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Abstract: Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and
neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine
cycle is reported in animal models of WD, though not verified in humans. Choline is essential for
lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines
are reported in WD; however, less is known about their circulating precursors. We aimed to study
choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic
interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile
serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels
of genes related to choline and methionine metabolism were verified in the Jackson Laboratory
toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine,
proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked
alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins,
and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly
dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations
in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated
phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth
further investigation.

Keywords: copper; metabolomics; phospholipids; choline; phenylalanine; tyrosine; histidine;
steatosis; neurotransmitters

1. Introduction

Wilson disease (WD) is caused by copper overload mainly in the liver and brain as a consequence
of mutations affecting the P-type ATPase transporter responsible for copper excretion into the biliary
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system and ceruloplasmin maturation through the trans-Golgi network [1,2]. The clinical presentation
of WD is highly variable and includes hepatic and neuropsychiatric manifestations [2]. Hepatic
involvement ranges from asymptomatic hepatomegaly to hepatic steatosis, hepatitis, fibrosis and
cirrhosis, liver failure, and hepatocellular carcinoma [3,4]. Neuropsychiatric symptoms include
tremors, dystonia, bradykinesia, hypomnesia, and dysgnosia [5]. The molecular basis of WD is not
understood. A major role is attributed to oxidative stress and the production of reactive oxygen
species (ROS) with consequent damage to cellular proteins, lipids, and nucleic acids, and effects on
mitochondria morphology and bioenergetics [6,7]. However, knowledge is still lacking about systemic
WD manifestations and if and how they are metabolically interconnected.

Choline is an essential nutrient functioning at the intersection of multiple metabolic pathways.
Its oxidized form, betaine, is relevant to the methionine cycle as a methyl donor in homocysteine
re-methylation reactions catalyzed by betaine-homocysteine methyltransferase (BHMT) to generate
methionine [8]. We and others have previously reported dysregulation in the methionine cycle
in an animal model of WD, primarily in relation to epigenetic mechanisms [9–11]; however,
this is not clear in human subjects with WD. Choline is also required for phospholipid (PL)
synthesis, including phosphatidylcholines (PCs) and sphingolipids (SLs); therefore, it is essential for
bio-membrane integrity, mitochondrial bioenergetics, and lipid and bile metabolism [12–14]. PC is the
predominant PL in mammalian cell membranes, synthesized mainly via the choline-dependent
cytidine-diphosphate-choline (CDP-choline) pathway with contributions from the liver-specific
phosphatidylethanolamine N-methyltransferase (PEMT) pathway [12]. The PEMT pathway requires
the methyl donor S-adenosylmethionine (SAM) and is inhibited by elevated S-adenosylhomocysteine
(SAH) [15,16]. Dysregulation in PL is implicated in hepatic steatosis, inflammation, and many
neurologic conditions [17–20]. Choline deficiency results in steatosis due to impaired hepatic synthesis
of very-low-density lipoproteins (VLDLs) and export of triglycerides [21].

An additional potential layer of metabolic interaction is provided by the bioactive lipids ceramide,
SLs, and sphingosine-1-phosphate (S1P). PC and ceramide are precursors of sphingomyelins (SMs),
the main SLs in mammalian membranes [22]. S1P is formed from sphingosine, the degradation
product of ceramide [23]. Sphingosine, S1P, and ceramide are interconvertible, and their homeostasis
determines the cell’s fate. The formation of S1P promotes cell growth and survival, while sphingosine
and ceramide induce apoptosis [24,25].

Acetylcholine and the biogenic amines, histamine, dopamine, norepinephrine, epinephrine,
and serotonin are endogenous chemical messengers responsible for neural transmission and
regulating locomotion, muscle tone, mood, attention, and behavior [26–28]. Choline is the precursor
for acetylcholine; and neuroactive biogenic amines are derived from the aromatic amino acids
phenylalanine, tyrosine, tryptophan, and histidine [29,30]. Methionine, via SAM formation, is also
required for the synthesis of serotonin, epinephrine, and dopamine [31].

Metabolomic approaches offer a powerful tool to understand metabolism in biological systems.
Most of the available metabolomic data in WD are from animal models [32–34]. In a previous
metabolomic analysis of WD patients, we reported elevated sorbitol, alterations in tricarboxylic acid
cycle intermediates, and some amino acids [35]. Given the scarce human metabolomic studies in
WD and available data on altered methionine metabolism in animals, we explored serum choline,
amino acids, and PL levels in subjects with WD compared to healthy controls (HC), hypothesizing that
metabolomics patterns could further differentiate WD clinical presentations. We also aimed to verify
hepatic transcript levels of key genes related to choline and methionine metabolism in the Jackson
toxic milk mouse, an animal model of WD, to ultimately provide new insights into WD pathogenesis.
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2. Results

2.1. Natural Clustering

Of the 374 detected metabolites, 107 were identified and annotated. Xenobiotics were excluded
and 97 metabolites were included in the analysis. Principle component analysis score plot based on
detected metabolites showed clustering with some overlap, suggesting a metabolomic variance may
distinguish between WD and HC groups (Figure S1).

2.2. Identification of Distinctive Metabolites in Serum of WD Subjects Compared to HC

Volcano analysis comparing WD to HC revealed 158 significant metabolites, among which 44
were identified and annotated. A detailed list of all detected metabolites with statistical significance
after false discovery rate (FDR) adjustment is shown in Figure S2 and Table S1. When analysis was
restricted to known metabolites, 53 differentially dysregulated metabolites distinguished WD from HC,
with 48 metabolites retaining significance after FDR adjustment (Figure 1A and Table S2). Heat-maps
visualizing fold change in intensity and metabolite significance when comparing WD to HC are
displayed in Figure 2A,C.
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Figure 1. Volcano plot for Wilson disease (WD) and WD subgroups compared to healthy control (HC)
based on all annotated metabolites. (A) WD (all); (B) WD pre-clinical (WDP); (C) WD neurologic
(WDN); (D) WD hepatic (WDH). Important features were selected with fold change (FC) threshold
1.2 and t-test (p) threshold 0.1. Both fold changes and p-values are log-transformed. The pink circles
represent features above the threshold. The further the circle’s position away from (0,0), the more
significant the feature. (E) Venn diagram displaying common and group-specific significant metabolites
in WD subgroups compared to HC.
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Figure 2. Heat-map of selected metabolites. Averages for each metabolite by group are shown to
indicate fold-change magnitude and direction. Choline and related metabolites, methionine, and
phospholipids in (A) healthy control (HC) compared to Wilson disease (WD); and (B) HC compared to
WD pre-clinical (WDP), WD neurologic (WDN), and WD hepatic (WDH). Amino acids, cholesterol and
bile, acylcarnitines, and related metabolites in (C) HC compared to WD; and (D) HC compared to WDP,
WDN, and WDH. Metabolites marked by asterisks indicate FDR-adjusted p < 0.1 compared to HC by
volcano analysis.

2.3. Identification of Serum Metabolites Distinguishing between WD Phenotypes

Volcano analysis, corrected for multiple testing, comparing WD subjects stratified by clinical
presentation to HC showed a total of 41, 51, and 52 metabolites distinguishing WDP, WDN, and WDH,
respectively (Figure 1B–D). Twenty-seven metabolites were differentially altered in all WD phenotypes.
A Venn diagram of common and unique metabolites between WD subgroups is shown in Figure 1E.
Significant metabolites selected by volcano plot analysis are listed in Tables S3–S5 for WDP, WDN, and
WDH, respectively. Heat-maps visualizing fold changes and metabolite significance when comparing
different WD phenotypes to HC are displayed in Figure 2B,D.

ANOVA was performed to investigate if a metabolomic phenotype can distinguish between WD
presentations. Post hoc analysis showed 11 metabolites significantly different among WD phenotypes;
however, only 2 retained significance after FDR adjustment suggesting no significant difference between
WD subgroups.

2.4. Choline Is a Hallmark Alteration in Patients with WD

In subjects with WD, choline was the most significantly altered metabolite with a 4-fold
increase. When stratified to WD phenotypes, a significant linear increase in choline was observed
(WDP < WDN < WDH) versus HC. Moreover, betaine, a derivative of choline, was significantly
elevated when comparing WDH to HC (Figure 2B and Table S6).
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There was a non-significant increase in acetylcholine observed between WD and HC. When
stratifying to WD phenotypes, an increasing trend was observed (WDP < WDN < WDH); however, this
was significant only in WDH compared to HC (Figure 2B and Table S6). Choline correlated positively
with betaine and acetylcholine as well as many PC species containing saturated fatty acyl chains (FACs).
Conversely, it was negatively correlated with S1P and lysophosphatidylcholines (LysoPCs) primarily
with saturated FACs (Table S6).

2.5. Patients with WD Present Elevation in Some Amino Acid Levels

Compared to HC, phenylalanine, tyrosine, methionine, ornithine, proline, histidine, and alanine
were more abundant in subjects with WD (Figure 2C and Table S2). Phenylalanine levels were
significantly increased along with its downstream metabolite, tyrosine. The elevation in phenylalanine
was significant across all WD phenotypes, while tyrosine was significantly elevated in symptomatic
subjects. (Figure 2D and Tables S3–S5). Metabolites correlated with phenylalanine are shown in
Table S7.

Compared to HC, methionine was increased 2.5-fold in WD subjects, with a significant increasing
trend when comparing WD phenotypes to HC (WDP < WDN < WDH). (Figure 2C and Tables S3–S5).
Metabolites correlated with methionine are shown in Table S8.

Ornithine, proline, histidine, and alanine also increased significantly in WD compared to HC,
with a significant elevation observed across all WD subgroups (Figure 2C and Tables S3–S5).

2.6. Altered Circulating Phospholipids in WD

Many circulating PL species are altered in subjects with WD. Compared to HC, WD was
characterized by an increase in PCs mainly containing saturated FACs and a decrease in many PCs
containing polyunsaturated FACs (Figure 2A and Table S4). We also observed a reduction in S1P across
all WD subgroups as well as altered levels in many SM species (Figure 2B and Tables S5–S7).

2.7. Secondary Bile Acids Are Increased in WD

The secondary bile acids glycocholic acid and glycoursodeoxycholic acid levels were significantly
increased more than 3-fold in WD compared to HC (Figure 2C and Table S2). This increase was driven
solely by elevations in symptomatic subgroups, WDN and WDH (Figure 2D and Tables S4 and S5).
Although not significant, deoxycholic acid was increased and cholesterol levels were decreased in WD
compared to HC (Figure 2C and Table S2).

2.8. Decreased Serum Levels of Long-Chain Acylcarnitines in WD

Decreased acylcarnitine (CAR) levels were observed in WD subjects compared to HC, with
significantly lower levels of decanoyl-L-carnitine (CAR10:0), lauroyl L-carnitine (CAR12:0), and
palmitoyl-L-carnitine (CAR16:0) (Figure 2C and Table S2). Carnitine was significantly elevated in WDP
and WDN compared to HC (Figure 2D and Tables S3 and S4).

2.9. No Sex-Specific Differences between WD and HC

No significantly different levels of metabolites were found after FDR correction, suggesting no
sex-specific effect in WD patients.

2.10. Gene Expression Analysis in tx-j Mice and Response to Copper Chelation

To validate the above findings, we checked the expression of genes related to choline and
methionine metabolism in the Jackson Laboratory toxic milk model of WD, C3He-Atp7btx-J/J (tx-j),
compared to wild-type C3HeB/FeJ (C3H). In tx-j mice, transcript levels of aldehyde dehydrogenase
family 7, member A1 (Aldh7a1) and choline dehydrogenase (Chdh), genes that convert choline to
betaine, and transcript levels of Pemt, [phosphate cytidylyltransferase 1, choline, alpha isoform]
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(Pcyt1a), and choline phosphotransferase 1 (Chpt1), genes related to PC synthesis, were all significantly
down-regulated compared to C3H control and were not corrected by PCA treatment (Figure 3).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 20 
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Figure 3. Analysis of genes related to choline and methionine in tx-j mice. C3H, control mice
(n = 22); tx-j, Wilson disease mouse model (n = 22); PCA, tx-j mice treated with penicillamine
(n = 22). Aldh7a1, aldehyde dehydrogenase family 7, member A1; Chdh, choline dehydrogenase;
Pemt, phosphatidylethanolamine methyltransferase; Pcyt1a, phosphate cytidylyltransferase 1, choline,
alpha isoform; Chpt1, choline phosphotransferase 1; Mtr, methionine synthase; Bhmt and Bhmt2,
betaine-homocysteine methyltransferase and methyltransferase 2; Mat1a and Mat2a, methionine
adenosyltransferase I and II, alpha. All genes are normalized to Gapdh. Data are presented as mean ±
SD. Significance analyzed by Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Methionine synthase (Mtr) transcript levels were significantly up-regulated in tx-j mice and PCA
treatment induced a mild but significant reduction. Bhmt and Bhmt2 were significantly down-regulated
in tx-j mice compared to C3H control and PCA treatment resulted in a further mild but significant
reduction. The transcript level of methionine adenosyltransferase I, alpha (Mat1a) was significantly
down-regulated in tx-j mice with further significant reduction in response to PCA. Conversely,
methionine adenosyltransferase II, alpha (Mat2a) was significantly increased compared to C3H control
with no difference between tx-j and PCA groups.

2.11. Pathway Analysis

Results show that pathways with significantly altered metabolites and highest impact are involved
in the metabolism of phenylalanine, tyrosine, histidine, and betaine (Figure 4 and Table S9). This is
followed by pathways related to the biosynthesis of PLs, SLs, and methionine metabolism. Other
pathways highlighted with significance, yet less impact, include oxidation of fatty acids, catecholamine
synthesis, and phosphatidylcholine metabolism.
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Figure 4. Metabolic pathway analysis. Node plot showing matched pathways according to significance
(p-value) as determined by pathway enrichment analysis (y-axis), and pathways impact as determined
by topology analysis (x-axis). Nodes in red indicate significance (p < 0.05), and the size of the nodes
indicate impact. VLCFA, very long chain fatty acid; BCFA, branched chain fatty acid.

3. Discussion

WD is characterized by genetic, epigenetic, and metabolic changes. Our major findings are
interconnected: (1) evidence of dysregulated choline and downstream PL metabolism in WD;
(2) remarkable dysregulation in methionine and aromatic amino acids; and (3) signs of dysregulated
urea, bile metabolism, and fatty acid oxidation in subjects with WD.

Our results show a serum choline increase of 4-fold in all WD phenotypes, suggesting elevated
choline is a feature of WD, independent of diet and liver disease severity. The main metabolic fate of
choline is PL synthesis, including PCs and SLs [14]. In our study, circulating PC and SL levels were
differentially altered in WD compared to HC, indicating dysregulated PL metabolism. PC can be
synthesized via the PEMT pathway and CDP-choline pathway. The PEMT pathway contributes 30% of
the PC pool and is the source of de novo choline in mammals [36]. Results from tx-j mouse hepatic
gene expression reveal significant reduction in Pemt transcript levels that were not corrected by copper
chelation therapy. This indicates an impaired synthesis of PC and de novo choline via the PEMT
pathway and possible involvement of mechanisms other than copper toxicity in regulating PEMT.

The majority of PC is synthesized by the CDP-choline pathway, a major consumer of choline [36],
and PC profiles from CDP-choline and PEMT pathways are distinctive. CDP-choline produces mainly
PCs with medium chain, saturated and monounsaturated FACs, whereas the liver-specific PEMT
produces PCs containing longer, polyunsaturated FACs [36]. In our study, we observed a reduction
in several PCs containing polyunsaturated FACs and an increase in many PCs with saturated FACs;
choline was found to be positively correlated with the latter, implying an increase in these species is not
met with choline clearance. Therefore, it seems likely the CDP-choline pathway is impaired. In support
of this, hepatic transcript analyses from tx-j mice indicates down-regulation of the CDP-choline pathway
independent of copper overload, as evident by a significant down-regulation of Pcyt1a and Chpt1 that
was not restored by PCA therapy.

We observed decreased levels of several circulating LysoPCs containing saturated FACs across all
WD phenotypes. LysoPCs are generated by phospholipases A1 and A2 action on membrane-bound
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PCs, or lecithin-cholesterol acyltransferase action on lipoprotein-bound PCs [37,38]. Once formed,
LysoPCs can be degraded or promptly transported to target tissue to activate signaling pathways
involved in oxidative stress and inflammation [39–42]. The inflammation-mediating role of LysoPCs
are thought to be a function of their FACs; the anti-inflammatory unsaturated LysoPCs offset the
pro-inflammatory effect of saturated LysoPCs [43–45]. We and others have previously shown WD is an
inflammatory state with elevated serum inflammation mediators [9,39,46]. The observed decreased
level in multiple LysoPC species with saturated FACs may contradict an inflammatory role; however,
we cannot conclude on the fate of these species as the rates of synthesis and clearance ultimately
determine circulating levels. Of note, decreased LysoPC levels were also reported in other inflammatory
states, including obesity and Alzheimer’s disease [47–51].

Altered PL levels may have implications for hepatic steatosis. PLs have a critical role in VLDL
secretion and hepatic triglyceride export, and compelling evidence suggests hepatic PC synthesis via
CDP-choline and PEMT pathways is independently essential for VLDL secretion [12,21]. Moreover, PC
is a regulator of lipogenesis, as seen in mice and human HepG2 hepatoma cells; blocking PC synthesis
up-regulates sterol regulatory element-binding protein 1 transcription and results in steatosis [52].
Additionally, mitochondrial lipidomic composition is critical for its membrane characteristics and
bioenergetics [12]. Mitochondrial dysfunction and morphological changes are described in WD [6,7].

SMs are formed from PC and ceramide [22]. Our results reveal several altered SM levels mainly
impacting symptomatic WD subjects; coincident with this, there was a significant decrease in S1P
levels, evident in all WD phenotypes. This indicates dysregulated SL metabolism, a state reported in
neurologic conditions and in nonalcoholic fatty liver [53–59]. S1P is formed from sphingosines via
sphingosine kinases 1 and 2 (SPHK1 and SPHK2) activities and is interconvertible with sphingosine
and ceramide [23]. These bioactive lipids effect opposing signals and through their interconversion,
known as “the sphingolipid rheostat,” the cell’s fate is determined. Sphingosine and ceramide induce
apoptosis, while S1P suppresses ceramide-mediated apoptosis and promotes proliferation and cell
survival [24,25,60]. An up-regulated apoptosis contributes to hepatic pathologies, including fibrosis and
inflammation, and some neurodegenerative disorders [61,62]. In subjects with WD, copper-induced
apoptosis is mediated by suppression of survival and induction of caspase-3, TNFα, IL8, NFKB [63,64].
Of note, the activity of SPHK1 is shown to be inhibited by oxidative stress [65,66]. Therefore, it would
be reasonable to postulate the observed reduction in S1P in WD patients may be due to copper-induced
inhibition of SPHK1 by ROS, and this reduction may be involved in apoptotic mechanisms associated
with WD.

We report a significant elevation in betaine in WD subjects, mainly driven by the WDH phenotype
and suggesting a role for hepatic function. Betaine is the oxidized form of choline and is the methyl
donor in methionine regeneration via BHMT [67]. The elevated betaine levels could be explained
by the increased availability of choline. In addition, oxidative stress inhibits BHMT and results in
elevated betaine [68]. In the livers of tx-j mice, decreased transcript levels of Chdh and Aldh7a1 indicate
down-regulation of choline’s conversion to betaine; therefore, the elevation in betaine may not be
due to the increased availability of its substrate. However, tx-j mice also show a down-regulation
in Bhmt hepatic transcript levels, possibly indicating indirect BHMT inhibition through decreased
gene expression, thereby reducing betaine input toward methionine regeneration with consequent
betaine accumulation.

Methionine is an essential amino acid, metabolized in the liver to form SAM via methionine
adenosyltransferases (MAT) [69,70]. MAT is encoded by two genes, the liver-predominant MAT1A
that encodes MATI/III and MAT2A, which is expressed less in the liver and more in extrahepatic
tissues and encodes for MATII [71,72]. We and others have reported dysregulated methionine in
animal models of WD [9,10] and, to our knowledge, hypermethioninemia has not been described
previously in WD subjects. In our current results, methionine levels were increased by more than
2-fold in WD subjects compared to HC, and this elevation was significantly higher in WDH, suggesting
liver pathology may have a role in our findings. The mechanisms leading to methionine elevation are
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varied and include MAT deficiency [73]. ROS inhibits MAT I/III, which are encoded by MAT1A [10,74].
In tx-j mice, we found hepatic Mat1a expression was significantly reduced and Mat2a was increased.
This corroborates findings from other animal models of WD in which a reduction in Mat1a gene
expression was compensated by an increase in Mat2a; however, this increase was not enough to sustain
the total enzymatic function, as MATII has the lowest specific activity [10,75]. MAT III has the highest
Km for methionine (215 µM–7 mM); MAT I has an intermediate Km (23 µM–1 mM); and MAT II has the
lowest Km (∼4–10 µM) [76,77].

Alternatively, elevated methionine levels can result from high homocysteine, which can induce
hepatotoxic and neurotoxic effects in WD [78–80]. However, the involvement of homocysteine is
uncertain, given we did not measure homocysteine, and hyperhomocysteinemia has not been described
previously in WD. Homocysteine can regenerate methionine via MTR or BHMT with betaine as a
methyl donor [81,82]. It was shown that a reduction in SAM deactivates cystathionine β-synthase, the
first step in transsulfuration and a primary homocysteine clearance route [83,84]. Elevated copper
inhibits S-adenosylhomocysteine hydrolase (SAHH) activity and expression [10,85–87]. Taken together,
we propose these actions divert the homocysteine pool away from transsulfuration to re-methylation
pathways, thereby contributing to the observed elevation in methionine. In our analysis, methionine
correlated positively with betaine and choline (r = 0.8, p = 8.11 × 10−20 and r = 0.4, p = 2.39 × 10−5,
respectively) suggesting an impaired BHMT pathway. Our findings from the tx-j mice substantiate this;
hepatic Mtr transcript levels were up-regulated in untreated tx-j then showed a significant decrease
in response to PCA, whereas Bhmt was down-regulated. This indicates homocysteine undergoes
re-methylation to methionine via the folate-dependent pathway and is contributing to the elevated
methionine pool in a copper-overload state.

Acetylcholine is synthesized from choline in cholinergic neurons and acts in a receptor-mediated
fashion to regulate social behavior and cognitive function [28,88]. Our results show a non-significant
elevation in acetylcholine in subjects with WD. When stratified by clinical presentation, a significant
increase was observed in WDH patients. This rule out acetylcholine deficiency and indicates possible
involvement of other mechanisms, including receptor function and signal termination, with regard to
the development of neurologic symptoms in WD.

Acetylcholine is also relevant to hepatic manifestations as evidenced from animal and human
stellate cells, which have shown cholinergic transmission to mediate hepatic stellate cell activation and
fibrogenesis [89,90]. In contrast, an animal model of non-alcoholic steatohepatitis (NASH) points to an
anti-inflammatory role exerted by cholinergic signaling in Kupffer cells, resulting in the suppression
of NASH progression [91]. Further work is warranted to understand the role of acetylcholine and
signaling pathways in hepatic WD pathogenesis.

We also found elevated phenylalanine and tyrosine levels in subjects with WD. Phenylalanine
is a precursor for tyrosine and biogenic amine neurotransmitters dopamine, norepinephrine, and
epinephrine, also known as catecholamines [92]. Defects in the catabolic pathways of phenylalanine
and tyrosine deplete downstream neurotransmitters [93]. Abnormally elevated levels of these amino
acids are reported with genetic enzymatic defects and are associated with neurologic and psychiatric
symptoms [93–96].

Histidine levels were found to be significantly elevated in subjects with WD. Histidine is an
essential amino acid and precursor for the biogenic amine neurotransmitter histamine, formed via
oxidative decarboxylation by histidine-decarboxylase [97]. This is a catabolic pathway that overlaps
with folate metabolism; histidine is converted to glutamic acid via multiple reactions involving
folate-dependent enzymes [98]. Dysregulated biogenic amines neurotransmission is reported in
WD with neuropsychiatric manifestations [99–106], and dysfunctions of the histaminergic nervous
system are involved in many neurologic disorders [107–109]. Our findings indicate a possible defect
in phenylalanine, tyrosine, and histidine catabolic pathways resulting in accumulation of these
amino acids in WD, regardless of clinical presentation. They also suggest development of neurologic
manifestations may be indirect and involve mechanisms other than simply neurotransmitter depletion.
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Proline and ornithine were increased in subjects with WD. Proline is synthesized from ornithine
and glutamic acid in reversible reactions through an intermediate mitochondrial metabolite [110].
Ornithine is also formed as a part of the urea cycle [111]. Although non-significant, reduced urea was
observed in WD subjects. Elevated proline may be due to an increased availability of its precursors,
ornithine and glutamic acid. We recently reported an elevation in glutamic acid and a decrease in urea
levels in subjects with WD [35]. This, along with our current observation of reduced urea, suggests a
dysregulated urea cycle in subjects with WD.

A non-significant reduction in serum cholesterol in WD subjects was also observed. A reduction in
hepatic and circulating cholesterol levels is well-documented in animals and subjects with WD [34,112].
Bile is composed of bile acids, fatty acids, cholesterol, bilirubin, and PLs [113]. Secondary bile acids are
produced by the action of microbiota on primary bile acids in the colonic environment [114]. Our results
show a significant increase in secondary bile acids glycocholic acid and glycoursodeoxycholic acid,
specific to symptomatic subjects. Collectively, the observed changes in cholesterol, PLs, and bile acids
indicate a likely alteration in WD bile metabolism.

In our study, carnitine level was increased and there was a significant reduction in acylcarnitines
CAR(10:0), CAR(12:0), and CAR(16:0). Long- and medium-chain CARs are the transport form of fatty
acids, formed from acyl-CoAs and carnitine via carnitine palmitoyltransferase I in mitochondria and
peroxisomes [115,116]. The circulating levels of long- and medium-chain CARs are thought to reflect
tissue metabolic state and an increased level is proposed as a marker of metabolic dysfunction [117–120].
Elevated long- and medium-chain CARs are also observed in the fasted state, as fatty acid oxidation
is at a peak [121,122]. The observed decreased circulating level of these CAR species and elevated
carnitine in WD subjects indicate altered fatty acid oxidation and is an interesting observation worth
further investigation.

Results from pathway analysis corroborate our metabolomic findings. Alterations in metabolite
levels operating at the initiation of or junctions within pathways explain a high impact value.
The observed elevation in phenylalanine and tyrosine signifies a dysregulated catabolic pathway
of these amino acids with a cascading effect on the synthesis of catecholamine neurotransmitters
epinephrine, norepinephrine, and dopamine. The overlapping choline and methionine metabolisms
are dysregulated, with a down-stream effect on the biosynthesis of PLs, SLs, and bile. Although
alteration in the latter was non-significant, this may be due to the limited bile acids detected with our
metabolomic platform, and the observed alterations in PL levels and reduction in cholesterol highlight
the need for further investigation. Moreover, alterations in carnitine and acylcarnitine levels affected
oxidation pathways of fatty acids. Histidine metabolism was significantly altered, mainly driven by
the elevated histidine. Although with lesser significance and impact value, our pathway analysis also
highlighted a dysregulated ammonia recycling pathway. The elevated ornithine and non-significant
urea reduction we found in WD subjects, along with our previous finding of elevated glutamic acid,
highlights dysregulation in urea cycling and ammonia recycling that is worth continued investigation.

Our findings on the dysregulation in methionine, choline, aromatic amino acid, and urea
metabolisms are interconnected. In copper overload, methionine metabolism is dysregulated, partly
due to mechanisms involving ROS generation. Elevated copper, via ROS induction, inhibits SAHH
activity and expression [10,85–87]. ROS also inhibit MAT I/III which are encoded by MAT1A [10,74].
This reaction is essential for the biosynthesis of the universal methyl donor SAM. Therefore, copper
overload results in dysregulated methionine cycle and reduced methylation potential [9–11]. Choline
metabolism is connected to the methionine cycle, as the biosynthesis of SAM and methylation reaction
are essential for de novo choline synthesis [12,36]. In addition, choline contributes to the regeneration
of methionine from homocysteine via the choline-dependent BHMT reaction [8].

Aromatic amino acid metabolism and the methionine cycle share folate as a cofactor. In one-carbon
metabolism, homocysteine regenerates methionine via two routes; one is choline-dependent and
the other is folate- and B12-dependent. Aromatic amino acid metabolism requires another cofactor,
biopterin, that is also dependent upon the folate cycle for its recycling. An impaired folate cycle is
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suspected in WD, as reports of mutations in methylenetetrahydrofolate reductase are associated with
early onset and hepatic phenotype [78]. However, the extent of folate cycle dysregulation is not clear
and worth further investigation. Biopterin is also an essential cofactor for the conversion of arginine to
citrulline and the synthesis of nitric oxide [123]. Both arginine and citrulline are intermediates in the
urea cycle [124]. An illustration of our metabolomic results and interconnection of methionine, choline,
aromatic amino acid, and urea metabolisms is shown in Figure 5.
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Figure 5. Schematic summary of targeted metabolomics results. Potential enzymatic defects in Wilson
disease are depicted via interactions between methionine, choline, aromatic amino acid, and urea
metabolisms. A red “up” arrow indicates differential increase; a red “*” indicates the class of metabolites
includes differential increase for some and decrease for others; and a red dashed line indicates a potential
enzymatic block. BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; BHMT, betaine-homocysteine
methyltransferase; CBS, cystathionine β-synthase; CDP-choline, cytidine-diphosphate-choline;
GABA, gamma aminobutyric acid; Mat, methionine-adenosyl transferase; MS, methionine
synthase; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, phosphatidylethanolamine
N-methyltransferase; SAHH, S-adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine; THF,
tetrahydrofolate; VLDL, very low density lipoprotein; 5-MTHF, 5-methyltetrahydrofolate.

4. Methods

4.1. Subject Recruitment and Features

Detailed subject recruitment and characteristics were previously described as part of the untargeted
metabolomics study of the same cohort [35]. Briefly, serum samples of 76 subjects were obtained
from the Institute of Neurology and Psychiatry in Warsaw, Poland. A total of 15 HC and 61 subjects
diagnosed with WD according to Leipzig’s criteria [125] were studied. One subject was excluded
due to incomplete information. Table S10 shows subject characteristics by clinical presentation. WD
subjects were categorized according to presentation as prevalent neurologic (WDN, n = 22) or hepatic
(WDH, n = 26). A subgroup of asymptomatic subjects was diagnosed based on family history and
categorized as pre-clinical (WDP, n = 12). All patients were untreated as samples were obtained at
the time of diagnosis. The study protocol was approved by the Institutional Review Board at the
University of California, Davis, with IRB# 818454-13, on 27 December 2018.

4.2. Metabolomic Analysis

Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry
(HILIC-QTOF MS) was used for polar phase lipid extraction to profile serum metabolites including
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choline, betaine, acetylcholine, acylcarnitines, PLs, SMs, and the amino acids phenylalanine, tyrosine,
and histidine [126]. Data were collected on positive and negative ion mode; metabolite identification
and annotation were done by matching retention time and mass-to-charge ratio to in-silico and
in-house spectral libraries using MS-DIAL software [127]. Internal standards were added for
quality control; details are listed in Table S13. Data were reported as normalized relative intensities.
The metabolomics and metadata reported in this paper are available via Metabolomics Workbench;
(http://www.metabolomicsworkbench.org) and study can be found under ST001259.

4.3. Mouse Models and Diets

Mouse experiments were carried out in the wild-type C3HeB/FeJ (C3H) and Jackson Laboratory
toxic milk model of WD, C3He-Atp7btx-J/J (tx-j). Colonies were maintained at 20–23 ◦C, 45–65% relative
humidity, and a light cycle of 14 h light/10 h dark. C3H mice were maintained on LabDiet chow (Purina
Mills, Inc., St. Louis, MO, USA; catalog #5001) and used as a control group, whereas tx-j mice received
purified AIN-76A diet (Dyets Inc., Bethlehem, PA, USA; catalog #D110098). A subgroup of tx-j mice was
treated with the copper chelator d-penicillamine (Sigma Inc., St. Louis, MO, USA; catalog #P4575; PCA,
100 mg/kg body weight/day) beginning at 12 weeks of age with oral administration through drinking
water. For each group, n = 22 mice total–C3H control = 10 male/12 female, tx-j = 11 male/11 female, and
tx-j treated with PCA = 12 male/10 female. As tx-j mice lack adequate copper concentration in breast
milk for neonatal growth and development beyond day 10 on average, all tx-j pups were fostered to a
lactating C3H dam by day 7 post-partum. At approximately 3 weeks of age, progeny were weaned and
randomly divided into 2 treatment groups: tx-j (untreated) and PCA. At 24 weeks of age, mice were
euthanized and livers were obtained for mRNA expression analysis.

All mouse protocols followed the guidelines of the American Association for Accreditation of
Laboratory Animal Care and were reviewed and approved annually by the UC Davis Institutional
Animal Care and Use Committee. All animals received humane care according to the criteria outlined
in the “Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of
Sciences and published by the National Institutes of Health (NIH publication 86–23 revised 1985).

4.4. RNA Isolation and qPCR

Total RNA from frozen liver was isolated using the AllPrep DNA/RNA Mini Kit (QIAGEN,
Germantown, MD, USA; catalog #80204). The concentration and purity of samples was determined by
measuring the absorbency at A230, A260, and A280. Further, RNA integrity was checked by agarose gel
electrophoresis. Total RNA was stored at −80 ◦C prior to downstream analysis. cDNA was synthesized
using SuperScript III First-Strand cDNA Synthesis Kit (Invitrogen, catalog #18080051) according to the
manufacturer’s protocol. Gene-specific primers were designed by Primer3 software and blasted against
the mouse genome using NCBI blastn to check primer specificity (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
Primers were synthesized by (Eurofins Genomics, Louisville, KY, USA); sequences are listed in Table
S12. Primer efficiency (E) was calculated from the slope of a standard curve generated via 10-fold
serial dilution of pooled control cDNA using the formula (E = 10(−1/slope)-1). Next, cDNA was used as
a template for amplification in qPCR (ViiA7 Real-Time PCR System; Applied Biosystems by Thermo
Fisher Scientific, Carlsbad, CA, USA) using SYBR Green Master Mix (Applied Biosystems by Thermo
Fisher Scientific, Carlsbad, CA, USA; catalog #4309155); all samples were plated in triplicate. Reaction
conditions were programmed with initial denaturation at 50 ◦C for 2 min and 95 ◦C for 10 min followed
by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. Relative gene expression was calculated using 2−∆∆CT

values and normalized to Gapdh.

4.5. Statistical Analysis

Statistical analysis was performed using MetaboAnalyst 4.0 (McGill University, Quebec, CA;
http://metaboanalyst.ca) [128] and JMP (SAS Institute Inc., Cary, NC, USA; http://www.jmp.com).
A total of 106 (1.2%) missing values were detected and replaced by the half of the minimum value for a
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feature, under the assumption that missing values are due to low abundance. Features with more than
20% of missing values were excluded from analysis. Data were normalized by the sum of the knowns,
auto-scaled and transformed to the generalized log (glog 2). Features view showing distribution before
and after normalization are shown in Figure S15. Principal component analysis was used to asses
for outliers and unsupervised clustering. Volcano analysis was performed to compare differential
metabolites between HC and WD and to compare the fold change and significance. Fold-change
threshold was set to >1.2 and outcome p-value was adjusted for FDR using the Benjamini–Hochberg
method, with p < 0.1 considered significant [129]. To identify differential metabolites within the WD
subgroups, we performed volcano analyses comparing HC to WDP, WDN, and WDH separately,
and heat-maps were generated to visualize intensities based on FDR-adjusted significant metabolites
between HC and different WD phenotypes. Pearson’s correlation analysis was performed against
metabolites of interest to determine associated metabolites, significance indicated with p < 0.05.
Student’s t-test was performed to analyze gene transcript levels in tx-j mice compared to C3H control,
significance indicated with p < 0.05.

4.6. Metabolite Enrichment and Pathway Analysis

To identify pathways impacted by the state of WD, The Pathway Analysis module in MetaboAnalyst
4.0 was employed to combine metabolite enrichment with pathway topology [130]. Metabolites with
FDR-adjusted p < 0.1 were used as an input, compared against pathway-associated sets of metabolites
from The Small Molecule Pathway Database. In metabolite enrichment, over-representation analysis
was used to determine pathway significance. Hypergeometric, one-tailed p-values are reported after
adjusting for multiple testing, and p < 0.05 was considered significant. In topology analysis, the
positional importance of metabolites within a pathway is determined. The relative betweenness
method was used and an impact score ranging between 0 and 1 was reported [131]. Results are
represented as a node plot and a table of pathways with altered metabolite sets, impact scores, and
associated p-values.

5. Conclusions

The present study employed metabolomic and univariate approaches to identify metabolites
distinguishing subjects with WD from HC. Our results reveal WD is a state of dysregulated choline
metabolism, potentially impacting downstream PL and bile biosynthesis and possibly playing a key
role in the development of hepatic pathology associated with WD. Dysregulated choline metabolism
may also alter acetylcholine biosynthesis. We also observed signs of impaired aromatic amino acid
degradation pathways that could impact neurotransmitter synthesis. Together, these may present
implications for the development of neurologic manifestations in WD. We also provide further insight
into points of a dysregulated methionine cycle due to copper overload or related liver complications,
evident by the state of hypermethioninemia, and possible impairment of BHMT and MAT reactions.
The consequences of observed metabolite alterations with specific regard to the development of
hepatic and neurologic manifestations require deeper examination. Findings from gene expression in
tx-j mice suggest impaired PC synthesis, evident by the down-regulation of enzymatic genes in the
CDP-choline and PEMT pathways. They also highlight the role of folate-dependent homocysteine
re-methylation as the main contributor to the methionine pool with up-regulated transcript levels of
Mtr and down-regulated levels of choline-dependent Bhmt.

Our findings contribute to the understanding of metabolic dysregulations associated with copper
overload and highlight the possible involvement of choline and aromatic amino acids as well as folate
and biopterin in the development of WD phenotypes. Further work is warranted to elucidate related
mechanisms and to identify potential therapeutic targets aimed at restoring described altered metabolic
pathways. One limitation of this study is that liver histology was not available to confirm the state of
liver disease in WD subjects. This could possibly explain the partial overlap in metabolomic profiles
observed between different phenotypes. Follow-up studies supported with biopsy-characterized liver
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disease state in WD would help elucidate effects of the observed metabolic perturbations on hepatic
manifestations. The process of PL turnover and remodeling also needs further examination as a source
of endogenous choline.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1422-0067/
20/23/5937/s1.
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Aldh7a1 Aldehyde dehydrogenase family 7, member A1
BHMT Betaine-homocysteine S-methyltransferase
C3H C3HeB/FeJ
CAR Acylcarnitine
CDP-choline Cytidine-diphosphate-choline
Chdh Choline dehydrogenase
Chpt1 Cholinephosphotransferase 1
FAC Fatty acyl chain
FDR False discovery rate
HC Healthy control
LysoPC Lysophosphatidylcholine
Mat1a Methionine adenosyltransferase I alpha
Mat2a Methionine adenosyltransferase II, alpha
Mtr Methionine synthase
NASH Non-alcoholic steatohepatitis
PC Phosphatidylcholine
PCA Penicillamine
Pcyt1a Phosphate cytidylyltransferase 1, choline, alpha isoform
PEMT Phosphatidylethanolamine N-methyltransferase
PL Phospholipid
PUFA Polyunsaturated fatty acyl
ROS Reactive oxygen species
S1P Sphingosine-1-phosphate
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SL Sphingolipid
SM Sphingomyelin
SPHK Sphingosine kinase
tx-j C3He-Atp7btx-J/J
VLDL Very low-density lipoprotein
WD Wilson disease
WDH Wilson disease hepatic
WDN Wilson disease neurologic
WDP Wilson disease pre-clinical

http://www.mdpi.com/1422-0067/20/23/5937/s1
http://www.mdpi.com/1422-0067/20/23/5937/s1


Int. J. Mol. Sci. 2019, 20, 5937 15 of 21

References

1. Riordan, S.M.; Williams, R. The Wilson’s disease gene and phenotypic diversity. J. Hepatol. 2001, 34, 165–171.
[CrossRef]

2. Lutsenko, S. Modifying factors and phenotypic diversity in Wilson’s disease. Ann. New York Acad. Sci. 2014,
1315, 56–63. [CrossRef] [PubMed]

3. Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s disease: A comprehensive review of the molecular
mechanisms. Int. J. Mol. Sci. 2015, 16, 6419–6431. [CrossRef] [PubMed]

4. Boga, S.; Ala, A.; Schilsky, M.L. Hepatic features of Wilson disease. In Handbook of clinical neurology; Elsevier:
Amsterdam, The Netherlands, 2017; Volume 142, pp. 91–99.

5. Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet
Neurol. 2015, 14, 103–113. [CrossRef]

6. Sokol, R.J.; Twedt, D.; McKim, J.M., Jr.; Devereaux, M.W.; Karrer, F.M.; Kam, I.; Von Steigman, G.;
Narkewicz, M.R.; Bacon, B.R.; Britton, R.S. Oxidant injury to hepatic mitochondria in patients with Wilson’s
disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994, 107, 1788–1798. [CrossRef]

7. Zischka, H.; Lichtmannegger, J. Pathological mitochondrial copper overload in livers of Wilson’s disease
patients and related animal models. Ann. New York Acad. Sci. 2014, 1315, 6–15. [CrossRef]

8. Park, E.I.; Garrow, T.A. Interaction between dietary methionine and methyl donor intake on rat liver
betaine-homocysteine methyltransferase gene expression and organization of the human gene. J. Biol. Chem.
1999, 274, 7816–7824. [CrossRef]

9. Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.;
Török, N.J.; Jiang, J.X. Wilson’s disease: Changes in methionine metabolism and inflammation affect global
DNA methylation in early liver disease. Hepatology 2013, 57, 555–565. [CrossRef]

10. Delgado, M.; Pérez-Miguelsanz, J.; Garrido, F.; Rodríguez-Tarduchy, G.; Pérez-Sala, D.; Pajares, M.A. Early
effects of copper accumulation on methionine metabolism. Cell. Mol. Life Sci. 2008, 65, 2080–2090. [CrossRef]

11. Le, A.; Shibata, N.M.; French, S.W.; Kim, K.; Kharbanda, K.K.; Islam, M.S.; LaSalle, J.M.; Halsted, C.H.;
Keen, C.L.; Medici, V. Characterization of timed changes in hepatic copper concentrations, methionine
metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson
disease. Int. J. Mol. Sci. 2014, 15, 8004–8023. [CrossRef]

12. van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The Critical Role of
Phosphatidylcholine and Phosphatidylethanolamine Metabolism in Health and Disease; Elsevier: Amsterdam,
The Netherlands, 2017.

13. Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res. 2009, 50, 2340–2357. [CrossRef] [PubMed]
14. Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into non-alcoholic fatty liver disease

and its progression. Curr. Opin. Gastroenterol. 2012, 28, 159. [CrossRef] [PubMed]
15. Vance, D.E.; Walkey, C.J.; Cui, Z. Phosphatidylethanolamine N-methyltransferase from liver. Biochim. Et

Biophys. 1997, 134, 142–150. [CrossRef]
16. Yi, P.; Melnyk, S.; Pogribna, M.; Pogribny, I.P.; Hine, R.J.; James, S.J. Increase in plasma homocysteine associated

with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol.
Chem. 2000, 275, 29318–29323. [CrossRef]

17. Ma, D.; Arendt, B.; Hillyer, L.; Fung, S.; McGilvray, I.; Guindi, M.; Allard, J. Plasma phospholipids and fatty
acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects.
Nutr. Diabetes 2016, 6, e220. [CrossRef]

18. Arendt, B.M.; Ma, D.W.; Simons, B.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Sherman, M.; Allard, J.P.
Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine
to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab. 2012, 38, 334–340. [CrossRef]

19. Whiley, L.; Sen, A.; Heaton, J.; Proitsi, P.; García-Gómez, D.; Leung, R.; Smith, N.; Thambisetty, M.;
Kloszewska, I.; Mecocci, P. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease.
Neurobiol. Aging 2014, 35, 271–278. [CrossRef]

20. Demirkan, A.; Isaacs, A.; Ugocsai, P.; Liebisch, G.; Struchalin, M.; Rudan, I.; Wilson, J.F.; Pramstaller, P.P.;
Gyllensten, U.; Campbell, H. Plasma phosphatidylcholine and sphingomyelin concentrations are associated
with depression and anxiety symptoms in a Dutch family-based lipidomics study. J. Psychiatr. Res. 2013, 47,
357–362. [CrossRef]

http://dx.doi.org/10.1016/S0168-8278(00)00028-3
http://dx.doi.org/10.1111/nyas.12420
http://www.ncbi.nlm.nih.gov/pubmed/24702697
http://dx.doi.org/10.3390/ijms16036419
http://www.ncbi.nlm.nih.gov/pubmed/25803104
http://dx.doi.org/10.1016/S1474-4422(14)70190-5
http://dx.doi.org/10.1016/0016-5085(94)90822-2
http://dx.doi.org/10.1111/nyas.12347
http://dx.doi.org/10.1074/jbc.274.12.7816
http://dx.doi.org/10.1002/hep.26047
http://dx.doi.org/10.1007/s00018-008-8201-4
http://dx.doi.org/10.3390/ijms15058004
http://dx.doi.org/10.1194/jlr.R900012-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/19498215
http://dx.doi.org/10.1097/MOG.0b013e32834e7b4b
http://www.ncbi.nlm.nih.gov/pubmed/22134222
http://dx.doi.org/10.1016/S0005-2760(97)00108-2
http://dx.doi.org/10.1074/jbc.M002725200
http://dx.doi.org/10.1038/nutd.2016.27
http://dx.doi.org/10.1139/apnm-2012-0261
http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.001
http://dx.doi.org/10.1016/j.jpsychires.2012.11.001


Int. J. Mol. Sci. 2019, 20, 5937 16 of 21

21. Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim.
Et Biophys. Acta (Bba)-Mol. Cell Biol. Lipids 2012, 1821, 754–761. [CrossRef]

22. Slotte, J.P. Biological functions of sphingomyelins. Prog. Lipid Res. 2013, 52, 424–437. [CrossRef]
23. Spiegel, S.; Milstien, S. Functions of the multifaceted family of sphingosine kinases and some close relatives.

J. Biol. Chem. 2007, 282, 2125–2129. [CrossRef] [PubMed]
24. Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol.

2003, 4, 397. [CrossRef] [PubMed]
25. Lebman, D.A.; Spiegel, S. Thematic review series: Sphingolipids. Cross-talk at the crossroads of sphingosine-1

-phosphate, growth factors, and cytokine signaling. J. Lipid Res. 2008, 49, 1388–1394. [CrossRef] [PubMed]
26. Goldstein, D.S. Catecholamines in the periphery. In Advances in Pharmacology; Elsevier: Amsterdam,

The Netherlands, 1997; Volume 42, pp. 529–539.
27. Kurian, M.A.; Gissen, P.; Smith, M.; Heales, S.J.; Clayton, P.T. The monoamine neurotransmitter disorders:

An expanding range of neurological syndromes. Lancet Neurol. 2011, 10, 721–733. [CrossRef]
28. Purves, D.; Augustine, G.; Fitzpatrick, D. (Eds.) The Biogenic Amines. In Neuroscience, 2nd ed.; Sinauer

Associates: Sunderland, MA, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK11035
(accessed on 26 November 2019).

29. Parthasarathy, A.; Cross, P.J.; Dobson, R.C.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A three-ring circus:
Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals.
Front. Mol. Biosci. 2018, 5, 29. [CrossRef]

30. Snyder, S.H.; Innis, R.B. Peptide neurotransmitters. Annu. Rev. Biochem. 1979, 48, 755–782. [CrossRef]
31. Papakostas, G.I.; Alpert, J.E.; Fava, M. S-adenosyl-methionine in depression: A comprehensive review of the

literature. Curr. Psychiatry Rep. 2003, 5, 460–466. [CrossRef]
32. Wilmarth, P.A.; Short, K.K.; Fiehn, O.; Lutsenko, S.; David, L.L.; Burkhead, J.L. A systems approach implicates

nuclear receptor targeting in the Atp7b−/−mouse model of Wilson’s disease. Metallomics 2012, 4, 660–668.
[CrossRef]

33. Santos, E.M.; Ball, J.S.; Williams, T.D.; Wu, H.; Ortega, F.; Van Aerle, R.; Katsiadaki, I.; Falciani, F.; Viant, M.R.;
Chipman, J.K. Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a
fish model. Environ. Sci. Technol. 2009, 44, 820–826. [CrossRef]

34. Huster, D.; Purnat, T.D.; Burkhead, J.L.; Ralle, M.; Fiehn, O.; Stuckert, F.; Olson, N.E.; Teupser, D.; Lutsenko, S.
High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson
disease. J. Biol. Chem. 2007, 282, 8343–8355. [CrossRef]

35. Sarode, G.V.; Kim, K.; Kieffer, D.A.; Shibata, N.M.; Litwin, T.; Czlonkowska, A.; Medici, V. Metabolomics
profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019, 15, 43.
[CrossRef] [PubMed]

36. DeLong, C.J.; Shen, Y.-J.; Thomas, M.J.; Cui, Z. Molecular distinction of phosphatidylcholine synthesis
between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J. Biol. Chem. 1999,
274, 29683–29688. [CrossRef] [PubMed]

37. Sekas, G.; Patton, G.M.; Lincoln, E.C.; Robins, S.J. Origin of plasma lysophosphatidylcholine: Evidence for
direct hepatic secretion in the rat. J. Lab. Clin. Med. 1985, 105, 185–189.

38. Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Et Biophys. Acta (Bba)-Mol. Cell Biol. Lipids 2000, 1529,
245–256. [CrossRef]

39. Wu, P.; Dong, J.; Cheng, N.; Yang, R.; Han, Y.; Han, Y. Inflammatory cytokines expression in Wilson’s disease.
Neurol. Sci. 2019, 40, 1059–1066. [CrossRef] [PubMed]

40. Law, S.-H.; Chan, M.-L.; Marathe, G.K.; Parveen, F.; Chen, C.-H.; Ke, L.-Y. An updated review of
lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 2019, 20, 1149. [CrossRef]

41. Carneiro, A.B.; Iaciura, B.M.F.; Nohara, L.L.; Lopes, C.D.; Veas, E.M.C.; Mariano, V.S.; Bozza, P.T.; Lopes, U.G.;
Atella, G.C.; Almeida, I.C. Lysophosphatidylcholine triggers TLR2-and TLR4-mediated signaling pathways
but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-κB translocation and
MAPK/ERK phosphorylation. PLoS ONE 2013, 8, e76233. [CrossRef]

42. Radu, C.G.; Yang, L.V.; Riedinger, M.; Au, M.; Witte, O.N. T cell chemotaxis to lysophosphatidylcholine
through the G2A receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 245–250. [CrossRef]

43. Grzelczyk, A.; Gendaszewska-Darmach, E. Novel bioactive glycerol-based lysophospholipids: New data–new
insight into their function. Biochimie 2013, 95, 667–679. [CrossRef]

http://dx.doi.org/10.1016/j.bbalip.2011.09.009
http://dx.doi.org/10.1016/j.plipres.2013.05.001
http://dx.doi.org/10.1074/jbc.R600028200
http://www.ncbi.nlm.nih.gov/pubmed/17135245
http://dx.doi.org/10.1038/nrm1103
http://www.ncbi.nlm.nih.gov/pubmed/12728273
http://dx.doi.org/10.1194/jlr.R800008-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/18387885
http://dx.doi.org/10.1016/S1474-4422(11)70141-7
https://www.ncbi.nlm.nih.gov/books/NBK11035
http://dx.doi.org/10.3389/fmolb.2018.00029
http://dx.doi.org/10.1146/annurev.bi.48.070179.003543
http://dx.doi.org/10.1007/s11920-003-0085-2
http://dx.doi.org/10.1039/c2mt20017a
http://dx.doi.org/10.1021/es902558k
http://dx.doi.org/10.1074/jbc.M607496200
http://dx.doi.org/10.1007/s11306-019-1505-6
http://www.ncbi.nlm.nih.gov/pubmed/30868361
http://dx.doi.org/10.1074/jbc.274.42.29683
http://www.ncbi.nlm.nih.gov/pubmed/10514439
http://dx.doi.org/10.1016/S1388-1981(00)00153-0
http://dx.doi.org/10.1007/s10072-018-3680-z
http://www.ncbi.nlm.nih.gov/pubmed/30644005
http://dx.doi.org/10.3390/ijms20051149
http://dx.doi.org/10.1371/journal.pone.0076233
http://dx.doi.org/10.1073/pnas.2536801100
http://dx.doi.org/10.1016/j.biochi.2012.10.009


Int. J. Mol. Sci. 2019, 20, 5937 17 of 21

44. Hung, N.D.; Sok, D.-E.; Kim, M.R. Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation
by polyunsaturated acyl lysophosphatidylcholine. Inflamm. Res. 2012, 61, 473–483. [CrossRef]

45. Hung, N.D.; Kim, M.R.; Sok, D.E. Mechanisms for anti-inflammatory effects of 1-[15 (S)-hydroxyeicosapentaenoyl]
lysophosphatidylcholine, administered intraperitoneally, in zymosan A-induced peritonitis. Br. J. Pharmacol.
2011, 162, 1119–1135. [CrossRef] [PubMed]

46. Kalita, J.; Kumar, V.; Misra, U.K.; Ranjan, A.; Khan, H.; Konwar, R. A study of oxidative stress, cytokines and
glutamate in Wilson disease and their asymptomatic siblings. J. Neuroimmunol. 2014, 274, 141–148. [CrossRef]
[PubMed]

47. Barber, M.N.; Risis, S.; Yang, C.; Meikle, P.J.; Staples, M.; Febbraio, M.A.; Bruce, C.R. Plasma lysophosphati
dylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE 2012, 7, e41456. [CrossRef] [PubMed]

48. Heimerl, S.; Fischer, M.; Baessler, A.; Liebisch, G.; Sigruener, A.; Wallner, S.; Schmitz, G. Alterations of
plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE 2014, 9, e111348. [CrossRef]
[PubMed]

49. Mapstone, M.; Cheema, A.K.; Fiandaca, M.S.; Zhong, X.; Mhyre, T.R.; MacArthur, L.H.; Hall, W.J.; Fisher, S.G.;
Peterson, D.R.; Haley, J.M. Plasma phospholipids identify antecedent memory impairment in older adults.
Nat. Med. 2014, 20, 415. [CrossRef]

50. Lin, W.; Zhang, J.; Liu, Y.; Wu, R.; Yang, H.; Hu, X.; Ling, X. Studies on diagnostic biomarkers and therapeutic
mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur. J. Pharm. Sci.
2017, 105, 119–126. [CrossRef]

51. Drobnik, W.; Liebisch, G.; Audebert, F.-X.; Fröhlich, D.; Glück, T.; Vogel, P.; Rothe, G.; Schmitz, G. Plasma
ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J. Lipid Res. 2003,
44, 754–761. [CrossRef]

52. Walker, A.K.; Jacobs, R.L.; Watts, J.L.; Rottiers, V.; Jiang, K.; Finnegan, D.M.; Shioda, T.; Hansen, M.;
Yang, F.; Niebergall, L.J. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in
metazoans. Cell 2011, 147, 840–852. [CrossRef]

53. Pyszko, J.; Strosznajder, J.B. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked
by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol. Neurobiol. 2014, 50,
38–48. [CrossRef]

54. He, X.; Huang, Y.; Li, B.; Gong, C.-X.; Schuchman, E.H. Deregulation of sphingolipid metabolism in
Alzheimer’s disease. Neurobiol. Aging 2010, 31, 398–408. [CrossRef]

55. Katsel, P.; Li, C.; Haroutunian, V. Gene expression alterations in the sphingolipid metabolism pathways
during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the
earliest recognizable stages of Alzheimer’s disease? Neurochem. Res. 2007, 32, 845–856. [CrossRef] [PubMed]

56. Haughey, N.J.; Bandaru, V.V.; Bae, M.; Mattson, M.P. Roles for dysfunctional sphingolipid metabolism in
Alzheimer’s disease neuropathogenesis. Biochim. Et Biophys. Acta (Bba)-Mol. Cell Biol. Lipids 2010, 1801, 878–886.
[CrossRef] [PubMed]

57. Grin’kina, N.M.; Karnabi, E.E.; Damania, D.; Wadgaonkar, S.; Muslimov, I.A.; Wadgaonkar, R. Sphingosine
kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS ONE 2012, 7, e36475. [CrossRef]
[PubMed]

58. Kotronen, A.; Seppänen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepää, A.L.; Yki-Järvinen, H.;
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