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Introduction

Advances in remote sensing approaches have provided the capabil-
ity to acquire water quality information at spatial and temporal res-
olutions beyond the capability of periodic and in situ measurements 
at measuring points. By integrating remote sensing data with geo-
graphic information systems, more-comprehensive analysis of 
water quality has become possible. Optical and thermal sensors, 
when deployed on boats, aircraft, or satellites, can provide both 
the spatial and temporal information needed to understand changes 
in water quality characteristics which are often the same character-
istics essential for developing better management practices to im-
prove water quality.

Spatially distributed, parametric Total Maximum Daily Load 
(TMDL) models require topographic, soil, and land-use informa-
tion as input data (Doherty and Simmons 2013). GIS and remote 
sensing have been adopted as useful tools for processing raw data 
to provide model input and for synthesizing spatial data (Kang 
2002; Kang and Park 2003) as part of the modeling process. There 
are many examples of the use of a GIS as both preprocessor and 
postprocessor to TMDL models—both the Better Assessment Sci-
ence Integrating Point and Nonpoint Sources (BASINS version 4.1) 
and Watershed Analysis Risk Management Framework (WARMF) 
models specifically include GIS (ASCE 2017). If included as part 
of a model framework, a preprocessor typically provides formatted 
input data from individual or combined GIS data layers, whereas 
postprocessors can be used to aid visualization of model output and 
to graphically display simulation results (Kang et al. 2006). Where 
this visualization is a map, the GIS is especially useful.

Spatial modeling of data, which includes preparing maps with 
water quality and other key geomorphological information, may be 
done using most GIS and helps decision makers to develop a com-
prehensive view of the target area for TMDL development. Initial

spatial modeling may also help in selecting and organizing data in a
required format for input to water quality (watershed and receiving
water) models used in TMDL development. Several examples of
this preprocessing approach are available in the literature in which
initial preprocessing is done using GIS (Shafique et al. 2003;
Ramirez et al. 2005; Viers et al. 2005). Furthermore, GIS also have
a critical role to play in the postprocessing of modeled results and
planning remediation or abatement strategies, such as citing struc-
tural best management practices and targeting nonstructural best
management practices to high-impact areas.

Most modern water quality models used for TMDL modeling
require one or more spatially referenced data sets as input (ASCE
2017). These data sets are often obtained from multiple sources
and may have different projections and spatial scales. This diversity
of information formats makes GISs such as ArcGIS, QGIS, and
GRASS that are designed for handling spatially referenced data ob-
vious choices for data management and processing. Specialized
software designed for digital elevation processing, such as TOPAZ,
TauDEM version 5, and BASINS, along with libraries and modules
available within most GIS, such as spatial analyst in ArcGIS, catch-
ment area in QGIS, and watershed in Geographic Resources Analy-
sis Support System (GRASS), may be of assistance in converting
digital elevations to the topographic information required to de-
velop the hydrology that creates the fluxes important for most water
quality models. Suites of proprietary software such as Aquaveo
WMS 10.1 have been coupled with several widely used water re-
sources models such as Storm Water Management Model (SWMM
version 5.1.013), Gridded Surface Subsurface Hydrologic Analysis
(GSSHA), Hydrological Simulation Program—Fortran (HSPF
version 11.0), and CE-QUAL-W2 to make the task of executing
models easier by preprocessing data and visualizing output from
multiple water quality models (ASCE 2017). Proprietary extensions
are also available to integrate ArcGISwith several other water quality
models, such as InfoSWMM (2017) for SWMM and ArcSWAT for
Soil & Water Assessment Tool (SWAT).

Remote Sensing Sensors and Platforms

Certain water quality parameters of interest have well-defined spec-
tral properties which yield unique spectral curves. This character-
istic facilitates separating and distinguishing these water quality
parameters in a water body. Sensors mounted on satellites and other
platforms can measure the natural reflectance of the target (passive
sensing) or measure radiation emitted by the target being investi-
gated (active sensing). Three spectral bands, visible (VIS), infrared
(IR), and microwave (MW), are the most measured spectral bands
for remote sensing in water bodies (Richards 1986). A guide to the
evolution of satellite remote sensing sensors and platforms is shown
in Fig. 1 in basic chronological order. The first artificial Earth sat-
ellite was Sputnik-1, launched in 1957 by the Soviet Union to
broadcast radio pulses. Three years later, the first successful low-
Earth-orbit weather satellite TIROS-1 was launched and placed into
orbit. Nimbus 1, 2, and 3 were the second-generation US satellites,
launched in the 1960s to perform advanced meteorological re-
search. In 1972, the first satellite operated by the US Landsat
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program was launched to obtain information on agriculture, envi-
ronmental pollution, oceanography, and metrological phenomena.
Landsats 2 and 3 were launched in 1975 and 1978, respectively.
Landsat 3 had an improved 38-m ground resolution and used two
RCA cameras which both imaged in one broad spectral band rather
than three separate bands. In the 1970s, the second generation of
Nimbus satellites (Nimbus 4–7) was launched. The fourth satellite
of the Landsat program was launched in 1982 to provide a global
archive of satellite imagery. Landsat 4 was the first satellite in the
Landsat program that had a Thematic Mapper (TM) sensor which
enabled much higher resolution than the previously deployed mul-
tispectral scanner. In addition, the orbiting time of Landsat 4 was
decreased from 18 days to 16 days. The other satellite of the Land-
sat program (Landsat 5) was launched in 1984. It was a low-Earth-
orbit satellite which had similar spectral and spatial resolution and
sensors as Landsat 4. In Landsat 6, the TM sensor was replaced
with an Enhanced Thematic Mapper (ETM) sensor to add a 15-m
resolution panchromatic band. However, this satellite failed to
reach the intended earth orbit. The seventh satellite of the Landsat
program was launched in 1997. The main sensor on board Landsat
7 is the Enhanced Thematic Mapper Plus (ETM+). It has a revisit
time of 16 days and differs from the previous satellites in the Jenson
(2013) Landsat program by virtue of its enhanced physical memory
storage capability of 378 gigabits (about 100 images) of Landsat 7.
The last satellite of the Landsat program was launched in 2013 to
collect medium-resolution (30-m) multispectral image data to pro-
vide essential information on land cover and land-use change over
time—high-priority data for climate change assessments.

In 1986, the first Satellite Pour l’Observation de la Terre (SPOT)
program satellite was launched by the French space agency to im-
prove the knowledge of the Earth by detecting and monitoring cli-
mate and land-use phenomena related to human activities. SPOT 2,
3, and 4 were launched in 1990, 1993, and 1998, respectively. All
these SPOT satellites had the same imaging instruments, including
two identical high-resolution visible (HRV) imaging instruments
that offered panchromatic band with 10-m resolution and three

multispectral bands with 20-m resolution. SPOT 1, 2, and 3 had
revisit times of 1–4 days. However, SPOT 4 had a revisit time
of 5 days. To improve the quality of images (2.5–5 m) and ensure
continuity of services, the SPOT program launched three additional
satellites in 2002, 2012, and 2014.

In the 1990s, the European Space Agency (ESA) developed a
specialized instrument called synthetic aperture radar (SAR) to pro-
duce high-quality images regardless of weather conditions, cloud
coverage, and daylight or night conditions. SAR was deployed on
the ERS-1 and ERS2-2 satellites, giving them the ability to capture
high-resolution imagery of the oceans, coastal zones, polar ice,
and land regions. The first satellite of the OrbView program was
launched in 1995 by NASA. OrbView-1 has two sensors, an optical
transient detector and an atmospheric monitoring instrument. This
satellite provides information of severe weather patterns and cloud-
to-cloud lightning data. The second satellite of the OrbView pro-
gram, OrbView-2 was launched in 1997 to provide information
used for research in biogeochemical processes, climate change, and
oceanography. It operated the SeaWiFS sensor for NASA and had
a daily revisit time with moderate resolution. The last satellite of
OrbView program was launched in 2007 and is able to provide 1-m
panchromatic imagery and 4-m resolution in the multispectral mode
with a 3-day revisit time.

DigitalGlobe launched two IKONOS satellites in 1999 and
2000. IKONOS were high-resolution satellites with a capability of
capturing 3.2-m multispectral and 0.82-m panchromatic images at
nadir. The popularity and relatively low cost of this imagery helped
improve both urban and urban mapping of natural resources, agri-
culture and forestry resources, and mining areas, and aided vegeta-
tion change detection. In the 2000s, DigitalGlobe launched another
high-resolution earth observation satellite, QuickBird, which col-
lected panchromatic imagery at a 61-cm resolution and multispec-
tral imagery at a 2.44–1.63-m resolution. GeoEye-1 is another
satellite launched by DigitalGlobe, which provides a resolution of
0.46 m. Additional satellites that DigitalGlobe launched in the 2000s
and 2010s were named WorldView. The WorldView-1 satellite has

Fig. 1. Chronological evolution of some important satellites since the 1950s.



an average revisit time of 1.7 days with a panchromatic imaging sys-
tem with 0.46-m resolution. The WorldView-2 satellite is able to
collect a large area of multispectral imagery in a single pass with a
revisit time of 1.1 days. The WorldView-3 and WorldView-4 satel-
lites provide similar panchromatic imagery with 0.31-m resolution
and eight-band multispectral imagery with 1.24-m resolution.

In 1999, the Terra satellite was launched, and it began collecting
imagery in February 2000. The Terra satellite has 5 remote sensors
on board: Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), Clouds and the Earth’s Radiant Energy Sys-
tem (CERES), Multi-angle Imaging SpectroRadiometer (MISR),
Moderate-resolution Imaging Spectroradiometer (MODIS), and
Measurements of Pollution in the Troposphere (MOPITT). The main
goal of launching this satellite was to provide information on the
spread of pollution around the globe. The Aqua Earth-observing sat-
ellite was launched in 2002 to transmit high-quality data and collect
information about the Earth’s water cycle. In addition, it collects in-
formation about the vegetation cover, phytoplankton, dissolved
organic matter, and water temperature. This satellite collects this in-
formation using six instruments on board: Atmospheric Infrared
Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU),
CERES, MODIS, Advanced Microwave Scanning Radiometer-
EOS (AMSR-E), and Humidity Sounder for Brazil (HSB). Another
Earth-observation satellite is Envisat, launched in 2002 to improve
environmental studies. It has nine instruments on board: Medium
Resolution Imaging Spectrometer (MERIS), Advanced Along Track
Scanning Radiometer (AATSR), Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY),
Radar Altimeter 2 (RA-2), Microwave Radiometer (MWR), Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS),
Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS), Global Ozone Monitoring by Occultation of Stars
(GOMOS), and Advanced Synthetic Aperture Radar (ASAR).

As the cost of imagery and processing software has fallen over
the last decade and access to simple graphical user interfaces has
increased for the more popular image processing tools such as
ERDAS, ENVI, and ARCGIS Image Analyst, these data resources
are increasingly being used in basin-scale simulation modeling stud-
ies and TMDLs (ASCE 2017). Whereas in the past, remote sensing
analysis was conducted independently from model development—
incorporated into model input files through the use of GIS as an
intermediary product—several model preprocessors now allow direct
use of remote-sensing data products.

Image Processing Techniques

Satellite imagery is captured at a great distance from the Earth’s
surface, and electromagnetic energy passes through a substantial
atmospheric path to reach to sensors. Atmospheric particles may
absorb or scatter the radiation. In addition, satellites follow an orbit
relative to the Earth while the satellite imagery is being processed.
The relative movement of the Earth may cause a displacement in
the path of the satellite that needs to be recognized in the image
analysis. Processing of satellite imagery to correct errors and min-
imize distortion helps to rectify images to correctly represent con-
ditions on the Earth’ surface and provide the highest possible data
quality prior to analysis and interpretation (Chang et al. 2015). The
techniques of processing satellite imagery can be divided into two
major operations, namely radiometric correction and geometric
correction. Internal radiometric errors are caused by sensor mal-
function or poor calibration of sensors. External radiometric errors
are typically caused by atmospheric absorption. Radiometric cor-
rection is made using calibration data between measured irradiance

and the sensor output, and can be performed using a variety of
methods, including image-based methods, radiative transfer mod-
els, and the empirical line method (Chang et al. 2015). Radiometric
calibration and correction are particularly important when compar-
ing data sets over a multiple periods to improve the interpretability
and quality of the remotely sensed data.

Scan skew, earth rotation, platform velocity, mirror scan veloc-
ity, panoramic distortion, and perspective distortion lead to system-
atic geometric errors. The variation in the distance between the
Earth and the platform may cause nonsystematic geometric errors.
Geometric correction can be performed using available data about
platform ephemeris, points on the Earth’s surface with available
map coordinates, image-to-map rectification, and image-to-image
rectification.

Use of remotely sensed imagery in TMDL modeling will be sig-
nificantly enhanced by automation of the data quality assurance
procedures relevant to remotely sensed data. The urgency for this
development comes from the explosion of new remote-sensing
platforms such as drones which have driven down the cost of
imagery acquisition and created a need for fast and uncomplicated
data quality screening and correction automation, especially for sci-
entific research deployments. Other remote-sensing technologies
are seeing similar migration to the public domain.

Overview of Relevant Remote-Sensing Technologies

LIDAR

Light detection and ranging (LIDAR) is an active remote sensing
technology which records laser pulses to detect an object and de-
termine the distance between the instrument and the object (range).
Based on the interaction of the radiation with an object, physical
properties of an object are detected (Diaz et al. 2013). LIDAR has
several applications, such as agriculture, forest planning and man-
agement, forest fire management, environmental assessment, flood
modeling, watershed and stream delineation, ecological and land
classification, river surveying, pollution modeling, management
of coastlines, monitoring glacier volume changes, and meteorol-
ogy. LIDAR data analysis and interpretation has been incorporated
into several GIS software platforms, such as ArcGIS.

Multispectral Remote-Sensing Imagery

Multispectral imagery is produced by sensors that capture the back-
scattered energy from an object in multiple bands (3–10 bands) of
the electromagnetic spectrum (Al-Mulla 2010). Types of sensors
used in multispectral remote sensing include line detector, whiskb-
room, and pushbroom. The line detector sensor detects only one
object at a time. The whiskbroom scanner scans the Earth in a series
of lines that are perpendicular to the direction of motion of the sen-
sor platform. A rotating mirror is applied to scan from one side to
the other. A bank of internal detectors measures the energy for each
spectral band, converts the analog signal to digital data, and stores
the data record for further processing. The pushbroom scanner also
scans the Earth in a series of lines using track scanning. Pushbroom
motion and its array of detectors leads to energy capture from each
ground resolution cell for a longer period. Hence the pushbroom
scanner has a higher spatial and spectral resolution than the whiskb-
room scanner. Multispectral imagery from platforms such as Land-
sat is now offered at no cost to the public by the Department of the
Interior through the offices of the USGS. This has led to an explo-
sion of applications including the popular Google Earth Engine
platform, which provides real-time processing of Landsat imagery
around the world. Early applications of the technology included



analysis of deforestation and reforestation rates globally and esti-
mation of daily agricultural crop evapotranspiration using a tech-
nique that detects hot and cold pixels in the Landsat scene and
relates these to minimum and maximum evapotranspiration rates
using measured weather station data and derived estimates of refer-
ence evapotranspiration. The latter application could provide sig-
nificant technical and economic benefits to irrigated agriculture
around the world once the procedures for cloud-cover masking
and recognition of image artifacts is perfected and the software ap-
plication is made more robust.

Hyperspectral Sensing for TMDL Modeling

Hyperspectral imaging, or imaging spectroscopy, like other passive
remote sensing methods, is used to measure the spectral signatures
of features using the Sun’s energy reflected or remitted from the
feature. The criteria that discriminate various remote-sensing meth-
ods are the spectral bandwidths and the number of bands. The spec-
tral bandwidth in hyperspectral sensing is lower than that for
multispectral and broadband imaging; at the same time, the number
of bands in a hyperspectral image is far greater. This higher spectral
resolution allows better identification, characterization, quantifica-
tion, and subpixel detection (detection in sizes less than the spatial
resolution) with hyperspectral imaging. The properties of hyper-
spectral imaging may be particularly useful in acquiring data for
TMDL modeling and assessing the outcomes of TMDL implemen-
tation for large and small watersheds. The key challenges in acquir-
ing and utilizing hyperspectral sensing data are the problems with
the cost of acquisition and the difficulty in processing (Ramirez
et al. 2005). The sensors used to acquire these data, particularly
through airborne platforms, are expensive and need specialized
handling. Several spaceborne platforms have also been equipped
with hyperspectral sensors which may alleviate the problems of
data acquisition; however, these platforms often have limited spa-
tial resolutions. There are other sources of hyperspectral data, such
as the NASA Airborne Visible Infrared Imaging Spectrometer
(AVIRIS). Data from most AVIRIS flights are available through
a designated web portal (AVIRIS 2018). Hyperspectral data con-
tains both spatial and spectral information. The data collected from
a hyperspectral sensor may be thought of as a collection of overlaid
spatial raster layers, with each layer representing reflectance at a
wavelength, resulting in a data cube. With hundreds of spectral
bands, large amounts of data are usually collected, depending on
the spatial resolution and area covered, and then processed to re-
move atmospheric effects (Gao et al. 2009; Zarco-Tejada and
González-Dugo 2012). Methods are also adopted for removing re-
dundant and noisy data (Chang 2013).

Overview of Relevant GIS Technologies

The first-generation GIS, developed in the 1960s and 1970s, were
generalized CAD-based mapping systems that stored geographic
information in file formats that represented points, lines, and areas,
and had a limited ability to store attribute data. The field has
evolved dramatically in the last 40 years, with the development
of relational databases and the portioning of spatial and attribute
data, allowing the coverage data model to become the kernel of the
GIS. More-recent innovations in object-oriented software design
have led to the introduction of the geodatabase model, first released
by ESRI with version 8 of ArcGIS software. This GIS architecture
provides flexibility in the definition and behavior of data objects,
allowing relationships to be defined in terms of their topological
and spatial features in new ways (Zeiler 1999). This architecture

creates a unified data model which allows easier linkage to models
used for TMDL analysis.

GIS Data Processing

Once point, line, or area feature data have been imported to a GIS
and georeferenced, further processing and manipulation of the data
can yield useful output for simulation modeling. For example, Fig. 2
shows a map of the subsurface tile drainage mains and laterals in a
water district in the San Joaquin Basin of California. Using the pol-
ygon interest and line data processing features of ArcGIS version
10.6, the linear lengths of lateral and mainline drains were summed
within each 1-mi2 model cell (shown in outline superimposed on
the drainage map). The drainage yield and conductance terms in the
groundwater simulation model are directly related to the total drain
length and a calibration factor which produces a drainage volume
per unit of head difference between the drain elevation and the
water table and the linear length of drain. Previous iterations of
the model developed a function related only to the hydraulic head
difference between the drain depth and water table; the new algo-
rithm allows greater disaggregation of drainage estimates.

A second example of GIS data processing is illustrated in Fig. 3,
which shows the use of a software robot which traverses the nodal
map of a numerical groundwater model of the San Joaquin Basin of
California and associated digital DEM data and helps assign model
groundwater nodes to corresponding model river nodes. The river
nodes represent the San Joaquin River, which drains the Basin and
is the receiving water for a salinity TMDL. Ephemeral streams that
truncate prior to meeting the San Joaquin River had their discharge
assigned to groundwater nodes, which in turn were assigned to
multiple San Joaquin River nodes along corridors that connect the
interior groundwater nodes with the River. The Euclidean point–
processing algorithm used in the analysis provided a logical and
repeatable methodology for linking the groundwater and surface
water component models that together determined the flow and
water quality interaction between surface and groundwater systems
that were critical for completion of a credible water quality TMDL.

Overlay Analysis

Not only is GIS able to store digital data in multiple layers, it also is
able to generate a new data layer using the attributes of all existing
layers taking part in overlay analysis (Jensen and Jensen 2017).
This process can be performed in either feature or raster systems.
Feature overlay includes overlaying points, lines, or polygons. Out-
put of a feature system depends on the type of overlaid features. For
instance, overlaying polygons leads to the creation of new areas.
However, overlaying a line with polygons produces lines that have
features of both the original line and polygons. The raster system,
which is known as grid overlay, is only able to combine attributes of
exactly aligned grids. Otherwise, the misaligned grids need to be
resampled. One of the most important steps prior to overlay analy-
sis is to reference all layers to the same coordinate system, the same
datum, and the same map projection.

ESRI (2017) defined eight general steps of overlay analysis. The
first step of overlay analysis is defining the problem. The overall
objective and the concept of the problem must be identified. It is
also necessary to understand when the problem is solved. The next
step is breaking the problem into submodels to be able to focus on
different components of a problem (cost, risk, and so on). The third
step is determining the attributes or layers that contribute to the
goals of each submodel. Different layers have different ranges
of values. It is not possible to combine different number systems.
For this purpose, common scales need to be defined for all layers;



for instance, scales of 1–10, in which the higher value is more fa-
vorable. Some factors may play more important roles than others.
Therefore, prior to combining different factors (Step 6), the factors
can be weighted based on their importance. In order to select the best
location (Step 7), ArcGIS provides a tool that allow the user to iden-
tify the best combinations of desired regions. The final step is ana-
lyzing the results. It may be beneficial to determine the second and
third most favorable sites in addition to identifying the best location.

GIS Modeling

Bolstad (2016) considered three types of GIS models: cartographic
models, spatiotemporal models, and network models. Cartographic
models are usually temporally static, involve combined spatial data
sets, and rely on specific operations and functions for problem solv-
ing. These models apply weights and ranking to important features
or criteria, and are commonly used for applications such as suitabil-
ity ranking. Simple linear models such as the Universal Soil Loss
Equation, primarily used for estimation of runoff and soil erosion
from agricultural land, is a good example of this type of GIS mod-
eling application. Most of the model parameter inputs of soil erod-
ibility, rainfall erosivity, cropping practices, and management can
be mapped spatially as model inputs.

Spatiotemporal models simulate time-driven processes and their
dynamics in both space and time. These are typical of the models
used in most TMDL analyses which are iterative, require sets of

initial conditions, and produce time series predictions of key state
variables as output. These models can be descriptive or prescrip-
tive, stochastic or deterministic, and either inductive or deductive,
but all represent meaningful features in the landscape and simulate
events and processes in geographic space. Early versions of these
models provided a means of creating input data sets from GIS
maps; more temporary models are fully integrated (ASCE 2017).
Network models are mostly concerned with the simulation of
resources—their flow, accumulation, or depletion—within well-
defined networks. This type of model is not commonly used in
TMDL development.

Integrated GIS Modeling

Integrated modeling systems imply an integration of data and
knowledge from across relevant science domains within the com-
putational form of a conceptual model. Laniak et al. (2013)
considered integrated environmental modeling as a landscape con-
taining four interdependent elements: applications, science, tech-
nology, and community. Contemporary environmental modeling
systems include science models, user interfaces, data analysis and
visualization tools (including GIS), and calibration and optimiza-
tion tools (Doherty and Simmons 2013; Doherty and Hunt 2010).
Interoperability is needed between these tools to simplify and
automate data transfer across applications so that the tools appro-
priately address their combined function (Laniak et al. 2013).

Fig. 2. Computation of subsurface drainage tile length using a GIS and line features from a water district drainage map. The model cell drainage
conductance is directly correlated with tile drain length.



Integrated modeling frameworks can help to maintain some level of
local control over the user experience, in particular the design and
implementation of the graphical user interface (GUI), which has
been found to be an important attribute for buy-in and effective
function within user communities. Less-structured integration of
models can be facilitated with software products such as OpenMI,
which provides a protocol for exchanging data among linked mod-
els at run time (Moore and Tindall 2005). GIS can provide a service
during model integration by forcing models to recognize a common
geographic frame of reference and explicit linkage between model
nodes and areas on maps. Spending time on this georeferencing of
model hydrology early can avoid mass balance errors and potential
model instability when models are linked or coupled later.

Remote Sensing in Hydrologic and Water Quality
Modeling

Total maximum daily load calculations are used by states and the
USEPA to limit both point-source and non-point-source pollution

by establishing water quality objectives for receiving waters and
limiting watershed pollutant loading into these receiving waters
in a manner consistent with meeting these water quality objectives.
TMDLs have been developed for a variety of pollutants that impair
or threaten the intended beneficial uses of a water body. Key pol-
lutants for which TMDLs have been developed include sediments,
pathogens, nutrients, metals, dissolved oxygen, temperature, pH,
mercury, pesticides, and organics (USEPA 2011). Remote-sensing
applications are limited to those substances or conditions that can
influence and change the optical (reflected) or thermal character-
istics of the water surface, such as suspended sediments and tem-
perature. Other pollutants can be measured indirectly utilizing
techniques through surrogate indicators. For example, chlorophyll
a is a characteristic of algal biomass that has a unique reflectance
and can be a useful indicator of elevated nutrient levels.

Remote sensing and GIS can also be used in formulating man-
agement plans that can result in improvements to the quality of im-
paired waters. Effective TMDL implementation plans can be
developed by enhancing land-use planning using remote sensing

Fig. 3. Use of GIS to determine likely flow paths from groundwater nodes and the ephemeral streams emanating from the Coast Range mountains to
the San Joaquin River. A robot used the digital DEM data to link each groundwater and stream node with a single stream node on the San Joaquin
River.
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and GIS to reduce pollutant movements to the water body
(Zaidi 2012).

The thermal band of satellite data can be used to estimate the
surface temperature of water bodies. Other variables that cannot be
quantified through satellite data, such as bacteria and nutrient loads,
sometimes can be assessed using surrogate indicators, which can be
field-validated. Multitemporal satellite data are required for this
purpose. For land-use/land-cover classification, medium-spatial-
resolution Landsat satellite data are a publicly available product
that is commonly used. Multispectral data from Earth-observing
satellite SPOT 5 and Landsat 7 data may be utilized for establishing
spatial relationship between satellite data and field-measured water
quality parameters. True-color orthophotography at much higher
resolutions is also useful for detecting impervious cover and forests
at much higher resolutions, which is useful for small watersheds.

GISs in Hydrologic, Water Quality, and TMDL Modeling

In their assessment of available models, Kang et al. (2006) ad-
dressed the impact of best management practices on the studied
water bodies, providing guidance for more-effective implementa-
tion of TMDL programs. The total maximum daily load system
(TOLOS) is another example of a GIS ArcView SWAT (AVSWAT)
application, which has proved useful for developing and evaluating
TMDLs in small watersheds containing rice paddies in the Repub-
lic of Korea.

Several interfaces of GIS with water resources models have
been developed, some of which are listed in Table 1. Models in-
cluding HSPF, SWAT, and SWMM, have been coupled with
GIS for preprocessing and postprocessing using extensions to stan-
dard GIS. For example, HSPF has been coupled with WMS and
BASINS. An extension for ArcGIS is available for preprocessing
HSPF data. Similar ArcGIS extensions are also available for SWAT,
SWMM, Agricultural Policy/Environmental eXtender (APEX), and
AnnAGNPS. Other models such as WARMF have built-in GUIs
with geoprocessing capacity for preprocessing and postprocessing.

Using the terminology defined by Martin et al. (2005), GIS–
water resources model interfaces may be linked in three groups:
linked, combined, and integrated. A water resources model linked
with a GIS requires manual data exchange between the model and
the GIS.
• Linked-type interfaces are the simplest to develop and are very

flexible, independent of either the modeling or GIS software.
However, often such approaches are not standardized and do
not use the full power of the GIS and the spatial relations in
the data sets.

• Combined water resources models and GIS software have auto-
mated data exchange; although more robust, this exchange can
be more difficult to program and more inflexible in terms of the
combined software compared with linked models.

• Integrated water resources models and GIS software usually
have the water resources model programmed in the GIS or
the GIS built into the water resources model. Data exchanges
in such scenarios are transparent to the end-user, and the frame-
work can use the power of the GIS; however, such systems tend
to simplify the water resources models.
Several models with combined-type links are available, such as

AVSWAT (Di Luzio et al. 2004) and may not need any additional
programming to connect the model with the GIS. However, to ap-
ply such models, depending on the characteristics of the local area,
special GIS processing may be needed. For example, Amatya et al.
(2008), using AVSWAT, reported that hand-digitizing stream lines
from aerial photographs improved the flow routing computed by
the combined model.

Conclusions

Most water resources models currently used were developed before
GIS matured and were standardized. Consequently, several water
resources models are not well integrated with GIS for spatial-data
management, visualization, or modeling to support decision mak-
ing for TMDL development. Martin et al. (2005) in their review of
the GIS interfaces with water resources models pointed out that
neither of the technologies were developed to interact with each
other. This has led to present-era systems that interface GIS with
robust peer-reviewed modeling tools in the three ways described
previously. Nevertheless, significant advancements have been
made in the last decade which enable gainful use of GIS and remote
sensing for water resources modeling, especially for TMDL devel-
opment. For example, several water resources models have exten-
sions to link this software to ArcGIS, which simplifies the task of
processing information and the resulting analysis. Integration with
open-source and free GIS, however, has been lacking. Similarly,
web-based GIS that have the capacity to make water resources
models more widely available to the stakeholders had not been
widely adopted by the modeling community as of 2016. These de-
velopments have implications for the next generation of TMDL
modeling endeavors.
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