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Inhibition and Brain Computation
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Abstract

The synapse plays a fundamental role in the
computations performed by the brain. The excitatory or
inhibitory nature of a synapse represents a (simplified)
characterization of both the synapse itself and the
computational role it plays in the larger circuit. Much
speculation concerns the functional importance of
excitation and inhibition in the physiology of the
cerebral cortex. The current study uses neural network
(connectionist) models to ask whether or not the relative
proportion of inhibition (i.e., inhibitory synapses) and
excitation (i.e., excitatory synapses) in the brain affects
the development of its neural networks? The results are
affirmative: An artificial neural network, designed to
perform a particular task involving winner-take-all
output nodes, is sensitive to the initial configuration of
positive (excitatory) and negative (inhibitory)
connections (synapses), such that it learns considerably
faster when started with 60-75% inhibitory connections
than when it includes a greater or lesser proportion than
this. Implications of this result for neuroanatomy and
neurophysiology are discussed.

Introduction

The brain computes through a distributed network of
discrete neural elements whose pattern of connections
gives rise to particular types of computations. Many
morphological and functional features of these objects
contribute to their ability to compute, with the synapse
playing a fundamental role [Shepherd and Koch, 1990].
The excitatory or inhibitory nature of a synapse
represents a (simplified) characterization of both the
synapse itself and the computational role it plays in the
larger circuit. The functional importance of excitation
and inhibition in the brain is the subject of significant
speculation [Fromm. 1992], which has led to assertions
about the importance of inhibition in the physiology of
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the brain, particularly within the cerebral cortex.

In this paper, we use a neural network (connectionist)
model to examine the question: Does the relative
proportion of inhibition (i.e., inhibitory synapses) and
excitation (i.e., excitatory synapses) in the brain affect
the computational efficiency of its neural networks?
Two parallel issues devolve from this question, one
involving the development of computational circuits,
and the other concerned with the operation of already
learned circuits.

We investigate these questions in the context of the
cortical visual system, particularly the results of
Mishkin and his colleagues [Mishkin, et al., 1983] on
macaque visual processing. When required to perform
the dual task of visual object recognition and spatial
localization, the macaque uses two separate visual
systems to perform the two tasks, a temporal “what”
system and a parietal “where” system [Desimone, et al.,
1985; Mishkin, et al., 1983]. Rueckl, Cave, and Kosslyn
[1989] have constructed a computer model of this
system, which was used as a testbed for the present
study of inhibition and excitation.

Two hypotheses motivated the current study: (1) The
development of the visual system (to perform the object
recognition and spatial localization task) takes place
faster when the initial neural network contains a
predominance of inhibitory synapses; and (2) Fully
developed neural networks of the (two pathways of the)
visual system operate more accurately when containing
predominantly inhibitory synapses. We tested these two
hypotheses by teaching numerous initial configurations
of the Rueckl model (with different fractions of
excitatory and inhibitory synapses) to perform the
visual task.

This model represents one of a class of neural
network (or connectionist) models currently under
investigation by researchers from diverse disciplines.
Such models attempt formally to understand biological
neuronal networks, at the levels of both individual
neuronal processing (e.g., dendritic computations,
synaptic behavior) and of large assemblies of neuronal
processing (e.g., cerebellar cortex) [Sejnowski, et al.,



1988; Sun, et al., 1988). In
addition, neural network models
of high level cognitive processing,
in such areas as vision [Feldman,
1989] and language [McClelland
and Rumelhart, 1986; Seidenberg
and McClelland, 1989], are
reshaping accepted notions in
information processing
psychology. While these models
differ greatly in the formal
specifications of their neuronal
units, and in the particular manner
in which the units are connected to
perform computations, they share
similar underlying principles of
organization.

The overall goal of the
experimental method is to use a
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theoretical analysis to make
suggestions for empirical

scientists. As a necessity of the approach [Churchland
and Sejnowski, 1987], we address computational
questions about the brain at a high level of abstraction.
Thus, we will not be able to show how much inhibition
is actually used in a particular area of the brain or for a
particular neurological task. Nonetheless, we do provide
some suggestions about how the overall balance of
inhibitory and excitatory synapses might make a
difference in the computations that are possible. While
this will not answer the morphological questions, it may
help motivate research to establish a better correlation
between anatomical and physiological results.

Methods

As with most connectionist models, and with all models
at this level of analysis, many simplifying assumptions
are made about neurons and synapses [Sejnowski, et al.,
1988]. The model presented here uses a very simple
model of a neuron, and an even simpler model of a
synapse. These simple models are shown in Table 1,
and are representative of the strategies common in
connectionist modelling. (See our previous discussion
of this in [Small, 1991].) A parallel distributed
processing (PDP) approach [Rumelhart and
McClelland, 1986], employing a layered feed forward

Figure 1: Network Representation of Visual Pattern Recognition

(i.e., non-recurrent) network with one hidden layer of
computational units in addition to the input and output
layers, formed the basis of the implementation.

Such networks are able to learn by example to
perform some task (i.e., associating a number of input
patterns with desired output patterns) by adjusting their
connection strengths according to particular error
minimization rules. The back propagation learning
algorithm [Rumelhart, et al., 1985] represents a useful
learning strategy. One criterion for the success of a PDP
model using back propagation is the number of
presentations of each training example required to teach
the model to perform the desired task. The models
discussed in this paper use this criterion; a network that
learns a task quicker (i.e., with fewer presentations of
each training instance) is considered to be superior to
one that learns the task slower. Of course, these
numbers are subject to statistical interpretation, and the
concepts of faster and slower must conform to standard
criteria of significance.

As noted, the experiments presented here were
conducted with the visual system model of Rueckl and
his colleagues [1989]. The model performs the
classification of two-dimensional visual images into
two categories, one representing what object was shown
and the other representing where on the input grid the
image appeared.

This dual task of

Table 1: Computer Model Correlates of Neurobiological Concepts
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CNS Concept Model Analogue Nature Description visual object
Neuron Unit Abstraction  Associated values and functions recognition and spatial
Synapitic strength Connection weight Value Real number localization has a
Axon firing rate Unit potential Value Real number neurnbiological basis
Synapse Unit input Value Weighted unit potential in the temporal “what”
Inhibition Negative weight Value Negative real number :
Excitation Positive weight Value Positive real number -l pnd sp‘;::;:‘a;
Depolarization Potential function Function Adjusted sum of inputs ; oy Y
Threshold Bias Value Real number identified in the

macaque monkey



[Desimone, et al., 1985; Mishkin, et al., 1983]. Rueckl
et al showed that a computational neural network
learned the two tasks much faster if instead of a single
process, the network were subdivided into two parallel
network processes, one for object recognition and the
other to perform the spatial localization.

The specific experimental hypotheses, based on the
general hypotheses discussed above, are that the feed
forward layered connectionist network designed by
Rueckl et al [1989] both (1) learns faster when started
with predominantly negative weights than with random
weights or with predominantly positive weights; and (2)
performs more accurately when containing
predominantly negative weights. While the specific
hypotheses concern mathematical networks, we suggest
that the principles of operation apply to biological
networks and their synapses.

This model consists of a feed forward network of
units containing three layers: (1) an input layer, (2) an
output layer, and (3) an intermediate (hidden) layer.
These three layers are illustrated graphically in Figure
1. The input layer consists of a linear representation of a
two dimensional visual pattern. The 5 x 5 input grid of
Figure 1, representing the letter “U”, is actually
represented as the linear vector of binary digits, with a
"1" representing a pixel in the pattern and a "0" one that
is not in the pattern. The output layer represents what
pattern was presented and where in the two dimensional
input space the pattern was presented.

The output layer of Figure 1 illustrates these two
sublayers of representation: One sublayer (the right
hand part of the output layer in the Figure) contains the
information on what input object was presented — in
this case the letter “U” — and the other sublayer (the
left hand part of the output layer in the Figure) contains
the information as to where in the input grid that object
appeared — in this case, in the top right position of the
input grid. The network representation of the output
layer uses binary digits, with a "1" for the correct
identification and location, and a "0" otherwise.

The units of one layer are fully connected to those of
the next layer, and the connections can be either
positive (excitatory) or negative (inhibitory). The units
within a particular layer are not connected. The network
starts with random connection strengths among the
units of the adjacent layers. It is then repeatedly
presented with nine different input

minimizes the overall network error. Ultimately the
network learns to classify all the input pauterns.

In the original model of Rueckl et al [1989], learning
was significantly faster when the network was split into
separate “what” and “where” systems than when the
task was attempied by a single undivided network. The
current study used the split network for all trials.

In order to test the hypothesis about the relative
importance of inhibitory versus excitatory connections
in brain computations, another network parameter was
varied, namely, the percentage of initial network
weights with positive values. Recall that positive
connection weights represent excitatory synapses, and
negative weights represent inhibitory synapses.

A pseudo-random number generator was used to
generate two values, a real number between 0 and +2,
and an integer sign (either -1 or +1). Thirteen
experiments were conducted: For each connection in
the network, the probability of it receiving an initial
positive weight was 0% in one trial, 6.25% the next
trial, and 12.5%, 18.75%, 25%, 31.25%, 37.5%,
43.75%, 50%, 56.25%, 62.5%, 68.75%, and 75% in the
twelve additional trials. The learning algorithm was
constructed to present input/output pairs (training
instances) repeatedly until either (a) the sum squared
error of the network dipped below 4.0; or (b) the total
number of presentations of the entire corpus of training
instances (one epoch = 9 images x 9 positions = 81
individual training instances) reached 200. These
numbers were chosen following several pilot
experiments that showed that a network error of about
4.0 represented good performance. The limit to 200
epochs was a practical decision motivated by
limitations in computational resources.

For this project, the basic model was reimplemented
using the DYSNET simulator. Specific choices
regarding potential functions, learning parameters, ermror
measure, and weight updating function are shown in
Table 2. Note that these choices may or may not reflect
those of the original model by Rueckl et al [1989] and
are practically, but not theoretically, important.

Results

The results of these experiments are summarized in

patterns in all nine possible

s ; ; Attribute Value Reference
positions, along with the desired | No ok Syructure  Feed Forward (Rumelhart and McClelland, 1986]
output values, mdlcalmg what Hidden Layers Onie [Rumelhart and McClelland, 1986]
patiern was presented where. The | Layer Widths 25 x 18 x 18 units (Rueck], et al., 1989]
example input pattern and correct | Substructures Splitting [Rueckl, et al., 1989]
output value of Figure 1 are | Potential Function Logistic Function [Rumelhart, et al., 1985]
illustrative. The model then uses | Leaming Algorithm Generalized Delta Rule [Rumelhart, et al., 1985]
the back propagation algorithm | Weight Updating  QuickProp Algorithm  [Fahlman, 1988]

[Rumelhart et al, 1985) to change | Error Measure Sum Squared Error [Rumelhart, et al., 1985)
the connection strengths (weights) Learning Rate 0.5 + Unit Fan In [Fahlman, 1988]

of the network in a way that

Table 2: Computational Features of the Model
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Table 3. These data reflect the average of one hundred
individual learning experiments at each fraction of
initial positive weights.

Note that both the average network error and the
average number of epochs vary with the fraction of
positive initial random weights, reaching a nadir

and the ordinate measures the sum squared error of the
network. Note that the average network error reaches a
minimum with a starting configuration of 37.5%
excitatory weights, and increasing or decreasing this
percentage sharply increases the total error (0%
excitation is not shown: the error exceeds 8).

Figure 4 shows the average number of trials

required to reach either a network error of 4.0 or a
total of 200 trials. Numbers close to 200 therefore
represent failure to converge in 200 trials. As in

[Fraction Mean Mean Probability Paired T
Positive Network Number (numberof Value
Weights  Error Epochs epochs)

0.125 5.290 149.51 5.649 p < 0.0001
0.250 4.183 111.93 e e

0375 4.095 117.49 0.869 p=0.3824
0.500 4276 150.87 6.236 p <0.0001
0.625 5.128 181.10 13.129 p < 0.0001
0.750 7.181 197.18 17.977 p < 0.0001

Figure 3, these data were accumulated from 100
separate learning trials, with a varied initial
percentage of positive and negative connection
weights. The abscissa of this graph measures the
fraction of positive initial weights and the
ordinate measures the number of trials. The

Table 3: Experimental Results

between 25% and 37.5%, but increasing as the fraction
of initial positive weights decreases below or increases
above this level. The statistical results compare the
number of epochs required to learn the task at each
starting configuration (i.e., percentage of initial positive
weights) with the minimum number required when 25%
of the initial weights are positive. The Student t-test
using a two tailed distribution was used for this
comparison. When adjusted for multiple comparisons, it
still shows a significant effect: A starting configuration
reflecting a preponderance of negative weights (within
a specific range) leads to faster network convergence
than with a preponderance of positive weights.

Figure 2 shows a graphic illustration of one portion of
the initial configuration when the fraction of initial
positive weights was set to 25% of all connection

Figure 2: Initial Weights from Hidden
Layer to Fifth Unit of Output Layer

weights. In the Figure, white squares represent positive
values and black squares represent negative values. The
area of the box represents the real number value (in this
example, the largest box encodes an absolute value of
2.0). The Figure illustrates the connection strengths
between each of the eighteen hidden units and the fifth
unit of the output layer.

Figures 3 and 4 illustrate graphically the results of the
thirteen experiments. (Note that the standard errors of
the means, which are not shown in the Figures, are
extremely small). Figure 3 shows the average minimum
network error achieved in 100 separate learning trials,
when the starting configuration included random
connection strengths in which the percentage of positive
and negative values was varied. The abscissa of this
graph measures the fraction of positive initial weights
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minimum number of epochs required to learn the
task occurs at a starting configuration of 31.25%
inhibition, with alterations in this percentage
significantly impairing leaming. Analysis of the final
network demonstrated a linear correlation between the
inhibition fraction of the initial network (before
learning) and that of the completely trained network.

Discussion

The present study demonstrates that an artificial neural
network, designed to perform a particular task, is
sensitive to the initial configuration of positive
(excitatory) and negative (inhibitory) connections
(synapses). The particular network examined uses
winner-take-all output representations, and learning is
considerably faster when the structure of the network
includes 60 - 75% inhibitory connections than when it
includes a greater or lesser proportion than this. While
there are many intuitive analyses of the importance of
inhibition for brain computations, both at the level of
individual neurons as well as at the level of the
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Figure 4: Trials to Converge vs. Weights

organism as a whole, there has not been a similar
suggestion from computational simulation.

A complex set of events must occur in a neuron for it
to initiate an electrical signal, and this depends largely
on the architecture of the individual neuron and the
nature of the chemical signals it receives. Each afferent
signal (neuronal input) can be viewed as having either
excitatory (facilitatory) or inhibitory effects on the
development of an action potential. The signals
constituting these inputs manifest a variety of
interesting temporal and spatial organizations as well as
coniplex local interactions [Koch, et al., 1983], all of
which contribute to their ultimate computational
conclusion — whether or not to initiate an action
potential,

While the relative proportion of inhibitory and
excitatory synapses in the central nervous system is not
known, attempts have been made to quantify these
proportions by a variety of methods.
Immunocytochemical analyses have led to the view that
gamma-amino butyric acid (GABA) is the most
prevalent inhibitory neurotransmitter of the central
nervous system [Kandel and Schwartz, 1985]. Smith
[1989] even suggests that GABA is the most widely
used neurotransmitter of any kind in the CNS, with over
40% of all synapses using GABA.

Support for this idea comes from studies of cortical
interneurons, which suggest that most are GABAergic.
These studies, summarized by Jones and Hendry
[1986], use three different techniques in arriving at the
conclusion: (a) [PHJGABA uptake; (b)
immunoreactivity for GABA; or (c) immunoreactivity
for glutamic acid decarboxylase (GAD).

In the prestriate visual system of the macaque, the
lateral geniculate nucleus contains significant
immunoreactivity for glutamic acid decarboxylase
(GAD), an enzyme required for GABA synthesis [Shaw
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and Cynader, 1986]. In the optic tectum of the frog,

nearly one third all tectal cells are immunoreactive for

GABA. In the striate cortex of the macaque monkey,

layers 2, 3, 4A, and 4C contain large concentrations of

GABA receptors [Shaw and Cynader, 1986).

Physiological study has led to the notion of
orientation selectivity as a fundamental organizing
principle of the visual cortex [Hubel and Wiesel,
1962]. The computational implementation of
orientation selectivity requires that a bar of excitation
be surrounded by a massive ring of inhibition, in order
to eliminate ambiguity in the perception of an edge in
the desired orientation. This computational constraint
suggests that a large number of synapses act
principally in an inhibitory manner.

Pharmacological evidence to support this postulate
comes from studies of the selective GABA antagonist
bicuculline. Application of bicuculline to orientation
selective nerve cells in the cortex of the cat abolishes
their response to the correctly oriented bar of light
(Sillito, 1986).

Investigation of the ultrastructural (anatomical)
differences between two types of synapses has led to
different results. Type | (round asymmetric or RA)
synapses, which are frequently excitatory, have
asymmetrical densification of their pre- and post-
synaptic membranes, and are associated with round
synaptic vesicles. Type II (flat symmetric or FS)
synapses, frequently inhibitory, have symmetrical
densification and have flattened or pleomorphic vesicles
[Gray, 1959; Shepherd and Koch, 1990].

Beaulieu and Colonnier [1985] studied the cat's visual
cortex using these methods and concluded that about
84% of the synapses are of the RA type (usually
excitatory) and 16% of the FS type (usually inhibitory).
Two main questions remain in interpreting this data
(and other data like it): (1) Do these RA synapses
contain primarily an excitatory neurotransmitter, an
inhibitory neurotransmitter, or both? (2) What is the
relationship between the number of inhibitory synapses
and the magnitude of their computational effects?
Ultimately, we need to know the extent to which
anatomical and physiological information bears on the
computational issues and vice versa.

There is an apparent discrepancy between anatomical
and physiological data regarding neuronal processing in
the primary visual cortex of the cat. The anatomical
results are particularly difficult to interpret, since
knowledge of the number of synapses with a particular
morphological structure does not necessarily indicate
how these synapses are used computationally in the
actual physiological setting. Combinations of excitatory
and inhibitory synapses in complex topographical
arrangements lead to intricate local circuit behaviors
that may not correlate in any simple way with their
absolute numbers. For example, a single inhibitory
synapse, appropriately placed, can negate multiple
excitatory stimuli.



Conclusion

While the integration of ultrastructural, physiological
and computational data may require the development of
new techniques, the goal of doing so may have
important consequences for the understanding of
structure/function relationships. Using computer
modelling techniques and abstract representations of
ncurons and synapses, the present study suggests a
preeminent role for inhibition in the computational
organization of the brain.

In the brain, local circuit organization of inhibitory
synapses, regardless of their absolute numbers, can
have a controlling effect. When these are located closer
to the soma than the excitatory synapses, they can
(under certain circumstances) totally negate the
excitatory effects [Koch, et al., 1983; Shepherd and
Brayton, 1987; Shepherd and Koch, 1990). Whether or
not this computational effect bears on the situation in
the visual cortex is not clear. However, the
computational and physiological data suggest that the
apparent preponderance of (typically excitatory) RA
synapses in this area does not correlate with a
preponderance of overall excitatory activity there.

The present study was initiated in response to
speculation about the importance of inhibition in the
physiological function of the human brain [Fromm,
1992]. The modelling results demonstrate a highly
significant role of inhibition in particular artificial
neural networks (containing sparsely coded output
representations) and support the concept of inhibition as
a basic computational feature of the brain.
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