. Throughout the

paper, T will always denote the optimal transportation plan in the absence of any such

constraint. The purpose of the present work of course is to develop theory that addresses

the case of transport with a bound on the flux through x0.

When all functions are smooth and well defined, a flux constraint at x0 can be expressed

as

|ρt(x0)vt(x0)| ≤ h ∀t ∈ (0, 1)

for ρt the density of Xt#ρ0 and vt(x0) = ∂tXt(X
−1
t (x0)). However in the general case, if ρt is

not continuous (or doesn’t even exist), this constraint is not well defined. One way to deal

with such a situation is to recast the constraint as requiring that2, ∀t ∈ (0, 1),

lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{x0∈(Xt(x)+α1,Xt(x)+α2)}|∂tXt(x)|ρ0(x)dx ≤ h. (4.2)

Then, if ρ0 is continuous and Xt is a C
1 diffeomorphism, the left hand side (LHS) of (4.2)

amounts to

LHS (4.2) = lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{x0∈(y+α1,y+α2)}|∂tXt(X

−1
t (y))|ρt(y)dy

= ρt(x0)vt(x0),

2We use the standard notation 1A for the characteristic function of the set A.
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Interestingly, when Xt fails to be a C1 diffeomorphism, special care is needed. For

instance, take x0 = 0 and Xt(x) = 1{x∈[−2,−1]}(1 − 2t)3x. The constraint (4.2) is satisfied

since ∂tXt(x) = 0 at t = 1/2, and no mass sits near the toll for any t ̸= 1/2. Thus, the

formulation (4.2) fails to capture the situation where infinite mass passes through with zero

velocity. We reformulate so as to avoid this technicality.

Consider the modified constraint that bounds the flux passing through x0, expressed as

requiring that ∀t ∈ (0, 1)

lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{x0∈(Xt+α1 (x),Xt+α2 (x))}ρ0(x)dx ≤ h. (4.3)

In the case where Xt is C
1, using the Taylor expansion of X in time, the left hand side (LHS)

of (4.3) amounts to

LHS (4.3) = lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{x0∈(Xt(x)+∂tXt(x)α1+o(α1),Xt(x)+∂tXt(x)α2+o(α2))}ρ0(x)dx

= lim sup
α1→0
α2→0

∫ (
1{Xt(x)∈(x0−∂tXt(x)α2+o(α2),x0−∂tXt(x)α1+o(α1))}

|∂tXt(x)|1{|∂tXt(x)|>0}

|α2 − α1||∂tXt(x)|

+ 1{Xt(x)∈(x0+o(α1),x0+o(α2))}
1{∂tXt(x)=0}

|α2 − α1|

)
ρ0(x)dx.

Using a change of variables, we readily see that (4.3) implies (4.2) and that if Xt is a C1

diffeomorphism, the two constraints are identical. Note also that, ∀t ∈ (0, 1), condition (4.3)

is equivalent to

∀α1, α2 ∈ R,
∫
1{x0∈(Xt+α1 (x),Xt+α2 (x))}ρ0(x)dx ≤ h|α2 − α1|. (4.4)

Define Ω = {x ∈ Supp (ρ0) | x0 ∈ (x, T (x)) or x0 ∈ (T (x), x)}, where T is the optimal

transport map of the unconstrained problem. Thus, Ω contains the support of mass that

needs to cross the toll station, at some point in time, in either direction. From (4.4) it is
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evident that h ≥ ρ0(Ω) is necessary for the existence of a map satisfying the constraint (since

the transport will take place over the time interval [0, 1]). Typically, h > ρ0(Ω) is required,

except in some special cases where h = ρ0(Ω) may suffice, as for example when ρ0 = 1{[0,1]},

x0 = 1 and ρ1 = 1{[1,2]}. From here on we assume that h > ρ0(Ω).

We are now in a position to cast our optimization problem in terms of a velocity field

vt(x) that will effect the transport; formally, vt(x) = ∂tXt(x) relates to our earlier notation

when functions are smooth. For any v ∈ L2([0, 1]×R,R), define the map Xv : [0, 1]×R→ R

as the flow of v:

Xv
t = Id +

∫ t

0

vτdτ, (4.5)

with Id denoting the identity map in R. Our problem can now be stated as follows.

Problem 4.1. Consider

inf
v∈Λ

J(v), (4.6)

over the class Λ of functions v ∈ L2([0, 1]× R,R) defined so that Xv, the flow of v, satisfies

i) Xv
1#ρ0

= ρ1

ii) ∀t ∈ (0, 1), Xv
t satisfies the constraint (4.4).

Determine existence, uniqueness, and a functional form for a minimizing solution v.

4.2 Existence of a solution

We say that a map X : [0, 1]× R→ R is in the set Γ if there exist v ∈ Λ such that X is the

flow of v, i.e. Xt = Xv
t = Id+

∫ t
0
vτdτ . From here on, the v in the notation Xv

t is suppressed

as we are truly interested in the transport map. We first derive certain useful properties of

64



candidate minimizers of our problem. To this end, for any X ∈ Γ and x ∈ Ω, we define

tollX(x) = inf{t | x0 = Xt(x)}.

Thus, the function tollX specifies the times of transit through the toll station of mass that

is initially located at x and then transported via X.

It is clear that the function tollX must be injective3 for a minimizing solution, and that

mass flow takes place always in the same direction across the toll station. Then, ∀t ∈ (0, 1),

(4.3) is equivalent to

lim sup
α1→0
α2→0

1

|α2 − α1|
tollX#ρ0((t+ α1, t+ α2)) ≤ h,

and so, if tollX#ρ0 (the measure on [0, 1] that weighs the mass that goes through x0 at different

times t ∈ [0, 1]) admits a continuous density ϱtoll, the constraint amounts to ϱtoll(t) ≤ h. Note

also that this condition is different than simply stating ρt(x0) ≤ h, as the latter doesn’t take

into account the speed of transport. Then we see that for x /∈ Ω, we can restrict ourselves

to considering maps X ∈ Γ such that Xt(x) = x + t(T (x)− x) for T the optimal transport

map between ρ0 and ρ1. Thus, in the sequel, without loss of generality we always suppose

that Ω = Supp (ρ0) and that sup Supp (ρ0) ≤ x0 ≤ inf Supp (ρ1).

For X ∈ Γ and tollX its corresponding transit-time function, define the map X : [0, 1]×

R→ R by

X t(x) =


x+ t x0−x

tollX(x)
ift ≤ tollX(x)

x0 + (t− tollX(x)) T (x)−x0
1−tollX(x)

if t ≥ tollX(x)

(4.7)

and note Γ = {X | X ∈ Γ} the set of functions of this type. The next statement states that

we can restrict our minimization problem to functions of the form (4.7). Specifically, it states

3This follows by cyclic monotonicity since the cost is convex, see [105, Section 2.3].
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that for any candidate minimizer X ∈ Γ, the speed of transport needs to remain constant

at all times prior to transit, and again, constant at all times after transit. In addition, from

the functional form, we see that X1 = T (x) for all x. This last statement says that the final

destination of mass originally located at x is the same, whether we apply T or the optimal

plan that abides by the constraint; the only thing that changes in the two cases is the speed

while the mass traverses the segment before x0 and after (cf. example in Section 4.5).

Proposition 4.1. We have

inf
X∈Γ

J(∂tX) = inf
X∈Γ

J(∂tX)

Proof. For X ∈ Γ and tollX , define

Xc(x) =


x+ t x0−x

tollX(x)
if t ≤ tollX(x)

x0 + (t− tollX(x)) X1(x)−x0
1−tollX(x)

if t ≥ tollX(x)

(4.8)

Thus, Xc maintains the terminal destination X1(x) and the crossing time tollX(x), for the

mass that was initially at x, while it ensures constancy of speed before and after crossing.

It follows that Xc ∈ Γ and that J(∂tX
c) ≤ J(∂X), by convexity, so we can restrict X to the

set of functions that are of the form (4.8) since candidate minimizers will always be of that

form.

As the position X1(x) in (4.8) doesn’t impact the constraint (4.3), we consider how

X1(x) may depend on the time of crossing tollX(x). Specifically, X1 must be a minimum for

the cost ∫ 1

tollX(x)

∫
R

(
X1(x)− x0
1− tollX(x)

)2

ρ0(x)dxdt =

∫
R

(X1(x)− x0)2

1− tollX(x)
ρ0(x)dx.

From this we deduce that tollX(x) ≤ tollX(y) iff X1(x) ≥ X1(y). Furthermore, as the

problem is reversible (we can switch ρ0 and ρ1), we can deduce in the same way that

tollX(x) ≥ tollX(y) iff x ≤ y. Therefore X1(x) is increasing and we conclude that it is
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identical to T the optimal transport map between ρ0 and ρ1.

From Proposition 4.1 we also deduce that for X, the flow of a (candidate) optimal

solution, the map x 7→ tollX is strictly decreasing on the support of ρ0, and that Xt is one

to one, for all t.

Let us write v(x) = x0−x
tollX(x)

for the velocity of transport prior to crossing the toll, for

the mass initially located at x at the start. Then, in light of Proposition 4.1, our problem is

reduced to finding

v ∈ argmin

∫ 1

0

∫
R

(
v(x)21{t≤x0−x

v(x)
} +

(
T (x)− x0
1− x0−x

v(x)

)2

1{t≥x0−x
v(x)

}

)
ρ0(x)dxdt

=

∫
R

(
v(x)(x0 − x) +

(T (x)− x0)2

1− x0−x
v(x)

)
ρ0(x)dx, (4.9)

subject to x 7→ x0−x
v(x)

= tollv(x) being decreasing and bounded between 0 and 1, and

lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{(t+α1)v(x)<x0−x<(t+α2)v(x)}ρ0(x)dx ≤ h. (4.10)

We now argue the existence of a minimizer v⋆.

Proposition 4.2 (Existence). Supposing that the two probabilities densities ρ0, ρ1 have

finite second-order moments, Problem 4.1 admits a solution.

Proof. Let (vn)n be a minimizing sequence of (4.9) and write tolln : Supp (ρ0) → (0, 1) the

associated toll function: tolln(x) = x0−x
vn(x)

. Let (αk)k be a dense sequence in Supp (ρ0) (for

example the rational numbers). By compactness, we have that ∀k ∈ N, tolln(ak) admits a

converging subsequence in n. Then using a diagonal argument, there exist a subsequence
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(vφ(n))n and βk ∈ [0, 1] such that,

∀k ∈ N, tollφ(n)(ak) −−−−→
n→+∞

βk and αk ≤ αl ⇐⇒ βk ≤ βl.

For x ∈ Supp (ρ0), and (αψ(k))k a decreasing subsequence converging to x, let be toll(x) =

limk βψ(k), which is well defined as βψ(k) is decreasing. Then tollφ(n)(x) converges to toll(x)

for any x being a point of continuity of toll. As toll is a nonincreasing map, it has at most a

countable number of points of discontinuity, therefore tollφ(n) converges to toll a.e. In partic-

ular we get that tollφ(n)#ρ0 converges weakly to toll#ρ0 . For x ∈ Supp (ρ0)\{x | toll(x) = 0},

define v(x) = x0−x
toll(x)

, it is well defined a.e. because {x | toll(x) = 0} has measure 0 as (vn)n

is a minimizing sequence. Then vφ(n) converges a.e. to v and as the constraint (4.10) is

equivalent to

∀α1, α2 ∈ R, tollv((t+ α1, t+ α2)) ≤ h|α2 − α1|,

v verifies the constraint. Finally, by lower semi continuity of the cost, v is a minimizer of

(4.9).

4.3 Uniqueness of the solution

Before we proceed with the proof of uniqueness of the minimizer, we recast our problem

in terms of flux as the optimization variable. For u ∈ L1([0, 1] × R,R), a candidate flux

(i.e., mass times velocity), define a corresponding mass-measure ρut on R by duality via:

∀ϕ ∈ C∞
c (R,R),

∫
R
ϕ(x)dρut (x) =

∫
R
ϕ(x)ρ0(x)dx+

∫ t

0

∫
R
(∇ϕ(x))ur(x)dxdr.
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Equivalently, we have that ρu solves in the weak sense the continuity equation

 ∂tρ
u
t = −∇ · u

ρu0 = ρ0

.

For a flux u such that ∀t ∈ (0, 1), ρut admits a positive density, let us express the cost of u

as

J(u) =

∫ 1

0

∫
R

ut(y)
2

ρut (y)
dydt (4.11)

In the above, by a slight abuse of notation as it is often done, we used ρu to denote both the

measure and the corresponding density, allowing these to be distinguished by the specific

usage and context.

Problem 4.2. Consider

inf
u∈U

J(u). (4.12)

over the class U defined as the set of functions u ∈ L1([0, 1]× R,R) a.e. such that

i’) ∀t ∈ (0, 1), ρut admits a positive density and ρu1 = ρ1

ii’) satisfy

∀t ∈ (0, 1), lim sup
x1→x0, x2→x0

1

|x2 − x1|

∫ x2

x1

|ut(y)|dy ≤ h. (4.13)

Determine existence, uniqueness, and a functional form for a minimizing solution u.

We will first prove the equivalence of the above formulation in Problem 4.2 with that

in Problem 4.1. The advantage of Problem 4.2 is that the constraint is now convex which

will be convenient in proving uniqueness. Note that here we use roman J with argument the

flux field, to echo the earlier usage in (4.1) where the action integral J first appeared with

argument the velocity.
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Proposition 4.3. Problems 4.1 and 4.2 are equivalent.

Proof. Let X ∈ Γ be a solution of Problem 4.1, vt(·) = ∂tXt(X
−1
t (·)) the associated velocity

(defined everywhere except at the points (toll(x), x), for all x ∈ Supp (ρ0)) and ρt = Xt#ρ0

the associated mass flow. Then for ϕ ∈ C∞
c (R,R) we have

∫
R
ϕ(x)dρt(x) =

∫
R
ϕ(Xt(x))ρ0(x)dx

=

∫
R

(
ϕ(X0(x)) +

∫ t

0

∂tϕ(Xr(x))dr
)
ρ0(x)dx

=

∫
R

(
ϕ(X0(x)) +

∫ t

0

∇ϕ(Xr(x))vr(Xr(x))dr
)
ρ0(x)dx

=

∫
R
ϕ(x)ρ0(x)dx+

∫ t

0

∫
R
∇ϕ(x)vr(x)dρr(x)dr.

Therefore X defines a unique flux u ∈ L1([0, 1] × R,R) (u is L1 by Jensen inequality) by

ut(x) = vt(x)ρt(x) with J(u) = J(∂tX). Furthermore, for v(x) = ∂tX0(x) =
x0−x
tollv(x)

we have

that the left hand side of (4.10) amounts to

LHS (4.10) = lim sup
α1→0
α2→0

∫
1{Xt(x)+α1v(x)<x0<Xt(x)+α2v(x)}

v(x)

|α2 − α1|v(x)
ρ0(x)dx

= lim sup
ϵ1→0
ϵ2→0

1

|ϵ2 − ϵ1|

∫
1{y+ϵ1<x0<y+ϵ2}vt(y)ρt(y)dy.

Therefore u ∈ U and we conclude that inf
u∈U

J(u) ≤ min
X∈Γ

J(∂tX).

For establishing the reverse direction, let u ∈ U ∩ C([0, 1], C1
c (R,R)) with J(u) < ∞

and define T ut the optimal transport map between ρ0 and ρut . For Ft(x) =
∫ x
−∞ ρut (x)dx the

cumulative distribution function of ρut , it is well known that T ut (x) = F−1
t (F0(x)), see [105,

Chapter 1]. Since ∀t ∈ [0, 1] we have Ft(F
−1
t (F0(x))) = F0(x), differentiating this expression
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we have

∂tF

∣∣∣∣
(t,x)=(t,F−1

t (F0(x)))

+ ∂xF

∣∣∣∣
(t,x)=(t,F−1

t (F0(x)))

∂tF
−1
t (F0(x)) = 0

∫ F−1
t (F0(x))

−∞
∂tdρ

u
t (x) + ρut (F

−1
t (F0(x)))∂tF

−1
t (F0(x)) = 0∫ Tu

t (x)

−∞
−∇ut(z)dz + ρut (T

u
t (x))∂tT

u
t (x) = 0

⇒ ∂tT
u
t (x) =

ut(T
u
t (x))

ρut (T
u
t (x))

.

Therefore T ut defines a map in Γ such that J(u) = J(∂tT
u
t ). Then, since the space C([0, 1], C

1
c (R,R))

is dense in L1([0, 1]× R,R), we deduce that min
u∈U

J(u) = min
X∈Γ

J(∂tX).

Using the equivalence of Problem 4.1 and Problem 4.2, we can now prove the uniqueness

of the minimizer.

Theorem 4.1 (Uniqueness). Problem 4.2 (and so Problem 4.1) admits a unique solution.

Proof. Suppose that we have u1 and u2, two solutions of (4.9). For λ ∈ (0, 1), by convexity we

have that (λu1+(1−λ)u2)2
λρu1+(1−λ)ρu2 ≤ λ

u21
ρu1

+(1−λ) u
2
2

ρu2
, but as they are both solutions, this is an equality.

However the polynomial λ 7→ (λ(u1− u2) + u2)
2− (λ(ρu1 − ρu2) + ρu2)(λ(

u21
ρu1
− u22

ρu2
) +

u22
ρu2

) is

identically zero iff u1
ρ1

= u2
ρ2
, and iff v1 = v2.

4.4 Properties and structural form of the solution un-

der smoothness assumption

We are now in a position to build explicitly the solution v⋆ of Problem (4.9) in the case when

ρ0 and ρ1 have additional smoothness assumptions. All along this section, we will assume

that ρ0 and ρ1 are continuous, have bounded convex support, and are bounded from below

on the interior of their support. In the process of building the solution, we also establish
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structural properties of the solution.

Under the stated assumptions on ρ0, ρ1, by using the closed-form expression for the

optimal transport map T in dimension one [105, Chapter 1], it is immediate to see that T is

C1.

Recall first that, without loss of generality, we assume that sup Supp (ρ0) ≤ x0 ≤

inf Supp (ρ1). For v : Supp (ρ0) → R such that4 x 7→ tollv(x) = x0−x
v(x)

is decreasing and

bounded between 0 and 1 on Supp (ρ0), the expression

Cy(v) = lim sup
α1→0
α2→0

1

|α2 − α1|

∫
1{(tollv(y)+α1)v(x)<x0−x<(tollv(y)+α2)v(x)}ρ0(x)dx

gives the value of the flux passing through the toll station when the mass initially at y is

crossing. Let first prove that from the additional assumptions on ρ0 and ρ1, we have that

the solution is continuous.

Proposition 4.4. The solution v⋆ ∈ L2 admits a continuous representative.

Proof. From section 1, we know that the solution v⋆ ∈ L2 admits a representative such that

the function x 7→ tollv⋆(x) = x0−x
v⋆(x)

is decreasing. Now by absurd, suppose that v⋆ is not

continuous. Then there exists x0 ∈ Supp (ρ0) and ϵ > 0 such that ∀δ > 0, ∃xδ ∈ Supp (ρ0)

with |x0−xδ| < δ and |v⋆(x0)− v⋆(xδ)| > ϵ. As tollv⋆ is decreasing, we have that for δ small

enough,

v⋆(x0)− v⋆(xδ)

|v⋆(x0)− v⋆(xδ)|
=

x0 − xδ
|x0 − xδ|

so tollv⋆ is not continuous in x0 neither. Suppose now that ∀δ > 0, xδ − x0 > 0 (the proof

would be the same for xδ − x0 < 0). Then we have that

lim
x→x0
x>x0

tollv⋆(x) < tollv⋆(x0).

4The notation tollv signifies tollX , for the corresponding X obtained via (4.5).
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If v⋆(x0) < T (x0) − x0, then as tollv⋆ is decreasing and T is continuous, we have that for

γ > 0 small enough, v⋆(x) + 2γ ≤ T (x)− x for all x ∈ (x0− γ, x0]. Then by strict convexity

of J , the function

v2(x) = v⋆(x) + γ1{x∈(x0−γ,x0]}

verifies that J(v2) < J(v⋆). Furthermore for γ small enough, we have that Cx(v2) < h for all

x ∈ (x0 − γ, x0), as ρ0 is continuous and tollv⋆ is decreasing so Cx(v
⋆) < Cxδ(v

⋆) for δ small

enough. Therefore we have that v2 is a better solution to the problem.

If v⋆(x0) ≥ T (x0) − x0, then by continuity of T we have that for γ > 0 small enough,

v⋆(x) + 2γ ≥ T (x)− x, for all x ∈ (x0, x0 + γ]. As previously we can find a better solution

v2(x) = v⋆(x) − γ1{x∈(x0,x0+γ]} to the problem which contradicts the fact that v⋆ is the

minimizer.

The next proposition states that at the points where v⋆ doesn’t saturate the constraint,

v⋆ is equal to the unconstrained transport T − Id.

Proposition 4.5. If there exist y ∈ Supp (ρ0) such that Cy(v
⋆) < h, then we have v⋆(y) =

T (y)− y.

Proof. Suppose ∃y ∈ Supp (ρ0) such that Cy(v
⋆) < h and v⋆(y) ̸= T (y)− y. Define gϵ(x) =

1{x∈(y−ϵ,y+ϵ)}ϵ
3 exp(− 1

ϵ2−(x−y)2 + 1
ϵ2
). Then there exist ϵ ̸= 0 ∈ R and δ > 0 such that

∀x ∈ (y−δ, y+δ) we have |v⋆(x)+gϵ(x)−(T (x)−x)| < |v⋆(x)−(T (x)−x)| and Cx(v⋆+gϵ) < h,

since gϵ introduces a vanishingly small bump at a suitable location. By strict convexity of J

we have that J(v⋆) > J(v⋆ + gϵ) which contradicts the optimality of v⋆.

We can now deduce some regularity of the function v⋆.

Corollary 4.1. The optimal solution v⋆ of (4.9) is C1 almost everywhere.

Proof. As T is C1, then v⋆ is also C1 at points y that lie in the interior of the closed set
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{y ∈ Supp (ρ0) | v⋆(y) = T (y)− y}. Otherwise if for some y it holds that v⋆(y) ̸= T (y)− y,

then ∃δ > 0 such that ∀x ∈ (y − δ, y + δ), v⋆(x) ̸= T (x) − x which implies by Proposition

4.5 that Cx(v
⋆) = h. Solve the ordinary differential equation

 ∂xv(x) =
v(x)2ρ0(x)−hv(x)

h(x0−x) for y − δ ≤ x ≤ y1

v(y + δ) = v⋆(y + δ)
(4.14)

for v(x). It can be shown that the function v is well defined by establishing existence

and uniqueness of the solution to (4.14) using the Cauchy-Lipschitz theorem and inherent

boundedness. Indeed, if

v(x) >
h

inf{ρ0(y) | y ∈ Supp (ρ0)}
,

then ∂xv(x) > 0, and so v is decreasing with decreasing value of its argument on a small

interval [x− ϵ, x], and if

0 < v(x) <
h

sup{ρ0(y) | y ∈ Supp (ρ0)}
,

then ∂xv(x) < 0, and so v is increasing (again with decreasing value of its argument) on a

small interval [x − ϵ, x]. As v⋆(y + δ) > 0, and v 7→ v2ρ0(x)−hv
h(x0−x) is Lipschitz on any compact

set, we can apply the Cauchy-Lipschitz theorem to establish existence and uniqueness. From

the definition of v, it follows that Cx(v) = h, and therefore v has the same flux as v⋆. By

uniqueness, v which is C1 on [y − δ, y1], is optimal, i.e., v = v∗. Finally, as v⋆ is C1

on the interior of the set {y ∈ Supp (ρ0) | v⋆(y) = T (y) − y} and is also C1 on the set

{y ∈ Supp (ρ0) | v⋆(y) ̸= T (y) − y}, we deduce that v⋆ is C1 almost everywhere as the

boundary of those two sets is at most countable.

Now that we have established that v⋆ is C1 a.e., we can write the constraint (4.10) for
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functions v ∈ C1(Supp (ρ0),R) as: for x ∈ Supp (ρ0), a.e.

Cx(v) =
v(x)ρ0(x)

1 + x0−x
v(x)

∂xv(x)
≤ h. (4.15)

For v : Supp (ρ0)→ R, define

J(v) =

∫
R

(
v(x)(x0 − x) +

(T (x)− x0)2

1− x0−x
v(x)

)
ρ0(x)dx.

We can then rewrite Problem 4.1 in the present case where ρ0 and ρ1 are continuous, have

bounded convex support and are bounded from below on the interior of their support, as

follows.

Problem 4.3. Consider

min
v∈V

J(v) (4.16)

over a class V of functions v : Supp (ρ0)→ R, that are C1 a.e. and are such that

i) the map x 7→ x0−x
v(x)

is decreasing and bounded between 0 and 1

ii) v verifies condition (4.15) a.e.

To solve Problem 4.3, we define velocity fields v on all of R, even outside Supp (ρ0),

as this suitably defined prolongation of v will be conveniently expressed as a solution of a

differential equation. To this end, we note that the constraint (4.15) can be alternatively

expressed in the form

Calt
x (v) :=

v(x)2ρ0(x)− h(x0 − x)∂xv(x)
v(x)

≤ h. (4.17)

This alternative formulation applies even for points x where ρ0 = 0, and will help define the

sought prolongation for v⋆.
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Let us first prolong on all of R the optimal transport map between ρ0 and ρ1. To this

end, define α0 = inf Supp (ρ0), β0 = sup Supp (ρ0), α1 = inf Supp (ρ1), β1 = sup Supp (ρ1),

and set

T+(x) =


T (x) when x ∈ Supp (ρ0)

β1 + x− β0 when x ≥ β0

α1 + x− α0 when x ≤ α0.

Let γ0, γ1 ∈ R be the uniquely defined points such that x0−α0

v⋆(α0)
= x0−γ0

T+(γ0)−γ0 and x0−β0
v⋆(β0)

=

x0−γ1
T+(γ1)−γ1 . The point γ1 is the point that, when transported by T − Id, crosses the toll at the

same time β0 crosses the toll when being transported by v⋆. Note that we have γ0 ≤ α0 and

γ1 ≥ β0. We also prolong v⋆ on the whole R as

v⋆+(x) =



T (x)− x when x ≤ γ0 or x ≥ β0

v⋆(α0)
x0−x
x0−α0

when γ0 ≤ x ≤ α0

v⋆(x) when x ∈ Supp (ρ0)

v⋆(β0)
x0−x
x0−β0 when β0 ≤ x ≤ γ1

For notational simplicity, in the sequel, we suppress the labeling on T+,v⋆+ and use T ,

v⋆ instead for the prolonged versions as well. To build v⋆, we first establish that on the

points where T − Id doesn’t satisfy the constraint, v⋆ actually saturates the constraint.

As an immediate consequence of Proposition 4.5, we have the following lemma:

Lemma 4.1. For all x ∈ Supp (ρ0) such that Cx(T − Id) > h we have Cx(v
⋆) = h.

We next characterize a leading segment of the distribution corresponding to points with

velocity faster than that of the optimal unconstrained transport. It is essential that the

leading edge “speeds up” to allow the trailing portion to pass through and meet the time

constraint. Specifically, we show that v⋆ is greater than T − Id at the points to the right of

points where T − Id doesn’t satisfy the constraint.
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Lemma 4.2. For x1 = sup{x ∈ Supp (ρ0) | Cx(T−Id) > h} and y1 = sup{x ∈ R | Calt
x (v⋆) =

h} we have that ∀x ∈ (x1, y1), v
⋆(x) ≥ T (x)− x.

Proof. First note that y1 ≥ x1 by Lemma 4.1. Suppose that

{v⋆(x) < T (x)− x} ∩ (x1, y1) ̸= ∅

and let a = sup{x ∈ (x1, y1) | v⋆(x) < T (x) − x}. We consider separately the two cases

ρ0(a) = 0 and ρ0(a) > 0 below:

i) If ρ0(a) = 0 then ∀x ≥ a, ρ0(x) = 0, so

v⋆(x) =
T (y1)− y1
y1 − x0

(x− x0),

as Calt
x (v⋆) = h for all x∈ [a, y1]. Furthermore, T (a)− a = β1 + a− β0 − a = T (y1)− y1 and

T (a) − a = v⋆(a) so necessarily a = y1 and Supp (ρ0) = [α0, y1]. Then ∃z ∈ (x1, y1) such

that, ρ0(z) > 0, v⋆(z) < T (z)− z and ∂xv
⋆(z) > T ′(z)− 1.

ii) If ρ0(a) > 0, then by convexity of Supp (ρ0) we also have existence of that z ∈ (x1, y1)

with the same properties. In both cases we have

v⋆(z)ρ0(z)

1 + x0−z
v⋆(z)

∂xv⋆(z)
<

(T (z)− z)ρ0(z)
1 + x0−z

T (z)−z (T
′(z)− 1)

≤ h

which contradicts the definition of y1.

The following lemma states that if v⋆ saturates the constraint on a maximal interval

(i.e., such that, the points just outside do not saturate the constraint), then either v⋆ = T−Id

throughout, or it is strictly greater than T − Id on a portion of the interval and strictly less

than T − Id on another portion of the interval. This property is inherited by the convexity

of the cost.
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Lemma 4.3. For [a, b] ⊂ {x ∈ R | Calt
x (v⋆) = h} with [a, b] of maximal size, ∃x ∈ [a, b] such

that v⋆(x) > T (x)− x if and only if ∃y ∈ [a, b] such that v⋆(y) < T (y)− y.

Proof. Suppose that ∀x ∈ [a, b] we have v⋆(x) ≥ T (x)−x and we don’t have equality on the

whole interval. Define

Ψa(ϵ) =

∫ b

a

(
(x0 − x)(v⋆(x) + ϵ) +

(T (x)− x0)2

1− x0−x
v⋆(x)+ϵ

)
ρ0(x)dx.

Then we have ∂xΨa(0) =
∫ b
a
(x0 − x)(1− (T (x)−x0)2

(v⋆(x)−(x0−x))2
)
ρ0(x)dx > 0. Let be c < a such that

∂xΨc(0) > 0 and ∃δ > 0 with v⋆(c)2ρ0(c)−hv⋆(c)
h(x0−c) − ∂xv⋆(c) = −δ. Then there exist d ∈ (c, a)

such that ∂xΨd(0) > 0 and ∃δ > 0 with v⋆(d)2ρ0(d)−hv⋆(d)
h(x0−d) − ∂xv⋆(d) = −δ/2. Let us define kϵ

as the function solving the ODE

 ∂xkϵ(x) = −∂xv⋆(x) + (v⋆(x)+kϵ)2ρ0(x)−h(v⋆(x)+kϵ(x))
h(x0−x) for x ≤ d,

kϵ(d) = −ϵ.

Then for ϵ > 0 small enough we have ∂xkϵ(x) < −δ/4, ∀x ∈ (c, d). Therefore for ϵ > 0 small

enough ∃y ∈ (c, d) such that kϵ(y) = 0. Define

vϵ(x) =



v⋆(x) if x /∈ (y, b),

v⋆(x)− ϵ if x ∈ (d, b),

v⋆(x) + kϵ(x) if x ∈ (y, d].

Then for ϵ > 0 small enough, vϵ verifies the constraint and J(vϵ) < J(v⋆). Using the same

method we can prove that having v⋆(x) ≤ T (x)− x for all x ∈ [a, b] is impossible.

We are now in a position to build explicitly v⋆ using the lemmas. The process of building

78



v∗ consists of determining its value successively on intervals [zyi , yi] and [yi+1, zyi ], with

. . . > yi > zyi > yi+1 > zyi+1
> . . .

such that v⋆(x) ̸= T (x)− x for x ∈ [zyi , yi] a.e., while v⋆(x) = T (x)− x on the complement

where x /∈
⋃
i

[zyi , yi]. By Proposition 4.5 we know that Calt
x (v⋆) = h on intervals [zyi , yi], a

fact that will help us determine v⋆ and the succession of points that define these intervals.

We explain the process in Figures 4.2-4.4 with an example. This example presents a

situation where the behavior of the corresponding optimal solution v⋆ is characterized by

two distinct intervals [zyi , yi] i = 1, 2, where the constraint saturates. Thus, for this example,

we identify three intervals of interest, [zy2 , y2], [y2, zy1 ], and [zy1 , y1]. In the first and the last,

the constraint saturates, whereas in the middle interval it does not. We proceed by working

our way from right to left, always assuming that Supp (ρ0) is to the left of the toll, as in the

figures.

In general, the process begins by first computing the optimal transport map T , without

involving the constraint. Then, we identify x1 as the rightmost point where the throughput

hits the limit set at x0. Naturally, if the optimal transport map satisfies the throughput

constraint, then it is the optimal map and specifies v∗ throughout. Assuming that x1 is finite,

then a search to the right of x1, that we explain later on, identifies y1 as the rightmost point

where v needs to be adjusted so as to abide by the throughput constraint while minimizing

the transportation cost. In the example depicted in Fig. 4.2, y1 is shown located to the right

of β0 (= the supremum of the support of ρ0), though this is not always the case, and depends

on the terminal distribution ρ1 via the optimization problem that specifies y1. We choose to

explain this case, where y1 is to the right of β0 so as to highlight that this is indeed possible.

Continuing on with our specific example, for the interval [zy1 , y1], we have v⋆ = vy1 ,

with vy defined in equation (4.19) explained below, which ensures that Calt
x (v) = h. Then,
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x0β0zy2 α0 y1

ρ0

x2 y2 zy1 x1

Figure 4.2: Density ρ0(x) vs. x

t0 1

h

toll(β0) toll(zy1) toll(y2) toll(α0)

Figure 4.3: Flux ρt(x0)vt(x0) at crossing.

ρ0

ρ1

x

x

t

x0

y2 zy1

toll(zy1)

toll(y2)

X1(y2) X1(zy2)

Figure 4.4: Illustration of the flow through the toll. The middle segment [y2, zy1 ] transports
through the toll unimpeded by the constraint towards the final destination, via the optimal
transport map T , designed for unconstrained transport; each point in this interval maintains
the same velocity before and after the toll. In contrast, the segments to the left and right,
[zy2 , y2] and [zy1 , y1], respectively, are adjusted accordingly so as to saturate the constraint.
The exact position of their respective end points (that may even be outside the support of
ρ0, as a matter of computational simplicity, in which case they correspond to zero density)
are computed via the solution of an optimization problem and depend on the terminal
distribution ρ1 as well.

on [y2, zy1 ] we have once again that the velocity is specified by the “unconstrained” optimal

map T , i.e, that v⋆ = T − Id, and so Calt
x (v) = Calt

x (T − Id). Finally on [zy2 , y2], we have

v⋆ = vy2 as Calt
x (v) = h. Note that in this specific example where y1 ≥ β0 and zy2 ≤ α0, we
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have ∀x ∈ [zy2 , α0], toll(x) = toll(α0) and ∀x ∈ [β0, y1], toll(x) = toll(β0).

We now detail how to build explicitly v⋆ in the general case. As noted, if T − Id verifies

the constraint throughout, which can now be explicitly stated as in (4.15), then v∗ = T − Id

is the optimal solution. Otherwise define x1 = sup{x ∈ Supp (ρ0) | Cx(T − Id) > h}, and

thereby we determine y1 ∈ [x1, x0] (cf. Lemma 4.1) such that

y1 = sup{x ∈ R | Calt
x (v⋆) = h}. (4.18)

For any y ∈ R with x1 ≤ y < x0, define the velocity vy(x) as the solution of the

differential equation

 ∂xvy(x) =
vy(x)2ρ0(x)−hvy(x)

h(x0−x) for x ≤ y.

vy(y) = T (y)− y
(4.19)

Note that this equation is solved backwards, starting from a terminal condition at y. This

value for the velocity ensures that the transport will saturate the constraint to left of y (i.e.,

Calt
x (vy) = h will hold for x ≤ y). The functional form of vy(x) will be used next to identify

the first interval [zy1 , y1], where the velocity will depart form that of the unconstrained

transport T , via solving a suitable optimization problem to determine y1. Since we know

that the equality Calt
x (v⋆) = h will be true on a certain interval [zy1 , y1], on that interval we

will have v⋆ = vy1 .

Let wx1y = inf{x ≤ x1 | ∀s ∈ (x, x1), vy(s) ≥ T (s)− s} (well defined by Lemma 4.2) and

zx1y = inf{x ≤ wx1y | ∀s ∈ (x,wx1y ), vy(s) < T (s) − s}. Then we have that v⋆(x) = vy1(x),

∀x ∈ (zx1y1 , x1) by Lemma 4.3 and Proposition 4.5.

We now determine y1 by solving a suitable optimization problem. For x ≤ y < x0,
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define

Jx(y) =

∫ 1

0

∫
R

(
(T (s)− s)1{s /∈ (zxy , y)}

+ ((x0 − s)vy(s) +
(T (s)− x0)2

1− x0−s
vy(s)

)1{s ∈ (zxy , y)}
)
ρ0(s)dsdt.

We have Jx(y) = J(v+y ) for the function v+y such that v+y = vy on [zxy , y] and v+y = T − Id on

R \ [zxy , y]. Then the first step of the building process of v⋆ is to find y1 solution of

y1 = argmin
y≥x1

Jx1(y).

Such a y1 is well defined as Jx1 is continuous on [x1, x0]. Once y1 has been determined, we

define x2 = sup{x < zy1 | Cx(T − Id) > h}. If x2 is not defined then

v⋆(x) =


vy1(x) if x ∈ (z1, y1),

T (x)− x if x /∈ (z1, y1),

otherwise we start again the same process to determine y2 as

y2 = argmin
y>x2

Jx2(y).

If y2 < zy1 , it suggests that there is an interval [y2, zy1 ] where the transport follows the

unconstrained map T , and we continue in the same way.

However, it is possible that the condition yi ≤ zyi−1
fails at some point, for some i ≥ 2. In

that case, intervals where the velocity departs from being T (x)−x, will merge. For instance,

if we obtain yi > zyi−1
then as (y, y′) 7→ Jxi−1

(y) + Jxi(y
′) is convex on {(y, y′) | y′ ≤ zy},

it means that Calt
x (v⋆) = h, ∀x ∈ (xi, xi−1) and therefore we have to start the optimization
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again and determine yi−1 as

yi−1 = argmin
y>xi−1

Jxi(y).

If we obtain a value yi−1 > zyi−2
, we reset xi−1 as being equal to xi and, once again, we

have to redetermine

yi−2 = argmin
y>xi−2

Jxi−1
(y).

Otherwise, i.e., if we obtain a value yi−1 ≤ zyi−2
, we reset xi as xi = sup{x < zyi−1

| Cx(T −

Id) > h} for this updated value yi−1. Once again, if xi is well defined we continue the process

by finding

yi = argmin
y>xi

Jxi(y).

We continue this iterative process until v⋆ is defined on all of the support of ρ0. We finally

remark that

E :=
n⋃
i=1

(zyi , yi) = {x ∈ R | ∃δ > 0, ∀y ∈ (x− δ, x) ∪ (x, x+ δ), T (x)− x ̸= v⋆(x)}.

Note that we have that n ∈ N ∪ {+∞}, so the process doesn’t necessarily terminate. If

one absolutely wants the process to terminate, they have to be careful to the oscillations

of Cx(T − Id) around the value h. Indeed, if the process doesn’t terminate, it implies that

xi = sup{x < zyi−1
| Cx(T − Id) > h} always exists ∀i, so the function x 7→ Cx(T − Id)

oscillates indefinitely around h as x is moving backward. Supposing that the densities ρ0

and ρ1 are Lipschitz, then T has Lipschitz derivative so x 7→ Cx(T − Id) is also Lipschitz.

This implies that the oscillations around h become smaller and smaller (in size) so it suffices

to lower the value of h of any ϵ > 0 to avoid the infinite oscillations.

We summarize our conclusions on the shape of v⋆ in the following statement.
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Theorem 4.2. The solution v⋆ of Problem 4.3 satisfies:

a) For x ∈ (zyi , yi), we have v⋆(x) = vyi(x) (defined in (4.19)) and Calt
x (v⋆) = h.

b) There exists wi ∈ (zyi , yi) such that ∀y ∈ [wi, yi), v
⋆(y) ≥ T (y)− y and ∀y ∈ (zyi , wi],

v⋆(y) ≤ T (y)− y.

c) ∀x /∈ E, v⋆(x) = T (x)− x.

d) The building process of v⋆ consists in solving iteratively yi = argmin
y>xi

Jxi(y) and if

yj > zyj−1
, then starting again by setting yj−1 = argmin

y>xj−1

Jxj(y). The process may

contain an infinite number of steps.

4.5 Numerical example

We provide an example to highlight the departure of the optimal transport plan through

a toll with a bound on the flux, from the ideal unconstrained transport T . The example

we have selected is basic, with uniform probability densities ρ0(x) = 1{x ∈ [0, 1]}, ρ1(x) =

1{x ∈ [2, 3]} , and a toll at x0 = 3/2 with a bound h on the flux, with 1 < h ≤ 2. The

stringent constraint on the flux, that necessitates varying velocities so as to redistribute

the mass flow as it traverses the toll, is clearly seen in the succession of distributions Xt♯ρ0

displayed in Fig. 4.5. Evidently, these readily contrast with the unconstrained transport that

pushes forward ρ0 with constant speed giving ρt(x) = ρ0(x− 2t).

Specifically, with the flux-constraint in place, we obtain that the optimal transport is

effected by

Xt(x) =


x+ tv(x) for t ≤ toll(x) = 3/2−x

v(x)
,

3/2 + (t− toll(x))g(x) for t ≥ toll(x).
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Then, the constraint (4.15) gives that v solves the ODE

v(x)

1 + 3/2−x
v(x)

∂xv(x)
= h.

It follows that v(x) = h(2x−3)
2x−3+α

for a certain value α ∈ R . Using the fact that the optimal

solution must be symmetric in time (v(x) = g(1 − x)) and that g(x) = x+0.5
1−toll(x) , we finally

obtain that v(x) = h(2x−3)
2x−1−h . Snapshots of the flow along the path from ρ0 to ρ1 are depicted

in Figure 4.5.

Figure 4.5: Example of transporting a uniform distribution through a constriction (with h =
1.5) to a similar uniform terminal distribution. While the optimal unconstrained transport
will preserve the shape of the marginals at each time t, the flux constraint necessitates an
optimal velocity that changes with x, stretching the leading edge of the distribution as it
approaches the toll. Note that the snapshots of the transported distributions Xt♯ρ0 “squeeze”
while crossing the toll, and that the flow is symmetric with time.
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4.6 Discussion and conclusion

We have presented theory for the most basic optimal transport problem in R, through a

constriction where a throughput constraint is imposed. We modeled the formulation after the

standard Monge-Kantorovich optimal transport with a quadratic cost. We have shown that

an optimal transport exists and is unique under general assumptions. Under some suitable

assumption on the densities to be transported to one another, we have shown explicitly how

to construct the transport plan. Moreover, we have highlighted natural properties of the

transport plan.

More generally, in the case where ρ0 and ρ1 are densities on Rd and that all the trajecto-

ries have to pass through a single point x0 ∈ Rd, we can readily extend the result presented

as follows. For λαSd−1 the Lebesgue measure on the sphere of radius α and center x0, define

ν0(α) =

∫
αSd−1

ρ0(x)dλαSd−1(x)

and ν1 the same way. Then the problem in Rd is equivalent to solving the problem in

dimension 1 between the measure ν0, ν1 defined as ν0(x) = 1{x < 0}ν0(−x) and ν1(x) =

1{x > 0}ν1(x).

A significant departure from the current setting arises in the case of multiple tolls, or

of a continuum of tolls, where the flux-rate is bounded on a curve, surface, etc. The case

where a sequence of tolls, possibly even zero-dimensional (points), where mass has to flow

through all in succession, is of particular interest in engineering applications. Indeed, in the

modern information age, knowledge of obstructions “down the road” can undoubtedly be

used to optimize transportation cost upstream. On the other hand, the paradigm of multiple

alternative tolls that one can choose to cross, is expected to have a more combinatorial

flavor. Lastly, one could generalize the problem presented in this paper to transport of

densities in dimension d, with a flux constraint on a measurable set with respect to the p-
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dimensional Hausdorff measure Hp (with p ≤ d). For instance, an analogous flux constraint

on a measurable set A ⊂ Rd with 0 < Hp(A) <∞ can be cast as: ∀B ⊂ A measurable with

Hp(B) > 0 and t ∈ (0, 1)

∀α1, α2 ∈ R,
Hp(A)

Hp(B)

∫
1{∃τ∈(t+α1,t+α2) | Xτ (x)∈B}ρ0(x)dx ≤ h|α2 − α1|.

The proof of existence and uniqueness of a solution should follow using similar arguments.

However, to completely characterise the behavior of the solution as in the simpler case treated

herein, is expected to be considerably more challenging; one would need a finer description

of how the mass distributes while traversing the toll.

Transport problems with a throughput restriction are quite natural in a variety of

scientific disciplines. Of course, transportation through tolls on highways represents perhaps

the most rudimentary paradigm in an engineering setting. Likewise, throughput through

servers with a throughput bound is common in queuing systems. A continuum theory as

envisioned herein, in higher dimension and with multiple serial tolls, may produce useful

practical insights. Finally, while fluid flow, passing through constrictions or porous media,

though not directly abiding by the rigid setting of bounded throughput, could provide an

idealized pertinent model in certain situations. Evidently, for an accurate model for fluid past

constrictions, besides distinguishing between compressible and incompressible, throughput

must be dictated by pressure, which in turn may be introduced in a suitable cost functional

to be optimized for a further broadening of the general program.
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Kantorovich paradigm of transporting one distribution to another, by seeking to minimize

a suitable cost functional, has proved enabling in many ways. It gave rise to a class of

control problems [25, 24], underlies variational principles in physics [58, 79], provided natural

regularization penalties in inverse problems [12], led to new identification techniques in data

science [54, 83], in graphical models [40], and was linked to large deviations in probability

theory [68, 23].

Historically, the Monge-Kantorovich theory proved especially relevant in economics

when physical commodities were the object to be transported–a fact that contributed to

L. Kantorovich receiving the Noble prize. Extensions that pertain to physical constraints

along the transport naturally were soon brought up. For instance, moment-type constraints,

have been considered in [88, Section 4.6.3] and, more recently, far generalized in [37]. Con-

gestion being a significant impediment to transport has also drawn the attention of theorist

and practitioners alike. For instance, besides optimizing for a transportation, considerations

of an added path-dependent cost to alleviate congestion has been considered in [18], see

also [91, Section 4] for a comprehensive study of this research direction (compared with the

Monge-Kantorovich OMT where the cost c(x, y) is only dependent on source and destina-

tion, the traffic congestion in [18] is captured by the cost cπ,p(x, y) for transportation strategy

(π, p) with π is the admissible couplings and p characterizes the portion of mass through

certain path). Along a different direction, constraints have been introduced for probability

densities as part of the optimization problem. Such bounds can capture the capacity of the

transportation medium and the optimized among admissible couplings with given marginals

µ, ν is now defined as

Π =

{
π ∈ P(Rn,Rn) |

∫
y

π = µ(dx),

∫
x

π = ν(dy), π ≤ π̄

}

with the capacity constraint π̄ ∈ P(Rn,Rn) so that π ≤ π̄ almost everywhere which have
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been studied in [62], or dynamical flow constraints

∫
S1×S2

fk(x, y)π(d(x, y)) ≤ bk, ∀k = 1, . . . ,m.

given the measurable maximal density h : Ω → [0,∞) and Ω is a manifold with boundary,

as in [48].
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Chapter 5

Kantorovich transport with toll

Simplicity is the ultimate sophistication.

– Leonardo da Vinci

The key idea in the present work for dealing with flow-rate constraints is to seek a

distribution for the times of crossing the toll-stations, suitably bounded to ensure meeting

the constraints. Our choice for a cost to be minimized is the mean-square of the velocity.

This choice effectively orders the flow, in that particles do not overtake each other, and can

be expressed as a convex functional of the optimization variables. Moreover, this cost can be

conveniently decomposed into a sum of costs, each engaging only space and timing variables

that pertain to segments of the transport path. We ensure flux constraints by imposing

bounds on the variables representing the time of toll-crossing. Under a fairly general setting

our formulation amounts to a multi-marginal OMT problem with the time-crossing marginals

as unknown and constrained parameters of the problem.

Below, in Section 5.1 we discuss the formulation of Monge-Kantorovich transport through

tolls with flow-rate constraint. In Section 5.3 we specialize to measures with support on R

and we highlight the nature of solutions with representative examples. In Section 5.4, we
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discuss two generalizations of the basic problem, the first concerns partial transport through

tolls where mass needs only to clear certain tolls on the way to the respective destination,

while the second brings in a new dimension to the transport problem by considering arrival

and departure times in the formulation.

5.1 Problem formulation

We consider the classical optimal mass transport problem with a quadratic cost, albeit with

a flow-rate constraint on the flow across tolls at specified locations. Specifically, we consider

distributions µ, ν, that are assumed throughout as being probability measures (i.e., with

mass normalized to 1), and seek a transportation plan from one to the other. The “start-

ing” distribution µ represents the mass of a single commodity that needs to be transported

accordingly and matches the demand that is specified by ν. Along the way, the mass has to

clear tolls abiding by corresponding constraints on throughput.

Let us first review the classical Monge-Kantorovich optimal mass transport with a

quadratic cost (on Rn). The Monge formulation of transport seeks a transportation map

T : x 7→ y = T (x) so as to minimize the transportation cost functional

J(T ) =

∫
Rn

∥T (x)− x∥2µ(dx),

over the choice of T , subject to the transportation map T pushing the starting to the target

distribution, i.e., µ to ν. We denote this by writing T♯µ = ν. As it is standard, the notation

♯ denotes the “push forward,” meaning that for any Borel set S ⊂ Rn, µ(T−1(S)) = ν(S).

In general, such a map T may not always exist. The Kantorovich relaxation seeks instead

a measure π on the product space Rn × Rn so that the marginals on the two components
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coincide with µ, ν, while π minimizes the functional

J(π) =

∫
Rn×Rn

∥y − x∥2π(dx, dy).

The measure π is referred to as coupling of the two marginal distributions.

Assuming that µ is absolutely continuous with density ρ0 then the optimal transport

map T always exists and is unique [105, Theorem 2.12], and the optimal cost is the minimal

of

J(∂tX) :=

∫ 1

0

∫
Rn

(
∂tXt(x)

)2
ρ0(x)dxdt, (5.1)

for X : [0, 1] × Rn → Rn such that1 X0♯ρ0 = ρ0 and X1♯ρ0 = ν. That is, the minimization

is over velocity fields ∂tX, for flows X that correspond the starting and ending marginal

densities. It turns out that the optimal flow is effected by

Xopt
t (x) = x+ t

(
T (x)− x

)
,

for T the optimal transport map. The minimal value of these functionals is designated as

the Wasserstein distance W2
2 (µ, ν) [104].

One observes that, in (5.1), what is actually being minimized is the average kinetic

energy (modulo a factor of 2), as the transport takes place over the interval [0, 1]. In general,

having dµ = ρ0dx and carrying out the transport over the interval [0, tf ],

W2
2 (µ, ν) = J(∂tX

opt
t )

=

∫ tf

0

tf

∫
Rn

(
∂tX

opt
t (x)

)2
ρ0(x)dxdt

=

∫ tf

0

∫
Rn

∥T (x)− x∥2

tf
ρ0(x)dxdt

1Following a common abuse of notation, for simplicity, we write interchangeably the density ρ0 and
measure µ, and allow the notation to be understood from the context.
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since ∂tX
opt
t (x) =

(
T (x) − x

)
/tf , recovering J(T ) for the optimal transport map. Most

importantly, the average kinetic energy can also be written, for the relaxed Kantorovich

formulation, as

W2
2 (µ, ν) =

∫ tf

0

∫
Rn×Rn

∥y − x∥2

tf
π(dx, dy)dt.

The derivation is immediate since
∫ tf
0
dt = tf . The expression helps highlight the average

kinetic energy as the minimal of the convex cost ∥y − x∥2/tf , when transporting mass from

x to y over a time interval of duration tf .

We are now in a position to formulate the analogue of the Monge-Kantorovich problem

for the case where the mass needs to clear tolls, initially a single toll, at specified locations

and with a bound on the flow-rate.

We first assume that a single toll is located at ξ and that mass flowing through cannot

exceed a given flow-rate r. Thus, the flow-rate through the toll must satisfy

σ(t) ≤ r.

The flow-rate represents the mass density over time as the mass is transported through the

toll, i.e., σ(t)dt represents mass that clears the toll in the interval [t, t+ dt].

The insight that allows us to formulate optimal transport through toll(s) as a multi-

marginal optimal transport problem is to view the as-yet-undermined mass density σ(t) as

a time marginal distribution, together with the specified spatial initial and final marginals

µ(dx) and ν(dy). Thereby, the Kantorovich formulation of the problem seeks a coupling

π(dx, dy, dt) between the two given marginals µ(dx), ν(dy), and the sought marginal σ(t)dt,

that specifies the portion of mass at [x, x + dx], heading towards [y, y + dy], is transported

through the toll in the interval [t, t+ dt].

In light of the coupling between a starting point x at time τ = 0, location of the toll ξ
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that mass is to be transported at time τ = t, and terminal destination y to arrive at τ = tf ,

the average kinetic energy2 over the segment τ ∈ [0, t] is minimized when particles travel at

constant velocity (ξ − x)/t, and thus, equal to

∫ t

0

∥(ξ − x)/t∥2dτ = ∥ξ − x∥2/t.

Likewise, the average kinetic energy over the remaining interval [t, tf ] is ∥y − ξ∥2/(tf − t).

Thus, we arrive at the formulation of our first problem.

Problem 5.1. Given probability measures µ, ν and r > 0, determine a probability measure

π(dx, dy, dt) on Rn × Rn × [0, tf ] that minimizes

∫∫∫
x,y,t

(
∥ξ − x∥2

t
+
∥y − ξ∥2

tf − t

)
π(dx, dy, dt), (5.2)

subject to the marginals
∫∫

y,t
π(dx, dy, dt) = µ(dx) and

∫∫
x,t
π(dx, dy, dt) = ν(dy), and the

flow-rate constraint
∫∫

x,y
π(dx, dy, dt) ≤ rdt.

Throughout, notation as in
∫∫

x,y
π(dx, dy, dt), indicates integration over the space of

the variables that are subscribed to the integral.

Note that the above formulation allows mass that is initially concentrated x and is

heading towards the same terminal destination y, to split and transport over different paths

clearing the toll at different times t, as prescribed by the coupling, in order to abide by the

imposed bound on flow-rate. This will necessarily be the case when µ assigns finite mass at

a point (contains Dirac deltas or singular part, in higher dimensions).

A somewhat more ambitious scheduling may require optimizing the average kinetic en-

ergy, from a starting measure µ to the terminal ν, clearing two or multiple tolls in succession.

2The average kinetic energy is often referred to as action integral in physics.
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For the case of two tolls, define π(dx, dy, dt1, dt2) as the coupling of mass at x heading to y

that clears the tolls at times t1, t2, respectively, where 0 ≤ t1 ≤ t2 ≤ tf . The coupling, as be-

fore, is a probability measure that specifies the respective amount of mass that is transported

as prescribed.

The problem with two or multiple tolls is analogous to Problem 5.1. For instance, in

the case of two tolls, the cost cξ1,ξ2 to be minimized over the choice of admissible couplings

is

∫∫∫∫
x,y,t1,t2

(
∥ξ1 − x∥2

t1
+
∥ξ2 − ξ1∥2

t2 − t1
+
∥y − ξ2∥2

tf − t2

)
π.

Admissibility of π amounts to consistency with the problem data, i.e., it amounts to sat-

isfying the usual marginal constraints on x and y, as well as the flow-rate constraints∫∫∫
x,y,t2

π(dx, dy, dt1, dt2) ≤ r1dt1 and
∫∫∫

x,y,t1
π(dx, dy, dt1, dt2) ≤ r2dt2.

We remark that flow-rate constraints can be time-varying without any significant over-

head in the difficulty of the problem. Specifically, in the condition
∫∫

x,y
π(dx, dy, dt) ≤ rdt

the flow-rate bound can be specified by a time-dependent density r(t) that regulates permis-

sible throughput at different times. Evidently, the bound could also be a measure, but this

is deemed of minimal practical relevance and not followed here.

5.2 Existence and uniqueness of the solution

Our first technical result establishes in a straightforward manner existence of solutions.

Proposition 5.1 (Existence). Provided rtf > 1, Problem 5.1 admits a (minimizing) solu-

tion π.

Proof. Denoting with σ(t) the mass density that crosses the toll at time t, as before, the
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transport of the total mass through the toll over the interval [0, tf ] subject to σ(t) ≤ r,

requires that

1 =

∫ tf

0

σ(t)dt ≤
∫ tf

0

rdt = rtf ,

Thus, rtf ≥ 1 is a necessary condition3. The space of admissible measures π in Problem 5.1,

i.e.,

Π =

{
π ∈ P

(
Rn,Rn, [0, tf ]

)
|
∫∫

y,t

π(dx, dy, dt) = µ(dx),∫∫
x,t

π(dx, dy, dt) = ν(dy),

∫∫
x,y

π(dx, dy, dt) ≤ rdt

}

is non-empty. It is also compact for the weak topology as it is tight and closed for the narrow

convergence. Indeed, the set of coupling measures between a finite number of probability

measures is tight [91, Theorem 1.4], and each of the three constraints in Π is closed for the

narrow convergence. Then, as the cost function (integrand in (5.2)) is lower semi-continuous,

we have the existence of a minimizer. To see that Π is non-empty, we postulate a uniform

distribution on the crossing times, u = (1/tf )dt, and couplings π̃xt, π̃ty that are consistent

with the marginals (µ, u) and (u, ν), respectively. Then, the existence of an element π̃ ∈ Π

with marginals

∫
y

π̃(dx, dy, dt) = π̃xt, and

∫
x

π̃(dx, dy, dt) = π̃yt,

is guaranteed by the gluing lemma [104, page 11].

Note that the convexity of the cost is not used in the proposition. We next consider

3The case rtf = 1 is only feasible in the non-generic situation where max Support(µ) = 0 =
min Support(ν). In general, when e.g., max Supp(µ) < 0, the “rightmost” mass on the support of µ must
be transported with infinite velocity so as to allow σ(t) = 1/tf over [0, tf ] for the total mass to have enough
time to be transported through. Such limiting cases are non-physical, leading to diverging transportation
cost, and thereby excluded.
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whether the optimal solution is unique. We first discuss the special case where n = 1.

Moreover, for this case where locations on the underlying space can be ordered (e.g., from

left to right), we assume that the toll sits between the two distributions µ, ν, specifically

that the support of µ is to the left of ξ and that the support of ν is to the right. Without

loss of generality, we let ξ = 0 and we thus consider the following problem.

Problem 1′ (Simplification). We consider probability measures µ, ν on R, with support

on [−M, 0) and (0,M ] for sufficiently large M , respectively. Let r, tf > 0 such that rtf > 1.

Determine a probability measure π(dx, dy, dt) as the minimizer of

∫∫∫
x,y,t

(
x2

t
+

y2

tf − t

)
π(dx, dy, dt)

subject to the flow-rate constraint
∫∫

x,y
π(dx, dy, dt) ≤ rdt, and the marginals

∫∫
y,t
π(dx, dy, dt) =

µ(dx) and
∫∫

x,t
π(dx, dy, dt) = ν(dy).

We begin with a technical lemma that establishes a correspondence between the time

and location of mass as this is transported past the toll. A schematic that exemplifies the

statement of the lemma below is shown in Fig. 5.2.

Lemma 5.1 (Monotonicity). Let cxt :=
x2

t
, with (x, t) ∈ [−M, 0)× (0, tf ], and µ, σ mea-

sures with support on [−M, 0) and (0, tf ], respectively, with σ(t)dt absolutely continuous with

respect to the Lebesgue measure. The minimizer of the Kantorovich problem

min
π

∫∫
cxtπ,

where π represents a coupling of the two marginals µ(dx), σ(t)dt, is unique with support on

the graph of a non-increasing function TX (t).

Proof. We first observe that for any two pairs x, x′ ∈ [−M, 0) and t, t′ ∈ (0, tf ] for which
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0 > x > x′ ≥ −M and tf ≥ t > t′ > 0, it holds that

x2

t
+

(x′)2

t′
>
x2

t′
+

(x′)2

t
.

The ordering in this inequality characterizes cxt as being quasi-monotone, in the language of

[15], see also [88, Section 3.1].

It follows from [105, Theorem 2.18, and Remark 2.19] that the optimal coupling π exists

and is given by the monotone rearrangement of µ, σ, that is, for a suitable function TX (t)

∫ 0

TX (t)

µ(dx) =

∫ t

0

σ(s)ds.

Since TX (t) < 0, it is non-increasing (and is constant on time-intervals that correspond to

possible Dirac components of µ). This completes the proof.

For similar reasons, the cost cyt (with t ∈ (0, tf ] and y ∈ (0,M ], and M as in Problem

1′) is quasi-monotone. Hence, once again, for a suitable function TY(t),

∫ M

TY (t)

ν(dy) =

∫ t

0

σ(s)ds,

for TY(t) > 0, so that TY(t) is non-increasing. In light of the monotonicity of TX (t) and

TY(t), we establish the following proposition.

Proposition 5.2 (Uniqueness). Under the assumptions of Problem 1′ the minimizer is

unique. Moreover, there are functions TX (t), TY(t) are monotonically non-increasing such

that

π = (TX , TY , Id)♯σ,

where Id(t) = t is the identity map and σ(t)dt is an absolutely continuous measure on [0, tf ]
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with σ(t) ≤ r.

Proof. Let π be a minimizer as claimed in Proposition 5.1, and let πxt :=
∫
y
π, πyt :=

∫
x
π,

and σ :=
∫∫

xy
π. Since

∫∫∫
x,y,t

cπ =

∫∫
xt

cxtπxt +

∫∫
yt

cytπyt,

πxt is a minimizer of
∫∫

xt
cxtπxt, and the same applies to πyt. If this was not the case, there

would be couplings π̂xt, π̂yt with strictly lower costs
∫∫

xt
cxtπ̂xt, and

∫∫
yt
cytπ̂yt. These two

couplings share the same marginal on the t-axis, namely,

∫
x

π̂xt(dx, dt) =

∫
y

π̂yt(dy, dt) = σ(t)dt.

Then, by the gluing lemma [104, page 11], there is a coupling π̂ on R × R × [0, tf ] that

agrees with the given marginals and has a lower cost. Thus, both πxt, πyt are optimal for the

respective problems. We next argue that σ is unique, and therefore, the conclusion follows

by Lemma 5.1.

To establish the uniqueness of the density on the t-axis, assume that there are two

different minimizers πa and πb to start with. Then, as above, each gives rise to a density

on the t-axis, σa(t) and σb(t), respectively, as well as corresponding marginals and maps

(TX ,a, TY,a) and (TX ,b, TY,b). Since both σa(t) and σb(t) satisfy the constraint of being ≤ r,

so does any convex linear combination, say σ̄ = 1
2
σa + 1

2
σb, and the convex combination

π̄ = 1
2
πa + 1

2
πb is also optimal. But then, the marginal

π̄xt = (TX ,a, Id)♯ 1
2
σa + (T̂X ,b, Id)♯ 1

2
σb

is supported on a set that is not the graph of a function4, unless of course TX = TX ,a = TX ,b.

4Note that π̄xt satisfies the marginal constraints since, by virtue of TX
♯σi = µ, for i ∈ {a, b}, TX

♯ 1
2σ

a+TX
♯ 1
2σ

b =
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But if π̄xt is not supported on a graph of a function, there exists a more “economical” coupling

with strictly lower cost, obtained by monotone rearrangement of π̄xt. A similar statement

holds for π̄yt. This contradicts the nonuniqueness and completes the proof.5

In the setting of Problem 5.1, when n > 1, the transport cost of all mass that resides at

a distance d = ∥x− ξ∥ is the same. Thus, the problem to transport through the toll cannot

distinguish equidistant points from the toll.

Figure 5.1: Illustration of the optimal mass when n = 2.

In this case where the distributions, µ, ν sit in Rn for n ≥ 1, Proposition 5.1 and 5.2 can

be readily extended as the cost in Problem 5.1 only depends on the distance of the points

to ξ. Indeed, the problem is equivalent to solving the 1-dimensional problem between µ̃, ν̃

µ. A similar statement holds for the coupling π̄yt.
5A more concise proof by general Monge condition: The cost function c(x, y, t) has to satisfy the general-

ized Monge condition [88, Page 24] in the case π ∈ P([−M, 0), (0,−M ], [0, tf ]), i.e., any two of the arguments
in c(x, y, t) satisfies the Monge condition. Additionally, the transport has to follow the Monge protocol so
that cx,t := c(x, y∗, t) is quasi-monotone and cx,y := c(x, y, t∗) is quasi-antitone when y∗, t∗ are fixed. We can
easily check that the generalized Monge condition and the monotonicity are satisfied for the cost c(x, y, t).
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the measures such that for all A ⊂ R measurable set6,

µ̃(A) =

∫
Rn

1{||x−ξ||∈A}µ(dx).

Therefore we have existence of a unique solution π̃ = (TX , TY , Id)♯σ to the 1-dimensional

problem which gives rise to solutions π to the n-dimensional problem in the following way:

For µx̃, νỹ the disintegrated measures [20] such that

µ(dx) =

∫
µx̃(dx)µ̃(dx̃)

ν(dy) =

∫
νỹ(dy)ν̃(dỹ),

the solutions π will be of the form

π(dx, dy) =

∫
πt(dx, dy)σ(t)dt

for πt any coupling7 measure between µTX (t) and νTY (t).

Remark 5.1 (Generalization). A further interesting generalization is when the toll through

which the mass is to be transported is no longer a point but a set T ⊂ Rn, typically a curve

or a manifold of higher dimension, with a Hausdorff measure H(dz) integrating to 1. The

transport problem for such a situation becomes one of minimizing

inf
π∈Π

∫ (
||x− z||2

t
+
||y − z||2

tf − t

)
π(dx, dy, dt, dz),

6The notation 1S(x), or 1S for simplicity, signifies the indicator function that takes the value 1 when
x ∈ S and zero otherwise.

7The coupling between µTX (t) and νTY(t) cannot be specified from the problem setting, since it does not
affect the cost.
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over couplings in

Π =

{
π ∈ P(Rn,Rn, [0, tf ], T ) |

∫∫∫
y,t,z

π = µ(dx),∫∫∫
x,t,z

π = ν(dy),

∫∫
x,y

π ≤ rdt⊗H(dz)
}
.

The term to the right of the last inequality, representing the (normalized) Hausdorff measure

of T can be further suitably modified to account for preference/ease of transporting through

specific portions of the set T . Physically such a problem may model flow through media, where

T represents porous section that the mass must go through, from source µ to destination ν.

Developing theory for this generality is beyond the scope of the current paper. 2

5.3 Case studies: transport through tolls in 1D

We now present case studies that help visualize the general scheme for Monge-Kantorovich

transport through tolls in R, that is, in dimension 1. Since the formalism in Section 5.1 casts

the problem as a multi-marginal one, the coupling with marginal in 1D is already a measure

in R3, with one of the axes the time that mass crosses the toll. The computational aspects

and the code using the optimization toolbox-CVX [49] to conduct all the experiments can

be found at https://github.com/dytroshut/OMT-with-Flux-rate-Constraint.

We discuss four examples that help visualize the effect flow-rate constraints and the

nature and support of the transportation coupling π.

Our first example is displayed in Fig. 5.2. The source distribution is Dirac (i.e., concen-

trated at one point) located at a point x < 0, the toll is located at ξ = 0, and the terminal

distribution is absolutely continuous with respect to the Lebesgue with the density that has

support on {y ∈ R | y ≥ 0}. The figure highlights the maps TX and TY that couple (x, t)

and (y, t), respectively, where t denotes the time that mass originally at x crosses the toll on
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its way to location y. Both maps are monotonically non-increasing.

Figure 5.2: Illustration of solution to Problem 5.1: the maps TX (t), TY(t) are monotonically
non-increasing, the t-marginal density σ(t) is bounded by r.

In our second example, in Fig. 5.3, the marginals are Gaussian mixtures. The flow is

visualized via shadowing the paths. Three instances of different bounds on flow-rate are

depicted, highlighting how the bound affects the flow and the distribution of crossing times.
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(a) r =∞ (no flow-rate constraint)

(b) r = 2

(c) r = 1.2

Figure 5.3: Case (a), having no flow-rate constraint at the toll, corresponds to standard
Monge-Kantorovich transport with particles moving at constant speeds depending on ori-
gin/destination. Cases (b,c) depict the situation where a flow-rate bound at the toll neces-
sitates that mass is transported with different speeds at the two sides of the toll at ξ = 0,
so as to meet the imposed bound on the t-marginal.

Our third example in Fig. 5.4 helps visualize the coupling in R3 between (x, y, t), for

smooth marginals; the coupling is supported on a curve. In general, the mass on this curve is

not uniform and the density is depicted with circles of suitable radius around corresponding

points on the curve. Couplings for two different values for acceptable flow-rate are shown

(r ∈ {1.5, 3}) and it is seen that as r is decreased the t-density tends to become more uniform.
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(a) r = 3

(b) r = 1.5

Figure 5.4: Support of the coupling measure π(dx, dy, dt) on a curve in R3; the density is
depicted by circles of size proportional to magnitude.

Our fourth example is drawn with a sketch in Fig. 5.5a, and a simulation of transport

between two Gaussian mixtures, through two tolls, in Fig. 5.5b. The tolls are positioned

at ξ1 = −0.4 and ξ2 = 0.4. The density of the respective times of crossing, t1 and t2, are

bounded by r1 = 1.5 and r2 = 3, respectively.
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(a) Schematic of transport through two tolls at ξ1, ξ2.

(b) Transport of Gaussian mixtures through two tolls with density-bounds r1 = 1.5 and r2 = 3, at
crossing times t1 and t2, respectively.

Figure 5.5: Schematic and simulation of 2-toll transport plans.

5.4 Concluding Remarks

The basic idea presented in this paper for dealing with flow-rate constraints has been to

introduce a time-variable for when mass transits certain locations. Then, the density of the

corresponding marginal distribution, quantifies the amount of mass clearing the toll over

a time interval, hence, flow-rate. Such a marginal distribution, as yet to be determined,

represents a design parameters to be specified so as to meet flow-rate constraints. Thereby,

such problems can be cast in the form of multi-marginal optimization.

We note that the present work builds on, and extends our earlier study [99], where under

strong regularity assumptions on the marginals for the supply and demand, we developed

a Benamou-Brenier approach for Monge transport through a single toll. In contrast to this
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earlier work, the present formulation allows dealing with more general measures and multiple

tolls, and in addition, it casts the problem as a linear program and allows efficient approx-

imation using e.g., entropic regularization as in other timely multi-marginal optimization

formulations [51, 53].

We conclude by showing how the basic framework of utilizing marginals to quantify

timing information, applies to transportation problems with more complicated structure.

Specifically we discuss two cases. First we explain the case where portion of the mass is not

constrained to clear the toll, and second, a case of how ordering of arrival and departure

times can be incorporated in the same framework.

Figure 5.6: Illustration of the optimal mass transport through two successive tolls with
separating mass.

For our first case, consider the schematic in Fig. 5.6 where a fraction of a source distri-

bution µ needs to clear two tolls, while the remaining fraction only needs to clear a single toll,

due to its relative position with respect to the toll. For instance, in this one-dimensional

schematic, the source distribution µ is split by the toll at ξ1 into µ+ := µ(x > ξ1) and

µ− := µ(x < ξ1). Accordingly, the target distribution ν needs to be split into ν+/− corre-

sponding to the two masses, m+/−, so that

T♯µ = T ξ1,ξ2♯µ−
+ T ξ2♯µ+ = ν− + ν+,
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where T ξ1,ξ2 transports through two tolls whereas T ξ2 transports through a single toll. With

the flow-rate constraints on crossing time marginals, the Kantorovich formulation process is

exactly as before, provided the fractions of corresponding masses can be delineated. For one-

dimensional distributions, specifying the corresponding portions is straightforward. In higher

spatial dimensions, when there is no clear separation as in the one-dimensional schematic,

the problem of selecting “what fraction of mass needs to clear what toll” is coupled to the

optimization problem and has a combinatorial nature.

For our second case, we bring in timing to prioritize departure and arrival, so as to meet

objectives and possibly mediate congestion along the flow. To see this, we briefly discuss how

to modify the standard Monge-Kantorovich setting in which all particles/mass transport at

constant (that depends on the particle) speed along geodesics from source x to destination

y according to the McCann flow

ρt =
[
(1− t)Id(x) + tTY(x)

]
♯µ,

over the window t ∈ [0, 1] with transport map TY(x). For simplicity we retain arrival time

ta = 1, i.e., fixed, and only allow the departure time td to vary. The marginal distribution of

td now represents a design parameter. The formalism, once again, seeks a coupling measure

π that satisfies constraints and marginals. For simplicity, we introduce the Monge transport

map TY(x), to specify the source-destination pairing. Then, the coupling of the variables

x, y, td gives that π = (Id, T td , TY)♯µ. And, if τ(t, x) denotes the portion of time that a

particle at x is “on the move,” i.e., τ(t, x) = (t− td(x))1{t>td(x)}, the McCann’s displacement

reads

ρt =
[
(1− τ(t, x))Id(x) + τ(t, x)TY(x)

]
♯µ.

Figure. 5.7 shows an example where both departure and arrival times are variables (td
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and ta, respectively), with marginals selected to minimize a cost functional of the form∫∫∫∫
x,y,ta,td

c(x, y, ta, td)π(dx, dy, dta, dtd), with cost c(x, y, ta, td) = td/x
2 + (y − x)2 − ta/y2.

This choice ensures a natural order in departure and arrival8.
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Figure 5.7: In earlier formulations, all particles/agents departed at the same time t =
0 and arrived at the same time t = tf . Here, besides meeting flow-rate constraints, we
stratify departure and arrival so that particles/agents closer to the toll depart first, and
arrive at the most distant target location again first (as it would be natural for a convoy
transferring goods). Departure and arrival rate bounds are set to rd = 1.1 and ra = 5,
respectively. Coupling measures π(dx, dy), π(dx, dtd), and π(dy, dta) between timing variable
are computed; it is seen that these are supported on graphs of maps (showing a monotonic
correspondence). For instance, π(dx, dtd) couples µ(dx) and σ(td), with σ(td) ≤ rd being
the departure-time marginal. Due to the monotonicity of the cost c(x, td) = td/x

2, the
coupling π(dx, dtd) indicates that mass closer to the toll departs earlier, while abiding by the
departure rate bound rd. For the timing of arrival ta, properties of the coupling π(dy, dta)
are completely analogous.

In closing, we mention that distributed flux constraints may fruitfully capture properties

of matter through which transport takes place, e.g., in transport of pollutants through porous

media. A generalization of the framework herein to a distributed setting would be desirable

and at present open.

8The agents/particles that are closer to the destination leave first.
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Bibliographical notes

Starting at the waning years of the 20th century, contributions by Brenier, McCann, Otto,

Gangbo, Evans, Villani, and many others, sparked a new phase of rapid development with

significant inroads of OMT as an enabling tool in mathematics and physics [105].

In the present work, we revisit a formulation in our earlier work [99] that aims to limit

flow-rate. Specifically, we seek to transport mass through constriction points/tolls abiding

by flow-rate bounds. This earlier work proved the existence and uniqueness of flux-limited

Monge maps (scheduling maps) that effect transport while minimizing the W2 Wasserstein

length of trajectories. In the present work, we take an alternative view by casting the problem

in a Kantorovich-type in the form of multi-marginal optimization. We note that, while multi-

marginal problems have been studied for a while [82, 61], issues related to computation

for large size problems continue to be of great interest to the present day – we refer to

[51, 52, 53, 81] for structured multi-marginal problems and to [83] for the computational

aspects of OMT in general.

The formulation can be easily generlized for more general setting. For instance, inspired

by [14, 21, 41], we introduce the flow-rate constraint (toll) to the partial optimal mass

transport problem (OMT). Compared with the standard optimal mass transport problem,

the partial OMT considers transporting a fraction of mass

m ∈
(
0,min{∥µ∥1, ∥ν∥1}

]

from measure µ(x) to ν(y) with the same quadratic cost c(x, y) = ∥x − y∥22. Noticing that

∥µ∥1 ̸= ∥ν∥1, such a problem can be considered as an unbalance OMT problem.
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Chapter 6

Entropic regularization

We already studied the Monge-Kantorovich problem with flow-rate constraint at a specific

point, namely, a toll. Specifically, the Kantorovich formulation of the problem utilizes a

multi-marginal OT framework with upper bound relaxation on the crossing time marginal.

Herein, to solve it efficiently, we apply the convex entropic regularization on an equivalent

split problem in the sense of the Kullback-Leibler (KL) divergence. A variant of the standard

Sinkhorn algorithm (Gluing Sinkhorn) is presented accordingly, and is shown to provide a

fast and accurate approximation of the solution.

The outline of this chapter is as follows: In Section 6.1, we revisit the Monge Kan-

torovich problem with flow-rate constraints and its entropic regularization. In Section 6.2,

we approach the entropic regularization with a standard Sinkhorn solver. In Section 6.3, we

propose the gluing Sinkhorn specifically for the multi-marginal optimal transport problem

with splittable cost. In Section 6.4, we present experimental experience to show the efficiency

of our method.

Problem 6.1 (Kantorovich). Given probability measures µ, ν and r > 0, determine a
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probability measure π(dx, dy, dt) ∈ Π as the minimizer of

∫∫∫
x,y,t

(
∥ξ − x∥2

t
+
∥y − ξ∥2

tf − t

)
π(dx, dy, dt) (6.1)

over the feasible set Π ∈ C0(X, Y, [0, tf ]) of all the admissible π can be defined as1

Π(µ, ν, r) := {π | Px(π) = µ(dx), Py(π) = ν(dy), Pt(π) ≤ rdt}

The formulation enables mass initially concentrated at point x and headed towards a

common destination y, to be divided and transported along different paths, clearing the toll

at different times t while adhering to the imposed limit on flow rate. The above problem

admits an optimizer as stated in [36, Proposition 1].

6.1 Entropic regularization

Noticing that the cost is splittable and has the form

c(x, y, t) =
x2

t
+

y2

1− t
= cxt + cyt.

and correspondingly define the feasible sets Πxt ∈ C0(X, [0, 1]) and Πyt ∈ C0(Y, [0, 1]) of all

the admissible two-dimensional marginals πxt :=
∫
y
π(dx, dy, dt) and πyt :=

∫
x
π(dx, dy, dt)

as

Πxt(µ, r) := {πxt | Px(πxt) = µ(dx), Pt(πxt) ≤ rdt},

Πyt(ν, r) := {πyt | Py(πyt) = ν(dy), Pt(πyt) ≤ rdt}.

We then propose to solve the equivalent problem to reduce the size of the variable as below

1Throughout this chapter, we utilize Px(πxy) denotes the projection onto x, i.e., Px(π) =
∫
y
πdx and

similar for Py(π).
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Problem 6.2 (Splittable Cost). Determine the probability measures πxt ∈ Πxt and πyt ∈

Πyt as the minimizers of

∫∫
x,t

cxtπxt(dx, dt) +

∫∫
yt

cytπy,t(dy, dt) (6.2)

Proposition 6.1 (Equivalence). Problem 5.1 and Problem 6.2 are equivalent and admit

the same unique minimizer.

Proof. Assuming πxt and πyt are the minimizer of Problem 6.2 and π(dx, dy, dt) is the min-

imizer of Problem 5.1, the equivalence between Problem 5.1 and Problem 6.2 can be proved

by showing fact that

∫
x

πxt =

∫
y

πyt =

∫∫
xy

π(dx, dy, dt) = σ(dt),

where σ(t) is the unique optimal time marginal for both of the problems.

If this was not the case, then there exists another pair of minimizer π′
xt and π

′
yt has the

optimal σ′(dt) with the same cost as
∫∫

xt
cxtπxt +

∫∫
yt
cytπyt, and moreover,

∫
x

π′
xt =

∫
y

π′
yt = σ′(dt)

By the gluing lemma [104, page 11], there is a coupling π′(dx, dy, dt) with
∫
y
π′(dx, dy, dt) =

π′
xt and

∫
x
π′(dx, dy, dt) = π′

yt, which shares the same cost as π(dx, dy, dt). This is a con-

tradiction of the uniqueness of the solution of Problem 5.1, as proved in [36, Proposition

2]

Adding an entropic regularization to the original objective of the optimal transport

problem has garnered attention due to its advantages in numerical approximation of the

solution [83, Section 4]. The regularized OT in the continuous framework is often referred
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to as the static Schrödinger problem since it was initially considered by Schrödinger, which

gains increasing interest in the field of control [23].

Considering the objective with an additional convex penalty term, which is the entropy

of π(dx, dy) as

H(π) =
∫∫

x,y

−π log(π)dxdy,

the entropic regularization of (5.2) has the form

∫∫
x,y

(1
ϵ
cπ −H(π)

)
dxdy =

∫∫
x,y

(1
ϵ
cπ + π log(π)

)
dxdy

=

∫∫
x,y

π log(
π

π̂
)dxdy

where π̂ = exp(−c(x, y)/ϵ) is the prior, and

KL(π∥π̂) :=
∫∫

x,y

π(dx, dy) log(
π(dx, dy)

π̂(dx, dy)
)dxdy

is the Kullback-Leibler divergence between π(dx, dy) and π̂(dx, dy). Therefore, the entropic

regularization of Problem 5.1 now reads

Problem 1′. Given probability measures µ, ν and r > 0, determine a probability measure

π(dx, dy, dt) ∈ Π as the minimizer of

∫∫∫
x,y,t

(
c− ϵ log(π)

)
π(dx, dy, dt) =

∫∫∫
x,y,t

KL(π∥π̂) (6.3)

with π̂ = exp(−c(x, y, t)/ϵ) as the proir.

Similarly, for Problem 6.2, we have

Problem 2′. Given µ, ν and r, determine the probability measures πxt ∈ Πxt and πyt ∈ Πyt
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as the minimizers of

∫∫
x,t

(cxtπxt +H(πxt)) +
∫∫

yt

(cytπy,t +H(πxt))

=

∫∫
x,t

KL(πxt∥π̂xt) +
∫∫

y,t

KL(πyt∥π̂yt) (6.4)

where π̂xt = exp(− cxt
ϵ
) and π̂yt = exp(− cyt

ϵ
).

By splitting the cost and proposing Problem 2′, we obtain a twist using Schrödinger

bridge and KL divergence which splits the coupling and interpret Problem 2′ as a two-sided

Schrödinger Bridge problem.

Proposition 6.2. The minimizer π(x, y, t) can be factorized by the marginals πxt :=
∫
y
π(x, y, t)

and πyt :=
∫
x
π(x, y, t)

π(x, y, t) =
πxtπyt
σ(t)

, (6.5)

with σ(t) :=
∫∫

x,y
π(x, y, t).

Proof. Denote P(x|y) as the conditional probability of x given y, we have

π(x, y, t) = P(x|y, t)P(y|t)σ(t) = P(x|t)P(y|t)σ(t)

=
P(x|t)P(y|t)σ(t)2

σ(t)
=
πxtπyt
σ(t)

by the matrix factorization and the result of Proposition 6.1.

The factorization we introduce in 6.5 is also discovered and used in [92, 44]. Now we

are in the position to prove the equivalence between the two problems above.

Theorem 6.1. Problem 1′ and Problem 2′ are equivalent.
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Proof. The splittable cost leads to write the prior π̂ as a production of π̂xt and π̂yt, i.e.,

π̂ = exp(−c(x, y, t)
ϵ

) = exp(−cxt
ϵ
) · exp(−cyt

ϵ
) = π̂xtπ̂yt.

Thus, the objective (6.3) becomes

KL (π ∥ π̂xtπ̂yt)

=

∫∫∫
x,y,t

log

(
πxtπyt

σ(t)π̂xtπ̂yt

)
π(dx, dy, dt)

=

∫∫∫
x,y,t

(
log(

πxt
π̂xt

) + log(
πyt
π̂yt

)− log(σ(t))

)
π(dx, dy, dt)

=

∫∫
x,t

log(
πxt
π̂xt

)πxt +

∫∫
y,t

log(
πyt
π̂yt

)πyt −
∫
t

log(σ(t))σ(dt)

The last term vanishes since

∫
t

log(σ(t))σ(dt) = σ(t) log(σ(t))− σ(t)
∣∣∣∣σ(tf )
σ(t0)

= 0

for compactly supported measure σ(t), which concludes the proof.

6.2 Discretization and solver

To solve the entropic regularization problem numerically, we consider its discretized version

where the cost and the coupling are represented as tensors, denoted by c ∈ Rnx×ny×nt

+ and π ∈

Rnx×ny×nt

+ , respectively. To simplify notation, we use Px(π) =
∑

y,t π, and similar notation

for Py(π) and Pt(π) with a slight abuse of notation. The tensor (outer) product, elementwise

product, and elementwise division division are denoted by ⊗, ⊙, and ./, respectively. We

begin by introducing the discretized entropic and the following propositions.
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The discrete entropy H(π) of the coupling π is thus introduced as

H(π) := −
∑
i,j,k

πi,j,k log(πi,j,k) + πi,j,k,

with the convention that H(πi,j,k) = 0 if πi,j,k = 0, and H(πi,j,k) = −∞ if πi,j,k < 0.

Given the marginals µ ∈ Rnx
+ , ν ∈ Rny

+ , and σ ∈ Rnt
+ . The discretized objective (6.3)

reads

argmin
π
⟨c, π⟩ − ϵH(π). (6.6)

for ϵ > 0, and subject to the same marginal constraints as in Problem 2′. The unique solution

πϵ converge to the minimizer π of Problem 5.1 as ϵ → 0, and such convergence follows by

the strict convexity of −H(π), and can be done in a similar procedure as in [83, Proposition

4.1].

Proposition 6.3. The solution to the entropic regularization of Problem 5.1 has the form

πϵ = e−c/ϵ ⊙ (e−u(x)/ϵ ⊗ e−v(y)/ϵ ⊗ e−w(t)/ϵ)

= π̂ ⊙ (u⊗ v ⊗w),

for scaling variables2 (u, v, w) ∈ Rnx
+ × Rny

+ × Rnt
⪰1.

Proof. Introducing the dual variable u ∈ Rnx , v ∈ Rny , and w ∈ Rnt
+ . The Lagrangian has

the form

L(π, u, v, w) =⟨c, π⟩ − ϵH(π) + ⟨w,Pt(π)− r⟩

+ ⟨u, Px(π)− µ⟩+ ⟨v, Py(π)− ν⟩.

2Rn
⪰1 denotes n- dimensional vector element-wise larger than 1
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The first-order optimality condition gives the optimizer

πϵ := π̂ ⊙ (u⊗ v ⊗w)

with π̂ := e(−c/ϵ), u := e(−u(x)/ϵ), v := e(−v(y)/ϵ), and w := e(−w(t)/ϵ).

6.2.1 Sinkhorn-Knopp algorithm

The updating scheme of the dual variables u(x), v(y), and w(t) can be considered as a gen-

eralization of the well-known Sinkhorn-Knopp algorithm [96, 83] for multi-marginal optimal

transport problem, which iteratively computes the tensor product of u, v, and w such that

πϵ converges to π with the fix marginals µ and ν, and a upper-bounded marginal σ, which

can be found in [52] where a generalized Sinkhorn framework for solving multi-marginal

optimal transport problems with relaxed marginals are proposed.

More specifically, the updates in the Sinkhorn framework can be written as3

u :=
µ

π̂ ⊙ (v ⊗w)
,

v :=
ν

π̂ ⊙ (u⊗w)
,

w := min
{ r1

π̂ ⊙ (u⊗ v)
, 1
} (6.7)

where marginal µ and ν is given and the time marginal is bounded by r1. For the convergence

and the linear convergence rate of (6.7), we refer to [52, Section 4].

The generalized Sinkhorn algorithm is expected to have wide-ranging applications due

to its superior performance in solving the optimal transport problem. The algorithm can

be extended to handle additional constraints and complex cost functions, making it appli-

cable to a broad range of practical problems. Its scalability and computational efficiency

3Throughout, we denote 1n for all-one (column) vector.

118



make it particularly useful for large-scale optimization problems encountered in many fields,

including computer vision, image processing, machine learning, and economics.

6.2.2 Illustrative Example

Applying the framework proposed in [52], the the entropic regularization can be solved with

ϵ = 10−2, 10−3, 10−4, 10−5, and the results are visualized in Fig. 6.1.

(a) ϵ = 0.01 (b) ϵ = 0.001

(c) ϵ = 0.0001 (d) ϵ = 0.00001

Figure 6.1: The optimal coupling with ϵ = 0.01, 0.001, 0.0001, and 0.00001. The radius of
the point (x, y, t) is proportional to the quantity of mass πϵ(x, y, t) according to the coupling

However, in all approaches above, the size of the variable and the computational com-

plexity for each iteration O(n3) is considerably large, which brings us to further reduce the

size of Problem 6.2 in the next section.
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6.3 The Gluing Sinkhorn

From Theorem 6.1, the minimizer of Problem 5.1 can be construct by the minimizer πxt and

πyt of Problem 6.2 using the factorization (6.5). Herein, aiming to solve Problem 6.2 by the

scheme of the Sinkhorn algorithm, we propose a gluing Sinkhorn.

Denoting the two-dimensional couplings between the x, y marginals and t marginal as

πxt and πyt, the discretization of the objective of Problem 6.2 is thus

⟨cxt, πxt⟩+ ⟨cyt, πyt⟩ − ϵH(πxt)− ϵH(πyt) (6.8)

over πxt ∈ Πxt and πyt ∈ Πyt.

Proposition 6.4. The minimizer of Problem 6.2, πxt and πyt converge to the exact solution

in 6.2 as ϵ→ 0.

Proof. The convergence can be obtained by the strong convexity of the entropic penalty

term, i.e., −H(πxt) and −H(πyt) are strictly convex, and the proof can be done similarly as

in [83, Proposition 4.1].

The factorization (6.5) provides an approach to accelerate the standard multi-marginal

Sinkhorn algorithm as we summarized in (6.7), whereby the updating of πϵ is decomposed into

πxt and πyt with the additional equality constraint Pt(πxt) = Pt(πyt) for the time marginal.

Such decomposition reduced the size of the variables from O(n3) to O(n2) with interesting

insights for the Sinkhorn algorithm as shown later.

Proposition 6.5. The optimizer of Problem 3 is unique and has the form:

πxt = diag(u1)π̂xt diag(v1 ⊙w),

πyt = diag(u2)π̂yt diag(v2 ./w)
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where π̂xt = exp(−cxt/ϵ), π̂yt = exp(−cyt/ϵ) and the five (unknown) scaling variables (u1,2, v1,2, w) ∈

(Rnx)2 × (Rny)2 × Rnt, are optimal (dual) variables for the dual of Problem 6.2

argmax
u∈Rn,v∈Rn

+,w∈Rn

− ϵ⟨π̂xt, Uxt⟩ − ϵ⟨π̂yt, Uyt⟩ − ⟨u1, µ⟩

− ⟨u2, ν⟩ − ⟨v1, r⟩ − ⟨v2, r⟩.

where Uxt = u1 ⊗ (v1 ⊙ w) and Uyt = u2 ⊗ (v2./w).

Proof. To see this, we first derive the Lagrangian

L(πxt, πyt, u1, u2, v1, v2, w) = ⟨cxt, πxt⟩+ ⟨cyt, πyt⟩

− ϵH(πxt)− ϵH(πyt) + ⟨u1, Px(πxt)− µ⟩+ ⟨u2, Py(πyt)− ν⟩

+ ⟨v1, Pt(πxt)− r⟩+ ⟨v2, Pt(πyt)− r⟩+ ⟨w,Pt(πxt)− Pt(πyt)⟩,

and according to the first-order optimality condition, the (i, j),(j, k)-th element of πxt and

πyt, denoted as πxt(i, j) and πyt(j, k), have the form:

πxt(i, j) = e−u1(i)/ϵ · e−cxt(i,j)/ϵ · e−v1(j)/ϵ · e−w(j)/ϵ,

πyt(j, k) = e−u2(k)/ϵ · e−cyt(j,k)/ϵ · e−v2(j)/ϵ · ew(j)/ϵ,

or equivalently, in the matrix form using the tensor operator

πxt = exp(−cxt
ϵ
)⊙

(
exp(−u1

ϵ
)⊗

(
exp(−v1

ϵ
)⊙ exp(

−w
ϵ

)
))

= diag(u1)π̂xt diag(v1 ⊙w) = π̂xt ⊙ (u1 ⊗ (v1 ⊙w)),

πyt = exp(−cyt
ϵ
)⊙

(
exp(−u2

ϵ
)⊗

(
exp(−v2

ϵ
)⊙ exp(

+w

ϵ
)
))

= diag(u2)π̂yt diag(v2./w) = π̂yt ⊙ (u2 ⊗ (v2./w)).

Then, by bringing the expression of optimal πxt and πyt above into the Lagrangian, we derive
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the dual problem, which concludes the proof.

The updates scheme for vector u1 and u2 for the fixed marginals µ and ν can be obtain

by

diag(v1 ⊙w)π̂Txt diag(u1)1nt = µ,

diag(v2 ./w)π̂Tyt diag(u2)1nt = ν,

(6.9)

and the updates of v1 and v2 for relaxed marginal, i.e., σ(dt) ≤ rdt, can be found from [52,

Section 4] so that

diag(u1)π̂xt diag(v1 ⊙w)1nx ≤ r1

diag(u2)π̂yt diag(v2 ./w)1ny ≤ r1.

(6.10)

Herein, due to the existence of the additional constraint, the Gluing variable ω is introduced

and follows

diag(u1)π̂xt diag(v1 ⊙w)1 = diag(u2)π̂yt diag(v2 ./w)1 (6.11)

Thus, the Gluing Sinkhorn can be summarized as follows.

Theorem 6.2 (Convergence). Assume Problem 3 admits a feasible minimizer, the round-

ing scheme described in (6.12), (6.13), and (6.14) converges, and in the limit point, the

optimal solution of Problem 6.2 is given by their definitions in Proposition 7.

Proof. The rounding scheme of the Gluing Sinkhorn is to maximize the objective with respect

to one set of dual variables while keeping the other dual variables fixed, i.e., to perform the
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Algorithm 4 Gluing Sinkhorn-Knopp algorithm

Input: Costs cxt, cyt, and regularization parameter ϵ > 0.
Initialization: v1 = 1nt , v2 = 1nt , w = 1nt .
Output: Couplings πxt and πyt.
1: while not converge do
2: Compute u1 and u2 according to

u1 =
µ

π̂xt(v1 ⊙w)
, (6.12a)

u2 =
ν

π̂yt(v2 ./w)
. (6.12b)

3: Compute v1 and v2 according to

v1 = min{ r1

w ⊙ (π̂Txtu1)
, 1}, (6.13a)

v2 = min{w ⊙ r1
(π̂Txtu1)

, 1}. (6.13b)

4: Compute w according to

w =

√
u2 ⊙ (π̂ytv2)

u1 ⊙ (π̂xtv1)
. (6.14)

5: end while
6: return πxt and πyt according to

πxt = π̂xt ⊙ (u1 ⊗ (v1 ⊙w)), πyt = π̂yt ⊙ (u2 ⊗ (v2./w)).

updates4

u := argmax
ψx∈Rn

−ϵ⟨π̂xt, Uxt⟩ − ⟨u1, µ⟩, (6.15a)

v := argmax
λ1∈Rn

+

−ϵ⟨π̂xt, Uxt⟩ − ⟨v1, r⟩ (6.15b)

w := argmax
w∈Rn

−ϵ⟨π̂xt, Uxt⟩ − ϵ⟨π̂yt, Uyt⟩ (6.15c)

First, to prove the correctness of the routing scheme in (6.12)-(6.14), we divided the updates

4In the updates of u and v, we assume nx = nt = n without loss of generality and focus on the updates
of πxt with subscript omitted. The updating scheme of πyt is conceptually the same with an orientation of
signs due to the last equality constraint on the time marginal.
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of the dual variables as follows:

(i) The objective of the unconstrained problem (6.15a) is strictly concave, and thus a nec-

essary and sufficient condition for optimality is that the respective gradient vanishes. The

gradient of (6.15a) with respect to ψ(x) is

exp(−ψ(x)/ϵ)⊗ (π̂ ⊙ (v ⊗ w))− µ,

and (6.12) can be obtained by setting (6.15a) to zero.

(ii) The objective in (6.15b) can be written as

∀ i ∈ n, exp(−λ1(i)/ϵ)⊗ (π̂ ⊙ (u⊗ w))− r(i),

The maximization in (6.15b) can be performed element-wise for λ. If the derivative of the

objective in (6.15b) w.r.t λ vanishes for a feasible, i.e., non-negative, point, then this is

the global maximizer. Otherwise, the maximizer is the projection on the feasible set, i.e.,

λ(i) = 0. This yields (6.13).

(iii) Similarly, the strong convexity holds for the objective in 6.15c and its gradient w.r.t w

reads

exp(−w
ϵ
)⊗ π̂xt ⊙ (u1 ⊗ v1)− exp(

w

ϵ
)⊗ π̂yt ⊙ (u2 ⊗ v2)

Thus, (6.14) can be obtained by setting the above to zero.

The proof of linear convergence is based on the Hilbert matrix dH(µ, ν) ( see, e.g., [83,

Remark 4.12]) defined as

dH(µ, ν) := ∥ log(µ)− log(ν)∥V , ∀ µ, ν ∈ Rn+, (6.16)
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with ∥x∥V = maxi xi −mini xi. Moreover, for µ, ν ∈ Rn+ and K ∈ Rn×n+ , we have

dH(Kµ,Kν) ≤ λ(K)dH(µ, ν) (6.17)

where λ(K) =

√
η(K)−1√
η(K)+1

< 1, and η(K) = maxi,j,k,l
KijKjl

KjkKil
, as stated in [83, Theorem 4.1]

Theorem 6.3 (Convergence rate). The gluing Sinkhorn has a linear convergence rate.

Proof. The linear convergence rate for the marginals µ follows the standard proof of Sinkhorn,

i.e.5,

dH(D
k
u, D

⋆
u) = dH(

µ

π̂xtDk
v·w
,

µ

π̂xtD⋆
v·w

)

= dH(π̂xtD
k
v·w, π̂xtD

⋆
v·w) ≤ λ(π̂xt)dH(D

k
v·w, D

⋆
v·w), (6.18)

using the result of (6.17). Moreover, using the triangular inequality, we have

dH(D
k
u, D

⋆
u)

≤ dH(D
k+1
u , Dk

u) + dH(D
k+1
u , D⋆

u)

≤ dH(
µ

π̂xtDk
v·w
, Dk

u) + λ(π̂xt)
2dH(D

k
u, D

⋆
u)

= dH(µ,D
k
u ⊙ (π̂xtD

k
v·w)) + λ(π̂xt)

2dH(D
k
u, D

⋆
u)

= dH(µ, µ
k) + λ(π̂xt)

2dH(D
k
u, D

⋆
u)

where µk = Dk
u ⊙ (π̂xtD

k
v·w), and thus

dH(D
k
u, D

⋆
u) ≤

dH(µ, µ
k)

1− λ(π̂xt)2
. (6.19)

The Hilbert metric rates (6.18) on the scaling variable Du give a linear rate on the dual

5for the sake of simplicity, we omitted the subscript for u1 to be u. Also, we denote diag(u) by Du, and
diag(u) in kth iteration by Dk

u in the proof.
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variable ϵ log(u) for the variation norm ∥ · ∥V . The inequality (6.19) suggests error measures

on the violation of marginal constraints, e.g., ∥µk − µ∥1.

The result obtained in (6.18) and (6.19) is also true for u2, v1⊙w, and v2./w. The proof

follows the procedure as u1.

Remark 6.1 (Complexity). Considering the sparsity of admissible couplings, the compu-

tation of the projection can be further optimized. In particular, we only need to compute

projections on the indices where πi,j,t > 0 and can skip the rest. This leads to significant

computational savings, from O(n3) to O(n2), especially for large-scale problems.

Complexity Variables’ Size Variable’s updates Output’s Size

Sinkhorn O(n3) O(n2) O(n3)

Linear program O(n2) O(n3 log(n)) O(n2)

Gluing Sinkhorn O(n2) O(n) O(n2)

Table 6.1: Complexity comparision.

6.4 Numerical experiments

The code used to conduct all the experiments is publicly available at github.com/dytroshut/

GluingSinkhorn.git. The numerical example setting is the same as the one described in

Section 3. In this example, we seek two joint distributions or couplings, namely πxt and πyt,

instead of the three-dimensional coupling.

The linear convergence rate of fixed marginals µ and ν and the sub-linear (logarithmic)

convergence rate of time marginal σ are shown below.

The running times of the six methods we applied are summarized below to show the ad-
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(a) ϵ = 0.001

(b) ϵ = 0.0005

Figure 6.2: Visualization of the outputs of the gluing Sinkhorn with ϵ = 0.001 and 0.0005.

vantages of our Gluing Sinkhorn algorithm, wherein we utilized the standard CVX solver [49],

linear programming (LP), Sinkhorn (6.7) and gluing Sinkhorn. The running time is measured

in seconds using the MATLAB built-in function (tic/toc).

Methods CVX CVX-split LP Sinkhorn Gluing

Running time 164.34s 3.73s 1s 2.64s 0.99s

Table 6.2: Running time comparison.
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Figure 6.3: The convergence rate of the algorithm is measured with respect to the number
of iterations, and the y-axis of the corresponding plot shows the value of log(|Px(πxt)− µ|),
log(|Px(πyt)− ν|), log(|Pt(πxt)− σ⋆|), and log(|Pt(πyt)− σ⋆|). Here, σ⋆ denotes the optimal
time marginal, and the values in the plot represent the logarithm of the absolute difference
between the computed marginal values and the optimal values.

Bibliographical notes

We believe that the formulation of the constricted Monge-Kantorovich problem and the

framework for solving the problem has a huge potential in the study of congested trans-

portation analysis, image processing and also time-varying matching/transportation.

Besides the standard OT problem with given marginals (supply and demand), many

other constrained variations have been explored. For instance, the marginal equality con-

straints are relaxed to inequalities in [87, 89]; An upper bound on the coupling, referred to

as the capacity, is considered in [63].
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On the practical side, the computational aspect of OT is widely applied in fields such as

mathematics, economics, and engineering with numerous applications in motion planning,

matching, image processing, and many other areas. A comprehensive tutorial survey on

the subject can be found in [83]. However, solving the Monge-Kantorovich problem with

linear programming for an exact solution has O(n3 log(n)) complexity. To overcome the

high computational cost, entropic regularization of the original problem is often utilized and

solved by a rounding scheme known as the Sinkhorn-Knopp algorithm [33]. The algorithm

has a linear convergence rate and operates through iterative projections. For modifications

using matrix factorization, refer to [92], and for prime generalizations of the multi-marginal

case, cf. [52].
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[89] S. T. Rachev and L. Rüschendorf. Mass transportation problems: Applications.
Springer Science & Business Media, 2006.

[90] R. T. Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

[91] F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY,
55(58-63):94, 2015.

135
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Appendix A

Legendre transformation

For the Benamou-Brenier formulation of the OMT problem, the objective function in the

problem reads

f(m, ρ) =
m2

2ρ
, ρ ≥ 0

in which m is the momentum and ρ is the density. Equivalently, f(m, ρ) can be written as

f(m, ρ) =
1

2

m2

ρ
+ sup

α≤0
(αρ)

such that the second term is 0 when only ρ ≥ 0 and +∞ when ρ < 0. With the dual variable

λ = (a, b), we have

f ∗(a, b) = sup
m,ρ

{
am+ bρ− m2

2ρ
− sup

α≤0
(αρ)

}
= sup

m,ρ

{
am+ bρ− m2

2ρ
+ inf

α≤0
(−αρ)

}
= sup

m,ρ
inf
α≤0

{
am+ bρ− m2

2ρ
− αρ

}
(A.1)
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By the first-order optimality condition, we have


a− m

ρ
= 0,

b+ m2

2ρ2
− α = 0.

so that we have

am+ bρ− m2

2ρ
− αρ = 0, b+

|a|2

2
= α ≤ 0.

Recall the definition of the Legendre transformation [90, Chapter 26], f(x) = f ∗(f ∗(x)), the

objective function f(x) can be rewritten by

f(x) = sup
b+

|a|2
2

≤0

{aρ+ bm}
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Appendix B

The shortest path problem

B.1 Proof of Lemma 3.1

Theorem B.1. If PA is the path matrix of graph G(A) then

D−1
A′ = PA

Proof. The proof is to show that

DA′ PA = I

By considering the (i, j)-element (
∑n−1

k=1 dikpkj) of DA(n) PA,

n−1∑
k=1

dikpkj = diwpwj + dizpzj

so that
∑n−1

k=1 dikpkj = 0 if i ̸= j, and
∑n−1

k=1 dikpkj = 1 if i = j.
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Lemma B.1. [5, Lemma 2.15] If G is connected, then

I −DA D+
A =

1

n
11

T

Lemma B.2. The element lv ∈ L is the length of the path from v to the root.

Proof. Recall the definition of s and P , if pik ̸= 0, then pik = ±1, ∀ 1 ≤ i ≤ n− 1.

sign(pik) = −sign(si)

and si = ±1, consider the i-element in L, which is piksi. Then pik = 0 unless edge ei exists

in the path from vk to the root. Thus,

piksi = −1, if pik ̸= 0.

and

lk =
n−1∑
i=1

wipiksi

Then we can say that L = −P TWs is a vector such that all the elements inside are positive

and lk is the length of the path from vk to the root.

Without loss of generality, let v1 be the root of the tree G(A) and n is the number of

connected vertices in G. We have

J = I − 1

n
11

T = DAD
+
A. (B.1)

Denote D+
A′ is the pseudoinverse of the reduced incidence matrix G, where the column cor-
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responding to the root is removed. From Eq.(B.1), we have

D+
A′ = D−1

A′ (I −
1

n
11

T ) = PAJ.

Therefore, the pseudoinverse of DA and it transpose reads

D+
A =

[
− 1
n
P1 PJ

]
(n−1)×n

, (D+
A)

T =

(− 1
n
P1)T

(PJ)T


n×(n−1)

.

B.2 Proof of Proposition 3.2

For simplicity, we drop the iteration subscript k in our derivations. DA is the incidence

matrix formed by the edges in the active set. The graph formed by A consists of two disjoint

trees T (s), T (t), and the set of isolated vertices Ω. We decompose the rows of matrix DA into

rows corresponding to these three subsets and express DA and D+
A according to

DA =


DA(s) 0

0 0

0 DA(t)

 , and D+
A =

D+
A(s) 0 0

0 0 D+
A(t)

 ,

with DA(s) , DA(t) are the incidence matrix for the tree T (s) and T (t) respectively, and 0 rep-

resents all-zeros matrices of appropriate dimensions. We use this expression and Lemma 3.1

to compute a and b by their definition (3.10)

a = (QT
AQA)

+QT
Ay = Q+

Ay = WAD
+
Ay

= WA

D+
A(s) 0 0

0 0 D+
A(t)




1

0

−1

 =

− 1
|T (s)|WA(s)P (s)

1|T (s)|

+ 1
|T (t)|WA(t)P (t)

1|T (t)|

 ,
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where P (s) and P (t) are the path matrix for tree T (s) and T (t) respectively. Then,

b = (QT
AQA)

+s = WAD
+
A(D

T
A)

+WAs

=

−WA(s)

(
P (s)L(s) − 1

|T (s)|P
(s)
1s1

T
s L(s)

)
+WA(t)

(
P (t)L(t) − 1

|T (t)|P
(t)
1t1

T
t L(t)

)
 ,

where L(s) ≜ −(P (s))TWA(s)s is a vector of size |T (s)| corresponding to vertices in the tree

T (s). The component of L(s), corresponding to vertex v ∈ T (s), is equal to l
(s)
v , i.e. the length

of the path from v to the root s. The vector L(t) ≜ (P (t))TWA(t)s has a similar interpretation,

but for vertices of tree T (t) and the difference of the definitions of L(s) and L(t) is resulted in

the different signs of the two elements in b.

Putting the results for vectors a and b together, the ratio aj/bj for ej ∈ A(s) is

aj
bj

=

1
|T (s)|wj|Rj|

wj(
∑

v∈Rj
l
(s)
v − |Rj |

|T (s)|
∑

v∈T (s) l
(s)
v )

,

where Rj is the set of non-zero components of the jth row of P (s) since the same edge ej

shares the same direction along all the paths in a tree. This concludes our proof for ej ∈ A(s).

The derivation for ej ∈ A(t) is similar.

B.3 Proof of Proposition 3.1

By definition of joining time (3.11), for all ej ∈ E , reads

tjoinj =

1
wj
DT
j (QAa− y)

1
wj
DT
j (QAb)± 1

=
DT
j (QAa− y)

DT
j (QAb)± wj

, (B.2)
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with the choice ± dictated by tjoinj taking positive value. We now obtain expressions for the

terms in parentheses. First, the term (QAa− y) in the numerator equals to

DAD
+
Ay − y =


DA(s) 0

0 0

0 DA(t)


D+

A(s) 0 0

0 0 D+
A(t)

 y − y

=

[
− 1

|T (s)|1s, 0|Ω|, + 1
|T (t)|1t

]T
, (B.3)

where we used DD+ = I− 1
1T1

11
T for incidence matrices DA(s) and DA(t) of the two disjoint

trees [5, Lemma 2.15], and 0|Ω| denotes all-zero (column) vectors of size |Ω|. Second, the

term (QAb) in the denominator equals to (DAD
+
A(D

T
A)

+WAs) and moreover, it equals to

(D+
A)

TWAs =


−L(s) + 1

|T (s)|1s1
T
s L(s)

0|Ω|

L(t) − 1
|T (t)|1t1

T
t L(t)

 . (B.4)

Evaluating the expression in (B.2) for edge ej = (v1, v2) ∈ Ac and without loss of

generality, assume the assigned direction is from v1 to v2, the joining time is categorized into

three separate cases.

i) If (v1, v2) ∈ Ω2 ∪T (s)2 ∪T (t)2, i.e., the two ends of ej belongs to or isolated from the trees,

we have tjoinj = 0 by the numerator (B.3) and the definition of DT
j .

ii) If (v1, v2) ∈ (T (s) × Ω) ∪ (T (t) × Ω), Without loss of generality, assume v1 ∈ T (s), the

joining now reads

tjoinj =
(
|T (s)|l(s)v1 − 1

TL(s)
v ± |T (s)|wj

)−1

=
1

|T (s)|(l(s)v1 + wj)− 1TL(s)
v
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where we always add weight w to lv1 to guarantee that tjoin > 0 by its definition in Eq. (3.11).

iii) If (v1, v2) ∈ T (s) × T (t), we have

tjoinj =
1/|T (s)|+ 1/|T (t)|

(l
(s)
v1 + l

(t)
v2 + wj)− 1

|T (s)|1
TL(s)

v − 1
|T (t)|1

TL(s)
v

.

B.4 Proof of Lemma 3.2

The proof is based on the sufficient condition for the uniqueness of the lasso solution[102,

Lemma 2], which states that “For any β, Q, and λ > 0, if null(QA) = {0} (or equivalently

if rank(QA) = |A|), the lasso solution and the active set A are always unique.” Thus, we

prove the lasso solution β(λ) is unique for every λ > 0 by showing that rank(QA) = |A| is

true for every QA.

In Section 3.4, we showed that the active set forms two disjoint trees (Lemma 3.3 and

3.4). Hence,

QA =

[
QA(s) , QA(t)

]
=

[
DA(s)W−1

A(s) , DA(t)W−1
A(t)

]
,

with DA(t)
k

and DA(t)
k

are incidence matrices of two trees positively weighted by the weighted

matrices WA(s),(t)
k

. The null space (kernel) of the incidence matrix of a tree is empty because

there is no cycle in the tree by its definition, so the rank of its incidence matrix is equal

to the number of columns, i.e., the rank of QA is equal to |A|. Therefore, the sufficient

condition for the unique lasso solution is satisfied.
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