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To identify genetic variants associated with diabetic
retinopathy (DR), we performed a large multiethnic
genome-wide association study. Discovery included
eight European cohorts (n = 3,246) and seven African
American cohorts (n = 2,611). We meta-analyzed across
cohorts using inverse-variance weighting, with and with-
out liability threshold modeling of glycemic control and
duration of diabetes. Variants with a P value <1 x 107°
were investigated in replication cohorts that included
18,545 European, 16,453 Asian, and 2,710 Hispanic sub-
jects. After correction for multiple testing, the C allele of
rs142293996 in an intron of nuclear VCP-like (NVL) was
associated with DR in European discovery cohorts (P =
2.1 x 107°), but did not reach genome-wide significance
after meta-analysis with replication cohorts. We applied
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the Disease Association Protein-Protein Link Evaluator
(DAPPLE) to our discovery results to test for evidence of
risk being spread across underlying molecular path-
ways. One protein-protein interaction network built from
genes in regions associated with proliferative DR was
found to have significant connectivity (P = 0.0009) and
corroborated with gene set enrichment analyses. These
findings suggest that genetic variation in NVL, as well as
variation within a protein-protein interaction network
that includes genes implicated in inflammation, may
influence risk for DR.

Diabetic retinopathy (DR) is a leading cause of blindness
(1). Established risk factors include longer duration of
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diabetes (DoD) and poor glycemic control (2). Genetic
factors are also implicated, with heritability of 52% for
proliferative DR (PDR) (3,4). Several candidate gene and
genome-wide association studies (GWAS) have been con-
ducted (5-11). Although several polymorphisms have been
suggested to be associated with DR, few have been con-
vincingly replicated (10,12-15).
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There are several reasons why studies have not yielded
consistent findings. The genetic effects are likely modest,
and identification requires large sample sizes. Previous
studies have not consistently accounted for the strongest
two covariates, DoD and glycemic control. Liability thresh-
old (LT) modeling is one way to incorporate these cova-
riates while also increasing statistical power (16). Finally,
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previous genetic studies have largely examined individual
variants. Techniques that examine top GWAS findings
collectively for variants that cluster in biological networks
based on known protein-protein interactions have the
potential to identify variants where there is insufficient
power to detect their individual effects.

The purpose of this study was to identify genetic
variants associated with DR by 1) assembling a large
sample size through inclusion of multiple ethnicities, 2)
incorporating DoD and glycemic control via LT modeling,
and 3) collectively examining variants that cluster in bi-
ological networks.

RESEARCH DESIGN AND METHODS

All studies conformed to the Declaration of Helsinki tenets
and were Health Insurance Portability and Accountability
Act compliant. Written informed consent was obtained
from all participants. Institutional Review Board/Ethics
Committee approval was obtained by each individual
study.

Discovery Sample Description

The discovery sample, encompassing 7 African American
and 8 European cohorts, arose from a consortium of 11 DR
studies for a total of 3,246 Europeans and 2,611 African
Americans (6-8,12,13,17,18). Inclusion criteria for the
discovery stage were 1) type 2 diabetes, and 2) European
or African American ethnicity. Type 2 diabetes was defined
as a fasting plasma glucose (FPG) =126 mg/dL (7.0
mmol/L) or a hemoglobin A;. (HbA;) =6.5% (48
mmol/mol) (19) with onset of the diabetes after 30 years
of age. Table 1 summarizes the DR phenotyping protocols
and covariates by discovery cohort. Phenotyping protocols
have been previously described (4,20-29), and additional
details are in the Supplementary Data.

DR Case-Control Definitions

The analysis plan prespecified four DR case-control defi-
nitions with varying Early Treatment Diabetic Retinopathy
Study (ETDRS) score thresholds for case and control
subjects (Table 2) (30). The primary case-control definition
compared any DR to no DR (ETDRS =14 vs. ETDRS <14,
henceforth referred to as the any DR analysis). There
were three secondary case-control definitions. The first
compared patients with PDR to those without PDR
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(ETDRS =60 vs. ETDRS <60, henceforth the PDR anal-
ysis). The second compared those with nonproliferative
DR (NPDR) or worse to those without DR (ETDRS =30 vs.
ETDRS <14, henceforth the NPDR analysis). The third
compared those with PDR to those without DR
(ETDRS =60 vs. ETDRS <14, henceforth the extremes
of DR analysis). The rationale for the four definitions is
in the Supplementary Data. Table 1 shows the available
samples by cohort and ETDRS score thresholds. Supple-
mentary Table 1 summarizes the mean values for glycemic
control and DoD.

Statistical Analyses

The genotyping platforms and numbers of single nucleo-
tide polymorphisms (SNPs) genotyped are summarized in
Supplementary Table 2. Details about quality control,
imputation, and data filtering are in the Supplementary
Data. Supplementary Fig. 1 provides a flowchart of the
discovery and replication analyses. For the four main case-
control definition analyses, we performed each of the
analyses 1) without incorporating DoD and glycemic con-
trol using EIGENSOFT (16,31) and 2) with LT modeling of
DoD and glycemic control using LTSCORE (16). LT mod-
eling details are in the Supplementary Data. Both the
EIGENSOFT and LTSCORE tests were implemented in
LTSOFT version 2.0 (see Web Resources in the Supple-
mentary Data). For the discovery analyses, we ran principal
components (PC) analysis with EIGENSTRAT using only
typed SNPs and five PCs, separately by ethnicity and case-
control definition (32). We computed association analyses
for each of the seven African American and eight
European cohorts separately and then meta-analyzed
by ethnicity. Meta-analysis was performed using inverse-
variance weighting, accounting for both effective sample
size (defined as 4/[1/N e + 1/Nyonerall) and allele frequency
(33). We also performed multiethnic (Europeans and
African Americans together) meta-analyses for the any
DR and PDR analyses using inverse-variance weighting and
a sensitivity analysis of the any DR meta-analyses in
African Americans and Europeans (see Supplementary
Data). Because we included rare variants in this GWAS,
we also tested the robustness of the top associations (P <
5X 1079 by performing two additional tests: 1) a Fisher
exact test on case or control subjects aggregated across all
cohorts tested per variant and on each cohort separately,
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Table 2—Four case-control subject definitions and the number of samples available for discovery for each definition

Control subjects

Case subjects

Analysis Score n AA n EUR Score n AA n EUR
Any DR (primary analysis) <14 941 1,970 =14 911 1,079
PDR <60 1,514 2,848 =60 1,097 398
NPDR <14 941 1,970 =30 768 644
Extremes of DR <14 941 1,970 =60 1,097 398

AA, African American; EUR, European; Score, ETDRS score range.

and 2) an inverse variance-weighted meta-analysis across
cohorts using the In of the odds ratio (OR) as the effect
size (34) without adjusting for covariates.

P Value Thresholds for Genome-Wide Significance

The P value thresholds for genome-wide significance were
based on empirically determined thresholds for different
ancestral populations that account for the GWAS multiple
testing burden, as well as population-specific linkage dis-
equilibrium (LD) patterns (35):

1. P < 3.24 X 102 for SNPs ascertained in African
ancestry populations

2. P < 5.0 X 108 for SNPs ascertained in European
ancestry populations

3.P < 3.24 X 10~ for SNPs ascertained in multiethnic
meta-analyses

We further corrected these thresholds for additional
multiple testing from examination of four case-control
definitions, each with and without covariate incorporation,
for eight tests total. This yielded the following P value
thresholds for our study:

4. P < 3.75 X 107 for SNPs ascertained in African
ancestry populations

5. P < 6.25 X 10~ ° for SNPs ascertained in European
ancestry populations

6. P < 3.75 X 10~ ? for SNPs ascertained in multiethnic
meta-analyses

We note that correction for eight tests is conservative
because the case-control definitions are not completely
independent. We did not apply further multiple testing
correction for the different ancestries analyzed.

Replication Meta-Analysis

Eight European, eight Asian, and four Hispanic replication
cohorts provided summary statistics on SNPswith P <1 X
107° in the discovery analyses (Table 3). Their phenoty-
ping/genotyping protocols have been previously de-
scribed, and details are in the Supplementary Data
(6-8,12,13,17,18). The rationale for including additional
ethnicities in the replication phase is that high transethnic
genetic correlations have been documented for type 2

diabetes and other traits/diseases and support the use
of multiethnic studies to increase sample size (36). Sup-
plementary Table 3 summarizes the replication cohorts’
mean values for HbA;., FPG, and DoD. Replication was
in silico with existing genotyping. LT modeling was not
applied to the replication cohort analyses. The replication
cohorts used standard covariate adjustment in their re-
gression models. Replication meta-analysis was also
performed using inverse-variance weighting, first individ-
ually by each ethnicity (Europeans, Hispanics, and Asians)
followed by all cohorts combined. Replicated genome-wide
significance had to meet the aforementioned thresholds
after meta-analysis of the discovery and replication results.

Protein-Protein Interaction Analysis of Top GWAS Loci
To identify significantly enriched protein networks among
the loci with the highest statistical evidence for association
with DR, we applied the Disease Association Protein-Protein
Link Evaluator (DAPPLE) to our discovery GWAS (37). It has
been shown that top associated loci, despite not being
genome-wide significant, tend to cluster in biological net-
works (37,38). For this reason, we examined the top 1,000
loci from the discovery GWAS in the two monoethnic
analyses (European and African American) and for each
of the four case-control definition analyses that incorpo-
rated DoD and glycemic control (eight network analyses in
total). Our threshold for significance was therefore P <
0.00625 (0.05 corrected for eight tests). We used the
publically available version of DAPPLE, and the protocol
is outlined in the Supplementary Data. This methodology
has been used successfully with previous GWAS to identify
protein networks with biological relevance (37-39).

Gene Set Enrichment Analysis of DAPPLE Significant
Genes

To further support the protein—protein interaction results
from the DAPPLE analysis, we applied gene set enrichment
analysis (GSEA) using Meta-Analysis Gene-Set Enrichment of
variaNT Associations (MAGENTA) (40) to the set of genes
significantly enriched for protein—protein interactions in the
DAPPLE analysis (details in Supplementary Data).

Type 2 Diabetes and Associated Glycemic Traits Loci
To understand to what extent genetic determination of DR
might reflect enrichment for type 2 diabetes or glycemic
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control genes, we computed a correlation between case
status in the any DR analysis and the sum of the B*risk allele
(for quantitative glycemic traits) or logOR*risk allele (for type
2 diabetes) of the trait-associated SNPs for each cohort and
each trait (see Supplementary Data for details).

RESULTS

Discovery Meta-analysis

Supplementary Fig. 2 shows the PC analysis. We observed
little inflation in the association statistic distribution
(Supplementary Fig. 3), indicating no significant popula-
tion stratification as a confounder. Supplementary Fig. 4
shows the Manhattan plots for the any DR analyses. Sup-
plementary Tables 4-25 show the top 10 SNPs for indepen-
dent loci with the lowest P values for each discovery analysis,
including the sensitivity analyses (full results are available
on the Type 2 Diabetes Knowledge Portal [http://www
.type2diabetesgenetics.org/], both on the downloads page
and fully integrated into the portal modules).

Table 4 shows SNPs that met the traditional nominal
threshold for genome-wide significance of P < 5 X 10~ °
from the discovery analyses. All of the SNPs in Table 4
were either from the PDR or extremes of DR analyses; Fig.
1 shows the QQ and Manhattan plots for the PDR and
extremes of DR analyses. The results for the associations in
Table 4 are shown for each cohort separately in Supple-
mentary Table 26. Results for these SNPs after meta-
analysis with replication samples both combined and
separated by ethnicity are shown in Table 5 and Supple-
mentary Table 27, respectively.

Genome-Wide Significant Finding From the Discovery
Analyses in NVL Gene
Using the corrected significance thresholds, only one SNP
in the discovery meta-analyses met genome-wide signifi-
cance: rs142293996 for the extremes of DR analysis in-
corporating DoD and glycemic control in Europeans (P =
2.1 X 107Y). The association was not significant without
adjusting for covariates based on a Fisher exact test (Sup-
plementary Table 28). This is an intronic variant in the
nuclear VCP-like (NVL) gene, which encodes a member of
the ATPases associated with diverse cellular activities
(AAA) superfamily (41). The NVL gene is widely expressed
in vivo with highest expression in retina (https://www
.proteinatlas.org/ENSG00000143748-NVL/tissue#top).
We tested whether this association was a significant
cis-expression quantitative trait locus (eQTL) in the
Genotype-Tissue Expression (GTEx) Project release v7 (see
Supplementary Data for eQTL analysis details). This var-
iant, rs142293996, lies in the 22nd intron of NVL and is in
LD (+* = 0.62) with variant rs41271487 in the 24th intron
of NVL. rs41271487 is a significant eQTL (P = 6.4 X 1076;
effect size 1.27) in the GTEx spinal cord cervical c-1 tissue,
targeting calpain 2 (CAPN2), a calcium-activated neutral
protease (Supplementary Fig. 5). Common variants in the
intron or regulatory region of CAPN2, 527-576 kb up-
stream of the DR association, are associated with
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Figure 1—Quantile-quantile and Manhattan plots for the PDR and extremes of DR discovery meta-analyses for PDR analysis in African
American participants with LT modeling of DoD and glycemic control (A and B), PDR analysis in European participants with LT modeling of
DoD and glycemic control (C and D), extremes of DR analysis in African American participants with LT modeling of DoD and glycemic control
(E and F), and extremes of DR analysis in European participants with LT modeling of DoD and glycemic control (G and H). The horizontal line in
each of the Manhattan plots indicates the nominal threshold for genome-wide significance (P = 5 x 107%).

variation in serum o-carotene levels (42), a vitamin A
precursor required for sight, supporting a functional
role for this gene. Based on the eQTL analysis, in-
creased expression of CAPN2 is associated with de-
creased risk of DR (Supplementary Fig. 6). CAPN2 is
expressed in the retina (https://www.proteinatlas.org/
ENSG00000162909-CAPN2/tissue).

When examined in the replication analyses (which in-
cluded a more diverse population), the direction of effect

in the replication cohorts for rs142293996 was the same,
but the meta-analysis P value was not genome-wide sig-
nificant (P = 4.10 X 10~°).

Top Finding From the African American Discovery
Analyses

In African Americans, the SNP with the lowest P value
was rs115523882 from the PDR analysis (P = 5.37 X
107%). This was short of the 3.75 X 10~ Y threshold for
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Figure 1—Continued.
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significance in African Americans. We could not reproduce
this finding in the replication cohorts. This variant is
located near the GOLIM4 gene, which helps process
proteins and mediates protein transport. The SNP
rs115523882 specifically changes a motif that is a bind-
ing site for Nlx3, a transcription factor in blood, sug-
gesting it plays a regulatory role. This variant is mainly
present in people of African ancestry (minor allele
frequency [MAF] = 0.0393) and not common in other
ethnic groups, suggesting we may have had insufficient
power to replicate it.

Of note, there was one SNP, rs184340784, suggestively
associated with DR (P = 3.52 X 10™®) in the extremes of

DR analysis without covariates in African Americans
that was not present in our replication cohorts (due to
low MAF) and thus could not be replicated. Neither
rs115523882 nor rs184340784 was analyzed for eQTL
activity in GTEx due to their low MAF (MAF < 0.01 in
GTEx tissues).

Table 6 and Supplementary Table 29 show the discovery
variants with P < 1 X 10~ that achieved a nominal P <
0.05 in the complete replication sample or in one of the
replication ethnicities, respectively, and had the same
direction as the discovery samples. None of these variants
achieved genome-wide significance after discovery and
replication meta-analysis, as defined above.
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Table 5—Replication results for variants with P < 5 x 10~8 (traditional, nominal threshold for genome-wide significance) in the discovery analysis

All Disc + rep OR

rep P

Allrep Allrep Allrep

Disc

Disc
RAF

Disc
REF NEFF

Nearest

Discovery population/LT

modeling

Disc + rep P

(95% Cl)

RAF OR

NEFF

OR

Disc P

gene

RSID

Variants identified in the PDR

discovery analysis

AA/no

8.51 x 1078

0.13 2.89 (1.97, 4.23)
0.18 2.89 (1.99, 4.20)
0.77 0.48 (0.29, 0.79)

0.33

0.20
0.20
0.74
0.82

0.9975
0.9975
0.9900
0.9772

571
571
3,431

3.10
3.10
0.13
3.70

9.42 x 10°°

1,452 0.9721
1,452 0.9721

907
907

A
A
T

GOLIM4

rs115523882
rs115523882
rs139205645

425 x 1078

537 x 10°°

GOLIM4

AAlyes

0.004

3.93 x 1078

0.9907
0.9705

NDUFB3

European/no

0.12

1.08 (0.98, 1.19)

5,883

7.26 X 1072

rs17791,488 NOS2/LYRM9 T

European/yes

Variants identified in the

extremes of DR analysis

AA/no

NA
2.38
1.58
3.78

3.52 x 1078

0.0063
0.9895
0.7615
0.9598

603
523
797
797

C
C
T
T

AJAP1

rs184340784

rs142293996
rs17706,958
rs80117617

410 x 10°®

0.16 2.91 (1.85, 4.57)

0.02

3.23
1.28
1.29

0.9910
0.9828
0.9726

1,229
4,194
3,345

2.10 x 107°

NVL
PDZRN3

European/yes

7.41 x 1078

1.39 (1.24, 1.56)
1.71 (1.30, 2.25)

AA, African American; All rep, all replication cohorts; CHR, chromosome; Disc, discovery; LT, liability threshold; NA, not available; NEFF, effective sample size; RAF, reference allele frequency

3.04 x 1078
in sample; REF, reference allele; Rep, replication; RSID, rs identifier. *None of the replication cohorts were able to provide data for this SNP.

European/yes

1.35 x 1074

0.24

4.04 x 1078

SLC8A1

European/yes
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DAPPLE Results: Protein-Protein Interactions

One protein network from the African American PDR
analysis was significant (P = 0.0009) for average binding
degree within the network (Fig. 2). The aforementioned
top-ranked SNP (rs115523882) could not be included in
the DAPPLE analysis because its nearby gene (GOLIM4) is
not in the protein database. The significant protein net-
work includes genes with primary roles in inflammation
including IFNG, IL22RA1, CFH, and SELL. IFNG encodes
interferon-y, which is highly expressed in ocular tissues
from patients with PDR (43). IL22RA1 encodes the IL-22
receptor, and CFH encodes complement factor H; both
proteins are suspected to play a role in PDR (44,45). SELL
encodes L-selectin, which is expressed at higher levels in
lymphocytes from patients with DR and associated with
increased endothelial adhesion (46). We did not identify
any statistically significant protein networks for any of the
other case-control definitions in African Americans or
Europeans.

MAGENTA Confirmation of DAPPLE Results

We examined the 41 genes in the significant network
identified by the DAPPLE analysis via GSEA using
MAGENTA. The genes showed a significant (16.5-fold)
enrichment of low association P values in the African
American PDR analysis (P < 1 X 1079 (Supplementary
Fig. 7 and Supplementary Table 30) and to a lesser extent
in African American extremes of DR analysis (P = 2 X
1079 (Supplementary Table 30), suggesting new DR asso-
ciations of modest effects in African Americans (Supple-
mentary Table 31). No significant gene set enrichment
was found for the PDR and extremes of DR analyses in
Europeans.

Loci Associated With Type 2 Diabetes and Glycemic
Traits

The results of the correlation analysis between type 2
diabetes/glycemic trait-associated SNPs and DR case
status are shown in Supplementary Table 32. The Z score
for type 2 diabetes was +2.256 (P = 0.024). The corre-
lation coefficient R was positive, indicating that a greater
burden of SNPs that increase type 2 diabetes risk is
correlated with having DR. However, this Z score was
not significant after correcting for the six hypotheses (six
traits) tested.

Previously Associated SNPs From Prior Studies

We extracted results from our discovery meta-analysis for
the variants with the lowest association P values from
previously published DR GWAS or large candidate gene
studies (Supplementary Table 33). There were three var-
iants that were nominally significant (P < 0.05) in our
sample and had the same direction of effect as in the
previously published studies. Two of the variants,
rs9896052 and rs6128, were from previous studies for
which samples overlapped with some samples in our
discovery meta-analysis and therefore do not represent


https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1
https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0567/-/DC1

451

Pollack and Associates

diabetes.diabetesjournals.org

Table 6 —Replication results for variants with nominal significance (P < 0.05) in the combined (Hispanic, African American, and European cohorts) replication meta-analyses

Discovery population/LT modeling RSID Nearest gene  REF* Disc EAF  Disc OR Disc P AllrepOR AllrepP  Disc + rep OR  Disc + rep P
Variants identified in the any
DR discovery analysis
European (Sens)/no rs1394919 PPEF2/NAAA C 0.72 0.73 851 x 10°° 0.91 0.003 0.88 6.35 X 10°°
AA (Sens)/no rs75360147 SLC28A3 T 0.93 2.08 7.07 x 10°° 2.65 0.009 2.17 2.29 X 107”7
European/no rs1508244 HTR1E A 0.98 0.33 3.74 x 10°© 0.92 0.01 0.90 0.002
ME/no rs10432638 UBXN2A C 0.73 0.78 2.60 X 10°° 0.93 0.01 0.89 7.74 X 10°°
EU/no rs150775408 BC031225 C 0.95 1.97 7.24 X 107° 1.27 0.04 1.46 2.54 x 107°
AAlyes rs143894698 GCM1 G 0.98 3.14 462 x 10°° 1.45 0.004 1.58 253 x 107
European/yes rs13006587 ATAD2B G 0.58 0.79 7.52 X 10°° 0.93 0.006 0.92 474 x 1073
European/yes rs73642012 PTPRD C 0.91 0.67 9.58 X 10°° 0.90 0.02 0.87 8.67 X 10°°
Variants identified in the
PDR discovery analysis
Europeans/no rs139921826 PRSS35 G 0.98 0.33 7.92 x 10°° 0.66 0.03 0.62 0.0008
AAlyes rs1414474 Clorfo4 C 0.14 1.62 1.46 X 1077 1.12 0.01 1.19 1.90 X 10°°
AAlyes rs9998354 BTF3P13 T 0.44 0.73 8.74 x 10°° 0.92 0.04 0.87 0.0001
European/yes rs142293996 NVL C 0.99 1.83 114 x 107°° 2.40 0.04 2.29 0.0001
Variants identified in the
NPDR discovery analysis
European/no rs1508244 RN7SL643P A 0.98 0.32 8.13 X 10°° 0.89 0.005 0.87 0.0005
European/no rs7944308 KCNA4 G 0.42 0.71 7.76 X 1077 0.94 0.02 0.90 5.80 X 10°°
Variants identified in the extremes of
DR discovery analysis
AA/no rs74161190 TCERGTL A 0.94 0.32 457 x 10°° 0.40 0.03 0.32 7.16 X 107”7
European/yes rs17706958 PDZRN3 T 0.76 1.58 3.04 x 1078 1.28 0.02 1.39 741 x 1078
European/yes rs10932347 CPS1 A 0.04 0.33 422 x 1077 0.64 0.02 0.55 1.30 X 10°°
AAlyes rs2690028 KAZN (¢} 0.32 0.62 452 x 10°° 0.80 0.03 0.74 1.72 X 10°°
European/yes rs116972715 DSC3 C 0.99 2.60 2.48 X 10°° 3.62 0.03 3.29 1.59 x 10°°
European/yes rs75167957 CTNNA2 (¢} 0.99 3.26 3.36 X 10°© 9.77 0.04 6.34 5.83 X 10°°
AAlyes rs6577631 LOC339862 G 0.86 0.53 3.45 x 10°° 0.89 0.04 0.84 0.0006

AA, African American; All rep, all replication cohorts; Disc, discovery; ME, multiethnic; REF, reference allele; Rep, replication; Sens, sensitivity analysis. “For insertion-deletions, the reference
allele is shown first followed by the alternate allele.
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Figure 2—Protein network from the African American PDR discovery analysis that was significant in the DAPPLE analysis. This significant
protein network includes genes with primary roles in inflammation (IFNG, IL22RA1, CFH, and SELL), protein function/endoplasmic reticulum
function (ADAMT30, ERP44, HSP90B1, SPON1, CNAX, and WFST), catabolic processing/metabolism (PPT1 and ALDH1BT), gene
expression/transcription factor activity (HNRNPH1, TAF4, POLR2E, TCEB1, COMMD1, PLAGL1, THRB, and SIN3A), macromolecule
transport (NUP153 and NUP50), protein localization (SEC67B and SEC61A2), and DNA repair/cell cycle (RBBP8, ATM, and EEF1ET).

independent replication (10,20). Variant rs1399634, orig-
inally found in Chinese patients (P = 2 X 107°), was
nominally significant in our European discovery cohort
(P = 0.0124). Meta-analysis of the original study and our
cohorts was performed using the same method as our
discovery and replication meta-analyses and was short of
genome-wide significance (OR 1.47; P = 9.63 X 1079).

DISCUSSION

To our knowledge, this study represents the largest GWAS
performed for DR. The discovery analysis included 3,246
Europeans and 2,611 African Americans. The replication
analysis included 18,545 Europeans, 16,453 Asians, and
2,710 Hispanics. Despite the relatively large sample size,
we did not identify any individual variants that were
associated at a genome-wide significant level after meta-
analysis with multiethnic replication cohorts. However,
among the most significant results in the African American
PDR analysis, we did identify a statistically significant
enrichment for a network of genes using DAPPLE, which
was corroborated by GSEA using MAGENTA.

In the discovery meta-analyses, several variants from
the PDR and extremes of DR analyses achieved nominal
genome-wide significance of P < 5 X 10~ %, but the only
variant to achieve genome-wide significance after conser-
vative multiple testing correction was rs142293996 in the
European analysis for extremes of DR (P = 2.1 X 1079, 1t
is notable that the variants with the most significant
findings came from the two case-control definitions that
have PDR as their case definition. This is consistent with
the fact that PDR has a higher heritability than overall DR
(4). Although the most strongly associated variants in the
discovery analyses (rs142293996 in NVL in Europeans and
rs115523882 in GOLIM4 in African Americans) did not
reach genome-wide significance with replication, it is still
possible that they do play a role in DR pathogenesis. NVL is
highly expressed in the retina, and the implicated variant is
in LD with an eQTL acting on CAPN2 with functional
implications in neural tissue. The eQTL variant falls in
a binding site of a transcription factor (47). The GOLIM4
variant also has a known regulatory role.

We could not replicate the association with rs142293996
when we used the Fisher exact test, although the Fisher
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exact test did not allow for covariate incorporation. There
is potential for inflated false-positive rate when standard
association methods are applied to rare (e.g., MAF <1%)
variants in imbalanced (e.g., case fraction <10%) case-
control cohorts at modest sample sizes (48). However,
most cohorts in this study did not have case frac-
tion <10%. Larger sample sizes will help determine the
confidence in these top associations.

There was one variant suggestively associated in the
extremes of DR discovery analysis in African Americans,
rs184340784, which was not present in any replication
data sets. The T allele of this variant has a frequency of
0.0023 in African populations and O in European, East
Asian, South Asian, and Hispanic populations in the
1000 Genomes phase 3 panel. In the discovery analysis,
the P = 3.52 X 10 ® was shy of the genome-wide signif-
icance threshold of 3.75 X 10~ for variants discovered
from the African ancestry analyses. This variant is within
an intronic region upstream of adherens junctions—asso-
ciated protein 1 (AJAPI), which has its highest expression
in brain frontal cortex but is also expressed in the retina
(https://www.proteinatlas.org/ENSG00000196581-AJAP1/
tissue).

In the DAPPLE analysis, we did find that the top signals
for the PDR analyses in African Americans analysis were
enriched for a biologic network. The advantage of DAPPLE
is that it can identify a protein pathway that may not be
evident solely from the primary individual variant GWAS.
The presence of an underlying network among the top loci
suggests there are likely true associations within top
findings that have yet to reach genome-wide significance
due to limited power. Multiple pathways including in-
flammatory pathways are implicated by this network. To
confirm biological significance, these results will need to be
followed up with functional in vitro studies.

The DAPPLE results were corroborated by the
MAGENTA GSEA in the African American PDR and extremes
of DR analyses. This network of genes, however, was not
enriched for in Europeans. This could either be due to
technical differences (e.g., the number of African American
cases is approximately threefold larger than the number of
European cases) or due to biological reasons. For example,
we found that the allele frequencies of the most significant
variant per gene for 40% of these protein-interacting genes
are rare in Europeans (MAF <0.2%), whereas they are
common in African Americans (MAF >1%), according to
the Genome Aggregation Database (see Web Resources in
the Supplemental Data).

In the analysis between type 2 diabetes/glycemic
trait SNPs and DR case status, only type 2 diabetes
variants were significantly associated with DR prior to,
but not after, multiple testing correction. One previous
study examined aggregate effects of 76 type 2 diabetes-
associated variants in Asian patients (49). Participants
in the top tertile of type 2 diabetes risk score were
2.56-fold more likely to have DR compared with lowest
tertile participants. Our study’s result showed the same
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direction of effect as in the prior study, with type 2 dia-
betes risk-raising alleles increasing DR risk. The prior
study did not examine glycemic traits. Our inability to
detect a correlation for glycemic traits may be due to
the small amount of glycemic variance captured by these
variants. In European patients, HbA;. SNPs explain ~5%
of HbA, . variance (50).

We were unable to replicate findings from previous
studies (6-8,12,13,17,18). We did have the same direction
of effect in our European discovery sample for rs1399634
(LRP2), which was initially reported in an Asian popula-
tion. However, the meta-analysis was shy of genome-
wide significance. The overall lack of replication of
previous reports’ findings is not surprising, given the
heterogeneity in phenotyping, case-control definitions,
ethnicities, and analytic approaches, although we did try
to match our case-control definitions to the original
studies’ definitions.

There are many potential reasons why we were unable
to identify replicable, significant associations from our
discovery GWAS. First, the genetic risk in DR development
may be quite small in proportion to the nongenetic risk
factors. Therefore, even though we assembled the largest
sample, it may not be sufficient to detect very modest
effects. There was heterogeneity between the discovery
and replication cohorts that could contribute to inability to
replicate. The discovery cohort included individuals with
type 2 diabetes, whereas the replication cohorts included
individuals with either type 1 or type 2 diabetes. It is not
known definitively whether genetic variants for DR differ
between type 1 and type 2 diabetes. Clinically, DR phe-
notypes are similar in patients with type 1 and type
2 diabetes, so we hypothesize that at least some of the
genetic risk is shared. However, we cannot be certain of
this, and heterogeneity of diabetes type might have con-
tributed to lack of replication. The discovery cohort
included individuals who were of either European or
African American descent, whereas the replication
cohorts included individuals of European, Hispanic, or
Asian descent. This heterogeneity could also have led to
lack of replication. Europeans were represented in both
the discovery and replication phases, but even our Eu-
ropean discovery analysis has limited power. Power cal-
culations show that our discovery GWAS for the any DR
analysis in Europeans had 100% power to detect a variant
with an MAF of 0.40 with a heterozygous genotypic
relative risk of 1.5 with a P value <5 X 1078, whereas
the power decreases to 5% for the same variant with
genotypic relative risk of 1.2.

We attempted to harmonize the phenotypes as much as
possible, but there were some limits to complete harmo-
nization, particularly for cohorts with limited-field or no
photography. Misclassification of participants because of
limited DR ascertainment could have biased the results to
the null. Although we did use LTSCORE modeling to
account for DoD, we may have had some misclassification
bias because we did not have a minimum DoD for control
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subjects (i.e., some control subjects could have developed
DR with longer DoD), which would also bias our result
toward the null. We only had one HbA; . measure. Re-
peated HbA;  measures would reflect long-term glycemia
more accurately.

In summary, we have executed the largest GWAS of DR
to date. There were no genome-wide significant findings,
but analysis of protein—protein interaction networks point
to possible candidate pathways for PDR in African Amer-
icans. Future studies examining DR genetics would benefit
from a greater international collaboration encompassing
larger samples that would allow strict case-control defi-
nitions that define a minimal DoD without sacrificing
power. Furthermore, these studies should focus case def-
initions on the advanced forms of DR—PDR and diabetic
macular edema—and incorporate more refined phenotyp-
ing, particularly optical coherence tomography for diabetic
macular edema. Finally, whole-genome sequencing might
reveal a role for very rare variants, particularly for the DR
phenotypic extremes.
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