
UCLA
UCLA Electronic Theses and Dissertations

Title
Order-based Learning of Bayesian Networks: Regularized Cholesky Score and Distributed
Data

Permalink
https://escholarship.org/uc/item/4dp6p9x1

Author
Ye, Qiaoling

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dp6p9x1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Order-based Learning of Bayesian Networks:

Regularized Cholesky Score and Distributed Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Qiaoling Ye

2021

c© Copyright by

Qiaoling Ye

2021

ABSTRACT OF THE DISSERTATION

Order-based Learning of Bayesian Networks:

Regularized Cholesky Score and Distributed Data

by

Qiaoling Ye

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Arash Ali Amini, Co-chair

Professor Qing Zhou, Chair

Bayesian networks are a popular class of graphical models to encode conditional indepen-

dence and causal relations among variables by directed acyclic graphs (DAGs). In this thesis,

we focus on developing algorithms to estimate Bayesian network structures. We propose two

structure learning methods, and both of them minimize regularized negative log-likelihood

functions over the space of orderings.

First, we propose the annealing on regularized Cholesky score (ARCS) algorithm to learn

Gaussian Bayesian networks. The scoring function of ARCS is derived from regularizing

the Gaussian DAG likelihood, and its optimization is an alternative form of the sparse

Cholesky decomposition, which depends on the choice of permutation (matrix) P . For this

reason, we name our objective function the regularized Cholesky (RC) score of permutations.

Essentially, minimizing the RC score is a joint optimization over a permutation P and a

lower triangular matrix L, because the acyclic constraint of DAGs has been translated into

a strictly lower triangular matrix given a permutation. ARCS uses simulated annealing to

search over the permutation space and an effective first order method, called the proximal

gradient algorithm, to compute the optimal DAG that is compatible with P . Combined, the

two approaches allow us to quickly and effectively search over the space of DAGs without the

need to verify the acyclicity constraint or to enumerate possible parent sets given a candidate

ii

topological sort. The annealing aspect of the optimization is able to consistently improve the

accuracy of DAGs learned by greedy and deterministic search algorithms. Through extensive

numerical tests, ARCS has demonstrated high structure learning accuracy and outperformed

existing methods by a great margin when using observational and experimental data to

learn Gaussian DAGs. As a byproduct, ARCS can accurately estimate Gaussian covariance

matrix, and it has achieved higher test likelihood than other covariance estimation methods.

In terms of theoretical results, we establish the consistency of our RC score in estimating

topological sorts and DAG structures in the large-sample limit.

The second method we propose is the distributed annealing on regularized likelihood score

(DARLS) algorithm, which generalizes the ARCS algorithm to learn a flexible family of

DAGs from distributed data. To the best of our knowledge, it is the first method that uses

distributed optimization to learn causal structures from data stored over different machines.

DARLS searches over the space of topological sorts with simulated annealing strategy for a

high-scoring causal graph, where the optimal graphical structure compatible with a sort is

found by a distributed optimization method. We show that the estimate sequence generated

by the distributed optimization method converges to a global optimizer of the overall score

computed on all data across local machines. Additionally, we propose generalized linear DAG

models where the conditional distributions of a Bayesian network is given by generalized

linear models (GLMs) with canonical links. GLMs is a flexible family of distributions that

take various types of data, and thus the use of it greatly increase the applicability of our DAG

models. In our simulation studies, DARLS has demonstrated competing performance with

distributed data against other existing methods using the overall data across local machines.

It also exhibits higher predictive power than other methods in a real-world application for

modeling protein-DNA binding networks using ChIP-Sequencing data.

iii

The dissertation of Qiaoling Ye is approved.

Yingnian Wu

Oscar Hernan Madrid Padilla

Arash Ali Amini, Committee Co-chair

Qing Zhou, Committee Chair

University of California, Los Angeles

2021

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background of Bayesian networks . 1

1.2 Structure learning . 3

1.3 Order-based search . 5

1.4 Learning DAGs from distributed data . 7

1.5 Outline . 9

2 Minimizing Regularized Cholesky Score for Gaussian DAGs 10

2.1 Acyclicity and permutations . 10

2.2 Regularized likelihood score . 12

2.2.1 Cholesky loss . 12

2.2.2 Sparse regularization . 14

2.2.3 Likelihood for experimental data . 17

2.3 Consistency . 18

2.3.1 Score-identifiability . 19

2.3.2 Consistent structure learning . 20

2.3.3 Proof sketch . 23

2.4 Optimization . 24

2.4.1 Searching over permutations . 24

2.4.2 Computing RC score . 26

2.4.3 Structure refinement after annealing 28

2.4.4 Selection of the tuning parameters 29

2.5 Results on observational data . 30

v

2.5.1 Methods and data . 30

2.5.2 Accuracy metrics . 33

2.5.3 Structure learning accuracy . 33

2.5.4 Test data likelihood comparison . 39

2.5.5 Precision matrix estimation . 40

2.5.6 Effectiveness of refinement . 43

2.5.7 Effectiveness of BIC selection . 44

2.5.8 Empirical loss evaluation . 46

2.6 Results on experimental data . 47

2.6.1 Comparison on experimental data . 48

2.6.2 Random initialization with a high temperature 50

2.7 Discussion . 52

2.8 Proofs . 53

2.8.1 Consistency proof . 53

2.8.2 Proofs of auxiliary results . 55

2.8.3 Proofs of other results . 61

3 Leaning Generalized Linear Causal Graphs from Distribtuted Data . . . 67

3.1 Generalized linear DAG models . 67

3.2 Distributed DAG learning . 69

3.2.1 Local and global objective functions 70

3.2.2 Optimization . 71

3.2.3 Selection of the tuning parameter . 74

3.2.4 Structure refinement after annealing 75

3.3 Theoretical guarantees . 75

vi

3.3.1 Distributed estimate convergence . 75

3.3.2 Consistency . 77

3.4 Numerical experiments . 77

3.4.1 Multi-logit GLDAG models . 78

3.4.2 Methods and data . 79

3.4.3 Structure learning accuracy . 81

3.4.4 Distributed optimization accuracy and computational time 83

3.5 Real data application . 86

3.5.1 Test data likelihood comparison . 87

3.5.2 Protein-DNA binding networks estimated by DARLS 89

3.6 Discussion . 89

3.7 Proofs . 90

3.7.1 Proofs of main results . 91

3.7.2 Proofs of technical lemmas . 98

3.7.3 Convergence of the DANE algorithm 102

4 Summary and Discussion . 105

4.1 Overviews . 105

4.2 Future directions . 107

4.2.1 Tensor representations of multinomial DAG models 107

4.2.2 Discussion on structure learning using tensors 109

4.2.3 Relaxation of permutation matrices 110

4.2.4 Numerical studies . 112

vii

LIST OF FIGURES

2.1 An example DAG G, its coefficient matrix B0, and a permutation π. Bπ permutes

columns and rows of B0 and is strictly lower triangular. 11

2.2 A comparison between the MCP (solid line) and the `1 penalty (dashed line). . . 16

2.3 SHD comparison between NOTEARS and ARCS. 38

2.4 A comparison between ARCS(GES) and LISTEN. 39

2.5 Test data log-likelihood comparison among BN learning methods. Log-likelihoods

are shifted by the median of ARCS (the dashed line). 40

2.6 Test data log-likelihood comparison among ARCS and precision matrix estima-

tion methods. 43

2.7 Performance of the BIC selected parameter among a grid of (γ, λ) given an initial

permutation. Tuning parameters that lead to lower SHDs than the BIC selection

are shown in gray. 45

2.8 Distributions of the relative BIC increase. The numbers following each DAG

report its (p, s0). 47

2.9 Comparison of SHD and reversed edge proportion between experimental and

observational data with ARCS(CD). 50

2.10 A comparison between ARCS(RND) with a high initial temperature and ARCS(CD)

on experimental data. 51

2.11 (a) The derivative h′(u) for u ∈ (0,∞) in a typical case. Note that h′ is discon-

tinuous at 0. (b) and (c) Plots of h(u) for two values of (α, x) that lead to case

4. 65

3.1 SHD comparison between DARLS on distributed data and the best method using

combined or distributed data. 82

viii

3.2 Accuracy and computational time comparison for f(π). Computational time

comparison, with mean and standard deviations plotted, is performed over 20

data sets generated from Insurance. 86

3.3 Histogram of TF Mycn. Red dotted line separates two clusters. 87

3.4 DAG and the converted CPDAG learned by DARLS with λ = 0.06 and refinement

parameter α = 0.3. 90

4.1 Wrong percentage of edges induced by permutation matrix (pm). up1 is u(P̂)

with P̂ is found by matching orders of P̂ v and S(T)v for a monotonic random

vector v and up2 is computed with P̂ found by minimizing the distance of S to

the permutation space. 113

ix

LIST OF TABLES

2.1 Comparison between ARCS and initial estimates on observational data. ARCS

improved GES and CD estimates, and ARCS(GES) achieved the best accuracy

for every network. 34

2.2 ARCS against other methods on observational data. ARCS(GES) achieved the

best SHD and JI among all methods for every network. 37

2.3 ARCS against precision matrix estimation methods 42

2.4 Comparison on SHDs before (B) and after (A) the refinement step. 44

2.5 Performance comparison on experimental data. 49

3.1 DARLS against other methods on simulation data with n = 100p and K = 10. . 84

3.2 DARLS against other methods on simulation data with n = 10, 000 and K = 20. 85

3.3 Test data log-likelihood and BIC comparison on the ChIP-Seq dataset. 89

x

VITA

2012–2014 B.S., Department of Mathematics, Major in Applied Mathematics, Uni-

versity of California, Los Angeles.

2015–present Expected Ph.D., Major in Statistics, University of California, Los Angeles.

PUBLICATIONS

Ye, Q., Amini, A., and Zhou, Q. (2020). Optimizing Regularized Cholesky Score for Order-

Based Learning of Bayesian Networks. IEEE Transactions on Pattern Analysis & Machine

Intelligence, early access, April 27 2020. DOI: 10.1109/TPAMI.2020.2990820.

Ye, Q., Amini, A., and Zhou, Q. (2021). Distributed Learning of Generalized Linear Causal

Networks. Manuscript under review.

xi

CHAPTER 1

Introduction

Bayesian networks are a class of graphical models, whose structure is represented by a di-

rected acyclic graph. They are commonly used to model causal networks and conditional

independence relations among random variables. The past decades have seen many suc-

cessful applications of Bayesian networks in computational biology, social science, medical

science, document classification, image processing, etc. We start this dissertation with some

background of Bayesian networks and our contributions in learning Bayesian networks.

1.1 Background of Bayesian networks

A Bayesian network (BN) for a set of variables {X1, . . . , Xp} consists of 1) a directed acyclic

graph (DAG) G that encodes a set of conditional independence assertions among the vari-

ables, and 2) a set of local probability distributions associated with each variable. It can be

considered as a recipe for factorizing a joint distribution of {X1, . . . , Xp} with probability

density

p(x1, . . . , xp) =

p∏

j=1

p(xj | PAj = paj), (1.1)

where PAj ⊂ {X1, . . . , Xp} \ {Xj} is the parent set of variable Xj and paj its value. The

DAG G is denoted by G = (V,E), where V = {1, . . . , p} is the vertex set corresponding

to the set of random variables and E = {(i, j) : i ∈ PAj} ⊂ V × V is the edge set. We

use variable Xj and node j exchangeably throughout the thesis. DAGs contain no directed

cycles, making the joint distribution in (1.1) well-defined.

Given a permutation π on [p] := {1, . . . , p}, we permute a vector v = (v1, . . . , vp) accord-

ing to π to obtain a relabeled vector vπ =
(
vπ(1), . . . , vπ(p)

)
. A topological sort of a DAG is

1

a permutation of nodes such that if a ∈ PAb, then a precedes b in the order defined by π,

denoted by a ≺π b. By definition (1.1), every DAG has at least one topological sort.

A (directed) local Markov property (Lauritzen, 2004) of a BN (1.1) is commonly used

to detect conditional independence among its variables. A joint probability distribution P

with respect to a DAG obeys the local Markov property if any variable is conditionally

independent of its non-descendants given its parents, that is,

Xi ⊥⊥ nd(Xi) | PAi,∀i ∈ [p], (1.2)

where nd(Xi) ⊂ V denotes the set of non-descendants of Xi. A graphical test to detect

conditional independence is through d-separation (Pearl, 1995).

Definition 1. (d-separation). Let A, B and Z be disjoint subsets of nodes in a DAG G. We

say A and B are d-separated by Z, if all paths between any node in A and B are blocked by

Z. A path is blocked by Z if there are nodes a, b, c on the path satisfying one of the following

two conditions:

1. c is not a collider for c ∈ Z, i.e., a→ c→ b or a← c← b or a← c→ b.

2. c is a collider, i.e., a→ c← b, and neither c nor its descendants are in Z.

Theorem 1. (Verma and Pearl, 1988). Let A, B and Z be disjoint subsets of nodes in a

DAG G, and G generates a distribution P . If A and B are d-separated by Z in G, then A

and B are conditional independent given Z in distribution P .

We write I(G) for the set of conditional independence (CI) statements implied by DAG

G, in the sense of d-separation. Two DAGs G1 and G2 are Markov equivalent if I(G1) =

I(G2). Similarly, we write I(P) for CIs that hold in distribution P . Theorem 1 implies

that I(G) ⊂ I(P), i.e., G is an I-map for P . DAG G is perfect for (or faithful to) P if

I(G) = I(P). i.e., the set of triples (X, Y, Z) that satisfy the d-separation criterion in G is

one-to-one correspond to the set of conditional independencies X ⊥⊥ Y | Z implied by the

recursive decomposition of distribution (1.1).

2

1.2 Structure learning

As the relationships among variables in a BN are encoded in the underlying graph, it is an

important task to estimate DAG structures from data. There are three main challenges in

learning DAG structures from data. First, the number of DAGs grows super-exponentially

in the number of nodes p. There is a total of
(
p
2

)
pairs of nodes and each pair can be

either connected or disconnected, so the number of DAGs with p variables, denoted by

ap, is lower bounded by 2(p2). The exact number is found by (Robinson, 1977) such that

ap =
∑p

i=1(−1)i+1
(
p
i

)
2i(p−i)ap−i with an initial condition a0 = 1. The second difficulty lies in

the acyclicity constraint of DAGs, which requires careful design of the BN learning framework

and imposes additional computational burdens in algorithms. Third, it is well-known that

observational data can only recover DAGs up to an equivalence class, a set of BNs that

have same CI statements, under common DAG models, including Gaussian and multinomial

DAG models. The size of equivalence classes also grows super-exponentially with respect

to p. Despite these difficulties, various methods have been put forward to estimate DAG

structures from data, which can be categorized into three main algorithmic approaches.

Constraint-based methods. In constraint-based approaches, a set of CI tests is per-

formed to detect the existence of edges. The CI tests usually rely on the following state-

ment: if a DAG G is faithful to a distribution P , then there is no edge between X and Y

if and only if there exists Z ⊂ V \ {X, Y } such that X and Y are d-separated by Z. PC

algorithm (Spirtes and Glymour, 1991) is a well-known example in this approach. It first

estimates the skeleton of a DAG using a set of CI tests, and then identifies v-structures in

the skeleton and finally orients the remaining edges such that no new CIs and no cycles

are introduced. The constraint-based methods are often efficient and accurate in estimating

graphs, especially when sample sizes are sufficiently big. However, they may require long

computational time to learn large networks due to the size of CI tests to be performed.

3

Score-based methods. A network structure is identified by optimizing a score function

through a certain searching strategy in this approach. The most common score function

is based on the posteriori distribution of a network (Heckerman et al, 1995). Minimizing

Bayesian information criterion has also been used as well, and it is equivalent to optimizing

the minimum-description length score (Suzuki, 1993). The score-based search has been

applied to three different search spaces: the DAG space (Heckerman et al, 1995; Gámez

et al, 2011), the equivalence classes (Chickering, 2002; Heckerman et al, 1995) and the

ordering space (or the space of topological sorts) (Larrañaga et al, 1996; Teyssier and Koller,

2005). Greedy search is a popular optimization technique, and it has been used by the

greedy hill climbing (HC) algorithm (Gámez et al, 2011) over the DAG space and the greedy

equivalence search (GES) algorithm (Chickering, 2002) over the equivalence class. Heuristic

search strategies with Monte Carlo samples has been used to search over the topological sort

space (Ellis and Wong, 2008; Zhou, 2011). Methods of the score-based approach usually

reply on a pre-specified maximum incoming degree or additional tuning parameters to avoid

fully-connected estimates. Similar to the previous approach, score-based methods become

computationally impractical for large networks due to the size of the search space.

Hybrid methods. Hybrid approaches are proposed to integrate the merits of constraint-

based and score-based methods, where a typical strategy is using a set CI tests to prune

the search space, followed by a search for a high-scoring network structure. By removing as

many edges as possible in the first step, the second step becomes faster than the unrestricted

score-based methods. Max-min hill-climbing algorithm (Tsamardinos et al, 2006) is a well-

known method of this kind, which uses the MMPC algorithm in the first step and the HC

algorithm in the second step.

In this thesis, we focus on developing algorithms using the score-based approach. Our

proposed algorithms learn DAG structures by searching over the topological sort space, and

they are designed to handle the case where data is split over different machines, a common

situation to store a large amount of data nowadays. In the remaining sections of this chapter,

we discuss our order-based search and distribute learning of DAGs.

4

1.3 Order-based search

Searching over the topological sort to optimize scoring functions of DAGs has two major

advantages. First, the existence of an ordering among nodes guarantees a graph structure

that satisfies the acyclicity constraint. Second, the space of orderings is significantly smaller

than the space of DAGs or of the equivalence classes. Consequently, several lines of research

have developed efficient order-based methods for DAG learning. Some methods adopt a

greedy search in conjunction with various operators that propose moves in the ordering

space (Teyssier and Koller, 2005; Alonso-Barba et al, 2011; Scanagatta et al, 2015, 2017).

A greedy search, however, may easily be trapped in a local minimum, and thus different

techniques were proposed to perform a more global search (Silander and Myllymäki, 2006;

Larrañaga et al, 1996; Bartlett and Cussens, 2013; Lee and van Beek, 2017). In particular,

stochastic optimization, such as the genetic algorithm (Larrañaga et al, 1996; Champion

et al, 2018; Scanagatta et al, 2017) and Markov chain Monte Carlo (Friedman and Koller,

2003; Ellis and Wong, 2008; Zhou, 2011), has been advocated as a promising way to perform

global search over the ordering space. Under certain identifiability assumptions, sequential

order search algorithms have been developed recently as well Ghoshal and Honorio (2018).

In spite of these methodological and algorithmic advances, there are a few difficulties in

score-based learning of topological sorts for DAGs. First, the score of an ordering is usually

defined by the score of the optimal DAG compatible with the ordering. The computational

complexity of finding the optimal DAG given an ordering, typically by enumerating all

possible parent sets for each node (Cooper and Herskovits, 1992), can be as high as O(pk+1)

for p nodes and a pre-specified maximum indegree of k. Such computation is needed for every

ordering evaluated by a search algorithm, which becomes prohibitive when k is large. Second,

although the ordering space is smaller than the graph space, optimization over orderings

is still a hard combinatorial problem due to the NP-hard nature of structure learning of

BNs (Chickering, 1996). It is not surprising that the performance of the above stochastic

optimization algorithms degrades severely for large graphs.

Motivated by these challenges, we develop a new order-based method, annealing on reg-

5

ularized Cholesky score (ARCS), for learning Gaussian DAGs by optimizing a regularized

likelihood score. Representing an ordering by the corresponding permutation matrix P , the

weighted adjacency matrix of a Gaussian DAG can be coded into a lower triangular matrix

L. We add a continuous and concave penalty function to the likelihood to encourage sparsity

in L, and thus achieve the goal of structure learning. Instead of a prespecified maximum

indegree, which is ad hoc in nature, we provide a principled data-driven way to determine

the tuning parameters for the penalty function. Finding the optimal DAG given P is then

reduced to p decoupled penalized regression problems, which are solved by proximal gradi-

ent, an efficient first-order method, without enumerating possible parent sets for any node.

Searching over P is done by simulated annealing (SA). We may also incorporate informative

initial orderings, learned by an existing method, by setting a low starting temperature. We

also propose a constraint-based refinement step to removes false positive edges after anneal-

ing. Our numerical results demonstrate that this combined strategy substantially improves

the accuracy of an estimated DAG. We note an interesting connection between our formula-

tion and the sparse Cholesky factorization problem, and thus name our scoring function the

regularized Cholesky score of orderings or permutations.

Regularizing likelihood with a continuous penalty function has been shown to be effective

in learning Gaussian DAGs (Fu and Zhou, 2013; Aragam and Zhou, 2015; Zheng et al, 2018).

These methods optimize a regularized likelihood score over the DAG space by continuous

optimization. They are likely to be trapped in a suboptimal structure due to the nonconvex-

ity of the DAG parameter space. Using DAGs learned by such methods to generate initial

orderings, our method can significantly improve the accuracy in structure learning.

More recently, Champion et al. Champion et al (2018) developed a genetic algorithm

optimizing over a triangular coefficient matrix and a permutation to learn Gaussian BNs.

However, the authors did not provide a principled method to select the tuning parameter for

the `1 penalty. Given a permutation, they optimize the network structure by an adaption

of the least angle regression (Efron et al, 2004), which is closely related to the Lasso. In

contrast, we use a more general and effective first-order method, the proximal gradient

algorithm, which is applicable to many regularizers, including the `1 and concave penalties.

6

As shown by our numerical experiments, our method substantially outperforms their genetic

algorithm.

1.4 Learning DAGs from distributed data

We also develope another order-based learning method, distributed annealing on regularized

likelihood score (DARLS), to learn causal structures from data distributed over different

machines. To the best of our knowledge, it is the first method using distributed optimization

to learn causal structures.

With recent technology developments, distributed data storage has been used as a privacy

protection mechanism for managing the large amount of data generated every day, raising a

pressing need for distributed learning methods. There are 2.5× 1018 bytes of data generated

on the web every day (Mehmood et al, 2016). Storing such large data set on a single machine

is impractical and has a high risk of privacy breach when data leakage occurs. Therefore,

companies and researchers often separate sensitive data in practice, which advocates various

distributed statistical and machine learning methods. A straightforward approach is to

average local estimators for a global output, known as one-shot parameter averaging, but

this method fails to obtain solutions with any desired suboptimality (Zinkevich et al, 2010;

Shamir et al, 2014). To overcome drawbacks of one-shot averaging, communication-efficient

algorithms that utilize multiple rounds of communication between local and central machines

to generate a sequence of (global) estimates have been proposed (Zhang et al, 2013; Shamir

et al, 2014; Jordan et al, 2018; Fan et al, 2019), and typically, parallel computation is used

to reduce computational time. Communication-efficient algorithms are particularly useful

in distributed optimization of multi-agent systems, such as electronic power systems, sensor

networks and smart manufacturing (Molzahn et al, 2017; Yang et al, 2019).

In spite of these methodological advances, learning causal DAGs from data distributed

across independent machines is still a challenging task. A main difficulty is integrating local

information to form a global causal graph that satisfies the acyclicity constraint. Combining

local DAGs by one-shot averaging is not feasible, because it cannot guarantee the combined

7

estimate is a DAG. Hence, standard DAG learning algorithms cannot be easily adapted to

the distributed data setting. To obtain an estimate of a network structure using distributed

data, one may iterate over local data sets (once) and aggregate the local information by

combining either local graphs or local p-values (Gou et al, 2007; Na and Yang, 2010; Tang

et al, 2019). However, it is unclear if aggregating local estimates would be close to the

global estimate on combined data. In this thesis, we propose a score-based learning which

can effectively estimate DAGs from distributed data, where the objective is to maximize

a regularized log-likelihood of the overall data. The central machine proposes a candidate

topological sort π, and the score of π is evaluated via communications with local machines to

optimize over DAGs compatible with π. The candidate sort π is then selected by simulated

annealing. The convergence rate of our distributed optimization algorithm is O(log(n)/
√
m)

for a fixed true DAG, where n is the total sample size across all local machines and m is the

smallest local sample size (Theorem 3, Section 3.3.1).

Another contribution of our work is the use of generalized linear models (GLMs) for local

conditional distributions in BNs, which brings several advantages to causal structure learn-

ing. First, GLM is a flexible family of models for various data types beyond linear Gaussian

models, greatly increasing the applicability of our proposed model. Second, most models

in the GLM family lead to convex loss, which facilitates the optimization of objective func-

tions in the structure learning problem. The objective function of our distributed learning

is equivalent to a regularized likelihood of the overall data, which has been shown to be

effective in learning both continuous and discrete DAGs (Fu and Zhou, 2013; Aragam and

Zhou, 2015; Gu et al, 2019; Ye et al, 2020). Third, GLM DAG models lead to identifiability

of underlying causal DAGs (Proposition 4, Section 3.1), while other common models, such as

multinomial for discrete networks and Gaussian linear DAGs, are not identifiable in general.

Under such identifiability, we establish the `2-consistency of a global maximizer DAG of our

regularized likelihood score (Theorem 4, Section 3.3.2).

8

1.5 Outline

The remaining part of the dissertation is organized as follow:

• In Chapter 2, we propose annealing on regularized Choleksy score (ARCS) algorithm

to learn Gaussian BNs, where a non-convex penalty is used to estimate sparse DAGs.

The scoring function is derived from regularizing Gaussian DAG likelihood, and its

optimization gives an alternative formulation of the sparse Cholesky factorization. We

combine simulated annealing over permutation space with a fast proximal gradient

algorithm, operating on triangular matrices of edge coefficients, to compute the score of

any permutation. ARCS has demonstrated a remarkable performance in our exhaustive

numerical tests, where we compare its structure accuracy, convariance matrix estimates

and empirical loss to other methods. We also establish the consistency of our scoring

function in estimating topological sorts and DAG structures in the large-sample limit.

• In Chapter 3, we propose distributed annealing on regularized likelihood score (DARLS)

algorithm, which is the first method learning causal graphs from distributed data us-

ing iterative optimization that relies on multiple rounds of communication between

local and central machines. The annealing strategy is used to search over the topolog-

ical sort space, along with a distributed optimization method to compute the optimal

graphical structure that is compatible with a sort. We establish the convergence of the

distributed optimization method to a global optimizer of the overall score computed

on all data across local machines. In our simulation studies, DARLS has demonstrated

competing performance with distributed data against other existing methods using

pooled data across local machines. DARLS also exhibits higher predictive power than

other methods in a real-world application for modeling protein-DNA binding networks

using ChIP-Sequencing data.

• Chapter 4 concludes the dissertation with a summary and future research directions.

9

CHAPTER 2

Minimizing Regularized Cholesky Score for Gaussian

DAGs

In this chapter, we focus on learning Gaussian BNs from observational and experimental

data using an order-based search. Gaussian BNs are equivalently represented by a set of

linear structural equation models (SEMs) such that

Xj =
∑

i∈PAj

β0
ijXi + εj, j = 1, . . . , p, (2.1)

where εj ∼ N (0, (ω0
j)

2) are mutually independent and independent of {Xi : i ∈ PAj}.
Defining B0 := (β0

ij) ∈ Rp×p, where β0
ij = 0 if i /∈ PAj, ε := (ε1, . . . , εp)

> ∈ Rp, and

X := (X1, . . . , Xp)
> ∈ Rp, we rewrite (2.1) as

X = B>0 X + ε. (2.2)

The model has two parameters: 1) B0 as a coefficient matrix, sometimes called the weighted

adjacency matrix, where β0
ij specifies a weight associated with the edge i → j, and 2)

Ω0 := diag((ω0
j)

2) as a noise variance matrix. The SEMs in (2.1) define a joint Gaussian

distribution, X ∼ N (0,Σ0), where Σ0 is positive definite and given by

Σ−1
0 = (I −B0)Ω−1

0 (I −B0)>. (2.3)

2.1 Acyclicity and permutations

The support of B0 in (2.2) defines the structure of G, and thus it must satisfy the acyclicity

constraint so that G is indeed a DAG. To facilitate the development of our likelihood score

for orderings, we express the acyclicity constraint on B0 via permutation matrices. Let

10

G X2

X3 X1

X4

B0 =

X1 X2 X3 X4
0
BB@

1
CCA

X1 0 0 0 0
X2 �0

21 0 �0
23 0

X3 0 0 0 �0
34

X4 0 0 0 0

⇡ = [4,1,3,2]

P⇡ =

0
BB@

1
CCA

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

B⇡ = P⇡B0P
>
⇡ =

X4 X1 X3 X2
0
BB@

1
CCA

X4 0 0 0 0
X1 0 0 0 0
X3 �0

34 0 0 0
X2 0 �0

21 �0
23 0

1

Figure 2.1: An example DAG G, its coefficient matrix B0, and a permutation π. Bπ permutes

columns and rows of B0 and is strictly lower triangular.

{e1, . . . , ep} be the canonical basis of Rp. To each permutation π on the set [p], we associate

a permutation matrix Pπ whose ith row is e>π(i). For a vector v = (v1, . . . , vp)
>, we have

Pπv = vπ = (vπ(1), . . . , vπ(p))
>, (2.4)

that is, Pπ permutes the entries of v according to π. Since P>π Pπ = I, we can rewrite (2.2)

as

PπX = B>π PπX + Pπε,

where Bπ := PπB0P
>
π is obtained by permuting the rows and columns of B0 simultaneously

according to π. Then, Bπ will be a strictly lower triangular matrix if and only if π is the

reversal of a topological sort of G, i.e., i ≺ j in π for j ∈ PAi. See Figure 2.1 for an

illustration. Under this reparametrization, the acyclicity constraint on B0 translates to Bπ

being strictly lower triangular for some permutation π. Define Ωπ := PπΩ0P
>
π . Equivalently,

one may think of node π(i) as having been relabeled node i in Bπ and Ωπ.

For simplicity, we drop the subscript π from Pπ, Bπ and Ωπ if no confusion arises. There-

fore, throughout the chapter, P defines a permutation π, B and Ω label nodes according to

π and we write the permuted SEM as

PX = B>PX + Pε. (2.5)

Denote by cov(X) the covariance matrix of X. Then we have Σ := cov(PX) = PΣ0P
>,

obtained by permuting the rows and columns of Σ0 (2.3) according to P .

11

2.2 Regularized likelihood score

In this section, we construct the objective function to estimate BN structure given data

from the Gaussian SEM (2.1). We first focus on observational data in Sections 2.2.1 and

2.2.2: We re-parametrize the negative log-likelihood as a Cholesky loss and then impose

sparse regularization to define our scoring function over permutations and DAG structures.

In Section 2.2.3, we discuss how to modify the likelihood function for experimental data.

2.2.1 Cholesky loss

Let X := [X1, . . . ,Xp] ∈ Rn×p be a data matrix where each row is an i.i.d. observation

from (2.1). According to (2.5), we obtain a similar SEM on the data matrix:

XP> = XP>B + EP>, (2.6)

where each row of E ∈ Rn×p is an i.i.d. error vector from N (0,Ω0). In (2.6), XP> and EP>

are X and E with columns permuted according to P = Pπ. It then follows that each row of

XP> is an i.i.d. observation from N (0,Σ) with Σ−1 = (I − B)Ω−1(I − B)>, and thus the

negative log-likelihood of (2.6) is

`(B,Ω, P | X) =
1

2
tr
[
PX>XP>(I −B)Ω−1(I −B)>

]
+
n

2
log |Ω|. (2.7)

Recall that B and Ω = diag((ωj)
2) are defined by permuting the rows and columns of B0

and Ω0 by the permutation matrix P . In particular, B is strictly lower triangular and we

write its columns as βj ∈ Rp.

Denote by L := (I − B)Ω−
1
2 a weighted coefficient matrix, where each column Lj =

(ej − βj)/ωj is a weighted coefficient vector for node π(j). We define what we call the

Choleskly loss function

Lchol(L;A) :=
1

2
tr
(
ALL>

)
− log |L|, (2.8)

where |L| denotes the determinant of L. Noting that |L| = |(I − B)Ω−
1
2 | = |Ω|− 1

2 and

denoting by Σ̂ := 1
n
X>X the sample covariance matrix, one can re-parametrize the negative

log-likelihood (2.7) with L and P and connect it to the Cholesky loss:

12

Lemma 1. The negative log-likelihood (2.7) for observational data can be re-parametrized

as

`(L, P) = n ·Lchol(L;P Σ̂P>) =
n

2
tr
(
P Σ̂P>LL>

)
− n log |L|, (2.9)

where L = (I −B)Ω−
1
2 is a lower triangular matrix and P is a permutation matrix.

The reason for naming (2.8) the Cholesky loss is that it provides an interesting variational

characterization of the Cholesky factor of the inverse of a matrix as the following proposition

shows. Let Lp be the set of p × p lower triangular matrices with positive diagonal entries,

and for any positive definite matrix M , let C(M) be its unique Cholesky factor, i.e., the

unique lower triangular matrix L with positive diagonal entries such that M = LL>. Let

λmin(A) and |||A|||F denote, respectively, the minimum eigenvalue and the Frobenius norm of

a matrix A.

Proposition 1 (Curvature). For any positive definite matrix A ∈ Rp×p and lower triangular

matrix L ∈ Lp,

Lchol(L;A)−Lchol(L
∗;A) ≥ 1

2
λmin(A)|||L− L∗|||2F ,

where L∗ = C(A−1). Consequently, L∗ is the unique minimizer of Lchol(· ;A) with optimal

value

L ∗
chol(A) := Lchol(C(A−1);A) =

1

2
(p+ log |A|) .

In particular, L ∗
chol(A) = L ∗

chol(PAP
>) for any permutation matrix P .

Proposition 1 states that C(A−1) is the unique minimizer of Lchol(· ;A) and bounds the

curvature of the Cholesky loss near its minimum. The curvature bound will be used in the

proof of consistency (cf. Theorem 2 in Section 2.3).

Now consider finding the maximum likelihood DAG for a fixed permutation P , which

corresponds to minimizing L 7→ `(L, P) given by (2.9). Let `∗(P) be the optimal value of

this problem, i.e.,

`∗(P) := min
L∈Lp

`(L, P).

13

Then, Proposition 1 implies

`∗(P) = n ·L ∗
chol(P Σ̂P T) = n ·L ∗

chol(Σ̂), (2.10)

showing that `∗ is invariant to permutations, hence maximum likelihood estimation does

not favor any particular ordering. In other words, all the maximum likelihood DAGs cor-

responding to different permutations give the same Gaussian likelihood. Moreover, they

will always be complete DAGs, which has negative implications for both computational and

interpretability concerns. These motivate our development of sparse regularization for this

problem.

2.2.2 Sparse regularization

To break the permutation equivalence of the maximum likelihood (2.10), we add a regularizer

to the Cholesky loss to favor sparse DAGs. Under faithfulness stated in Definition 4 (Spirtes

et al, 1993), the true DAG G in (2.1) and its equivalence class are the sparsest among all

DAGs that can parameterize the joint distribution N (0,Σ0). To start, let us point out some

connections to the well-known “sparse Cholesky factorization” problem from linear algebra.

According to Proposition 1, the minimizer of `(L, P) over L is the Cholesky factor of

(P Σ̂P>)−1 = P Σ̂−1P>. For a sparse Σ̂−1, it is well-known that the choice of P greatly

affects the sparsity of the resulting Cholesky factor. Heuristic approaches have been devel-

oped in numerical linear algebra to find a permutation that leads to a sparse factorization

by trying to minimize the so-called “fill-in”. An example is the maximum cardinality algo-

rithm (Vandenberghe and Andersen, 2014).

From a statistical perspective, however, Σ̂−1 is, in general, not sparse (due to noise) even

if the inverse of population covariance matrix Σ = E[Σ̂] is so. In such cases, one can first

estimate a sparse precision matrix and then use the sparse estimate as the input to the sparse

Cholesky factorization problem. We take a more direct alternative approach by adding a

sparsity-measuring penalty to the Cholesky loss.

Let ρθ : R 7→ [0,∞) be a nonnegative and nondecreasing regularizer with some tuning

14

parameter(s) θ. We consider the following penalized loss function:

fθ(L;P) := n ·Lchol(L;P Σ̂P>) +
∑

i>j

ρθ(Lij), (2.11)

where the penalty is only applied to the off-diagonal entries of a lower triangular matrix L.

The loss depends on the regularization parameter θ, and for simplicity we write fθ(L;P)

as f(L;P). In this paper, we focus on the class of regularizers called the minimax concave

penalty (MCP) (Zhang, 2010) which includes `1 and `0 as extreme cases; see (2.14) below.

MCP is a sparsity-favoring penalty and adding it breaks the symmetry of the Cholesky loss

w.r.t. permutations as in (2.10). As a result, the permutations leading to sparser lower-

triangular factors L will have smaller loss values f(L;P).

Let Pp be the set of p×p permutation matrices. Given P ∈ Pp, the minimizer of f(L;P)

over L is a sparse DAG G(P) with a score f(P) defined as

f(P) := min
L∈Lp

f(L;P). (2.12)

We minimize permutation score f(P) over Pp to obtain an estimated ordering. The overall

sparse BN learning problem is then

min
P∈Pp

f(P) = min
P∈Pp

min
L∈Lp

{n
2

tr
(
P Σ̂P>LL>

)
− n log |L|+

∑

i>j

ρθ(Lij)
}
. (2.13)

In this formulation, the objective function only depends on the p × p sample covariance

matrix Σ̂ = 1
n
X>X. Thus, the computational complexity is determined by the dimension p

once Σ̂ has been computed. In Section 2.4, we discuss our approach to solve this problem

by optimizing over (L, P). It is worth noting that problem (2.13) can be considered both as

1) a penalized maximum likelihood BN estimator in the Gaussian case, and 2) a variational

formulation of the sparse Cholesky factorization problem when the input matrix Σ̂ is noisy

(hence its inverse usually not sparse). According to the second interpretation, we call f(L;P)

in (2.11) the regularized Cholesky (RC) loss function and f(P) in (2.12) the RC score of a

permutation P .

Throughout this chapter, let ρ(·) := ρθ(·) be the MCP with two parameters θ = (γ, λ) (Zhang,

15

-3 -2 -1 0 1 2 3
x

0

0.5

1

1.5

2

2.5

3

;
(x
)

MCP
`1

Figure 2.2: A comparison between the MCP (solid line) and the `1 penalty (dashed line).

2010):

ρ(x; γ, λ) =

λ|x| − x2

2γ
, |x| < γλ,

1
2
γλ2, |x| ≥ γλ,

(2.14)

where λ ≥ 0 and γ > 1. Parameter λ measures the penalty level, while γ controls the

concavity of the function. For a fixed value of λ, the MCP approaches the `1 penalty as

γ →∞, and the `0 penalty as γ → 0+.

Figure 2.2 compares the MCP with (γ, λ) = (2, 1) and the `1 penalty. The right derivative

of MCP at zero is λ, which is the same as the derivative of the `1 penalty. The MCP function

flats out when |x| ≥ γλ.

Remark 1. Aragam and Zhou Aragam and Zhou (2015) use an MCP regularized likelihood

to estimate Gaussian DAGs as well. However, rather than searching over permutations,

which automatically satisfies the acyclicity constraint, they perform a greedy coordinate

descent to minimize the regularized loss over DAGs. Thus, at each update in their algorithm

the acyclicity constraint must be carefully checked.

Remark 2. For a given permutation P , the minimizer of the RC loss f(L;P) (2.12) estimates

a sparse Cholesky factor of PΣ−1
0 P>, the precision matrix Σ−1

0 with rows and columns

permuted. This is related to recent methods on covariance matrix estimation by Cholesky

decomposition (Chen and Leng, 2015; Lee and Lee, 2018; Touchette et al, 2016; Verzelen,

2010; Li and Zhang, 2019), which make two main assumptions: (i) a fixed variable ordering

is provided, i.e. P is given, and (ii) the precision matrix has certain sparse structures, say

16

it is banded. See (Pourahmadi, 2011) for a recent review on covariance matrix estimation.

The key differences between these methods and our BN learning approach are: (i) We

impose sparsity on the Cholesky factor L, which encodes a DAG structure with P , while

those precision matrix estimation methods either impose sparsity on Σ−1
0 , such as in (Chen

and Leng, 2015; Lee and Lee, 2018), or assume L is banded (Verzelen, 2010). (ii) More

importantly, instead of assuming a known ordering, we minimize the RC score (2.13) jointly

over (L, P) to estimate an ordering and a sparse DAG structure. Once an estimated P̂ and

the associated L̂ have been found, we can estimate the precision matrix Σ−1
0 by P̂>L̂L̂>P̂ .

Under the Gaussian SEM (2.1), our estimate of Σ−1
0 will be more accurate than the above

precision matrix estimation methods when the true ordering is unknown. See Section 2.5.5

for relevant numerical comparisons.

2.2.3 Likelihood for experimental data

It is well-known that DAGs in the same Markov equivalence class are observationally equiv-

alent, and thus we cannot distinguish such DAGs from observational data alone. However,

experimental interventions can help distinguish equivalent DAGs and construct causal net-

works. Following Pearl (1995), intervention on a node Xj in a DAG is to impose a fixed

external distribution on this node, denoted by p(xj | •), independent of all X−j, while keeping

the structural equations (2.1) of the other nodes unchanged.

Suppose that our data X ∈ Rn×p consists of M blocks, where each block Xm ∈ Rnm×p

and n =
∑M

m=1 nm. Denote by Xm
I ⊂ {X1, . . . , Xp} the set of variables under experimental

interventions in block m. Then, the data for Xj ∈ Xm
I in this block are generated indepen-

dently from the distribution p(xj | •), while for Xi /∈ Xm
I from the conditional distribution

[Xi | PAi]. Note that multiple nodes could be intervened for a block of data, in which case

|Xm
I | ≥ 2.

Let Ij ⊂ {1, 2, . . . , n} be the set of observations for which Xj is under experimental

intervention, and letOj = {1, 2, . . . , n}\Ij be its complement. By the truncated factorization

formula (Robins, 1986; Pearl, 1995; Spirtes et al, 1993), the joint density of experimental

17

data is

p(X) =

p∏

j=1

∏

h∈Oj
p(xhj | pahj)

∏

k∈Ij
p(xkj | •), (2.15)

where xhj is the value of the jth variable in the hth observation and pahj is the value for its

parents. Let XOπ(j) be the submatrix of X with rows in Oπ(j) and t

Σ̂j :=
1

|Oπ(j)|
X>Oπ(j)XOπ(j)

be the sample covariance matrix computed from data in these rows. Then the log-likelihood

of experimental data can be re-parametrized into the Cholesky loss functions as well:

Lemma 2. The negative log-likelihood for experimental data (2.15) can be written as

`O(L, P) =

p∑

j=1

|Oπ(j)|Lchol

(
Lj;P Σ̂jP>

)
, (2.16)

where Lj = (ej − βj)/ωj ∈ Rp, L = (Lj) ∈ Lp, and |Lj| := Ljj in Lchol(·) (2.8).

Though experimental data likelihood `O(L, P) in (2.16) is not identical to the observa-

tional `(L, P) in (2.9), searching strategies described in Section 2.4 can be applied to both

observational and experimental data.

2.3 Consistency

We now show that the estimator that minimizes the regularized Cholesky score (2.13) is

consistent as the sample size n → ∞, while the dimension of the problem p remains fixed

(the classical asymptotic setting). We establish the result for a general class of regularizers

that contains MCP as a special case. We show two levels of consistency: (1) permutation

consistency, in the sense of recovering a topological sort that is consistent with a DAG in the

true Markov equivalence class, and (2) structure consistency or support recovery, showing

that the estimated DAG has the same support as a DAG in the true equivalence class.

Theoretical results in this section are joint work in (Ye et al, 2020), and are included for

completeness. Proof of Theorem 2 is provided in Sections 2.8.1 and 2.8.2

18

Let us give the high level ideas behind our proof of the consistency results. First, in

the large-sample limit, the empirical loss f(Pπ)/n (2.12) converges to Fn,π uniformly in π,

where Fn,π is its population version, obtained by replacing Σ̂ with Σ0 in definition (2.11).

Second, under certain identifiability assumptions, the population loss satisfies Fn,π∗ < Fn,π,

for any permutation π∗ associated with the true Markov equivalence class and any π that is

not. Together these two results allow us to guarantee both the permutation and structure

consistency of the minimizers of the regularized Cholesky loss. We give a more detailed

sketch in Section 2.3.3, after stating the main result.

To make the notion of permutation consistency more precise, we review some background

on Markov equivalence classes and introduce the notion of score-identifiability.

2.3.1 Score-identifiability

Let P ∗ be the true data-generating distribution. Recall we write I(P ∗) for the set of condi-

tional independence (CI) statements that hold in P ∗ and similarly I(B) for the set of CIs,

implied by DAG B, in the sense of d-separation. Then, B is an I-map for P ∗ if I(B) ⊂ I(P ∗)

and is perfect for (or faithful to) P ∗ if I(B) = I(P ∗). Two DAGs B and B′ are (Markov)

equivalent if I(B) = I(B′). We write E(B) for the equivalence class of B.

By a well-known result, all the DAGs in a Markov equivalence class have the same

skeleton (hence the same number of edges) and the same v-structures. We write E for a

generic equivalence class and ‖E‖0 for the number of edges of any DAG in the equivalence

class. Consider the following definition:

Definition 2. We say that a Markov equivalence class E is score-identifiable (for P ∗) if for

any DAG B which is an I-map for P ∗, either B ∈ E or ‖B‖0 > ‖E‖0.

The case that this definition is ruling out is when there exists a DAG outside equivalence

class E that has the same number of edges but a different set of v-structures. By definition,

if a score-identifiable class exists, it is “the unique” sparsest equivalence class that is an

I-map for P ∗. We have the following which is essentially the same as (Chickering, 2002,

Proposition 8):

19

Lemma 3. If E is perfect for P ∗, then E is score-identifiable.

Therefore, score-identifiability is implied by, and thus no stronger than, faithfulness.

2.3.2 Consistent structure learning

With some abuse of notation, throughout this section, let B = P>π (I − A)Ω−1/2Pπ denote a

normalized DAG, where A is a strictly lower triangular matrix and Ω is a diagonal matrix

with positive diagonal elements. Note that L := (I − A)Ω−1/2 ∈ Lp is a lower triangular

matrix with positive diagonals, and π is a reversed topological sort (RTS) of the DAG defined

by the support of B (cf. Figure 2.1). Let Dπ be the set of DAGs whose RTS is consistent

with permutation π, that is,

Dπ = {P>π LPπ : L ∈ Lp}

and let Kπ be the (unique) complete DAG reversely sorted by π. For every B ∈ Dπ, we

have supp(B)⊂Kπ, where supp(B) denotes the “off-diagonal” support of B, i.e., the set of

indices of nonzero off-diagonal elements of B. Unless otherwise stated, the support of B

refers to this off-diagonal support. We let Bπ be the unique minimizer of the (unregularized)

population Cholesky loss over Dπ in this section:

Bπ = arg min
B ∈Dπ

Lchol(B; Σ0) (2.17)

and let Sπ = supp(Bπ) be its (off-diagonal) support. It is not hard to see that the support

of Bπ is the (minimal) I-map corresponding to permutation π. We simply refer to Bπ as the

I-map associated with π.

Let Σ̂n be the sample covariance matrix. Consider the following permutation score

F̂n,π := min
L∈Lp

[
Lchol(L;PπΣ̂nP

>
π) +

ρn(L)

n

]
, (2.18)

for some permutation-invariant penalty ρn = ρθn . Note that F̂n,π = f(Pπ)/n, where f(·) is

the regularized Cholesky score in (2.12). We assume that ρn is defined over all n×n matrices

(not just lower triangular ones). Then, we can alternatively write

F̂n,π = min
B ∈Dπ

[
Lchol(B; Σ̂n) +

ρn(B)

n
:= Ln(B; Σ̂n)

]
. (2.19)

20

Let B̂n,π be a (global) minimizer of B 7→ Ln(B; Σ̂n) over Dπ so that F̂n,π = Ln(B̂n,π; Σ̂n). We

estimate the permutation by minimizing π 7→ F̂n,π, with a minimizer denoted as π̂n. Then,

our estimated weighted adjacency matrix will be B̂n,π̂n , and its support defines the structure

of an estimated DAG Ĝn.

We need some regularity conditions on the regularizer ρn(·) and the collection {Bπ} of

I-maps of Σ0. Let λmin = λmin(Σ0) be the minimum eigenvalue of Σ0, and assume that

ρn(B) =
∑

i 6=j rn(|Bij|) for some rn : R+ → R+ that satisfies the following:

(R1) We say that rn is (an, bn)-flat if it is bounded by an and

rn(t) = an for t ≥ bn.

for some bn = O(1).

(R2) Assume that rn is twice differentiable on [0, bn), with the derivatives at 0 interpreted as

one-sided, and assume that r′′n has a left limit at bn. Moreover r′′n(·)/n is C0-Lipschitz

on [0, bn), for some constant C0 ≥ 0, and

|r′′n(0+)| ≤ C1n, |r′′n(bn−)| = O(n),

with C1 ≤ λmin/2. Let λn := r′n(0+) be the right derivative of rn at 0.

Consider the so-called βmin condition

2bn ≤ min
π
τ(Bπ), (2.20)

where τ(B) = min{|Bij| : (i, j) ∈ supp(B)}. Assume further that

lim inf
nb2

n

an
>

2

λmin

max
π
|Sπ|. (2.21)

Let us write Π(E) for the collection of RTSs for some DAGs in equivalence class E . If

E∗ is the true equivalence class, then Π(E∗) is the collection of true RTSs. We have the

following consistency result:

21

Theorem 2. Assume that P ∗, or equivalently Σ0 in (2.3), has a (unique) score-identifiable

Markov equivalence class E∗, and let

π̂n ∈ arg min
π

F̂n,π.

(a) Assume that rn(·) is (an, bn)-flat for sequences that satisfy (2.20), (2.21), n−1/2an →∞
and n1/4bn → ∞, and (R2) holds with n−1λn = O(1). Then, P

(
π̂n ∈ Π(E∗)

)
→ 1 as

n→∞. Moreover, B̂n,π̂n is a
√
n-consistent estimate of Bπ̂n.

(b) If in addition n−1λn → 0 and n−1/2λn → ∞, then we also have P
(
Ĝn ∈ E∗

)
→ 1 as

n→∞, where Ĝn is the DAG defined by supp(B̂n,π̂n).

Part (a) of Theorem 2 establishes permutation consistency by guaranteeing that π̂n even-

tually does not leave Π(E∗), although it can move around in this set indefinitely. Part (b)

establishes the structure consistency.

In the case of the MCP, we can take rn(t)/n = ρ(t; γn, ξn) giving λn = r′n(0+) = nξn.

Then, (R1) holds with an = 1
2
nγnξ

2
n and bn = γnξn, and we have r′′n(t)/n = 1/γn for t ∈ [0, bn).

Assuming 1/γn ≤ λmin/2 after proper re-scaling of the data or the regularizer, (R2) holds

with C0 = 0. Since the right-hand sides of (2.20) and (2.21) are constants, these conditions

hold if γn is sufficiently large and ξn → 0. Conditions for part (a) of the theorem hold if

ξn = O(1),
√
nγnξ

2
n → ∞ and n1/4γnξn → ∞, so it suffices to have n−1/4 � ξn . 1 and

γn & 1. For part (b), we need ξn = o(1) and
√
nξn → ∞, that is, n−1/2 � ξn � 1. All the

conditions are satisfied if γn & 1 and n−1/4 � ξn � 1. In particular, if we let γn → ∞ and

γnξn → 0 at a rate slower than n−1/4, then our consistency results apply to the capped `1

penalty, i.e. rn(t)/n = ξnt ∧ γnξ2
n.

Remark 3. Aragam and Zhou Aragam and Zhou (2015) also provide asymptotic results for

the estimator we consider here. Under appropriate conditions, they show that (i) in small

neighborhoods (of radius ∼ n−1/2) of every Bπ (2.17), there are “good” local minimizers

of (2.19) (i.e., with correct support) and (ii) if one Bπ has more edges than the other, the

corresponding nearby local minimizer gives a higher value of the objective function. Their

results, however, provide no guarantee for all local minimizers of the problem. In particular,

22

their results are silent about the global minimizer(s) of (2.19). In contrast, we provide

conditions, under which, any “global minimizer” of (2.19) is both permutation and structure

consistent. Proving such global results requires significantly more technical effort. For

example, even showing that a global minimizer is within a neighborhood of radius ∼ n−1/2

of some Bπ is nontrivial, as the proof demonstrates.

2.3.3 Proof sketch

We give a brief sketch of the proof of Theorem 2 here. A detailed proof can be found in the

supplement. For two symmetric matrices A and B of the same dimension, we write A � B

if A−B is positive semidefinite. First, we show that under (2.20), for any π and B ∈ Dπ,

Ln(B; Σ0)− Ln(Bπ; Σ0) ≥ λmin

2

(
|||B −Bπ|||2F ∧ cn,π

)
, (2.22)

where cn,π := b2
n − 2an|Sπ|/(λminn). Combined with (2.21), this implies that the population

version of (2.19), namely,

Fn,π := min
B ∈Dπ

Ln(B; Σ0), (2.23)

has Bπ as its unique (isolated) minimizer. A so-called “basic inequality argument” further

implies that Ln(B̂n,π; Σ0) − Ln(Bπ; Σ0) = Op(n
−1/2). Together with (2.22), we get |||B̂n,π −

Bπ|||F = Op(n
−1/4), that is, B̂n,π is n1/4-consistent for Bπ.

Using n1/4bn →∞, we conclude that |||B̂n,π − Bπ|||F < bn, eventually. Recalling assump-

tion (2.20), this implies that for any DAG B which is between B̂n,π and Bπ elementwise,

the absolute coordinates |Bij| are either in [0, bn) or (bn,∞). Since rn(·) is smooth over each

of these intervals, we can apply a Taylor expansion of Ln(· , Σ̂n) around Bπ. Taking into

account the one-sided differentiability of the regularized loss at zero, we obtain a quadratic

inequality for ∆n,π = B̂n,π − Bπ, where the quadratic term is controlled by the Hessian

∇2Ln(B̃n,π; Σ̂n) for some B̃n,π that is between B̂n,π and Bπ elementwise. A further argument

shows that ∇2Ln(B̃n,π; Σ̂n) � 1
2
λminIp2 when n is large, which together with the quadratic

equality implies

|||∆n,π|||F ≤
2

λmin

|||∇Lchol(Bπ; Σ̂n)−∇Lchol(Bπ; Σ0)|||F .

23

The right-hand side can be shown to beOp(n
−1/2) from which we conclude the

√
n-consistency

of B̂n,π for Bπ. All the consistency arguments hold uniformly over π.

Equipped with
√
n-consistency, we then show that F̂n,π −Fn,π = Op(n

−1/2), uniformly in

π. For any π∗ ∈ Π(E∗) and any π 6∈ Π(E∗),

F̂n,π − F̂n,π∗ ≥ Fn,π − Fn,π∗ −Op(n
−1/2)

=
an
n

(|Sπ| − |S∗π|)−Op(n
−1/2).

See the supplement for the details of getting to the second line. Since by score-identifibility

|Sπ| ≥ |Sπ∗| + 1, and by assumption n−1/2an → ∞, with high probability (w.h.p.) F̂n,π −
F̂n,π∗ > 0 for all π /∈ Π(E∗), when n is sufficiently large. This proves permutation consistency.

For the structure consistency, since B̂n,π is within a neighborhood of radius Op(n
−1/2)

around Bπ, an argument similar to that of Lemma 1 in Fan and Li (2001) shows that

supp(B̂n,π) = supp(Bπ) for all π w.h.p. In particular, supp(B̂n,π̂n) = supp(Bπ̂n), w.h.p. and

the proof is complete.

2.4 Optimization

We now describe how we solve the optimization problem (2.13). The main steps are outlined

in Algorithm 1, where we use simulated annealing to search over the permutation space to

minimize the RC score defined in (2.12). To obtain the RC score for a given permutation,

we need to solve a continuous optimization problem (line 2 and 6) for which we propose a

proximal gradient algorithm (Algorithm 2).

2.4.1 Searching over permutations

The ARCS algorithm is detailed in Algorithm 1. At each iteration, we propose a permutation

P ∗ and decide whether to stay at the current permutation or move to the proposed one with

probability α given in line 7. The probability is determined by the difference between the

proposed and current scores f(P ∗) − f(P̂) normalized by a temperature parameter T . For

T → ∞, the jumps are completely random and for T → 0+ completely determined by the

24

Algorithm 1 Annealing on regularized Cholesky score (ARCS).

Input: Dataset X, initial permutation matrix P0, constant m, a temperature schedule

{T (i), i = 0, . . . , N}.
Output: Adjacency matrix B̂.

1: Select tuning parameters (γ, λ) for f(L;P) according to Algorithm 4 (Section 2.4.4).

2: P̂ ← P0, L̂← arg minL∈Lp f(L; P̂) by Algorithm 2, f(P̂)← f(L̂; P̂).

3: for i = 0, . . . , N do

4: T ← T (i).

5: Propose P ∗ by flipping a random length-m interval in the permutation defined by P̂ .

6: L∗ ← arg minL∈Lp f(L;P ∗) using Algorithm 2, f(P ∗)← f(L∗;P ∗).

7: α← min
{

1, exp
(
− 1
T

[f(P ∗)− f(P̂)]
)}

.

8: Set (P̂ , L̂, f(P̂))← (P ∗, L∗, f(P ∗)) with prob. α.

9: end for

10: Refine adjacency matrix B̂ given (L̂, P̂) by Algorithm 3 (Section 2.4.3).

RC score f(·). The algorithm follows a temperature schedule which is often taken to be a

decreasing sequence T (0) ≥ T (1) ≥ . . . ≥ T (N) allowing the algorithm to explore more early

on and zoom in on a solution as time progresses.

The proposed permutation matrix P ∗ is constructed as follows. Let π̂ and π∗ be the

permutations associated with P̂ and P ∗ as in (2.4). We propose π∗ by flipping (i.e., reversing

the order of) a random interval of length m in the current permutation π̂. For example,

with m = 3 we may flip π̂ = (1, 2, 3, 4, . . . , p) to π∗ = (1, 4, 3, 2, . . . , p) in the proposal.

Equivalently, we flip a contiguous block of m rows of P̂ to generate P ∗.

As a byproduct of evaluating the RC score for the proposed permutation P ∗, we also

obtain the corresponding lower triangular matrix L∗, representing the associated DAG. We

keep track of these DAGs as well as the permutations throughout the algorithm (line 6).

Remark 4. There is no theoretical guarantee for ARCS to find a global minimizer using

simulated annealing. In this sense, ARCS performs a heuristic search over the permutation

space to learn a topological sort. For smaller DAGs, however, our numerical results in

25

Section 2.5.8 show that ARCS often finds solutions that are close to the global minimizers.

2.4.2 Computing RC score

We propose a proximal gradient algorithm to evaluate the RC score f(P) at each permutation

matrix P (line 2 and 6, Algorithm 1). This algorithm belongs to a class of first-order methods

that are quite effective at optimizing functions composed of a smooth loss and a nonsmooth

penalty (Parikh and Boyd, 2013a).

The RC score is obtained by minimizing the RC loss f(L;P) over L as shown in (2.12).

Recall that Lp is the set of p× p lower triangular matrices, and let

ρ(u) :=
∑

i>j

ρ(uij), for u = (uij) ∈ Lp. (2.24)

Note that we are leaving out the diagonal elements of u in defining ρ(u). Then, the RC loss

is f(u;P) = `(u, P) + ρ(u), where `(u, P) (2.9) is differentiable and ρ(u) is nonsmooth. The

idea of the proximal gradient algorithm is to replace `(u, P) with a local quadratic function

at the current estimate L and optimize the resulting approximation to f(u;P) to get a new

estimate L+:

L+ = arg min
u∈Lp

`(L) +∇`(L)>(u− L) +
1

2t
‖u− L‖2+ρ(u)

= arg min
u∈Lp

1

2t
‖L− t∇`(L)− u‖2 + ρ(u), (2.25)

where `(L) = `(L, P),∇`(L) := ∇L`(L, P) is the gradient of `(L, P) w.r.t. L, and t > 0 is a

step size. Consider the proximal operator proxρ : Lp → Lp associated with ρ defined by

proxρ(x) := arg min
u∈Lp

(
ρ(u) +

1

2
‖x− u‖2

)
, (2.26)

where x ∈ Lp and ‖ · ‖ is the usual Euclidean norm. Then, (2.25) is equivalent to

L+ = proxtρ (L− t∇`(L)) , (2.27)

where proxtρ(·) is the proximal operator applied to the scaled function tρ(·). Since ρ(u) is

26

Algorithm 2 Compute the RC score by proximal gradient.

Input: P , L(0) ∈ Lp, t(0) > 0, κ ∈ (0, 1), max-iter, tol.

Output: L.

1: k ← 0, err ←∞, L← L(0).

2: while k < max-iter and err > tol do

3: Compute ∇`(L) using either Lemma 4 or 5.

4: t← t(0)/|||∇`(L)|||F .

5: repeat

6: L̃← L− t∇`(L).

7: L+
ij ← proxtρ(L̃ij) for i > j (using Lemma 6).

8: L+
ii ← L̃ii.

9: break if ` (L+, P) ≤ ` (L, P) + 〈∇`(L), L+ − L〉+ 1
2t
|||L+ − L|||2F .

10: t← κt.

11: err ← maxj δ(L
+
j , Lj) where δ(x, y) := ‖x−y‖

max{1,‖y‖} .

12: L← L+ and k ← k + 1.

13: end while

separable across the coordinates {uij, i ≥ j}, we have for x ∈ Lp,

(
proxρ(x)

)
ij

=

proxρ(xij), i > j,

prox0(xii) = xii, i = j.

The proximal operators on the RHS are univariate, and the distinction between the two

cases is because we do not penalize the diagonal entries, i.e., ρ(uii) = 0.

The overall procedure is summarized in Algorithm 2. To choose the step size t normalized

by |||∇`(L)|||F (line 4), we have used a line search strategy (Parikh and Boyd, 2013a), where we

repeatedly reduce the step size by a factor κ ∈ (0, 1) until a quadratic upper bound is satisfied

by the new update (line 9). To implement Algorithm 2, we need two more ingredients, ∇`(L)

and the univariate proxρ(·), both of which have nice closed-form expressions:

27

Lemma 4. The gradient of `(L, P) in (2.9) w.r.t. L is

∇`(L) = n
(

ΠL(P Σ̂P>L)− diag ({1/Lii}pi=1)
)
,

where ΠL : A 7→ (Aij1{i ≥ j})p×p maps a matrix to its lower triangular projection.

Lemma 5. The gradient of `O(L, P) in (2.16) w.r.t. Lj is

∇Lj`O(L, P) =
∣∣Oπ(j)

∣∣
(

Πj

(
P Σ̂jP>Lj

)
− ej
Ljj

)
,

where Πj : v 7→ (vi1{i ≥ j})p×1 and {ej} is the canonical basis of Rp.

Lemma 6. Let ρ be the scalar MCP with parameter (γ, λ) defined in (2.14), and let ρ1 be

the same penalty for λ = γ = 1. Then, for any t > 0,

proxtρ(x) = λγ prox(t/γ)ρ1

(x
λγ

)
, (2.28)

and for any α > 0,

proxαρ1(x) =

0,
0 ≤ x < min{α, 1} or

1 < x <
√
α;

x− α
1− α , α < x ≤ 1;

x,
x > max{α, 1} or

1 <
√
α < x ≤ α.

(2.29)

Moreover, proxαρ1(−x) = −proxαρ1(x) for all x ∈ R.

We have excluded two special cases in (2.29) in which the minimizer is not unique: 1)

If x = α = 1, proxαρ1(x) = [0, 1]; 2) If x =
√
α > 1, proxαρ1(x) = {0,√α}. We set

proxαρ1(x) = 0 in our implementation if these special cases occur. The MCP has parameter

γ > 1, and usually the step size t < 1. Thus, the cases with α < 1 are the most common

scenario in our numerical study.

2.4.3 Structure refinement after annealing

At the end of the annealing loop (line 9, Algorithm 1), a pair (L̂, P̂) is found. Accordingly,

an estimated reversal of a topological sort is π̂ = P̂ (1, . . . , p)>. Define L̃ = P̂>L̂P̂ , and B̂

28

by B̂ij = −L̃ij/L̃jj for i 6= j and B̂ii = 0. Then, B̂ is the estimated weighted adjacency

matrix for a DAG, i.e., an estimate for B0. The support of B̂ gives the estimated parent sets

p̂aj = {i : B̂ij 6= 0} for j = 1, . . . , p. The use of a continuous regularizer, i.e. MCP, eases our

optimization problem; however, this may lead to more false positive edges compared to `0

regularization. To improve structure learning accuracy, we add a refinement step to remove

some predicted edges by conditional independence tests, which borrows the strength from a

constraint-based approach.

The refinement step outlined in Algorithm 3 is based on the following fact. If k ≺ j in a

topological sort and there is no edge k → j, then Xk ⊥ Xj | PAj, where PAj is the parent

set of Xj. For each k ∈ p̂aj, we test the null hypothesis that Xk and Xj are conditionally

independent given p̂aj \ {k} using the Fisher Z-score. We remove the edge k → j if the

null hypothesis is not rejected at a given significance level. The conditional independence

tests are performed in a sequential manner for the nodes in p̂aj according to the estimated

topological sort: For k1, k2 ∈ p̂aj, if k1 ≺ k2 in the sort, we carry out the test for k2 prior to

that for k1.

2.4.4 Selection of the tuning parameters

Before starting the iterations in Algorithm 1, we select and fix the tuning parameters

θ = (γ, λ) of MCP (line 1), hence fixing a particular scoring function f(L, P) = fθ(L, P)

throughout the algorithm.

We use the Bayesian information criterion (BIC) (Schwarz, 1978) to select the tuning

parameters, given an initial permutation P0. The details are summarized in Algorithm 4.

For every pair (γ(i), λ(i)) over a grid of values, we evaluate the BIC score given in line 2,

where ‖L̂(·)‖0 is the number of nonzero entries in L̂(·), and then we output the one with

the lowest BIC score. The regularization parameter in BIC(θ) is adapted to log(max{n, p}),
which works well for both low and high-dimensional data. To construct the grid, possible

choices for the concavity parameter γ are {2, 10, 50, 100} based on our tests. Note that

γ > 1 is required in the definition of MCP (2.14), while the behavior of MCP for γ ≥ 100

29

Algorithm 3 Constraint-based structure refinement.

Input: X, adjacency matrix B̂, significance level α.

Output: Adjacency matrix B̂.

1: Zα ← Φ−1(1− α
2
), where Φ(x) is the CDF of N (0, 1).

2: for j = 1, . . . , p do

3: p̂aj ← {i : B̂ij 6= 0}.
4: for k ∈ p̂aj do

5: s← p̂aj \ {k}.
6: Xj ← observations for which j is not intervened

7: n← number of rows in Xj.

8: rj,k|s ← sample partial correlation between Xj and Xk given Xs based on Xj.

9: z ← 1
2

√
n− |s| − 3 log

(
1+rj,k|s
1−rj,k|s

)
.

10: Remove k from p̂aj, if |z| < Zα.

11: end for

12: B̂ij ← 1 if i ∈ p̂aj and B̂ij ← 0 otherwise.

13: end for

is essentially the same as the `1 penalty. For the regularization parameter λ, we select 20

equi-spaced points from the interval [0.1
√
n,
√
n]. The choice of

√
n often leads to an empty

graph when the data are standardized, hence a natural end point.

2.5 Results on observational data

2.5.1 Methods and data

Recall that p is the number of variables and n is the number of observations. For a thorough

evaluation of the algorithm, we simulated data for both n > p and n < p cases.

We used real and synthetic networks to simulate data. Real networks were downloaded

from the Bayesian networks online repository (Scutari, Accessed: 2019). We duplicated some

of them to further increase the network size. Synthetic DAG structures were constructed

30

Algorithm 4 Tuning parameter selection by BIC.

Input: Initial permutation P0 and a grid of values {θ(i)} = {(γ(i), λ(i))}.
Output: Optimal index i∗ in the grid.

1: Define L̂(θ) := arg minL∈Lp fθ(L;P0) computed by Algorithm 2.

2: Let BIC(θ) := 2`
(
L̂(θ), P0

)
+ ‖L̂(θ)‖0 log (max{n, p}) .

3: Output i∗ = arg mini BIC(θ(i)).

using the sparsebn package (Aragam et al, 2019). Given a DAG structure, we sampled the

edge coefficients βij uniformly from [−0.8,−0.5]∪ [0.5, 0.8] and set the noise variance to one.

We then calculated the covariance matrix according to (2.3) and normalized its diagonal

elements to one. Consequently, the variances of {X1, . . . , Xp} were identical. We used the

following networks to generate observational data, denoted by the network name and (p, s0),

where s0 is the number of edges after duplication: 4 copies of Hailfinder (224, 264), 1 copy

of Andes (223, 338), 2 copies of Hepar2 (280, 492), 4 copies of Win95pts (304, 448), 1 copy

of Pigs (441, 592), and random DAGs, rDAG1 (300, 300) and rDAG2 (300, 600). The sample

size n = 200 for real networks and n = 240 for synthetic graphs in the n < p case. In the

low-dimensional setting n > p, the sample size n = 450, 500, 600, 600 for rDAG1, Win95pts,

Pigs and rDAG2, respectively, and n = 400 for the other networks.

In the observational data setting, we compared our algorithm with the following BN

learning algorithms: the coordinate descent (CD) algorithm (Aragam and Zhou, 2015), the

standard greedy hill climbing (HC) algorithm (Gámez et al, 2011), the greedy equivalence

search (GES) (Chickering, 2002), the Peter-Clark (PC) algorithm (Spirtes and Glymour,

1991), the max-min hill-climbing (MMHC) algorithm (Tsamardinos et al, 2006), and the

genetic algorithm (GA) (Champion et al, 2018).

The CD algorithm optimizes a regularized log-likelihood function by a blockwise update

on (βij, βji) while checking the acyclicity constraint before each update. The HC algorithm

performs a greedy search over the DAG space by starting from a certain initial state, per-

forming a finite number of local changes and selecting the DAG with the best improvement

in each local change. The GES algorithm searches over the equivalence classes and utilizes

31

greedy search operators on the current state to find the next one, of which the output is

an equivalence class of DAGs. The PC algorithm performs conditional independence tests

to identify edges and orients edge directions afterwards. The MMHC algorithm constructs

the skeleton of a Bayesian network via conditional independence tests and then performs a

greedy hill climbing search to orient the edges via optimizing a Bayesian score. The GA de-

composes graph estimation into two optimization sub-problems: node ordering search with

mutation and crossover operators, and structure optimization by an adaption of the least

angle regression (Efron et al, 2004).

Among these methods, PC is a constraint-based method, and MMHC is a hybrid method.

Other methods, CD, HC, GES and GA, are all score-based, where CD and HC search over the

DAG space, GES searches over the equivalence classes, and GA searches over the permutation

space. Our method is a score-based search over the permutation space, similar to GA.

Our ARCS algorithm (Algorithm 1) may take an initial permutation P0 provided by a

local search method. In this study, we use the CD and GES algorithms to provide an initial

permutation, and call the corresponding implementation ARCS(CD) and ARCS(GES). To

partially preserve properties of the input initial permutation, we start with a low temperature

T (0) = 1. The output of the CD algorithm is a DAG for which we find a topological sort

to define P0. The GES algorithm outputs a completed partially directed acyclic graph

(CPDAG). We then generate a DAG in the equivalence class of the estimated CPDAG, and

initialize ARCS with a topological sort of this DAG.

We implemented the ARCS algorithm in Matlab, with source code available at https:

//github.com/yeqiaoling/arcs_bn. We used the following R packages for other methods:

sparsebn (Aragam et al, 2019) for the CD algorithm, rcausal (Ramsey, 2015) for the GES,

GIES (for experimental data) and PC algorithms, bnlearn (Scutari, 2010) for the MMHC

and HC algorithms, and GADAG (Champion et al, 2018) for the GA. Among score-based

methods, HC and GES used the BIC scoring function for Gaussian data; CD used an MCP-

regularized likelihood scoring function, with an internal tuning parameter selection method;

GA used an `1-regularized likelihood, for which we applied grid search for tuning parameter

selection.

32

https://github.com/yeqiaoling/arcs_bn
https://github.com/yeqiaoling/arcs_bn

2.5.2 Accuracy metrics

Among all methods applied to observational data, ARCS, CD, HC and MMHC output

DAGs, while the GES and PC algorithms output CPDAGs. Given these estimates, we need

to evaluate the performance of each method. To standardize the performance metrics in

observational data setting, we transfer an estimated DAG into its CPDAG before calculating

the following metrics.

Define P, TP, FP, M, R as the numbers of estimated edges, true positive edges, false

positive edges, missing edges and reversed edges, respectively, all with respect to CPDAGs.

P is the number of edges in the estimated graph. FP is the number of edges in the estimated

graph skeleton but not in the true skeleton. M counts the number of edges in the true skeleton

but not in the skeleton of the estimated graph. TP reports the number of consistent edges,

including edge orientation for directed edges, between the estimated CPDAG and the true

CPDAG. Lastly, the number of reversed edges R = P − TP − FP and so R includes both

incorrectly oriented edges and those edges that are oriented in one CPDAG but undirected

in the other.

Denote by s0 the number of edges in the true CPDAG. The overall accuracy of a method

is measured by the structural Hamming distance (SHD) and Jaccard index (JI), where

SHD = R + FP + M and JI = TP/(s0 + P − TP). A method has better performance if

it achieves a lower SHD and/or a higher JI.

2.5.3 Structure learning accuracy

We used large networks, where p ∈ (200, 450) and s0 ∈ (250, 600], to simulate observational

data with n < p and n > p. For each setting (p, s0, n), we generated 20 datasets, and ran

CD, ARCS(CD), GES, ARCS(GES) and other methods (PC, HC, MMHC and GA) with

a maximum time allowance of 10 minutes per dataset. The HC and MMHC algorithms

had an upper-bound of the in-degree number as 2. We tried a higher maximum in-degree,

but it resulted in a large FP. MMHC and PC were run with a significance level of 0.01

in conditional independence tests. We ran the CD algorithm with an MCP regularized

33

Table 2.1: Comparison between ARCS and initial estimates on observational data. ARCS improved GES

and CD estimates, and ARCS(GES) achieved the best accuracy for every network.

Network
Method

n < p n > p

(p, s0) TP R FP SHD (sd) JI (sd) TP R FP SHD (sd) JI (sd)

Hailfinder ARCS(GES) 203 42 16 76 (25) 0.64 (0.11) 237 21 15 42 (13) 0.79 (0.06)

(224, 264) ARCS(CD) 183 58 33 114 (18) 0.51 (0.06) 195 60 41 110 (26) 0.54 (0.07)

GES 180 53 10 94 (22) 0.56 (0.10) 228 26 18 54 (12) 0.74 (0.05)

CD 145 93 31 150 (17) 0.38 (0.05) 150 94 34 148 (13) 0.38 (0.04)

Andes ARCS(GES) 274 33 27 91 (33) 0.69 (0.10) 295 27 26 70 (29) 0.76 (0.08)

(223, 338) ARCS(CD) 228 75 65 174 (37) 0.48 (0.07) 238 72 66 166 (63) 0.51 (0.10)

GES 218 36 17 137 (18) 0.56 (0.06) 271 35 36 103 (32) 0.67 (0.09)

CD 169 112 63 232 (15) 0.33 (0.03) 184 112 70 223 (35) 0.36 (0.05)

Hepar2 ARCS(GES) 300 119 64 255 (27) 0.45 (0.04) 309 121 74 257 (41) 0.45 (0.05)

(280,492) ARCS(CD) 263 155 82 312 (37) 0.36 (0.04) 284 152 87 294 (55) 0.39 (0.06)

GES 238 110 62 316 (24) 0.36 (0.04) 299 126 84 277 (28) 0.43 (0.04)

CD 205 156 100 388 (20) 0.27 (0.03) 229 168 121 384 (31) 0.29 (0.04)

Win95pts ARCS(GES) 348 69 34 134 (21) 0.63 (0.05) 379 58 38 107 (19) 0.70 (0.04)

(304, 448) ARCS(CD) 301 104 59 206 (22) 0.49 (0.04) 318 114 111 241 (51) 0.48 (0.07)

GES 236 78 21 232 (17) 0.43 (0.04) 320 88 64 192 (17) 0.53 (0.03)

CD 177 169 47 317 (26) 0.27 (0.04) 187 172 39 300 (26) 0.28 (0.04)

Pigs ARCS(GES) 446 102 27 172 (90) 0.62 (0.13) 466 107 46 172 (40) 0.63 (0.05)

(441, 592) ARCS(CD) 401 145 47 239 (73) 0.51 (0.10) 437 136 57 212 (55) 0.56 (0.06)

GES 432 112 38 198 (18) 0.58 (0.03) 467 122 57 182 (23) 0.61 (0.04)

CD 324 224 106 374 (26) 0.35 (0.02) 334 243 175 433 (43) 0.33 (0.03)

rDAG1 ARCS(GES) 289 7 1 12 (7) 0.94 (0.03) 297 3 1 4 (6) 0.98 (0.03)

(300,300) ARCS(CD) 253 43 9 56 (14) 0.72 (0.06) 264 35 20 56 (20) 0.75 (0.08)

GES 274 8 1 27 (6) 0.89 (0.03) 293 4 2 9 (8) 0.96 (0.04)

CD 189 104 21 132 (18) 0.45 (0.05) 196 98 24 127 (17) 0.47 (0.05)

rDAG2 ARCS(GES) 562 20 12 51 (12) 0.89 (0.03) 584 13 11 27 (14) 0.94 (0.03)

(300,600) ARCS(CD) 481 90 52 171 (41) 0.65 (0.06) 491 99 106 215 (62) 0.61 (0.06)

GES 470 29 6 136 (20) 0.74 (0.04) 558 21 17 58 (15) 0.88 (0.03)

CD 382 159 59 276 (32) 0.47 (0.03) 379 165 61 283 (25) 0.46 (0.03)

In this and all subsequent tables in this chapter, reported results are rounded averages over 20 datasets.

34

likelihood, in which γ = 2 and λ was chosen by a default model selection mechanism. GA

was run for a maximum of 104 iterations, using the default population size and the default

rates of mutation and crossover. We tried a larger population size for GA, but it was too

time-consuming.

Our methods, ARCS(CD) and ARCS(GES), initialized with permutations from CD and

GES estimates, were run for a maximum of N = 104 iterations, with T (0) = 1, T (N) = 0.1,

and reversal length m = 4 (Algorithm 1). The temperature decreased geometrically as

T (i) = αiT (0), where α is determined by T (0), T (N) and N . A p-value cutoff of 10−5 was used

in the refinement step (Algorithm 3). For the networks we considered, on average, 500 tests

were performed in the refinement step, and the cutoff was chosen by Bonferroni correction

to control the familywise error rate at level 0.005. In fact, our results were almost identical

for any p-value cutoff between 10−3 and 10−5.

To perform a complete comparison, we applied the structure refinement step (Section 2.4.3)

to other competing methods as well. It turned out that ARCS, CD, HC and MMHC ben-

efitted from this additional step. Therefore, in this section, we report the results of these

methods with the refinement step. Section 2.5.6 evaluates the effect of this structure refine-

ment step, including results of these methods before refinement.

ARCS versus CD and GES. Table 2.1 reports the average performance metrics across

20 datasets for 7 networks (5 real and 2 random networks) using CD, ARCS(CD), GES

and ARCS(GES). We were interested in the potential improvement of ARCS upon its ini-

tial permutations. It is indeed confirmed by the results in the table that ARCS(CD) and

ARCS(GES) outperformed CD and GES, respectively, for every network, achieving lower

SHDs and higher JIs. The reduction in SHD was close to or above 20% across networks.

ARCS always increased TP, while maintaining or slightly reducing FP. The annealing pro-

cess identified more TP edges, while the refinement step (Algorithm 3) cut down the FP

edges given the ordering and parent sets learned through simulated annealing. In the case of

n < p for the Pigs network, the high standard deviation of the SHDs of ARCS was caused

by a couple of outliers. If we excluded the corresponding data sets, the average SHD of

ARCS(GES) and ARCS(CD) would decrease to 153 and 225 with standard deviations of 23

35

and 41, respectively.

ARCS(GES) versus other methods. We also compared ARCS(GES) with other existing

methods, including HC, PC, MMHC and GA. Table 2.2 summarizes the average performance,

where ARCS(GES) outperforms competing algorithms by a great margin. The HC algorithm

tended to output a denser DAG than the truth, leading to a large FP. The PC algorithm

had a relatively large number of reverse edges, causing a high SHD. The MMHC algorithm

had a lower SHD than some other algorithms, but the SHD difference between ARCS(GES)

and MMHC was still large. The PC and MMHC algorithms were slow for some networks,

and thus are absent in the results for these networks. The GA was formulated in a similar

way as ARCS(GES), but the TPs of GA estimates were much lower, resulting in large SHDs

for the tested networks.

It is worth mentioning that ARCS(GES) outperformed other methods substantially for

larger networks such as Pigs (p = 441, s0 = 592). MMHC and PC failed to complete a single

run on the Pigs network within 10 minutes, while HC and GA had very low accuracies. We

suspect that the Pigs network has a certain structure that is particularly difficult to estimate,

a hypothesis that merits more investigation.

Additional tests. We also compared ARCS with DAGs with NO TEARS (NOTEARS),

a continuous optimization method for structure learning of BNs developed recently Zheng

et al (2018). This method is not restricted to continuous data, and thus more general than

ARCS. The current version of NOTEARS code online (Zheng, 2019) required a very large

amount of memory for large DAGs such as those in Tables 2.1 and 2.2 (on 2016 MacBook

Pro, 2.9 GHz Intel Core i5, 16 GB memory). Therefore, we restricted the comparison to

relatively small DAGs. To this end, we generated observational data from 9 graphs (with

at most 20 nodes), and then applied grid search to choose NOTEARS’s tuning parameter

since it required a pre-fixed tuning parameter. In particular, we applied a grid search on

{5×10−3, 10−3, 5×10−4, 10−4, 10−5}, where the highest accuracy, measured by SHD, occurred

at tuning parameter λ = 5× 10−4.

Figure 2.3 compares performances of NOTEARS and ACRS(GES) on observational data

36

Table 2.2: ARCS against other methods on observational data. ARCS(GES) achieved the best SHD and JI

among all methods for every network.

Network
Method

n < p n > p

(p, s0) TP R FP SHD (sd) JI (sd) TP R FP SHD (sd) JI (sd)

Hailfinder ARCS(GES) 203 42 16 76 (25) 0.64 (0.11) 237 21 15 42 (13) 0.79 (0.06)

(224, 264) HC 151 80 31 144 (13) 0.40 (0.04) 151 87 50 163 (19) 0.38 (0.06)

PC 41 167 13 236 (7) 0.09 (0.02) 45 191 14 233 (14) 0.10 (0.03)

GA 51 70 72 284 (14) 0.13 (0.02) 43 68 28 248 (13) 0.12 (0.03)

Andes ARCS(GES) 274 33 27 91 (33) 0.69 (0.10) 295 27 26 70 (29) 0.76 (0.08)

(223, 338) HC 142 112 62 258 (19) 0.28 (0.03) 148 121 85 275 (27) 0.27 (0.04)

PC 84 169 13 267 (10) 0.16 (0.02) 85 202 16 269 (10) 0.15 (0.02)

GA 57 87 72 352 (14) 0.12 (0.02) 36 84 33 335 (9) 0.08 (0.02)

MMHC 147 88 3 194 (15) 0.34 (0.05) 171 98 4 171 (16) 0.39 (0.05)

Hepar2 ARCS(GES) 300 119 64 255 (27) 0.45 (0.04) 309 121 74 257 (41) 0.45 (0.05)

(280, 492) HC 170 149 83 405 (20) 0.24 (0.03) 174 155 95 413 (19) 0.23 (0.02)

PC 96 154 30 427 (13) 0.14 (0.02) 108 189 33 417 (15) 0.15 (0.02)

GA 70 107 143 565 (14) 0.09 (0.01) 51 98 77 518 (14) 0.08 (0.02)

MMHC 86 156 20 426 (15) 0.13 (0.02) 130 158 21 383 (15) 0.19 (0.02)

Win95pts ARCS(GES) 348 69 34 134 (21) 0.63 (0.05) 379 58 38 107 (19) 0.70 (0.04)

(304, 448) HC 147 177 54 355 (19) 0.22 (0.03) 148 212 111 410 (17) 0.19 (0.02)

PC 124 207 28 352 (12) 0.18 (0.02) 134 264 27 341 (12) 0.18 (0.02)

GA 83 114 57 422 (12) 0.13 (0.02) 41 86 12 419 (7) 0.07 (0.01)

MMHC 157 147 4 295 (12) 0.26 (0.02) 177 191 3 274 (11) 0.28 (0.02)

Pigs ARCS(GES) 446 102 27 172 (90) 0.62 (0.13) 466 107 46 172 (40) 0.63 (0.05)

(441, 592) HC 353 174 102 341 (30) 0.41 (0.04) 367 173 132 357 (41) 0.41 (0.04)

GA 79 187 91 605 (12) 0.09 (0.01) 46 150 22 569 (10) 0.06 (0.01)

rDAG1 ARCS(GES) 289 7 1 12 (7) 0.94 (0.03) 297 3 1 4 (6) 0.98 (0.03)

(300, 300) HC 176 108 29 153 (13) 0.40 (0.03) 178 113 45 168 (18) 0.39 (0.04)

PC 90 202 30 240 (11) 0.17 (0.02) 83 215 31 248 (11) 0.15 (0.02)

GA 64 81 33 269 (9) 0.15 (0.02) 54 75 6 253 (10) 0.14 (0.03)

MMHC 193 89 1 108 (8) 0.50 (0.03) 191 103 0 109 (8) 0.47 (0.03)

rDAG2 ARCS(GES) 562 20 12 51 (12) 0.89 (0.03) 584 13 11 27 (14) 0.94 (0.03)

(300, 600) HC 253 180 51 398 (20) 0.31 (0.02) 248 201 76 428 (17) 0.28 (0.02)

PC 194 307 7 413 (16) 0.21 (0.02) 175 389 6 431 (13) 0.18 (0.02)

GA 108 140 63 555 (15) 0.14 (0.02) 42 96 5 563 (7) 0.06 (0.01)

MMHC 277 156 0 323 (10) 0.37 (0.02) 284 191 0 316 (17) 0.36 (0.03)

If a method is absent for a network, that means, it took more than 10 minutes to run on a singe dataset,

and thus is excluded from the comparison.

37

generated from 9 graphs. ARCS achieved higher accuracy than NOTEARS consistently for

most graphs (8 out of 9), except Sachs (p = 11, s0 = 17). The advantage of ARCS over

NOTEARS grew with the size and complexity of the true DAG.

Asia
Sach

s
rDAG3

rDAG4
rDAG5

Alarm

Insuran
ce

Barle
y

rDAG6

Network

0

20

40

60

80

100

120

SH
D

NOTEARS vs ARCS: SHD
Method

NOTEARS
ARCS

Figure 2.3: SHD comparison between NOTEARS and ARCS.

We also tested another order-based algorithm, linear structural equation model learning

(LISTEN) (Ghoshal and Honorio, 2018), which estimates Gaussian DAG structure by a

sequential detection of ordering. A key assumption of LISTEN is that the noise variables have

equal variances. Moreover, the algorithm requires a prespecified regularization parameter for

the score metric. To compare with this algorithm, we adapted our data generation process

to satisfy the equal-variance assumption.

Code that implements LISTEN is available online (Ghoshal, 2019), which requires a pre-

specified regularization parameter λ. We tried regularization values from {0.1, 0.01, 0.001},
where λ = 0.001 had the best performance. It is also the suggested value in the work of

Ghoshal and Honorio (2018). The LISTEN code could not handle high-dimensional data,

so we compared ARCS and LISTEN on the observational data with n > p generated from

Hailfinder and Andes networks as used in Table 2.1 in the main text. The performance

of ARCS(GES) and LISTEN is shown in Figure 2.4. For Hailfinder, the average SHD of

ARCS(GES) was 43, which was 12.42% of the SHD (346) achieved by LISTEN. For Andes,

ARCS(GES) had an average SHD of 80, 18.18% of the average SHD (440) by LISTEN.

This test demonstrates that ARCS(GES) outperformed LISTEN substantially on the tested

38

networks.

0
10

0
20

0
30

0
40

0
50

0

SHD comparison

S
H

D

Hailfinder Andes

ARCS(GES)
LISTEN

Figure 2.4: A comparison between ARCS(GES) and LISTEN.

2.5.4 Test data likelihood comparison

As discussed in Remark 2, an estimated DAG (or CPDAG) defines a multivariate Gaussian

distribution for X via (2.3). To evaluate the accuracy in estimating the covariance matrix Σ0,

we compared test data log-likelihood as follows. Given an estimated DAG, we applied least-

squares regression of each node on its parents to estimate B0 and Ω0. Then we simulated

test data under the same Gaussian SEM with the true parameters (B0,Ω0) and calculated

log-likelihood of the test data. A higher test data log-likelihood indicates a better estimate

of Σ0.

Figure 2.5 shows the test data log-likelihood of a few BN learning methods, including

ARCS(GES), GES, CD, HC and GA, on four networks in the case of n < p. The case

of n > p shows a similar pattern and is thus omitted for brevity. We shifted test data

log-likelihoods by the median of ARCS, so that the ARCS medians were always zero. The

log-likelihood distributions for all other methods were below zero, indicating that ARCS

achieved significantly higher accuracy in estimating Σ0. In all these results, we normalized

the log-likelihood by the sample size n and the dimension of the problem p.

39

0.0 0.2 0.4 0.6 0.8 1.0
Method

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 lo
g-

lik
el

ih
oo

d

-0.15

-0.10

-0.05

0.00

Hailfinder

-0.20

-0.15

-0.10

-0.05

0.00

Andes

ARCS GES CD HC GA
-0.20

-0.10

0.00

Hepar2

ARCS GES CD HC GA
-0.15

-0.10

-0.05

0.00
Win95pts

Figure 2.5: Test data log-likelihood comparison among BN learning methods. Log-likelihoods

are shifted by the median of ARCS (the dashed line).

2.5.5 Precision matrix estimation

For a given P , the minimizer of the RC loss f(L;P) (2.12) is a sparse Cholesky factor

of PΣ−1
0 P>, the precision matrix Σ−1

0 after permuting rows and columns according to P .

Instead of joint optimization over (L, P) in (2.13), one could first estimate a sparse precision

matrix Θ̂ and then learn a DAG structure though Cholesky decomposition of Θ̂ as in (2.3).

The Cholesky decomposition can be done with a given ordering or by searching for an

order that leads to a sparse Cholesky factor. In this section, we compare ARCS(GES),

or simply ARCS, against two precision matrix estimation methods, followed by Cholesky

decomposition, to clarify their differences.

The first approach estimates a precision matrix via modified Cholesky decomposition

(MCD) (Lee and Lee, 2018) which requires an input ordering of the variables. We provided

MCD with ARCS initial and final orders, which we have called MCD and MCD*, respectively.

The initial order of ARCS was found by GES. Given an estimated sparse precision matrix

and the input order, we found the corresponding DAG structure encoded by the Cholesky

40

factor, and then refined the DAG structure using Algorithm 3, the same refinement step

used by ARCS. The comparison against MCD will show the advantage of joint minimization

over (L, P), while the comparison against MCD* demonstrates the effectiveness of ARCS in

terms of estimating precision matrices, since the two methods use exactly the same ordering

in Cholesky decomposition.

The second approach is graphical Lasso (Friedman et al, 2008) followed by a Cholesky

decomposition. Given a sparse precision matrix Θ̂ estimated by graphical Lasso, we used the

approximate minimum degree ordering algorithm (Amestoy et al, 1996), a heuristic common

in numerical linear algebra, to find a permutation P such that the Cholesky factor of P Θ̂P>

is sparse. We call this approach GC. We also applied the Cholesky decomposition to P̂ Θ̂P̂>,

where P̂ is the permutation found by ARCS. We call this approach GC*. The comparison

between ARCS and GC will highlight the importance of imposing sparsity on L in our

formulation (2.13), rather than on Σ−1 as in GC. The difference between GC* and GC will

show the effectiveness of the ordering obtained by ARCS, relative to the minimum degree

ordering, in achieving a sparse Cholesky factorization.

We used R package CovTools to run MCD, the glasso package to run graphical Lasso,

and Matlab function chol for the approximate minimum degree algorithm. Based on a

grid search on a sample dataset, we chose the tuning parameter of 0.001 for graphical Lasso.

The upper bound on the bandwidth of the precision matrix, as required by CovTools, was

set to 10.

Table 2.3 compares the structure recovery accuracy among ARCS, GC*, GC, MCD* and

MCD. ARCS showed the best performance with a great margin, followed by GC* which used

the permutation found by ARCS to complete the Cholesky decomposition. The observation

that GC* consistently outperformed GC indicates that ARCS found a better topological

sort than the minimum degree algorithm. Both MCD and MCD* suffered from high SHDs

and low JIs, which shows that imposing sparsity on the precision matrix and decoupling its

estimation from the order search would be suboptimal for DAG structure learning.

We also compared test data log-likelihood among these methods in Figure 2.6. Interest-

41

Table 2.3: ARCS against precision matrix estimation methods

Network
Method

n < p n > p

(p, s0) SHD(sd) JI(sd) SHD(sd) JI(sd)

Hailfinder ARCS 76 (25) 0.64 (0.11) 42 (13) 0.79 (0.06)

(224, 264) GC* 128 (15) 0.53 (0.06) 82 (15) 0.64 (0.06)

GC 297 (10) 0.09 (0.01) 236 (19) 0.16 (0.05)

MCD* 290 (7) 0.03 (0.02) 304 (11) 0.06 (0.02)

MCD 285 (10) 0.06 (0.02) 300 (12) 0.10 (0.03)

Andes ARCS 91 (33) 0.69 (0.10) 70 (29) 0.76 (0.08)

(223, 338) GC* 98 (24) 0.67 (0.08) 169 (19) 0.51 (0.05)

GC 597 (114) 0.04 (0.05) 266 (75) 0.29 (0.17)

MCD* 335 (16) 0.07 (0.05) 345 (25) 0.11 (0.04)

MCD 322 (14) 0.09 (0.04) 321 (15) 0.14 (0.03)

Hepar2 ARCS 255 (27) 0.45 (0.04) 257 (41) 0.45 (0.05)

(280, 492) GC* 392 (24) 0.32 (0.03) 328 (35) 0.38 (0.04)

GC 546 (27) 0.16 (0.02) 497 (28) 0.19 (0.02)

MCD* 594 (16) 0.02 (0.01) 659 (22) 0.02 (0.01)

MCD 557 (13) 0.07 (0.02) 596 (15) 0.09 (0.02)

Win95pts ARCS 134 (21) 0.63 (0.05) 107 (19) 0.70 (0.04)

(304, 448) GC* 160 (17) 0.58 (0.04) 402 (11) 0.10 (0.02)

GC 390 (14) 0.16 (0.02) 428 (7) 0.06 (0.01)

MCD* 450 (4) 0.01 (0.01) 462 (7) 0.03 (0.01)

MCD 446 (5) 0.03 (0.01) 453 (9) 0.06 (0.01)

ingly, although not designed for precision matrix estimation, ARCS achieved a much higher

test data likelihood compared to all the precision matrix estimation methods. In particular,

the fact that ARCS outperformed MCD* implies that our method did a better job at esti-

mating precision matrices compared to MCD, even though the latter was provided with the

same ordering finally used by ARCS.

42

0.0 0.2 0.4 0.6 0.8 1.0

Method

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 lo
g-

lik
el

ih
oo

d

0.6

0.4

0.2

0.0

n<
p

Hailfinder Andes Hepar2 Win95pts

ARCS GC
MCD*

MCD
0.6

0.4

0.2

0.0

n>
p

ARCS GC
MCD*

MCD
ARCS GC

MCD*
MCD

ARCS GC
MCD*

MCD

Figure 2.6: Test data log-likelihood comparison among ARCS and precision matrix estima-

tion methods.

2.5.6 Effectiveness of refinement

Recall that we employed the constraint-based refinement step in ARCS after annealing (Sec-

tion 2.4.3). To analyze the benefit of this post-processing step, we applied the same refine-

ment step to other methods except PC and GA. We excluded PC because as a constraint-

based method, it has already performed all conditional independence tests. The GA es-

timated graphs had the lowest TPs in Table 2.2, and thus further removing edges by the

refinement step would not improve its overall accuracy. Note that GES outputs a CPDAG,

so we applied the refinement step on a randomly chosen DAG in the equivalence class of the

estimated CPDAG.

We summarize the mean SHDs before and after the refinement step for each method in

Table 2.4. The refinement step reduced the SHDs for most of the methods included in this

comparison. It worked particularly well for HC with a substantial decrease in SHD. The

improvements for ARCS, CD and MMHC were quite substantial for some datasets while

marginal for other datasets. There was no change in the GES estimates after the refinement

43

Table 2.4: Comparison on SHDs before (B) and after (A) the refinement step.

SHD
ARCS(GES) ARCS(CD) CD HC MMHC GES

B A B A B A B A B A

Hailfinder 129 76 165 114 151 150 344 144 − − 94

Andes 125 91 256 174 237 232 356 258 203 194 137

Hepar2 290 255 425 312 411 388 513 405 430 426 316

Win95pts 205 134 293 206 319 317 544 355 316 295 232

Pigs 193 172 263 239 974 374 547 341 − − 198

rDAG1 13 12 62 56 137 132 437 153 143 108 27

rDAG2 68 51 200 171 389 276 483 398 328 323 136

Hailfinder 43 42 112 110 148 148 335 163 − − 54

Andes 71 70 174 166 224 223 341 275 181 171 103

Hepar2 273 257 304 294 385 384 505 413 389 383 277

Win95pts 110 107 244 241 300 300 519 410 295 274 192

Pigs 173 172 214 212 436 433 518 357 − − 182

rDAG1 5 4 56 56 128 127 420 168 146 109 9

rDAG2 27 27 221 215 283 283 481 428 320 316 58

The top panel shows results for n < p and the bottom for n > p.

step. It is observed that ARCS(GES) achieved the smallest SHD, after the refinement step

was applied to all the methods. Moreover, ARCS(GES) without refinement had already

outperformed the majority of the competing methods, except for the case Hailfinder (n <

p) when compared against GES.

2.5.7 Effectiveness of BIC selection

Given an initial permutation, we used the BIC to choose tuning parameters (γ, λ) before

applying the ARCS algorithm (Section 2.4.4). In Tables 2.2, the number of predicted edges

(TP+R+FP) by ARCS(GES) is closer to s0 than any other competing method in every

44

Fr
eq

ue
nc

y

50 100 150 200 250 300 350

0
10

20

BIC selection with a GES initial permutation

Andes (p, s0, n) = (223, 338, 200)
Fr

eq
ue

nc
y

50 100 150 200 250 300 350

0
10

20

BIC selection with a GES initial permutation

Andes (p, s0, n) = (223, 338, 400)

SHD

Fr
eq

ue
nc

y

Figure 2.7: Performance of the BIC selected parameter among a grid of (γ, λ) given an initial

permutation. Tuning parameters that lead to lower SHDs than the BIC selection are shown

in gray.

network. This observation signifies the effectiveness of our parameter selection method by

BIC. To further study its effect, we compared DAGs estimated with all values on a grid of

(γ, λ) by ARCS(GES), or simply ARCS.

Figure 2.7 shows the histograms of the SHDs of ARCS estimates for a grid of tuning

parameters. We used the Andes datasets with (p, s0) = (223, 338) and n ∈ {200, 400} here.

The shaded part of a histogram reports SHDs achieved with choices of tuning parameters on

the grid that were smaller than the SHD corresponding to the BIC selected parameters. Each

histogram has a high spike of large SHD, corresponding to large values of λ that generate

almost empty graphs. The SHDs of ARCS with BIC selection corresponded to the 16th and

3rd percentiles in low and high sample sizes, respectively. These low percentiles confirm that

the BIC selection works well for choosing the tuning parameters. Moreover, in our tests, the

BIC usually selected γ∗ = 2, the smallest provided value for γ. Since for small γ, the MCP

is closer to the `0 penalty and far from the `1 norm, this choice of γ indicates the preference

of concave penalties over `1 in estimating sparse DAGs. Some of CD’s and GA’s inferior

45

performances, such as CD on the Pigs network (Table 2.1) and the overall performance of

GA (Tables 2.2), were potentially caused by a bad choice of their tuning parameters. This

demonstrates the importance of our data-driven selection scheme for a regularized likelihood

method.

2.5.8 Empirical loss evaluation

To quantify the empirical loss and global search ability of our ARCS algorithm, we compared

the BIC score of an ARCS estimate against the global minimum BIC score. A global min-

imum can be identified by integer linear programming (ILP) Cussens et al (2017). With a

properly chosen upper bound on the parent size, and given sufficient computing budget, this

method is guaranteed to find a global minimizer. We set the upper bound to the maximum

parent size in the DAG estimated by ARCS(GES), and then calculated local BIC scores of

all possible parent sets for each node, which were input to ILP implemented in the GOBNILP

software package Cussens et al (2017).

We chose relatively small DAGs (p ≤ 20) in this comparison and simulated datasets with

sample size n = 5p. For each dataset, we computed the BIC score of the DAG estimated

by ARCS(GES) and found the minimum BIC score by ILP. Define the relative BIC increase

of ACRS compared to ILP as (BIC(ARCS) − BIC(ILP))/BIC(ILP). Figure 2.8 shows the

relative increase distribution across 20 datasets generated from each of the selected DAGs.

Since an upper bound on parent set size has been given to ILP, its minimum score may not

be best possible BIC score. As expected, the BIC score of ARCS was slightly higher than

the minimum score found by ILP. However, it is comforting to see the relative BIC increase

of ARCS was less than 2% for almost all the datasets. Note that the loss function of ARCS

may be quite different from the BIC when n is small. This is the reason why ARCS had the

largest relative BIC increase for the smallest 8-node graph Asia for which the sample size

n = 40.

Note that ILP is computationally intensive. In our tests, we allocated 20 hours to ILP for

each single dataset generated from four graphs, the three reported in Figure 2.8 and rDAG4

46

Asia (8,8) Sachs (11, 17) rDAG3 (20, 20)
Network

0.0%

0.5%

1.0%

1.5%

2.0%

re
la

tiv
e

BI
C

in
cr

ea
se

Figure 2.8: Distributions of the relative BIC increase. The numbers following each DAG

report its (p, s0).

(p = 20, s0 = 40). Yet it still failed to find an optimum within the time constraint for the

largest graph rDAG4. Therefore, we excluded this graph from the figure. Meanwhile ARCS

took less than one minute to complete every single run for these graphs.

2.6 Results on experimental data

To generate experimental datasets, we generated p blocks of observations, in each of which a

single variable was under intervention. For each block, we generated 5 observations, and thus

n = 5p. Networks in this experiment were smaller, with p ≤ 50 and s0 ≤ 100 (see Table 2.5).

Using these networks, we also simulated observational data of the same sample size, n = 5p,

to study the effect of experimental interventions. Since the number of conditional indepen-

dence tests were smaller in this setting, we used a p-value cutoff of 10−3 in each refinement

test of the ARCS algorithm (Algorithm 3) to control the overall false discovery rate.

To assess the accuracy on experimental data, we compare an estimated DAG with the

true one to calculate the numbers of false positives (FP), missing edges (M), reverse edges

(R) and true positives (TP). FP and M follow the same calculations as in the observational

settings. R counts the number of edges whose orientations are opposite between the two

DAGs, and TP = P − R − FP. Note that the definitions of R and TP are different from

those for observational data, because under the intervention setting used in this comparison,

47

the true causal DAG is identifiable (Fu and Zhou, 2013). The structural Hamming distance

(SHD) and the Jaccard index (JI) are then calculated as in the observational case.

2.6.1 Comparison on experimental data

In this setting, we compared ARCS with the CD algorithm (Fu and Zhou, 2013) and the

greedy interventional equivalence search (GIES) algorithm (Hauser and Bühlmann, 2012),

both of which can handle experimental interventions. We initialize ARCS with CD and

GIES estimates and call them ARCS(CD) and ARCS(GIES), respectively.

Table 2.5 compares the CD, ARCS(CD), GIES and ARCS(GIES) algorithms, averaging

over 20 datasets for each type of networks. Both ARCS(GIES) and ARCS(CD) achieved

dramatic improvements upon GIES and CD algorithms for every single network. This ob-

servation is consistent with the findings from the observational data and further confirms

that the ARCS algorithm is a powerful tool for improving local estimates. Different from

the observational data results (Table 2.1), ARCS(CD) usually had better performance than

ARCS(GIES) on experimental data. The standard deviation, relative to the mean, of the re-

sults here was comparable to that of the observational data results, and thus is not reported

in Table 2.5 for brevity.

We also compared the performance of our method ARCS(CD) on experimental and ob-

servational data with the same sample size n = 5p. Figure 2.9 plots the SHDs of ARCS(CD)

on 20 datasets, with a side-by-side comparison between observational and experimental data.

For some networks, such as rDAG6 and Ins., the estimated DAGs using experimental data

had much lower SHDs than using the observational data. For some small networks, such

as Asia (p = 8, s0 = 8), ARCS(CD) achieved a low SHD on observational data and the

improvement when using experimental data was not substantial.

Because estimated DAGs did not have the same number of predicted edges, we further

compared the reversed edge proportion (R/P). The DAGs estimated by ARCS(CD) had a

lower R/P on the experimental than the observational data for all networks. The decrease

in R/P with experimental interventions was remarkable, as Figure 2.9 shows. This finding

48

Table 2.5: Performance comparison on experimental data.

Network
Method P TP R FP SHD JI

(p, s0, n)

Asia CD 14 6 1 7 8 0.47

(8, 8, 40) ARCS(CD) 5 5 1 0 4 0.53

GIES 9 1 6 2 9 0.07

ARCS(GIES) 5 5 1 0 4 0.53

Sachs CD 23 9 5 10 17 0.34

(11, 17, 55) ARCS(CD) 12 10 2 1 8 0.50

GIES 17 4 10 4 17 0.13

ARCS(GIES) 12 10 2 1 8 0.51

Ins. CD 56 30 12 14 36 0.39

(27, 52, 135) ARCS(CD) 54 40 7 7 18 0.63

GIES 72 14 34 24 62 0.13

ARCS(GIES) 57 38 10 10 24 0.56

Alarm CD 51 35 9 7 16 0.57

(37, 46, 185) ARCS(CD) 48 43 3 2 5 0.86

GIES 70 6 40 24 65 0.05

ARCS(GIES) 51 40 6 6 12 0.70

Barley CD 85 52 17 16 48 0.45

(48, 84, 240) ARCS(CD) 103 67 13 23 41 0.58

GIES 146 21 58 67 129 0.10

ARCS(GIES) 122 44 35 44 84 0.28

rDAG5 CD 55 39 10 6 17 0.60

(50, 50, 250) ARCS(CD) 51 48 2 1 3 0.90

GIES 87 7 43 37 80 0.05

ARCS(GIES) 52 47 3 2 5 0.86

rDAG6 CD 101 70 17 13 43 0.54

(50, 100, 250) ARCS(CD) 106 94 5 7 12 0.86

GIES 155 15 81 58 143 0.06

ARCS(GIES) 159 59 36 64 105 0.34

The best SHD and JI for each network are highlighted in

boldface.

49

0
20

40
60

80

SHD comparison

data_type : my_order

S
H

D

Asia rDAG3 rDAG5 Alarm Sachs rDAG4 rDAG6 Ins. Barley

interventional data
observational data

0.
0

0.
2

0.
4

0.
6

reversed edge proportion comparison

R
/P

rDAG6 rDAG5 Alarm rDAG4 rDAG3 Asia Barley Ins. Sachs

interventional data
observational data

Figure 2.9: Comparison of SHD and reversed edge proportion between experimental and

observational data with ARCS(CD).

supports the idea that experimental interventions help correct the reversed edges and dis-

tinguish equivalent DAGs. Note that for the 20 observational datasets generated from Asia

(p = 8, s0 = 8), ARCS(CD) output 16 estimated DAGs with P = 8 and R = 1, resulting in

a very thin interquantile range in the boxplots of Asia in Figure 2.9.

2.6.2 Random initialization with a high temperature

Recall that we started ARCS(CD) and ARCS(GIES) with T (0) = 1. To test its global search

ability over the permutation space, we may initialize the annealing process with a random

permutation and a high temperature, which we denote by ARCS(RND). For a random initial

50

0
20

40
60

80

Performance comparison for ARCS(RND) and ARCS(CD)

S
H

D

rDAG3 Asia rDAG5 rDAG4 Alarm Sachs Ins. rDAG6 Barley

ARCS(RND) with a high initial temperature
ARCS(CD) with a low initial temperature

Figure 2.10: A comparison between ARCS(RND) with a high initial temperature and

ARCS(CD) on experimental data.

permutation, we do not need to preserve its properties, so we use a high initial temperature

T (0) = 100 to help the algorithm traverse the search space.

We compared ARCS(RND) and ARCS(CD) on experimental data for 9 networks. We

chose ARCS(CD) due to its superior performance on these networks in the experimental

setting (Table 2.5). As shown in Figure 2.10, ARCS(RND) and ARCS(CD) had comparable

performances on all networks. Both of them learned DAGs with small SHDs. ARCS(RND)

was slightly better on rDAG4 and Ins., and slightly worse on Alarm and rDAG6. For the

other networks, the two methods were quite comparable, demonstrating the effectiveness of

ARCS(RND).

The networks in this experiment had p ≤ 50. For p = 50, there are 50! ≈ 3 × 1064

possible permutations. ARCS(RND) managed to learn a network structure within 104 iter-

ations, which is much smaller than p!. However, the performance of ARCS(RND) was not

competitive on large networks. The reason is that for large p, it takes much more time for the

annealing to thoroughly search the huge permutation space. Therefore, for large networks,

it is better to initialize the ARCS algorithm with estimates from other local methods and

choose a low temperature. Given a good initial estimate, ARCS searches over the permuta-

51

tion space and improves the accuracy of the initial estimate as demonstrated in Tables 2.1

and 2.5. This study suggests that, by searching over the permutation space under a regular-

ized likelihood framework, our ARCS algorithm is a promising approach to the challenging

problem of DAG structure learning.

2.7 Discussion

In this chapter, we have developed a method to learn Gaussian BN structures by minimizing

the MCP regularized Cholesky score over topological sorts, through a joint iterative update

on a permutation matrix and a lower triangular matrix. We search over the permutation

space and optimize the network structure encoded by a lower triangular matrix given a

topological sort. This approach relates BN learning problem to sparse Cholesky factorization,

and provides an alternative formulation for the order-based search. The proposed regularized

Cholsky score is shown to be consistent for estimating topological sorts and DAG structures.

Our method can serve as an improvement of a local search or a stand-alone method with a

best-guess initial permutation. Although we formulated this order-based search for Gaussian

BNs, it can potentially be extended to discrete BNs and other scoring functions. A main

difference in the extension to discrete data is the proximal gradient step, where we can borrow

the regularized multi-logit model in Gu et al (2019) or develop a continuous regularizer for

multinomial likelihood.

With a proper temperature schedule, simulated annealing may search over the permuta-

tion space effectively, and there are several interesting aspects to investigate in the annealing

process. For instance, various operators of moving from one permutation to another have

been proposed for greedy order-based search, which could better guide the annealing process

in traversing the search space. The numerical results in this paper demonstrate the advan-

tage and potential application of local search and global annealing in learning BNs. Left as

future work are theoretical properties of our method in high-dimensional settings, such as

the consistency of the regularized Cholesky score when p� n.

52

2.8 Proofs

The proof of the consistency result (Section 2.3) is provided in Sections 2.8.1, which uses

some auxiliary results (Section 2.8.2). The consistency proofs are joint work in (Ye et al,

2020). Section 2.8.3 consists of proofs of other results in this chapter.

2.8.1 Consistency proof

For a matrix B, ‖B‖F denotes its Frobenius norm and ‖B‖ its `2 operator norm. We also

use ‖B‖max = maxi,j |Bij|. We start with some intermediate results. The following shows

that for suitable regularizers, the I-map Bπ is also the minimizer of the population version

of the regularized Cholesky loss:

Proposition 2. (Population consistency) Under (2.20), for all π and B ∈ Dπ,

Ln(B; Σ0)− Ln(Bπ; Σ0) ≥ λmin

2
min

{
‖B −Bπ‖2

F , b
2
n −

2

λmin

an
n
|Sπ|

}
. (2.30)

If, in addition, (2.21) holds, then for any ε > 0, when n is sufficiently large, we have

inf
π

inf
B∈Dπ : ‖B−Bπ‖F≥ε

[
Ln(B; Σ0)− Ln(Bπ; Σ0)

]
> 0. (2.31)

In particular, Bπ is the unique solution of (2.23) for all π, and

Fn,π =
[

min
B∈Dπ

Lchol(B; Σ0)
]

+
an
n
|Sπ| = L ∗

chol(Σ0) +
an
n
|Sπ|.

Using Proposition 2, we can show that the estimated DAG B̂n,π is consistent for Bπ:

Proposition 3. (Consistency) Under assumptions (2.20) and (2.21),

(a) B̂n,π is n1/4-consistent, uniformly in π.

(b) If in addition (R2) holds, then B̂n,π is a
√
n-consistent estimator of Bπ, that is, B̂n,π =

Bπ +Op(n
−1/2), uniformly in π. Moreover,

ρn(B̂n,π)− ρn(Bπ) = Op

(λn√
n

)
+Op(1). (2.32)

53

Here, and elsewhere, statement such as “B̂n,π = Bπ +Op(n
−1/2), uniformly in π” should

be interpreted as supπ |B̂n,π −Bπ| = Op(n
−1/2).

We also need the following formula for the (unrestricted) Hessian of the Cholesky loss, a

p2 × p2 matrix,

∇2Lchol(L;A) = Ip ⊗ A+ diag
(1

L2
ii

eie
T
i , i = 1, . . . , p

)
(2.33)

where ⊗ is the Kronecker product and ei ∈ Rp is ith basis vector of Rp. The second term is

a block diagonal matrix whose ith diagonal block is eie
T
i /L

2
ii, that is, a diagonal matrix with

only a single nonzero entry, 1/L2
ii, on its diagonal at the ith position. See Section 2.8.2.2 for

details.

Proof of Theorem 2. By Proposition 2, Bπ is the solution of (2.23), hence

|F̂n,π − Fn,π| = |Ln(B̂n,π; Σ̂n)− Ln(Bπ; Σ0)|

≤ |Ln(B̂n,π; Σ̂n)− Ln(B̂n,π; Σ0)|+ |Ln(B̂n,π; Σ0)− Ln(Bπ; Σ0)|.

The first term is bounded above by 1
2
| tr(B̂n,πB̂

T
n,π(Σ̂n−Σ0))| = Op(n

−1/2) by CLT and since

‖B̂n,π‖F = Op(1). The second term above, call it T2, is bounded above by

T2 ≤ |Lchol(B̂n,π; Σ0)−Lchol(Bπ; Σ0)|+Op

(λn
n

1√
n

)
+Op

(1

n

)

≤
(
‖Σ0‖+

4

mini(Bπ)2
ii

)
‖B̂n,π −Bπ‖2

F +Op

(1√
n

)

where the first equality uses (2.32) in Proposition 3 and the second inequality is a straightfor-

ward consequence of ∇Lchol(Bπ; Σ0) = 0 and the Hessian formula (2.33), assuming that n is

sufficiently large so that (B̂n,π)ii ≥ 1
2
(Bπ)ii. Since ‖B̂n,π−Bπ‖2

F = Op(n
−1) by Proposition 3,

we have T2 = Op(n
−1/2). It follows that |F̂n,π − Fn,π| = Op(n

−1/2) uniformly in π.

Let π∗ be such that Bπ∗ ∈ E∗ and consider π such that Bπ /∈ E∗. Then,

F̂n,π − F̂n,π∗ ≥ Fn,π − Fn,π∗ − 2 max
π′∈{π,π∗}

|F̂n,π′ − Fn,π′|

=
[
L ∗

chol(Σ0) +
an
n
|Sπ|

]
−
[
L ∗

chol(Σ0) +
an
n
|S∗π|

]
−Op(n

−1/2)

=
an
n

(|Sπ| − |S∗π|)−Op(n
−1/2)

≥ an
n
−Op(n

−1/2)

54

since by score-identifibility |Sπ| ≥ |Sπ∗ | + 1. Since n−1/2an → ∞ by assumption, for suf-

ficiently large n, we have F̂n,π − F̂n,π∗ > 0 for all π such that Bπ /∈ E∗. This proves

permutation consistency. For the second assertion, since B̂n,π is within a neighborhood of

radius Op(n
−1/2) around Bπ, an argument similar to that of Lemma 1 in Fan and Li (2001)

shows that supp(B̂n,π) = supp(Bπ) for all π w.h.p. In particular, supp(B̂n,π̂n) = supp(Bπ̂n),

w.h.p. and the proof is complete.

2.8.2 Proofs of auxiliary results

2.8.2.1 Proof of Proposition 2

Noting that λmin(PπΣ0P
T
π) = λmin(Σ0) =: λmin, we have by Proposition 1,

Lchol(B; Σ0)−Lchol(Bπ; Σ0) ≥ λmin

2
‖B −Bπ‖2

F . (2.34)

Consider the set

B := {B ∈ Dπ : |Bij| < bn for some (i, j) ∈ Sπ}.

For any B ∈ Bc, at least |Sπ| of its elements are in the flat part of the penalty, whence

ρn(B) ≥ an|Sπ|. Since by assumption (2.20), all the nonzero elements of Bπ are in the flat

part of the penalty, ρn(Bπ) = an|Sπ|. Thus, for any B ∈ Bc,

Ln(B)− Ln(Bπ) ≥ Lchol(B; Σ0)−Lchol(Bπ; Σ0)

which combined with (2.34), gives one of the inequalities in (2.30).

Now consider B ∈ B. Then, |Bij| < bn for some (i, j) ∈ Sπ. Since |(Bπ)ij| ≥ 2bn by

assumption (2.20), it follows from (2.34) that

Lchol(B; Σ0)−Lchol(Bπ; Σ0) ≥ λmin

2
(Bij − (Bπ)ij)

2 ≥ λmin

2
b2
n.

We then have

Ln(B)− Ln(Bπ) ≥ λmin

2
b2
n −

ρn(Bπ)

n
=
λmin

2
b2
n −

an
n
|Sπ|

which gives the second inequality in (2.30). The proof is complete.

55

2.8.2.2 The Hessian

The Hessian formula (2.33) should be interpreted as giving the correct quadratic term in the

Taylor expansion when applied to vec(∆) for any lower triangular matrix ∆:

〈vec(∆),∇2Lchol(L;A) vec(∆)〉 = tr(∆TA∆) +
∑

i

∆2
ii

L2
ii

(2.35)

using vec(∆)T (Ip ⊗ A) vec(∆) = vec(∆)T vec(A∆Ip) = tr(∆TA∆). In general vec(AXB) =

(BT ⊗ A) vec(X). That (2.35) is the correct quadratic term can be verified by Taylor ex-

panding t 7→ Lchol(L+ t∆;A). The Hessian is locally Lipschitz:

Lemma 7. Let L ∈ Lp be such that mini Lii = m > 0. For any L′, such that L′ii ≥ Lii/2 for

all i, we have

‖∇2Lchol(L
′;A)−∇2Lchol(L;A)‖ ≤ 6

m3
max
i
|(L′ − L)ii|.

Proof. The result follows from the elementary inequality

∣∣∣ 1

x2
− 1

y2

∣∣∣ ≤
∣∣∣1
x

+
1

y

∣∣∣
∣∣∣y − x
xy

∣∣∣ ≤ 3

x

2

x2
|y − x|

which holds for y ≥ x/2 > 0.

2.8.2.3 Proof of Proposition 3

Since Lchol(B; Σ̂n)→∞ as B →∞, and the penalty ρn(B)/n is bounded, it not hard to see

that B̂n,π is eventually in a compact set (uniformly in π), with high probability. That is, we

can choose R, independent of π and n, such that for sufficiently large n, ‖B̂n,π‖F ≤ R for all

π. The empirical loss uniformly converges to the population loss over this compact set:

sup
‖B‖F≤R

|Ln(B; Σ̂n)− Ln(B; Σ0)| = 1

2
sup
‖B‖F≤R

| tr
(
BBT (Σ̂n − Σ0)

)
|

≤ R2

2
‖Σ̂n − Σ0‖ = Op(n

−1/2)

(2.36)

by the CLT. Since B̂n,π minimizes Ln(· ; Σ̂n), we have 0 ≤ Ln(Bπ, Σ̂n)−Ln(B̂n,π; Σ̂n). Adding

Ln(B̂n,π; Σ0)− Ln(Bπ; Σ0) to both sides, we obtain

Ln(B̂n,π; Σ0)− Ln(Bπ; Σ0) ≤ max
B∈{Bπ ,B̂n,π}

|Ln(B, Σ̂n)− Ln(B,Σ0)| = Op(n
−1/2)

56

where the last equality is by (2.36). From (2.30), it follows that

λmin

2
min

{
‖B̂n,π −Bπ‖2

F , b
2
n

(
1− 2

λmin

an
nb2

n

|Sπ|
)}

= Op(n
−1/2)

Since by assumption, 1 − 2an|Sπ|/(λminnb
2
n) ≥ c > 0 eventually and b2

n � n−1/2, it follows

that ‖B̂n,π − Bπ‖2
F = Op(n

−1/2), establishing n1/4-consistency. It is not hard to argue, by

inspecting the argument there, that the convergence is uniform in π, that is, supπ |B̂n,π −
Bπ| = Op(n

−1/4).

Next, since n1/4bn → ∞ by assumption, eventually ‖B̂n,π − Bπ‖F < bn. Since we either

have (Bπ)ij = 0 or |(Bπ)ij| ≥ 2bn, the deviations |[B̂n,π − Bπ]ij| are either in the interval

[0, bn) or (bn,∞), on both of which the loss is twice continuously differentiable. Then, the
√
n-consistency follows by a standard Taylor expansion argument. A technical issue is dealing

with the one-sided differentiability of the loss function at zero. The following lemma, whose

proof is deferred to Section 2.8.2.4, provides the quadratic expansion needed for the analysis:

For a function f : Rd → R, and x, u ∈ Rd, let f ′(x;u) denote its directional derivative at

x along the vector u. Recall that a necessary condition for x to be a (local) minimum of f

is that f ′(x;u) ≥ 0 for all u for which the directional derivative exists.

Lemma 8. Consider the functions `, ¯̀, h : Rd → R where h(x) = 1
n

∑
i rn(|xi|) with rn twice

differentiable on [0,∞) and both ` and ¯̀ twice differentiable on Rd. Let

f(x) = `(x) + h(x), f̄(x) = ¯̀(x) + h(x).

Assume that x, x̄ ∈ Rd are such that f ′(x;u) ≥ 0 and f̄ ′(x̄;u) ≥ 0 for all u ∈ Rd. Moreover,

assume that xi and x̄i are on the same side of the origin, i.e., xix̄i ≥ 0, for all i = 1, . . . , d.

Let w = x− x̄. Then,

〈∇`(x̄)−∇¯̀(x̄), w〉+ 〈w,∇2f(x̃)w〉 ≤ 0 (2.37)

for some x̃ on the line segment between x and x̄. In particular, if ∇2f(x̃) � α2Id, then

‖w‖ ≤ α−2‖∇`(x̄)−∇¯̀(x̄)‖. (2.38)

57

Now, let S = {i : x̄i 6= 0}. If ‖x̃‖max < bn and r′n(x̄i) = 0 for all i ∈ S, we also have

∣∣n[h(x)− h(x̄)]
∣∣ ≤ λn

∑

i∈Sc
|wi|+

‖w‖2

2
sup

t∈ [0, bn)

|r′′n(t)|. (2.39)

where λn = r′n(0+).

The Hessian in Lemma 8 is given by ∇2f(x̃) = ∇2`(x̃) +∇2h(x̃) where

∇2h(x̃) = n−1 diag
(
r′′n(|x̃i|), i = 1, . . . , d

)
.

When either xi or x̄i is nonzero, |x̃i| > 0 hence, r′′n(|x̃i|) is well-defined. When xi = x̄i = 0,

we can define r′′n(|x̃i|) arbitrarily as far as the validity of (2.37) is concerned. To be specfic,

let r′′n(|x̃i|) = r′′n(0) := r′′n(0+) in that case.

Now assume that x̄ is such that either x̄i = 0 or |x̄i| ≥ 2bn, and ‖x− x̄‖max < bn. Under

assumption (R2), r′′n/n is C0-Lipschitz on [0, bn), hence

n−1
∣∣r′′n(|x̃i|)− r′′n(|x̄i|)

∣∣ ≤ C0

∣∣|x̃i| − |x̄i|
∣∣ ≤ C0|x̃i − x̄i|

where r′′n(|x̄i|) is interpreted as r′′n(0+) if x̄i = 0. It follows that ‖∇2h(x̃) − ∇2h(x̄)‖ ≤
C0‖x̃ − x̄‖max. Assume that |r′′n(bn−)| ≤ |r′′n(0+)|. Under assumptions (R1) and (R2), we

have bn ≤ K and |r′′n(bn−)|/n ≤ K for some K > 0, and

sup
t∈[0,bn)

|r′′n(t)| ≤ |r′′n(bn−)|+ sup
t∈[0,bn)

|r′′n(t)− r′′n(bn−)| ≤ nK + C0nK. (2.40)

A similar bound holds when |r′′n(0+)| ≤ |r′′n(bn−)| with nK replaced with C1n in (2.40).

Fix π and let ω2 ≤ minπ,i (Bπ)ii. With high probability, eventually B̂n,π will be in the

neighborhood

N :=
{
B : Bii ≥ (Bπ)ii/2, ‖B −Bπ‖max < min{bn, R1}

}
,

for any fixed constant R1 > 0. We apply Lemma 8 with f ≡ Ln(· ; Σ̂n), ` ≡ Lchol(· ; Σ̂n),

¯̀≡ Lchol(· ; Σ0), f̄ ≡ Ln(· ; Σ0) and h ≡ ρn, all with domains restricted to RKπ , and we take

x ≡ B̂n,π and x̄ ≡ Bπ We conclude that

〈∇Ln(Bπ; Σ̂n)−∇Ln(Bπ; Σ0),∆n,π〉 + 〈∆n,π,∇2Ln(B̃n,π; Σ̂n)∆n,π〉 ≤ 0

58

where ∆n,π = B̂n,π − Bπ and B̃n,π is between B̂n,π and Bπ, elementwise. See the discussion

after Lemma 8 for the existence of∇2Ln(B̃n,π; Σ̂n), whose smallest eigenvalue we now control.

Since ∆n,π = op(1), it follows that B̃n,π belongs to N for large n and

‖∇2Ln(B̃n,π; Σ̂n)−∇2Ln(Bπ; Σ̂n)‖ ≤ ‖∇2Lchol(B̃n,π; Σ̂n)−∇2Lchol(Bπ; Σ̂n)‖

+ ‖∇2ρn(B̃n,π)−∇2ρn(Bπ)‖

≤ 6

ω6
max
i
|(B̃n,π −Bπ)ii|+ C0‖B̃n,π −Bπ‖max,

using Lemma 7. Both terms are op(1) by the consistency established earlier. It follows that

∇2Ln(B̃n,π; Σ̂n) = ∇2Ln(Bπ; Σ̂n) + op(1) = ∇2Ln(Bπ; Σ0) + op(1)

where the second equality is since ∇2Ln(Bπ; Σ̂n)−∇2Ln(Bπ; Σ0) = 1
2

tr(BπB
T
π (Σ̂n −Σ0)) =

op(1) by the LLN.

Since r′′n(|(Bπ)ij|) is either 0 or r′′n(0+), (R2) implies ∇2ρn(Bπ) � −C1Ip2 . Using (2.33),

∇2Ln(Bπ; Σ0) = ∇2Lchol(Bπ; Σ0) +∇2ρn(Bπ) � Ip ⊗ Σ0 − C1Ip2 �
1

2
λminIp2

where we have also used assumption C1 ≤ λmin/2. It follows that∇2Ln(B̃n,π; Σ̂n) � 1
2
λminIp2 ,

eventually. Then, inequality (2.38) of Lemma 8 gives

‖∆n,π‖F ≤
2

λmin

‖∇Lchol(Bπ; Σ̂n)−∇Lchol(Bπ; Σ0)‖F

≤ 2

λmin

‖(Σ̂n − Σ0)Bπ‖F = Op(n
−1/2)

by the CLT. This Op(n
−1/2) term can be taken to be independent of π, showing that the

convergence is uniform. This completes the proof of
√
n-consistency.

For (2.32), we apply inequality (2.39) of Lemma 8 and use (2.40) to obtain

|ρn(B̂n,π)− ρn(Bπ)| ≤ λn
∑

(i,j)∈Kπ\Sπ

|[∆n,π]ij|+
‖∆n,π‖2

F

2
Op(n).

The first term above is bounded by λn
√
|Kπ \ Sπ|‖∆n,π‖F , hence

|ρn(B̂n,π)− ρn(Bπ)| ≤ pλn‖∆n,π‖F +
‖∆n,π‖2

F

2
Op(n)

= pλnOp(n
−1/2) +Op(n

−1)Op(n),

since ‖∆n,π‖F = Op(n
−1/2) by

√
n-consistency. This completes the proof of (2.32).

59

2.8.2.4 Proof of Lemma 8

Let us extend rn to entire R by setting rn(t) := rn(|t|). Consider t, t̄ ∈ R that are on the

same side of the origin, i.e., tt̄ ≥ 0. Then, we have

rn(t) = rn(t̄) + r′n(t̄; δ) +
1

2
δ2r′′n(t̃) (2.41)

where δ = t − t̄ and t̃ is between t and t̄. Here, r′n is the directional derivative of rn at t̄

along δ. If t̄ 6= 0, then rn is differentiable at t̄ and r′n(t̄; δ) = r′n(t̄)δ = r′n(|t̄|)sign(t̄)δ. If t̄ = 0,

we have r′n(t̄; δ) = r′n(0+)|δ|. Note that when t 6= t̄, then t̃ is strictly between t and t̄ and

hence r′′n(t̃) = r′′n(|t̃|) is well-defined, even when t̄ = 0. In the case t = t̄ = 0, we can define

r′′n(t̃) = r′′n(0+), and (2.41) still holds.

We can now write

f(x) = f(x̄) + f ′(x̄;w) +
1

2
〈w,∇2f(x̃(1))w〉,

f(x̄) = f(x) + f ′(x;−w) +
1

2
〈w,∇2f(x̃(2))w〉

where x̃(i), i = 1, 2 lies on the line segment between x and x̄. By Darboux’s theorem, there

is x̃ on the same line segment such that 〈w, 1
2
[∇2f(x̃(1)) + ∇2f(x̃(2))]w〉 = 〈w,∇2f(x̃)w〉.

Summing the two equalities, we get

0 = f ′(x̄;w) + f ′(x;−w) + 〈w,∇2f(x̃)w〉.

Using the assumption f ′(x;−w) ≥ 0,

f ′(x̄;w) + 〈w,∇2f(x̃)w〉 ≤ 0 ≤ f̄ ′(x̄;w)

where the second inequality is again by assumption. Note that f ′(z;u) = 〈∇`(z), u〉+h′(z;u),

for any z, u ∈ Rd, and similarly f̄ ′(z;u) = 〈∇¯̀(z), u〉 + h′(z;u). Hence f ′(z;u) − f̄ ′(z;u) =

〈∇`(z)−∇¯̀(z), u〉 for any z, u ∈ Rd and we obtain

〈∇`(x̄)−∇¯̀(x̄), w〉+ 〈w,∇2f(x̃)w〉 ≤ 0

proving (2.37). For (2.38), we note that

α2‖w‖2 ≤ 〈w,∇2f(x̃)w〉 ≤ 〈∇¯̀(x̄)−∇`(x̄), w〉 ≤ ‖∇¯̀(x̄)−∇`(x̄)‖‖w‖

60

giving the desired inequality.

For (2.39), using n[h(x) − h(x̄)] = nh′(x̄;w) + 1
2
〈w,∇2h(x̃)w〉 for some x̃ in the line

segment between x and x̄, we have

n[h(x)− h(x̄)] =
∑

i∈S
r′n(x̄i)wi + λn

∑

i∈Sc
|wi|+

1

2

∑

i

r′′n(x̃i)w
2
i .

The first term is zero by assumption. The last term is bounded as in the statement of the

lemma, since |x̃i| ∈ [0, bn) for all i, by assumption, and r′′n(x̃i) = r′′n(|x̃i|). The proof is

complete.

2.8.3 Proofs of other results

2.8.3.1 Proof of Lemma 1

Recall B = (βj) ∈ Rp×p and Ω = diag(ω2
j) ∈ Rp×p. The negative log-likelihood is

`(B,Ω, Pπ | X) =
1

2

p∑

j=1

{
n logω2

j +
1

ω2
j

‖Xπ(j) −XP>π βj‖2
}
,

=
n

2
log |Ω|+ 1

2
‖(XP>π −XP>π B)Ω−

1
2‖2.

The second term is equal to

1

2
tr(PπX

>XP>π (I −B)Ω−1(I −B)>) =
n

2
tr(PπΣ̂P>π LL

>)

recalling that L = (I − B)Ω−
1
2 and Σ̂ = 1

n
X>X. Because B is strictly lower triangular, the

determinant of (I − B) is |I − B| = 1 and |L| = |(I − B)Ω−
1
2 | = −1

2
|Ω|. Putting the pieces

together and writing P for Pπ finishes the proof.

2.8.3.2 Proof of Proposition 1

Since A is positive definite, A−1 is positive definite as well. By Cholesky decomposition,

A−1 = CC> where C = C(A−1). Therefore, A = C−>C−1. Letting R = C−1L, we have

log |R| = − log |C| + log |L|, where log |C| is a constant. Recall that Lp is the set of lower

triangular matrices with positive diagonals. Since C ∈ Lp and L ∈ Lp, we have R ∈ Lp.
61

Also, tr(ALL>) = tr(RRT) = ‖R‖2
F . Then,

Lchol(L;A) =
1

2

[
‖R‖2

F − 2 log |R|
]
− log |C|.

Let L∗ := C and R∗ = C−1L∗ = Ip. Set ∆ = L − L∗ and U = C−1∆. Note that

R = U + Ip, hence

a := 2
[
Lchol(L;A)−Lchol(L

∗;A)
]

= ‖R‖2
F − 2 log |R| − ‖R∗‖2

F + 2 log |R∗|.

We have

‖R‖2
F − ‖R∗‖2

F = ‖U + Ip‖2
F − p = ‖U‖2

F + 2〈U〉Ip + ‖Ip‖2
F − p = ‖U‖2

F + 2 tr(U)

and log |R| = log |U + Ip| =
∑

i log(Uii + 1). Hence,

a = ‖U‖2
F + 2

∑

i

[Uii − log(1 + Uii)] ≥ ‖U‖2
F

using the inequality log(1 + x) ≤ x. We have

‖∆‖F = ‖CU‖F ≤ ‖C‖‖U‖F

which gives ‖U‖F ≥ ‖∆‖F/‖C‖. We also note that A−1 = CCT , hence [λmin(A)]−1 =

‖A−1‖ = ‖C‖2. Putting the pieces together proves the inequality.

Substituting L∗ = C(A−1) into Lchol(L;A), we obtain the minimum value:

L ∗
chol(A) := Lchol(L

∗;A) =
1

2
tr(AA−1)− log |A− 1

2 | = 1

2
(p+ log |A|) .

The assertion L ∗
chol(A) = L ∗

chol(PAP
>) follows by noting that |P Σ̂P T | = |P ||Σ̂||P>| = |Σ̂|.

2.8.3.3 Proof of Lemma 2

Recall B = (βj) ∈ Rp×p, Ω = diag(ω2
j) ∈ Rp×p, we have the following experimental data

log-likelihood:

`O(B,Ω, Pπ | X) =

p∑

j=1

[1

2ω2
j

‖XOπ(j),π(j) −XOπ(j)P
>
π βj‖2 +

|Oπ(j)|
2

logω2
j

]
.

62

We have

‖XOπ(j),π(j) −XOπ(j)P
>
π βj‖2 = ‖XOπ(j)P>π (ej − βj)‖2 = ω2

j |Oπ(j)| tr
(
PπΣ̂jP>π LjL

>
j

)

recalling that |Oπ(j)|Σ̂j = X>Oπ(j)XOπ(j) and L = (Lj) ∈ Rp×p with columns Lj = (ej −
βj)/ωj ∈ Rp. Simplifying Pπ to P , and noting that logω2

j = −2 logLjj = −2 log |Lj|, we

have

`O(L, P) =

p∑

j=1

|Oπ(j)|
[

1

2
tr
(
P Σ̂jP>LjL

>
j

)
− log |Lj|

]

which is the desired result.

2.8.3.4 Proof of Lemma 3

Pick B∗ ∈ E . Assume that B /∈ E , then I(B) ⊂ I(P ∗) = I(B∗) where the equality is by

perfectness. Thus, B is an I-map for B∗ and according to Meek-Chickering theorem (Chick-

ering, 2002), DAG B∗ can be converted to DAG B by a sequence of edge additions and

covered edge reversals. Assume in addition that ‖B‖0 ≤ ‖B∗‖0. Then, the aforementioned

sequence consists only of covered edge reversals. However, this implies that B and B∗ belong

to the same equivalence class, a contradiction. Hence, ‖B‖0 > ‖B∗‖0 = ‖E‖0.

2.8.3.5 Proof of Lemma 4

Fix P and let Z = 1√
n
XP> so that Z>Z = 1

n
PX>XP> = P Σ̂P>. We can rewrite (2.9) as

`(L) = `1(L) + `2(L) where

`1(L) :=
n

2
‖ZL‖2

F , and `2(L) := −n log |L|.

To compute the gradient of `1 w.r.t. L, we perturb L to L+ tδ where δ ∈ Lp and t ∈ R. We

have

`1(L+ tδ)− `1(L) = nt〈ZL,Zδ〉+
nt2

2
‖Zδ‖2

F = n〈Z>ZL, δ〉 t+ o(t)

where 〈A,B〉 = tr(A>B) for two matrices A and B. Be definition, ΠL maps a p× p matrix

to its lower triangular projection. Since δ ∈ Lp, 〈Z>ZL, δ〉 = 〈ΠL(Z>ZL), δ〉, and thus

∇`1(L) = nΠL(Z>ZL).

63

For the second term, `2 = −n∑p
i=1 logLii, and thus ∇`2(L) = −n diag

(
{1/Lii}pi=1

)

where L ∈ Lp. Putting the pieces together gives the desired result.

2.8.3.6 Proof of Lemma 5

From (2.16), we have `O = `1
O + `2

O, where

`1
O :=

1

2

p∑

j=1

|Oπ(j)|L>j P Σ̂jP>Lj, and `2
O := −

p∑

j=1

|Oπ(j)| logLjj.

Note that each term in `1
O is a quadratic form in Lj. The gradient of `1

O w.r.t. to Lj is

|Oπ(j)|Πj(P Σ̂jP>Lj), since Lij = 0 for i < j. It is also easy to see that ∇Lj`
2
O = −|Oπ(j)| ejLjj .

Putting the pieces together, the gradient of `O w.r.t. Lj is |Oπ(j)|
(

Πj(P Σ̂jP>Lj)− ej
Ljj

)
.

2.8.3.7 Proof of Lemma 6

Recall the MCP function is defined as

ρ(x) =

λ|x| − x2

2γ
, |x| < γλ,

1
2
γλ2, |x| ≥ γλ.

It is not hard to see that ρ(λγx) = γλ2ρ1(x). It follows that

proxtρ(λγx) = arg min
u

[
ρ(u) +

1

2t
(u− λγx)2

]

=λγ · arg min
v

[
ρ(λγv) +

1

2t
(λγv − λγx)2

]
= λγ · arg min

v

[
γλ2ρ1(v) +

γ2λ2

2t
(v − x)2

]

=λγ · arg min
v

[
ρ1(v) +

γ

2t
(v − x)2

]
= λγ prox(t/γ)ρ1(x),

where the second equality uses the change of variable u = λγv and the fourth uses the fact

that arg min is invariant to rescaling the objective. This establishes (2.28).

Due to the symmetry of ρ1, we have proxαρ1(−x) = −proxαρ1(x), which is easy to see

by a change of variable u = −v in the defining optimization. Thus, it is enough to consider

x ≥ 0 which we assume in the following.

The function h(u) = ρ1(u) + 1
2α

(u− x)2 is continuous and decreasing on (−∞, 0], hence

it achieves its minimum of x2

2α
over this interval at u = 0. Over (0,∞), the function is

64

(1� x)/↵

1� x/↵

�1� x/↵

•

•

•

u = 1
u

0 1 2 3
u

0.6

0.8

1

1.2

h(
u)

, = 2
x = 1.3

0 1 2 3
u

0.6

0.8

1

1.2

h(
u)

, = 2
x = 1.5

(a) (b) (c)

Figure 1: (a) The derivative h0 of h(u) = ⇢1(u) + 1
2↵ (u� x)2 for u 2 (0,1) in a

typical case. Note that h0 is discontinuous at 0. (b) and (c) Plots of h for two
values of (↵, x) that lead to Case 4.

Figure 2.11: (a) The derivative h′(u) for u ∈ (0,∞) in a typical case. Note that h′ is

discontinuous at 0. (b) and (c) Plots of h(u) for two values of (α, x) that lead to case 4.

differentiable with derivative h′(u) = (1 − u)+ + 1
α

(u − x) which is piecewise linear (or

affine) with a break at u = 1. The first segment of h′ is a line connecting (0, 1 − x/α) to

(1, (1−x)/α). The next segment is an always-increasing section starting at (1, (1−x)/α) and

increasing with slope 1/α. See Figure 2.11(a). The behavior of h′ for u ∈ (0, 1) determines

the minimizer. We have four cases:

1. When both 1− x/α > 0 and (1− x)/α > 0, that is x < min{α, 1}, h′ is increasing in

[0, 1]. Hence, h′ > 0 over [0,∞) and the overall minimum of h occurs at u1 = 0.

2. When 1− x/α ≤ 0 < (1− x)/α, that is, α ≤ x < 1, then h has a single critical point

at u2 = (x− α)/(1− α) before which it decreases and after which it increases. Hence,

this is its unique minimizer.

3. When both 1 − x/α < 0 and (1 − x)/α < 0, that is, x > max{α, 1}, then, the only

critical point occurs in the second linear segment and is u3 = x which is the unique

minimizer.

4. When (1 − x)/α < 0 ≤ 1 − x/α, that is, 1 < x ≤ α, then both of the points u2 and

u3 in cases 2 and 3 are critical points. The function drops in (−∞, u1) where u1 = 0,

increases in (u1, u2), drops in (u2, u3) and increases in (u3,∞). Thus, both u1 and u3

are local minima (while u2 is a local maximum). The global minimum is determined by

comparing h(u1) = x2/(2α) and h(u3) = 1/2. That is, if x <
√
α, the global minimum

65

is u1 = 0 (Figure 2.11b); if x >
√
α, the global minimum is u3 = x (Figure 2.11c); if

x =
√
α, minimum is {u1, u3} = {0, x}, which is not unique.

What left is the special case when both 1 − x/α = 0 and (1 − x)/α = 0, i.e. α = x = 1,

indicating the first segment of h′(u), u ≥ 0, is flat as zero. Hence, minimizer of h is any

value in the interval [0, 1]. We merge case 4 into cases 1 and 3 by revising the domains of x,

and thus complete the derivation of (2.29).

66

CHAPTER 3

Leaning Generalized Linear Causal Graphs from

Distribtuted Data

In this chapter, we consider the task of learning causal structures from data stored on multiple

machines, and propose a novel structure learning method called distributed annealing on

regularized likelihood score (DARLS) to solve this problem. DARLS searches over the space

of topological sorts for a high-scoring causal graph, and it is a generalization of the ARCS

algorithm that we discussed in Chapter 2 in two aspects. First, it recovers a flexible family of

DAGs, known as generalized linear DAGs, which allow various distributions for variables in

a BN. Second, the DARLS algorithm considers the distributed data storage. To the best of

our knowledge, DALRS is the first method to learn causal structures from distributed data

using iterative optimization that relies on multiple rounds of communication between local

and central machines. In Section 3.1., we first introduce generalized linear DAG models,

which uses generalized linear models for the conditional distributions of BNs. Then we

propose the DARLS algorithm in Section 3.2 and study some theoretical results in Section

3.3. We show simulation tests in Section 3.4 and apply DARLS on ChIP-Sequencing data

to model protein-DNA binding networks in Section 3.5. Lastly, we summarize our proposed

DARLS algorithm in Section 3.6.

3.1 Generalized linear DAG models

Let us denote by xj ∈ Rdj a realization of variable Xj, where dj = 1 for a numerical Xj

and dj = rj − 1 for a categorical variable Xj with rj classes, using the one-hot encoding.

Under the BN model (1.1), let βij ∈ Rdi×dj encode the influence of Xi on Xj and βij = 0 if

67

Xi /∈ PAj. Put

βj := [β0j, β1j, . . . , βpj] ∈ R(d+1)×dj , x := [1, x1, . . . , xp] ∈ Rd+1, (3.1)

where β0j ∈ R1×dj and d =
∑p

i=1 di. Here and elsewhere, [x, y] denotes the vertical concate-

nation of two vectors or matrices x and y. We define a generalized linear DAG (GLDAG) as

the Bayesian network (1.1) with conditional densities given by GLMs with canonical links,

that is,

p(xj | paj, βj) = exp
(
〈β>j x, xj〉 − bj(β>j x)

)
+ cj(x

j), j ∈ [p] (3.2)

where bj and cj are both functions from Rdj to R. Note that β>j x =
∑

i∈PAj
β>jix

i only

depends on paj. GLDAG models allow for many common distributions via the choice of

the log partition-function bj(·). Examples include the Bernoulli distribution for bj(θ) =

log(1 + eθ), constant-variance Gaussian for bj(θ) = θ2/2, Poisson for bj(θ) = exp(θ), Gamma

for bj(θ) = − log(−θ) and the multinomial for bj(θ) = log
(
1 +

∑dj
l=1 e

θl
)
. Note that in the

multinomial case bj(·) is a multivariate function, operating on a vector θ = (θl), in contrast

to the other example for which bj(·) is a scalar function. The Bernoulli and multinomial

choices above give rise to logistic and multi-logit regression models for each node.

We collect all the parameters of model (3.2) in a matrix β ∈ R(d+1)×d which is obtained

by horizontal concatenation of βj, j = 1, . . . , p, each of which is as defined via (3.1). We say

a GLDAG (3.2) is continuous if all the variables are continuous. Recall in this case, dj = 1

for all j ∈ [p] and thus β is a (p+ 1)× p matrix. We re-write the log pdf of (3.2) as

L(x; β) =

p∑

j=1

[
log cj(x

j) + xj(β>x)j − bj
(
(β>x)j

)]
, (3.3)

where β>x ∈ Rp βij 6= 0 if and only if Xi → Xj. Next, we show continuous GLDAGs are

identifiable.

Definition 3. (Identifiability). Suppose we are given a joint distribution L(X) = L(X1, . . . , Xp)

that has been generated from an unknown GLDAG model (3.2) with a graph G0. If the dis-

tribution L(X) cannot be generated by any GLDAG model with a different graph G 6= G0,

then we say G0 is identifiable from L(X).

68

It is well-known that linear Gaussian DAGs and multinomial DAGs in general are not

identifiable. In contrast, continuous GLDAG models (3.3) are identifiable under mild as-

sumptions:

Proposition 4. Suppose the joint distribution L(X) is defined by the log-pdf L(x; β) with

a DAG G0 according to (3.3) such that βij 6= 0 if and only if i ∈ PAj in G0. If L(x; β) is

second-order differentiable with respect to x and the first-order derivative of bj(·) exists and

is not constant for all j, then G0 is identifiable from L(X).

Proposition 4 establishes the identifiability of continuous GLDAG models (3.3), expand-

ing the class of identifiable DAG models in the literature. DAGs generated from linear

Gaussian structural equations models with equal variance can be fully identified (Peters and

Bühlmann, 2014), which is a special case of the GLDAG models with bj(θ) = θ2/2, ∀j.
Other distribution constraints are imposed on DAG models to identify causal graphs, such

as the additive noise model, Xj = fj(PAj) + εj, assuming nonlinear fj and/or non-Gaussian

εj (Shimizu et al, 2006; Hoyer et al, 2008; Peters et al, 2014).

3.2 Distributed DAG learning

In this section we construct the objective function using distributed data and propose a

simulated annealing search combined with an iterative optimization method to learn causal

DAG structures. We start with the definition of topological sorts for DAGs. Given a per-

mutation π on [p], we permute a vector v = (v1, . . . , vp) according to π to obtain a relabeled

vector vπ =
(
vπ(1), . . . , vπ(p)

)
. Recall a topological sort of a DAG is a permutation of nodes

such that if a ∈ PAb, then a precedes b in the order defined by π, denoted by a ≺π b. By

definition (1.1), every DAG has at least one topological sort.

Let {xh}nh=1 be an i.i.d. sample of size n from model (3.2). We also let xjh represent the

observed value of the j-th variable (Xj) in the h-th data point. Consider a subset I ⊂ [n].

The the normalized negative log-likelihood based on subsample {xh}h∈I is given, up to an

69

additive constant, by

`I(β) :=
1

|I|
∑

h∈I

p∑

j=1

[
bj(β

>
j xh)− 〈β>j xh, xjh〉

]
. (3.4)

Note that in this notation, `[n] denotes the normalized negative log-likelihood based on the

entire sample of size n.

3.2.1 Local and global objective functions

We consider the case that the overall data is stored in K different servers, where each local

machine Mk holds its private data {xh}h∈Ik and communicates with a central machine C.
Let nk = |Ik| be the sample size in Mk so that

∑K
k=1 nk = n. The normalized negative

log-likelihood based on the entire data can be decomposed as `[n](β) =
∑K

k=1
nk
n
`Ik(β). We

ideally would like to estimate β by minimizing a regularized loss function of the form

min
π∈P

f(π), where f(π) := min
β∈D(π)

K∑

k=1

nk
n
`Ik(β) + ρ(β), (3.5)

where D(π) ⊂ R(d+1)×d is the set of DAGs whose topological sort is compatible with permu-

tation π, P is the set of all permutations on [p] and ρ(·) is an appropriate regularizer. Note

that D(π) is a linear subspace of R(d+1)×d.

For any fixed π, we use distributed computing to evaluate f(π). That is, instead of

directly working with the objective function in (3.5), we rely on local versions of it to guide

a distributed algorithm that divides the task of computing f(π) among the K local machines.

In particular, we consider the local objective functions

fk(π) := min
β∈D(π)

Fk(β), where Fk(β) := `Ik(β) + ρ(β).

The global version can be rewritten as f(π) = minβ∈D(π) F (β) where F (β) := `[n](β) + ρ(β).

Typically, each of F and Fk is nonsmooth due to the presence of the regularizer ρ, but the

difference hk := Fk − F = `Ik − `[n] is often smooth. The gradient of hk is used to guide

iterations in each local machine. More precisely, given the current (global) estimate β, local

70

machine Mk performs the update

ϕk,π(β) := arg min
ξ∈D(π)

[
Fk(ξ)− 〈∇hk(β), ξ〉] = arg min

ξ∈D(π)

[
Fk(ξ)− 〈∇`Ik(β)−∇`[n](β), ξ〉

]
.

(3.6)

Let β
(t)
π be the global estimate of the algorithm at iteration t. At the next iteration, t + 1,

we obtain local estimates β
(t+1)
k,π = ϕk,π(β

(t)
π) for k = 1, . . . , K. These are then passed to

the central machine C to compute the next global estimate by averaging, i.e., β
(t+1)
π =

∑K
k=1

nk
n
β

(t+1)
k,π .

The above approach is essentially a version of the DANE algorithm (Zhang et al, 2013;

Shamir et al, 2014; Jordan et al, 2018; Fan et al, 2019). Note that to calculate local updates

β
(t+1)
k,π only the global gradient ∇`[n](β

(t)
π) needs to be communicated to each local machine.

In Section 3.3.1, we show that for a sufficiently large minimum sample size per machine, i.e.

mink nk, the sequence {β(t)
π }t≥0 thus produced will converge to a global minimizer β̂π of F (·)

over D(π).

Choosing the regularizer. Recall βij 6= 0 if and only if i ∈ PAj. Given a topological

sort π, we apply group regularization on βij ∈ Rdi×dj for all pairs (i, j) such that i ≺π j and

set βij to zero otherwise to learn sparse DAGs. We choose ρ(β) = λ
∑

j

∑
i≺πj ρg (βij) to be

the overall regularizer, in which ρg(·) is a nonnegative and nondecreasing group regularizer

and λ > 0 is a tuning parameter. Group Lasso (i.e., group `2) is a natural extension

of Lasso regularization and it demonstrates remarkable performance in grouped variable

selection (Yuan and Lin, 2007). Hence, we consider the convex penalty ρg(βij) = |||βij|||F in

this paper, where |||βij|||F is the Frobenius norm of matrix βij.

3.2.2 Optimization

The DAG learning problem (3.5) is to search for (π ∈ P , β ∈ D(π)) using distributed data.

We propose the distributed annealing on regularized likelihood score (DARLS) algorithm to

learn causal graphs from distributed data, which applies annealing strategies to search over

the permutation space, coupled with a distributed optimization method. Joint optimization

71

Algorithm 5 Distributed annealing on regularized likelihood score (DARLS).

Input: {xh}nh=1 distributed over K machines, π0, a temperature schedule {T (i)}Ni=0, τ .

Output: π̂, β̂.

1: Select tuning parameter λ by BIC selection.

2: π̂ ← π0, compute (β̂, f(π̂)) by Algorithm 6.

3: for i = 0, . . . , N do

4: T ← T (i).

5: Central machine C proposes π∗ by flipping a random interval (length up to τ) in π̂.

6: Compute (β∗, f(π∗)) using Algorithm 6.

7: C sets (π̂, β̂, f(π̂))← (π∗, β∗, f(π∗)) with prob. min
{

1, exp
(
− 1
T

[f(π∗)− f(π̂)]
)}

.

8: end for

9: Refine the causal structure implied by β̂.

over the topological sort space and the DAG space has demonstrated great effectiveness in

learning BNs, such as (Ye et al, 2020; Larrañaga et al, 1996; Friedman and Koller, 2003;

Teyssier and Koller, 2005; Ellis and Wong, 2008; Zhou, 2011; Alonso-Barba et al, 2011;

Scanagatta et al, 2015, 2017; Champion et al, 2018).

Main steps of DARLS algorithm are outlined in Algorithm 5. At each annealing iteration,

a permutation π∗ is proposed based on current π̂ (line 5) and is accepted with probability

according to simulated annealing given a decreasing temperature schedule. We use the

Bayesian information criterion (BIC) to select tuning parameter λ for the group Lasso penalty

before the annealing process (line 1), and refine the DAG structure implied by annealing

estimator β̂ after the search (line 9). Note that DARLS algorithm can be applied to any

objective function as long as the gradient w.r.t. β has a closed-form expression.

We use a distributed optimization method (Algorithm 6) to learn the optimal DAG struc-

ture from distributed data given a permutation, which allows multiple rounds of communica-

tions between local and the central machines to update and synthesize information. In each

round of communication, a global estimate (line 6) is formed by averaging local values (3.6)

weighted by local sample sizes (line 5).

72

Algorithm 6 Using distributed optimization to compute the global permutation score.

Input: π, β(0) ∈ D(π), number of iteration T .

Output: β̂ ∈ D(π), f(π).

1: Central processor C broadcasts π to local machines {Mk}Kk=1.

2: for t = 0, 1, . . . , T − 1 do

3: Each machine Mk computes ∇`Ik(β(t)) and sends to C.
4: C computes ∇`[n](β

(t)) =
∑K

k=1
nk
n
∇`Ik(β(t)) and broadcasts it to local machines.

5: Each Mk calculates and sends the minimizer β
(t+1)
k = ϕk,π(β(t)) (3.6) to C.

6: C computes β(t+1) =
∑K

k=1
nk
n
β

(t+1)
k and broadcasts it to local machines.

7: end for

8: Each Mk reports nkFk
(
β(T)

)
to C, and C sets β̂ ← β(T) and f(π)←∑K

k=1
nk
n
Fk
(
β(T)

)
.

The proximal gradient algorithm, with steps outlined in Algorithm 7, is used to perform

a local update (3.6) in the distributed optimization (line 5, Algorithm 6). The objective (3.6)

is equivalent to minimize `Ik(ξ)− 〈∇hk(β(t)), ξ〉 + ρ(ξ) with respect to ξ over D(π) given a

current global estimate β(t). Define ˜̀Ik(ξ) := `Ik(ξ)−〈∇hk(β(t)), ξ〉 a surrogate to the global

likelihood `[n](ξ) (Jordan et al, 2018). A proxy to (3.6) is found by minimizing a quadratic

approximation of ˜̀Ik(ξ) at β(t) with a regularization:

β
(t+1)
k,π := arg min

ξ∈D(π)

[
˜̀Ik(ξ) +

〈
∇˜̀Ik(β(t)), ξ − β(t)

〉
+

1

2s
|||ξ − β(t)|||2F + ρ(ξ)

]
, (3.7)

where s > 0 is a step size. Recall the proximal operator proxρ(x) = arg minu
(
ρ(u) + 1

2
|||x− u|||F

)

define in (2.26). Equation (3.7) can be re-written as

β
(t+1)
k,π = proxsρ

(
β(t) − s∇˜̀[n](β

(t))
)
, (3.8)

where proxsρ(·) is the proximal operator applied on a scaled function sρ(·). The update (3.8)

is known as a proximal gradient update. When ρ(·) is the group Lasso penalty, the up-

date (3.8) has a closed-form expression, known as a block soft thresholding:

(
proxsρ(u)

)
ji

=

(
1− s

|||uji|||F

)

+

uji.

We use a backward line search to compute the step size of s, which shrinks initial value s0

until a proper step size is found (Parikh and Boyd, 2013b).

73

Algorithm 7 Use the proximal gradient algorithm to compute local permutation scores.

Input: {xh}h∈Ik , π, β(t−1) ∈ D(π), ∇hk(β(t−1)), s0 > 0, κ ∈ (0, 1), max-iter, tol.

Output: β
(t)
k,π.

1: iter ← 0, err ←∞, u← β(t−1).

2: while iter < max-iter and err > tol do

3: ∇˜̀Ik(u)← ∇`Ik(u)−∇hk(u)

4: s← s0/|||∇˜̀Ik(u)|||F .

5: repeat

6: ũ← u− s∇˜̀Ik(u).

7: u+ ← proxsρ(ũ).

8: break if ˜̀Ik (u+) ≤ ˜̀Ik (u) +
〈
∇˜̀Ik(u), u+ − u

〉
+ 1

2s
|||u+ − u|||2F .

9: s← κs.

10: err ← maxji d
(
u+
ji, uji

)
where d(x, y) := |||x−y|||F

max{1,|||y|||F } .

11: u← u+ and iter ← iter +1.

12: end while

13: β
(t)
k,π ← u.

3.2.3 Selection of the tuning parameter

We use BIC grid search to select tuning parameter λ used in the group Lasso penalty, given

an initial permutation π0 (line 1, Algorithm 5). To construct the grid, we select 20 equal-

space points of λ(i) in the log scale from the interval [0.01, 0.1], where λ = 0.1 is sufficiently

large for an empty graph in our test. We select the tuning parameter λ(i) that minimizes the

BIC score, BIC = 2`[n](β̂
(i)) + (log n)N (β̂(i)), where β̂(i) ∈ D(π0) is the minimizer of F (β)

with penalty parameter λ(i) and it is computed by Algorithm 6, and N (β̂(i)) is the number

of free parameters in β̂(i).

74

3.2.4 Structure refinement after annealing

A GLDAG representation β̂ is provided at the end of the DARLS annealing search, from

which we can recover a causal structure (line 9, Algorithm 5). Let W be a p × p weighted

adjacency matrix of a DAG such that Wij := |||β̂ij|||F . The use of a group Lasso regularizer

helps to eliminate some edges in learning a DAG, but it may still result in false positive edges.

Hence, we further refine estimated structures by setting Wij to zero if |Wij| < αmaxij |Wij|.
One can adjust the value of α to achieve a desired sparsity level, especially when having

prior knowledge. In our simulation tests, we fix α = 0.1 to remove edges whose weights are

relatively small compared to others.

3.3 Theoretical guarantees

In this section, we study the convergence of the iterative distributed optimization algorithm

(Algorithm 6) and establish the consistency of the global minimizer of (3.5). The convergence

results (Theorem 3) is a joint work in (Ye et al, 2021), and it is included for completeness.

3.3.1 Distributed estimate convergence

Recall the local iteration functions ϕk,π defined in (3.6). The overall iteration function for

the distributed algorithm can be written as Φπ(·) :=
∑

k
nk
n
ϕk,π(·) (line 6, Algorithm 6).

Let Σ := E[xhx
>
h] be the population second-moment matrix of the model. For a matrix

β, let BF (β; r) denote the Frobenius ball of radius r centered at β. We consider the case

of numerical variables, i.e. dj = 1 for all j. The following theorem provides convergence

guarantees on the distributed optimization algorithm represented by Φπ for any fixed π. Let

β̂π be any global minimizer of `[n](·) + ρ(·) over D(π), where ρ(β) is a convex regularizer.

Let Ω := ∪πD(π) be the parameter space of GLDAGs. Recall that {xh} is an i.i.d. sample

from a GLDAG model (3.2).

Theorem 3. Assume that the coordinates of xh are T -bounded, that is, |xjh| ≤ T for all

h ∈ [n] and j ∈ [p]. Let θ ∈ Ω be any GLDAG parameter and r > 0, and set R∗1 = maxj ‖θj‖1

75

and rp := 2r
√
p. Let algo : pgp = inf |t|≤T (rp+R∗1) b

′′(t), and assume that b′′(·) is bp-Lipschitz

on [−Trp, T rp]. Define

ζn :=
(
T 3
ψ
(
bp(r +

R∗1√
p
)
)

+ b′′(0)

bpλmin(Σ)

)p3/2 log(np)√
m

,

where ψ(x) := max{x,√x} and m := mink |Ik|. Assume further that np ≥ max{K + 1, 3}.
There exist constants c1, C1, C > 0 such that if C1T

2
√
p2 log(np)/m ≤ λmin(Σ), then with

probability at least 1− 3(np)−c1 − P(|||β̂π − θ|||F > r),

|||Φπ(β)− β̂π|||F ≤ Cζn |||β − β̂π|||F , for all β ∈ BF (β̂π, r).

Theorem 3 applies to any θ ∈ Ω. It is natural to take θ to be β∗π, the minimizer of

the population loss E[`[n](·)] over D(π). Since β̂π is a consistent estimate of β∗π for any

π (Theorem 4, Section 3.3.2), we have that P(|||β̂π − β∗π|||F > r) goes to zero as n grows.

Thus, with high probability, the iteration operator Φπ(·) will be a contraction: the sequence

{β(t)
π }t≥0 produced by the distributed algorithm converges geometrically to β̂π if Cζn < 1.

For fixed p, and for sufficiently large r such that θ ∈ BF (β̂π, r), one can always satisfy the

condition of Cζn < 1 by taking m (the minimum sample size per machine) large enough.

Hence, Theorem 3 provides a quantitative lower bound on m for the geometric convergence

to kick in.

Theorem 3 is proved by establishing the uniform concentration of the Hessian of the

GLDAG model (3.2) around its expectation over certain balls in the parameter space, and

then invoking a general convergence result for the DANE algorithm which we derive in the

Supplementary material (cf. Theorem 6). Note that establishing such uniform concentration

in the GLDAG model is challenging due to the highly dependent and nonlinear relation

among the coordinates {xjh}pj=1. A technical tool in establishing the concentration of the

Hessian is the Ledoux–Talagrand contraction theorem. In order to extend the argument to

the multi-logit and generally vector-valued DAG models with dj > 1, one needs a multivariate

extension of the contraction theorem which is not available in literature at the moment. This

extensions is, in principle, possible and we leave it for the future work.

76

3.3.2 Consistency

Recall that F (β) = `[n](β) + λn
∑

i,j |||βij|||F is the global regularized negative log-likelihood

in this paper, and Ω is the GLDAG parameter space. The optimization problem (3.5) is

equivalent to minβ∈Ω F (β). Denote by β̂ ∈ Ω a global minimizer of F (β) and β∗ ∈ Ω the

true parameter with the true DAG G∗. We impose assumptions (A1) and (A2) to establish

consistency results of β̂, where p(x | β) is the joint density of a GLDAG parameterized by

β. We also establish the consistency of β̂π, used in Theorem 3, for any fixed π.

(A1) The graph G∗ is identifiable. The true parameter β∗ is faithful to G∗ and is an interior

point of Ω. The log-likelihood p(xj | paj, βj) is strictly concave in βj and continuously

three times differentiable with respect to βj for all j ∈ [p].

(A2) There exist a neighborhood of the true parameter β∗, denoted by nb(β∗), and functions

Mjkl such that
∣∣∣ ∂3

∂βj∂βk∂βl
log p(x | β)

∣∣∣ ≤Mjkl(x) for all β ∈ nb(β∗) and Eβ∗ [Mjkl(x)] <

∞ for all j, k, l, where β∗ and β are regarded as vectors.

Theorem 4. Assume (A1) and (A2) hold, and λn
√
n → 0. Then for any π, we have

|||β̂π − β∗π|||F = Op(n−1/2), where β̂π is any global minimizer of F (β) over D(π) and β∗π is the

minimizer of the population loss E[`[n](β)] over D(π). Moreover, there is a global minimizer

β̂ of F (β) over Ω, such that |||β̂ − β∗|||F = Op(n−1/2).

Theorem 4 confirms that the group Lasso regularized estimator is
√
n-consistent, where (A1)

assumes identifiability (Definition 3) and faithfulness (Definition 4) of the model and (A2) is

a standard regularity condition. The strict concavity assumption in (A1) is satisfied under

the GLDAG model (3.2) if the Hessian of bj(β
>
j x) is positive definite.

3.4 Numerical experiments

We first use the multinomial logistic (multi-logit) model as an example to illustrate GLDAG

models. Then we assess the structure accuracy of DARLS (Algorithm 5) by comparing it to

77

other existing methods using distributed simulation data. We also examine the performance

of distributed optimization (Algorithm 6) in terms of accuracy and computational efficiency.

3.4.1 Multi-logit GLDAG models

Suppose categorical random variable Xj has rj possible states {1, . . . , rj}, and the level of

Xj is encoded by dj = rj−1 dummy variables, i.e., xj = {0, 1}dj , for j ∈ [p]. Let us consider

the multinomial logistic (multi-logit) model for {X1, . . . , Xp}:

P
(
Xj = k | PAXj = paxj

)
=

exp
(
〈βkj , x〉

)

1 +
∑dj

l=1 exp
(
〈βlj, x〉

) , k = 1, . . . , dj, (3.9)

where βlj ∈ Rd+1 is the coefficient vector for Xj being level l. Model (3.9) is specified by

dj = rj − 1 equations, reflecting the constraint that conditional probabilities of all states of

Xj sum up to one. One can verify that multi-logit (3.9) belongs to the GLDAG family (3.2),

by taking

b(θj) = log
(

1 +

dj∑

l=1

exp θjl

)
, and c(xj) = 0,

where θjk := 〈βkj , x〉 for k = 1, . . . , dj and θj = [θj1, . . . , θjdj]. Let yhjl := I(xjh = l) be

an indicator variable. Following (3.4), the normalized likelihood under the multi-logit DAG

model (3.9) is

`[n](β) =
1

n

p∑

j=1

n∑

h=1

dj∑

k=1

yhjk〈βkj , xh〉 − log

(
1 +

dj∑

l=1

exp
(
〈βlj, xh〉

)
)
 , (3.10)

where β = {βkj , j = 1, . . . , p, k = 1, . . . , dj} collects all parameters. Let (βlj)0 ∈ R be the

first entry (i.e., the intercept coefficient) in βlj, and (βlj)i ∈ Rdi be the i-th block related to

Xi in βlj, for i = 1, . . . , p. Defining intercept parameter βj0 := [(β1
j)0, . . . , (β

dj
j)0] ∈ Rdj and

coefficient matrix βji := [(β1
j)i, . . . , (β

dj
j)i] ∈ Rdj×di , the gradients of (3.10) w.r.t βj0 and βji

78

for i, j ∈ [p] are

∂`(β)

∂βj0
=

1

n

n∑

h=1

yhj1 − P (Xj = 1 | β, paxj)
·
·

yhjdj − P (Xj = dj | β, paxj)

∈ Rdj , and

∂`(β)

∂βji
=

1

n

n∑

h=1

(
yhj1 − P (Xj = 1 | β, paxj)

)
xih

·
·

(
yhjdj − P (Xj = dj | β, paxj)

)
xih

∈ Rdj×di ,

which are used in the distributed optimization algorithm (line 6, Algorithm 5). We use the

multi-logit DAG model to simulate categorical data in our numerical tests, which will be

discussed in the next subsection.

3.4.2 Methods and data

Denote by s0 the number of edges in a graph, the following networks (p, s0) were downloaded

from the Bayesian networks repository (Scutari, Accessed: 2019), licensed under the Creative

Commons Attribution-Share Alike License, to simulate our large data sets: Asia (8, 8), Sachs

(11, 17), Child (20, 25), Insurance (27, 52), Alarm (37, 46), Hailfinder (56, 66) and Hepar2

(70, 123). Logistic GLDAG and multinomial models were used to generate 20 data sets for

each network under two settings: n = 100p,K = 10 and n = 10, 000, K = 20, where a

total of n observations were randomly assigned to K local machines. In particular, binary

data were generated under logistic GLDAGs with parameters {βji} uniformly sampled from

[−1.5,−0.8]∪ [0.8, 1.5]. To examine the robustness of our method against violations of GLM

assumptions, multinomial data were also simulated from contingency tables provided in the

BN repository with modifications made to ensure (1) the number of states per variable was at

most three, and (2) marginal probability of any state was at least 10% for every variable by

merging states. However, due to the high structure complexity of Hailfinder and Hepar2,

79

we kept the original distribution of a few nodes in these two networks, resulting in marginal

probability less than 10% for some states.

We compared DARLS algorithm to the following five causal structure learning meth-

ods: the standard greedy hill climbing (HC) algorithm (Gámez et al, 2011), the Peter-Clark

(PC) algorithm (Spirtes and Glymour, 1991), the max-min hill-climbing (MMHC) algorithm

(Tsamardinos et al, 2006), the fast greedy equivalence search (FGES) (Chickering, 2002; Ra-

manan and Natarajan, 2020), and the NOTEARS algorithm (Zheng et al, 2018). Since none

of these competing algorithms can handle distributed data, we applied standard methods

on each independent data set {xh}h∈Ik to obtain local estimate Ak, and then constructed a

global graph using {Ak}Kk=1 by counting the occurrence of each edge direction and sequen-

tially adding the edges to an empty graph subject to the acyclicity constraint. In particular,

given {Ak}K1 , we counted occurrences of each edge direction, and there are three possible

orientations between i and j: i → j, i ← j, or i − j (undirected). We ranked all directions

in a descending order of their counts, and then sequentially added these edges to an empty

graph, as long as it would not introduce a directed cycle (a cycle consisted with all directed

edges). At last, we applied Meek’s rule to maximally orient directed edges, and hence con-

structed a global structure that satisfied the acyclicity constraint. HC global estimates had

too many edges using this approach, because its local machines lacked consensus on struc-

ture estimation, resulting in a large number of candidate edges. To solve this problem, we

counted the number of “no edges” between i and j when using the HC algorithm, and we

would not add connection between i and j if majority of local graphs had no edges between

them. In this way, the sparsity of graphs estimated by HC was reduced and became more

reasonable.

We implemented the DARLS algorithm in Matlab and used the following packages

to run competing methods: bnlearn (Scutari, 2010) for the MMHC and HC algorithms,

pcalg (Kalisch et al, 2012) for the PC algorithms and rcausal (Ramsey, 2015) for the

FGES. The NOTEARS method was run with online Python code (Zheng, 2019). These

competing methods were applied on each local data set using a 2016 MacBook Pro (2.9 GHz

Intel Core i5, 16 GB memory), since they could not handle distributed data. DARLS learned

80

causal structures through parallel computation, so it was run on UCLA’s Hoffman2 Cluster.

In the DARLS algorithm (Algorithm 5), we started with temperature 5 · 10−2 and grad-

ually decreased it to 5 · 10−5 with a total iteration of 103. A significance level of 0.01 was

used for the PC algorithm to generate graphs with desires sparsities. FGES was applied

with a significance level of 0.1, which was the default value. For MMHC and HC methods,

the maximum number of parents for a node was set to be three.

3.4.3 Structure learning accuracy

We computed the Structural Hamming Distance (SHD) between an estimated CPDAG and

the true CPDAGs (if a DAG is estimated, we converted it to CPDAG), and used it to assess

each method’s performance. SHD counts the number of edge insertions, deletions or flips in

order to transform the estimated graph to the true one, and thus lower SHD corresponds

to higher structure learning accuracy. Since GLDAG is identifiable, we compared DAGs for

DARLS’s SHD on binary data generated by GLDAG models. We explain the calculation of

SHD in the next paragraph.

Let P, TP, FP, M, R be the numbers of estimated edges, true positive edges, false positive

edges, missing edges and reverse edges, respectively. P is the number of edges in the estimated

graph. FP is the number of edges in the estimated graph skeleton but not in the te skeleton,

and M counts the number of edges in the true skeleton but not in the skeleton of the estimated

graph. TP reports the number of consistent edges between the estimated DAG/CPDAG and

the true DAG/CPDAG, where consistent edges have the same direction between two nodes:

there are two edge orientations between two nodes in DAGs and three directions in CPDAGs.

Lastly, the number of reversed edges R = P−TP−FP. We then define structural Hamming

distance (SHD) and Jaccard index (JI): SHD = R + FP + M and JI = TP/(s0 + P − TP).

A method has higher structure learning accuracy if it achieves a lower SHD and/or a higher

JI.

Figure 3.1 compares DARLS using distributed data over K machines to (1) the best

performance among the above five competing methods using the same distributed data (best-

81

0

20

40

60

80
SH

D
Binary data, n = 100p

Method
best_combined
DARLS_distributed
best_distributed

0

20

40

60

80

100

120
Multinomial data, n = 100p

Asia Sachs Child
Insurance Alarm

Hailfinder
Hepar2

Graph

0

20

40

60

80

100

SH
D

Binary data, n = 10, 000

Asia Sachs Child
Insurance Alarm

Hailfinder
Hepar2

Graph

0

20

40

60

80

100

120
Multinomial data, n = 10, 000

Figure 3.1: SHD comparison between DARLS on distributed data and the best method using

combined or distributed data.

distributed method) and (2) the best among all six methods, including DARLS, using the

pooled data across all local machines (best-combined method). The best-combined method

is expected to achieve the lowest SHD. However, DARLS and the best-combined method

had substantial overlaps in the distribution of SHD, especially when using binary data to

learn DAG structures, indicating highly competitive performance of our algorithm using

distributed data compared to the best method on combined data. DARLS consistently

outperformed the best-distributed method when using binary data to learn DAGs across all

networks.

In the multinomial data setting where GLM assumption was violated, DARLS exhib-

ited higher structure accuracy than the best-distributed method for smaller graphs, but its

improvement diminished for larger graphs (Insurance, Alarm, Hailfinder and Hepar2).

However, it is comforting to see DARLS achieved higher accuracy than most of the compet-

ing methods using distributed data (Tables 3.1 and 3.2). Moreover, variability in SHD of

DARLS was smaller than that of the best competing methods, showing its higher consistency

across data sets.

82

We also summarize average values of TP, R, FP, M, SHD and JI over 20 data sets for each

graph and each method. Table 3.1 shows results for n = 100p,K = 10, allowing n to grow

with p, which includes binary and multinomial data experiments. In the binary data setting,

DARLS had the lowest SHDs for every graphs, and its JI was the highest for most networks

(except Sachs). Using multinomial data, its SHDs and JIs were the best for three graphs,

Asia, Sachs and Child. For larger networks, though DARLS was not the best method, its

performance was still better than the most of the competing methods. NOTEAR estimates

were too sparse to be competitive, even we decreased the penalty tuning parameter to 10−4

while the suggested value was 10−1, and its ratio of TP versus (R + FP) was also much lower

than that of other methods. Hence, we only showed its results for the two small graphs,

Asia and Sachs. PC had difficulty generating estimates within a reasonable time limit for

the last two networks, Hailfinder and Hepar2, so we removed its results from comparisons

using these two networks.

Table 3.2 shows big data set results where n = 10, 000 and K = 20. The results were

similar to those in Table 3.1, where DARLS consistently achieved the highest accuracy

when using binary data. When the underlying data generation model is multinomial, its

improvements diminished slightly, especially in large graphs.

3.4.4 Distributed optimization accuracy and computational time

To quantify the accuracy of distributed optimization using Algorithm 6, we compared per-

mutation scores f(π) (3.5) under various values of K ∈ {1, 2, 5, 10} for a fixed π. For each

value of K, we fixed the tuning parameter λ, permutation π and all internal computation

parameters to ensure only K varied in the calculation of f(π). Let f (K) be the value of

f(π) computed by K local machines, and ∆f (K) := f (K) − f (1) be the relative increase in

the loss f (K). We compared {∆f (K), K = 2, 5, 10} across selected networks in Figure 3.2a,

where values of ∆f (K) were in the order of 10−13, verifying f(π) was essentially identical

using either the overall (K = 1) or distributed data (K ≥ 2). Since the number of iterations

were fixed, ∆f (K) increased with the greater network size.

83

Table 3.1: DARLS against other methods on simulation data with n = 100p and K = 10.

Network
Method

Binary Data Multinomial Data

(n, p, s0) TP R FP M SHD (sd) JI (sd) TP R FP M SHD (sd) JI (sd)

Asia DARLS 3.7 3.1 0.3 1.1 4.6 (1.6) 0.33 (0.15) 6.9 0.1 0.1 1.0 1.1 (0.6) 0.85 (0.09)

(800, 8, 8) HC 0.8 0.8 0.0 6.3 7.2 (0.8) 0.10 (0.10) 4.9 0.5 0.1 2.6 3.2 (1.3) 0.59 (0.18)

MMHC 2.6 3.0 1.4 2.4 6.7 (1.3) 0.22 (0.06) 1.9 3.6 0.1 2.5 6.2 (0.9) 0.17 (0.11)

PC 2.1 3.1 0.8 2.7 6.7 (1.4) 0.19 (0.10) 1.4 3.8 0.1 2.9 6.7 (0.7) 0.12 (0.05)

FGES 2.5 3.8 3.5 1.7 9.0 (2.4) 0.17 (0.09) 5.8 1.6 6.0 0.7 8.2 (1.7) 0.38 (0.10)

NOTEARS 0.5 0.9 4.2 6.6 11.8 (1.1) 0.04 (0.05) 0.5 1.0 4.4 6.5 11.9 (1.7) 0.04 (0.07)

Sachs DARLS 7.5 7.2 0.5 2.4 10.0 (2.1) 0.31 (0.10) 11.1 1.9 0.0 4.0 6.0 (2.4) 0.60 (0.18)

(1100, 11, 17) HC 3.6 0.5 0.0 12.9 13.3 (1.4) 0.21 (0.09) 7.8 1.1 0.0 8.1 9.2 (1.7) 0.44 (0.12)

MMHC 8.8 3.5 1.8 4.7 10.0 (4.7) 0.44 (0.26) 10.2 1.2 0.1 5.5 6.8 (2.5) 0.58 (0.17)

PC 4.7 6.5 1.4 5.8 13.7 (2.4) 0.20 (0.12) 7.0 1.1 0.1 8.9 10.1 (2.3) 0.40 (0.15)

FGES 3.2 9.3 5.2 4.5 19.1 (3.1) 0.11 (0.07) 2.0 12.1 2.9 2.9 17.9 (2.9) 0.07 (0.07)

NOTEARS 0.0 2.6 4.8 14.3 21.8 (1.4) 0.00 (0.00) 0.0 4.5 7.1 12.5 24.1 (3.8) 0.00 (0.00)

Child DARLS 15.1 7.4 0.5 2.5 10.4 (3.5) 0.47 (0.14) 12.9 7.2 0.8 4.8 12.9 (4.2) 0.41 (0.16)

(2000, 20, 25) HC 6.2 5.3 0.0 13.4 18.8 (2.8) 0.21 (0.10) 11.1 6.2 0.1 7.7 14.0 (2.1) 0.36 (0.07)

MMHC 9.2 12.7 6.2 3.1 22.1 (3.7) 0.21 (0.07) 10.2 8.3 0.5 6.5 15.3 (1.8) 0.30 (0.06)

PC 6.5 14.4 4.7 4.0 23.1 (3.3) 0.15 (0.05) 4.5 7.5 0.3 13.1 20.9 (1.0) 0.14 (0.03)

FGES 6.5 14.0 10.2 4.5 28.8 (4.7) 0.13 (0.06) 11.4 11.2 4.7 2.5 18.3 (2.8) 0.29 (0.10)

Insurance DARLS 30.9 16.8 0.6 4.2 21.6 (5.0) 0.45 (0.10) 14.6 17.8 4.0 19.6 41.5 (4.6) 0.20 (0.07)

(2700, 27, 52) HC 11.0 11.3 0.0 29.6 41.0 (4.1) 0.18 (0.07) 19.8 9.3 0.9 22.9 33.1 (3.8) 0.32 (0.07)

MMHC 18.3 26.7 4.5 7.0 38.2 (3.7) 0.22 (0.05) 12.8 14.4 0.5 24.7 39.6 (2.3) 0.19 (0.04)

PC 15.8 26.9 3.5 9.2 39.6 (2.9) 0.19 (0.03) 8.2 15.2 0.9 28.6 44.8 (2.2) 0.12 (0.04)

FGES 18.4 24.9 9.3 8.7 42.9 (5.1) 0.22 (0.05) 20.7 16.9 14.7 14.4 46.0 (5.1) 0.25 (0.04)

Alarm DARLS 27.4 15.3 0.2 3.3 18.8 (2.3) 0.45 (0.05) 17.1 17.9 8.4 10.9 37.3 (5.9) 0.24 (0.07)

(3700, 37, 37) HC 10.9 18.8 0.0 16.3 35.0 (4.7) 0.17 (0.08) 25.4 13.3 3.0 7.3 23.6 (5.9) 0.42 (0.11)

MMHC 17.9 25.8 10.3 2.4 38.5 (5.7) 0.22 (0.05) 24.1 12.4 0.9 9.5 22.9 (3.5) 0.41 (0.08)

PC 20.1 22.8 7.9 3.1 33.8 (3.2) 0.26 (0.04) 9.3 25.9 1.0 10.8 37.7 (3.3) 0.13 (0.05)

FGES 19.2 22.1 10.3 4.7 37.1 (4.4) 0.25 (0.05) 38.3 3.6 19.1 4.0 26.8 (4.5) 0.56 (0.06)

Hailfinder DARLS 39.2 23.0 0.8 3.8 27.5 (3.5) 0.44 (0.05) 16.9 14.3 2.6 34.8 51.7 (4.9) 0.21 (0.05)

(5600, 56, 66) HC 14.8 38.2 0.0 13.0 51.2 (4.4) 0.14 (0.05) 24.6 18.4 2.0 23.1 43.5 (3.1) 0.29 (0.04)

MMHC 16.4 44.6 19.6 5.0 69.2 (6.4) 0.13 (0.02) 15.1 19.8 1.9 31.1 52.8 (2.7) 0.17 (0.03)

FGES 23.0 39.0 13.0 4.0 56.0 (6.5) 0.20 (0.04) 33.9 17.8 9.8 14.3 42.0 (8.8) 0.37 (0.12)

Hepar2 DARLS 72.9 37.9 1.6 12.2 51.7 (10.0) 0.45 (0.07) 17.4 29.0 2.5 76.5 108.1 (6.6) 0.11 (0.05)

(7000, 70, 123) HC 60.2 29.9 0.0 32.9 62.8 (5.9) 0.39 (0.04) 33.4 20.4 1.6 69.2 91.3 (7.8) 0.23 (0.06)

MMHC 53.0 45.2 19.1 24.7 89.0 (7.6) 0.28 (0.04) 34.9 20.1 21.9 68.0 110.1 (5.7) 0.21 (0.03)

FGES 75.8 36.8 18.9 10.4 66.2 (9.9) 0.43 (0.05) 58.5 17.9 37.6 46.6 102.1 (7.0) 0.33 (0.03)

84

Table 3.2: DARLS against other methods on simulation data with n = 10, 000 and K = 20.

Network
Method

Binary Data Multinomial Data

(p, s0) TP R FP M SHD (sd) JI (sd) TP R FP M SHD (sd) JI (sd)

Asia DARLS 4.5 3.0 0.0 0.5 3.5 (1.3) 0.43 (0.17) 7.0 0.0 0.1 1.0 1.1 (0.4) 0.87 (0.04)

(8, 8) HC 3.3 3.5 0.0 1.2 4.7 (0.7) 0.29 (0.09) 7.8 0.1 0.1 0.0 0.2 (0.9) 0.97 (0.13)

MMHC 3.1 4.8 0.3 0.1 5.2 (1.0) 0.25 (0.08) 4.8 1.2 0.5 2.0 3.8 (1.3) 0.50 (0.10)

PC 3.0 4.8 0.6 0.1 5.5 (1.5) 0.24 (0.13) 2.5 3.5 0.3 2.0 5.8 (0.7) 0.21 (0.05)

FGES 2.8 5.0 3.0 0.1 8.2 (2.2) 0.19 (0.13) 5.8 2.2 5.0 0.0 7.3 (2.0) 0.39 (0.12)

NOTEARS 0.2 0.6 2.4 7.2 10.2 (1.1) 0.02 (0.04) 0.6 0.9 3.8 6.5 11.2 (1.7) 0.05 (0.07)

Sachs DARLS 8.7 7.0 0.0 1.2 8.3 (2.3) 0.37 (0.12) 10.9 3.1 0.1 3.0 6.2 (3.3) 0.57 (0.24)

(11, 17) HC 6.8 4.0 0.0 6.2 10.2 (2.8) 0.34 (0.17) 6.7 5.9 0.0 4.5 10.3 (4.3) 0.33 (0.25)

MMHC 6.8 9.2 0.8 1.1 11.1 (3.5) 0.27 (0.18) 3.1 11.2 0.1 2.8 14.0 (1.1) 0.11 (0.04)

PC 5.9 10.2 0.7 0.9 11.8 (4.4) 0.25 (0.26) 8.8 1.1 0.1 7.0 8.3 (2.5) 0.49 (0.17)

FGES 2.4 13.8 4.8 0.8 19.4 (3.5) 0.07 (0.05) 4.4 11.8 2.9 0.8 15.5 (4.5) 0.16 (0.19)

NOTEARS 0.0 2.3 3.5 14.7 20.6 (1.7) 0.00 (0.00) 0.1 2.8 5.7 14.2 22.6 (2.4) 0.00 (0.01)

Child DARLS 16.9 7.2 0.1 0.9 8.2 (3.7) 0.54 (0.16) 18.1 4.0 0.6 2.9 7.5 (4.3) 0.63 (0.20)

(20, 25) HC 13.3 6.8 0.0 4.9 11.7 (4.9) 0.44 (0.20) 14.9 5.0 0.1 5.0 10.2 (2.3) 0.50 (0.10)

MMHC 10.2 14.6 4.3 0.3 19.2 (3.9) 0.24 (0.09) 12.2 8.2 0.5 4.7 13.3 (3.9) 0.38 (0.14)

PC 8.1 16.2 3.9 0.7 20.8 (4.5) 0.19 (0.11) 6.0 10.8 0.6 8.2 19.6 (2.5) 0.17 (0.07)

FGES 11.7 12.8 9.7 0.6 23.0 (5.0) 0.25 (0.08) 14.4 9.9 3.9 0.6 14.4 (2.9) 0.38 (0.08)

Insurance DARLS 31.9 15.4 0.3 4.7 20.4 (4.3) 0.47 (0.08) 15.7 16.1 3.5 20.2 39.8 (7.6) 0.23 (0.09)

(27, 52) HC 20.4 11.9 0.0 19.7 31.6 (4.9) 0.32 (0.09) 22.5 10.7 0.8 18.9 30.2 (4.9) 0.36 (0.09)

MMHC 22.1 27.1 4.1 2.9 34.0 (5.3) 0.27 (0.07) 16.6 15.2 0.9 20.2 36.3 (2.9) 0.25 (0.05)

PC 17.9 30.3 3.4 3.8 37.5 (4.4) 0.21 (0.05) 7.3 20.7 0.9 24.0 45.6 (2.8) 0.10 (0.04)

FGES 23.9 23.6 11.8 4.5 39.9 (7.0) 0.28 (0.05) 23.1 16.6 20.4 12.3 49.2 (6.0) 0.26 (0.04)

Alarm DARLS 27.1 16.2 0.1 2.8 19.1 (4.1) 0.44 (0.09) 18.1 17.6 6.2 10.2 34.0 (4.0) 0.26 (0.06)

(37, 46) HC 14.5 20.6 0.0 10.9 31.5 (4.9) 0.22 (0.08) 27.1 12.3 2.4 6.5 21.2 (4.5) 0.45 (0.10)

MMHC 17.6 27.8 14.5 0.7 43.0 (5.7) 0.20 (0.05) 24.6 13.9 2.3 7.4 23.6 (2.6) 0.40 (0.05)

PC 18.9 26.4 13.3 0.8 40.5 (5.3) 0.22 (0.06) 11.6 25.2 1.8 9.2 36.2 (2.4) 0.16 (0.03)

FGES 23.5 21.2 18.9 1.3 41.4 (7.7) 0.28 (0.06) 36.6 4.4 25.6 5.0 35.0 (6.0) 0.49 (0.06)

Hailfinder DARLS 39.0 22.6 0.8 4.3 27.7 (4.6) 0.44 (0.07) 16.6 15.2 3.5 34.2 52.9 (5.5) 0.20 (0.06)

(56, 66) HC 15.7 34.4 0.0 15.9 50.4 (6.6) 0.16 (0.08) 23.8 18.0 1.7 24.2 44.0 (2.3) 0.28 (0.03)

MMHC 17.1 45.6 42.8 3.3 91.7 (8.7) 0.11 (0.02) 14.3 22.4 4.8 29.3 56.4 (4.1) 0.16 (0.03)

FGES 21.7 41.0 28.1 3.3 72.5 (8.5) 0.16 (0.03) 28.1 23.9 17.6 14.0 55.6 (6.3) 0.26 (0.07)

Hepar2 DARLS 75.5 35.8 1.3 11.7 48.8 (10.4) 0.47 (0.08) 18.1 28.6 3.2 76.3 108.1 (4.8) 0.12 (0.04)

(70, 123) HC 49.5 30.1 0.0 43.5 73.5 (11.0) 0.33 (0.09) 28.1 19.8 1.9 75.1 96.8 (7.8) 0.20 (0.06)

MMHC 51.0 55.9 46.5 16.1 118.5 (10.1) 0.23 (0.03) 35.0 25.1 51.5 62.9 139.4 (8.7) 0.18 (0.03)

FGES 76.4 34.3 39.9 12.3 86.5 (11.9) 0.39 (0.04) 56.8 20.0 74.5 46.2 140.7 (11.0) 0.26 (0.02)

85

Asia Sachs Child Insurance
Graph

0.2

0.0

0.2

0.4

0.6

0.8
Lo

ss
 In

cr
ea

se
1e 13

Machine Number
2
5
10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of local machines

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
na

lp
 ti

m
e

(s
)

(a) Relative loss distribution.

Asia Sachs Child Insurance
Graph

0.2

0.0

0.2

0.4

0.6

0.8
Lo

ss
 In

cr
ea

se
1e 13

Machine Number
2
5
10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of local machines

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
na

lp
 ti

m
e

(s
)

(b) Computational time distribution.

Figure 3.2: Accuracy and computational time comparison for f(π). Computational time

comparison, with mean and standard deviations plotted, is performed over 20 data sets

generated from Insurance.

We also compared computational time of finding f (K) for K ∈ [20] using 20 Insurance

data sets. In each test, the same data were split and distributed to different numberK of local

machines, with all other parameters fixed to solve the optimization problem (3.5). We show

how computational time varied with respect to K in Figure 3.2b. As a merit of distributing

a complicated task, computing f(π) required less time when using more machines. However,

the reduction in computational time reached approximately a stable level after K = 10,

which indicates a trade-off between parallel computation and communication overhead.

3.5 Real data application

In this section, we apply our methods to the ChIP-Seq data generated by Chen et al (2008).

The data set contains the DNA binding sites of 12 transcription factors (TFs) in mouse

embryonic stem cells: Smad1, Stat3, Sox2, Pou5f1, Nanog, Esrrb, Tcfcp2l1, Klf4, Zfx, E2f1,

Myc, and Mycn. For each TF, an association strength score, which is the weighted sum

of the corresponding ChIP-Seq signal strength, was calculated for each of the 18,936 genes

Ouyang et al (2009). Roughly speaking, this score can be understood as a measure of the

binding strength of a TF to a gene. Following the same preprocessing in Wang and Zhou

(2021), the genes with zero association scores were removed from our analysis. Accordingly,

86

0 1 2 3 4 5
Binding strength

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Myc Transcription Factor

Figure 3.3: Histogram of TF Mycn. Red dotted line separates two clusters.

our observed data matrix, of size n × p = 8462 × 12, contains the association scores of 12

TFs over 8,462 genes. We aim to build a causal network that reveals how these 12 TFs affect

each other’s binding to genes.

The associate scores of a TF were discretized before network estimation. Distributions

of the binding strength of TF in Chip-Seq were bimodal with two different-size clusters: a

smaller one with samples mostly gathered around zero and a larger one with a center greater

than zero. Thus, we applied the K-means clustering (with K = 2) on its log-transformed data

to determine cut-off values to discretize the data into binary values. Figure 3.3 illustrates a

TF discretization pattern.

3.5.1 Test data likelihood comparison

We distributed this data set across K = 20 local machines and applied DARLS, HC, MMHC,

PC and FGES on distributed data to learn the protein-DNA binding network; we excluded

the NOTEARS algorithm because its performance was not competitive. Local estimates of

a competing method were combined to construct a global graph as we did in the simulation

study.

Test data likelihood under multinomial DAG models in ten-fold cross validation was used

to assess the accuracy of estimated networks, since the true network structure is unknown.

Denote by g the likelihood values using training under multinomial DAG models:

gj|paj =

rj∏

k=1

(pkj|paj)
nk
j|paj ,

87

where nkj|paj is the number of Xj = k given PAj = paj, and pkj|paj is the corresponding

conditional probability. Hence, the overall test data log-likelihood is

log g =
∑

j

∑

paj

log(gj|paj) =
∑

j

∑

paj

rj∑

k=1

nkj|paj log(p̂kj|paj),

where p̂kj|paj is an estimated conditional probability using training samples. Denoting by ñpaj

the number of training samples such that PAj = paj, we let p̂kj|paj := (ñkj|paj +αjkpaj)/(ñpaj +

αj·paj), where pseudo count αklpaj is used to ensure numerical validity and αj·paj =
∑

k αjkpaj .

We define αjkpaj := α/(rjqj), where α is a fixed small number (taking value of 1 in our test)

and qj is the number of states for PAj. Denote by g̃ the training data likelihood under

the multinomial DAG model, and we can find its value as how we compute g. We further

computed BIC = −2 log g̃+log(ñ)N (Ĝ), where ñ is the training sample size and N (Ĝ) is the

number of multinomial parameters for estimated graph Ĝ. Test likelihood g and BIC score

are used to measure accuracy of each method.

Denoting by gD and BICD the DARC’s test data likelihood and BIC, respectively, and

using them as benchmarks, we summarize the log-likelihood difference ∆(log g) = log g −
log gD and the BIC difference ∆BIC = BIC−BICD for each method in Table 3.3. Structure

learning methods achieve different sparsity of their estimators by varying internal tuning

parameters, such as penalty parameter in DARLS and significance levels in MMHC and PC

algorithms. To ease the comparison, we controlled the sparsity of estimated networks such

that every method produced two graphs, with roughly 17 and 28 edges, respectively. The

number of edge is represented be |E|. FGES was reported with around 12 edges because it

had difficulty generating output close to 17 edges. In both cases, DARLS achieved the highest

test data likelihood and the smallest BIC, outperforming other methods by a substantial

margin. Note that log g is the test log-likelihood while BIC is using the training data. Thus

the magnitude of ∆ BIC is much larger than ∆(log g). The value of exp {−∆BIC/(2ñ)} is

also reported in the table as an approximation to the normalized marginal likelihood ratio

(NLR) (P (X̃ | Ĝ)/P (X̃ | ĜD))1/ñ, where X̃ denotes training data, between estimated DAGs

Ĝ by a competing method and ĜD by DARLS. All the NLRs are substantially < 1, showing

that ĜD fit the data much better. Note that the likelihood and BIC here are calculated under

88

Table 3.3: Test data log-likelihood and BIC comparison on the ChIP-Seq dataset.

Method
Sparse Moderate

|E| ∆(log g) ∆BIC NLR |E| ∆(log g) ∆BIC NLR

DARLS 16.5 0.0 0.0 1.000 27.5 0.0 0.0 1.000

HC 17.0 −15.0 1458.4 0.384 29.0 −14.3 877.1 0.562

MMHC 17.0 −12.7 1418.4 0.394 29.5 −21.9 764.7 0.605

PC 17.0 −19.4 1458.4 0.384 29.0 −14.4 644.9 0.655

FGES 11.5 −27.4 1426.9 0.392 28.0 −17.1 728.9 0.620

the multinomial model, instead of the GLDAG model. Thus, the superior performance of

ĜD learned by DARLS on this real-world data suggests that our proposed GLDAG model is

a good approximation to the underlying data generation mechanism.

3.5.2 Protein-DNA binding networks estimated by DARLS

To gain more scientific insights, we show in Figure 3.4 the sparser DAG (P = 17) and

its converted CPDAG, learned by DARLS from the complete data set (n = 8, 462) dis-

tributed over K = 20 local machines. One interesting observation is the directed path

Nanog→Pou5f1→Sox2 in the estimated CPDAG, among the three core regulators in the

gene regulatory network in mouse embryonic stem cells (Chen et al, 2008; Zhou et al, 2007).

It is well-known that many genes are co-regulated by Pou5f1, Sox2 and Nanog. The esti-

mated path suggests that Nanog binding would cause the binding of Pou5f1, which then

may cause Sox2 binding. This provides new clue for how the three TFs work together to

co-regulate downstream genes.

3.6 Discussion

We have developed the DARLS algorithm to learn causal networks from distributed data,

which incorporates a distributed optimization method in simulated annealing. To the best of

knowledge, it is the first method learning causal graphs from data distributed over multiple

89

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

(a) DAG.

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

(b) CPDAG.

Figure 3.4: DAG and the converted CPDAG learned by DARLS with λ = 0.06 and refine-

ment parameter α = 0.3.

machines, using distributed optimization that relies on multiple rounds of communication

between local and central machines. The GLDAG model we proposed includes a family of

flexible distributions besides linear Gaussian models, and thus can be applied to different

types of data. Our primary focus is on the big and distributed data case, with large n but

moderate p. However, generalizing the convergence and consistency results to allow diverging

p is interesting theoretically and left as future work.

3.7 Proofs

We first present proofs of main results in Section 3.7.1, where Section 3.7.1.2 is a joint work

in (Ye et al, 2021), and then show proofs of lemmas in Section 3.7.2. Proofs of other results

are moved to the end of this chapter, in Section 3.7.3.

90

3.7.1 Proofs of main results

3.7.1.1 Proof of Proposition 4

Proof. We first show the skeleton of a continuous GLDAG (3.3) defined by β is unique in the

following lemma, and then prove the identifiability stated in Proposition 4. Proofs of this

and following lemmas are provided in Section 3.7.2. Since xj is reduced to a scalar under

continuous GLDAG models, we use xj rather than xj for a realization of Xj in this proof.

Lemma 9. Suppose the joint distribution L(X) is defined by the log-pdf L(x; β) with a DAG

G0 according to (3.3) such that βij 6= 0 if and only if i ∈ PAj in G0. If L(x; β) is second-order

differentiable with respect to x, then any GLDAG that defines L(X) has the same skeleton.

Let G be the DAG defined by the support of β. Suppose there is another GLDAG G̃
parameterized by β̃ 6= β, which generates the same distribution. Since DAGs contains no

cycles, we can find leave nodes in DAGs. If a same leave node Xi exists in both graphs and

PAGi = PAG̃i =: S, then βki = β̃ki for all k ∈ S because βki = ∂2L(x;β)
∂xk∂xi

= ∂2L(x;β̃)
∂xk∂xi

= β̃ki, ∀k ∈ S
(see proof of Lemma 9 for derivations). So we can safely remove the corresponding (i + 1)-

th rows and i-th columns from both coefficient matrices, and call the remaining coefficient

matrices β and β̃, respectively defining DAGs G and G̃, again. If we repeat this process, we

will end up with a leave node Xz in G such that (1) Xz has child in G̃ or (2) PAGz 6= PAG̃z , or

otherwise this leave node in G will be removed.

Case 1. Let us consider the first case that Xz has child node(s) in G̃; that is, consider

ch(z) = ∅ in G, but ch(z) 6= ∅ in G̃, where ch(z) is the children set of Xz. Taking the second

derivative w.r.t. xz, we have

∂2L(x; β)

∂x2
z

=
c′′z(xz)

c(xz)
+ βzz −

∑

k∈ch(z)

β2
zkb
′′
k

(
(β>x)k

)
=
c′′z(xz)

cz(xz)
−
∑

k∈ch(z)

β2
zkb
′′
k

(
(β>x)k

)
,

91

where the second equation is because βzz = 0. Since ch(z) = ∅ in G, but ch(z) 6= ∅ in G̃, we

have

∂2L(x; β)

∂x2
z

− ∂2L(x; β̃)

∂x2
z

=
∑

k∈ch(z)

β̃2
zkb
′′
k

(
(β̃>x)k

)
6= 0,

where the inequality is because b′(·) is not constant. However, it contradicts to L(x; β) =

L(x; β̃). Therefore, Xz has no child node(s) in G̃ either.

Case 2. The second case is that PAGz 6= PAG̃z . Since Xz must be a leave node in both G
and G̃ (as case 1 cannot be true), different parent sets of Xz in G and G̃ means that Xz has

different skeletons in G and G̃, which contradicts to Lemma 9.

Combining these two cases, we can remove Xz from both DAGs. We keep removing such

leave nodes, until β and β̃ are empty, which means that β and β̃ are identical.

3.7.1.2 Proof of Theorem 3

Proof. To simplify, we write x>h = x>h∗ for the i-th row of the data and xh` is equivalent to

x`h. We also fix π and drop π from β̂π, Φπ, and simplify bj(·) to b(·) for j ∈ [p] in the proof.

Define

B := {β ∈ R(p+1)×p : max
1≤`≤p

‖β` − θ`‖1 ≤ rp}.

Consider the negative log-likelihood based on rows of the data matrix indexed by I ⊂ [n],

`I(β) =
1

|I|
∑

h∈I

p∑

`=1

b(x>h β`)− xh` x>h β`.

We have, for ` = 1, . . . , p,

[∇2`I(β)](``) =
1

|I|
∑

h∈I
b′′(x>h β`)xhx

>
h , (3.11)

where [·](``) denotes the `th (p + 1) × (p + 1) block of a matrix. Note that the Hessian

of `I is a block-diagonal matrix in Rp(p+1)×p(p+1) with diagonal blocks given above. Let

I0 = [n] = {1, 2, . . . , n} and note that Fk = `Ik + ρ, F = `I0 + ρ and hk = `Ik − `I0 .
92

Let ϕ`h(t) := b′′(t + x>h θ`) − b′′(x>h θ`). For any v ∈ Rp+1, consider the (p + 1) × (p + 1)

matrix A`I(v) with entries:

[A`I(v)]ij :=
1

|I|
∑

h∈I
ϕ`h(x

>
h v)xhixhj − E[ϕ`h(x

>
h v)xhixhj

]
.

Let Σ̂I := 1
|I|
∑

h∈I xhx
>
h and note that

∇2`I(β)− E∇2`I(β) = diag
(
A`I(β` − θ`), ` = 1, . . . , p

)
+∇2`I(θ)− E∇2`I(θ). (3.12)

The following lemma provides uniform control on the Frobenius norm of A`I(v) as v varies

in the `1 ball of radius rp.

Lemma 10. For I with |I| ≥ m, we have with probability at least 1− e−t2,

sup
‖v‖1≤rp

(∑

1≤i,j≤p
[A`I(v)]2ij

)1/2

≤ CT

√
p2 log p

m

(
κ+
√
κ(t+

√
log p)

)

where κ = bpT
2rp.

Let g(t) = b′′(t)− b′′(0) and consider the (p+ 1)× (p+ 1) matrix B`
I with entries:

[B`
I]ij :=

1

|I|
∑

h∈I
g(x>h θ`)xhixhj − E[g(x>h θ`)xhixhj

]
.

We note that

∇2`I(θ)− E∇2`I(θ) = diag
(
B`
I , ` = 1, . . . , p

)
+ b′′(0)

(
Σ̂I − E[Σ̂I]

)
. (3.13)

Let us write R∗1 = max` ‖θ`‖1. The next lemma provides control on the Frobenius norm of

B`
I .

Lemma 11. For I with |I| ≥ m, we have with probability at least 1− e−t2,

|||B`
I |||F ≤ CT

√
p2 log p

m

(
κ∗ +

√
κ∗(t+

√
log p)

)

where κ∗ = bpT
2R∗1.

The proof of Lemma 11 is identical to that of Lemma 10 and is omitted. Next, we control

the deviation of Σ̂I from its mean.

93

Lemma 12. Assume that p ≥ 2. For I with |I| ≥ m, we have with probability at least

1− e−t2,

|||Σ̂I − E[Σ̂I]|||F ≤ CT 2p(t+
√

log p)√
m

.

Recall that, by assumption, |Ik| ≥ m for all k = 1, . . . , K. Then, K ≤ n/m. We also

have |I0| = n ≥ m. Recall that we assume K + 1 ≤ np. Let us take t =
√

(2 + c1) log(np)

in Lemma 10. Then, on an event G1 with P(G1) ≥ 1− p(K + 1)(np)−(2+c1) ≥ 1− (np)−c1 , we

have

max
0≤ k≤K

max
1≤ `≤ p

sup
‖v‖1≤rp

|||A`Ik(v)|||F ≤ CTκ

√
p2 log p

m

(
1 +

√
log(np)

κ

)
=: αn

where κ = bpT
2rp and C is a different constant from the one in Lemma 12. Letting ψ(x) =

x ∨√x, we can further bound αn as

αn ≤ CT

√
p2 log p

m
ψ(κ)2

√
log(np) = 2CT 3√pψ(bpr)

p log(np)√
m

assuming np ≥ 3. Here, we are using ψ(κ) ≤ T 2√pψ(bpr) since rp = r
√
p and T, p ≥ 1. By

an almost identical argument, using Lemma 11, on an event G2 with P(G2) ≥ 1− (np)−c1 ,

max
0≤ k≤K

max
1≤ `≤ p

|||B`
Ik |||F ≤ α∗n

where α∗n ≤ 2CT 3ψ(bpR
∗
1)p log(np)√

m
.

Similarly, taking t =
√

(1 + c1) log(np) in Lemma 12, on an event G3, with P(G3) ≥
1− (np)−c1 , we have

max
0≤ k≤K

|||Σ̂Ik − E[Σ̂Ik]|||F ≤ CT 2

√
p2 log(np)

m
:= γn,

for some other constant C. Since E[Σ̂Ik] = Σ := E[xx>] for all k, on event G3 we have

‖Σ̂Ik − Σ‖op ≤ γn for all k = 0, 1, . . . , K. For the rest of the proof, we work on the good

event G = G1 ∩ G2 ∩ G3.

94

Recall that for any β ∈ B, we have ‖β` − θ`‖1 ≤ rp. Using (3.12), we obtain

sup
β∈B
‖∇2`Ik(β)− E[∇2`Ik(β)]‖op

≤ sup
β∈B

max
`
‖A`Ik(β` − θ`)‖op+ max

`
‖B`
Ik‖op+ |b′′(0)|‖Σ̂Ik − E[Σ̂Ik]‖op

≤ max
‖v‖1≤rp

max
`
‖A`Ik(v)‖op+ α∗n + |b′′(0)|γn

≤ αn + α∗n + b′′(0)γn

for all k = 0, . . . , K, on G. The last line above follows from ‖ · ‖op ≤ ||| · |||F and the fact

that b′′(0) ≥ 0 by convexity. Next, we note that E[∇2`Ik(β)] =: Mβ is the same for all

k = 0, . . . , K. Then, on G, we have

‖∇2hk(β)‖op = ‖∇2`Ik(β)−∇2`I0(β)‖op

≤ ‖∇2`Ik(β)−Mβ‖op+ ‖∇2`I0(β)−Mβ‖op

= ‖∇2`Ik(β)− E[∇2`Ik(β)]‖op+ ‖∇2`I0(β)− E[∇2`I0(β)]‖op

≤ 2αn + 2α∗n + 2b′′(0)γn

for all β ∈ B and k = 1, . . . , K.

Recalling that bp = inf |t|≤T (rp+R∗1) b
′′(t) > 0, by the convexity of b(·), bp ≥ 0. We further

assume that bp > 0. For any β ∈ B, we have |x>h β`| ≤ T‖β`‖1 ≤ T (rp + R∗1) by Hölder

inequality, followed by the triangle inequality. It follows from (3.11) that, for all β ∈ B and

k,

[∇2`Ik(β)](jj) � bpΣ̂Ik � bp(λmin(Σ)− γn)Ip+1 �
1

2
bpλmin(Σ)Ip+1

where the second inequality is by Weyl’s theorem and the last by assumption γn ≤ λmin(Σ)/2.

It follows that for any β ∈ B, we have ∇2`Ik(β) � 1
2
bpλmin(Σ)Ip(p+1).

We are now ready to apply convergence Theorem 6 (see Section 3.7.3). we need to

establish properties of the loss functions over a (vector) `2 balls, or equivalently matrix

Frobenius-norm balls. Consider the event G0 = {|||β̂ − θ|||F ≤ r} and let us work on G ∩ G0

for the rest of the proof. For any β = (β`) for which |||β − β̂|||F ≤ r, we have |||β − θ|||F ≤ 2r,

by the triangle inequality. Then, max` ‖β` − β̂`‖2 ≤ 2r hence, max` ‖β` − θ`‖1 ≤ rp = 2r
√
p.

95

We conclude that BF (β̂; r) ⊂ B, where BF (β̂; r) denotes the Frobenius-norm ball of radius r

centered at β̂.

It follows that on the good event G ∩ G0 and over BF (β̂; r), hk is δ-smooth with δ =

2αn + 2α∗n + 2b′′(0)γn and `Ik is ρ-strongly convex with ρ = 1
2
bpλmin(Σ). We have

δ

ρ
≤ 4

bpλmin(Σ)
(αn + α∗n + b′′(0)γn)

where αn + α∗n + b′′(0)γn . T 3
[
ψ(bpr) +

ψ(bpR∗1)√
p

+ b′′(0)
]
p3/2 log(np)/

√
m. The bound can be

simplified using ψ(x) + ψ(y) . ψ(x+ y) for x, y ≥ 0. The proof is complete.

3.7.1.3 Proof of Theorem 4

Definition 4. (Faithfulness.) A joint distribution L(X) is faithful to a DAG G if the condi-

tional independence statements in L have a one-to-one correspondence to the d-separations

in G.

Proof. Let S(β) be the set of all topological sorts implied by β. We observe that (Gu et al,

2019):

Lemma 13. For any θ ∈ Ω, there exists a δ(θ) such that if β ∈ Ω and |||β − θ|||F < δ(θ),

then S(β)
⋂S(θ) 6= ∅.

We say that β is in the neighborhood of θ, denoted by nb(θ), if |||β − θ|||F < δ(θ). Hence

θ and parameters in {β : β ∈ nb(θ)} share at least one topological sort by Lemma 13.

Case 1. Let us consider β ∈ nb(β∗π) and β 6= β∗π. Consider a permutation π ∈
S(β)

⋂S(β∗π), which is compatible with β and β∗π. If p(x | β) = p(x | β∗π) for DAG G,

then β and β∗π decompose the joint distribution of G according to a common permutation

π and have the same joint distribution. In this case, β and β∗π must be identical since G
is identifiable, which contradicts β 6= β∗π. Thus we have p(x|β) 6= p(x|β∗π) for some x and

β ∈ nb(β∗π). Therefore, we have Eβ∗π [log(p(x|β∗π)] > Eβ∗π [log(p(x|β)], which indicates that the

Fisher information matrix is positive definite, i.e.,

I(β∗π) = E
[
∂

∂β∗π
log p(x | β∗π)

∂

∂β∗π
log p(x | β∗π)>

]
� 0,

96

where Iik(β) = Eβ
[
− ∂2

∂βi∂βk
log(p(x | β)

]
with θ reshaped as a vector.

Letting L(β) := −n` (β) be an unnormalized log-likelihood and ρλn(β) = λn
∑

ij |||βij|||F
be a group Lasso regularizer, the problem (3.5) is equivalent to

max
β∈Ω
−nF (β) = max

β∈Ω
L(β)− nρλn(β).

Let an = n−1/2 and we consider u ∈ {u : β∗π + anu ∈ D(π)}. Without loss of generality, we

assume |||u|||F ≤ C for a fixed positive constant C. Define A = {(j, i) : (β∗π)ji 6= 0}, we have

D(u) :=L(β∗π + anu)− nρλn(β∗π + anu)− L(β∗π) + nρλn(β∗π)

≤L(β∗π + anu)− L(β∗π)− nλn
∑

(j,i)∈A
(|||(β∗π)ji + anuji|||F − |||(β∗π)ji|||F) ,

≤L(β∗π + anu)− L(β∗π) + nλnan
∑

(j,i)∈A
|||uji|||F ,

=an∇L>(β∗π)u− n

2
a2
nu
>I(β∗π)u(1 + op(1)) + nλnan

∑

(j,i)∈A
|||uj|||F , (3.14)

where the second inequality is by the triangle inequality and the last equation is by the

Taylor expansion and assumption (A2). We multiply (
√
nan)−1 to both sides of (3.14), then

we have

D(u)√
nan
≤ 1√

n
∇L>(β∗π)u− 1

2

√
nanu

>I(β∗π)u(1 + op(1)) + λn
√
n
∑

(j,i)∈A
|||uji|||F ,

where β∗π and u are regarded as vectors. Since |||∇L(β∗π)|||F√
n

= Op(1) by the central limit theorem,

the second term dominates the first term uniformly in |||u|||F = C by choosing a significantly

large C. The third term is also dominated by the first term uniformly because λn
√
n = o(1)

by assumption. Hence, for any ε > 0, there exist some constant C such that

P
(

inf
|||u|||F=C

F (β∗π + anu) > F (β∗π)

)
≥ 1− ε, (3.15)

where an = n−1/2. Note that the arguments in this case apply to subspace D(π) ⊂ Ω. Hence,

denoting by β̂π a global minimizer of F (β) over D(π) and β∗π the minimizer of the population

loss E(`[n](β)) over D(π), we have |||β̂π − β∗π|||F = O(n−1/2) for all π.

Case 2. Over the DAG space Ω, consider β /∈ nb(β∗). By pointwise convergence in prob-

ability of strictly convex function F (β) over subspace D(π) ⊂ Ω, we have β̂π →p β
π where βπ

97

is a unique minimizer of the limiting function of F (β) over D(π) (Andersen and Gill, 1982,

Appendix Corollary II.2.). Denote by M = {βπ : βπ 6= β∗, βπ = arg minβ∈D(π) E[F (β)]}
which is a finite set. Consider βi ∈M, and we have

F (β∗)− F (βi) ≤ 1

n

L(βi)− L(β∗)− nλn

∑

(j,i)∈A

(
|||βiji|||F − |||β∗ji|||F

)

 ,

→p Eβ∗
[
log

p(x | βi)
p(x | β∗)

]
− λnO(1),

where the first term is negative and the second term is o(n−1/2) since λn
√
n = o(1). Therefore,

for any ε > 0, we have

P
(

inf
M
F (βi) > F (β∗)

)
≥ 1− ε, (3.16)

for a sufficiently large n.

Combining (3.15) and (3.16), we have shown that there is a unique global maximizer

β̂ = arg minβ∈Ω F (β), such that |||β̂ − β∗|||F = Op(n−1/2).

3.7.2 Proofs of technical lemmas

3.7.2.1 Proof of Lemma 9

Proof. Taking the derivative of (3.3) with respect to xi, the only terms that contribute are

k = i and k ∈ ch(i), where ch(i) is the set of indices of the children of Xi. That is,

∂L(x; β)

∂xi
=
c′i(xi)

ci(xi)
+ (β>x)i +

∑

k∈ch(i)

[
xk − b′k

(
(β>x)k

)]
βik,

where b′k(·) is the first derivative of bk(·). Taking the derivative w.r.t. xj for j 6= i. If j ∈ ch(i),

one of the terms in the sum contributes, otherwise, none will contribute. Therefore, we get

∂2L(x; β)

∂xj∂xi
= βji + 1{j ∈ ch(i)}

[
βij − b′′j

(
(β>x)j

)
βjj
]

= βji + βij,

98

where b′′j (·) is the second derivative of bj(·) and the second equation is because Bij = 0 if

j /∈ ch(i) and Bjj = 0. Thus, this mixed derivative is equal to

∂2L(x; β)

∂xj∂xi
=

βij 6= 0, if j ∈ ch(i);

βji 6= 0, if i ∈ ch(j);

0, otherwise,

Suppose there is another GLDAG structural equation models β̃ generating the same dis-

tribution as β, and let G and G̃ be the respective DAGs implied by β and β̃. Since

∂2L(x;β)
∂xj∂xi

= ∂2L(x;β̃)
∂xj∂xi

, if βij 6= 0, then we have have β̃ij = βij or β̃ij = βji. It means that

all non-adjacent nodes in G̃ remains non-adjacent in G, i.e., G̃ has the same skeleton as

G.

3.7.2.2 Proof of Lemma 10

Proof. We will need the following contraction principle:

Theorem 5 (Ledoux–Talagrand; cf. Theorem 3.2.1 of Giné and Nickl (2021)). Let {εh}nh=1

be a sequence of independent Radecmacher (i.e., symmetric Bernoulli) variables, and let

φh : R→ R be contraction (i.e., 1-Lipschitz) mappings that vanish at zero (φh(0) = 0). Let

F : [0,∞)→ R be a nonnegative, nondecreasing convex function. Then,

EF
(1

2
sup
t∈T

∣∣∣
n∑

h=1

εhφh(th)
∣∣∣
)
≤ EF

(∣∣∣ sup
t∈T

n∑

h=1

εhth

∣∣∣
)

where t = (t1, . . . , tn) and T is any bounded subset of Rn.

Recall that b′′(·) is assumed to be bp-Lipschitz on [−Trp, T rp]. Then, the same holds for

ϕ. It follows that, 1
bpT 2ϕ(·)xhixhj is 1-Lipschitiz on the same interval, conditioned on T . To

simplify the notation, let us fix I and ` and drop the dependence on I and ` and write

Aij(v) = [A`I(v)]ij.

Let {εh}h∈I be an i.i.d. sequence of Rademacher variables, independent of {xh}h∈I .

99

Then,

E exp
(
λ sup
‖v‖1≤rp

|Aij(v)|
)
≤ E exp

(
2λ sup
‖v‖1≤rp

∣∣∣ 1

|I|
∑

h∈I
εhϕ

`
h(x
>
h v)xhixhj

∣∣∣
)

≤ E exp
(

4bpT
2λ sup
‖v‖1≤rp

∣∣∣ 1

|I|
∑

h∈I
εhx

>
h v
∣∣∣
)

≤ E exp
(

4bpT
2rpλ

∥∥∥ 1

|I|
∑

h∈I
εhxh

∥∥∥
∞

)

= E eκλ‖ξ‖∞

where ξ := 1
|I|
∑

h∈I εhxh and κ := 4bpT
2rp. The first inequality above is a symmetrization

inequality and the second inequality is by Ledoux–Talagrand contraction (Theorem 5), ap-

plied with F (x) = e4bpT 2λx/|I| and φh(·) = 1
bpT 2ϕ

`
h(·)xhixhj which are 1-Lipschitz and vanish

at zero.

We recall Lemma 2.3.3 of Giné and Nickl (2021): Let ξ = (ξ1, . . . , ξp) be vector with each

coordinate a sub-Gaussian variable (not necessarily independent) and 2 ≤ p <∞. Then,

‖‖ξ‖∞‖ψ2 ≤ 4
√

log p ·max
i≤p
‖ξi‖ψ2 .

where ‖ · ‖ψ2 denotes the sub-Gaussian norm.

Let ξ be as defined earlier, with coordinates ξi = 1
|I|
∑

h∈I εhxhi ∈ R. Each ξi is zero-mean

and sub-Gaussian, and

‖ξi‖2
ψ2

.
1

|I|2
∑

h∈I
‖εhxhi‖2

ψ2
.
T 2

|I|

using that for a random variable Y in [a, b], we have ‖Y ‖2
ψ2

. (b − a)2. Recalling the

assumption |I| ≥ m, we obtain ‖ξi‖ψ2 . T/
√
m, hence

‖‖ξ‖∞‖ψ2 ≤ a := c0T
√

log p/m,

for a numerical constant c0 > 0. This gives E
[
eλ(‖ξ‖∞−E ‖ξ‖∞)

]
≤ ec1a

2λ2 for some numerical

constant c1 > 0.

Recall that E ‖ξ‖∞ . ‖‖ξ‖∞‖ψ2 . That is, letting M := E ‖ξ‖∞, we have M ≤ c2a for

100

some numerical constant c2 > 0 and

P
(

sup
‖v‖1≤rp

|Aij(v)| ≥ (κ+ t)c2a
)
≤ P

(
sup
‖v‖1≤rp

|Aij(v)| ≥ κM + tc2a
)

≤ E exp
(
λ
[

sup
‖v‖1≤rp

|Aij(v)| − (κM + c2at)
])

≤ e−λc2at E eκλ(‖ξ‖∞−E ‖ξ‖∞) ≤ e−λc2at+c1κa
2λ2

where the second line is by Markov inequality (i.e., Chernoff bounding). Minimizing the

RHS over λ > 0, we get

P
(

sup
‖v‖1≤rp

|Aij(v)| ≥ c2(κ+ t)a
)
≤ exp

(
− c

2
2 t

2

2c1κ

)
.

Changing t to
√

2c1κt/c2 and using the union bound

P
(

max
1≤i,j≤p

sup
‖v‖1≤rp

|Aij(v)| ≥ c3(κ+
√
κt)a

)
≤ p2 exp(−t2).

Next, change t to t+
√

2 log p to obtain

P
(

max
1≤i,j≤p

sup
‖v‖1≤rp

|Aij(v)| ≥ c4(κ+
√
κt+

√
κ log p)a

)
≤ exp(−t2).

The result follows by noting that

sup
‖v‖1≤rp

(∑

1≤i,j≤p
A2
ij(v)

)1/2

≤ p max
1≤i,j≤p

sup
‖v‖1≤rp

|Aij(v)|.

3.7.2.3 Proof of Lemma 12

Proof. Let Z = (Zij) = Σ̂I − E[Σ̂I] and note that Zij = 1
|I|
∑

h∈I(xhixhj − E[xhixhj]). Let

{εh}h∈I be an i.i.d. sequence of Rademacher variables, independent of {xh}h∈I . We have

E exp
(
λ|Zij|

)
≤ E exp

(
2λ|ξ|

)
, ξ :=

1

|I|
∑

h∈I
εhxhixhj,

101

by a symmetrization argument. We also have a := ‖ξ‖ψ2 .
T 2√
m

. As in the proof of Lemma 10,

let M := E |ξ|, and note that M ≤ c2a for some numerical constant c2 > 0. Then,

P
(
|Zij| ≥ (2 + t)c2a

)
≤ P

(
|Zij| ≥ 2M + tc2a

)

≤ E exp
(
λ
[
|Zij| − (2M + c2at)

])

≤ e−λc2at E e2λ(|ξ|−E |ξ|) ≤ e−λc2at+c12a2λ2 .

Minimizing the RHS over λ > 0 and proceeding with the same argument as in the proof of

Lemma 10 (with κ set to 2), we obtain

P
(

max
1≤i,j≤p

|Zij| ≥ c4(2 +
√

2t+
√

2 log p)a
)
≤ exp(−t2).

Combined with |||Z|||F ≤ p · max1≤i,j≤p |Zij|, and using 2 ≤ 2
√

2 log p for p ≥ 2, the result

follows.

3.7.2.4 Proof of Lemma 13

Proof. If DAG G is an empty graph, then the statement hold trivially. Otherwise let δ(θ) =

1/2 minθji 6=0 |||θji|||F . For θji 6= 0, if β ∈ Ω and |||β − θ|||F < δ(θ), then we have βji 6= 0 as well,

since otherwise |||β − θ|||F ≥ |||θji|||F ≥ δ(θ). It indicates that for any existing edge in θ, there

must be an edge in β. Thus the graphs represented by β and θ share at least one topological

sort.

3.7.3 Convergence of the DANE algorithm

The convergence of the DANE algorithm for general distributed supervised learning has been

studied in (Zhang et al, 2013; Shamir et al, 2014; Jordan et al, 2018; Fan et al, 2019). To

make the thesis self-contained, we state and prove a concrete convergence result in Theorem 6

below, based on the ideas in (Fan et al, 2019, Theorem 2.1), simplifying the statement and

including a missing assumption needed in their argument (Assumption (C1)). The proof of

Theorem 3 (Section 3.7.1.2) verifies that the assumptions in Theorem 6 are satisfied by our

GLDAG models in a distributed setting, and thus, our algorithm (Algorithm 6) achieves the

desired geometric rate of convergence.

102

Theorem 6. Assume that F and Fk are convex, with Fk ρ-strongly convex on B(β̂π, r) where

β̂π is a global minimizer of F over D(π) and r > 0. Recall hk = Fk − F . Assume further

that

(C1) Local update (3.6) has a unique solution for β ∈ B(β̂π, r),

(C2) hk is δ-smooth on B(β̂π, r).

and δ/ρ < 1. Then, β̂π is a fixed point of ϕk,π and

‖ϕk,π(β)− β̂π‖ ≤
δ

ρ
‖β − β̂π‖, ∀β ∈ B(β̂π, r).

Condition (C2) by definition means that ∇hk is δ-Lipschitz on B(β̂π, r). It is guaranteed

if

(C2′) hk is almost everywhere second-order differentiable with ‖∇2hk(β)‖op ≤ δ for β ∈
B(β̂π, r),

where ‖ · ‖op is an operator norm.

Proof. β̂π is a fixed point of ϕk,π. For any β, by first-order optimality criterion (Fermat’s

rule), (3.6) is equivalent to the sub-differential of the objective function at ϕk,π(β) containing

zero, that is,

0 ∈ ∂Fk(ϕk,π(β))−∇hk(β) ⇐⇒ ∇hk(β) ∈ ∂Fk(ϕk,π(β)). (3.17)

By uniqueness of the solution, if ∇hk(β) ∈ ∂Fk(u), then we should have ϕk,π(β) = u.

Therefore, it is enough to verify that ∇hk(β̂π) ∈ ∂Fk(β̂π). From the fact that β̂π minimizes

F overD(π), we have 0 ∈ ∂F (β̂π). Since F = Fk−hk and hk is differentiable, ∂F = ∂Fk−∇hk
and the result follows.

ϕk,π is locally a contraction. Let C = B(β̂π, r) and pick any β ∈ C. From the

optimality condition (3.17), we have∇hk(β) ∈ ∂Fk(ϕk,π(β)) and∇hk(β̂π) ∈ ∂Fk(ϕk,π(β̂π)) =

∂Fk(β̂π). It follows from Lemma 14 below that

‖PC(ϕk,π(β))− β̂π‖ ≤ ρ−1‖∇hk(β)−∇hk(β̂π)‖ ≤ δ

ρ
‖β − β̂π‖.

103

Since ‖β− β̂π‖ ≤ r and δ/ρ < 1, we have ‖PC(ϕk,π(β))− β̂π‖ < r which implies ϕk,π(β) ∈ C,

hence PC(ϕk,π(β)) = ϕk,π(β) and the proof is complete.

3.7.3.1 Local strong monotonicity

We recall that for a proper closed convex function f , ρ-strong convexity of f is equivalent

to ∂f being strongly monotone, that is,

〈gx − gy, x− y〉 ≥ ρ‖x− y‖2

for all x, y ∈ dom ∂f and gx ∈ ∂f(x) and gy ∈ ∂f(y). Cauchy-Schwarz inequality then

implies that ‖x − y‖ ≤ ρ−1‖gx − gy‖. Lemma B1 in [Fan, Guo and Wang, 2019] suggests

that this inequality holds if f is convex everywhere, ρ-strictly convex on a ball B(x, r) and

in addition ρ−1‖gx − gy‖ ≤ r. We state this result a bit more generally:

Lemma 14. Assume that f : Rd → R is convex on Rd and ρ-strongly convex on C := B(x, r)

with r > 0. Then, for any y ∈ Rd, gy ∈ ∂f(y) and gx ∈ ∂f(x), we have

〈gy − gx, PC(y)− x〉 ≥ ρ‖PC(y)− x‖2.

Proof. Let z = PC(y) where C = B(x, r). The case y ∈ C follows from strong monotonicity

of ∂f on C. Assume then that y /∈ C. It is not hard to see that z − x = α(y − z) for some

α > 0. By convexity of f on Rd:

〈gy − gz, z − x〉 = α〈gy − gz, y − z〉 ≥ 0.

By strong convexity of f on C, 〈gz − gx, z − x〉 ≥ ρ‖z − x‖2. Adding the two inequalities

give the desired result.

104

CHAPTER 4

Summary and Discussion

We have developed two order-based methods to learn Bayesian networks in this dissertation.

In this chapter, we summarize these proposed algorithms in Section 4.1 and discuss future

works in Section 4.2.

4.1 Overviews

We first propose annealing on regularized Cholesky score (ARCS) to estimate Gaussian

DAGs, whose weighted adjacency matrix is encoded into a lower triangular matrix in con-

junction with a permutation. The scoring function of ARCS is derived from regularizing

Gaussian DAG likelihood, and its optimization gives an alternative formulation of the sparse

Cholesky factorization problem from a statistical viewpoint. We establish the consistency of

the scoring function in estimating topological sorts and DAG structures in the large-sample

limit. In terms of optimization, we combine simulated annealing over permutation space with

a fast proximal gradient algorithm to compute the score of any permutation. Combined, the

two approaches allow us to quickly and effectively search over the space of DAGs without the

need to verify the acyclicity constraint or to enumerate possible parent sets given a candidate

topological sort. The annealing aspect of the optimization is able to consistently improve

the accuracy of DAGs learned by greedy and deterministic search algorithms. Through

extensive numerical comparisons, we show that ARCS outperformed existing methods by

a substantial margin, demonstrating its great advantage in structure learning of Bayesian

networks from both observational and experimental data. Though ARCS is not designed for

estimating covariance matrix, it achieved higher test data likelihood than other covariance

105

matrix estimation methods in our tests.

The second structure learning method we developed is distributed annealing on regular-

ized likelihood score (DARLS), which considers the task of learning causal structures from

data stored on multiple machines. To the best of our knowledge, it is the first method that

uses distributed optimization to learn causal structures from multiple data sets stored across

different machines. The objective function of DARLS is a summation of local data likeli-

hood applied with a group `2 penalty, which is equivalent to a regularized likelihood based

on the pooled data across local machines. DARLS applies annealing strategy to searches

over the topological sort space for a high-scoring causal graph, where the optimal graphi-

cal structure that is compatible with a sort is found by a distributed optimization method.

We establish the convergence of the distributed optimization method to a global optimizer

of the overall score computed on all data across local machines. We also propose GLDAG

models, where GLMs include a family of flexible distributions and can be applied to different

types of data. We show that continuous GLDAGs are identifiable, while other common DAG

models, such as Gaussian DAGs and multinomial DAGs, are typically not identifiable. In

our simulation studies, DARLS has demonstrated competing performance with distributed

data against other existing methods using pooled data across local machines. DARLS also

exhibits higher predictive power than other methods in a real-world application for modeling

protein-DNA binding networks using ChIP-Sequencing data.

Several computational techniques are used in our methods to facilitate network structures

learning. First, we provide a principled data-driven way to determine the tuning parameters

of the penalty function. BIC model selection is used to achieved this goal. Second, we use the

proximal gradient algorithm, an efficient first-order method to find the optimal DAG given

a topological sort. The application of the proximal gradient algorithm on our regularized

likelihood score avoids the need of enumerating possible parent sets for any node when

computing the optimal DAG given a topological sort. Third, refinement steps are applied

to remove false positive edges after annealing. We perform constraint-based conditional

independence tests to refine DAG structures in the ARCS algorithm and use some threshold

values to remove small edge weights in the DARLS algorithm. These techniques help our

106

order-based learning methods achieve high accuracy in numerical tests.

4.2 Future directions

In this section, we discuss a few directions of future advances in structure learning of Bayesian

networks, with a more thorough discussion on the last two directions.

First, we are interested in extending our order-based methods to learn DAG structures

from data generated from continuous and discrete variables. Given the development of our

algorithms, coping with mixed data types will be straightforward. The main challenge would

be modeling the interactions between continuous and discrete variables.

Second, our current theoretical results are based on the classical setting, with p fixed and

n approaching infinity. Generalizing convergence and consistency results in the BN learning

problem to the case that allows diverging p (i.e., the high-dimensional setting) is theoretically

interesting and left as future work.

It is worthwhile investigating tensor representations that can encode (sparse) multinomial

DAGs. The main difficulty is encoding the conditional independence among variables and

reducing the number of parameters at the same time. Another research direction is to relax

the permutation matrix space to its convex hull. Hence, a combinatorial problem searching

over permutation matrices is reduced to a continuous optimization problem searching over

doubly stochastic matrices. In the remainder of this dissertation, we discuss how to use

tensor representation and permutation relaxation in BN learning problems.

4.2.1 Tensor representations of multinomial DAG models

Let us consider categorical variables {X1, . . . , Xp}, where Xi has ri levels denote by [ri] :=

{1, . . . , ri}, and further assume variables are indexed by a topological sort π, that is, (1, 2, . . . , p)

is a topological sort of DAG G.

Definition 5. (Tensor). Let I ⊂ N , where N is the set of natural numbers. A tensor is a

mapping Θ : rI → R, where rI = ×i∈I [ri] is a Cartesion product of [ri]. The cardinality |I|

107

is called tensor dimension.

Denote by Πi := {X1, X2, . . . , Xi−1} a set of nodes that precedes Xi. The conditional

distribution of [Xi | Πi] can be encoded by a tensor Θi ∈ Rri×r1×r2×...×ri−1 where each entry

can be written as

Θi
xi,x1,...,xi−1

= P(Xi = xi | X1 = x1, . . . , Xi−1 = xi−1), (4.1)

and
∑ri

xi=1 Θi
xi,x1,...,xi−1

= 1 for any (x1, . . . , xi−1). To simplify the notation, we let ξa:b :=

(xa, xa+1, . . . , xb−1, xb) denote some fixed values of (Xa, Xa+1, . . . , Xb−1, Xb) for a ≤ b, and

rewrite Θi
xi|ξ1:i−1

:= Θi
xi,x1,...,xi−1

(4.1). If Xi and Xk are conditional independent given

Πi \ {Xk} for Xk ∈ Πi, then P(Xi = xi | X1 = x1, . . . , Xi−1 = xi−1) is irrelevant to the value

of Xk for any xi. That is,

Xi ⊥⊥ Xk | Πi \ {Xk} ⇒ Θi
xi|ξ1:k−1,xk=l,ξk+1:i−1

= ci, ∀ l ∈ [rk], xi ∈ [ri], (4.2)

for some constant ci ∈ [0, 1] such that
∑ri

i=1 ci = 1. Note that (4.2) indicates that the

conditional probability of P(Xi = xi | Πi) is reduced to P(Xi = xi | Πi \ Xk) for all xi,

reflecting the fact that [Xi ⊥⊥ Xk | Πi \ {Xk}]. We illustrate such conditional independence

by using tensor representations in the following example.

Example 1. Suppose we are given a DAG G: U ← E → A (Lauritzen, 2004, Chapter 4),

where

1. U represents the use of physical punishment, having states Yes (y) or No (n),

2. E indicates the childhood experience of physical punishment, having states Yes (y) or

No (n).

3. A is the political affiliation with three possible states: Danish Society Democratic

Party (s), the left (l) or right (r) of this party.

108

The DAG G has following marginal and conditional distributions:

P (E = y) = 0.68, P(E = n) = 0.32,

P (U = y | E = y) = 0.6, P (U = n | E = y) = 0.4,

P (U = y | E = n) = 0.3, P (U = n | E = n) = 0.7,

P (A = l | E = y) = 0.12, P (A = s |E = y) = 0.34, P (A = r | E = y) = 0.54,

P (A = l | E = n) = 0.37, P (A = s |E = n) = 0.27, P (A = r | E = y) = 0.36.

A set of tensors {ΘE ∈ R2,ΘU ∈ R2×2,ΘA ∈ R3×2×2} is used to encode the structure of this

discrete DAG G, such that,

ΘE = (0.68, 0.32)>, ΘU =

0.6 0.3

0.4 0.7

 , ΘA =

ΘA

E=y,U=y ΘA
E=y,U=n

ΘA
E=n,U=y ΘA

E=n,U=n

 , (4.3)

where ΘA
E=y,U=y = ΘA

E=y,U=n = (0.12, 0.34, 0.54)>, as well as ΘA
E=n,U=y = ΘA

E=n,U=n =

(0.37, 0.27, 0.36)>. In (4.3), ΘE specifies the marginal distribution of E and each columns

of ΘU reports the conditional distribution of [U | E]. The conditional independence of

[U ⊥⊥ A | E] can be observed from ΘA, where the conditional probabilities of A given

{E,U} only depend on the value of E.

4.2.2 Discussion on structure learning using tensors

Suppose we have a data set {xh}h∈[n] where each row xh are i.i.d. observations of X. Let

Ξ1:i−1 ∈ Rr1×r2×ri−1 be a tensor where the k-th dimension encodes possible outcomes of Xk

for k ∈ [i − 1]. Suppose ξ1:i−1 is a realization of Ξ1:i−1, then we let Nxi|ξ1:i−1
be the size of

subsamples where we observe Xi = xi and Ξ1:i−1 = ξ1:i−1. The log-likelihood of {xh}h∈[n]

under the multinomial distribution is

p∑

i=1

zi∑

ξ1:i−1=1

ri∑

xi=1

Nxi|ξ1:i−1
log(Θi

xi|ξ1:i−1
), (4.4)

and we have a constraint that
∑ri

xi=1 Θi
xi|ξ1:i−1

= 1 for any ξ1:i−1 that is an observation of Ξ1:i−1

and any i ∈ [p]. Let zi =
∏i−1

k=1 rk, and recall that Θi ∈ Rri×r1×...×ri−1 . Then the number

109

of free parameters of Θi is (zi − 1)ri, leading to a total of
∑p

i=1(zi − 1)ri free parameters of

{Θi}pi=1 (4.4). The number of parameters grows in the order of O(rp) if each variable has r

states.

The score-based algorithm aims to optimize an objective, such as the multinomial data

likelihood (4.4). However, the tensor expression becomes prohibitively complicated when

learning structures of large DAGs. One may use tensor decomposition to reduce the number

of parameters of a tensor. Tensor rank-one, or the CP (CANDECOMP/PARAFAC) de-

composition, has been used to decompose a probability table into a series of tables, so that

the original table can be expressed as the sum of the series of tables. Such decomposition

is equivalent to adding one artificial parent to all random variables and deleting all edges

between the variables (Tichavský and Vomel, 2007, 2018). However, tensor decomposition

cannot guarantee to reduce the edge numbers in a DAG. Investigating a tensor representa-

tion with fewer parameters while maintaining interpretability of DAGs is the main difficulty

using tensors to learn network structures and is left as future work.

4.2.3 Relaxation of permutation matrices

The other research direction is to relax the permutation space to its convex hull when learning

Gaussian DAGs. Recall that, by Lemma 1, the negative log-likelihood of Gaussian Bayesian

networks (2.7) can be reparameterized as `(L, P) := n
2

tr
(
P Σ̂P>LL>

)
−n log |L|, where L is

a lower triangular matrix and P is a permutation matrix. Further, to break the permutation

equivalence of the maximum likelihood (2.10), we add a regularizer ρθ on the lower triangular

matrix to favor sparse DAGs, and in Chapter 2, we solve the following optimization problem

min
P∈Pp

min
L∈Lp

`(L, P) +
∑

i>j

ρθ(Lij), (4.5)

where Pp is the set of p× p permutation matrices, Lp is the set of p× p lower triangular ma-

trices and the penalty ρθ is only applied to the off-diagonal entries of L. Instead of searching

over permutation space, we can relax Pp to the convex hull of permutation matrices, and

hence the combinatorial problem searching over Pp is converted to a continuous optimization

problem search its convex hull. In this section, we discuss how to recover a topological sort

110

with relaxation of permutation matrices.

Definition 6. A doubly stochastic matrix is a square matrix A = (aij) such that aij ≥ 0 for

all i, j, and
∑

i aij =
∑

j aij = 1.

It is well-known that the convex hull of the set of p× p permutation matrices is the set

of doubly stochastic matrices, Dp := {S : S ≥ 0, S1 = 1, S>1 = 1}. By replacing Pp with

Dp in (4.5), we obtain a relaxation of the problem which is separately convex in P ∈ Dp and

L ∈ Lp. A convex function usually achieves its minimum over a convex domain at an interior

point; however, the permutation matrices are extreme points of Dp. To force the solution

to be closer to the extreme points, we add a penalty applied on the Frobenius norm of the

doubly stochastic matrix. Since the extreme points achieves the maximum Frobenious norm

over Dp, the relaxed optimization problem is

min
S∈Dp

min
L∈Lp

`(L, S) +
∑

i>j

ρθ(Lij)− γ|||S|||2F , (4.6)

where ||| · |||2F is the matrix Frobenius norm and γ > 0 is a tuning parameter. Note that,

if one wants to keep the convexity of the objective, the value of γ can not be arbitrarily

large. More precisely, because `(L, S) − γ‖S‖2
F =

〈
vec(S),

(
n
2
Σ̂⊗ LL> − γI

)
vec(S)

〉
, the

problem (4.6) for a fixed L remains convex if

γ ≤ λmin

(n
2

Σ̂⊗ LL>
)

=
n

2
λmin(Σ̂)λmin(LL>). (4.7)

To solve the optimization problem (4.6), we propose an alternating minimization approach,

that is, given
(
S(t), L(t)

)
, we perform the following updates until convergence:

L(t+1) = arg min
L∈Lp

`(L, S(t)) +
∑

i>j

ρθ(Lij), (4.8)

S(t+1) = arg min
S∈Dp

`(L(t+1), S)− γ‖S‖2
F . (4.9)

Assuming a sufficiently small γ that satisfied (4.7) and the usual `1 or `2 regularizer, these

problems, (4.8) and (4.9), are second order cone programs and they can be solved efficiently

by convex optimization methods.

111

Permutation retrieval. Assuming we have a total of T iterations, the final estimate

of (4.9), S(T) is a doubly stochastic matrix. There are two main approaches to convert

a doubly stochastic matrix S to a permutation matrix Pπ. The first strategy is to match

ranking of coordinates of Sv and Pπv where v ∈ Rp is a monotonically increasing vector (Fogel

et al, 2015). Suppose we generate a monotonic random vector v and compute Sv. Then for

each v, we can find a permutation matrix Pπ+ such that Pπ+Sv is monotonically increasing.

Under this operation, the ordering defined by Pπ+ is equivalent to the ranking of coordinates

of Sv. Lastly, we can project S to the permutation space by finding π which is the inverse

of permutation π+.

The second approach is to minimize the distance between S and the permutation space,

that is, minP∈Pp |||S−P |||2F where Pp is the set of p×p permutation matrices. This optimization

problem can be simplified as

max
P∈Pp

vec(S)>vec(P). (4.10)

which is straightforward to solve.

4.2.4 Numerical studies

We evaluate the accuracy of recovered permutation and discuss numerical results in this

section. Once a topological sort is found, the network estimation problem is simplified to

a set of regression problems, and thus we leave the task of learning network structures (via

permutation relaxation) as future work.

Data. We used real and synthetic networks to simulate data, where real networks were

downloaded from the Bayesian networks online repository (Scutari, Accessed: 2019). The

data generation process is the same as the one in Section 2.5.1. That is, given a DAG

structure, we sampled the edge coefficients βij uniformly from [−0.8,−0.5] ∪ [0.5, 0.8] and

set the noise variance to one. We then calculated the covariance matrix according to (2.3)

and normalized its diagonal elements to one. Following networks were used to generate 20

data sets, denoted by the network name and (p, s0), where s0 is the number of edges: Asia

112

Asia Survey Sachs Markov Chain rDAG1
DAG

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge
s o

f w
ro

ng
 e

dg
es

pm
up1
up2

Figure 4.1: Wrong percentage of edges induced by permutation matrix (pm). up1 is u(P̂)

with P̂ is found by matching orders of P̂ v and S(T)v for a monotonic random vector v and

up2 is computed with P̂ found by minimizing the distance of S to the permutation space.

(8, 8), Sachs (11, 17), Survey (6, 6), and synthetic networks, Markov Chain (10, 9), rDAG1

(10, 10).

Tuning parameters. In our numerical tests, we consider ρθ(Lij) = θ‖Lij‖2
2, the `2 penalty

with tuning parameter θ = 0.1. We also set γ = 2, which is sufficient for (4.9) to be a convex

optimization problem.

Evaluation metric. To evaluate the correctness of the estimated ordering P̂ , we per-

mute rows and columns of the true adjacency matrix B∗ by the order defined by P̂ to

obtain Bπ := PB∗P>. We then compute the percentage of upper entries of Bπ, uB∗(P̂) :=(∑
i<j ‖Bπ

ij‖0

)
/‖B∗‖0, where ‖ · ‖0 is the l0 norm. This metric uB∗(P̂), or simply u(P̂),

measure the false edge percentage of B∗ induced by P̂ . Since the number of wrong edges

under a random permutation follows a binary distribution, with number of trials s0 and

probability of success 0.5, we then have EP (u) = 0.5 and SDP (u) = 0.5/
√
s0.

Numerical results. Figure 4.1 shows the distributions of u(P̂), where P̂ s are estimated

by the approach discussed in Section 4.2.3. Unfortunately, the median of u(P̂) is around

113

0.5, which means that P̂ s are not better than random guesses. There are several directions

to investigate, and they are left as future work:

1. We observe that the value of each entries of S(T) is around 1/p, and thus S(T) is far away

from extreme points of Dp. Therefore, we need to increase the value of γ, indicating a

need for solving a non-convex optimization problem (4.9).

2. We used iterative optimization over L ∈ Lp (4.8) and S ∈ Dp (4.9), and then retrieved

a permutation matrix after convergence of these estimators. In contrast, a recently

proposed method iteratively optimizes over L ∈ Lp and P ∈ Pp, while carrying out

permutation relaxation and retrieval at each iteration (Dallakyan and Pourahmadi,

2021). It is worthwhile to check if such iterative updates would improve accuracy of

our recovered topological sorts or not.

114

Bibliography

Alonso-Barba JI, delaOssa L, Puerta JM (2011) Structural Learning of Bayesian Networks

Using Local Algorithms Based on the Space of Orderings. Soft Computing 15(10):1881–

1895

Amestoy PR, Davis TA, Duff IS (1996) An Approximate Minimum Degree Ordering Algo-

rithm. SIAM Journal on Matrix Analysis and Application 17(4):886–905

Andersen PK, Gill RD (1982) Cox’s Regression Model for Counting Processes: A Large

Sample Study. The Annals of Statistics 10(4):1100–1120

Aragam B, Zhou Q (2015) Concave Penalized Estimation of Sparse Gaussian Bayesian Net-

works. Journal of Machine Learning Research 16:2273–2328

Aragam B, Gu J, Zhou Q (2019) Learning Large-Scaled Bayesian Networks with the

sparsebn Package. Journal of Statistical Software 91(11):1–38

Bartlett M, Cussens J (2013) Advances in Bayesian Network Learning using Integer Pro-

gramming. in Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence

pp 182–191

Champion M, Picheny V, Vignes M (2018) Inferring Large Graphs Using `1-Penalized Like-

lihood. Statistics and Computing 28:905–921

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang

J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan

Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of External

Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell

133:1106–17

Chen Z, Leng C (2015) Local Linear Estimation of Covariance Matrices via Cholesky De-

composition. Statistica Sinica 15(1249-1263)

115

Chickering DM (1996) Learning Bayesian Networks is NP-Complete. In: Learning from Data,

Lecture Notes in Statistics, Springer

Chickering DM (2002) Optimal Structure Identification with Greedy Search. Journal of Ma-

chine Learning Research 3:507–554

Cooper GF, Herskovits E (1992) A Bayesian Method for the Induction of Probabilistic Net-

works from Data. Machine Learning 9:309–347

Cussens J, J́’arvisalo M, Korhonen JH, Bartlett M (2017) Bayesian Network Structure Learn-

ing with Integer Programming: Polytopes, Facets and Complexity. Journal of Artificial

Intelligence Research 58:185–229

Dallakyan A, Pourahmadi M (2021) Learning Bayesian Networks through Birkhoff Polytope:

A Relaxation Method. arXiv:2107.01658

Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least Angle Regression. The Annals of

Statistics 32(2):407–499

Ellis B, Wong WH (2008) Learning Causal Bayesian Network Structures from Experimental

Data. Journal of the American Statistical Association 103(482):778–789

Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American statistical Association 96(456):1348–1360

Fan J, Guo Y, Wang K (2019) Communication-efficient accurate statistical estimation.

arXiv:190604870

Fogel F, Jenatton R, Bbach F, d’Asparemont A (2015) Convext Relaxations for Permutation

Problems. SIAM Journal on Matrix Analysis and Application 36(4):1465–1488

Friedman J, Hastie T, Tibshirani R (2008) Sparse Inverse Covariance Estimation with the

Graphical Lasso. Biostatistics 9(3):432–441

Friedman N, Koller D (2003) Being Bayesian about Network Structure. A Bayesian Approach

to Structure Discovery in Bayesian Networks. Machine Learning 50:95–125

116

Fu F, Zhou Q (2013) Learning Sparse Causal Gaussian Networks with Experimental In-

tervention: Regularization and Coordinate Descent. Journal of the American Statistical

Association 108:288–300

Gámez JA, Mateo JL, Puerta JM (2011) Learning Bayesian Networks by Hill Climbing:

Efficient Methods Based on Progressive Restriction of the Neighborhood. Data Mining

and Knowledge Discovery 22:106–148

Ghoshal A (2019) Listen: Linear structural equation model learning. URL https://

bitbucket.org/asish_geek/listen/src/master/, accessed: 2019-03-13

Ghoshal A, Honorio J (2018) Learning Linear Structural Equation Models in Polynomial

Time and Sample Complexity. in Proceedings of Machine Learning Research 84:1466–1475

Giné E, Nickl R (2021) Mathematical foundations of infinite-dimensional statistical models.

Cambridge university press

Gou K, Gong XJ, Zhao Z (2007) Learning Bayesian Network Structure from Distributed

Homogeneous Data. In: ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, pp 250–254

Gu J, Fu F, Zhou Q (2019) Penalized Estimation of Directed Acyclic Graphs from Discrete

Data. Statistics and Computing 29:161–176

Hauser A, Bühlmann P (2012) Characterization and Greedy Learning of Interventional

Markov Equivalence Classes of Directed Acyclic Graphs. The Journal of Machine Learning

Research 13:2409–2464

Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian Networks: The Combi-

nation of Knowledge and Statistical Data. Machine Learning 20:197–243

Hoyer PO, Janzing D, Mooij J, Peters J, Schölkopf B (2008) Nonlinear Causal Discovery

with Additive Noise Models. Preceedings of 21st International Conference on Neural In-

formation Processing Systems pp 689–696

117

https://bitbucket.org/asish_geek/listen/src/master/
https://bitbucket.org/asish_geek/listen/src/master/

Jordan MI, Lee JD, Yang Y (2018) Communication-Efficient Distributed Statistical Infer-

ence. Journal of the American Statistical Association 114(526):668–681

Kalisch M, M’́achler M, Colombo D, Maathuis MH, B́’uhlmann P (2012) Causal Inference Us-

ing Graphical Models with the R Package pcalg. Journal of Statistical Software 47(11):1–26

Larrañaga P, Poza M, Yurramendi Y, Murga RH, Kuijpers CMH (1996) Structure Learning

of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Param-

eters. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9):912–926

Lauritzen SL (2004) Graphical Models. Oxford University Press

Lee C, van Beek P (2017) Metaheuristics for Score-and-Search Bayesian Network Structure

Learning. in Proceedings of the 30th Canadian Conference on Artificial Intelligence pp

129–141

Lee K, Lee J (2018) Estimating Large Precision Matrices via Modified Cholesky Decompo-

sition. Statistica Sinica Preprint No: SS-2018-0476

Li Q, Zhang XS (2019) Bayesian Estimation of Large Precision Matrix Based on Cholesky

Decomposition. Acta Mathematica Sinica, English Series 35:619–631

Mehmood A, Natgunanathan I, Xiong Y, Hua G, Guo S (2016) Protection of Big Data

Privacy. IEEE Access 4:1821–1834

Molzahn DK, Dörfler F, Sandberg H, Low SH, Chakrabarti S, Baldick R, Lavaei J (2017) A

Survey of Distributed Optimization and Control Algorithms for Electric Power Systems.

IEEE Transactions on Smart Grid 8(6):2941–2962

Na Y, Yang J (2010) Distributed Bayesian Network Structure Learning. In: IEEE Interna-

tional Symposium on Industrial Electronics, pp 1607–1611

Ouyang Z, Zhou Q, Wong WH (2009) Chip-Seq of Transcription Factors Predicts Absolute

and Differential Gene Expression in Embryonic Stem Cells. Preceedings of the National

Academic of Science of the United State of America 106(51):21,521–6

118

Parikh N, Boyd S (2013a) Proximal Algorithms. Foundations and Trends in Optimization

1(3):123–231

Parikh N, Boyd S (2013b) Proximal algorithms. Foundations and Trends in Optimization

1(3):123–231

Pearl J (1995) Causal Diagrams for Empirical Research. Biometrika 82:669–710

Peters J, Bühlmann P (2014) Identifiability of Gaussian Structural Models with Equal Error

Variances. Biometrika 101(1):219–228

Peters J, Mooij JM, Janzing D, Schölkopf B (2014) Causal Discovery with Continuous Ad-

ditive Noise Models. Journal of Machine Learning Research 15:2009–2053

Pourahmadi M (2011) Covariance Estimation: The GLM and Regularization Perspectives.

Statistical Science 26:369–387

Ramanan N, Natarajan S (2020) Causal Learning from Predictive Modeling for Observational

Data. Frontiers in Big Data 3:34

Ramsey JD (2015) Scaling up Greedy Causal Search for Continuous Variables.

arXiv:150707749

Robins J (1986) A New Approach to Causal Inference in Mortality Studies with a Sus-

tained Exposure Period - Application to Control of the Healthy Worker Survivor Effect.

Mathematical Modelling 7:1393–1512

Robinson RW (1977) Counting Unlabeled Acyclic Digraphs. Lectures Notes in Mathematics

622: Combinatorial Mathematics V, CHC pp 28–43

Scanagatta M, de Campos CP, Corani G, Zaffalon M (2015) Learning Bayesian Networks

with Thousands of Variables. in Advances in Neural Information Processing Systems pp

1864–1872

Scanagatta M, Corani G, Zaffalon M (2017) Improved Local Search in Bayesian Networks

Structure Learning. in Proceedings of Machine Learning Research 73:45–56

119

Schwarz G (1978) Estimating the Dimension of a Model. The Annals of Statistics 6(2):461–

464

Scutari M (2010) Learning Bayesian Networks with the bnlearn R Package. Journal of Sta-

tistical Software 35(3):1–22

Scutari M (Accessed: 2019) Bayesian network repository. URL http://www.bnlearn.com/

bnrepository/, accessed: 2019-01-21

Shamir O, Srebro N, Zhang T (2014) Communication-Efficient Distributed Optimization

using an Approximate Newton-type Method 32(2):1000–1008

Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A (2006) A Linear Non-Gaussian Acyclic

Model for Causal Discovery. Journal of Machine Learning Research 7(72):2003–2030

Silander T, Myllymäki P (2006) A Simple Approach for Finding the Globally Optimal

Bayesian Network Structure. in Proceedings of the 22nd Conference Annual Conference

on Uncertainty in Artificial Intelligence pp 445–452

Spirtes P, Glymour C (1991) An Algorithm for Fast Recovery of Sparse Causal Graphs.

Social Science Computer Review 9(1):62–72

Spirtes P, Glymour C, Scheines R (1993) Causation, Prediction, and Search. Springer-Verlag,

New York

Suzuki J (1993) A Construction of Bayesian Networks from Databases Based on an MDL

Scheme. in Proceedings of the Ninth International Conference on Uncertainty in Artificial

Intelligence pp 266–273

Tang Y, Wang J, Nguyen M, Altintas I (2019) PEnBayes: A Multi-Layered Ensemble Ap-

proach for Learning Bayesian Network Structure from Big Data. Sensors 19(4400)

Teyssier M, Koller D (2005) Ordering-Based Search: A Simple and Effective Algorithm for

Learning Bayesian Networks. in Proceedings of the 21st Conference on Uncertainty in

Artificial Intelligence pp 584–590

120

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/

Tichavský P, Vomel J (2007) Exploiting Tensor Rank-One Decomposition in Probabilistic

Inference. Kybernetika 43:747–764

Tichavský P, Vomel J (2018) Representations of Bayesian Networks by Low-Rank Models.

In: Machine Learning Research, vol 72, pp 463–474

Touchette S, Gueaieb W, Lanteigne E (2016) Efficient Cholesky Factor Recovery for Column

Reordering in Simultaneous Localisation and Mapping. Journal of Intelligent & Robotic

Systems 84:859–875

Tsamardinos I, Brown LE, Aliferis CF (2006) The Max-Min Hill-Climbing Bayesian Network

Structure Learning Algorithm. Machine Learning 65(1):31–78

Vandenberghe L, Andersen MS (2014) Chordal Graphs and Semidefinite Optimization. Foun-

dations and Trends in Optimization 1(4):241–433

Verma T, Pearl J (1988) Causal Network: Semantics and Expressiveness. Proceedings of the

Fourth Annual Conference on Uncertainty in Artificial Intelligence pp 352–359

Verzelen N (2010) Adaptive Estimation of Covariance Matrices via Cholesky Decomposition.

Electronic Journal of Statistics 4:1113–1150

Wang B, Zhou Q (2021) Causal Network Learning with N0n-intertible Functional Relation-

ships. Computational Statistics and Data Analysis 156:107,141

Yang T, Yi X, Wu J, Yuan Y, Wu D, Meng Z, Hong Y, Wang H, Lin Z, Johansson KH

(2019) A Survey of Distributed Optimization. Annual Reviews in Control 47:278–305

Ye Q, Amini AA, Zhou Q (2020) Optimizing Regularized Cholesky Score for Order-Based

Learning of Bayesian Networks. IEEE Transactions on Pattern Analysis & Machine Intel-

ligence, early access DOI: 10.1109/TPAMI.2020.2990820

Ye Q, Amini AA, Zhou Q (2021) Distributed Learning of Generalized Linear Causal Networks

Yuan M, Lin Y (2007) Model Selection and Estimation in Regression with Grouped Variables.

Journal of Royal Statistical Society, Series B 68(1):49–67

121

Zhang CH (2010) Nearly Unbiased Variable Selection under Minimax Concave Penalty. The

Annals of Statistics 38(2):894–942

Zhang Y, Duchi JC, Wainwright MJ (2013) Communication-Efficient Algorithms for Statis-

tical Optimization. Journal of Machine Learning Research 14:3321–3363

Zheng X (2019) Dags with no tears. URL https://github.com/xunzheng/notears, ac-

cessed: 2019-09-17

Zheng X, Aragam B, Pavikumar P, Xing EP (2018) Dags with NO TEARS: Continuous Op-

timization for Structure Learning. in Advances in Neural Information Processing Systems

Zhou Q (2011) Multi-Domain Sampling with Applications to Structural Inference of Bayesian

Networks. Journal of the American Statistical Association 106:1317–1330

Zhou Q, Chipperfield H, Melton DA, Wong WH (2007) A Gene Regulatory Network in

Mouse Embryonic Stem Cells. Preceedings of the National Academy of Sciences of the

United States of America 104(42):16,438–16,443

Zinkevich MA, Weimer M, Smola A, Li L (2010) Parallelized Stochastic Gradient Descent.

In: Advances in Neural Information Processing Systems, vol 23, pp 2595–2603

122

https://github.com/xunzheng/notears

	Introduction
	Background of Bayesian networks
	Structure learning
	Order-based search
	Learning DAGs from distributed data
	Outline

	Minimizing Regularized Cholesky Score for Gaussian DAGs
	Acyclicity and permutations
	Regularized likelihood score
	Cholesky loss
	Sparse regularization
	Likelihood for experimental data

	Consistency
	Score-identifiability
	Consistent structure learning
	Proof sketch

	Optimization
	Searching over permutations
	Computing RC score
	Structure refinement after annealing
	Selection of the tuning parameters

	Results on observational data
	Methods and data
	Accuracy metrics
	Structure learning accuracy
	Test data likelihood comparison
	Precision matrix estimation
	Effectiveness of refinement
	Effectiveness of BIC selection
	Empirical loss evaluation

	Results on experimental data
	Comparison on experimental data
	Random initialization with a high temperature

	Discussion
	Proofs
	Consistency proof
	Proofs of auxiliary results
	Proofs of other results

	Leaning Generalized Linear Causal Graphs from Distribtuted Data
	Generalized linear DAG models
	Distributed DAG learning
	Local and global objective functions
	Optimization
	Selection of the tuning parameter
	Structure refinement after annealing

	Theoretical guarantees
	Distributed estimate convergence
	Consistency

	Numerical experiments
	Multi-logit GLDAG models
	Methods and data
	Structure learning accuracy
	Distributed optimization accuracy and computational time

	Real data application
	Test data likelihood comparison
	Protein-DNA binding networks estimated by DARLS

	Discussion
	Proofs
	Proofs of main results
	Proofs of technical lemmas
	Convergence of the DANE algorithm

	Summary and Discussion
	Overviews
	Future directions
	Tensor representations of multinomial DAG models
	Discussion on structure learning using tensors
	Relaxation of permutation matrices
	Numerical studies

