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ABSTRACT OF THE DISSERTATION

Semiparametric Mixture Regression for Asynchronous Longitudinal Data Using
Multivariate Functional Principal Component Analysis

by

Ruihan Lu

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2023

Dr. Yehua Li, Chairperson

The transitional phase of menopause induces significant hormonal fluctuations, exerting a

profound influence on women’s long-term well-being. In the extensive longitudinal investiga-

tion of women’s health during mid-life and beyond, known as the Study of Women’s Health

Across the Nation (SWAN), hormonal biomarkers are repeatedly assessed. However, these

measurements follow an asynchronous schedule compared to other variables prone to errors,

such as physical and cardiovascular measurements. To gain deeper insights into the diverse

characteristics within the study population, we conducted a subgroup analysis employing a

semiparametric mixture regression model. This approach allows us to explore how the re-

lationship between hormonal responses and other time-varying or time-invariant covariates

varies across subgroups. To address the challenges posed by asynchronous scheduling and

measurement errors, we propose a novel strategy involving the modeling of time-varying

covariate trajectories as functional data. This is achieved through the utilization of re-

duced rank Karhunen-Loève expansions, where splines are employed to capture the mean

and eigenfunctions. Additionally, we introduce an Expectation-Maximization (EM) algo-
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rithm to e↵ectively fit a joint model. This model simultaneously incorporates the mixture

regression for the hormonal response and the functional principal component (FPC) model

for the asynchronous, time-varying covariates. Importantly, we treat the latent subgroup

membership and FPC scores as missing data in this framework. Furthermore, we explore

data-driven methods to determine the optimal number of subgroups within the popula-

tion. Through our comprehensive analysis of the SWAN data, we unveil a crucial subgroup

structure within the aging female population, shedding light on important distinctions and

patterns among women undergoing menopause.
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Chapter 1

Motivation and Literature Review

1.1 Motivation

Dehydroepiandrosterone sulfate (DHEAS) is a steroid hormone that occurs natu-

rally in the body and is primarily synthesized by the adrenal glands, gonads, and the brain.

It plays a crucial role in the production of testosterone, the male sex hormone, and estrogen,

the female sex hormone. The concentration of DHEAS in the bloodstream varies through-

out life and is influenced by factors such as age, sex, and overall health [17, 43]. Extensive

research has established significant connections between DHEAS deficiency and various de-

generative disorders of the nervous system. For example, individuals with Addison’s disease,

a condition characterized by adrenal insu�ciency, often exhibit low levels of DHEAS [18].

Additionally, studies have investigated the link between DHEAS and neurodegenerative

diseases such as Alzheimer’s disease, where lower levels of DHEAS have been observed in

a↵ected individuals [38]. Moreover, imbalances in DHEAS have been associated with mental

health conditions, including depression and schizophrenia [53, 49]. Increasing DHEAS levels
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has been shown to improve mood states in individuals with clinical depression and enhance

psychological well-being among the elderly [56, 35]. Furthermore, DHEAS supplementation

can help restore hormone levels in patients with adrenal deficiencies. Conversely, abnormally

high levels of DHEAS can be indicative of certain inherited adrenal gland disorders [25].

Understanding the role of DHEAS and its implications in various physiological and psycho-

logical processes is essential for advancing our knowledge of hormone-related disorders and

potentially developing targeted interventions for their management and treatment.

Our research focuses on investigating the levels of DHEAS in women during the

transitional period of menopause using data obtained from the Study of Women’s Health

Across the Nation (SWAN). SWAN is a large-scale longitudinal study funded by the Na-

tional Institutes of Health (NIH) that aims to comprehensively examine various aspects of

women’s health during the menopausal transition.

The SWAN study enrolled 3,302 premenopausal or early perimenopausal women

between the ages of 42 and 53. These participants were recruited from seven di↵erent cities

across the United States, including Boston, Pittsburgh, Oakland, Los Angeles, Detroit,

Newark, and Chicago. The geographic diversity of the study population allows for captur-

ing the experiences and characteristics of women undergoing the menopausal transition in

di↵erent regions. Upon enrollment, the participants underwent baseline measurements on

a designated day referred to as day 0. Subsequently, they were followed up annually for a

period of 10 years until 2006. However, it is important to note that the timing of follow-up

visits varied randomly for each individual and was subject-specific. This variation in follow-

up intervals was influenced by factors such as participant availability, missed appointments,
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and random dropouts. To account for these variations and ensure an accurate representa-

tion of the longitudinal nature of the study, the recorded follow-up times are expressed as

the number of days since enrollment rather than following a fixed calendar-based schedule.

In our analysis, we specifically aim to explore the relationship between DHEAS lev-

els and various factors, including cardiovascular biomarkers, physical health indicators, and

demographic backgrounds. By utilizing the extensive SWAN dataset, we seek to contribute

to the existing knowledge on menopause and gain valuable insights into the hormonal dy-

namics and associated health implications during this critical transitional phase in women’s

lives.

One challenge in analyzing the SWAN data is the asynchronous design, where

the response variable (DHEAS levels) and time-varying covariates are measured at varying

times for di↵erent subjects. This asynchrony is illustrated in Figure 1.1, which displays the

observation times of physical, hormonal, and cardiovascular measurements for a random

sample of 25 subjects. As shown, the measurement times di↵er not only between di↵er-

ent variables but also across subjects for the same variable. Managing and accounting for

this asynchrony is essential in the data analysis process and requires appropriate statistical

methods to handle the variability in measurement times e↵ectively. Figure 1.2 showcases

spaghetti plots that e↵ectively illustrate the longitudinal trajectories of various variables for

a randomly selected subject. The variables depicted include DHEAS (hormonal), glucose,

triglycerides (cardiovascular), and systolic blood pressure (physical). These plots provide

a visual representation of how these variables evolve over time for the chosen individual

and provide a evidence that the measurements are also variable-specific. It is important to

3



Figure 1.1: Visit time for 25 randomly selected subjects, where each row corresponds to
one randomly selected patient labeled by her ID, and the points mark the visiting times for
various types of measurements.

note that the longitudinal trajectories exhibit local fluctuations, which can be indicative of

measurement errors. These fluctuations highlight the inherent variability and noise present

in the data, emphasizing the need to account for such errors when conducting statistical

analysis and drawing conclusions from the study. [8]. Additional evidence supporting the

asynchronous design can be found in Table 1.1. The table presents a portion of the data

for a randomly selected subject, displaying the visit times for DHEAS (hormonal), glucose,

triglycerides (cardiovascular), and systolic blood pressure (physical). This information fur-

ther underscores the asynchronous nature of the study, as the measurement times for these

variables are not synchronized across visits. The table serves as a valuable resource for

analyzing and understanding the temporal patterns and potential variations in these mea-

surements for the selected subject. Both Figure 1.1 and Figure 1.2, along with Table 1.1,
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Figure 1.2: DHEAS, glucose, systolic blood pressure, and triglycerides trajectories for a
randomly selected subject.

provide clear visual and tabular evidence of the asynchronous nature of physical and car-

diovascular measurements in comparison to DHEAS measurements.

Furthermore, it is notable that DHEAS, being a hormonal measurement, has a

median of 9 repeated measurements. In contrast, physical measurements have a median

of 10 repeated measures, and cardiovascular measurements have a median of 6 repeated

measures. This discrepancy in the number of repeated measures indicates variations in

the frequency of data collection for these di↵erent types of measurements. To provide a

comprehensive overview of the distribution and frequency of visits for physical, hormonal,

and cardiovascular measurements within the SWAN study, we present Figures 1.3, 1.4, and

1.5. These figures o↵er valuable insights into the total number of observations and the

variation in visit frequencies across di↵erent types of measurements. Figure 1.3 displays the

distribution of visits for physical measurements. It shows the number of observations made

at each visit throughout the study duration. From the figure, we can observe the varying
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Table 1.1: Observed date for physical, hormonal, cardiovascular measurements for two
randomly selected subjects

ID Physical Hormonal Cardiovascular

10046 4 0 0

10046 420 433 433

10046 811 897 NA

10046 1077 1079 1079

10046 1509 NA NA

10046 1827 1929 1929

10046 2359 2360 2360

10046 2647 2689 2689

10046 NA 3191 NA

10046 3374 3387 NA

10046 3816 3861 NA

10464 0 16 16

10464 357 359 359

10464 714 714 NA

10464 1120 1148 1148

10464 1477 1524 1524

visit frequencies for physical measurements, with some visits having a higher number of

observations compared to others. This variation is primarily due to the asynchronous design

of the study and the subject-specific follow-up intervals. Figure 1.4 presents the distribution

of visits for hormonal measurements, including DHEAS levels. Similar to Figure 1.3, it

illustrates the number of observations made at each visit for hormonal measurements. From

the figure, we can observe that the visit frequencies for hormonal measurements di↵er

from those of physical measurements. This discrepancy can be attributed to the specific

6



measurement protocols and the nature of the variables being captured. Finally, Figure 1.5

focuses on the distribution of visits for cardiovascular measurements. It provides insights

into the number of observations obtained at each visit for cardiovascular-related variables.

As with the previous figures, we can observe variability in visit frequencies for cardiovascular

measurements, reflecting the asynchronous and subject-specific nature of data collection.

It is important to note that the total number of observations for physical and car-

diovascular measurements may di↵er from that of DHEAS measurements. This di↵erence

arises due to the varying availability and timing of data collection for di↵erent variables

within the SWAN study. Analyzing and accounting for these variations in the number of

observations is crucial in conducting a comprehensive and accurate analysis of the relation-

ships between DHEAS levels and other factors within the dataset.

Figure 1.3: Total number of records in hormone measurement
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Figure 1.4: Total number of records in physical measurement

Figure 1.5: Total number of records in cardiovascular measurement

1.2 Literature Review

1.2.1 Functional principal component analysis

The current state-of-the-art method for e↵ectively modeling asynchronous and

error-prone longitudinal data, such as the physical and cardiovascular trajectories observed

8



in the SWAN dataset, involves treating them as sparse functional data [42, 61, 31]. In

functional data analysis, each observation is represented as a curve rather than a single

point or finite-dimensional vector. Among the techniques used in functional data analysis,

functional principal component analysis (FPCA) has emerged as a widely utilized approach.

FPCA allows for the exploration of the dominant modes of variation present in functional

data and facilitates the transformation of these inherently infinite-dimensional curves into

a finite-dimensional vector of random scores. This approach relies on the Karhunen-Loève

decomposition and operates under mild assumptions. By employing FPCA, the underlying

stochastic process is represented as a sequence of uncorrelated random variables, referred

to as functional principal components (FPCs) or scores. These FPCs can be truncated to

a finite vector, making them practical and applicable in real-world scenarios. While the

concept of principal components analysis (PCA) was independently introduced by Pearson

in 1901 and Hotelling in 1933, the application of PCA to functional data was first attempted

by Rao and Tucker in 1958. They utilized multivariate PCA without modifying the observed

function values [45]. By leveraging FPCA, researchers gain a powerful tool for e↵ectively

modeling longitudinal data collected at various time points. FPCA enables the identification

of dominant modes of variation within functional data and facilitates their representation as

finite-dimensional vectors of random scores. Specifically, let X be a random process defined

on an interval T with the properties that E(kXk)2
L2

< 1 and E(X) = 0. The primary

objective of functional principal component analysis (FPCA) is to decompose the latent

stochastic process into a linear combination of functional principal components (FPCs)

that maximize the variation observed in the curves. By utilizing FPCs, which represent

9



the dominant modes of variation in the data, it becomes possible to e↵ectively approximate

the infinite-dimensional longitudinal trajectories. In practice, the number of FPCs is often

truncated to a finite vector, as the top few FPCs capture the majority of the variability in

the underlying stochastic process. Therefore, X(t) can be represented as follows:

X(t) = µ(t) +
1X

k=1

⇠k�k(t), (1.1)

where µ(t) is the mean function ofX(t), ⇠k are centered uncorrelated random variables, �k(·)

are normalized eigenfunctions of the covariance function Cov(s, t) = Cov{X(s), X(t)}, and

Var(⇠k), often denoted by �k, is the eigenvalue of covariance corresponding to �k. It is also

conventionally assumed that �1 > �2 > . . . > 0. The eigenfunctions �1(·),�2(·), . . ., referred

to as principal components in the context of FPCA, form an orthonormal constraint[6].

E↵ective dimensional reduction is achieved by choosing the top few FPCs that cumulatively

explain a large proportion of the variation.

In summary, to model the true underlying functional trajectories, a reduced-rank

Karhunen-Loève expansion is employed, treating them as realizations of a stochastic pro-

cess [21]. The observed data consists of discrete observations on these random functions,

which are subject to errors and are recorded at subject-specific time points. Functional

data analysis approaches, in contrast to classical linear mixed models, o↵er nonparametric

and data-driven advantages. In the context of modeling longitudinal or sparse functional

data, functional principal component analysis (FPCA) has been widely adopted, with the

unknown eigenfunctions represented as splines [26]. In the field of longitudinal data analy-

sis, [32] have proposed data-driven methods for selecting the number of functional principal
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components (FPCs). These methods have also been extended to handle the joint modeling

of multiple longitudinal/functional trajectories [66, 22]. Theoretical properties of multivari-

ate functional principal component analysis (mFPCA) have been investigated by [11, 19, 58].

However, it should be noted that these existing methods are limited in their ability to handle

heterogeneous data, which restricts their applicability in certain scenarios.

1.2.2 The heterogeneous linear fixed/mixed model

In addition to the presence of error-contaminated and asynchronous time-varying

covariates, conflicting findings exist in the literature regarding the relationship between

DHEAS and certain variables, such as triglycerides and systolic blood pressure. For in-

stance, [44] found significant relationships between DHEAS and systolic blood pressure

levels. However, contrasting results were reported by [55], who suggested that DHEAS had

a neutral e↵ect on blood pressure (BP), indicating no significant association. Considering

the discrepancies in these findings, we believe that the lack of significant relationships ob-

served in some studies could potentially be attributed to the absence of subgroup analysis.

It is possible that one subgroup may demonstrate a positive association between DHEAS

and systolic blood pressure, while another subgroup may exhibit a negative association.

Failing to investigate the subgroup e↵ect could result in overlooking important informa-

tion and potentially masking meaningful associations between DHEAS and systolic blood

pressure.

In the context of a large longitudinal dataset with complex structures like SWAN,

it is essential to investigate the presence of subgroups within the study population that

exhibits distinct dynamics of DHEAS during the menopause transition. To achieve this,
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mixture regression models play a critical role and have been widely used in diverse fields,

including business, biology, social sciences, and medicine [20, 34, 46, 37]. These models o↵er

a valuable tool for exploring heterogeneity in the data. In recent years, significant e↵orts

have been made to extend mixture regression models to longitudinal data settings. In this

article, we propose two models: one is a finite mixture model with fixed e↵ects, and the

other is a finite mixture model with both random and fixed e↵ects. These models enable the

examination of subgroup-specific dynamics in the context of longitudinal data, allowing for

a more comprehensive understanding of the heterogeneity in the study population during

the menopause transition.

let Yi = (Yi1,...,Yini
) be the response vector for the ni measurements of the subject

i with i = 1, . . . , N . The linear fixed e↵ect model for the response vector Yi can be defined

as

Yi = Xi� + ✏i, (1.2)

and a linear mixed model for the response vector Yi, which extends the fixed e↵ect model

with random e↵ects, can be defined as

Yi = Xi� + Ziui + ✏i, (1.3)

where Xi is a ni⇥p design matrix for the p�vector of fixed e↵ects �, and Zi is a ni⇥q design

matrix associated to the q�vector of random e↵ects ui which represents the subject-specific

regression coe�cients. The errors ✏i are assumed to be normally distributed with mean zero
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and covariance matrix �IIIni , and are assumed to be independent of the vector of random

e↵ects ui. The standard definition of a C-component mixture (or C latent classes) model is

CX

c=1

⇡cf(Yi|Xi,�, ui), (1.4)

where 0 < ⇡c < 1 and
P

C

c=1 ⇡c = 1. In our discussion, we extend the probability of class

membership ⇡c to be subject-specific, which is ⇡ic and will be estimated by logistic regres-

sion. More mixture models for longitudinal data examples, can be found in [51], [23], [40],

and [24]. However, these methods require the time-varying covariates to be synchronized in

time with the response measurements, and they cannot accommodate measurement errors

in the covariate processes.

To our knowledge, there is currently no existing method that simultaneously ad-

dresses the three main challenges present in the SWAN data:

1. asynchronous design between the longitudinal response variable and time-varying co-

variates;

2. the presence of measurement errors in the time-varying covariates;

3. the existence of a heterogeneous population with latent subgroup structures.

In order to fill this gap, we propose a novel method called Emerald (sEmiparametric

MixturE Regression for Asynchronous Longitudinal Data). Emerald combines mixture

regression with multivariate functional principal component analysis (mFPCA) to handle

the complex nature of the data. It accommodates the heterogeneity of asynchronous and

error-contaminated longitudinal covariate processes. The proposed method models the re-
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lationship between DHEAS levels and other time-varying (physical and cardiovascular) as

well as time-invariant (demographic and other baseline traits) covariates using a mixture of

linear mixed models. This approach allows for di↵erent associations between the variables

across subgroups. The latent subgroup membership is modeled using a multi-categorical

logistic regression. To capture the unknown eigenfunctions of the time-varying covariate

processes, we employ B-splines. The latent functional principal component (FPC) scores

and the latent subgroup membership are treated as missing data. We propose utilizing an

EM algorithm to fit the proposed model and estimate the parameters. Through simulation

studies, we demonstrate the advantages of the proposed method over existing approaches,

such as the lcmm method introduced by [40]. Emerald provides a comprehensive solu-

tion to address the challenges posed by the SWAN data, o↵ering improved accuracy and

performance in modeling the dynamics of DHEAS during the menopause transition.

The remainder of the paper is organized as follows. In Chapter 2, we introduce the

data structure and model assumptions, including the proposed mixture regression model

with a fixed e↵ect for the DHEAS response and the multivariate functional data model

for asynchronous longitudinal covariate processes. In addition, Chapter 2 outlines the EM

algorithm used to fit the semiparametric mixture regression linear fixed model. Chapter 3

outlines the data structure and model assumptions, including the proposed mixture regres-

sion model with a random e↵ect for the DHEAS response, the EM algorithm used to fit

the semiparametric mixture regression linear mixed model and discusses practical consider-

ations such as stopping rules and model selection methods. We present simulation studies

in Chapter 4 to illustrate the numerical performance of the proposed methods, followed
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by the analysis of the SWAN data in Chapter 5. Chapter 6 provides concluding remarks.

Technical details on the algorithm used to fit the proposed method can be found in the

Appendix, and additional numerical results are included in the supporting materials.
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Chapter 2

Model Structure and Model Fitting

for Emerald with Fixed E↵ect

2.1 Data structure

Let {Yi(t),XXXi(t),ZZZi(t)}, i = 1, . . . , n, be independent realizations of a multivariate

longitudinal process {Y (t),XXX(t),ZZZ(t)} defined in a time interval T . In the SWAN data,

Yi(t) is the DHEAS level of the ith subject at time t; XXXi(t) = (Xi1, . . . , Xidx)
>(t) is a dx-

dimensional time-varying covariates that are asynchronous with Yi(t), such as the physical

and cardiovascular measurements; and ZZZi(t) is a dz-dimensional vector that includes either

time-invariant covariates or time-varying covariates observed at the same time as Yi(t)

and without error. Let Yij = Yi(tij) and ZZZij = ZZZi(tij), j = 1, . . . ,my,i, be the discrete

observations on Yi(t) and ZZZi(t). The observed, error-contaminated measurements on Xiv(t)

areWivl = Xiv(sivl)+Uivl, l = 1, . . . ,mx,iv, where Uivl are independent zero-mean, Gaussian
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errors with variance �2v for v = 1, 2, . . . , dx. The observation times {sivl, l = 1, . . . ,mx,iv}

of W are irregular and subject-specific, may di↵er across di↵erent index v, and are di↵erent

from the observation times {tij , j = 1, . . . ,my,i} of Y and ZZZ. Put YYY i = (Yi1, . . . , Yimy,i)
>,

ZZZi = (ZZZi1, . . . ,ZZZimy,i)
>, WWW iv = (Wiv1, . . . ,Wivmx,iv)

>, and let WWW i = (WWW>
i1, . . . ,WWW

>
idx

)> be a

vector of dimension mx,i =
P

dx
v=1mx,iv pooling all W values in subject i together.

2.2 Mixture regression model

We assume the study population has C latent subgroups and will discuss its selec-

tion in Chapter 3.5. We define LLLi = (Li1, Li2, . . . , LiC)> to be a latent vector of subgroup

membership indicators for the ith subject, such that Lic = 1 if the ith subject belongs to

the cth subgroup and 0 otherwise, c = 1, . . . , C. And we assume that the ith subject’s

subgroup membership depends on a vector of time-independent covariates Zi, a sub-vector

of ZZZi, including demographic information and baseline measurements. Given Zi, we assume

LLLi ⇠ Multinomial(⇡⇡⇡i), where ⇡⇡⇡i = (⇡i1, . . . ,⇡iC)> is modeled by a logistic model

⇡ic(Zi) =
exp(eZ>

i
���c)

1 +
P

C�1
c0=1 exp(

eZ>
i
���c0)

, for c = 1, 2, . . . , C � 1, (2.1)

and ⇡iC = 1�
P

C�1
c=1 ⇡ic. Here, for simplicity, we write ⇡iC(Zi) as ⇡iC , eZi = (1,Z>

i
)>, and

���c = (�0c,���>z,c)
>.

In our analysis, we assume that the variation in the response variable YYY can be

adequately explained by the measurement error. Given Lic = 1, the response can be
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modeled by a linear fixed e↵ect model

Yi(t) = �0,c +XXXi(t)
>���x,c +ZZZi(t)

>���z,c + ✏i(t), (2.2)

where ���c = (�0,c,���
>
x,c,���

>
z,c)

> is a subgroup-specific coe�cient vector and ✏i(t) is a zero-mean

Gaussian error with variance �2✏ .

2.3 Functional modeling of the asynchronous longitudinal co-

variates

We model the process XXXi(t) as multivariate functional data [11, 19] with mean

function

µµµx(t) = E{XXX(t)} = (µx,1, . . . , µx,dx)
>(t)

and covariance function as

RRR(t1, t2) = E[{XXX(t1)�µµµx(t1)}{XXX(t2)�µµµx(t2)}>] = {Rv,v0(t1, t2)}dxv,v0=1,

which is a matrix of covariance and cross-covariance functions between di↵erent components

in XXX.

Suppose the covariance of Xv has the spectrum decomposition Rv,v(t1, t2) =

P
pv
k=1 !vk vk(t1) vk(t2), where !v1 � !v2 � . . . � !vpv > 0 are the eigenvalues, the

eigenfunctions    v(t) = ( v1, v2, . . . , vpv)
>(t) are a set of orthonormal functions with
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R
T    v(t)   

>
v (t)dt = I. Theoretically, the number of principal components pv can be infi-

nite but is often assumed to be finite for sparse functional data [66, 32]. By the standard

Karhunen-Loéve (KL) expansion [21],

Xiv(t) = µx,v(t) +
pvX

k=1

 vk(t)⇠ivk, for v = 1, 2, . . . , dx, (2.3)

where the principal component scores ⇠ivk =
R
T {Xiv(t) � µx,v(t)} vk(t)dt are zero-mean

latent variables such that Cov(⇠ivk, ⇠ivk0) = !vkI(k = k0).

The cross-covariance between di↵erent components ofXXX can also be represented by

the eigenfunctions, Rv,v0(t1, t2) = Cov{Xv(t1), Xv0(t2)} =
P

pv
k=1

Ppv0
k0=1 !vv0,kk0 vk(t1) v0k0(t2),

for v 6= v0, where !vv0,kk0 = Cov(⇠ivk, ⇠iv0k0). We collect the FPC scores of the ith subject into

a p =
P

dx
v=1 pv dimensional vector ⇠⇠⇠i =

⇣
⇠⇠⇠>i1,⇠⇠⇠

>
i2, . . . ,⇠⇠⇠

>
idx

⌘>
, where ⇠⇠⇠iv = (⇠iv1, ⇠iv2, . . . , ⇠ivpv)

>.

We assume

⇠⇠⇠i ⇠ N(0,⌃⌃⌃⇠), (2.4)

where ⌃⌃⌃⇠ = (⌃⌃⌃⇠,vv0)
dx
v,v0=1 with ⌃⌃⌃⇠,vv = diag(!v1, . . . ,!vpv), v = 1, . . . , dx, and ⌃⌃⌃⇠,vv0 =

�
!vv0,kk0

�pv ,pv0
k,k0=1

for v 6= v0.

Next, we model the unknown functions as splines in (2.3). To accommodate the

orthonormal constraints on the eigenfunctions, we will use orthogonalized B-spline basis

and the procedure can be summarized below:

To orthonormalize the spline basis, we can choose B(t) = (B1(t), . . . ,Bq(t))> be

our initial spline basis, and it is not necessary to be an orthonormal basis such as the

B-spline basis. We suppose that there exists a matrix DDD such that BBB(t) = B(t)DDD and
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this matrix DDD could be obtained as follows. Taking eigenvalue decomposition of 1
g
B>B,

where we write B = {B(t1), . . . ,B(tg)}>. Here we take tg discrete observed points. Then

we can have RRR to be the square matrix whose kth column is the eigenvector Rk of our

matrix and QQQ be to the diagonal matrix whose diagonal elements are the corresponding

eigenvalues. Let DDD = RRRQQQ� 1
2 , then we can get BBB>BBB = DDD>B>BDDD = QQQ� 1

2RRR>B>BRRRQQQ� 1
2 =

QQQ� 1
2RRR>RRRQQQRRR�1RRRQQQ� 1

2 = III.

We then allow di↵erent components ofXXX to have di↵erent basis functions, possibly

defined on di↵erent sets of knots. Let BBBv(t) = {Bv1(t), . . . , Bvqv(t)}> be the spline basis

function for modeling µx,v(t) and  v,k(t)’s, and

µx,v(t) = BBB>
v (t)✓✓✓µv,  vk(t) = BBB>

v (t)✓✓✓ v,k, (2.5)

where ✓✓✓µ,v and ✓✓✓ v,k are qv-dim, unknown coe�cient vectors. Let ⇥⇥⇥ v = (✓✓✓ v,1, . . . ,✓✓✓ v,pv)

be the qv ⇥ pv coe�cient matrix for    v(t). Assuming that BBBv has been orthogonalized such

that
R
T BBBv(t)BBB

>
v (t)dt = I, then the orthonormal constraint on    v(t) can be translated to

⇥⇥⇥>
 v⇥⇥⇥ v = I, v = 1, . . . , dx. (2.6)

Let BBB⇤
iv = {BBBv(siv1),BBBv(siv2), . . . ,BBBv(sivmx,iv)}>, BBBiv = {BBBv(ti1),BBBv(ti2), . . . ,BBBv(timy,i)}>

be mx,iv⇥qv and my,i⇥qv matrices, respectively, which evaluating the spline basis functions

on the observational time of WWW iv and YYY i, respectively. Then, the conditional distribution
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of WWW iv given ⇠⇠⇠iv is

[WWW iv|⇠⇠⇠iv] ⇠ N(BBB⇤
iv✓✓✓µv +

P
pv
k=1⇠ivkBBB

⇤
iv✓✓✓ v,k,�

2
vIII), (2.7)

v = 1, 2, . . . , dx, i = 1, . . . , n.

Combining Models (2.1), (2.2), (2.3) and (2.5), we have the following semipara-

metric mixture regression model with fixed e↵ects:

[YYY i|ZZZi,⇠⇠⇠i] ⇠
CX

c=1

⇡ic(Zi)N

⇢
�0,c +ZZZi���z,c +

dxX

v=1

�x,cv(BBBiv✓✓✓µv +   iv⇠⇠⇠iv),�
2
✏III

�
, (2.8)

where ⇡ic(Zi) is given in (2.1),    iv = BBBiv⇥⇥⇥ v is the matrix containing the eigenfunctions

   v evaluated on ti = (ti1, . . . , timy,i)
>.

2.4 Observed likelihood function

We are focused on the distribution of YYY andWWW , so conditional on ZZZi, the observed

data likelihood is

L =
nY

i=1

f(YYY i,WWW i|ZZZi), (2.9)

with

f(YYY i,WWW i|ZZZi) =

Z
f(⇠⇠⇠i,YYY i,WWW i|ZZZi)d⇠⇠⇠i

=
CX

c=1

⇡ic
(2⇡)(my,i+mx,i)/2�✏

|⇤⇤⇤i|�
1
2 |⌃⌃⌃⇠|�

1
2 |⌦⌦⌦ic|

1
2 ⇥ exp

�
� 1

2
(eYYY

>
ic
eYYY ic/�

2
✏
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+
dxX

v=1

(WWW iv �BBB⇤
iv✓✓✓µv)

⌦2/�2v � e⇠⇠⇠
>
ic⌦⌦⌦

�1
ic
e⇠⇠⇠ic)
 
, (2.10)

where eYYY ic = YYY i � �0,c111my,i �
P

dx
v=1 �x,cvBBBiv✓✓✓µv � ZZZi���z,c , mx,i =

P
dx
v=1mx,iv, ⌦⌦⌦ic =

( 1
�2
✏

e   
>
ic
e   ic +    

⇤>
i ⇤⇤⇤

�1
i
   ⇤

i + ⌃⌃⌃�1)�1,e⇠⇠⇠ic = ⌦⌦⌦ic(
1
�2
✏

e   
>
ic
eYYY ic +    

⇤>
i ⇤⇤⇤

�1
i
fWWW i) ,fWWW i = WWW i � BBB⇤

i⇥⇥⇥µ

with BBB⇤
i = diag(BBB⇤

i1, . . . ,BBB
⇤
idx

) be a mx,i ⇥ q matrix with diagonal block BBB⇤
iv and ⇥⇥⇥µ =

(✓✓✓>µ1, . . . ,✓✓✓
>
µdx

)> is a q ⇥ 1 vector that contains all the coe�cients for splines in the mean

function, where q =
P

dX
v=1 qv. Also,    ⇤

i = diag(BBB⇤
i1⇥⇥⇥ 1, . . . ,BBB

⇤
idx
⇥⇥⇥ dx) is a q ⇥ p matrix.

Moreover, e   ic = (e   i1c, e   i2c, . . . , e   idxc) with each e   ivc = �x,cvBBBiv⇥⇥⇥ v. Additionally, ⇤⇤⇤i is a

diagonal square matrix with diagonal entry �2vIIImx,iv . Additionally, the detailed derivation

for Equation (2.10) is given in Appendix A.

2.5 EM algorithm

To overcome the challenges associated with the complicated covariance structures

and orthonormal constraints (2.6) in maximizing the marginal likelihood (2.10) directly, we

employ an EM (Expectation-Maximization) algorithm to fit the proposed model. In the EM

algorithm, we treat the latent principal component (PC) scores ⇠⇠⇠ and the latent subgroup

membership LLL as missing data.

The EM algorithm is an iterative optimization method that alternates between the

E-step and the M-step. In the E-step, we estimate the expected values of the missing data

given the current parameter estimates. Specifically, we compute the conditional expectation

of the latent PC scores and subgroup membership based on the observed data and the

current parameter values. In the M-step, we maximize the expected complete-data log-
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likelihood with respect to the model parameters. This involves updating the parameter

estimates by maximizing the expected log-likelihood or Newton-Raphson method, taking

into account the completed data that includes the estimated values of the missing data from

the E-step. By iteratively performing the E-step and M-step, the algorithm aims to find

the best estimates of the model parameters that maximize the marginal likelihood.

The conditional distribution of LLL,YYY ,WWW and ⇠⇠⇠ given ZZZ is expressed as following

f(LLL,YYY ,WWW,⇠⇠⇠|ZZZ) = f(YYY |LLL,⇠⇠⇠,ZZZ)⇥ f(LLL|ZZZ)⇥ f(WWW |⇠⇠⇠)⇥ f(⇠⇠⇠),

where [YYY |Lc = 1,ZZZ,⇠⇠⇠] ⇠ N{�0,c111 +
P

dx
v=1 �x,cv(µµµv +    v⇠⇠⇠) + ZZZ>���z,c,�

2
✏III}, [Lc = 1|ZZZ]

is a multinomial distribution that has C categories with each category is ⇡c probability,

(WWW v|⇠⇠⇠v) ⇠ N(µµµ⇤
v +   

⇤
v⇠⇠⇠v,�

2
vIII) and ⇠⇠⇠ ⇠ N(0,⌃⌃⌃⇠). So the conditional distribution function

can be expressed as

f(LLL,YYY ,WWW,⇠⇠⇠|ZZZ) =
CY

c=1

{ ⇡c

(2⇡�2✏ )
my,i

2

exp[� 1

2�2✏
{YYY � �0c111�

dxX

v=1

�x,cv(µµµv +   v⇠⇠⇠v)�ZZZ���z,c}⌦2]

⇥
dxY

v=1

[
1

(2⇡�2v)
mx,iv

2

exp{� 1

2�2v
(WWW v �µµµ⇤

v �   ⇤
v⇠⇠⇠v)

⌦2}]

⇥ 1

(2⇡)
p
2

|⌃|�
1
2 exp(�1

2
⇠⇠⇠>⌃�1⇠⇠⇠)}Lc , (2.11)

where for a matrix A, we define A⌦2 = A>A.

If two latent variables ⇠⇠⇠ and LLL are known, and collect all parameters in the model

into ⇥⇥⇥, including {���c; c = 1, . . . , C � 1}, {✓✓✓µ,v,⇥⇥⇥ v; v = 1, . . . , dx}, {���c; c = 1, . . . , C}, ⌃⌃⌃⇠,
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and �2✏ . our complete data likelihood is given as

£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ) =
nY

i=1

 CY

c=1

{⇡icf(YYY i|ZZZi,⇠⇠⇠i, Lic = 1;⇥⇥⇥)}Lic

�
f(WWW i|⇠⇠⇠i;⇥⇥⇥)f(⇠⇠⇠i|⇥⇥⇥).

Then taking a logarithm of our likelihood and multiplying it by a constant, it will be

�2 ⇥ log£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ) = �2
nX

i=1

CX

c=1

Lic{log(⇡ic) + log fc(YYY i|ZZZi,⇠⇠⇠i, Lic = 1;⇥⇥⇥)}

�2
nX

i=1

dxX

v=1

{log f(WWW iv|⇠⇠⇠iv;BBBiv,✓✓✓µv,⇥⇥⇥ v,�
2
v) + log f(⇠⇠⇠iv)}

=
nX

i=1

CX

c=1


Licmy,i log(�

2
✏ ) +

Lic

�2✏
{YYY i � ���0,c111�

dxX

v=1

�x,cv(BBBiv✓✓✓µv +BBBiv⇥⇥⇥ v⇠⇠⇠iv)�ZZZi���z,c}⌦2

�2Lic log(⇡ic)

�
+

nX

i=1

dxX

v=1

{mxv,i log(�
2
v) +

1

�2v
(WWW iv �BBB⇤

iv✓✓✓µv �BBB⇤
iv⇥⇥⇥ v⇠⇠⇠iv)

⌦2}

+{n log(|⌃|) +
nX

i=1

⇠⇠⇠>i ⌃
�1⇠⇠⇠i}. (2.12)

2.5.1 E-step

Let ⇥⇥⇥() be the vector containing current parameter values at the end of Step  of

the EM iteration. The E-step of the (+1)th step, defines the EM loss function Q(⇥⇥⇥|⇥⇥⇥()) =

�2E


{log£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ)}|YYY ,WWW,ZZZ;⇥⇥⇥()

�
, which is the conditional expectation of the

complete data likelihood given the observed data and the current parameter value.

Q(⇥⇥⇥|⇥⇥⇥()) = �2E


{log£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ)}|YYY ,WWW,ZZZ;⇥⇥⇥()

�

=
nX

i=1

CX

c=1

 
E(Lic|YYY i,WWW i,ZZZi;⇥⇥⇥

())

⇢
� 2 log(⇡ic) +my,i ⇥ log(�2✏ ) +

eYYY
>
ic
eYYY ic

�2✏

�

� 1

�2✏


eYYY
>
ic
e   icE(Lic⇠⇠⇠i|YYY i,WWW i,ZZZi;⇥⇥⇥

())� E(Lic⇠⇠⇠
>
i |YYY i,WWW i,ZZZi;⇥⇥⇥

())e   
>
ic
eYYY ic
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+tr{E(Lic⇠⇠⇠i⇠⇠⇠
>
i |YYY i,WWW i,ZZZi;⇥⇥⇥

())e   
>
ic
e   ic}

�!
+ n log(|⇤⇤⇤i|) + n log(|⌃⌃⌃|)

+
nX

i=1


fWWW

>
i ⇤⇤⇤

�1
i
fWWW i �fWWW

>
i ⇤⇤⇤

�1
i
   ⇤

iE(⇠⇠⇠i|YYY i,WWW i,ZZZi;⇥⇥⇥
())

�E(⇠⇠⇠>i |YYY i,WWW i,ZZZi;⇥⇥⇥
())   ⇤>

i ⇤⇤⇤
�1
i
WWW i

+tr{E(⇠⇠⇠i⇠⇠⇠>i |YYY i,WWW i,ZZZi;⇥⇥⇥
())(   ⇤>

i ⇤⇤⇤
�1
i
   ⇤

i +⌃⌃⌃
�1)}

�
(2.13)

with eYYY ic, e   ic,fWWW i, and    ⇤
i defined in 2.10.

Then the desired predictions required by the EM algorithm are given as

E(Lic|YYY i,WWW i,ZZZi;⇥⇥⇥
()) = e⇡ic

=
⇡ic|⌦⌦⌦ic|

1
2 exp{�1

2(
1
�2
✏

eYYY
>
ic
eYYY ic � e⇠⇠⇠

>
ic⌦⌦⌦

�1
ic
e⇠⇠⇠ic)}

P
C

c0=1 ⇡ic0 |⌦⌦⌦ic0 |
1
2 exp{�1

2(
1
�2
✏

eYYY
>
ic0
eYYY ic0 � e⇠⇠⇠

>
ic0⌦⌦⌦

�1
ic0
e⇠⇠⇠ic0)}

,

E(Lic⇠⇠⇠i|YYY i,WWW i,ZZZi;⇥⇥⇥
()) = e⇡ice⇠⇠⇠ic,

E(Lic⇠⇠⇠i⇠⇠⇠
>
i |YYY i,WWW i,ZZZi;⇥⇥⇥

()) = e⇡ice⌃⌃⌃ic = e⇡ic(e⇠⇠⇠ice⇠⇠⇠
>
ic +⌦⌦⌦ic),

E(⇠⇠⇠i|YYY i,WWW i,ZZZi;⇥⇥⇥
()) =

CX

c=1

e⇡ice⇠⇠⇠ic = e⇠⇠⇠i,

E(⇠⇠⇠i⇠⇠⇠
>
i |YYY i,WWW i,ZZZi;⇥⇥⇥

()) =
CX

c=1

e⇡ic(e⇠⇠⇠ice⇠⇠⇠
>
ic +⌦⌦⌦ic) =

CX

c=1

e⇡ice⌃⌃⌃ic = e⌃⌃⌃i, (2.14)

where ⌦⌦⌦ic and e⇠⇠⇠ic are defined in (2.10). The deriving process of these formulas is given

in Appendix C.

2.5.2 M-step

It is clear that the unknown parameters are separated in the Q function and

therefore separate optimization is feasible. Substitute expectation of unknown variables
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and separate our Q function as

Q1(⇥⇥⇥|⇥⇥⇥()) =
nX

i=1

CX

c=1

�2⇥ e⇡ic ⇥ log(⇡ic),

Q2(⇥⇥⇥|⇥⇥⇥()) =
nX

i=1

CX

c=1

e⇡ic

"
my,i log(�

2
✏ ) +

1

�2✏

⇢ dxX

v=1

dxX

v0=1

�x,cv�x,cv0 tr(⇥⇥⇥
>
 vBBB

>
ivBBBiv0⇥⇥⇥ v0⌦⌦⌦ic,v0v)

+(YYY i � �0,c111�
dxX

v=1

�x,cvBBBiv✓✓✓µv �
dxX

v=1

�x,cvBBBiv⇥⇥⇥ ve⇠⇠⇠iv,c �ZZZi���z,c)
⌦2

�#

Q3(⇥⇥⇥|⇥⇥⇥()) =
nX

i=1

dxX

v=1

"
1

�2v

⇢
(WWW iv �BBB⇤

iv✓✓✓µv �BBB⇤
iv⇥⇥⇥ v

e⇠⇠⇠iv)⌦2 � e⇠⇠⇠
>
iv⇥⇥⇥

>
 vBBB

⇤>
iv BBB⇤

iv⇥⇥⇥ v
e⇠⇠⇠iv

+tr(⇥⇥⇥>
 vBBB

⇤>
iv BBB⇤

iv⇥⇥⇥ ve⌃⌃⌃i,vv)

�
+mxv,i log(�

2
v)

#
,

Q4(⇥⇥⇥|⇥⇥⇥()) = n log(|⌃⌃⌃|) +
nX

i=1

tr(⌃⌃⌃�1e⌃⌃⌃i). (2.15)

Since di↵erent components of Q(⇥|⇥()) in Equation (3.5) depend on di↵erent

parameters, we can update various components of ⇥ separately. Some parameters may

require updating using Newton-Raphson iterations for more accurate estimation. For a

detailed description of the algorithm, please refer to Section Appendix C. By updating the

parameters of⇥ in separate steps while satisfying the orthogonal constraints, we ensure that

each component is optimized e↵ectively. This iterative process helps refine the estimation

and improve the overall performance of the model. Please refer to Section Appendix C for

a comprehensive explanation of the algorithm used in the M-step.
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Chapter 3

Model Structure and Model Fitting

for Emerald with Random E↵ect

3.1 Mixture regression

If the measurement errors alone, defined in Chapter 2, are not su�cient to explain

the majority of the variation in the response variable YYY , it may be necessary to introduce

a random e↵ect into our linear model. This random e↵ect accounts for additional unob-

served factors that contribute to the variability in YYY . By incorporating a random e↵ect,

we can capture the individual-specific variation and address the potential sources of unex-

plained variability in the data. The inclusion of a random e↵ect allows for the modeling

of both systematic and random components of the variation in YYY . The systematic com-

ponents are captured by the fixed e↵ects, representing the overall population-level trends

and associations, while the random e↵ect captures the individual-specific deviations from
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the population-level patterns. The random e↵ect accounts for unobserved factors that may

influence the response variable but are not explicitly measured or accounted for by the

covariates. By incorporating a random e↵ect into the linear model, we can better capture

the complex structure and heterogeneity in the data. This approach provides a more com-

prehensive and accurate representation of the underlying processes and helps improve the

understanding of the relationships between the variables of interest.

Note that in this section, the definitions for the logistic regression model, functional

model, mixture model, and observed data remain the same as presented in Chapter 2.

The methodology for functional modeling and the logistic regression model also remains

consistent with what was described in Chapter 2. By maintaining the same definitions and

methodologies, we ensure continuity and consistency throughout the analysis, allowing for

a clear comparison and evaluation of the proposed methods.

Given Lic = 1, the response can be modeled by a linear mixed model

Yi(t) = �0,c +XXXi(t)
>���x,c +ZZZi(t)

>���z,c + bi,c + ✏i(t), (3.1)

where ���c and ✏i(t) share the same definition as Equation 2.2. bi,c ⇠ N(0,�2
b,c
) is a subject-

specific random e↵ect with a subgroup-specific variance.

Therefore, by combining the models (2.1), (3.1), (2.3) and (2.5) and a semipara-

metric mixture regression model with random e↵ects:

[YYY i|ZZZi,⇠⇠⇠i] ⇠
CX

c=1

⇡ic(Zi)N

⇢
�0,c +ZZZi���z,c +

dxX

v=1

�x,cv(BBBiv✓✓✓µv +   iv⇠⇠⇠iv),VVV ic

�
, (3.2)
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where ⇡ic(Zi) is given in (2.1),    iv = BBBiv⇥⇥⇥ v is the matrix containing the eigenfunctions    v

evaluated on ti = (ti1, . . . , timy,i)
>, VVV ic = �2

b,c
JJJ+�2✏III is the compound symmetry conditional

covariance matrix for YYY i in subgroup c, and JJJ is a matrix with 1’s in all entries.

3.2 Observed likelihood function

When we model each mixture component with a linear mixed model, the marginal

distribution of YYY and WWW can be written as

f(YYY i,WWW i|ZZZi) =

Z
f(⇠⇠⇠i,YYY i,WWW i|ZZZi)d⇠⇠⇠i

=
CX

c=1

⇡ic
(2⇡)(my,i+mx,i)/2

|VVV ic|�
1
2 |⇤⇤⇤i|�

1
2 |⌃⌃⌃⇠|�

1
2 |⌦⌦⌦ic|

1
2 ⇥ exp

�
� 1

2
(eYYY

>
icVVV

�1
ic
eYYY ic

+
dxX

v=1

(WWW iv �BBB⇤
iv✓✓✓µv)

⌦2/�2v � e⇠⇠⇠
>
ic⌦⌦⌦

�1
ic
e⇠⇠⇠ic)
 
, (3.3)

where the definition of eYYY ic,mx,i,fWWW i,BBB
⇤
i ,⇥⇥⇥µ,   

⇤
i , e   ic, and ⇤⇤⇤i is the same as Equation 2.10.

While ⌦⌦⌦ic = (e   
>
icVVV

�1
ic
e   ic +   

⇤>
i ⇤⇤⇤

�1
i
   ⇤

i + ⌃⌃⌃
�1
⇠

)�1 = (⌦⌦⌦ic,vv0)
dx
v,v0=1,

e⇠⇠⇠ic = ⌦⌦⌦ic(e   
>
icVVV

�1
ic
eYYY ic +

   ⇤>
i ⇤⇤⇤

�1
i
fWWW i). Additionally, the detailed derivation for Equation (3.3) is given in Appendix

B.

3.3 EM algorithm

The unknown parameters in this mixture model with mixed e↵ects contain all

the unknown parameters in the fixed e↵ect and also include the parameters in the random

e↵ects. Let’s gathering all parameters in the model into⇥⇥⇥, including {���c; c = 1, . . . , C�1},

{✓✓✓µ,v,⇥⇥⇥ v; v = 1, . . . , dx}, {���c, �2b,c; c = 1, . . . , C}, ⌃⌃⌃⇠⇠⇠, and �2✏ . If we treat the latent
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principal component (PC) scores ⇠⇠⇠ and the latent subgroup membership LLL as missing data,

the complete data likelihood is

£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ) =
nY

i=1

 CY

c=1

{⇡icf(YYY i|ZZZi,⇠⇠⇠i, Lic = 1;⇥⇥⇥)}Lic

�
f(WWW i|⇠⇠⇠i;⇥⇥⇥)f(⇠⇠⇠i|⇥⇥⇥).

Specifically, a detailed expression for the complete data log-likelihood is

�2⇥ log£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ) /
nX

i=1

CX

c=1

�
Lic(eYYY ic �

dxX

v=1

e   ivc⇠⇠⇠iv)
>VVV �1

ic
(eYYY ic �

dxX

v=1

e   ivc⇠⇠⇠iv)

+Lic log(|VVV ic|)� 2Lic log(⇡ic)
 
+

nX

i=1

dxX

v=1

{mx,iv log(�
2
v)

+
1

�2v
(WWW iv �BBB⇤

iv✓✓✓µv �BBB⇤
iv⇥⇥⇥ v⇠⇠⇠iv)

⌦2}+ {n log(|⌃⌃⌃⇠|) +
nX

i=1

⇠⇠⇠>i ⌃⌃⌃
�1
⇠
⇠⇠⇠i}. (3.4)

3.3.1 E-step

Let ⇥⇥⇥() be the vector containing current parameter values at the end of Step  of

the EM iteration. The E-step of the (+1)th step, defines the EM loss function Q(⇥⇥⇥|⇥⇥⇥()) =

�2E


{log£(⇥⇥⇥;YYY ,WWW,⇠⇠⇠,LLL|ZZZ)}|YYY ,WWW,ZZZ;⇥⇥⇥()

�
, which is the conditional expectation of the

complete data likelihood given the observed data and the current parameter value. By

detailed calculation in Appendix D, we have

Q(⇥⇥⇥|⇥⇥⇥()) = Q1(⇥⇥⇥|⇥⇥⇥()) +Q2(⇥⇥⇥|⇥⇥⇥()) +Q3(⇥⇥⇥|⇥⇥⇥()) +Q4(⇥⇥⇥|⇥⇥⇥())
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where

Q1(⇥⇥⇥|⇥⇥⇥()) =
nX

i=1

CX

c=1

�2⇥ e⇡ic ⇥ log(⇡ic),
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c=1
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dxX
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nX

i=1

dxX

v=1

"
mx,iv log(�

2
v) +

1

�2v

⇢
(WWW iv �BBB⇤

iv✓✓✓µv �BBB⇤
iv⇥⇥⇥ v

e⇠⇠⇠iv)⌦2

�e⇠⇠⇠
>
iv⇥⇥⇥

>
 v(BBB

⇤
iv)

>BBB⇤
iv⇥⇥⇥ v

e⇠⇠⇠iv + tr(⇥⇥⇥>
 v(BBB

⇤
iv)

>BBB⇤
iv⇥⇥⇥ ve⌃⌃⌃i,vv)

�#
,

Q4(⇥⇥⇥|⇥⇥⇥()) = n log(|⌃⌃⌃⇠|) +
nX

i=1

tr(⌃⌃⌃�1
⇠
e⌃⌃⌃i). (3.5)

Here, e⇡ic = E(Lic|YYY i,WWW i,ZZZi), e⇠⇠⇠iv,c = E(Lic⇠⇠⇠iv|YYY i,WWW i,ZZZi)/e⇡ic with e⇠⇠⇠ic = (e⇠⇠⇠
>
i1,c,

e⇠⇠⇠
>
i2,c, . . . ,

e⇠⇠⇠
>
idx,c

)>,

e⇠⇠⇠iv = E(⇠⇠⇠iv|YYY i,WWW i,ZZZi) =
P

C

c=1 e⇡ice⇠⇠⇠iv,c, and e⌃⌃⌃i = E(⇠⇠⇠i⇠⇠⇠
>
i |YYY i,WWW i,ZZZi) = (e⌃⌃⌃i,vv0)

dx
v,v0=1. For

any matrix AAA and a positive definite matrix VVV , denote AAA⌦2
VVV

= AAA>VVV �1AAA. The detailed

expressions for the quantities above are derived in Appendix D.

3.3.2 M-step

In the M-step of the ( + 1)th iteration, we update the estimates as b⇥⇥⇥
(+1)

=

argminQ(⇥⇥⇥|⇥⇥⇥()) subject to the orthogonal constraints in (2.6). Since di↵erent parts of

Q(⇥⇥⇥|⇥⇥⇥()) in (3.5) depend on di↵erent parameters, we can update various components

of ⇥⇥⇥ separately, and some of the parameters need to be updated with Newton-Raphson

iterations. The detailed algorithm is provided in Appendix D.
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3.4 Stopping criterion

The algorithm iteratively updates the parameter estimates based on the condi-

tional expectations of the latent variables until convergence is achieved. The specific updates

for each parameter depend on the structure of the model and the optimization techniques

used. By incorporating the orthogonal constraints and employing appropriate numerical

optimization methods, the algorithm ensures that the estimated parameters satisfy the

necessary conditions. A widely used criterion to stop the iteration is when

max
l

����
⇥(+1)

l
�⇥()

l

⇥()
l

+ �1

���� < �2,

⇥(+1)
l

is the lth component in ⇥⇥⇥(+1). Here, �1 and �2 are predetermined constants which

can be set at �1=0.001 and �2=0.005 following the suggestions in [22]. One can also stop

the EM iterations when the improvement in the log-likelihood is below a threshold. [1]

proposed to stop the algorithm when

| logL(+1) � logL()| < 10�8,

where L is the observed data log-likelihood function defined in (3.3). In our numerical

studies, we stop the iteration when either stopping criterion is met.

The choice of initial value in EM algorithms can have a significant impact on the

results, a bad initial value can potentially preventing the attainment of the global optimum.

To get the algorithm started appropriately, we first initialize the FPCA estimators, including

the mean function, eigenvalues, and eigenfunctions using existing packages, such as the
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fdapace package of [61] and the fpca package of [39]. Then, we can use the imputed

trajectories of Xiv(t) by the FPCA estimates to fit a mixture regression model to get the

initial value of the other parameters using existing packages such as the lcmm by [40].

3.5 Practical implementations

To implement the proposed model, several parameters need to be determined,

including the number of clusters (C), the number of principal components (pv) for the

asynchronous time-varying covariate processes, and the number of spline basis functions

(qv).

To select these tuning parameters, a multi-dimensional grid search approach can

be used, where a model selection criterion is minimized. However, this approach can be

computationally expensive. Alternatively, we suggest choosing the tuning parameters sep-

arately, starting with the least sensitive ones. For the number of spline basis functions,

denoted as qv, we can follow the guidance provided by [39, 31] on functional principal com-

ponent analysis (FPCA) for sparse functional data. Specifically, we can set qv as the ceiling

value of n1/(2rv+1), where n is the sample size and rv is the order of spline functions used to

model process Xv. The selection of the number of principal components, pv, can be done

using the Aikaike information criterion (AIC) proposed in [32]. By fitting the initial FPCA

model, one can obtain the estimated FPCs. Then, di↵erent values of pv can be tested, and

the corresponding AIC values can be calculated. The value of pv that yields the lowest AIC

can be chosen to fix the number of principal components at this stage. Our method requires

a starting value for the FPCs, which can be obtained using existing software, as mentioned
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in the previous subsections. One can use the Aikaike information criterion (AIC) proposed

in [32] to choose and fix the number of PCs, pv, at this stage.

To address the most important model selection issue in a mixture regression, i.e.

the number of sub-groups, we propose to choose C by either the Bayesian information

criterion (BIC) or the Approximate Weight of Evidence (AWE) criterion [2]:

BIC(C) = �2 logL+KC ⇥ log n and AWE(C) = �2 logL+ 2KC(
3

2
+ log n),

where L is the observed data likelihood defined in (3.3), KC = (1 + dz)⇥ (2C � 1) + dx ⇥

C +
P

dx
v=1(qv + pv + qv ⇥ pv � pv(pv+1)

2 ) +
P

dx
v=1

P
dx
v0=1,v>v0 pv ⇥ pv0 +C is the total number

of parameters in the model with C subgroups taking into consideration of the orthonormal

constraints (2.6). Both criteria work well in our simulation studies.
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Chapter 4

Simulation Study

We will now conduct simulation studies to evaluate the numerical performance of

the two proposed methods. In these simulation studies, we generated data for two scenar-

ios: one with C = 2 subgroups and another with a more complex scenario involving C = 3

subgroups. However, due to space limitations, we will primarily present the results for the

scenario with C = 3 subgroups, which exhibit greater complexity. The comprehensive re-

sults for the simpler scenario can be found in the Supplemental Material accompanying this

article. By focusing on the more intricate scenario with C = 3 subgroups, we aim to provide

a detailed assessment of the performance and capabilities of the proposed methods. These

results will shed light on the methods’ e↵ectiveness in accurately estimating parameters and

identifying subgroup patterns within the data.
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4.1 Simulation setting

Suppose the study is conducted in a time domain T = [0, 1], and we use the same

approach to generate XXX, WWW , and ZZZ for both models.

For each subject, denoted by i, we observe two time-invariant covariates, ZZZi =

(Zi1, Zi2)>, where Zi1 follows a standard normal distribution, Zi1 ⇠ N(0, 1), and Zi2 follows

a Bernoulli distribution with a success probability of p = 0.5, i.e., Zi2 ⇠ Bernoulli(p = 0.5).

To generate the time-varying covariate processes, we utilize a specific procedure:

Xi1(t) = µ1(t) + ⇠i11 11(t) + ⇠i12 12(t), Xi2(t) = µ2(t) + ⇠i21 21(t) + ⇠i22 22(t).

We set the mean functions to be

µ1(t) = 120(t� 0.5)3 � 5(t� 0.5)2 � 15t+ 10, µ2(t) = 12(t� 1)4 + 15t2 � 10;

and plotted as Figure 4.1. Also, we set the eigenfunctions as

 11(t) =
p
2 sin(2⇡t),  12(t) =

p
2 cos(2⇡t),

 21(t) =
p
2 sin(4⇡t),  22(t) =

p
2 cos(4⇡t).

and visualize the eigenfunctions in the Figure 4.2.

Then we generated the principal component scores ⇠⇠⇠i from a multivariate normal

distribution with a zero mean and covariance matrix ⌃⌃⌃⇠ as described in equation (2.4).
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(a) XXX1 (b) XXX2

Figure 4.1: (a) True mean curves for X1(t); (b) True mean curve for X2(t)

(a) XXX1 (b) XXX2

Figure 4.2: (a) Two eigenfunctions for XXX1; (b) Two eigenfunctions for XXX2. In both graphs,
the solid black line plots the first eigenfunction and the dashed blue line plots the second
eigenfunction.

Specifically, we set the eigenvalues for XXX1 to be 4.9 and 3.6, and for XXX2 to be 3 and 2.

The cross-covariance between the PC scores was set as follows: !12,11 = 2.5, !12,12 = 1.4,

!12,21 = 1, and !12,22 = 1.2. Due to the unavailability of complete covariate trajectories,
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we obtained discrete, error-contaminated observations as Wivl = Xiv(sivl) + Uivl, where

l = 1, . . . ,mx,iv, v = 1, 2, and mx,iv follows a discrete uniform distribution between 8 and

10 for each i and v. We assumed that all covariates were observed at baseline (siv1 = 0

for all v and i), and the remaining follow-up times followed a uniform distribution on the

interval [0,1]. The measurement error Uivl was generated from a normal distribution with

mean 0 and variance �2v , where we set �21 to be 1 and �22 to be 1.5.

We assume that Yi(t) is observed at baseline so that ti1 = 0, the followups are

jittered around 0.3, 0.5, 0.7, and 0.9 with a local normal distribution with mean 0 and

standard deviation 0.05. And a vector of latent subgroup membership indicators LLLi is

generated from a multinomial distribution with probabilities ⇡⇡⇡i = (⇡i1,⇡i2,⇡i3)> following

the logistic model (2.1), we use all ZZZi as covariates in the model, which is Zi = ZZZi. We set

���1 = (�01, �z11, �z21)> = (0.2, 0.8,�1.0)> and ���2 = (�02, �z12, �z22)> = (0.6,�1.3,�0.5)>.

4.2 Generate the response variable from a linear fixed model

Given the latent subgroup membership indicators LLLi, we can generate the response

Yi(t) from (2.2) using the coe�cients ���c = (�0c,�xc1,�xc2,�zc1,�zc2)> for the group-specific

e↵ects. We generate ��� from a multivariate normal distribution with a mean of the zero

vector and a variance from a diagonal matrix with 3 on the diagonals. Then we can set the

true values for ��� as follows:

• For subgroup 1: ���1 = (3.02, 2.23, 1.67,�2.72,�1.65)>;

• For subgroup 2: ���2 = (3.11,�0.71,�1.23, 0.48, 2.28)>;
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• For subgroup 3: ���3 = (0.59, 2.60,�0.70, 1.85, 1.68)>.

Additionally, the random error term ✏i is generated from a normal distribution with a mean

of 0 and a variance of 1.5.

To visualize the values of YYY , we can create a scatter plot, as shown in Figure 4.3,

which provides a graphical representation of the simulated response values.

Figure 4.3: Y value labelled by subgroup

4.3 Generate the response variable from a linear mixed model

In Chapter 3, we extended the linear fixed e↵ect model to a linear mixed e↵ect

model, which incorporates random e↵ects and provides a more comprehensive explanation

of the variability in the response vector YYY . To demonstrate the potential benefits of this

extended model, we also conducted a simulation study. Given the latent subgroup mem-

bership indicators LLLi, the response Yi(t) was generated from the mixture regression model
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(3.1). The coe�cients ���1, ���2, and ���3 were re-generated from the same distribution as in

Section 4.2, with values of

• For subgroup 1: ���1 = (3.18,�1.79, 2.52, 1.48,�1.17)>;

• For subgroup 2: ���2 = (�0.42, 2.68,�0.69, 1.02, 0.54)>;

• For subgroup 3: ���3 = (�2.66, 2.83, 2.32, 1.14, 0.76)>.

For the random e↵ects, the variances �2
b,c

were set to be 2, 1.5, and 1 for the three subgroups,

respectively. The error variance �2✏ was set to be 4. These parameter values were chosen to

reflect the variability in the response within and between subgroups. We plot YYY colored by

subgroup labels as Figure 4.4.

Figure 4.4: Y value labelled by subgroup
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4.4 Label switching

We apply these two proposed methods for each simulated dataset and repeat the

simulation 200 times with a sample size of n = 200.

Before assessing the estimation accuracy of component-specific parameters using

the 200 replicates, it is important to address the label-switching problem [50, 62]. This

issue arises due to the permutation invariance of the mixture likelihood, which can lead to

inconsistent component labels across di↵erent replicates. Resolving this problem typically

involves imposing constraints on the parameter estimates to ensure consistent labeling across

replicates. However, di↵erent order constraints can result in significantly di↵erent labeling

outcomes in the context of multivariate mixture regression. In our simulation studies, we

employ an approach proposed by [63] to address the label-switching problem. This method

identifies labels by maximizing the complete likelihood, helping mitigate the issue, and

providing consistent and meaningful component labels. By applying this approach, we

aim to obtain reliable and interpretable results while maintaining consistency across the

replicates.

4.5 Initial values

To initialize the EM algorithm, we follow the procedure outlined in Chapter 3.

Initially, we set the initial values of qv and pv as described in Chapter 3. The estimation

of the mean function µv(t), eigenfunctions  vk(t), and error variance �2v is performed using

the R package fdapace. We then fit regression splines to these estimated functions to

obtain initial values for the spline coe�cients ⇥⇥⇥µ and ⇥⇥⇥ . For the initial values of ���,
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�2
b,c
, �2✏ , and ���, we utilize the R package lcmm. However, it should be noted that the

lcmm package requires all time-varying covariates to be measured simultaneously as the

response. To address this, we employ the last observation carried forward (LOCF) method

to impute the missing covariates. This enables us to obtain the necessary initial values for

the aforementioned parameters in the EM algorithm.

In our method, we employ multivariate functional principal component analysis

(mFPCA) to jointly estimate the time-varying covariate processes. We summarize the mF-

PCA estimators obtained using our approach and compare them with the initial FPCA

estimators obtained from the fdapace package. It is important to note that fdapace per-

forms univariate FPCA separately for WWW 1 and WWW 2 using kernel smoothing. However, it

does not provide estimators for the cross-covariance parameters between the two covari-

ate processes. For any nonparametric function f , the Integral squared error (ISE) for its

estimator bf is defined as

ISE( bf) =
Z 1

0
{ bf(t)� f(t)}2dt.

The posterior mean e⇠⇠⇠i =
P

C

c=1
e⇠⇠⇠ic, as defined in (2.10) or (3.3), can be used as an estimate

of the principal component scores. We denote the final value of e⇠⇠⇠i at the convergence of

the EM algorithm as b⇠⇠⇠i. Since the principal component scores of di↵erent orders can have

di↵erent variances, we summarize the estimation results of the principal component scores

using the relative mean squared error (RMSE) defined as

RMSE(⇠vk) =
1
n

P
n

i=1(
b⇠i,vk � ⇠i,vk)2

Var(⇠vk)
k = 1, . . . , pv, v = 1, . . . , dx.
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4.6 Results for fixed e↵ect mixture component

Table 4.1 provides a summary of the mean and standard deviations (SD) for the

integrated squared error (ISE) and relative mean squared error (RMSE) of the functional

estimators, including the mean, eigenfunctions, and principal component scores for X1(t)

and X2(t). It also includes the bias and SD of the eigenvalues, cross-covariance parameters,

and error variance of WWW 1 and WWW 2.

Table 4.1: Summary of FPCA estimators in the simulation study with fixed e↵ect mixture
components

X1 µ1(t)  11(t)  12(t) ⇠11 ⇠12

Emerald 0.182 (0.649) -0.004 (0.236) 0.008 (0.249) 0.051 (0.022) 0.088 (0.031)

fdapace -0.838 (0.081) 0.008 (0.121) -0.023 (0.123) 0.056 (0.010) 0.280 (0.056)

X2 µ2(t)  21(t)  22(t) ⇠21 ⇠22

Emerald 0.001 (0.153) -0.014 (0.302) -0.012 (0.313) 0.087 (0.047) 0.109 (0.073)

fdapace -0.156 (0.064) 0.161 (0.197) -0.077 (0.148) 0.116 (0.023) 0.164 (0.050)

(a) Mean (SD) for the ISE of the functional estimators and RMSE of the FPCA scores

Eigenvalues !11 !12 !21 !22

Emerald 0.195 (0.204) 0.672 (0.269) 0.074 (0.277) 0.125 (0.253)

fdapace -1.747 (0.232) -0.882 (0.173) -2.016 (0.105) -1.366 (0.054)

(b) Bias (SD) for the eigenvalues

Variance �21 �22

Emerald 0.052 (0.078) 0.042 (0.070)

fdapace 0.460 (0.398) 2.381 (0.239)

(c) Bias (SD) for the error term in WWW

Cross-Covariance !12,11 !12,11 !12,21 !12,22

Emerald 0.335 (0.212) 0.354 (0.234) 0.001 (0.206) 0.161 (0.115)

(d) Bias (SD) of the cross-covariance parameters
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Whenever available, we provide counterparts of the fdapace package. The fda-

pace package includes its own built-in bandwidth selectors, and we utilize its default set-

tings. One notable advantage of our approach is the simultaneous modeling of multiple

cross-correlated longitudinal covariates and the response process. This enables information

sharing among data from di↵erent sources, thereby improving the e�ciency of FPCA esti-

mation. The benefits of our algorithm are summarized in Table 4.1, clearly demonstrating

its superior performance compared to fdapace. Our algorithm achieves higher accuracy

and lower standard deviation values, as evidenced by the numerical results obtained in this

simulation study. Furthermore, visual representations of our algorithm’s performance and

that of fdapace are presented in Figures 4.5, 4.6, 4.7, and 4.8, respectively. These plots

depict the mean and eigenfunctions across 200 simulation runs, showcasing the excellent fit

between our algorithm’s predictions and the true functions.

Next, we summarize the mixture regression results. For comparison, we also com-

pare our method with lcmm package by [40], which can fit mixture regression models

to longitudinal data but require the covariates measured on the same time points as the

response without measurement error. We consider two versions of lcmm:

• oracle version, denoted as lcmmO, where we assume that the synchronized true co-

variates XXX1 and XXX2 are observed without errors;

• LOCF version, denoted as lcmmL, where the missing true values of XXX are imputed

using the last observed values.
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(a) XXX1 from Emerald (b) XXX1 from fdapace

Figure 4.5: Fitted mean function for time-varying covariates XXX1 via 200 simulation runs
with fixed e↵ect mixture components in Emerald and fdapace. The solid red line plots
the true function and dashed blue line plots out the average of the fitted function and the
light gray lines are 200 fitted lines.

In addition, our method provides posterior probabilities e⇡ic, which can be used to cluster

subjects into subgroups. Similarly, the lcmm package also produces its own clustering

results. We use the Adjusted Rand Index (ARI) [64] to compare the clustering results

from di↵erent methods. It’s important to note that both our algorithm and the lcmm

package may flip the labels during the latent class modeling process. However, as long

as the subjects are correctly divided into the correct subgroups, the ARI is an appropriate

metric to compare the clustering results. The Rand Index (RI) considers all pairs of samples

and counts pairs that are assigned to the same or di↵erent clusters in the predicted and

true clusterings, while the adjusted Rand Index establishes a baseline by using the expected

similarity of all pairwise comparisons between clusterings specified by a random model. By
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(a) XXX2 from Emerald (b) XXX2 from fdapace

Figure 4.6: Fitted mean function for time-varying covariates XXX2 via 200 simulation runs
with fixed e↵ect mixture components in Emerald and fdapace. The solid red line plots
the true function and dashed blue line plots out the average of the fitted function and the
light gray lines are 200 fitted lines.

comparing the ARI values and the clustering results, we can assess the performance of our

method relative to the lcmm package. The equation to calculate the adjusted rand index

is

ARI =
RI� Expected RI

max(RI)� Expected RI
,

where RI represents the raw rand index score and the adjusted Rand index is thus ensured

to have a value close to 0.0 for random labeling independent of the number of clusters and

samples and exactly 1.0 when the clustering is identical. In other words, the ARI is a

number between 0 and 1, with a higher ARI indicating a higher level of similarity between

the clustering result with the true subgroup membership.
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(a) XXX1 from Emerald (b) XXX1 from Emerald

(c) XXX1 from fdapace (d) XXX1 from fdapace

Figure 4.7: Fitted eigenfunction for time-varying covariates XXX1 via 200 simulation runs
with fixed e↵ect mixture components in Emerald and fdapace. The solid red line plots
the true function and dashed blue line plots out the average of the fitted function and the
light gray lines are 200 fitted lines.

Results for the bias and standard deviations of various coe�cients, including the

logistic regression and mixture regression, are summarized in Table 4.2 and Table 4.3.
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(a) XXX2 from Emerald (b) XXX2 from Emerald

(c) XXX2 from fdapace (d) XXX2 from fdapace

Figure 4.8: Fitted eigenfunction for time-varying covariates XXX2 via 200 simulation runs
with fixed e↵ect mixture components in Emerald and fdapace. The solid red line plots
the true function and dashed blue line plots out the average of the fitted function and the
light gray lines are 200 fitted lines.

A careful examination of Table 4.2 and 4.3 reveals that our method demonstrates

superior performance compared to the LOCF version of lcmm in terms of the coe�cients

in the mixture model. In most cases, our method provides results that closely approximate
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Table 4.2: Bias (SD) for the logistic regression parameters for the subgroup labels with
fixed e↵ect mixture components.

lcmmO lcmmL Emerald

�01 0.229 (0.380) 0.410 (0.208) -0.060 (0.358)

�z11 -0.148 (0.295) -0.201(0.327) 0.103(0.572)

�z21 -1.037(1.170) -1.597(2.880) -0.020(0.248)

�02 0.937(1.173) 1.175(1.109) -0.066(0.388)

�z12 0.199(0.302) 0.261(0.364) 0.138(0.841)

�z22 -0.235(0.379) -0.284(0.421) -0.012(0.332)

Table 4.3: Bias (SD) for the mixture regression coe�cients with fixed e↵ect mixture com-
ponents.

lcmmO lcmmL Emerald

�0,1 -0.017 (0.166) 0.237 (0.540) -0.033 (0.262)

�x,11 0.002 (0.006) -0.044 (0.064) -0.021 (0.021)

�x,12 -0.001 (0.005) 0.023 (0.063) -0.025 (0.024)

�z,11 0.018 (0.205) -1.881 (0.518) 0.039 (0.273)

�z,12 -0.020 (0.154) 1.676 (0.102) -0.006 (0.126)

�0,2 0.016 (0.172) -1.155 (0.396) -0.104 (0.358)

�x,21 -0.006 (0.008) 1.322 (0.397) -0.016 (0.043)

�x,22 0.004 (0.009) 0.453 (0.262) -0.031 (0.025)

�z,21 -0.201 (1.391) 0.793 (0.366) 0.138 (0.812)

�z,22 0.040 (0.169) -0.436 (0.678) -0.103 (0.065)

�0,3 0.028 (0.236) -0.316 (0.199) 0.079 (0.402)

�x,31 -0.001 (0.006) -0.143 (0.405) -0.017 (0.041)

�x,32 -0.001 (0.007) -0.350 (0.227) 0.016 (0.050)

�z,31 -0.011 (0.295) 0.159 (0.175) -0.086 (0.082)

�z,32 -0.001 (0.165) 0.007 (0.104) 0.097 (0.069)
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those of the oracle version. Furthermore, our method achieves the highest classification

accuracy, even surpassing the performance of the oracle version in lcmm. These findings

indicate the excellent performance and robustness of our algorithm in estimating the mixture

regression parameters and accurately classifying subjects into subgroups.

Table 4.4 presents a summary of the bias and standard deviations of the variance

parameters, along with the ARI values. The bias and standard deviations reflect the accu-

racy and variability of the estimated variance components in our model, which demonstrate

superior performance with smaller bias and standard deviation compared to the lcmm

package. The ARI values further indicate that our model outperforms lcmm, even when

considering oracle data, in terms of classification accuracy.

Table 4.4: Bias (SD) for the variance components and Mean (SD) for ARI in the 3-subgroup
simulation study with fixed e↵ect mixture components

Method �2✏ ARI

lcmmO -0.100 (0.337) 0.974 (0.021)

lcmmL 1.158 (1.067) 0.750 (0.071)

Emerald 0.056 (0.313) 0.993 (0.001)

4.7 Results for mixed e↵ect mixture components

We also conducted a simulation study for the mixed e↵ect mixture components

using datasets generated based on Section 4.3. In Table 4.5, we present a comprehensive

summary of the simulation study results, including the mean and standard deviations (SD)

for the ISE of the functional estimators, encompassing the mean and eigenfunctions for
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X1(t) and X2(t), respectively. The ISE values reflect the accuracy of the estimated mean

and eigenfunctions. The table also provides the bias and SD of the scalar parameters, such

as the eigenvalues, cross-covariance parameters, and error variance of the covariate pro-

cesses. These values o↵er insights into the accuracy and variability of the estimated scalar

parameters. Additionally, the Relative Mean Squared Error (RMSE) of the Functional

Principal Component (FPC) scores is reported, which indicates the precision of the esti-

mated scores. These results allow for a comprehensive evaluation of the performance of our

method in estimating the functional parameters and capturing the underlying variability in

the covariate processes within the context of mixed e↵ect mixture components.

The advantages of our algorithm are clearly demonstrated by the results summa-

rized in Table 4.5. Our algorithm outperforms fdapace in terms of accuracy and stability

when estimating the functional and scalar parameters. This is evident from the smaller

Mean Integrated Squared Errors (ISE) (or biases) and smaller standard deviations of our

estimators compared to fdapace. Furthermore, our algorithm provides more accurate pre-

dictions of the Principal Component (PC) scores, as indicated by the lower RMSE values.

This implies that our method captures the underlying variability in the data more e↵ectively

and produces more reliable estimates of the PC scores. Additionally, our algorithm performs

well in estimating the cross-covariance parameters, with reasonable performance indicated

by the results. This further highlights the e↵ectiveness of our approach in capturing the

relationships between the di↵erent covariate processes.

Overall, the results presented in Table 4.5 demonstrate the superior performance

of our algorithm in terms of accuracy, stability, and prediction of functional and scalar
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Table 4.5: Summary of FPCA estimators in the simulation study with mixed e↵ect mixture
components

X1 µ1(t)  11(t)  12(t) ⇠11 ⇠12

Emerald 0.003(0.003) 0.031(0.073) 0.030(0.069) 0.046(0.037) 0.057(0.044)

fdapace 0.033(0.054) 0.268(0.551) 0.267(0.509) 0.258(0.378) 0.359(0.455)

X2 µ2(t)  21(t)  22(t) ⇠21 ⇠22

Emerald 0.014(0.014) 0.109(0.302) 0.117(0.249) 0.135(0.157) 0.151(0.225)

fdapace 0.021(0.027) 0.702(0.867) 0.642(0.651) 0.538(0.116) 0.764(0.144)

(a) Mean (SD) for the ISE of the functional estimators and RMSE of the FPC scores

Eigenvalues !11 !12 !21 !22

Emerald -0.103 (0.150) -0.060 (0.580) -0.031 (0.354) 0.019 (0.304)

fdapace -1.661 (1.630) -0.958 (1.331) -2.134 (0.437) -1.415 (0.296)

(b) Bias (SD) for the eigenvalues

Variance �21 �22

Emerald 0.060 (0.063) 0.036 (0.063)

fdapace 0.024 (0.375) 2.680 (0.214)

(c) Bias (SD) for the error term in WWW

Cross-Covariance !12,11 !12,11 !12,21 !12,22

Emerald 0.130 (0.540) -0.217 (0.285) -0.075 (0.374) 0.139 (0.175)

(d) Bias (SD) of the cross-covariance parameters

parameters compared to the fdapace package. Figures W1 and W2 in the Supporting

Materials present visual comparisons of the estimated mean and eigenfunctions using both

fdapace and our proposed method. These plots allow us to visually assess the performance

of the functional estimators by comparing them to the true functions and by showing the

pointwise 2.5% and 97.5% percentiles of the estimators. The graphs provide additional

evidence supporting the results presented in Table 4.5. Specifically, they demonstrate that
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our proposed method produces functional estimators with less bias and variation compared

to fdapace. By closely aligning with the true functions and exhibiting narrower confidence

intervals, our method achieves higher accuracy and provides more reliable estimates of the

mean and eigenfunctions. The visual comparisons in Figures W1 and W2 serve to reinforce

the findings from the quantitative analysis in Table 4.5, further confirming the superior

performance of our method in terms of functional estimation.

Table 4.6 o↵ers a comprehensive summary of the bias and standard deviations of

the logistic regression coe�cients. The results clearly demonstrate the superior performance

of our algorithm, Emerald, compared to lcmm. Our method outperforms lcmmL in terms

of bias and standard deviation. Furthermore, even without time limitations, Emerald ex-

hibits smaller bias and standard deviation compared to lcmmO. These findings highlight

the robustness and e↵ectiveness of our algorithm in accurately estimating the logistic re-

gression coe�cients. In terms of classification accuracy, our simulation studies demonstrate

that Emerald achieves an average Adjusted Rand Index (ARI) of 0.9916, with a small

standard deviation of 0.01 over 200 runs. In comparison, the average ARIs for lcmmO and

lcmmL are 0.9895 and 0.9393, respectively, with larger standard deviations of 0.067 and

0.064.

Table 4.7 and 4.8 provides a summary of the bias and standard deviations of

the various model parameters, including the mixture regression coe�cients, and variances

for measurement error and group-specific random intercept. The results demonstrate that

our algorithm, Emerald, consistently outperforms the ”last observation carried forward”

approach used in lcmm, as evidenced by smaller bias and standard deviations. Notably,
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Table 4.6: Bias (SD) for the logistic regression parameters for the subgroup labels

lcmmO lcmmL Emerald

�01 0.229(0.380) 0.409(0.208) -0.060(0.358)

�z11 -0.148(0.295) -0.201(0.327) 0.103(0.572)

�z21 -1.037(1.170) -1.597(2.880) -0.020(0.248)

�02 0.937(1.173) 1.175(1.109) -0.066(0.388)

�z12 0.199(0.302) 0.261(0.364) 0.138(0.841)

�z22 -0.235(0.379) -0.284(0.421) -0.012(0.332)

without time point limitations, our algorithm achieves comparable performance to lcmm

with oracle data.
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Table 4.7: Bias (SD) for the mixture regression coe�cients

lcmmO lcmmL Emerald

�0,1 -0.017(0.166) 0.237(0.536) -0.033(0.262)

�x,11 0.002(0.006) -0.044(0.064) -0.021(0.021)

�x,12 -0.001(0.005) 0.023(0.063) -0.025(0.025)

�z,11 0.018(0.205) -1.88(0.518) 0.039(0.273)

�z,12 -0.020(0.154) 1.676(0.102) -0.006(0.126)

�0,2 0.016(0.172) -1.155(0.396) -0.104(0.358)

�x,21 -0.006(0.008) 1.322(0.397) 0.016(0.043)

�x,22 0.004(0.009) 0.453(0.262) -0.031(0.025)

�z,21 -0.201(1.391) 0.793(0.366) 0.138(0.812)

�z,22 0.040(0.169) -0.436(0.678) -0.103(0.065)

�0,3 0.028(0.236) -0.316(0.199) 0.079(0.402)

�x,31 -0.001(0.006) -0.143(0.405) -0.017(0.041)

�x,32 -0.001(0.007) -0.350(0.227) 0.016(0.050)

�z,31 -0.011(0.295) 0.159(0.175) -0.086(0.082)

�z,32 -0.010(0.165) 0.007(0.104) 0.097(0.069)

Table 4.8: Bias(SD) for the variance parameters in the 3-subgroup simulation study

Method �2
b1 �2

b2 �2
b3 �2✏

lcmmO -0.236 (0.615) -0.077 (2.473) 1.036 (2.530) 1.466 (1.324)

lcmmL -1.465 (0.973) 0.143 (2.461) -0.318 (2.045) 5.143 (0.300)

Emerald -0.158(0.467) -0.172(0.547) -0.085(0.506) 0.968(0.943)

Furthermore, the results from Table 4.8 highlight the accuracy and stability of

our algorithm in estimating these variances, further emphasizing its robust performance in

capturing the underlying data characteristics. These findings indicate that Emerald out-
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performs lcmm in terms of classification error rate, providing more accurate and consistent

clustering results.

In conclusion, the results presented in Table 4.6, 4.7, and Table 4.8 confirm the

superiority of our algorithm, Emerald, in estimating model parameters, capturing the

variability in the data, and achieving accurate classification in comparison to the lcmm

package. We can confident claim that Emerald is superior competitive.

4.8 Results for model selection

The model selection performance of Emerald is evaluated using two criteria: the

Bayesian Information Criterion (BIC) and Akaike’s Weight of Evidence (AWE). The results

demonstrate that Emerald exhibits a high accuracy in correctly selecting the number of

subgroups. Using BIC, Emerald achieves a selection accuracy of 76%, while using AWE,

the accuracy improves to 77%. When Emerald fails to select the correct model, it tends

to overestimate the number of subgroups rather than underestimate it. This tendency to

err on the side of caution is generally considered preferable, as it avoids missing important

findings. In contrast, the lcmmL method, which employs the ”last observation carried

forward” approach, only achieves a correct model selection rate of 46%. This indicates

that lcmmL has a higher propensity for making incorrect model selections compared to

Emerald.

In an additional simulation study presented in Section Appendix F, where the

sample size is increased to 500, the probability of Emerald selecting the correct number

of subgroups further improves to 89% using BIC and 90% using AWE. This highlights the
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robustness and e↵ectiveness of our method in selecting the appropriate number of subgroups

as the sample size increases.

In summary, when the correctness of model selection is concerned, the results

underscore the superior model selection performance of Emerald compared to lcmmL,

with higher accuracy in identifying the correct number of subgroups and mitigating the risk

of underestimating the complexity of the data.

4.9 Model implementation

Equations (2.2) and (3.1) demonstrate that fixed e↵ect mixture components can

be viewed as a special case of the mixed e↵ect mixture model. By setting the variance

components for the random e↵ects to nearly zero, the mixed e↵ect mixture components can

be reduced into fixed e↵ect mixture components. This implies that mixed-e↵ect mixture

models o↵er additional flexibility by incorporating random e↵ects. In the real data analysis,

we have chosen to apply a linear mixed e↵ect model to the mixture components instead of

a fixed e↵ect model. The motivation behind this decision is to capture and explain more

variation in the response variable by considering the random e↵ects. By incorporating

random e↵ects, the model accounts for the potential correlations and heterogeneity among

the observations, which can lead to a better understanding and interpretation of the data.

Using a linear mixed e↵ect model allows for the estimation of both fixed e↵ects, which

capture the population-level relationships between covariates and the response, and random

e↵ects, which capture the subject-specific deviations from the population-level trends. By

including random e↵ects, you are able to capture the individual-specific variations and
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dependencies that may exist within the data. Overall, the decision to apply a linear mixed

e↵ect model to the mixture components in the real data analysis is driven by the goal

of capturing additional variation and accounting for the complexities present in the data

through the incorporation of random e↵ects.
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Chapter 5

Real Data Analysis

We now proceed with the analysis of the SWAN data, as described in Chapter

1. The objective of our analysis is to investigate the relationship between DHEAS levels

and several cardiovascular and physical biomarkers, while also considering demographic

backgrounds. To achieve this, we will conduct a comprehensive examination of the SWAN

dataset, employing our proposed method to explore the associations between DHEAS levels

and the selected biomarkers. Additionally, we will take into account demographic factors

to better understand potential variations in these relationships across di↵erent subgroups.

By investigating the relationship between DHEAS levels and cardiovascular and physical

biomarkers, as well as considering demographic backgrounds, we aim to contribute valuable

insights into the complex interplay between these variables in the SWAN population.
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5.1 Pre-analysis

The time-varying covariates of interest include triglycerides (TGs), glucose (GLU),

and systolic blood pressure (SBP). These measurements follow di↵erent schedules, as il-

lustrated in Figure 1.1 and 1.2. TG and GLU measurements align with the schedule

of cardiovascular biomarkers, while SBP measurements align with the schedule of phys-

ical biomarkers. Importantly, all these measurements are asynchronous with respect to

DHEAS. In addition to the time-varying covariates, we consider baseline age, BMI, and

race as time-invariant covariates. Race is categorized into four groups: White, Black,

Asian, and Hispanic, accounting for 47.39%, 28.08%, 16.67%, and 7.87% of the SWAN sub-

jects, respectively. To incorporate race as a covariate, we encode it using three dummy

variables, with White as the reference category. These dummy variables serve as indicators

for Black, Asian, and Hispanic, respectively, allowing us to examine the impact of race on

the relationship between DHEAS levels and the biomarkers of interest.

It is important to note that the hormonal and physical biomarkers were measured

over a period of up to 10 years. However, due to the study design, the cardiovascular

biomarkers were only measured up to the 7th visit. Therefore, our analysis focuses on the

data observed from baseline up to 3086 days, which corresponds to the completion of the

7th visit for all subjects. To facilitate the analysis, we rescale this time period to the inter-

val [0,1], where 0 represents the baseline and 1 represents the completion of the 7th visit.

Regarding the normal range of DHEAS levels for premenopausal or early perimenopausal

women, [52] states that it typically falls between 13 and 240 µg/dL. However, it’s worth

mentioning that the SWAN data includes some abnormally high DHEAS levels. This is
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evident from the visual representation of the underlying distribution of DHEAS in Fig-

ure 5.1, which shows a heavy right skew. To address the presence of extreme outliers in the

Figure 5.1: Density plot of original DHEAS

DHEAS data, a criterion based on the interquartile range (IQR) is applied. Observations

with DHEAS values that exceed 3 times the IQR above the 3rd quartile are identified and

removed from the dataset. This helps to mitigate the impact of these extreme values on the

analysis. After applying this criterion, DHEAS values exceeding 457 are removed, which

accounts for 3.81% of the total observations. Additionally, the variables TG, GLU, and

SBP are standardized. This involves centering each variable around its marginal mean and

dividing the centered variable by its marginal standard deviation. Standardization ensures

that these variables are on a comparable scale, making interpretation and analysis easier.
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5.2 Results for SWAN data

In accordance with the procedure described in Section 3.5, a univariate Functional

Principal Component Analysis (FPCA) is performed on the three time-varying covariate

processes using the fdapace package separately. This analysis allows for obtaining initial

estimates of the functional parameters. To determine the number of principal components

to retain for each covariate process, the AIC criterion, as proposed by [32], is employed. In

this particular analysis, 2 principal components are selected for each covariate process.

Moving forward, the focus shifts to determining the number of subgroups present

in the SWAN data. Table 5.1 provides the values of the AWE and BIC for di↵erent numbers

of subgroups. Both criteria suggest that there are 2 subgroups present in the SWAN data.

Based on these results, the assumption of 2 subgroups is adopted for subsequent analyses.

Table 5.1: AWE and BIC value for SWAN data

AWE BIC

1-subgroup 14730.69 14730.69

2-subgroup 14109.91 13910.98

3-subgroup 14216.09 14116.62

4-subgroup 14280.13 13981.73

5-subgroup 14452.06 14062.34

Utilizing the posterior probabilities e⇡ic, a classification is performed, assigning a

total of 2802 subjects to Group 1 and 336 subjects to Group 2. The average DHEAS level

for Group 1 is 115, while for Group 2 it is 252. This distinction is illustrated in Figure 5.2,

which displays a boxplot visualization of the DHEAS levels for the two groups. The average
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Figure 5.2: Boxplot of DHEAS colored by subgroups

value of DHEAS across the eight visits ranges from 113 to 118 for Group 1 and from 240

to 259 for Group 2. The boxplot in Figure 5.3 displays the distribution of DHEAS levels

for the two groups across the eight visits. The results indicate that Group 2 consistently

exhibits higher levels of DHEAS compared to Group 1. Based on the DHEAS level and

Figure 5.3: Boxplot of DHEAS colored by subgroups via 8 visits
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number of memberships, we can interpret Group 1 as the majority subgroup consisting

of menopausal women with normal DHEAS levels, while Group 2 represents a minority

subgroup characterized by high DHEAS levels. Notably, the identification of Group 2 as a

distinct subgroup is a unique finding provided by our new method.

In terms of racial composition, Group 1 largely reflects the overall racial distribu-

tion of the entire SWAN study population. However, Group 2 shows a lower proportion

of Black individuals (17.9%) and Hispanics (3.3%) compared to the study population. For

a detailed breakdown of the frequency of subjects in each cluster by race, please refer to

Table 5.2. The median age for Group 1 is 46, while for Group 2 it is 45. The median BMI

Table 5.2: Subjects in Each subgroup by Race

Race Subgroup 1 Subgroup 2

White 1291 196

Black 821 60

Asian 454 69

Hispanic 236 11

is 26.2 for Group 1 and 25.1 for Group 2.

Table 5.3 provides percentiles of age and BMI for the two subgroups, allowing for a

more detailed understanding of the distribution of these variables within each subgroup. To

assess the relationship between race and subgroup membership, we conducted a chi-square

test for independence and found a significant correlation, indicating that race is associated

with subgroup membership. This suggests that race is a potential factor that contributes

to the di↵erentiation of subgroups. Furthermore, we performed a t-test to compare the age
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Table 5.3: Percentile of Time-invariant Variable

Percentile Age BMI

0% 42 15

25% 43 22.5

50% 45 25.1

75% 47 30.1

100% 52 57

(a) Subgroup 1

Percentile Age BMI

0% 42 15.4

25% 44 22.6

50% 46 26.2

75% 48 31.5

100% 53 64.8

(b) Subgroup 2

di↵erence between the subgroups and found a significant di↵erence. Similarly, for BMI, there

was a significant di↵erence in BMI levels between Group 1 and Group 2. These statistical

tests provide evidence that there are demographic di↵erences, specifically in terms of age

and BMI, across the identified subgroups.

Table 5.4 presents the estimated coe�cients of the logistic regression with their

corresponding standard errors. To obtain the standard errors, we employed a parametric

bootstrap procedure. In this procedure, we used the observed Z and the observed time

points tij and sivl to regenerate L, ⇠,W, andY based on the estimated model. The proposed

method was then applied to each bootstrap sample using the same tuning parameters as in

the real data analysis. The standard errors reported in Table 5.4 and 5.5 were computed
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based on 200 bootstrap samples, providing a measure of the variability of the estimated

coe�cients.

Table 5.4: Estimate (SD) of the coe�cients for logistic regression: b��� in Equation (2.1)

Est (SE)

Intercept 1.574 (0.040)

Age 0.343 (0.015)

BMI 0.0599 (0.021)

Black 0.700 (0.039)

Asian 0.004 (0.081)

Hispanic 0.726 (0.110)

The logistic regression coe�cients presented in Table 5.4 provide valuable insights

into the factors which can influence subgroup membership. The results reveal that baseline

age, BMI level, and race significantly contribute to the classification into Group 1, repre-

senting the normal subgroup characterized by relatively lower DHEAS levels. Specifically,

the findings indicate that Black and Hispanic women, older women, and women with higher

BMI are more likely to be classified into this subgroup. These results align with previ-

ous research on DHEAS levels in di↵erent racial and ethnic groups. Studies such as [29]

have consistently reported lower DHEAS levels among African Americans and Hispanics

compared to white and Asian women. The observed inverse relationship between age and

DHEAS levels, as demonstrated by studies conducted by [43, 3, 10], further supports the

association found in our analysis. Additionally, the association between higher BMI or obe-

sity and lower DHEAS levels has been well-documented in the literature. Taken together,

these findings reinforce the influence of age, BMI level, and race on subgroup membership
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and contribute to our understanding of the associations between these factors and DHEAS

levels in women.

Table 5.5 presents the estimated coe�cients of the mixture regression model, along

with their corresponding standard errors. These standard errors were computed using the

same bootstrap procedure defined before. When we focus on examining the coe�cients for

Group 1, which represents the majority of middle-aged women and serves as the health

norm, the results show that there is a positive association between DHEAS levels and GLU

and SBP, while there is a negative association with TG, Age, and BMI. These findings

are consistent with the existing literature on DHEAS. Furthermore, our analysis reveals

racial disparities in DHEAS levels. Women of color, particularly black women, have lower

DHEAS levels compared to white women. This finding aligns with previous studies that

have consistently reported racial di↵erences in DHEAS levels. On the other hand, for women

classified into Group 2, characterized by high DHEAS levels, the associations with GLU

and BMI are more pronounced. Specifically, there is a stronger positive association with

GLU and a stronger negative association with BMI compared to Group 1. However, the

associations with TG and SBP exhibit opposite signs compared to Group 1. These results

provide valuable insights into the associations between DHEAS levels and other covariates

within each subgroup, highlighting the distinct patterns observed in Group 1 and Group 2.

There are new findings regarding time-varying variables and in Figures 5.4 to 5.6,

we display the partial e↵ect plots illustrating the relationship between DHEAS and the

time-varying covariates GLU, TG, and SBP, respectively, within each subgroup. These

plots provide visualizations of the di↵erent e↵ects of these variables on DHEAS levels in
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Table 5.5: Estimate (SD) of the coe�cients for mixture regression: b��� in Equation (3.1)

Group 1 Group 2

Intercept -0.169 (0.013) 1.261 (0.051)

Glucose 0.038 (0.008) 1.403 (0.166)

Triglycerides -0.052 (0.008) 0.578 (0.232)

Systolic Blood Pressure 0.020 (0.009) -0.859 (0.225)

Age -0.063 (0.005) -0.012 (0.021)

BMI -0.043 (0.006) -0.183 (0.028)

Black -0.255 (0.012) 0.232 (0.047)

Asian -0.134 (0.017) -0.371 (0.050)

Hispanic -0.134 (0.019) -0.206 (0.119)

Group 1 and Group 2. By analyzing these partial e↵ect plots, we can e↵ectively ascertain

the direction of the relationship between time-varying variables and the response variable.

The concept of partial e↵ect allows us to examine how a one-unit change in a

specific independent variable influences the value of the response variable (DHEAS) while

keeping all other variables constant. By examining the partial e↵ect plots, we can observe

the distinct patterns of association between DHEAS and the time-varying covariates within

each subgroup. Furthermore, these plots enable us to make a visual comparison of the

e↵ects of GLU, TG, and SBP on DHEAS levels between Group 1 and Group 2, thereby

highlighting the di↵erences between these two subgroups. To assess the partial e↵ect of a

particular variable, such as glucose, it is necessary to calculate the change in the dependent

variable (in this case, DHEAS) that results from the change in the independent variable

of interest. In detail, for any time-varying covariate Xivj(tij), its partial e↵ect plot in

subgroup c is done by plotting Yij � �0,c �
P

v0 6=v
bXiv0j

b�x,cv0 �ZZZ>
ij�z,c against bXivj , where
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bXivj = bµx,v(tij)+
P

pv
k=1

b⇠ivk b vk(tij) is the posterior mean of the missing, synchronized time-

varying covariate value. These plots provide a visual representation of how the relationship

between DHEAS and each time-varying covariate varies across the subgroups. The di↵ering

slopes highlight the di↵erent e↵ects and associations of these covariates with DHEAS levels

in Group 1 and Group 2. This visual analysis further supports the identification of subgroup-

specific patterns and reinforces the importance of considering the subgroups when examining

the relationship between DHEAS and the time-varying covariates.

(a) Glucose v.s DHEAS in Group 1 (b) Glucose v.s DHEAS in Group 2

Figure 5.4: Partial e↵ect plots for glucose versus DHEAS. The red line plots our fitted
coe�cients.

To further visualize the time-varying covariates, we present Figure 5.7 and Fig-

ure 5.8. These figures display the mean curves with observations for glucose, triglycerides,

and systolic blood pressure, along with their principal component e↵ect plots. In the plots,
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(a) Triglycerides v.s DHEAS in Group 1 (b) Triglycerides v.s DHEAS in Group 2

Figure 5.5: Partial e↵ect plots for triglycerides versus DHEAS. The red line plots our fitted
coe�cients.

(a) Systolic BP v.s DHEAS in Group 1 (b) Systolic BP v.s DHEAS in Group 2

Figure 5.6: Partial e↵ect plots for systolic blodd pressure versus DHEAS. The red line plots
our fitted coe�cients.

70



(a) Mean curve of glucose (b) Mean curve of triglycerides

(c) Mean curve of systolic BP

Figure 5.7: SWAN data: fitted mean for glucose, triglycerides, and systolic BP. Plots show
the fitted mean functions (solid red), pointwise 95% bootstrap confidence intervals (dashed
blue), as well as the scatter plot of the observations.

we can observe that the confidence bands for the fitted mean curves are relatively narrow.

This is due to the large sample size in our analysis, which provides more precise estimates.

Regarding the principal component e↵ect plots, the first eigenfunction appears to show a

constant trend, indicating a random intercept component that captures the variations in the
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(a) Eigenfunctions of glucose (b) Eigenfunctions of triglycerides

(c) Eigenfunctions of systolic BP

Figure 5.8: SWAN data: fitted eigenfunction for glucose, triglycerides, and systolic BP.
Plots show the top two eigenfunctions as solid black and dashed blue, respectively.

time-varying variables across the observations. On the other hand, the second eigenfunc-

tion exhibits an approximately linear trend, representing a random slope component that

accounts for the varying rates of change in the time-varying variables. These eigenfunctions

contribute to the interpretation of the variations observed in the time-varying covariates.
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Overall, these visualizations allow us to explore and interpret the relationships

between DHEAS and the time-varying covariates, shedding light on the patterns and trends

within the data.

The fdapace package provides insights into the cumulative variance explained by

the principal components for each covariate. For glucose, the first four principal components

explain 90.73%, 95.37%, 98.85%, and 99.66% of the total variation. For triglycerides, the

first three principal components explain 92.03%, 96.93%, and 99.31% of the total variation.

Lastly, for systolic blood pressure, the first three principal components explain 92.63%,

97.94%, and 99.88% of the total variation. The first principal component accounts for

94.59%, 94.78%, and 93.57% of the total variation in glucose, triglycerides, and systolic

blood pressure, respectively, in the Emerald dataset. To compare the results obtained

from Emerald with those from the fdapace package, the mean and principal component

e↵ect plots are provided in Appendix E. These plots o↵er a visual comparison of the

patterns and trends observed in the Emerald dataset and the results obtained using the

fdapace package.

The results reported in Table 5.5 confirm previous research findings that age and

BMI are negatively correlated with DHEAS levels [65, 3]. This aligns with the existing

literature, which suggests that as women age increases or have higher BMI, their DHEAS

levels tend to decrease. The negative correlation indicates that older age and higher BMI

are associated with lower DHEAS levels in the study population.

Indeed, the time-varying covariates, baseline information, and demographic find-

ings presented in this study align with the existing understanding that DHEAS production

73



decreases with age and can be influenced by various factors, including body composition

and hormonal changes.
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Chapter 6

Conclusions

6.1 Summary

The previous contradictory and inconclusive studies regarding the relationship

between DHEAS and other cardiovascular and physical biomarkers highlight the need to

consider potential subgroups within the general population. However, conducting a sub-

group analysis of DHEAS levels in menopausal women using a large longitudinal database

from SWAN poses challenges due to asynchronous and error-prone time-varying covariates.

To overcome these challenges, we propose an innovative semiparametric mixture regres-

sion model called Emerald. In the Emerald model, we address these complexities by

simultaneously modeling multiple asynchronous, error-prone, cross-correlated, time-varying

covariate processes using a multivariate Functional Principal Component Analysis (FPCA)

approach. Additionally, we establish a connection between the longitudinal response pro-

cess and the covariates by employing a linear mixed model with coe�cients and random

e↵ects dependent on latent subgroup memberships. To capture subgroup membership, we

75



utilize a multinomial logistic regression that incorporates time-invariant covariates. To fa-

cilitate flexible semiparametric modeling of the longitudinal processes, we employ reduced

rank polynomial spline approximation for estimating the unknown mean and eigenfunctions

of the covariate processes. The unknown parameters are estimated using an EM algorithm,

and the number of subgroups is determined using data-driven methods such as BIC and

AWE.

Numerical studies demonstrate the superior performance of Emerald compared to

existing methods. In the analysis of the SWAN data, we identify two important subgroups

among the women in the study. The dominant group exhibits DHEAS dynamics consistent

with existing literature, while the minority group displays elevated DHEAS levels that

have more pronounced associations with cardiovascular biomarkers such as glucose and

triglycerides.

6.2 Future work

To further enhance the capabilities of Emerald, we are currently focusing on

integrating variable selection techniques. The SWAN dataset contains a substantial number

of covariates, making it crucial to identify the most informative ones. To accomplish this,

we employ coordinate descent, enabling us to iteratively update the mixture coe�cients

individually. This approach facilitates e�cient optimization and enhances the accuracy

of variable selection. By identifying the most relevant covariates contributing to subgroup

di↵erentiation, we improve the overall interpretability of the model. Additionally, to account

for the randomness in the response variables, we propose jointly modeling the time-varying
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covariates with the response variable using multivariate Functional Principal Component

Analysis (mFPCA). This allows us to capture the nonlinear relationships and dependencies

between the covariates and the response variables, further enhancing the model’s ability to

uncover meaningful insights.

By incorporating variable selection techniques and jointly modeling the time-

varying covariates with the response variables using mFPCA, we aim to enhance the predic-

tive power, interpretability, and robustness of Emerald in analyzing the SWAN dataset.

These advancements will provide valuable insights into the relationships between DHEAS

levels, cardiovascular biomarkers, and subgroup di↵erentiation among menopausal women.
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[49] Luboslav Stárka, Michaela Dušková, and Martin Hill. Dehydroepiandrosterone: A
neuroactive steroid. Journal of Steroid Biochemistry and Molecular Biology, 145:254–
260, 2015.

[50] Matthew Stephens. Dealing with label switching in mixture models. Journal of the
Royal Statistical Society: Series B, 62(4):795–809, 2000.

[51] X. Tan, M.P. Shiyko, R. Li, Y. Li, and L. Dierker. A time-varying e↵ect model for
intensive longitudinal data. Psychological Methods, 17:61–77, 2012.

[52] Rathna Kumari Udayakumar and K Padma. Dehydroepiandrosterone levels in type 2
diabetes. International Journal of Medical Research and Health Sciences, 3:411, 2014.

[53] Theodore B. Vanltallie. Stress: a risk factor for serious illness. Metabolism, 51:40–45,
2002.

[54] D. Von Mühlen, G. A. Laughlin, D. Kritz-Silverstein, J. Bergstrom, and R. Betten-
court. E↵ect of dehydroepiandrosterone supplementation on bone mineral density,
bone markers, and body composition in older adults: the dawn trial. Osteoporosis
International, 19(5):699–707, 2008.

[55] Furong Wang, Yanfei He, Heitor O. Santos, Brijesh Sathian, James C. Price, and
Jianjun Diao. The e↵ects of dehydroepiandrosterone (DHEA) supplementation on

82



body composition and blood pressure: A meta-analysis of randomized clinical trials.
Steroids, 163:108710, 2020.

[56] Hung Tsung Wang, Shu Man Chen, Shin Da Lee, Mei Chich Hsu, Kun Ning Chen,
Yuh Feng Liou, and et al. The role of DHEA-S in the mood adjustment against negative
competition outcome in golfers. Journal of Sports Sciences, 27(3):291–297, 2009.

[57] S. Wang, M. Huang, X. Wu, and W. Yao. Mixture of functional linear models and its
application to CO2-GDP functional data. Computational Statistics and Data Analysis,
97:1–15, 2016.

[58] Raymond KW Wong, Yehua Li, and Zhengyuan Zhu. Partially linear functional ad-
ditive models for multivariate functional data. Journal of the American Statistical
Association, 114(525):406–418, 2019.

[59] Sijia Xiang, Weixin Yao, and Guangren Yang. An Overview of Semiparametric Exten-
sions of Finite Mixture Models. Statistical Science, 34(3):391 – 404, 2019.

[60] Fang Yao, Yuejiao Fu, and Thomas C.M.Lee. Functional mixture regression. Biostatis-
tics, 12:341–353, 2011.

[61] Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association, 100(470):577–590,
2005.

[62] W. Yao and B. G. Lindsay. Bayesian mixture labeling by highest posterior density.
Journal of American Statistical Association, 104:758–767, 2009.

[63] Weixin Yao. Label switching and its solutions for frequentist mixture models. Journal
of Statistical Computation and Simulation, 85(5):1000–1012, 2015.

[64] Ka Yee Yeung and Walter Ruzzo. Principal component analysis for clustering gene
expression data. Bioinformatics, 17(9):763–774, 2001.

[65] D G Young, G Skibinski, J I Mason, and K James. The influence of age and gender on
serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6
sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood
donors. Clinical and Experimental Immunology, 117(3):476–481, 1999.

[66] Lan Zhou, Jianhua Z. Huang, and Raymond J. Carroll. Joint modelling of paired sparse
functional data using principal components. Biometrika, 95:601–619, 2008.

83



Appendix A: Details on the observed data likelihood function

in Chapter 2

The conditional distribution of LLL,YYY ,WWW and ⇠⇠⇠ given ZZZ is expressed as following

f(LLL,YYY ,WWW,⇠⇠⇠|ZZZ) = f(YYY |LLL,⇠⇠⇠,ZZZ)⇥ f(LLL|ZZZ)⇥ f(WWW |⇠⇠⇠)⇥ f(⇠⇠⇠),
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Hence, the joint distribution of LLL,⇠⇠⇠,YYY , and WWW conditional on ZZZ can be written as
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where for a matrix A, we define A⌦2 = A>A. Also, with the smoothing spline expression,

we can have
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that contains all WWW variables for subject i. BBB⇤
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spline basis, with each row representing the basis function at XXXiv’s observed time. Also

denote    ⇤
i = BBB⇤

i⇥⇥⇥ , with ⇥⇥⇥ = diag(⇥⇥⇥ 1, . . . ,⇥⇥⇥ dx) be the q ⇥ p matrix with diagonal

block ⇥⇥⇥ v. Here BBBiv is the matrix of spline basis, with each row representing the basis

function at YYY i’s observed time, which is di↵erent from BBB⇤
iv. Last, denoting the discrete

matrix of eigenfunction as e   ic = (e   i1c, e   i2c, . . . , e   idxc) with
e   ivc = �x,cvBBBiv⇥⇥⇥ v. Last, ⇤⇤⇤i

is a diagonal square matrix with diagonal entry �2vIIImx,iv .
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Appendix B: Details on the observed data likelihood function

in Chapter 3

The likelihood for the observed data on the ith subject is

f(YYY i,WWW i|ZZZi) =
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+ �2✏III represents the covariance matrix for YYY i in cluster c, and
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Given the new notation of posterior mean and covariance matrix, e⇠⇠⇠ic and ⌦⌦⌦ic, we can

simplify our conditional distribution as below

f(YYY i,WWW i|ZZZi) =

Z CX
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Appendix C: Technical details of the EM step in Chapter 2

The E-step of the (+ 1)th step, the EM loss function can be written as
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with eYYY ic, e   ic,fWWW i, and    ⇤
i defined in (A.2). For the conditional probability mass function

of Lic given YYY i,WWW i,ZZZi, it could be expressed as
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For conditional distribution of ⇠⇠⇠i given YYY i,WWW i and ZZZi, it could be expressed as
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And
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And the second moment of ⇠⇠⇠i given YYY i,WWW i,ZZZi is
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Suppose the conditional moments derived above have the partition e⇠⇠⇠ic = (e⇠⇠⇠i1,c, . . . ,e⇠⇠⇠idx,c)
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To update the parameters, the M-step involves executing a sequence of steps, each

applied to one block at a time. Parameters can be updated by minimizing the Q function

or using Newton-Raphson iteration.

C.1 Update ���

Using the logistic regression model (2) in the main paper, Q1 can be rewritten as
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and HHH is the Hessian matrix with diagonal and o↵-diagonal entries
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Since this Newton-Raphson iteration is embedded in our EM algorithm, we only iterate two

steps to update b��� within each EM iteration to save computation time.

C.2 Update ���
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C.4 Update spline coe�cients for the mean and eigenfunctions

We can update the spline coe�cients according to Q2 +Q3 as
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And let ⇥⇥⇥ v = (✓✓✓ v,1,✓✓✓ v,2, . . . ,✓✓✓ v,pv), where ✓✓✓ v,k are the spline coe�cients for

the kth eigenfunction for variable XXXv. We update the columns of ⇥⇥⇥ v one at a time while
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here⌦⌦⌦[;k]
ic,v0v denotes the k

th column of⌦⌦⌦ic,v0v for v, v0 = 1, . . . , dx, e⇠[k]ivc
denotes the kth element

in the vector e⇠⇠⇠ivc.
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with e!ic,vv,kk and e�i,vv,kk are the elements in kth column and kth row of ⌦⌦⌦ic,vv and (e⌃⌃⌃i,vv �
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where e⌃⌃⌃
[k;k]
ic,vv represents the value in the kth row and the kth column in e⌃⌃⌃ic,vv, ⇥⇥⇥

[;k]
 v

represents

the kth column of ⇥⇥⇥ v, e⇠
[k]
ivc

represents the kth element in the e⇠⇠⇠ivc vector, and ���i,vv =

e⌃⌃⌃i,vv � e⇠⇠⇠ive⇠⇠⇠
>
iv.
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Appendix D: Technical details of the EM step in Chapter 3

An expectation of our conditional log-likelihood function Q(⇥⇥⇥|⇥⇥⇥()) can be derived

from
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(D.1)

with eYYY ic, e   ic,fWWW i,   
⇤
i defined in (B.1).

For the conditional probability mass function of Lic given YYY i,WWW i,ZZZi, it is
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(D.2)

= e⇡ic.
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The conditional distribution of ⇠⇠⇠i given YYY i,WWW i and ZZZi can be expressed as

f(⇠⇠⇠i|YYY i,WWW i,ZZZi) =
CX

c=1

f(Lic = 1,⇠⇠⇠i|YYY i,WWW i,ZZZi)

=
CX

c=1

f(Lic = 1,⇠⇠⇠i,YYY i,WWW i|ZZZi)

f(YYY i,WWW i|ZZZi)

=
CX

c=1

⇡ic|VVV ic|�
1
2 exp{�1

2(
eYYY ic � e   ic⇠⇠⇠i)

⌦2
VVV ic

� 1
2(
fWWW i �   ⇤

i⇠⇠⇠i)
⌦2
⇤⇤⇤i

� 1
2⇠⇠⇠

>
i ⌃⌃⌃

�1
⇠
⇠⇠⇠i}

P
C

c0=1 ⇡ic0(2⇡)
p
2 |VVV ic0 |�

1
2 |⌦⌦⌦ic0 |

1
2 exp{�1

2(
eYYY
>
ic0VVV

�1
ic0
eYYY ic0 +fWWW

>
i ⇤⇤⇤

�1
i
fWWW i � e⇠⇠⇠

>
ic0⌦⌦⌦

�1
ic0
e⇠⇠⇠ic0)}

,
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Next, the first two conditional moments of Lic⇠⇠⇠i given observed data are
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Furthermore, the first two conditional moments of [⇠⇠⇠i|YYY i,WWW i,ZZZi] are
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Suppose the conditional moments derived above have the partition e⇠⇠⇠ic = (e⇠⇠⇠i1,c, . . . ,e⇠⇠⇠idx,c)
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To update the parameters, the M-step involves executing a sequence of steps,

each applied to one block at a time. Also, the updates for the linear fixed e↵ect of the

mixture component bear many similarities to those for the linear mixed e↵ect of the mixture

component.

D.1 Update ���

Using the logistic regression model in the main paper, Q1 can be rewritten as
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and HHH is the Hessian matrix with diagonal and o↵-diagonal entries as
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Since this Newton-Raphson iteration is embedded in our EM algorithm, we only iterate two

steps to update b��� within each EM iteration to save computation time.

D.2 Update ���
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to update ���c is

b���c = {
nX

i=1

e⇡ic(X>
icVVV

�1
ic

Xic +AAAic)}�1(
nX

i=1

e⇡icX>
icVVV

�1
ic
YYY i) (D.9)

where AAAic = diag(0, [tr{⇥⇥⇥>
 vBBB

>
ivVVV

�1
ic
BBBiv0⇥⇥⇥ v0⌦⌦⌦ic,v0v}]dxv,v0=1,0) is a d⇥ d matrix.

D.3 Update the variance components: VVV ic and �2
v
for v = 1, . . . , dx

Since the dimensionmy,i of VVV ic are subject-specific, there is no closed-form solution

for the variance-covariance matrix of the linear mixed model. By straightforward algebra
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, we can rewrite Q2 as
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where

AAA1,ic = diag
⇥
0, {tr(⇥⇥⇥>

 vBBB
>
ivBBBiv0⇥⇥⇥ v0⌦⌦⌦ic,v0v)}dxv,v0=1,0
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BBBiv0⇥⇥⇥ v0⌦⌦⌦ic,v0v)}dxv,v0=1,0]

are d⇥ d matrices. We use a Newton-Raphson algorithm to update �2✏ : given the value of

�2✏ from the ⇣th step, denoted as [b�2✏ ](⇣), we update �2✏ as
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Then �2
b,c

and �2v can be updated as
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for c = 1, . . . , C, and
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for v = 1, 2, . . . , dx.

D.4 Update spline coe�cients for the mean and eigenfunctions

We first update the coe�cients of the mean functions by
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When updating the coe�cient for eigenfunctions, we will update the coe�cient for one

eigenfunction at a time until all the coe�cients are updated. Specifically, denote the coe�-

cient matrix for the eigenfunctions of Xv(·) as ⇥⇥⇥ v = (✓✓✓ v,1,✓✓✓ v,2, . . . ,✓✓✓ v,pv) , where each

column contains the spline coe�cients of one eigenfunction. We update the columns of ⇥⇥⇥ v

one at a time using a Newton-Raphson step while holding all other columns fixed. Let ⇥⇥⇥()
 v

be its value at th step, we update the ◆th column by

b✓✓✓
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where ⌦⌦⌦[;◆]
ic,v0v denotes the ◆th column of ⌦⌦⌦ic,v0v for v, v0 = 1, . . . , dx, e⇠[◆]iv,c denotes the ◆th

element in the vector e⇠⇠⇠iv,c. Furthermore,

HHH(b✓✓✓
()

 v,◆) = 2
nX

i=1

CX

c=1


e⇡ic{�2x,cve!ic,vv,◆◆BBB

>
ivVVV

�1
ic
BBBiv + �2x,cvBBB

>
ivVVV

�1
ic
BBBiv

e⇠[◆]
2

iv,c
}
�

104



+2
nX

i=1

⇢
1

�2v
(e�i,vv,◆◆(BBB⇤

iv)
>BBB⇤

iv + (BBB⇤
iv)

>BBB⇤
iv
e⇠⇠⇠
[◆]2

iv )

�
, (D.14)

where e!ic,vv,◆◆ and e�i,vv,◆◆ are the elements in ◆th column and ◆th row of ⌦⌦⌦ic,vv and (e⌃⌃⌃i,vv �

e⇠⇠⇠ive⇠⇠⇠
>
iv), respectively.

To enforce the orthonormal constraint in ⇥⇥⇥ v define D⇠v = e⇥⇥⇥ ve⌃⌃⌃vv
e⇥⇥⇥
>
 v, where

e⇥⇥⇥ v is the estimators from Newton-Ralphson algorithm, and e⌃⌃⌃vv = 1
n

P
n

i=1
e⌃⌃⌃i,vv. Then we

perform an eigenvalue decomposition on D⇠v such that D⇠v = b⇥⇥⇥ vb⌃⌃⌃vv
b⇥⇥⇥
>
 v. Here, b⌃⌃⌃vv is a

diagonal matrix that consists of the leading eigenvalues of Xv, and b⇥⇥⇥ v consists of the spline

coe�cients of the eigenfunctions which satisfy the orthonormal constraints. Thereupon we

have the cross-covariance estimators as
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for any v 6= v0.
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Appendix E: Additional results for real data analysis

We present the estimated mean and eigenfunctions for glucose, triglyceride, and

systolic blood pressure in the real data analysis obtained from both the fdapace and Emer-

ald models, as shown in Figure A.1, Figure A.2, and Figure A.3. In the mean curve plots,

the fitted mean curve from Emerald is represented by a solid red line, accompanied by

95% confidence bands depicted as dotted brown lines. The confidence bands are computed

based on the bootstrap samples outlined in Chapter 5. Additionally, the fitted mean curve

from fdapace is illustrated as a dashed blue line. Through these plots, we can compare

the mean and eigenfunctions between the Emerald and fdapace models. The inclusion of

the confidence bands aids in assessing the uncertainty associated with the estimated mean

curves.

These figures provide a visual representation of the estimated patterns and varia-

tions in the respective biomarkers, o↵ering insights into their longitudinal behavior within

the studied population. The mean curve for these three time-varying covariates appears

to be relatively stable, indicating that over the course of 10 years, there is no significant

overall change in the average levels of glucose, triglycerides, and systolic blood pressure

within the entire population. Regarding the eigenfunctions, the first eigenfunction appears

to be almost constant, suggesting that it captures the random intercept of the time-varying

covariates. On the other hand, the second eigenfunction demonstrates an approximately lin-

ear trend. This implies that the second eigenfunction captures the random slope, indicating

that there may be individual-specific changes in the biomarker levels over time.
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(a) Mean curve

(b) Eigenfunction

Figure A.1: SWAN data: comparison of the fitted and eigenfunction for glucose. The
mean plot shows the fitted mean functions (solid red), pointwise 95% bootstrap confidence
intervals (dotted brown) as well as the fitted mean curve from fdapace (dashed blue).
The eigenfunction plot shows the fitted eigenfunctions from Emerald (solid red) and from
fdapace (dashed blue).

By examining these eigenfunctions, we can deduce that they e↵ectively represent

the random intercept and random slope characteristics of the three time-varying covariates.
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(a) Mean curve

(b) Eigenfunction

Figure A.2: SWAN data: comparison of the fitted mean and eigenfunction for triglycerides.
The mean plot shows the fitted eigenfunctions from Emerald (solid red) and from fdapace
(dashed blue). The eigenfunction plot shows the fitted eigenfunctions from Emerald (solid
red) and from fdapace (dashed blue).
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(a) Mean curve

(b) Eigenfunction

Figure A.3: SWAN data: comparison of the fitted mean and eigenfunction for systolic BP.
The mean plot shows the fitted eigenfunctions from Emerald (solid red) and from fdapace
(dashed blue). The eigenfunction plot shows the fitted eigenfunctions from Emerald (solid
red) and from fdapace (dashed blue).

This information is valuable in understanding the individual variations and trajectories of

glucose, triglycerides, and systolic blood pressure within the studied population.
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Appendix F: Additional simulation results with sample size

equal to 500

We then increase the sample size to be n = 500 instead of n = 200, and report the

bias, and standard deviations of model parameters, including logistic regression coe�cients,

mixture regression coe�cients, and variance parameters. Furthermore, we compare our

results with those of fdapace and lcmm to highlight our capabilities and demonstrate

superior performance.

We follow the same instruction in Chapter 4 to simulate the data with 3 subgroups.

We provide a summary of the mean and standard deviations (SD) for the Integrated Squared

Error (ISE) of the functional estimators, including the mean and eigenfunctions for X1(t)

and X2(t), respectively in Table A.1. In addition, we report the bias and SD of the scalar

parameters, such as the eigenvalues, cross-covariance parameters, and error variance of the

covariate processes, as well as the Relative Mean Squared Error (RMSE) of the Functional

Principal Component (FPC) scores in Table A.1. Table A.1 and Figure A.4 provide further

confirmation that increasing the sample size (n = 500) results in improved accuracy in

the estimation of time-varying covariates. This is evident from the lower levels of bias

and standard deviation observed in these evaluations. We also plot the fitted mean and

eigenfunction for time-varying covariate XXX1 and XXX2 in Figure A.4 and A.5.

Furthermore, we have summarized the results for subgroup classification and ef-

fects. Table A.2 provides a summary of the bias and standard deviations of the model
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Table A.1: Summary of FPCA estimators in the simulation study with n = 500

X1 µ1(t)  11(t)  12(t) ⇠11 ⇠12

Emerald -0.002 (0.281) 0.005 (0.222) -0.001 (0.221) 0.046(0.037) 0.057(0.044)

fdapace -0.015 (0.047) -0.022 (0.053) 0.039 (0.033) 0.258(0.378) 0.359(0.455)

X2 µ2(t)  21(t)  22(t) ⇠21 ⇠22

Emerald 0.003 (0.039) -0.004 (0.045) 0.002 (0.011) 0.135(0.157) 0.151(0.225)

fdapace 0.099 (0.038) 0.163 (0.059) -0.080 (0.061) 0.538(0.116) 0.764(0.144)

(a) Mean (SD) for the ISE of the functional estimators and RMSE of the FPCA scores

Eigenvalues !11 !12 !21 !22

Emerald 0.042 (0.095) 0.072 (0.155) -0.009 (0.102) 0.045 (0.079)

fdapace -1.400 (0.155) -0.849 (0.120) -2.085 (0.062) -1.450 (0.039)

(b) Bias (SD) for the eigenvalues

Variance �21 �22

Emerald 0.024 (0.033) 0.014 (0.036)

fdapace 0.540 (0.260) 3.682 (0.137)

(c) Bias (SD) for the error term in WWW

Cross-Covariance !12,11 !12,11 !12,21 !12,22

Emerald 0.042 (0.152) 0.006 (0.181) 0.073 (0.195) -0.019 (0.089)

(d) Bias (SD) of the cross-covariance parameters

parameters in the logistic regression coe�cients. The bias and standard deviations of the

model parameters in the mixture regression coe�cients are summarized in Table A.3. Last,

table A.4 presents the estimation of variance parameters obtained from both lcmm and

Emerald. Upon careful analysis of the presented tables, it becomes evident that increasing

the sample size has a significant positive impact on both the accuracy and stability of our
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(a) Mean curve XXX1 (b) Mean curve of XXX2

Figure A.4: Fitted mean for time-varying covariates XXX1 and XXX2 in 3-subgroup simulation
study with n = 500. The solid red line plots the true function and dashed blue line plots
out the average of the fitted function and the light gray lines are 200 fitted lines.

Table A.2: Bias (SD) for the logistic regression parameters for the subgroup labels in the
3-subgroup simulation study with n = 500

lcmmO lcmmL Emerald

�01 0.018 (0.178) 0.061 (0.192) 0.012 (0.174)

�z11 -0.018 (0.252) -0.016 (0.254) -0.013 (0.206)

�z21 -0.026 (0.137) -0.030 (0.144) -0.027 (0.141)

�02 0.020 (0.174) 0.054 (0.172) 0.004 (0.152)

�z12 -0.083 (0.349) -0.055 (0.349) -0.007 (0.250)

�z22 -0.003 (0.164) -0.003 (0.170) -0.019 (0.134)

model. In other words, Emerald can lower the bias and standard deviation by increasing

the sample size. As the number of observational data points increases, we observe improve-

ments in terms of precision and consistency in both methods. However, it is still noteworthy

that Emerald consistently outperforms lcmmL, and in scenarios where time constraints

are not a limiting factor, our model’s performance rivals or even surpasses that of lcmmO
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(a) First eigenfunction ofXXX1 (b) Second eigenfunciton of XXX1

(c) First eigenfunction of XXX2 (d) Second eigenfunction of XXX2

Figure A.5: Fitted eigenfunction for time-varying covariates XXX2 in 3-subgroup simulation
study with n = 500. The solid red line plots the true function and dashed blue line plots
out the average of the fitted function and the light gray lines are 200 fitted lines.

without any time limitations. This is exemplified by the fact that the bias in the coe�-

cients of the logistic regression model derived from Emerald is consistently smaller than

that of lcmmO. Furthermore, in this simulation study involving a sample size of n = 500,

Emerald consistently achieved remarkable results in classification. It obtained an average
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Table A.3: Bias (SD) for the mixture regression coe�cients in the 3-subgroup simulation
study with n = 500

lcmmO lcmmL Emerald

�0,1 -0.002 (0.183) -0.066 (0.640) -0.038 (0.196)

�x,11 0.001 (0.012) 0.050 (0.477) 0.006 (0.027)

�x,12 0.003 (0.014) -0.001 (0.024) -0.011 (0.028)

�z,11 0.012 (0.230) -0.016 (0.242) -0.036 (0.212)

�z,12 -0.005 (0.119) 0.011 (0.259) 0.001 (0.108)

�0,2 -0.025 (0.175) 0.263 (1.039) 0.025 (0.188)

�x,21 0.001 (0.018) -0.126 (0.693) -0.009 (0.029)

�x,22 0.002 (0.018) -0.089 (0.728) 0.006 (0.028)

�z,21 0.062 (0.341) 0.002 (0.347) 0.054 (0.401)

�z,22 -0.029 (0.161) -0.048 (0.311) -0.001 (0.141)

�0,3 0.004 (0.172) -0.106 (0.460) -0.020 (0.228)

�x,31 -0.002 (0.017) 0.007 (0.034) -0.006 (0.031)

�x,32 -0.002 (0.019) 0.164 (0.646) -0.001 (0.030)

�z,31 0.020 (0.199) 0.011 (0.482) 0.022 (0.225)

�z,32 -0.003 (0.128) -0.034 (0.189) 0.016 (0.113)

Table A.4: Bias(SD) for the variance parameters in the 3-subgroup simulation study with
n = 500

Method �2
b1 �2

b2 �2
b3 �2✏

lcmmO -0.062 (0.398) -0.319 (0.214) 0.608 (0.398) 0.402 (0.434)

lcmmL -0.421 (0.882) 0.271 (0.018) -0.331 (0.119) 2.886 (0.246)

Emerald -0.076 (0.306) -0.079 (0.316) -0.097 (0.324) 0.468 (0.591)

Adjusted Rand Index (ARI) of 0.9982 with a narrow standard deviation of 0.024 across 200

runs. In comparison, the average ARIs for lcmmO and lcmmL were 0.9963 and 0.9474,

respectively, with higher standard deviations of 0.037 and 0.017. These findings strongly
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support the conclusion that Emerald outperforms lcmm in terms of its classification error

rate.
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Web Appendix A Additional numerical results for 3-subgroup

simulation study

Figures W1, W2, W3, and W4 showcase the estimated mean and eigenfunctions

from the fdapace and our proposed method, EMERALD, in the simulation study described

in Chapter 4. The study was conducted with a sample size of n = 200 and was repeated 200

times. These figures visually depict the outcomes obtained by both methods. The red solid

curve represents the true function, while the brown dashed curve represents the mean of the

estimator. The two blue dotted curves represent the pointwise 2.5% and 97.5% percentiles,

serving as confidence bands. Notably, the confidence bands’ standard errors were computed

from the bootstrap samples, as outlined in Chapter 4.

(a) µ1(t) (b) µ2(t)

FigureW1: Simulation results: the mean along with 95% confidence bands, using fdapace.
In each plot, the solid red line is the true function, the brown dashed line is the mean of
the functional estimator, and the blue dotted lines are the 95% confidence bands.
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(a)  11 (t) (b)  12 (t)

(c)  21 (t) (d)  22 (t)

Figure W2: Simulation results: the eigenfunction along with 95% confidence bands, using
fdapace. In each plot, the solid red line is the true function, the brown dashed line is the
mean of the functional estimator, and the blue dotted lines are the 95% confidence bands.

The mean function plots show that both fdapace and our method are able to fit

well with the true curve. However, the key di↵erences between the two methods can be

observed in the eigenfunction plots. These plots provide compelling evidence that our algo-

rithm consistently produces accurate estimates of the mean and eigenfunctions, showcasing
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(a) µ1 (t) (b) µ2 (t)

Figure W3: Simulation results: the mean curve along with their 95% confidence bands,
using EMERALD. In each plot, the solid red line is the true function, the brown dashed
line is the mean of the functional estimator, and the blue dotted lines are the 95% confidence
bands.

its superior stability when compared to fdapace. The estimated curves closely resemble

the true function, indicating the e↵ectiveness of our proposed method in capturing the un-

derlying patterns. Additionally, the narrower confidence bands associated with our method,

in comparison to those of fdapace, suggest increased stability in the estimation process.

These findings robustly validate the reliability of our algorithm in accurately estimating

time-varying covariates.

In conclusion, the comprehensive analysis of the figures above and the tables pre-

sented in Chapter 4 strongly supports the claim that our method outperforms fdapace in

modeling time-varying covariates. By jointly modeling the trajectories, our approach en-

ables the sharing of information among the covariates, resulting in accurate predictions of

the overall function as well as capturing the underlying patterns and randomness (eigenfunc-

tions, principal component scores) e↵ectively. This advantage of joint modeling contributes
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Figure W4: Simulation results: the eigenfunction along with their 95% confidence bands,
using EMERALD. In each plot, the solid red line is the true function, the brown dashed line
is the mean of the functional estimator, and the blue dotted lines are the 95% confidence
bands.

to the superior performance of our method in accurately characterizing the dynamics of

time-varying covariates.
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Web Appendix B Additional simulation results for mixed ef-

fects under two subgroups

To generate the subgroup simulation setting in accordance with the main pa-

per, we followed the same procedure. The covariate matrix XXX and random e↵ects matrix

WWW were generated using the specified method. The subgroup membership vector LLLi was

generated from a binomial distribution, utilizing the logistic regression model with coef-

ficients ��� = (0.7,�0.3, 1.5)>. Given LLLi, the response vector YYY i was generated from the

mixture regression model (1) with coe�cients ���1 = (2.02, 1.23, 1.67,�1.72,�0.65)> and

���2 = (0.59,�2.60,�0.70, 1.85, 1.68)>. The variance parameters �
2
b,1 and �

2
b,2 were set to 2

and 1.5, respectively, while �
2
✏ was set to 4.

Table W1 presents the bias and standard deviations for the coe�cients of the

logistic regression model in the two-subgroup setting. The table clearly indicates that our

algorithm could predict ��� with the smallest bias stability, even outperforming the true data

in the lcmm package.

lcmmO lcmmL EMERALD

�0 -0.005(0.260) -0.030 (0.277) -0.009(0.257)

�z1 -0.036(0.353) -0.039(0.373) 0.028(0.322)

�z2 -0.024(0.266) -0.015(0.279) -0.027(0.247)

TableW1: Bias (SD) for the logistic regression parameters for the subgroup labels in the
2-subgroup simulation study

In this simulation scenario, EMERALD achieved an average Adjusted Rand Index

(ARI) of 0.9932 with a standard deviation of 0.01 over 200 runs. Conversely, the average
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ARIs for lcmmO and lcmmL were 0.9994 and 0.9380, respectively, with standard devia-

tions of 0.0040 and 0.0341. These findings strongly support the superiority of EMERALD

over lcmm in terms of classification error rate.

Table W2 presents an analysis of the bias and standard deviation of the coe�cients

of the mixture regression model obtained from di↵erent algorithms used in the simulation

study, including our algorithm and lcmm. The results unequivocally indicate that our algo-

rithm outperforms lcmm in terms of bias, even when employing the last observation carried

forward method, which typically yields the highest bias. Table W3 provides a summary

lcmmO lcmmL EMERALD

�0,1 -0.014(0.171) 0.847(0.431) -0.010(0.145)

�x,11 < 0.001(0.005) -0.147(0.048) -0.004(0.015)

�x,12 0.001(0.006) 0.235(0.058) -0.002(0.016)

�z,11 0.031(0.209) 0.067(0.497) -0.011(0.196)

�z,12 0.006(0.146) -0.002(0.295) 0.015(0.121)

�0,2 -0.026(0.127) 0.511(0.295) 0.035(0.214)

�x,21 < 0.001(0.003) -0.244(0.042) -0.002(0.02)

�x,22 -0.001(0.004) -0.098(0.053) 0.021(0.019)

�z,21 0.004(0.178) -0.008(0.396) 0.049(0.236)

�z,22 0.008(0.114) 0.027(0.246) -0.004(0.16)

TableW2: Bias (SD) for the mixture regression coe�cients in the 2-subgroup simulation
study

of the average variances for the random intercept and measurement error, calculated over

200 runs in the simulation study. The estimated variances obtained from our algorithm

exhibit a close correspondence to the true values. This suggests that our method accurately
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captures the inherent variability in the data, highlighting its e↵ectiveness and reliability. In

Method �
2
b1 �

2
b2 �

2
✏

lcmmO -0.080 (0.370) 0.138 (0.263) -0.026 (0.189)

lcmmL -0.454 (0.971) -0.936 (0.619) 0.804 (0.188)

EMERALD -0.092 (0.148) -0.174 (0.181) 0.472 (0.132)

TableW3: Bias(SD) for the variance parameters in the 2-subgroup simulation study

summary, the simulation studies conducted in both the 2-subgroup and 3-subgroup settings,

as well as with sample sizes of n = 200 and n = 500, consistently demonstrate the superior

performance of our proposed method. Our algorithm outperforms all existing packages,

even when time limitations are not imposed. These results a�rm the e↵ectiveness and

e�ciency of our method in handling complex data scenarios and highlight its potential for

practical applications.
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