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Oxygenation influences xylose fermentation 
and gene expression in the yeast genera 
Spathaspora and Scheffersomyces
Katharina O. Barros1,2,8   , Megan Mader1, David J. Krause1,2, Jasmyn Pangilinan3   , Bill Andreopoulos3,4   , 
Anna Lipzen3   , Stephen J. Mondo3,5,6   , Igor V. Grigoriev3,7   , Carlos A. Rosa8   , Trey K. Sato1*    and 
Chris Todd Hittinger1,2*    

Abstract 

Background  Cost-effective production of biofuels from lignocellulose requires the fermentation of d-xylose. Many 
yeast species within and closely related to the genera Spathaspora and Scheffersomyces (both of the order Serinales) 
natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumu-
lation of xylitol.  Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps 
of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydroge-
nase (XDH) generally uses NAD+ to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance 
is thought to be particularly consequential in hypoxic or anoxic environments.

Results  We screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified 
both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofac-
tor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabo-
lism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most 
species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept 
electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related 
to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. 
Finally, we expressed XYL genes from multiple Scheffersomyces species in a strain of Saccharomyces cerevisiae. Recom-
binant S. cerevisiae expressing XYL1 from Scheffersomyces xylosifermentans, which encodes an XR without a cofactor 
preference, showed improved anaerobic growth on xylose as the primary carbon source compared to S. cerevisiae 
strain expressing XYL genes from Scheffersomyces stipitis.

Conclusion  Collectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due 
to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression 
plays a major role in response to oxygen levels. We have also identified the yeast Sc. xylosifermentans as a potential 
source for genes that can be engineered into S. cerevisiae to improve xylose fermentation and biofuel production.
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Introduction
Xylose is the most abundant pentose that comprises 
hemicellulose in plants; therefore, robust microorgan-
isms that can ferment this sugar are required for profit-
able biofuel production from lignocellulosic materials [1, 
2]. The budding yeast Saccharomyces cerevisiae is widely 
used in biotechnological applications and is one of the 
most understood model microorganisms [3, 4]. However, 
S. cerevisiae lacks certain traits that limit its usefulness 
in lignocellulosic biofuel production, prompting some to 
investigate other yeast species as alternative biocatalysts. 
For example, S. cerevisiae does not have the ability to fer-
ment xylose [5, 6], while several non-conventional yeast 
species do so remarkably well [7].

Species belonging to the genera Spathaspora and Schef-
fersomyces (order Serinales under a recently proposed 
taxonomy [8], formerly the CUG-Ser1 major clade [9]) 
are known for their association with insects and their 
habitats, such as decomposing wood, and by their natu-
ral ability to assimilate and/or ferment xylose [10–12]. 
Spathaspora passalidarum, Scheffersomyces stipitis (syn. 
Pichia stipitis), Scheffersomyces segobiensis, Scheffersomy-
ces shehatae, Scheffersomyces coipomoensis, and Schef-
fersomyces ergatensis were the first members assigned 
to their respective clades [13, 14]. Sp. passalidarum and 
Sc. stipitis have also been used as sources of genes that 
have been engineered in S. cerevisiae to confer the abil-
ity to ferment xylose [15–17]. These non-conventional 
yeasts harbor three genes that encode enzymes for xylose 
metabolism: XYL1, which encodes xylose reductase 
(XR) for the reduction of xylose to xylitol; XYL2, which 
encodes xylitol dehydrogenase (XDH) for the conver-
sion of xylitol to xylulose; and XYL3, which encodes 
xylulokinase (XK) for the phosphorylation of xylulose to 
xylulose-5-phosphate [18]. The genomes of most stud-
ied xylose-fermenting species contain an XR that prefer-
entially utilizes NADPH as its primary cofactor and has 
lower affinity for NADH, while the XDH is strictly NAD+ 
dependent [19–21]. A commonly articulated hypothesis 
is that different cofactor preferences lead to an imbalance 
during xylose catabolism; specifically, xylitol accumulates 
in anoxic environments or oxygen-limited conditions 
because little or no NAD+ can be regenerated without 
sufficient oxygen to act as a terminal electron acceptor 
[15, 22].

Some yeast species have adopted genetic mecha-
nisms that manage cofactor imbalances during xylose 

catabolism. Unlike Sc. stipitis, Sp. passalidarum bears 
two homologs of XYL1, which are named XYL1.1 and 
XYL1.2. The first one encodes an XR with NADPH 
affinity, while the enzyme encoded by the second 
homolog prefers NADH over NADPH [15]. Inter-
estingly, xylose metabolism in this species is driven 
toward ethanol production, instead of xylitol accumu-
lation, even at low aeration [23, 24]. Indeed, mutating 
the XR to prefer NADH over NADPH or inserting Sp. 
passalidarum XYL1.2 increases the ethanol produc-
tivity and alleviates cofactor imbalance in S. cerevisiae 
[15, 25, 26]. In addition to enzyme specificity, expres-
sion of the XYL genes, particularly XYL2, in S. cerevi-
siae has been observed to impact xylose utilization, as 
higher expression led to more efficient xylose fermenta-
tion [16, 27]. The XR:XDH expression ratios have also 
been suggested to impact xylitol accumulation and the 
yield of ethanol produced [28]. Beyond the first steps of 
xylose metabolism, the overexpression of genes related 
to the non-oxidative phase of the pentose phosphate 
pathway (PPP) has also been shown to positively influ-
ence the growth rate on xylulose [29]. Although these 
factors seem to be important for xylose metabolism, 
genetically modified S. cerevisiae strains still cannot 
ferment xylose at rates comparable to glucose [5, 30, 
31]. The presence of a complete, integrated XYL path-
way alone is not sufficient for xylose assimilation and/
or fermentation by S. cerevisiae [27, 32], suggesting that 
other genetic and regulatory mechanisms are required 
for efficient xylose metabolism. For this reason, inves-
tigations of native xylose-fermenting yeast species may 
provide novel strategies to overcome this problem in S. 
cerevisiae, which has impeded bioenergy research for 
decades.

The overall aims of this study are to understand how 
some species belonging to the genera Spathaspora and 
Scheffersomyces can efficiently ferment xylose into etha-
nol, why other species incompletely catabolize the pen-
tose and accumulate xylitol, and how oxygenation can 
impact these outcomes. Although several members of 
these genera have been described in the taxonomic lit-
erature in recent years, little physiological information 
is available for most of them, and most earlier studies 
have been confined to Sp. passalidarum and Sc. stipitis. 
Our data show that xylose metabolism for species from 
the order Serinales is highly plastic and that oxygena-
tion has a broad effect on the gene expression of xylo-
lytic and interacting pathways.
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Results
Scheffersomyces and Spathaspora switch ethanol 
production to xylitol or glycerol production 
during respiration
Species belonging to the order Serinales, particularly 
members of the genera Scheffersomyces and Spathas-
pora [33], are known to harbor the uncommon ability 
to ferment xylose. We first determined the quantities of 
metabolites that these species produced under moderate 
oxygen-limited growth conditions with xylose as the pri-
mary carbon source (see Methods). Ethanol and xylitol 
were the major metabolites produced by Spathaspora 
and Scheffersomyces species during xylose fermentation, 
while glycerol was produced less frequently. We refer to 
ethanol and xylitol producers for species that primarily 
excreted these metabolites (based on yields) under mod-
erate aeration in unbaffled shake flasks (SF). The titers, 
productivity rates, and yields related to the consumption 
of d-xylose and the production of biomass, ethanol, and 
xylitol under moderate and high aeration conditions are 
summarized in Additional file 1.

The species that produced ethanol under oxygen-
limited conditions (41.7% of the yeasts tested) were 
Scheffersomyces xylosifermentans, Sc. parashehatae, Sc. 
virginianus, Sc. shehatae, Sc. stipitis, Sc. illinoinensis, Sc. 
cryptocercus, Spathaspora arborariae, Sp. passalidarum, 
and Sp. gorwiae. Remarkably, Sc. xylosifermentans, Sc. 
parashehatae, and Sp. passalidarum consumed all the 
xylose and reached maximum titers and yields of etha-
nol within 24 h of fermentation. After this time, the spe-
cies consumed the ethanol. The xylitol producers (45.8%) 

included Scheffersomyces coipomoensis, Sc. insectosa, Sc. 
amazonensis, Sc. quercinus, Sp. brasiliensis, Sp. suhii, Sp. 
roraimanensis, Sp. girioi, Sp. hagerdaliae, Sp. xylofermen-
tans, and Candida (Spathaspora) materiae. Except for 
the production of ethanol by Sc. amazonensis, Sc. coipo-
moensis, and C. materiae, the yield and productivity of 
xylitol surpassed ethanol production, and these species 
accumulated the highest titers of xylitol compared to 
other xylitol producers. Out of the 24 species of Spathas-
pora and Scheffersomyces tested, three were not capable 
of fermenting xylose and are not visualized in Fig. 1: Sc. 
spartinae and Sc. gosingicus showed minimal growth and 
modest consumption of sugar with no production of any 
metabolite examined, while Sc. ergatensis did not grow.

To verify the impact of oxygenation on xylose usage 
by Spathaspora and Scheffersomyces species, we also 
tested the species in baffled flasks (BF). This condition 
increases the volumetric mass transfer coefficient of oxy-
gen (kLa), which is a parameter that determines the rate 
at which a gaseous compound can transfer between the 
gas and liquid phases (Li et  al., 2013). Using an oxygen 
meter, we determined that the dissolved oxygen level in 
BF (4.74  mg L−1) was nearly double the oxygen present 
in SF (2.63  mg L−1). Although respiration dominated 
fermentation under high aeration, multiple species still 
fermented, while several species produced different pri-
mary metabolites in BF (Fig.  1). Sc. xylosifermentans, 
which presented high consumption of xylose and etha-
nol yields in SF, accumulated xylitol under high aeration 
and it did not consume xylose completely in 72  h. Sp. 
passalidarum produced glycerol, instead of ethanol, and 
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Fig. 1  Yeast species from the order Serinales generate different metabolic end-products based on oxygen levels. Production of ethanol, xylitol, 
and/or glycerol by species of Scheffersomyces and Spathaspora genera under moderate (shake flask—SF) and high (baffled flask—BF) aeration 
conditions. Colored squares: metabolite(s) mainly produced by each species based on yields. Gray squares: the species produced low yields or did 
not produce the metabolite. Complete data are in Additional file 1
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the consumption of xylose was delayed in BF. For some 
species, especially xylitol producers, oxygen increased 
the rate of xylose utilization, and xylose was consumed 
faster under high aeration than moderate oxygen-lim-
ited conditions. Figure  2 shows the distinction between 
ethanol producers (Sp. passalidarum and Sc. xylosifer-
mentans) and xylitol producers (Sc. coipomoensis and Sc. 
amazonensis). In contrast to the former two species, Sc. 
coipomoensis and Sc. amazonensis had slightly enhanced 
xylose consumption and produced ethanol, instead of 
xylitol, under high aeration. Even so, Sc. coipomoensis 
and Sc. amazonensis produced more biomass under these 
conditions, which limited their ethanol production rela-
tive to the ethanol producers in SF.

For all the species studied here, the increased oxy-
gen levels in BF favored the production of cell biomass. 
With greater oxygen availability in BF, we expected that 
the metabolism would be directed mainly toward cel-
lular respiration. In general, the yeasts produced higher 
end-product (ethanol/xylitol) titers in SF compared to 

BF. Despite the xylitol production by the ethanol produc-
ers, this result suggests that most of the carbon was con-
verted into carbon dioxide (CO2) in BF.

Most species with multiple XYL1 homologs accumulate 
xylitol under moderate and high aeration
Recently, a study reported the presence of multiple 
homologs of XYL1 in Candida intermedia, which har-
bors three XYL1 genes, one of which (called XYL1.2) 
encodes an XR with higher affinity for NADH [19]. Like 
the XYL1.2 from Sp. passalidarum, C. intermedia XYL1.2 
displays dual cofactor specificity [15, 19]. A search for 
homologs across the order Serinales showed that Can-
dida blattae, Meyerozyma carpophila, Me. guilliermon-
dii, and Me. caribbica also have more than one XYL1 
homologs. To determine whether these species ferment 
xylose as efficiently as Sp. passalidarum and to investi-
gate the influence of multiple XYL1 homologs on xylose 
metabolism, we tested them, as well as C. intermedia, 
during growth in YPX (1% yeast extract, 2% peptone, 
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Fig. 2  Scheffersomyces xylosifermentans and Spathaspora passalidarum ferment xylose into ethanol at high yield and titer. Consumption of xylose 
and production of biomass, ethanol, xylitol, and glycerol by Sc. xylosifermentans, Sp. passalidarum, Scheffersomyces amazonensis, and Scheffersomyces 
coipomoensis under moderate (shake flask—SF) and high (baffled flask—BF) aeration conditions. Error bars indicate the standard deviation 
from the three biological replicates
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5% xylose) under moderate and high aeration. Xylose 
was completely consumed by these strains under high 
aeration, while a significant amount of xylose remained 
unused under moderate conditions. These results sug-
gested that xylose utilization by these closely related 
species was highly dependent on oxygen. All the species 
outside of the Scheffersomyces and Spathaspora clades 
accumulated xylitol in both conditions (Additional file 2). 
Although the yield of xylitol surpassed the yield of etha-
nol produced during moderate aeration by C. interme-
dia, it was the only species able to achieve a substantial 
titer of ethanol. Its fermentative capability may be due to 
the presence of an enzyme that favors the use of NADH. 
However, the cofactor preferences of the enzymes 
encoded by the homologs of XYL1 from the other species 
are not known.

Xylose reductase from Scheffersomyces xylosifermentans 
has dual cofactor affinity
Xylitol accumulation during metabolic conversion of 
xylose has been proposed to result from imbalanced 
cofactor usage by XR and XDH. To determine the cofac-
tor preference of the enzymes in the first steps of xylose 
metabolism, we measured the specific activity of XR and 

XDH from ethanol-producing Sp. passalidarum and Sc. 
xylosifermentans, as well as from xylitol-producing Sc. 
amazonensis and Sc. coipomoensis, in SF and BF (Fig. 3A). 
The rationale for selecting Sc. xylosifermentans, Sc. coipo-
moensis, and Sc. amazonensis was that they harbor a 
single homolog of the XYL1 gene, and they exhibited 
distinct phenotypes (ethanol versus xylitol production) 
under the tested conditions (Fig.  3B). In SF, XR of Sc. 
coipomoensis and Sc. amazonensis utilized NADH, but 
we observed greater XR activities with NADPH (P < 0.05) 
(Fig. 3A). On the contrary, there were no significant dif-
ferences in Sc. xylosifermentans XR activities between 
the two cofactors. This result is interesting because, 
among these species, Sc. xylosifermentans showed the 
highest consumption of xylose in SF. In BF, the cofactor 
preferences of the enzymes were not significantly differ-
ent, which was expected given the presence of a single 
homolog of XYL1.

Previous research showed that XR activities from Sp. 
passalidarum utilized both NADH and NADPH with 
higher activity for NADH under moderate oxygen-
limited conditions and higher activity for NADPH in 
high aeration [15, 23]. Our results were consistent with 
those previous observations: Sp. passalidarum XR 
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significantly preferred NADH over NADPH (P < 0.05) 
in SF and significantly preferred NADPH (P < 0.05) in 
BF. This switch in cofactor preference could have been 
enabled by the differential regulation of the two distinct 
XYL1 homologs. This species also has two homologs of 
XYL2 [34], but there is no data available in the literature 
showing the preference of XDH from each homolog. Our 
results revealed that XDH was strictly NAD+ dependent 
not only for Sp. passalidarum, but for all the four spe-
cies tested. Low activities with NADP+ occurred for Sc. 
xylosifermentans and Sc. coipomoensis, but these were 
minimal compared to the activities with NAD+ (Fig. 3A). 
For species that possess NADPH-preferring XRs, the 
exclusive utilization of NAD+ by XDH could potentially 
hinder the conversion of xylitol to xylulose under oxygen-
limiting conditions, resulting in xylitol accumulation due 
to the previously proposed redox imbalance hypothesis 
[35, 36]. Nonetheless, the xylitol bottleneck observed in 
Sc. xylosifermentans with high aeration seems to require 
a different explanation because our enzyme assays sug-
gested that its pathway was more redox balanced due to 
its NADH-utilizing XR.

Expression of genes related to xylose metabolism is highly 
affected by oxygen
To determine whether oxygen levels (SF compared to 
BF) affected gene expression in a redox-independent way 
that could impact xylose-to-ethanol flux, we sequenced 
mRNA by taking samples in mid-log phase from the same 
species used in the enzyme assays. After analyzing the 
data and filtering the results with specific thresholds (see 
Methods), we identified 2263, 2546, 2111, and 741 dif-
ferentially expressed genes (DEGs) for Sp. passalidarum, 
Sc. xylosifermentans, Sc. coipomoensis, and Sc. amazon-
ensis, respectively. This differential expression analysis 
showed that xylose metabolism was highly affected by 
oxygenation. The genes encoding the first three steps of 
the xylose catabolism pathway were upregulated in SF 
(relative to BF) for all species, except for Sc. coipomoen-
sis XYL2, which was not differentially expressed. For Sp. 
passalidarum, XYL1.1 and XYL2.2 were downregulated 
in SF compared to BF, but XYL1.2 (the homolog that 
encodes the XR with NADH affinity) and XYL2.1 were 
upregulated. Interestingly, XYL2 was among the 15 most 
upregulated genes in SF in Sc. xylosifermentans.

Figure  4 shows the DEGs in key pathways from the 
comparison of SF and BF. Genes related to the non-
oxidative shunt of the PPP, such as TKL1 and TAL1, 
were also upregulated in SF in ethanol producers under 
moderate aeration, but there were no DEGs for xylitol 
producers related to those genes. From the oxidative por-
tion of the PPP, which is not essential for xylose catabo-
lism, some genes, such as SOL1, GND1, and RPE1, were 

downregulated in Sc. coipomoensis. Outside of the PPP, 
genes that include TPI1, PDC1, PGK1, GPM1, and ADH1 
were also upregulated in SF only in ethanol producers. 
ADH1 and ADH2 are two genes related to ethanol pro-
duction and consumption in Sc. stipitis [37, 38]. While 
ADH1 was differentially expressed only in ethanol pro-
ducers, ADH2 was also upregulated in xylitol produc-
ers and was the highest DEG in Sc. xylosifermentans. 
Although the ethanol producers upregulated key genes 
related to xylose metabolism in SF, the genes that were 
upregulated or downregulated in the four species were 
enriched in biological processes, such as metabolic and 
carbohydrate metabolic processes (Fig. 5). These biologi-
cal processes, along with electron transport, likely have 
important roles that affect the observed phenotypes, 
suggesting that relevant pathways and genes related to 
metabolism were highly affected in the conditions tested.

XYL genes from Scheffersomyces xylosifermentans enhance 
anaerobic xylose fermentation by Saccharomyces cerevisiae
Our phenotypic results showed that Sc. xylosifermentans 
rapidly fermented xylose to ethanol, while Sc. coipomoen-
sis accumulated high titers of xylitol. To test the possibility 
that the XR and XDH enzymes from Sc. xylosifermentans 
would enable greater xylose fermentation than those of 
Sc. coipomoensis enzymes, we used CRISPR-Cas9 to re-
engineer a strain of S. cerevisiae that expresses Sc. stipitis 
XYL1, XYL2, and XYL3. SstipitisXYL1 and SstipitisXYL2 
were replaced with the corresponding genes from Sc. 
xylosifermentans (SxylosiXYL1 and SxylosiXYL2) and Sc. 
coipomoensis (ScoipXYL1 and ScoipXYL2). We hypoth-
esized that the modified S. cerevisiae would grow faster 
anaerobically with Sc. xylosifermentans XYL1 because 
this XR enzyme lacked a cofactor preference (Fig. 3). In 
contrast, this would not be expected for the strain with 
XYL1 from Sc. coipomoensis or for the original paren-
tal strain containing SstipitisXYL1. Indeed, the strain 
expressing SxylosiXYL1 and SxylosiXYL1/XYL2 grew 
rapidly under anaerobic conditions compared to the 
strain SstipitisXYL1/XYL2/XYL3 (P < 0.05), while the 
strains expressing ScoipXYL1 alone or ScoipXYL1/XYL2 
presented an inferior growth profile (P < 0.05) to the 
strain containing SstipitisXYL1/XYL2/XYL3 (Fig. 6A). Sc. 
stipitis showed modest anaerobic growth with very lim-
ited production of ethanol or accumulation of intermedi-
ates (Additional file 3). This result is interesting because 
the Sc. stipitis XR can use both NADH and NADPH, 
but it has a preference for the latter [39]. Surprisingly, 
Sc. xylosifermentans grew anaerobically and produced 
ethanol, but it did not excrete xylitol (Fig. 6A–D). Along 
with the other species and engineered strains, it also did 
not anaerobically produce glycerol, which is produced 
by S. cerevisiae under anoxic conditions to alleviate the 
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cytosolic redox balance [40]. Even though the replace-
ment of Sc. stipitis XYL genes with SxylosiXYL1/XYL2 
improved xylose fermentation to ethanol by S. cerevisiae 
and enabled anaerobic growth, the mutants still excreted 
xylitol (Fig. 6D). This result contrasts what we observed 
natively with Sc. xylosifermentans, which did not excrete 
xylitol in anoxic conditions.

Despite employing ATP, instead of NAD(P)H, as a 
cofactor for the conversion of xylulose to xylulose-5-P, 
the xylulokinase enzyme encoded by XYL3 might con-
tribute to xylitol accumulation due to the reversible 
nature of the previous reaction that generates xylulose 
from xylitol [41] (Fig.  4). We hypothesized that XYL3 
could also affect xylitol accumulation, so we also engi-
neered a strain of S. cerevisiae that expressed Sc. xylosi-
fermentans XYL3. Although this strain still accumulated 
xylitol, ethanol production, xylose consumption, and 

growth by S. cerevisiae with SxylosiXYL1/XYL2/XYL3 
were generally slightly improved compared to the strains 
carrying SxylosiXYL1 and SxylosiXYL1/XYL2 (P < 0.05), 
which suggests that this gene is also more active than Sc. 
stipitis XYL3 (Additional file 3).

Finally, we confirmed that the XR and XDH enzymes 
maintained their predicted co-factor preferences when 
expressed in S. cerevisiae by performing enzymatic 
assays using whole-cell lysates from the S. cerevisiae 
strains engineered with SxylosiXYL1/SxylosiXYL2 or 
ScoipXYL1/ScoipXYL2. Although the activities were 
lower compared to the native activities of XR in the 
donor species, XR encoded by SxylosiXYL1 in strain 
GLBRCY1847 (NADH: 1.97 ± 0.01 U mg−1; NADPH: 
2.15 ± 0.15 U mg−1 P > 0.05) still had fairly equal pref-
erences between cofactors, while the XR encoded 
by ScoipXYL1 in GLBRCY1850 showed a preference 

Fig. 4  Several genes related to xylose fermentation were upregulated only for ethanol producers at lower oxygenation. Xylose metabolism 
and related pathways. Dashed lines correspond to the < -1 and > 1 confidence intervals for the log2-fold change from RNA-Seq analysis (moderate 
aeration/high aeration). Asterisks indicate genes that did not exhibit differential expression. Positive and negative values indicate upregulated 
and downregulated genes, respectively, and the colors are associated with the species as shown in the right side of the figure. Protein products 
encoded by each gene: HXK—hexokinase; PGI1—phosphoglucose isomerase; PFK—phosphofructokinase; FBA1—fructose 1,6-bisphosphate 
aldolase; TPI1—triose phosphate isomerase; TDH—glyceraldehyde-3-phosphate dehydrogenase; PGK1—3-phosphoglycerate kinase; GPM1—
phosphoglycerate mutase; ENO—enolase; PYK1—pyruvate kinase; PDC1—pyruvate decarboxylase, ADH1/2—alcohol dehydrogenase; ALD6—
aldehyde dehydrogenase; GPD1—glycerol-3-phosphate dehydrogenase; GPP1—glycerol-3-phosphate phosphatase; ZWF1—glucose-6-phosphate 
dehydrogenase; SOL—6-phosphogluconolactonase; GND1—6-phosphogluconate dehydrogenase; RKI1—ribose-5-phosphate ketol-isomerase; 
RPE1—d-ribulose-5-phosphate 3-epimerase; TKL1—transketolase; TAL1—transaldolase; XYL1—xylose reductase; XYL2—xylitol dehydrogenase, 
and XYL3—xylulokinase. Created with BioRender.com [75] with license number EN2651FNZW
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for NADPH (NADH: 0.63 ± 0.05 U mg−1; NADPH: 
1.18 ± 0.03 U mg−1, P < 0.05). Xylitol dehydrogenase activ-
ity was high for NAD+ in both GLBRCY1847 (6.69 ± 0.29 
U mg−1) and GLBRCY1850 (4.24 ± 0.68 U mg−1), and no 
activity was detected with NADP+.

Discussion
To better understand the abilities of yeasts from the 
order Serinales to metabolize xylose, we quantified the 
metabolites produced by several species cultured in rich 
medium with xylose as the primary carbon source under 
high and moderate aeration conditions. Ethanol produc-
ers and xylitol producers were both identified. Most of 
the yeasts tested fermented xylose, but fewer than half 
primarily produced ethanol under moderate aeration. 
Instead, most yeasts mainly produced xylitol in the con-
ditions tested. Xylitol, an intermediate of xylose catabo-
lism, is excreted by several species when a bottleneck 
in oxidation to xylulose occurs. Accumulation of xylitol 

in the extracellular medium was believed to occur due 
to the different XR and XDH cofactor requirements, 
which leads to cofactor imbalance under oxygen-limited 
(including moderate aeration) or anoxic conditions [15, 
42–44]. Under these conditions, NADH accumulates, 
and NAD+ levels fall. Here, we unexpectedly observed 
that several species accumulated xylitol when sufficient 
oxygen was available, including species that were among 
the best ethanol producers in moderate oxygen-limiting 
conditions (see Figs. 1 and 2, Additional file 1). This result 
strongly suggests that the different cofactor requirements 
by XR and XDH are not the sole issue limiting xylose 
fermentation.

An important question raised by our fermentation 
experiments was why the top xylose-fermenting species, 
Sc. xylosifermentans, showed similar or better xylose 
fermentation than that of Sp. passalidarum in moderate 
aeration, even though the former has a single homolog 
of XYL1, while the latter has two homologs. Enzymatic 
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Fig. 5  Metabolic and carbohydrate metabolic processes are highly affected by oxygenation. Enrichment analysis for Sc. xylosifermentans, Sc. 
coipomoensis, Sc. amazonensis, and Sp. passalidarum. On the right are the biological processes enriched in the upregulated gene list, while those 
the left side are enriched in the downregulated gene list (moderate aeration/high aeration)
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assays were conducted to determine the activities and 
cofactor preferences of XR and XDH in each condition 
for key species. Assuming that redox imbalance primar-
ily impacted xylose fermentation, our initial hypothesis 
was that the enzyme XR from species with high meta-
bolic activity might present the same features as the XR 
encoded by XYL1.2 from Sp. passalidarum. In contrast, 
our findings revealed that the enzymes of all the four 
species could use both NADH and NADPH as cofac-
tors (Fig.  3A), which was previously reported for Sc. 
stipitis [39]. The Sc. coipomoensis XR showed significant 
activity with NADH under moderate and high aeration 
conditions, but it still had a preference for NADPH. An 
NADPH-dependent XR was also present in Sc. amazon-
ensis, a species that also accumulated xylitol. Surprisingly, 

the XR of Sc. xylosifermentans did not have a cofactor 
preference. In this species, the lack of cofactor preference 
seems to naturally enhance flux for the second reaction of 
the xylose metabolism due to the oxidation of NADH to 
NAD+, which is the cofactor used in the preceding step. 
Our results are consistent with a previous observation 
in which high aeration caused a switch in cofactor usage 
from NADH to NADPH for XR from Sp. passalidarum 
NRRL Y-27907 [23], and our transcriptome data showed 
that this switch likely occurs because the two paralogous 
XYL1 genes have different levels of expression under 
moderate and high aeration conditions (Fig. 6). A similar 
result was reported by Cadete et al. [15], in which XYL1.2 
was 15–16-fold more highly expressed than XYL1.1 in 
more extreme oxygen-limiting conditions compared to 

Fig. 6  Saccharomyces cerevisiae with XYL genes from Scheffersomyces xylosifermentans ferments xylose anaerobically. Growth curves of Sc. 
xylosifermentans, Sc. coipomoensis, and Sc. cerevisiae strains carrying different XYL genes under anoxic conditions A OD, B xylose consumption, C 
ethanol production, and D xylitol accumulation. Error bars indicate the standard deviation from the three biological replicates. Asterisks denote 
significant differences related to S. cerevisiae + SstipitisXYL1/XYL2/XYL3). SxylosiXYL1 and SxylosiXYL1/XYL2—XYL genes from Sc. xylosifermentans; 
ScoipXYL1 and ScoipXYL1/XYL2—XYL genes from Sc. coipomoensis; and SstipitisXYL1/XYL2/XYL3—XYL genes from Sc. stipitis 
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moderate aeration condition. Collectively, these results 
suggest that XYL1.2 expression increases as the availabil-
ity of oxygen decreases. Thus, Sp. passalidarum may use 
its second homolog of XYL1, which encodes the NADH-
preferring XR, to limit redox imbalance in low oxygen 
levels. Rapid consumption of xylose and high yields of 
ethanol were not observed for other species that har-
bor multiple paralogs, such as C. intermedia, which was 
reported to have a NADH-dependent XR [19]. Thus, Sp. 
passalidarum is unique among the species tested.

To elucidate the effect of oxygen on the expression pro-
file of genes involved in the first steps of xylose metab-
olism and the PPP, we determined their relative gene 
expression in Sc. amazonensis, Sc. coipomoensis, Sc. 
xylosifermentans, and Sp. passalidarum under moderate 
and high aeration conditions. The genes directly involved 
in xylose metabolism (XYL1, XYL2, and XYL3) were 
all upregulated with moderate aeration (Fig.  4) for Sc. 
xylosifermentans, which is consistent with the higher XR 
and XDH activities observed in in  vitro enzyme assays 
(Fig.  3). Indeed, Sc. xylosifermentans XYL2 was among 
the 15 most upregulated genes under oxygen limitation, 
the condition in which this species presented high lev-
els of xylose consumption. Xylitol to xylulose conversion 
by XDH enzymes has been proposed to be the limiting 
step for xylose fermentation, and high expression and 
codon optimization of XYL2 may be necessary for effi-
cient xylose conversion [16, 45, 46]. Even small expres-
sion changes may be associated with large phenotypic 
effects [47] and, in the case of Sc. xylosifermentans, XYL2 
expression decreased significantly under high aeration. 
The xylitol accumulation by this species in this condition 
is likely in part due to this reduction in XYL2 expression, 
rather than the cofactor imbalances postulated for some 
other species.

Based on what is known about S. cerevisiae metabo-
lism, the production of glycerol by Sp. passalidarum in 
high aeration is difficult to explain, especially consider-
ing the large amount it produced under high aeration. 
Glycerol can maintain redox balance in the absence of 
oxygen when ethanol flux is overloaded in S. cerevisiae 
[40]. Strategies to increase glycerol production by yeasts 
include cutting off or attenuating ethanol production, 
shifting the NAD+/NADH ratio to increase the amount 
of NADH available, and overexpression of the glycerol 
3-phosphate dehydrogenase encoded by GPD1 [48–50]. 
The downregulation of PDC1 and ADH1, which encode 
pyruvate decarboxylase and alcohol dehydrogenase, 
respectively, in Sp. passalidarum and the upregulation of 
GPD1 and GPP1 (encoding glycerol-3-phosphate phos-
phatase) under high aeration suggest a mechanism for 
the elevated glycerol production by this species in this 
condition.

Genes from the PPP, such as TKL1, TAL1, and RKI1, 
were also upregulated under moderate oxygen-limited 
condition for Sc. xylosifermentans (TKL1 and TAL1) 
and Sp. passalidarum (TKL1 and RKI1). Overexpres-
sion of those genes in engineered strains of S. cerevisiae 
improved the growth rate on xylose and the ethanol yield 
[51, 52]. ADH1 and ADH2 are responsible for ethanol 
production and consumption in Sc. stipitis, and when 
the availability of oxygen becomes limited, the expres-
sion of ADH genes, especially ADH2, increases [37, 53]. 
While ADH1 was upregulated in the ethanol-producing 
yeasts under moderate aeration, ADH2 was the most 
upregulated gene for Sc. xylosifermentans; ADH2 was 
also differentially expressed in Sc. coipomoensis and Sc. 
amazonensis, but not Sp. passalidarum (Fig. 4). In addi-
tion to the genes required for xylose metabolism, the 
high expression of the PPP and ethanol pathway in Sp. 
passalidarum and Sc. xylosifermentans might be related 
to the greater xylose metabolism by these species under 
moderate aeration.

Next, we genetically modified S. cerevisiae by the 
chromosomal integration of XYL genes from Sc. xylosi-
fermentans and Sc. coipomoensis. Given the inability of 
S. cerevisiae to metabolize xylose, any observed growth 
must be attributed to the heterologously and constitu-
tively expressed enzymes, which allowed us to investigate 
how redox balance influences anaerobic fermentation of 
xylose into ethanol in this model system. With the rest 
of the XYL pathway coming from Sc. stipitis, S. cerevisiae 
could grow in anaerobic conditions with SxylosiXYL1 and 
SxylosiXYL1/XYL2, but not with ScoipXYL1, ScoipXYL1/
XYL2, or the Sc. stipitis pathway alone (Fig.  6). This 
result  suggests that cofactor preference has important 
effects in anoxic conditions, at least when the pathway is 
constitutively expressed (Fig. 6). S. cerevisiae strains con-
taining SxylosiXYL1 and SxylosiXYL1/XYL2 produced 
ethanol, but they also accumulated xylitol. Swapping 
SstipitisXYL3 with SxylosiXYL3 further enhanced ethanol 
production but only slightly relieved xylitol accumula-
tion, so we hypothesize that other downstream and inter-
acting native metabolic pathways in Sc. xylosifermentans 
may facilitate its xylitol-to-ethanol flux. Nonetheless, 
this experiment was essential to test the redox balance 
hypothesis, and it unexpectedly revealed that Sc. xylosi-
fermentans was able to grow under anaerobic conditions, 
which are used in numerous industrial applications.

Conclusions
We tested 30 species belonging to the order Serinales for 
xylose fermentation with a focus on the genera Spathas-
pora and Scheffersomyces and their close relatives. Col-
lectively, our data reveal that xylose metabolism in the 
Serinales is highly plastic and oxygen-dependent. Under 
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high aeration conditions, several species switched from 
ethanol production to xylitol accumulation. This switch 
was generally accompanied by a decrease in enzyme 
activity and expression of genes related to xylose catabo-
lism. While we find a global effect of oxygen availability 
on xylose metabolism, our data support the hypothesis 
that xylitol accumulation results from redox imbalance 
generated by differential cofactor preferences for XR and 
XDH in some species, but they also point to a novel role 
for oxygen-responsive gene regulation in other species 
that accumulate xylitol under high aeration, especially Sc. 
xylosifermentans. Among the species tested, Sc. xylosifer-
mentans is also remarkable for its high xylose consump-
tion and ethanol formation under moderate aeration and 
even in anaerobic conditions, a phenomenon not previ-
ously noted for any xylose-fermenting yeast species. This 
species may be a novel source of potential genes that can 
be expressed in industrial microbes, such as S. cerevisiae, 
for biofuel production from lignocellulosic feedstocks. 
Alternatively, Sc. xylosifermentans could be subjected to 
adaptive laboratory evolution or genetic modification 
to enhance its native potential and transform it into an 
industrial organism.

Methods
Yeast strains and growth experiment conditions
Candida blattae, C. intermedia, Me. caribbica, Me. car-
pophila, Me. guilliermondii, and 24 strains of Scheffer-
somyces and Spathaspora species (see Additional file  4) 
were obtained from the USDA Agricultural Research 
Service (ARS) NRRL Culture Collection in Peoria, Illi-
nois, USA; Collection of Microorganisms and Cells of 
Universidade Federal de Minas Gerais, Belo Horizonte, 
Minas Gerais, Brazil; and CBS Yeast Collection of the 
Westerdijk Fungal Biodiversity Institute, Utrecht, the 
Netherlands.

Saccharomyces cerevisiae strain GLBRCY38 was gener-
ated from a haploid spore from the diploid GLBRCY2A 
strain [54] containing an integrated DNA cassette to 
express constitutively Sc. stipitis XYL1, XYL2, and XYL3 
genes from the HO locus [18]. GLBRCY2A was sporu-
lated, and individual tetrads were dissected as previously 
described [55]. Haploid spores were verified for the XYL 
cassette by PCR and selection for the kanMX resistance 
marker. One spore containing the XYL cassette, GLBR-
CY25A, was selected, and all XYL gene sequences were 
fully confirmed for accuracy by PCR and Sanger sequenc-
ing. The kanMX marker was excised [56] to generate the 
GLBRCY38 strain. We used CRISPR-Cas9 to swap the 
genes XYL1, XYL2, and/or XYL3 to the corresponding 
genes from Sc. xylosifermentans and Sc. coipomoensis in 
the strain GLBRCY38 with gRNA expression plasmid 
(pXIPHOS) [57, 58] targeting XYL1 (CAA​CAG​CCA​AAA​

CCC​ACG​GC), XYL2 (CTT​AAC​CAA​GAA​ATC​TTC​
GG), and/or XYL3 (TGC​CTC​CCC​ACA​ACC​CGA​GG). 
sgRNAs were designed using CRISpy-pop [59]. Mul-
tiple swaps were performed sequentially. Transforma-
tion of yeast strains was done using the lithium acetate/
PEG-4000/carrier DNA method [60]. After the transfor-
mation and recovery, colonies were selected by plating 
them on YPD agar with 100 mg/L nourseothricin (NAT). 
All strains were confirmed for gene swaps and antibi-
otic marker excision by PCR with gene-specific primers 
or flanking primers. Sanger sequencing of purified PCR 
products was performed by the University of Wisconsin-
Madison Biotechnology Center. The engineered strains 
used in this study are summarized in Additional file 5.

Strains from all yeast species were initially plated from 
freezer stocks on 10  g/L yeast extract, 20  g/L peptone, 
and 2% dextrose (YPD) plates and grown for single colo-
nies. Single colonies of each strain were pre-cultured in 
10  mL of YPX medium (1% yeast extract, 2% peptone, 
2% xylose) overnight at 30 °C under 200 rpm. Cells were 
recovered by centrifugation at 2600g for 10 min, washed 
with sterile water, and suspended in the fermentation 
medium at 0.5 g dry cell weight L−1 of cell concentration. 
To evaluate the performance of the yeasts in different 
aeration conditions, we used 125-mL shake flasks (SF) 
for moderate aeration and 250-mL baffled flasks (BF) for 
high aeration, both containing 50  mL of YPX (1% yeast 
extract, 2% peptone, and 5% xylose). The dissolved oxy-
gen available was measured by a dissolved oxygen meter 
(Mettler Toledo F4-Field FiveGo, USA). The flasks were 
incubated at 30 °C under 200 rpm for 72 h. Cell growth 
was determined by collecting 1  mL of the culture. The 
cells were recovered by centrifugation and dried in a 
speed vacuum concentrator. The ethanol, xylitol, and bio-
mass yields (Yp/set, Yp/sxy, Yx/s, g  g−1), volumetric pro-
ductivity of ethanol and xylitol (Qpet, Qpxy, g  L−1  h−1), 
and consumption of d-xylose were determined as 
described previously by Cadete et al. [15].

Growth experiments using engineered strains were car-
ried out with 125 mL baffled flasks in an anaerobic cham-
ber for 142 h. Sc. xylosifermentans, Sc. coipomoensis, and 
Sc. stipitis were also tested under this condition. The 
pre-culture was done exactly as described above, but for 
inoculation, we shifted into flasks containing 30 mL YPX 
media (2% xylose) at a concentration of optical density 
at λ = 600  nm (OD600) = 0.3. Seven-hundred microliters 
of sample were taken during the experiment for meas-
uring the OD600 and for quantifying end-products using 
high-performance liquid chromatography (HPLC) and 
refractive index detection (RID) as described previously 
[61]. Plots were constructed in R v3.6.3 using the RStu-
dio v1.3.1073 platform. We performed Student’s t tests 
to determine whether there were significant differences 



Page 12 of 15Barros et al. Biotechnology for Biofuels and Bioproducts           (2024) 17:20 

(P < 0.05) between the parental strain and engineered 
strains.

Enzyme activities
Yeast species Sc. xylosifermentans, Sc. coipomoensis, 
and Sc. amazonensis were grown in YPX medium as 
described above or in YPD for the negative control, using 
both SF and BF. Engineered strains Y1847 and Y1850 
were also tested, but they were grown in 125-mL SF with 
30 mL YPX (2% xylose) in aerobic conditions. Cells were 
harvested at mid-log growth phase, washed with cold 
sterile water, and extracted with Y-PER® Yeast Protein 
Extraction Reagent (Thermo Fisher). Protein concen-
trations from the crude cell extracts were determined 
by BCA Protein Assay Kit (Thermo Fisher). XR activi-
ties were obtained from 250-µL reactions containing 
100 mM triethanolamine buffer pH 8, 0.2 mM NADPH 
or NADH, 0.2 M d-xylose, crude cell extract, and deion-
ized water; XDH activities were obtained from 250 µL 
reactions containing 100 mM glycine buffer pH 9, 50 mM 
MgCl2, 3  mM NADP+ or NADP+, 0.2  M xylitol, crude 
cell extract, and deionized water [15]. Enzyme activities 
were determined by oxidation or reduction of NADH/
NADPH or NAD+/NADP+, respectively. Reaction mix-
tures aliquoted into 96-well microtiter plates (Corning® 
96 Well Clear Flat Bottom UV-Transparent, Darmstadt, 
Germany) were placed in Tecan® (Infinite M-1000, Swit-
zerland) at 25ºC for measuring absorbance at 340 nm for 
1  h. Standard curves of NADPH and NADH were used 
to calculate the concentration of the samples. Extracted 
proteins from the yeast Sp. passalidarum were used as 
positive control, while S. cerevisiae 288SC was used as a 
negative control. In addition, blank measurements with 
samples lacking either cell lysate or xylose substrate were 
performed for each sample, and the resulting values were 
subtracted from the test values. Enzyme activities were 
determined from three independent biological replicates. 
The specific activity of each enzyme was estimated by the 
number of enzyme units per mL divided by the concen-
tration of protein in mg/mL. One unit was defined as the 
generation of 1 μmol NAD(P)H or NAD(P)+ per min. We 
performed paired Student’s t tests to determine whether 
there were significant differences (P < 0.05) between 
NADH and NADPH usage by XR from each species. 
Data analyses and plots were performed in R v3.6.3 using 
the RStudio v1.3.1073 platform.

Genome extraction, sequencing, assembly, and annotation
Genomic DNA (gDNA) of the species Sc. xylosifermen-
tans, Sc. amazonensis, and Sc. coipomoensis was isolated 
using a modified phenol:chloroform method [62]. The 
sequencing was performed at the DOE Joint Genome 
Institute Standard. Genome sequencing was performed 

using Pacific Biosciences (PacBio) Multiplexed > 10  kb 
with Blue Pippin Size Selection (AMPure Beads for Sc. 
coipomoensis). Filtered subread data were processed with 
the JGI quality control pipeline to remove artifacts. The 
mitochondrial genome was assembled separately with 
the circular consensus sequencing (CCS) reads and pol-
ished with two rounds of RACON version 1.4.13 [63]. 
The mitochondria-filtered CCS reads were then assem-
bled with Flye version 2.8.1 [64] to generate an assembly 
and polished with two rounds of RACON version 1.4.13. 
The Sc. coipomoensis nuclear genome was assembled 
using Falcon v. 1.8.8 [65], improved with FinisherSC, 
and polished with Arrow version SMRTLink v5.0.1.9578 
[66]. Ribosomal DNA (rDNA) was assembled separately 
from a subset of CCS reads identified using kmer match-
ing against the UNITE database with BBTools (http://​
sourc​eforge.​net/​proje​cts/​bbmap) version 38.79. Match-
ing reads were subsampled to 600,000 bp with BBTools, 
assembled with Flye version 2.8.1, and polished with two 
rounds of RACON version 1.4.13. The eukaryotic inter-
nal transcribed spacer (ITS) was identified and extracted 
from the rDNA assembly using ITSx (Bengtsson-Palme 
et  al., 2013). Results were used to orient and trim the 
rDNA contig to 100 bp SSU–1 Kb LSU. Contigs less than 
1000 bp were excluded. Completeness of the euchromatic 
portion of the genome assembly was assessed by aligning 
assembled consensus RNA sequence data with BBTools. 
Genomes were then annotated using the JGI annotation 
pipeline [67] (Additional file 6).

RNA extraction, sequencing, and data analysis
Cells from Sp. passalidarum, Sc. xylosifermentans, Sc. 
coipomoensis, and Sc. amazonensis were grown on YPD 
agar for 48 h to single colonies, which were each inocu-
lated into 10 mL of YPX medium overnight in a 50-mL 
glass tube at 30 °C. After pre-culture, aliquots were trans-
ferred to 125  mL SF and 250  mL BF, both flasks with 
50 mL of YPX, at an initial of inoculum of 0.5 g L−1, and 
incubated at 30  °C under 200  rpm until mid-log phase. 
RNA was extracted using the acid phenol protocol [68]. 
Briefly, the total volume of the cultures was centrifuged 
with 5% phenol and 95% EtOH, and it was flash-frozen 
in a dry ice-ethanol bath. Cells were resuspended in TES 
lysis buffer (10  mM Tris, 10  mM EDTA, 0.5% SDS in 
water) plus PVP40, acid-washed beads (Sigma #G8772), 
and one volume of saturated acid phenol (IBI Scientific). 
Lysates were incubated at 65  °C for 1 h with vortex-
ing every 15  min. Then, the lysates were extracted with 
1 volume of acid phenol each and once with 1 volume 
of chloroform. The aqueous phase of the final chloro-
form extraction was removed and added to a solution 
consisting of 2.5 volumes of 95%–100% ethanol and 
0.1 volumes of 3 M sodium acetate, and the tubes were 

http://sourceforge.net/projects/bbmap
http://sourceforge.net/projects/bbmap
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placed at − 80 °C overnight to precipitate the RNA. RNA 
pellets were then collected by centrifugation, washed 
twice in 70% ethanol each, and resuspended in RNase-
free water. Purified RNA was then treated with DNase 
I (NEB #EN0521) to remove any residual DNA prior to 
treatment with the RNA Clean & Concentrator kit (Qia-
gen #74134). Total RNA yields were quantified with the 
Qubit RNA Assay Kit (Thermo Fisher).

mRNA library preparation, quantification, and 
sequencing were performed at the DOE Joint Genome 
Institute. Paired-end libraries were sequenced on Illu-
mina NovaSeq S4 (2 × 151). Raw FASTQ file reads were 
trimmed to remove adapters and artifact sequences 
using Trimmomatic version 0.30 [69]. The filtered reads 
of each species were aligned to their respective reference 
genome with Bowtie2 version 2.4.5 [70] with average 
mapping rates of 99.7, 98.8, 98.8, and 98.7% for Sp. pas-
salidarum, Sc. xylosifermentans, Sc. coipomoensis, and Sc. 
amazonensis, respectively. featureCounts [71] was used 
to generate the raw gene counts. Raw sequencing reads 
were normalized using the reads per kilobase per mil-
lion mapped reads (RPKM). DEseq2 version 1.38.1 [72] 
was used to perform quality control analysis and identify 
significantly differentially expressed genes (DEGs) from 
pairwise analyses with the raw counts; we used a Benja-
mini–Hochberg false discovery rate (FDR) of less than 
0.05 as a significance threshold and log2-fold change > 1 
or < − 1 for differentiating between upregulated and 
downregulated genes, respectively. The enrichment anal-
ysis was done by mapping the gene ontology (GO) terms 
with the gene identifiers, followed by Fisher’s exact and 
Benjamini-Hochberg-corrected tests using a threshold of 
0.05 with SciPy version 1.9.0 [73] and Python Statsmod-
els version 0.10.2 [74]. The code is available at https://​
github.​com/​kathb​arros/​goea.

For genome annotation, Sc. xylosifermentans, Sc. ama-
zonensis, and Sc. coipomoensis filtered RNASeq reads 
were also assembled de-novo with Trinity v.2.3.2 using –
normalize_reads and –jaccard_clip options [71].
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the standard deviation from the three independent replicates.
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