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WATER RESOURCES RESEARCH, VOL. 21, NO. 11, PAGES 1575-1584, NOVEMBER 1985 

An Approach to Parameter Estimation and Stochastic Control in 
Water Resources With an Application to Reservoir Operation 

HUGO A. LOAICIGA AND MIGUEL A. MARI•IO 

Department of Land, Air, and Water Resources and Department of Civil Engineering, University of California, Davis 

This paper presents an algorithm for the estimation of parameters in state-space models that represent 
hydrologlc processes in which the state variables are observed with error. The algorithm is based on the 
maximization of the conditional expectation of the likelihood function of the state equation. The esti- 
mation algorithm is numerically stable and guarantees local convergence under mild conditions. It is also 
shown that the estimation algorithm can be coupled with an optimal control method to yield a combined 
control estimation technique that can be easily implemented. An application of the theory and methods 
developed herein is given for flood routing via reservoir operation. 

INTRODUCTION 

The applicability of state-space models to describe hydro- 
logic processes is well documented (see, for example, O'Connel! 
[1977], Chiu [1978], and Kitanidis and Bras [1980]). In gener- 
al, state-space models consist of a linear or nonlinear state 
equation, representing the time evolution of the process in 
question, and an observation equation, representing the ob- 
served subset of state variables through a period of time. The 
need for estimating unknown parameters in state-space 
models has led to a variety of schemes to represent the struc- 
tural relationship between state variables and parameters (see, 
for example, Otter [1978]). The versatility of state-space 
models to represent the structural relationship between state 
and observation variables and parameters has led to its popu- 
larity in various fields of science where state and parameter 
estimation is of interest. 

The development of adequate algorithms to solve for pa- 
rameters present in state-Space models is an area of continued 
interest for the following reasons: (1) physical models differ 
from each other in the structural relationship between state, 
observations, and parameters, and algorithms that may be 
satisfactory for some problems may break down in others; (2) 
the structure of stochastic inputs (e.g., noise terms) in both the 
state and observation equations may differ from problem to 
problem, and such structure demands a specialized treatment 
in each case; and (3) there is continued improvement in nu- 
merical techniques and in the software and hardware avail- 
able. 

This paper presents an approach for state and parameter 
estimation in state-space models of hydrologic processes. The 
innovative features of the theory and solution method pro- 
posed herein are as follows: (1) transition matrices in the state 
equation as well as the covariances of noise terms in the state 
and observation equations are simultaneously estimated via 
maximum likelihood; (2) filtered and smoothed state esti- 
mators are obtained as part of the results computed from the 
estimation algorithm; (3) the initial conditions, i.e., the initial 
state and state covariance, can also b e estimated based on the 
data set for the period of interest; (4) under very mild statis- 
tical conditions, parameter estimates converge to a local opti- 
mum of the conditional likelihood function (see below) in a 
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finite number of iterations; (5) the nonlinear estimation prob- 
lem is converted into the sequential solution of a series of 
analytical expressions which are suitable for implementation 
in a digital computer; (6) decision or control variables can be 
included in the state equation and the estimation technique 
can be coupled with a management model yielding a com- 
bined control-estimation technique; and (7) stochastic inputs 
in the state equation are modeled as an autocorrelated pro- 
cess, whose parameters are estimated. 

In the remainder of this paper the problem statement and 
the estimation approach are presented first. The extension to a 
combined control-estimation technique follows afterwards, 
and an application to an actual water resource system illus- 
trates the implementation of the methodology developed in 
this study. 

PROBLEM STATEMENT 

The basic state-space model studied in this paper is given by 

xt+• = Axt + But + Yt + wt (1) 

w t = •bwt_ • + e t (2) 

z t = Mx, + vt (3) 

in which xt is an n-dimensional vector of state variables at 
time t; ut is a p-dimensional vector of decision variables; Yt is 
an n-dimensional vector of known quantities (called the ex- 
ogenous variables henceforth); wt is an n-dimensional vector 
of stochastic inputs; A is an unknown n x n transition matrix 
to be estimated; and B is a known n x p matrix determined'$y 
the physical process being represented by the state equation 
(1), as is explained below. Equation (2) specifies the time struc- 
ture of the (n x 1) stochastic, uncontrollable, inputs wt as 
being a first-order autoregressive process (AR(1)). The AR(1) 
representation is more general than it would appear at first 
glance, because, by state augmentation, higher-order processes 
can be reduced to the AR(1) model (see, for example, Anderson 
[1978]). Notice that the AR formulation of the stochastic 
input wt nests as a subcase the simpler white-noise specifi- 
cation which is usually adopted in state-space models. The 
n x n matrix 4• in (2) must be estimated; the error term et in 
(2) is an unmodeled n x 1 white-noise sequence, with un- 
known covariance Q to be estimated. In (3), zt is an m x 1 
(< n) vector of observations of x t defined by the known m x n 
matrix M, which defines the linear combination of state vari- 
ables being observed, and vt is a n x 1 white-noise sequence 
with unknown covariance R to be estimated, and accounts for 
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Fig. 1. Flood control reservoir system. 

errors in measurement of the pertinent subset of observed 
state variables (i.e., Mx,). It is assumed the e, and v, are inde- 
pendent of each other and of the processes w, and x, also. The 
full specification of the state-space model requires to specify 
the initial conditions, i.e., 

= (4) 

Cov (x0 = Zx (5) 

where the expected value !xx and covariance Zx of the initial 
state xx are unknown quantities to be estimated (Shumway et 
al. [1981] and Restrepo-Posada and Bras [1982] presented 
different initial condition estimators). 

In total, the unknown parameter set 0 is given by 

(6) 

The data set available up to time t to estimate 0 consists of the 
observations z2, z3, '", zr The decision and exogenous se- 

then the estimation method yields as an estimate for the co- 
variances R and Zx null or approximately null n x n matrices. 
Thus error-free or close to error-free observations are auto- 

matically handled or nested as a subcase of the general specifi- 
cation (1)-(5). The parameter set to be estimated becomes 0 = 
(!s•, Z•, Q, R, qb). The system of Figure 1 is used as an appli- 
cation example subsequently. 

Another example of a linear state-space model is the gov- 
erning equation for groundwater flow in a confined aquifer. 
From standard work in groundwater modeling (see, for exam- 
ple, Pinder and Frind [1972] and Narasimhan et al. [1978]) it 
can be shown that the discrete form of the governing flow 
equation is given by (1), to which an observation equation (3) 
is appended. in this case, the state variables x, customarily 
represent piezometric heads; the decision variables u, are 
pumping and/or recharging rates; y, represents across- 
boundary fluxes and other sinks and sources; wt, the sto- 
chastic term, is added a posteriori to account for errors in 
model specification. The observation equation (3) is justified 
by the errors present in measuring a subset of the nodal piezo- 
metric heads. The matrices A and B are functions of storati- 

vities and transmissivities as well as other parameters of the 
numerical scheme chosen to discretize the differential equation 
of flow. 

It is useful in later developments to write (1)-(3) in an equiv- 
alent augmented form as follows: 

I 

z,+ • = (M 0)LW, + • 
in which 0 is an n x n null matrix and 0 is an n x 1 null 

vector. In compact notation, in terms of the augmented state 
x,*' = (xt', w,'), (9) and (10) become 

x,+ x* = A'x,* + B'u, + y•* + e,+ x* (11) 

Zt+ 1 = M*Xt+l* + vt+ 1 (12) 

The advantage of using (11) and (12) stems from the fact that 
(11) is in first difference form and standard filtering [e.g., Jaz- 
winski, 1970] and smoothing [e.g., Rauch et al., 1965] esti- 
mators can be applied to (11) subject to (12), as is explained 
later. Also, (11) and (12) are very suitable when combining 

quences, {ut}t=xt-='-' and {Yt}t=xt='-x 
known. It is necessary to differentiate between u, and y, even 
though both are deterministic exogenous inputs, because when 
estimation is combined with control, u, must be optimally and 
independently computed. 

The applicability of (1)-(5) in reservoir operation manage- 
ment is illustrated next with a three-reservoir system (Figure 
1). Clearly, the state equation is given by 

x,+ • = Ix,- lu, + 0 + w, 

, respectively, are ß estimation and control. 

(7) 

Notice that A = I and B--- -I, where I is a 3 x 3 identity 
matrix. Vector u• contains the decision variables which are in 
this case reservoir releases, and x, denotes reservoir storages. 
The stochastic inputs wt are the river streamflows into the 
reservoirs, which follow the model given by (2). Clearly, y, -- 0 
in this case. The observation equation becomes 

Ix, + v, (8) 

i.e., M = I. One can justify the presence of (8) because 
measurements of reservoir levels may have some degree of 
error; if the measurements are for all practical purposes exact, 

PARAMETER ESTIMATION IN THE 

LINEAR STATE-SPACE MODEL 

The first step in developing parameter estimates for the 
state-space model defined by (1)-(5) is to write the joint log- 
likelihood function of xz, x2, "', x, and z2, z 3, ..., z• as 
follows: 

-I(Xl log L = - « log levi - «(xx - - 

(t- 
-• log IQI 

2 

1 

-- - •[(xt -- Axt- • -- But- • - Yt- • -- &wt- 2)'Q- x 2t= 

'(xt- Ax t_ 1 -- But-• -- Yt-• - &wt-2) 

1 t•2[(z • _ MXt)'R-X(z t - Mxt)] - log IRI- 5 
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The joint log-likelihood function in (13) implies that the noises 
et and vt in (2) and (3) are normally distributed. The normality 
assumption on v, is quite appropriate because errors in 
measurements have instrumental, human, and other sources 
which can be considered to be independent of each other. By 
virtue of the central limit theorem (see, for example, Rao 
[1965]), the combination of such different sources results in an 
approximately normal random variable. The central limit the- 
orem can also be invoked to justify the normality of the error 
term % 

Since the log-likelihood function in (13) depends on the 
unobserved state variables x•, x2, "', x,, one must take the 
expectation of (13) with respect to the observed series z2, 
ß '., z, and maximize the resulting expression with respect to 
the parameters p•, Z•, Q, R, A, and qS. This approach of 
maximizing the conditional expectation of the log-likelihood 
function to estimate the parameters in a linear state-space 
model constitutes a generalization of the so-called expectation 
maximization (EM) algorithm [Hartley, 1958; Dernpster et al., 
1978; Shurnway and Stoffer, 1982]. Wu [1983] showed that 
estimation techniques based on the EM algorithm converge to 
a local maximum of the log-likelihood function in a finite 
number of iterations, provided that local convexity of the 
(negative) log-likelihood function holds. An application of the 
EM algorithm to parameter estimation of mixture distri- 
butions, as well as a discussion of its features can be found in 
the work by Leytharn [1984]. 

In order to implement the estimation algorithm, assume 
that at the (r + 1)st iteration one has available p•(r), Z•(r), 
Q(r), R(r), A(r), and qS(r), which denote the rth iteration value 
of the parameter set. Let 

G(px, •;x, •, R, A, qb) = Er (log Llz2, z3," ', zt) (14) 

where Er denotes the conditional expectation of (13) with re- 
spect to the observations z:, %, ..., z t of a distribution con- 
taining the rth iterate values p•(r), Z•(r), Q(r), R(r), A(r), and 
qS(r). The idea is to compute the conditional expectation on 
the right-hand side of (14), maximize the resulting expression 
with respect to p•, Z•, Q, R, A, and qS, to obtain their (r + 1)st 
iterate values. This two-step, expectation first-maximization 
second is repeated until convergence is achieved. The con- 
ditional expectation of the log-likelihood function with respect 
to the observations z2, z3, '", z• yields 

= -- « log 121,1-« tr {Y,, -'[P,' +(x,' -- p,Xx,' - 

(t-- 1) 
2 

(t- 1) 

log {Q{-« tr {Q-•(A•-A2A'-AA 2' +AA3A')} 

- • log IRI- «tr {R-' • [(z,- Mxt' ) 1=2 

ß (zt - Mx,')' + MPt'M'] } (15) 
in which tr denotes the trace of a matrix and 

A• = • [Pt t + (xt'- Bu t_ • -- yt_ • - q•wt-2) 
/=2 

(Xl t-- But_, -- y,_, -- q•w,_ 2)'] (16) 

_._ • t __ __ __ (])W l 2)X/- t'] (17) A2 [Pt,t- 1 -[- (Xl t But- • Yt- • - • 
/=2 

•_ • t t,] (18) A3 [Pt-• + xt-•txt-1 
/=2 

In (15)-(18), the following notation was introduced' 

xt k = E(xtlz:, %,.-., zk) (19) 

Pt t• =Cov (xtlz2, z3, '" , zt•) (20) 

n Cov (x•, xt_ [z,_, %,". zn) (21) Pt,t- 1 = 1 , 

When k - t in (19), x/'= xt • is the smoothed estimator of xt, 
l = 1, 2 ..... t - 1, which has covariance Ptt; for k = l, xt •' = xt ! 
is the Kalman filter estimator of xt, which has covariance Pt t. 
When k- t, (20) represents the smoothed state estimate co- 
variance matrix. When k - l, (20) represents the filtered state 
estimate covariance matrix. Equation (21) denotes the lagged 
covariances, of which, of interest for use in the estimation 
algorithm is the case when k = t (and similarly for equations 
(19) and (20)). Due to the structure of (1) and (2), filter and 
smoothed state estimators and covariances must be obtained 
by using the augmented state and observation equations (11) 
and (12). Clearly, one is only interested in the subvectors and 
submatrices that correspond to the true state vector x, (see the 
appendix). The recursions for the Kalman filter and smoothed 
state estimators as well as for the lagged covariances are pre- 
sented in the appendix. It should be noted that the condition- 
ing of the log-likelihood function on the observation data z2, 
z3, '", z t results in parameter estimators that are a function of 
the smoothed state estimators. 

Differentiation of (15) with respect to p•, Z•, Q, R, A, and q• 
yields the following analytical expressions for their respective 
estimators, in the (r + 1)st iteration, 

p•(r + 1)= x•' (22) 

2;,(r + 1)= P,' (23) 

Q(r + 1)= ( 1 ) t' 1 (A•-A2A3-•A2') (24) 

( i)• [(Z t -- MxttXzt- Mxt' )' + MPt'M' ] R(r+ 1)= t------------• /=2 

in which 

A(r + 1)= A2A 3 - 1 

qb(r + 1) = B2B 3 - • 

B2 = • (xtt _ Axt_ ,t 
/=2 

-- But- • -- Yt- 0Wt - 2' 

B3 = • Wt- 2Wl- 2 
1=2 

(25) 

(26) 

(27) 

(28) 

(29) 

Notice that (22)-(29) require only basic vector-matrix alge- 
braic operations (addition and multiplication) as well as a 
numerically stable subroutine for matrix inversion [Stewart, 
1973]. The simple structure of the basic equations needed to 
estimate the state-space parameters (i.e., equations (22)--(29)) is 
one of the attractive features of the EM algorithm relative to 
other methods based on nonlinear equation solvers [e.g., 
Mehra, 1970; Gupta and Mehra, 1974]. 

Other maximum likelihood approaches [e.g., Kashyap, 
1970; Gupta and Mehra, 1974; Anderson, 1977] utilize nonlin- 
ear solution techniques (e.g., method of scoring, which requires 
the inverse of the matrix of second partial derivatives, 
Newton-Raphson or constrained optimization algorithms). 
The computation of the expected value of the matrix of second 
derivatives (the so-called information matrix) and its inverse 
usually leads to computational difficulties. The convergence of 
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the Newton-Raphson is highly dependent on the choice of 
initial estimators. On the other hand, constrained opti- 
mization methods require substantial knowledge of math- 
ematical programming and their implementation may require 
a good deal of expertise in numerical analysis and computer 
programming, which is not necessary in the implementation of 
the EM algorithm. For the case of the normal distribution, 
Wu [1983] has shown that the log-likelihood function in- 
creases at every iteration monotonically, and such conver- 
gence to a local optimum is not affected by the choice of 
initial estimator. Although the computation of the information 
matrix in the method of scoring provides an estimate of the 
standard error of estimators (see, for example, Rao [1965, pp. 
302-309]), this can be also done numerically by perturbing the 
log-likelihood function about the computed solution. 

The estimation algorithm can be summarized as follows. 
1. For the first iteration, guess values pl(1), I;l(1), Q(1), 

R(1), A(1), and •(1) (see application below). 
2. Compute x[, Pt t, and Pt.t-1 t (see the appendix). 
3. At the rth iteration, based on the estimates pl(r), 

O(r), R(r), A(r), and &(r), compute the estimators (22)-(27) for 
the (r + 1)st iteration. Go to step 2. 

4. Repeat steps 2 and 3 until a user-specified convergence 
criterion is satisfied (the convergence test suggested by Gill et 
al. [1981, p. 306] is adopted in this study). 

Notice that the estimation algorithm yields, in addition to 
the set of estimators presented above, the relevant estimator of 
the unobservable past state variables, namely, the smoothed 
state estimator. One of the attractive features of the EM algo- 
rithm is that under convexity of the (negative) log-likelihood 
function, the initial estimates to be provided in step 1 need not 
be close to the convergence values. In fact, initial estimates 
affect the rate of convergence but not the convergence itself to 
a local maximum [Wu, 1983]. 

COMBINING ESTIMATION AND CONTROL 

In many cases, water resources managers, in addition to 
estimating unknown parameters, must make decisions to opti- 
mally control the values of the state variables. Examples of 
this can be the operation of a reservoir to minimize flood 
damages by regulating reservoir releases during flooding 
events, or the regulation of pumping rates in an irrigation 
district to keep piezometric heads in an aquifer close to some 
target levels. The following quadratic objective function is 
considered (the augmented state-space model equations (11) 
and (12) are used henceforth) 

min E (xt* - it*)'St*(xt* - 
ut,¾1 I 

+ (30) 
/=1 

subject to 

xt+l* = A*xt* + B*ut + Yt* + et+l* l = 1, 2 .... , t - 1 

(31) 

(32) zt+l = M*xt+l* + vt+l I = 1, 2 ..... t-- 1 

in which 

where St is a penalty matrix; it is a desired target path for the 
state x t, ¾1; and fit is a reference value for the decision ut, ¾1. 

The structure of St* implies that no penalties are imposed on 
wt, ¾1. The matrix Zt is a penalty matrix assumed positive 
definite and without loss of generality, symmetric. The prob- 
lem specified by (30)-(32) minimizes deviations of the state and 
decision vectors xt* and at about the values it* and fit, respec- 
tively. Noel and Howitt [1982] and Wasimi and Kitanidis 
[1983] presented additional examples on the use of models 
with quadratic objective functions in water resources mod- 
eling. Yakowitz [1982] discussed solutions of quadratic prob- 
lems via dynamic programming. 

The solution to (30)-(32) is developed herein. Additional 
discussion on how to select it, fit, St, and Zt, ¾1, is provided in 
the application example. Problem (30)-(32) is solved via dy- 
namic programming. The solution to problem (30)-(32) fol- 
lows partly the steps outlined by Bertsekas [1976, pp. 129- 
133] for the case in which it*, Yt*, and fit are zero. 

Define the "cost-to-go" function for period I as 

Jt = min {E[(xt* - it*)'St*(xt* - it*) 
ut,¾1 

+ (u•- a•)'Z•u•- 

+Jr+ l(Axt* + B*ut + Yt* + et+ x*)]lz• ..... z•} (34) 

for I = t - 1, t - 2 ..... 1. The terminal cost to go is given by 

j, = œ['(x,* - g,*)%*(x,* - g,*)] (35) 

By letting l = t- 1 in (34), differentiating with respect to 
ut-l, setting the resulting expression equal to zero, and solving 
for ut- l, one obtains (noticing that E(et* ) -- 0 and independent 
of xt*, •/), 

ut- l* = -(Zt- 1 + B*'GtB*) - l[B*'Gt(A*xt- 1 *t- 1 + Yt- 

in which 

- B*'at - Zt- lilt- 1] (36) 

Gt = St* (37) 

at'= it*'St* (38) 

and x t_ 1 *t- 1 is the Kalman filter estimate of the state x t_ l* 
(see the appendix). 

The substitution of (36) into (34) yields ̀ it-1. By letting 
l= t- 2 in (34) and using the known ,I t_ 1 in the cost-to-go 
function ,It-2, one can compute ut_ 2* similarly, as done for 
ut-x*- By repeating this substitution-minimization procedure 
for ut-a*, ut-4*, etc., the optimal decision for any period I is 

ut* = -(Zt + B*'Gt+ xB*)-I[B*'Gt+ l(A*xt *t + Yt*) 

- B*'at+ • - Ztfit] (39) 

for l= t- 1, t- 2, ..., 1. In (39), xt *t is the Kalman filter 
estimate of the state xt* (see the appendix). The backward 
recursions Gt+ 1 and at+ • are computed by the following ex- 
pressions: 

Gt = A*'[Gt+ 1 --Gt+ •B*(Zt + B*'Gt+ lB*)-•B*'Gt+ 1]A* + St* 

(40) 

and 

at'=it*'St*-yt*'Gt+ l[A*-B*(Zt + B*'Gt+ lB*)- 1B*'Gt+ 

+ at+ l'[A* -- B*(Zt + B*'Gt+ lB*)- 1B*'Gt+ 

-fit'Zt(Zt + B*'Gt+ lB*)- 1B*'Gt+ 1A* (41) 

In (40) and (41), l = t - 1, t - 2 .... ,2, with Gt and at' defined 
in (37) and (38) respectively. Equations (39)-(41) provide the 
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Fig. 2. Flood control diagram for New Melones Reservoir. 
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optimal solution to the management problem (30)-(32). Given 
(1) the quadratic nature of (30); (2) the structure of the aug- 
mented state-space model (31)-(32), which is equivalent to the 
model specified by (1)-(3); and (3) the statistical assumptions 
on the error terms et* and vt, the solution provided by (39)- 
(41) is a strict local optimum solution. 

The control solution given by (39)-(41) implies that both 
states (xt*) and decision or control variables (ut*) are un- 
constrained. The weighting matrices play to some extent the 
role of constraining xt* and ut* about the desired target values 
Xt* and ft, since the objective function can be interpreted as 
quadratic penalties on deviations about Xt* and ft. It is not 
possible to derive analytical solutions for the problem (30)- 
(32) in the presence of constraints. If infeasibilities are detected 
when applying the control given by (39), one could "clip" the 
control at its maximum or minimum permissible value. This 
would lead to suboptimal and only approximately correct 
control sequences since the actual process of deriving (39) did 
not (and cannot) consider the effect of constraints. The reader 
is referred to Deyst and Price [1973], Bryson and Ho [1975], 
and Murray and Yakowitz [1979] for a discussion on dynamic 
deterministic control with linear constraints. 

In order to compute the solution (39)-(41), it is required to 
have an estimate of A*, which is given by the application of 
the parameter estimation algorithm, i.e., 

in which • and • are the convergence values in the parameter 
estimation algorithm. The value of A* (and the rest of the 
parameters) can be computed by running the estimation algo- 
rithm on a data set prior to the beginning of the control 
horizon (i.e., 1 < 1). Such estimates are then used in (39)-(41). 
Notice that the other unknown parameters (!s•, 5:•, Q, and R) 
enter in (39)-(41) through the sufficient statistic xt *t, the 
Kalman filter estimator of the state xt*. Cascading the com- 
bined parameter estimation-control approach into (1) parame- 
ter estimation and (2) control proper (taking a certainty equiv- 
alence point of view) has been termed the separation property 
since its introduction by Joseph and Tou [1961] and has been 
widely used to solve optimal control problems ever since. It 
can be verified in the appendix the dependence of xt *t on the 
parameter set 0. xt *t is a sufficient statistic, because, to the 
controller, all the necessary information about the state-space 
model is summarized into the state estimator xt *t. The esti- 
mate of the parameter set 0 can be updated within the control 
horizon (i.e., ! < 1 < t), if desired, by running the estimation 
algorithm based on data up to the time in which the update of 
parameters is performed. The extent to which periodic revision 
of parameter estimates is important to the control or manage- 
ment problem depends on the nature of each specific problem. 
An example is provided in the next section. 

APPLICATION AND ANALYSIS OF RESULTS 

The implementation of the previous theoretical devel- 
opments is illustrated with an application that combines con- 
trol and estimation to solve a multiperiod management prob- 
lem. Figure 1 shows a three-reservoir system from the north- 
ern portion of the California Central Valley Project (NCVP). 
One of the main functions of the NCVP is to provide flood 
control protection to the highly developed Sacramento and 
San Joaquin valleys. During periods of large river streamflows, 
the NCVP managers must operate the reservoirs jointly, so as 
to satisfy flood control regulations imposed by the U.S. Corps 
of Engineers, and minimize flood control damages. Figure 2 
shows the flood control diagram for New Melones reservoir, 
which specifies flood control target storages through the year. 
In addition to maintaining reservoir storages close to the tar- 
gets levels, the NCVP system operators have the goal of mini- 
mizing losses caused by large reservoir releases at control 
points 1, 2, and 3 (Figure 1). The authors conducted a study to 
relate water-surface profiles downstream of the reservoirs to 
economic losses. The following equations expressing damages 
as functions of releases were developed' 

Dt (1) = -- 7.79 + 13.5ut (1) -- 1.866(ut(•)) 2 (43) 
(i) 7i0_•ut _•3700 

Dt (2) = -0.187 + 6.74ut (2) - 0.961(ut(2)) 2 (44) 

230 _• ut (2) _• 3400 

Dt (3) = 0.205 + 18.1ut (3)-- 0.374(ut(3)) 2 (45) 

60 _• u/(3) •< 850 

in which the damage Dt (ø, at control point i= 1, 2, 3, is in 
million of dollars, and the releases ut ") are in m3/s. Equations 
(43)-(45) are used to set up the penalty matrices Zt, ¾1. 
Matrices Zt contain diagonal elements that are equal to the 
relative value of release damages at control point i, i = 1, 2, 3 
(see Figure 1). Notice that of interest is the relative (as op- 
posed to the absolute) level of economic loss. Thus the diago- 
nal elements of Zt are given by Z/(i)= Dt(i)/min (Dr (•), D/(2), 
Dr(3)), provided that min (Dr (•), Dt (2), Dt (3)) is strictly larger 
than zero. If all Dt (ø (i = 1, 2, 3) are equal to zero, then Zt is 
set equal to the identity matrix. If min (Dr (•), Dt (2), Dt (3)) equals 
zero, but not all the Dt (ø are zero, then zt ") = Dt(ø/min Dt (k), for 
all i and k such that Dt ") and Dt ø') are nonzero, and zt")= e, 
for all i such that Dr")= 0, in which e is a small positive 
number. In view of the NCVP system operation goals, the 
objective function of the flood control operation problem is 
stated as 

min E (xt* -- •t*)'St*(xt * -- 
ut,Vt I 

+ t=•l(Ut- fit)'Zt(ut- fit) (46) 
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1580 LOAICIGA AND MARI•IO' PARAMETER ESTIMATION AND STOCHASTIC CONTROL 

which is subject to the state equation 

* = A*Xl* "[- B*u I -t- el+ 1 x/+ 1 

in which 

(47) 

where I and 0 are 3 x 3 identity and null matrices, respec- 
tively, and xt* and et+ 1' are defined in (9). The upper 3 x 1 
subvector of xt* represents the storage (state) variables, and !! t 
is the 3 x 1 vector of reservoir releases. From (9), (47), and (48) 
it follows that the streamflow vector wt is modeled by a first- 
order autoregressive model. An observation equation is added, 

* + vt (49) Z/+I • X/+l +1 

which is similar to (12) with M* defined as 

M* =(I 0) (50) 

The solution to (46)-(49) is given by (39)-(41), after setting 
yt*= 0. The filtering, smoothing, and lagged covariances 

weighting matrices Z t only affect the computation of the back- 
ward recursions for period I. For period l + 1, the backward 
recursions are recomputed based on damage information for 
period l+ 1, and so on. Additional details for computing 
St* = S* and Z t are given in the work by H. A. Loaiciga and 
M. A. Marifio (unpublished manuscript, 1984) where a simpler 
management problem is considered that does not combine 
control and estimation. The diagonal elements of St* are 
st*i= 4.5, 1.0, and 2.4 for i= 1, 2, and 3, respectively. All 
other diagonal and off-diagonal elements of St* are zeroes. 
The off-diagonal elements of Zt are also zero. For the first 
period, l = 1, the matrix Z 1 is set equal to the identity matrix. 

The combined control-estimation method is used to develop 
an optimal release strategy to route large runoff volumes gen- 
erated by heavy rainfall occurring during February 25 to 
March 5, 1983. Seventy-two decision periods, each of a three- 
hour duration, make up the entire control horizon. As a by- 
product of applying the combined control-estimation tech- 
nique, one obtains the parameter estimates as well as the 
smoothed state estimators. The steps to implement the pro- 
posed control-estimation technique to the reservoir operation 

given in the appendix should be modified by setting Yt* = 0 problem are as follows. 
and M* = (I 0) where appropriate. No other modifications 
are required. Estimation is needed to compute the unknown 
parameter set 0 = {Isl, Z1, Q, R, •p}, and this is accomplished 
by the parameter estimation technique developed earlier. The 
optimal control solution given by (39) requires the filtered 
estimate xt *t that can be obtained by the filtering equations 
given in the appendix. The matrices St* in (46) are obtained by 
first calculating the economic damage stemming from poten- 
tial overtopping at each dam site. Subsequently, the first three 
diagonal elements of St* (see equation (33)) are made equal to 
the ratio between the potential damage from dam overtopping 
at site i and the minimum potential overtopping damage, for 
i= 1, 2, 3 (notice that relative figures are used, as was done 
with Zt). Clearly, St* is then a time-invariant matrix, i.e., 
St* = S*, ¾1. The matrix Zt, ¾1, in (46), as is explained above, 
was obtained by setting its diagonal elements zt i equal to the 
ratio of the damage for period l- 1 (as obtained from equa- 
tions (43)-(45)) to the minimum damage caused during period 
l-1, for i= 1, 2, 3. It must be pointed out that the last 
known damage information corresponds to period l - 1, for at 
is unknown at the beginning of the /th decision period. Re- 
leases vary at most _+ 20% in the short decision intervals used 
in this application. Since the most recent information on 
downstream damage is that associated with at_ 1, the weights 
zt {ø are based on damage information for period l- 1. Such 

1. For the first period, provide values for Isl, •'•1, Q, R, and 
•p. In this study, initial estimates were obtained from moment 
estimators for Isl, •1, Q, and R [see Todini et al., 1977]. A 
standard least squares estimator [Anderson, 1978] provided 
the initial estimate for •p. These values are used to compute 
filtered estimates of the storage variables. Based on these esti- 
mates, the releases, as given by (39), are obtained and imple- 
mented. 

2. After six (3-hour) decision periods, the estimation algo- 
rithm is run as explained above, to update the guessed param- 
eter estimates made at the beginning of the first operation 
problem. 

3. With the updated parameter estimates, compute filtered 
storages and releases up to the twelfth decision period, where 
parameter estimates are reupdated again by running the esti- 
mation algorithm. 

4. Continue to obtain and implement the controls for the 
remaining periods within the control horizon, reupdating the 
parameter estimates every 12 periods, i.e., at the beginning of 
the decision periods 24, 36 .... ,72. 

Table 1 contains initial data to start the control-estimation 

algorithm. Figures 3-5 display the optimal (smoothed) storage 
trajectories and optimal release policies for Shasta, Folsom, 
and New Melones reservoirs. It can be observed in Figure 3 
that the storage at Shasta reservoir is driven towards the 

TABLE 1. Initial Data to Begin the Control-Estimation Algorithm 

Initial Value Shasta Folsom New Melones 

Initial storage, is• {x•, (m s) 
Initial streamflows, tt• {2•, (mS/s) 
Target storages, •t, ¾1, (m s) 
Reference releases, fit, ¾1, (m s) 
Diagonal weight submatrix, St, ¾I 

(dimensionless) 
Diagonal weight submatrix, Z •, 

(dimensionless) 
Diagonal covariance matrix, Zx, (m3) 2 
Diagonal covariance matrix, Q, (m3) 2 
Diagonal covariance matrix, R, (m3) 2 

4.3045 x 109 7.8795 x 10 s 2.2784 x 109 
0.5851 x 103 0.3034 x 103 0.0833 x 103 
4.0114 x 109 0.7542 x 109 2.4293 x 109 
0.7100 x 103 0.2300 x 103 0.0600 x 103 
4.5 1.0 2.4 

1.0 1.0 1.0 

1.3693 x 10 xs 7.6074 x 10 •3 6.0859 x 10 x'• 
1.0650 x 10 x3 1.5215 x 10 x2 1.5215 x 10 x2 
1.3693 x 10 xs 7.6074 x 10 x3 6.0859 x 10 x'• 

In the augmented state model the initial condition vector is a 6 x 1 array whose upper and lower 
3 x 1 subvectors contain initial storages and streamflows, respectively. 
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Fig. 3. Optimal smoothed storage and releases for Shasta reservoir. 
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Fig. 5. Optimal smoothed storage and releases for New Melones 
reservoir. 

target storage from above and is subsequently kept close to it 
for the rest of the control horizon. The increase of the optimal 
releases after February 28 is due to the large streamflow vol- 
umes occurring during that period. A similar behavior is ob- 
served for Folsom reservoir (Figure 4). For New Melones res- 
ervoir (Figure 5) it can be observed that the storage starts 
below the target storage. The optimal strategy in this case is 
to maintain the releases at a zero level for the entire horizon, 
while the storage is driven toward its target value from below, 
entirely by the streamflow volumes. Actually, the computed 
releases from the analytical expression shown in (39) yielded 
negative values for New Melones. This implies that the reser- 
voir is to be filled so that the storage could be driven prompt- 
ly toward its target value. Since the reservoirs are not in 
tandem, such an increase in reservoir storage can be achieved 
at a maximum rate established by the streamflow volumes 
into the reservoir, which is obtained by setting ut* = 0, ¾1, for 
New Melones reservoir. It is emphasized that despite the fact 
that the weighting matrices S* and Z•, ¾1, are diagonal, the 
optimal control solution to the flood control reservoir oper- 
ation problem is not decoupled, i.e., the 'releases from one 
reservoir affect the optimal strategy of the remaining reser- 
voirs. This is due to (1) the nondiagonal structure of matrices 
A* and B* in (47) and (2) the dependence of the control ut* 
(see equation (39)) on the augmented state filtered estimator 
xt *•, which in turn depends on the values of the parameter set 
0 = (Px, Zx, Q, R, qS). Furthermore, given the penalties on 
releases and storage deviations, and the state-space model 
structure (see equations (47)-(49)), the computed release and 
smoothed storage policies constitute an optimal solution to 
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Fig. 4. Optimal smoothed storage and releases for Folsom reser- 
voir. 

the flood control management problem. The release sequences 
shown in Figures 3-5 did not lead to infeasibilities in the 
reservoir storages (i.e., reservoir levels were kept below their 
maximum permissible values of 5.61 x 109, 1.25 x 109, and 
3.36 x 109 m 3 for Shasta, Folsom, and New Melones, respec- 
tively). The restrictions on maximum permissible levels were 
nonbinding and did not affect the control sequences in Figures 
3-5. To compare the results shown in Figures 3-5 with those 
policies that actually took place for the three reservoir system, 
it is useful to explain how the reservoirs are managed. Figure 
6 shows the flood operation criteria enforced by the U.S. 
Army Corps of Engineers for Shasta reservoir. It can be ob- 
served in Figure 6 that the actual operation criteria consider 
storage targets (i.e., xt, the upper 3 x 1 subvector of Xt*) and 
release targets (at) that are contingent on forecasted inflows 
and desired flood control levels. For the estimation-control 

application of this study, we have used ,•o,s•a,• values for the 

reservoir storage target (corresponds to the horizontal lower 
line in Figure 6a) and for the release target (see Table 1). By 
following the flood control operation criteria for Shasta reser- 
voir, and a similar one for Folsom reservoir, the actual storage 
sequences were kept within __+ 5% of the specified target values 
shown in Table 1 for the entire control horizon at Shasta and 

Folsom reservoirs (except for the first day of operation, when 
the storages were decreased from the initial storage value 
toward the targets). For New Melones, the storage was in- 
creased to about 2.350 x 109 m 3 by March 5 and kept rela- 
tively constant afterwards. 

It was found that the term on the objective function com- 
posed of penalties on the square of the releases was approxi- 
mately 5% smaller by following an actual (heuristic) operation 
criterion implemented by the NCVP managers than that 
yielded by the optimization model. The term in the objective 
function penalizing the square deviations on storages was 
20% larger using the actual policies implemented by the 
NCVP managers. Overall, the value of the objective function 
obtained by the actual policies implemented by the NCVP 
staff was 15% larger than that obtained from the optimal 
control approach (recall that the objective function implies a 
minimization problem). The estimated release damage down- 
stream of Shasta and Folsom reservoirs, following the com- 
puted release sequences (and shown in Figures 3-5), was ap- 
proximately $750,000 (1985 U.S. dollars), whereas the actually 
implemented releases caused damages of nearly $106 (a 25% 
difference between both schedules). These figures can be con- 
trasted with estimated averted damages of nearly $70 x 106 
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Fig. 6a. Shasta flood control diagram. (source: Central Valley Operations Office, U.S. Bureau of Reclamation, Sacra- 
mento, California). 

(1985 U.S. dollars) during rainy seasons in northern California 
[Madsen and Coleman, 1974]. 

The estimated values of the parameter set 0 at the end of 
the control horizon, when the estimation algorithm was based 
on the largest data set (i.e., up to the 72th period), are shown 
in Table 2. The initial storage estimators were within __ 4% of 
the estimated values shown in Table 1. The covariance 

matrices •, Q, and R had their first diagonal element de- 
creased about two orders of magnitude from their originally 
estimated values in Table 1. Their second and third diagonal 
elements were abodt one order of magnitude smaller than the 
guessed values (see Table 1). In particular, the estimated 
matrix R was diagonal, indicating the lack of cross-correlation 
between errors in measurements. The substantial decrease in 

the magnitude of the diagonal elements in the covariance 
matrix R indicates that the storage observations are relatively 
accurate. The relative small values of the off-diagonal elements 
in the covariances El and Q indicate some degree of statistical 
decoupling between the storage and streamflow values at the 
different reservoir sites. The log-likelihood function was de- 
creased from its original to its final value at convergence 
within 10 iterations. Fifteen additional iterations were needed 

to satisfy the convergence test used in this study [see Gill et 
al., 1981]. The estimation algorithm showed slower conver- 
gence rate on the final iterations every time it was run, and 
this is in agreement with the discussion on the EM algorithm 

(b) 
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Fig. 6b. Shasta release schedule (source' Central Valley Operations 
Office, U.S. Bureau of Reclamation, Sacramento, California}. 

performance features provided by Leytham [1984]. Shumway 
and Stoffer [1982] reported the same slow convergence and 
suggested switching to a more rapidly convergent algorithm 
(e.g., Newton-Raphson) once in the vicinity of the local opti- 
mum, although this was not done in the application presented 
herein. However, after having obtained the parameter esti- 
mates, the control equations (39)-(41) were easily imple- 
mented. Notice also that (26) need not be implemented in this 
application, alleviating somewhat the computational burden. 
As was shown by Wu [1983], the EM estimators have all the 
desirable (asymptotic) properties of maximum likelihood esti- 
mators. The CPU processing time for the control-estimation 
algorithm was approximately 240 s in a VAX-11/780 com- 
puter. 

CONCLUSIONS 

An innovative estimation approach to estimate the parame- 
ters (i.e., initial conditions, transition and covariance matrices) 
has been developed and combined with a stochastic control 
method. The combined control-estimation algorithm was used 
to solve a multistage reservoir management problem. In addi- 
tion to yielding a set of optimal decisions for the management 
problem, the state-space parameters as well as the smoothed 
estimators of the storages were also derived. 

TABLE 2. Estimated Parameter Values 

Estimated Value Shasta Folsom New Melones 

Ill, (m 3) 4.100 x 109 0.760 x 109 2.300 x 109 
Z ], (m3)2 

Shasta 0.2283 x 10 •4 0.0001 x 10 x4 -0.0002 x !0 x4 
Folsom 0.0001 x 10 x4 0.1249 X 10 x3 --0.0045 X 10 x4 
New Melones -0.0002 X 1014 --0.0045 X 1014 0.8878 x 1013 

Q, (m3) 2 
Shasta 0.2922 x 1014 0.0003 x 1014 -0.0002 x 1014 
Folsom 0.0003 x 1014 0.1755 X 1013 --0.0015 X 10 TM 
New Melones -0.0002 x 10 x4 -0.0015 x 10 x4 0.1168 x 1014 

R, (m3) 2 
Shasta 0.2036 x 1014 0.0000 0.0000 
Folsom 0.0000 0.1219 X 1013 0.0000 
New Melones 0.0000 0.0000 0.8147 X 1013 

½ (dimensionless) 
Shasta 0.8785 0.5900 - 0.4605 
Folsom - 0.0140 0.0304 0.1732 
New Melones -0.0097 0.0668 0.8904 

The initial condition estimator P l estimates the initial storages. 
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LOAICIGA AND MARIl•10: PARAMETER ESTIMATION AND STOCHASTIC CONTROL 1583 

The parameter estimation technique is based on very mild 
statistical assumptions; thus it does not require the introduc- 
tion of any strong limiting statistical condition. The technique 
leads to analytical expressions for updating the parameter esti- 
maters, which is ideal for implementation in digital com- 
puters. The control method uses the filtered storage estimator 
as a basis for decision, and the analytical control law is also 
based on suitably computable recursions, of easy coding and 
implementation as software. The application example shows 
that the control-estimation technique provides realistic and 
credible decision policies as well as parameter estimaters 
within reasonable computational time. 

Lagged Covariances 

The lagged covariance matrix backward recursions for the 
augmented state-space model (11)-(12) are (l = t, t - 1 ..... 3) 

,t_ Pt- ,t , Pt-x,t-e - x -XHt-e 

,t A'Pt- ,t- X)Ht_ 2' (A10) + Hl-t(Pt,t -• - t 

where 

,t (I- KtM*)A*Pt_i *t-x (All) Pt,t- 1 -- 
t 

The lagged covariances Pt.t-• can be obtained from (A10) and 
(A11) from their respective upper-left n x n submatrices. 

APPENDIX: FILTERING, SMOOTHING, AND LAGGED 
COVARIANCES 

Filtering 

The filtering forward recursions for the augmented state- 
space model [Jazwinski, 1970] (11)-(12) are (l = 2, 3 ..... t). 

State estimate extrapolation: 

Xl *t-•' = A*xt-•. *t-1 q- B*ut-•. q- Yt-l* (A1) 

Error covariance extrapolation: 

where 

*t-lA*' Q, Pt *t- • = A'Pt- 1 + (A2) 

Q*=I• •] (A3) 
State estimate update: 

xt.t = xt.t- x + Kt(zt - M*xt *t- x) (A4) 

Error covariance update: 

Pt,t = Pt,t- x _ KtM,Pt,t- x (A5) 

Kalman gain matrix: 

Ki = Pt '1- •M*'(M*Pt '1-1M*' q- R)- t (A6) 

The initial conditions are E(xx*) = lax* and cov (x•*) = Ex*. 
The estimator Xt t is given by the upper n x 1 subvector of 
(A4). The Pt t- • and Pt t covariances are given by the upper-left 
n x n submatrices of (A2) and (A5), respectively, For parame- 
ter estimation via (22)-(27), one is interested in the smoothed 
estimaters given below. 

Smoothing 

The smoothing backward recursions for the augmented 
state-space model [Rauch et al., 1965] (11)-(12) are (l - t- 1, 
t- 2,..., 1). 

Smoothed state estimate' 

,t ,l) xt *t--•x• *tq-Ht(x•+• --Xt+l 

Smoothed covariance matrix' 

,t__ Pt *t)Ht' Pt *t "- Pt *t q- Ht(Pt + 1 + 1 

•. ,1)- 1 H t Pt*tA*'(Pt+l 

(A7) 

(A8) 

(A9) 

The estimator xt t is obtained from the upper n x 1 subvec- 
tor of (A7). The Pt t matrix is obtained from the upper-left 
n x n submatrix of (A8). 

NOTATION 

The following notation is used in this paper. 

A n x n parameter matrix in the state-space model. 
A•, A2, A 3 n x n matrices appearing in the expressions for 

parameter estima.tes A and Q. 
A* 2n x 2n transition matrix in the augmented 

state-space model. 
at 2n x 1 recursion in the control algorithm. 
B n x p known matrix in the state-space model. 

B 2, B 3 n x n matrices appearing in the expressions to 
compute 4•. 

B* 2n x p matrix in the augmented state-space 
model. 

Dt i damage at control point i, during period 1, 
due to release from reservoir i. 

et n x 1 noise vector in the AR(1) process. 
et* 2n x 1 noise vector in the augmented state- 

space model. 
G( ) conditional expectation of the state-space 

process log-likelihood function. 
Gt 2n x 2n matrix recursion in the control 

algorithm. 
Ht 2n x 2n matrix recursion appearing in the 

smoothed state and covariance estimaters. 

Jt cost-to-go function at time l in the dynamic 
programming formulation of the control 
problem. 

Kt 2n x 2n Kalman gain matrix in the state 
filtering recursions of the augmented state-space 
model. 

I time index, l = 1, 2 ..... t- 1. 
M m x n observation matrix in the state-space 

model. 

M* m x n observation matrix in the augmented 
state-space model. 

Pt •' n x n state estimate covariance in the 
augmented state-space model. If k > l, it 
represents the smoothed covariance. If k -- l, 
it represents the filtered covariance. In either 
cas_e, it is given by the upper-left n x n 
submatrix of Pt *•'. 

Pt *•' 2n x 2n state estimate covariance in the 
augmented state-space model. If k > l, it 
represents the smoothed covariance. If k = l, it 
represents the filtered covariance. 

•' lagged covariance obtained from the upper Pt,t- 1 
left n x n submatrix of Pt,t- 

Pt,t-•,t• lagged covariance in the augmented state- 
space model. 

Q n x n c9variance of the noise vector 
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Q* 2n x 2n covariance of the augmented noise 
vector et*. 

R n x n covariance of the noise vector vt. 
St* 2n x 2n penalty matrix in the control problem. 
ut p x 1 decision vector in the state-space model 

and control problem. 
ut* p x 1 optimal decision vector in the control 

problem. 
at p x 1 vector of reference decision values. 
vt rn x 1 noise vector in the state-space model. 
wt n x 1 stochastic, uncontrollable, input to the 

state-space model. 
xt n x 1 state vector. 
•t n x 1 state target vector. 

xt* 2n x 1 augmented state vector. 
Xt* 2n x 1 augmented state vector. 
xt k n x 1 state estimator. If k > l, it represents 

the smoothed state estimator. If k = l, it 
represents the filtered state estimator. In 
either case, it is given by the upper n x 1 
subvector of the vector xt *k 

xt *n n x 1 state estimator in the augmented state- 
space model. If k > l, it represents the smoothed 
state estimator. If k = l, it represents the 
filtered estimator. 

Yt n x 1 vector of exogenous deterministic and 
known variables in the state-space 
model. 

Yt* 2n x 1 vector of exogenous deterministic and 
known variables in the augmented state-space 
model. 

Zt p x p positive definite penalty matrix in the 
control problem. 

z t rn x 1 vector of observable variables in the state- 
space model. 

0 set of parameters = (la•, El, Q, R, A, •). 
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