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Ethernet continues to be the most widely used network architecture today due to its low 

cost and backward compatibility with the existing Ethernet infrastructure. Driven by 

increasing networking demands of cloud workloads such as Internet search, web hosting 

etc, network speed rapidly migrates from 1Gbps to 10Gbps and beyond. High speed 

networks require general purpose servers to provide highly efficient network processing. 

However, traditional architectural designs have been focused on CPUs and often 

decoupled from I/O considerations, thus being inefficient for network processing. 

 In this study, we start with fine-grained driver and OS instrumentation to fully 

understand the network processing overhead over 10GbE on mainstream servers and 

make several new observations. Motivated by the studies, we propose a new server I/O 

architecture where DMA descriptor management is shifted from NICs to an on-chip 

network engine and descriptors are extended to address performance issues while 

processing packets. In addition, we also conduct extensive experiments on a real 

integrated NIC platform to understand the benefits of integrating NICs into CPU die.  
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Our studies reveal that simple NIC integration gains little help. We therefore propose an 

enhanced integrated NIC (EINIC) to address the performance issues of high speed 

networks. We also find that TCP Control Block (TCB) can pose a challenge in web 

servers with a large volume of concurrent sessions. Therefore, we also analyze challenges 

from a large number of concurrent web sessions on managing per-session TCB and 

propose a new TCB cache architecture to manage TCB data for web servers.    

 As virtualization has gained resurgent interest and is becoming a key enabling 

technology in cloud infrastructures, understanding and improving virtualized network 

processing performance over high speed networks becomes critical. We conduct an 

experimental study of virtualized network performance on servers with 10GE networking 

to identify its performance bottlenecks. Then, we develop two VMM scheduler 

optimizations and design a simplified switch to reduce the network virtualization 

overhead. We also propose efficient architectural support by extending Direct Cache 

Access (DCA) to effectively avoid cache misses on packets in virtualized environment.  
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Chapter 1  

Introduction  

Ethernet continues to be the most widely used network architecture today due to its low 

cost and backward compatibility with the existing Ethernet infrastructure. It dominates in 

data centers and is replacing specialized fabrics such as InfiniBand [35], Quadrics [71], 

Myrinet [9] and Fiber Channel [14] in high performance computers. As of 2011, Gigabit 

Ethernet-based clusters make up 44.2% of the top-500 supercomputers [87].    

 Driven by increasing networking demands of workloads such as Internet search, 

virtual private network, video servers and web hosting etc, network bandwidth becomes a 

technology that has outstripped Moore’s Law in the past decades. Between 1995 and 

2002, the IEEE Ethernet standard quickly migrated from a top speed of 100 Mbps to 10 

Gbps, at a hundred-fold rate, while in the same period the 18-month doubling rate of 

Moore’s Law indicates a mere 25x increase in transistor density (Moore's Law).  It was 

reported that IEEE Ethernet standard group has released 40Gbps and 100Gbps 

specifications and corresponding products will be arriving in the near future [21]. Figure 

1 depicts the relative increases of transistor density and network bandwidth. This graph 

shows that the rate of increase in network bandwidth is much higher than the rate of 

increase in transistor density.  
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Figure 1.1: Network speed rates versus Moore's Law 

Unfortunately, even as nearly all server platforms completed the transition to 1 

Gigabit Ethernet (1GbE), the adoption of 10 Gigabit Ethernet (10GbE) has been limi
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1.1 Challenges in TCP/IP Packet Processing  

As network speed increases at a very fast rate, the host computer systems at the endpoints 

speed Ethernet connections should be designed to efficient

The packet processing is accomplished through the TCP/IP protocol stack of the 

operating system (OS) and NIC device driver, etc that introduce large 

from Ethernet network. Unfortunately, traditional architectural 

ns of processors, cache hierarchies and system interconnects 

intensive applications, and have often been decoupled from I/O 

considerations being inefficient for TCP/IP packet processing (a.k.a network processing

was reported that TCP/IP packet processing in the receive side over 

 two cores of an Intel Xeon Quad-Core processor
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ing 40GbE and 100GbE will saturate 8 and 20 cores, respectively

Figure 1.2: TCP/IP packet processing performance 
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 Although a wide spectrum of research has been trying to improve the efficiency of 

TCP/IP packet processing on the network server [1, 6, 31, 63, 77, 92, 93, 94, 95],  most 

of them focused on the data copy overhead and did not introduce a comprehensive 

solution for the problem. Based on extensive experiments and studies in these years, the 

community gradually realizes that the interactions among platform-wide hardware 

components, hardware-software interfaces and inter-software interfaces such as those 

between device drivers, the operating system and applications, render sophisticated multi-

dimensional problems that cannot be easily addressed [6, 7, 53]. A comprehensive 

solution across the hardware platform and software stack rather than exclusive efforts 

from either side is necessary to satisfy the processing requirement introduced by the 10X 

or more increase in the upcoming 40Gbps/100Gbps networks.  

1.2 Challenges in Network Interface Designs 

Despite the rapid increase in available network bandwidth, NICs in servers are still 

considered as peripheral devices connected through standard PCI Express (PCI-E) bus 

[69]. By using DMA engine, NICs read/write network packets from/to main memory 

over long latency PCI-E interconnect bus.   

 Although PCI-E bus bandwidth continued to improve in the past few years, its 

latency is degraded by up to 25X over earlier PCI-X incarnations mostly due to complex 

PCI-E transaction layer protocol implementation [62]. It was reported that up to ~2200 ns 

is needed for a round-trip traversal over PCI-E bus [62]. The long latency traversal 

substantially increases the processing overhead of DMA engine (although PCI-E 

pipelined transfers help payload, they do not work for descriptors). As network traffic 
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becomes intensive, DMA engine is heavily stressed [90]. Long latency descriptor fetches 

also make the need for large NIC hardware buffers or queues to temporarily keep packets. 

Moreover, in order to leverage conventional CMPs for packet processing, high speed 

NICs typically introduce a large number of receive/transmit (RX/TX) queues and allow 

each core to have a dedicated RX/TX queue. For instance, an Intel 82599 10GbE NIC has 

128 RX/TX queues for each port for CMPs, corresponding to 512KB and 160KB buffers 

[36]. All of these complicate NIC designs and pose a big challenge. Therefore, a new 

server I/O architecture is required for high speed networks to tackle the TCP/IP packet 

processing challenge while simplifying NIC hardware designs.   

1.3 Challenges in Network I/O Virtualization 

Virtualization has become an integral component of the modern data centers. By 

introducing hypervisor or virtual machine monitor (VMM), a new thin layer between 

operating system (OS) and hardware platforms, it provides numerous virtual machine 

(VM) transparent services [5, 16, 24, 74], such as VM replication, rapid checkpoint, live 

migration and quality of service to guarantee service level agreement. Although the 

emergence of virtualization has been a promising solution towards sever consolidation 

and cloud computing, the virtualized network performance lags significantly behind the 

performance in native systems operating directly on physical devices. It was reported that 

virtualized TCP/IP packet processing over 1GbE network consumes up to 4.0x CPU 

cycles than TCP/IP packet processing on native environment [59, 60, 61].  That is 

because of high cost of virtualizing network I/O devices in software to allow multiple 
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guest VMs to share a single NIC device in a secure manner.  Thus, more efficient 

network I/O virtualization is required for high speed networks.  

1.4 Overview of the Research 

The goal of this study is to accelerate network processing (or TCP/IP packet processing) 

in server architectures without introducing high hardware complexity. To achieve this 

goal, we propose several new I/O solutions to tackle all of the challenges mentioned 

above. 

 In the first  part of this study, we performed per-packet processing overhead 

breakdown by running a network benchmark over 10GbE on Intel Xeon Quad-Core 

processor based servers. We find that besides data copy, the driver and buffer release, 

unexpectedly take 46% of processing time for large I/O sizes and even 54% for small I/O 

sizes. To understand the overheads, we manually instrumented the driver and OS kernel 

using hardware performance counters [34, 38]. Unlike existing profiling tools attributing 

CPU cost such as retired cycles or cache misses to functions [60, 68], our instrumentation 

is implemented at the fine-grained level and can pinpoint data incurring the cost. Through 

the above studies, we obtain several new findings: 1) the major network processing 

bottlenecks lie in the device driver (>26%), data copy (up to 34% depending on I/O sizes) 

and buffer release (>20%), rather than the TCP/IP protocol itself; 2) in contrast to the 

generally accepted notion that long latency NIC register access results in the driver 

overhead [6, 7], our results show that the overhead comes from memory stalls to network 

buffer data structures; 3) releasing network buffers in OS results in memory stalls to in-

kernel page data structures, contributing to the buffer release overhead; 4) besides 

memory stalls to packets, data copy implemented as a series of load/store instructions, 
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also has significant time on L1 cache misses and instruction execution. Moreover, 

keeping packets in caches after data copy, which will not be reused [11, 82], pollutes 

caches. Prevailing platform optimizations for data copy like Direct Cache Access (DCA) 

[31] are insufficient for addressing the copy issue.  

 The second part of our study is to propose new server I/O architecture to tackle the 

TCP/IP packet processing performance challenge while reducing NIC design hardware 

complexity. In the proposed server I/O architecture, the responsibility for managing 

DMA descriptors is moved to an on-chip network engine (NEngine). The on-chip 

descriptor management exposes plenty of optimization opportunities like extending 

descriptors to include information about memory stalls during network processing. When 

the NIC receives a packet, it directly pushes the packet into NEngine without waiting for 

long latency DMA descriptors fetches. NEngine reads extended descriptors to obtain 

packet destination location and information about data incurring memory stalls. Then, it 

moves the packet into the right memory location and checks whether data resides in 

caches. If not, NEngine sends data address to the hardware prefetching facility for 

loading data. To address the data copy issue, NEngine moves payload inside last level 

cache (LLC) and invalidates source cache lines after the movement. The new I/O 

architecture allows DMA engine to have very fast access to descriptors and leverages 

CPU caches to keep packets rather than the NIC buffers. This design substantially 

eliminates burden on the DMA engine and avoids extensive NIC buffers, particularly for 

high speed networks. The new server I/O architecture ameliorates all major performance 

bottlenecks of network processing and simplifies NIC designs, making general purpose 

platforms well suited for high speed networks.   
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 It was extensively reported before that integrating a NIC into CPU die is able to 

significantly reduce the TCP/IP packet processing overhead, mainly due to the less access 

latency to NIC registers [6, 7].  In the third  part of this study, we started with detailed 

performance evaluation on a real Sun Niagara 2 platform with two integrated 10GbE 

NICs [83, 84] to fully compare the performance of an integrated NIC (INIC) and a PCI-E 

based discrete NIC (DNIC). In our experiments, we observe that the INIC only shows its 

advantage over the DNIC with large I/O sizes. It improves network bandwidth by 7.5% 

while saving 20% in relative CPU utilization. We characterize system behavior to 

understand the performance benefits with respect to different number of connections, OS 

overheads, instruction counts, and cache misses etc.  All of our studies reveal that there is 

only marginal performance benefit of integrating NICs onto CPU die. More aggressive 

integrated NIC designs are required. We therefore proposed an enhanced integrated NIC 

(EINIC) for high speed networks. By leveraging fast interactions between CPU and INIC, 

we redesign CPU/NIC interface from hardware DMA to software program I/O (PIO). 

Additionally, we deploy several processing optimizations cost-efficiently by first 

evaluating their software implementations: Receive Side Scaling (RSS) [76] in hardware 

and Large Receive Offload (LRO) [27] in the driver. In addition, we also develop an I/O-

aware LLC to avoid cache interference from other applications, and optimize cache 

coherence protocol to reduce unnecessary write-backs of network data.  Our I/O-aware 

design splits LLC into I/O cache and general cache at the way level to eliminate cache 

interference. In order to meet various incoming rates, OS orchestrates the quota of the I/O 

cache according to the number of replaced cache lines but untouched by network stack. 
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 The fourth  part of this study is to understand the challenges of per-session data TCP 

control block (TCB) on TCP/IP packet processing when there are thousands of 

concurrent sessions like in web servers.  Through our analysis, we realized that TCB data 

poses a great challenge in web servers and should be efficiently managed for fast packet 

processing. Then, we propose a new TCB cache addressed by session identifiers to 

address the challenge. We carefully redesign the TCB cache along two important axes: 

cache indexing and cache replacement policies. First, we propose a new cache indexing 

scheme for our TCB cache by employing two Universal hash functions [12]. Second, by 

leveraging characteristics of web sessions [4, 15, 19], we design a speculative cache 

replacement policy, which can effectively work on our TCB cache with two cache banks.  

 In the fifth  part of this study, we extended our research to the virtualization domain, 

which has gained resurgent interests recently. We started with detailed per-packet 

processing overhead breakdown in virtualized environment. We realized that there are 

two major bottlenecks introduced by network I/O virtualization: 1) overheads on moving 

packets while processing packets in virtualized environment (e.g. packet copy among 

driver domain and guest domain, kernel-to-user packet copy inside guest domain); 2) the 

overhead of virtual switch in driver domain to de-multiplex packets.  Motivated by the 

studies, we first develop two VMM scheduler optimizations to improve packet movement 

overheads by co-scheduling the driver domain and guest domain into the same cache 

domain and stealing credits from idling VCPU to favor I/O VCPUs.  We design and 

implement a simplified virtual switch in an Intel Xeon server to significantly reduce the 

switching overhead in Xen [60, 61].  Furthermore, in order to eliminate cache misses on 
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packets along the packet movement path, we extend DCA by considering VMM 

scheduling information to accurately inject incoming packets into cores where 

corresponding guest domains are running.   

1.5 Outline and Contributions 

This study does detailed performance analysis of network processing over high speed 

networks and then provides several effective network I/O solutions to address the 

challenges from network processing. The major contributions of this study can be 

summarized as follows: 

• We conduct NIC driver and OS instrumentation at a very fine-grained level to 

fully understand the TCP/IP packet processing overhead over 10GbE on 

mainstream servers. We pinpoint several bottlenecks and make new observations, 

which have never been reported before.  The research is presented in Chapter 3.  

• We propose new server I/O architecture to tackle the performance challenge while 

simplifying NIC hardware designs. In the new architecture, DMA descriptor 

management is shifted from NICs to an on-chip network engine and descriptors 

are extended with information about data incurring memory stalls. The new server 

I/O architecture not only addresses the network processing challenge, but also 

reduces hardware design complexity.  The research is presented in Chapter 4. 

• We fairly compare performance of INIC and DNIC on a real Sun Niagara 2 

platform with two integrated 10GbE NICs in detail to completely understand the 

benefits of an integrated NIC. Then, we propose an enhanced integrated NIC 
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(EINIC) on multi-core processors to provide highly efficient network processing.  

The research is presented in Chapter 5. 

• We analyze the challenges of TCB in web servers with thousands of concurrent 

sessions, and then design a dedicated TCB cache to efficiently manage TCBs for 

web servers. The TCB cache is designed along two hardware axes: two-universal 

hash functions based cache indexing and speculative cache replacement policy. 

The research is presented in Chapter 6. 

• We do a detailed performance analysis of network I/O virtualization on 

conventional multi-core systems over 10GbE, and then propose both system 

optimizations on VMM scheduler and software switch, and efficient hardware 

support (extending DCA by considering VMM scheduler information to avoid 

cache misses on packets) to address the network I/O virtualization challenge. The 

research is presented in Chapter 7. 
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Chapter 2  

Background and Related Work 

2.1 TCP/IP Packet Processing 

TCP/IP over Ethernet is the most dominant communication protocol in commercial 

servers such as web server, e-commerce, database, storage over IP, etc. Unlike traditional 

CPU-intensive applications, TCP/IP packet processing is I/O-intensive. It involves 

several platform components (e.g. NIC, PCI-E, I/O Controller, main memory, CPU) and 

system components (e.g. NIC driver, OS). The processing in the receive side has much 

higher processing overheads than in the transmit side, consuming thousands of CPU 

cycles for each incoming packet. In this subsection, we revisit the network receiving 

process.  

 In the receive side, an incoming packet starts with the NIC/driver interaction. The 

RX descriptors (typically 16 bytes each), organized in circular rings, are used as a 

communication channel between the NIC driver and the NIC. The driver tells the NIC 

through these DMA descriptors, where in the memory to copy the incoming packets. To 

be able to receive a packet, a descriptor should be in “ready” state, which means it has 

been initialized and pre-allocated with an empty packet buffer (SKB buffer in Linux) 

accessible by the NIC [11].  The SKB buffer is the in-kernel network buffer to hold any 

packet up to MTU (1.5 KB).  It contains an SKB data structure of 240 bytes carrying 



13 
 

packet metadata used by the TCP/IP protocol and a DMA buffer of 2 KB holding the 

packet itself.  

 

Figure 2.1  Driver/NIC Interaction 

 The detailed interaction is illustrated in Figure 2.1. To transfer received packets, the 

NIC needs to fetch ready DMA descriptors from main memory over PCI-E bus to know 

the DMA buffer address (step 1). When the NIC receives Ethernet frames from the 

network (step2), it transfers the received packets into corresponding DMA buffers 

(denoted as buf in Fig.2.1) using DMA engine (step 3). Once the data is placed in 

memory, the NIC updates descriptors with packet length and marks them as used (step 4). 

Then, the NIC generates an interrupt to kick off network processing in CPUs (step 5). In 

the CPU side, the interrupt handler in the driver reads the NIC register to check the 

interrupt cause (in step 6). If legally, the driver reads descriptors to obtain packet’s 

address and length, and then maps the packet into SKB data structures (step 7). After the 

driver delivers SKB buffers up to the protocol stack, it reinitializes and refills used 
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descriptors with new allocated SKB buffers for incoming packets in the near future (in 

step 8). Finally, the driver re-enables the interrupt by setting the NIC register (step 9). 

After the driver, SKB buffers are delivered up to the protocol stack. Once the protocol 

stack finishes processing, applications are scheduled to move packets to user buffers. 

Finally, the SKB buffers are reclaimed into OS [10, 11].  

2.2 Research in TCP/IP Packet Processing 

It is well documented that Internet servers spend a significant portion of time processing 

packets [1, 6, 7, 22, 28-30, 44-46, 48-54, 66, 92-96]. A wide spectrum of research has 

been done on this topic to understand the overhead [7, 58, 64, 92, 93, 94]. Nahum et al. 

[64] used a cache simulator to study cache behavior of the TCP/IP protocol and showed 

that instruction cache has the greatest effect on network performance. Similarly, Zhao et 

al. [93, 94] revealed that packets and DMA descriptors exhibit no temporal locality. Xie 

et al. [92] analyzed instructions characteristics of TCP/IP protocol stack and proposed 

several new instructions for the protocol stack. Binkert et al. [7] did performance analysis 

of system overheads in TCP/IP workloads by using a full system simulator [8].  Makineni 

et al. [58] conducted architectural characterization of TCP/IP processing on the Pentium 

M microprocessor with 1GbE and concluded that the receive side is much more memory-

intensive than the send side. Unfortunately, they built their studies on cache simulators or 

used low speed networks, and did not conduct a system-wide architectural analysis for 

high speed network processing on mainstream platforms. 

 In addition to the above performance analysis, extensive studies have also been 

conducted to improve TCP/IP packet processing performance. They can be broadly 
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grouped into hardware optimizations and software optimizations.   

2.2.1 Hardware Optimizations  

Hardware improvement for TCP/IP packet processing performance has been done from 

different dimensions. Offload support in NIC includes TCP Segmentation Offload (TSO) 

[36, 37], Interrupt Coalescing [36, 37], Receive Side Scaling (RSS) [76], Large Receive 

Offload (LRO) [27], TCP/IP Offloading Engine (TOE) [13, 25, 32] etc. TSO in NIC has 

been proposed long time back to segment a large message from applications into several 

smaller packets of size up to MTU, saving CPU cycles which are originally dedicated to 

TCP stack processing. Interrupt coalescing is also used on modern high speed NICs to 

moderate interrupt frequency by issuing a single interrupt once multiple packets have 

been received or transmitted.  RSS is another hardware technique deployed in hardware 

NICs to distribute incoming packets across multiple cores based on the connection level.  

With the support of RSS, multiple cores are be leveraged to parallelize packet processing 

and cache locality is also considered while processing packets.   

 Since packet rate in 10GbE is so high, even the slightest improvement in per-packet 

processing benefits the overall I/O performance. Thus, LRO is proposed in hardware 

NICs to reduce the overhead by aggregating multiple in-order incoming packets from a 

single stream into a larger fragmented packet. It is recently implemented in software as 

an alternative to hardware assistance. Going further, TOE offloads the whole network 

stack into hardware NIC and would work for high bandwidth, low latency applications, 

particularly IP storage network with RDMA support. However, the technique itself has 
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been somewhat controversial because of the overhead in its software interface as well as 

security and extensibility concerns [25].  

 In addition to the above hardware offload in NIC, numerous studies have been 

conducted from the architectural perspective to reduce the data copy overhead [1, 6, 7, 31, 

63, 77, 85, 95]. Mukerjee et al. [63] put a NIC in coherent memory to improve the 

performance by facilitating burst transfers of whole cache blocks and reducing control 

overheads. The Joint Network Interface Controller (JNIC) [77], a collaborative research 

project between HP and Intel, was designed to explore high performance in I/O 

operations. They built a system prototype by attaching 1GbE NIC on front side bus. Zhao 

et al. [95] designed an off-chip asynchronous DMA engine close to main memory to 

move data inside memory. The similar idea has been implemented in Intel platforms with 

the Intel I/OAT technique [1], but has been widely criticized in industry because memory 

stalls are still incurred when applications read packets from memory.  

 To eliminate memory stalls to packets, Intel proposed DCA to route network data 

into CPU caches [31], and implemented it in Intel 10 GbE adapters and server chipsets. 

Its performance evaluation on real servers has demonstrated overhead reduction in data 

copy [45, 46]. Recently, Tang et al. [85] claimed that DCA might incur cache pollution 

on small LLC and introduced two cache designs (a dedicated DMA cache or limited ways 

of LLC) to keep packets.  Binkert et al. [6, 7] integrated a redesigned NIC to reduce the 

processing overhead by implementing zero-copy and reducing access latency to NIC 

registers.  
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2.2.2 Software Optimizations 

Software optimizations for network processing have also been aggressively explored as 

an alternative to advanced, more costly hardware.  

 When concurrent processing units are provided, it is intuitive to run TCP/IP 

processing on an independent computation resource, which is tightly coupled with the 

application processor. Instead of using network processor to process network traffic or 

offload the whole TCP/IP stack onto NIC, one of the cores on a multi-core CPU can be 

bound to work with network processing, while other cores can run applications such as 

http requests and/or scientific computations. To distinguish from TOE, the last category 

is named “TCP Onloading” [26, 28]. Although the idea of TCP onloading sounds 

intuitive, most of such available designs require a large amount of changes in the 

operating system level, particularly in the TCP/IP protocol stack. Also, open problems 

like inter-core communication, mutual influences of processes for different applications 

still remain unsolved. 

 With little hardware support from NIC,  Shalev et al. [80] proposed a loosely 

coupled TCP acceleration framework to separate out TCP fast path and optimize TCP 

fast path processing in software. LRO, a technique to coalesce small receiving packets 

into a large single packet, can also be deployed in the NIC driver to reduce the number of 

packets delivered up to network stack. Another technique, called zero-copy, eliminates 

memory copying by directly mapping packet payload in kernel to user buffer and saves 

memory access penalties [11]. However, it requires that all user buffers should be page 

aligned for the mapping of kernel to user space, thus limiting its wide deployment.  
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2.3 Network I/O Virtualization  

Virtualization is a broad term that refers to the abstraction of physical computer resources.  

A typical virtualized platform consists of a software virtual machine monitor that 

“virtualizes/abstracts” the physical resource of the platform and provides a simulated 

environment that appears to the operating system as hardware. Network virtualization 

was invented and implemented in IBM’s System/360 and System/370 [74]. Each virtual 

machine in these initial virtualized architectures was exclusively assigned a particular set 

of physical devices. Data transfer relied on channel programs executing in the VMM, 

which ensured resource isolation. 

 Despite the high performance through private I/O access, the costly replication of 

physical devices for each virtual machine limited per domain utilization. As a result, 

research in Xen [5] designed shared access to devices and relied on a dedicated software 

entity to perform physical device management. This paper focused on the most popular 

open source virtualized system Xen. 

 Fig. 2.2 is an illustration of the Xen VMM. The VMM provides an abstraction layer 

between the VMs and the actual hardware, leaving each guest VM an illusion of running 

independently on native hardware. A privileged VM (driver domain or Dom0) runs a 

modified version of Linux that uses native Linux device drivers to manage physical I/O 

devices. Other VMs (guest domain or DomU) transmit and receive packets by 

communicating with Dom0 through shared memory I/O channels.  
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Figure 2.2: Network I/O Virtualization in Xen 

 Once a packet arrives at the NIC, it generates an interrupt. The VMM then forwards 

the interrupt to the Dom0. When Dom0 acquires CPU, it DMAs the packet into the 

reception I/O ring. After de-multiplexing the packet through the nested Ethernet Bridge 

to an appropriate back-end driver, Dom0 employs a data copy mechanism by default to 

directly copy data from the back-end driver to the front-end driver in the corresponding 

DomU. Once the packet reaches the front-end driver in DomU, back-end driver requests 

the VMM to send a virtual interrupt to notify the target domain of the new packet. Then 

the packet is processed from the kernel space to the user space of DomU as if it had come 

directly from the physical NIC. 
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2.4 Research in Network I/O Virtualization  

Since the birth of VM, research in improving virtualized I/O performance never faded 

away. We summarize previous works into two categories: hardware architecture and 

system optimizations. 

 Numerous studies have been done in server architectures to efficiently tackle the 

network I/O virtualization challenge. In industry, Intel [35, 39] offloads virtual switch (or 

packet de-multiplexing) from the driver domain to hardware NIC and deploys multiple 

queues to allow guest OS to directly access hardware queues. In order to avoid memory 

protection and address translation overheads in software, hardware IOMMU [3, 39] was 

proposed and incorporated into server platforms. Recently, PCI-E standard group 

proposes single root IO virtualization (SR-IOV) [70] to self-virtualize a physical device 

into multiple lightweight PCI-E devices, significantly avoiding I/O virtualization 

overheads.  

 For system optimizations, Ongaro et al. [67] sorted the domains with the same states 

in the runqueue based on their remaining credits rather than arbitrarily insert the new 

domain at the end of each state section. However, they focused on the fairness of I/O 

performance with 1GE network and did not consider the VMM scheduler on mainstream 

multi-core systems where behaves significantly different from  single core systems. With 

the same optimizations on our experiment environment under 10 GbE, we find that the 

blocking of scheduler tickle adversely glooms the I/O performance by a factor of 100 and 

the runqueue sort does not make any difference for I/O performance. In addition to VMM 

scheduler optimizations, lots of engineering optimizations have also been implemented to 
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improve network I/O performance in virtualization environment. Menon et al. [59, 60, 61] 

analyzed virtualization performance overhead and then implemented numerous 

optimizations (e.g. reusing grant table, using large page size, moving data copy to guest 

etc) to bridge the gap between software and hardware techniques for I/O virtualization. 

Guo et al. [30] designed cache-aware scheduling for virtualization to improve web server 

performance. Liu et al. [56] adopted virtualization technology for HPC and allowed each 

domain to directly access the high performance network. However, they targeted to the 

high performance network InfiniBand rather than Ethernet Network. In Ethernet Network, 

some researches including Crossbow [18] tried to address the performance issues by 

taking advantage of the new Ethernet NIC features like multiple TX/RX queues to allow 

domains to directly access the hardware. They heavily rely on hardware and hence 

sacrifice the features of portability and live migration, two major incentives for deploying 

virtualization in high end servers.   

 

  



22 
 

Chapter 3  

Understanding TCP/IP Packet Processing Performance 

Bottleneck over 10GbE 

The performance of the TCP/IP network stack plays a crucial role in network servers. In 

order to identify the performance problems in network stack, this chapter first profiles the 

whole running system while processing packets over 10GbE networks to obtain per-

packet processing overhead breakdown. Then, we do fine-grained instrumentation in NIC 

driver and OS kernel to conduct a detailed performance characterization. The 

performance problems identified in this chapter serve as a motivation for the new I/O 

architecture in Chapter 4. 

3.1 Experimental Setup  

We conduct extensive experiments to understand network processing overheads over 

10GbE across a range of I/O sizes. Both SUT (System under Test) and stress machines 

are Intel servers shown in Figure 3.1. Each server contains two Quad-Core Intel Xeon 

5335 processors [38].  Each core is running at 2.66GHz frequency and each processor has 

2 LLCs of 4MB each shared by 2 cores. The servers are connected by two PCI-E based 

Intel 10Gbps XF server adapters [37]. They ran Linux kernel 2.6.21 and Intel 10GbE NIC 

driver IXGBE version 1.3.31. We retain default settings of the Linux network subsystem 
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and the driver, unless stated otherwise. Note that LRO, a technique to amortize the per-

packet processing overhead by combining multiple in-order packets into a large packet, is 

enabled in the driver. Stream hardware prefetcher employing a memory access stride 

based predictive algorithm is configured in the servers [38]. In the experiments, the 

micro-benchmark Iperf with 8 TCP connections is run to generate network traffic 

between servers (SUT is a receiver). We find from the experiments that one core with 

4MB LLC achieves ~5.6Gbps throughput and two cores with 8MB LLC are saturated to 

obtain a line rate throughput. The high processing overhead motivates us to breakdown 

the per-packet processing overhead.  

 

Figure 3.1  Intel Xeon servers 

3.2  Per-Packet Processing Overhead Breakdown 

We use the tool Oprofile [68] to collect system-wide function overheads while Iperf [33] 

is running over 10GbE. We group all functions into components along the network 

processing path: the NIC driver, IP, TCP, data copy, buffer release, system call and Iperf.  

All other supportive kernel functions such as scheduling, context switches etc. are 
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categorized as others. Per-packet processing time breakdown is calculated and illustrated 

in Figure 3.2. Note that I/O sizes are not packets over Ethernet and large I/Os larger than 

MTU (1.5KB on Ethernet) are segmented into several packets (<=MTU).   

 We obtain the following observations from Fig.3.2: 1) the overhead in data copy 

increases as the I/O size grows and becomes a major bottleneck with large I/Os (>=256 

bytes); 2) the driver and buffer release consume ~1200 cycles and ~1100 cycles per 

packet, respectively, regardless of I/O sizes. They correspond to ~26% and 20% of 

processing time for large I/Os and even higher for small I/Os; 3) the TCP/IP protocol 

processing overhead is substantially reduced because LRO coalesces multiple packets 

into one large packet to amortize the overhead. Fig.3.2 reveals that besides data copy, 

high speed network processing over mainstream servers has another two unexpected 

major bottlenecks: the driver and buffer release.  

 

Figure 3.2 Per-packet processing overhead breakdown 
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3.3 Fine-Grained Instrumentation 

The Oprofile in 

Subsection 3.2 does 

profiling at the coarse-

grained level and 

attributes CPU cost such 

as retired cycles and 

cache misses to functions. 

It is unable to identify data or macro incurring the cost. In order to locate the cost, we 

manually did fine-grained instrumentation inside functions. The environment in 

Subsection 3.2 is used. Table 3.1 shows one instrumentation example in the driver. We 

first measure the function's cost and then do fine-grained instrumentation for every code 

segment if the function has considerable cost. We continue to instrument each code 

segment with considerable cost until we locate the bottlenecks. Our instrumentation is 

applied to all functions along the processing path. Most of events are collected including 

CPU cycles, instruction and data cache misses, LLC misses, ITLB misses and DTLB 

misses etc. Since large I/Os include all three major overheads, this subsection presents 

the detailed analysis for the 16KB I/O.  

3.3.1. Driver  

The driver comprises of three main components: NIC register access (step 6 and 9), SKB 

conversion (step 7) and SKB buffer allocation (step 8), as shown in Fig.2.1. Existing 

studies [6, 7] claimed that NIC register access contributes to the driver overhead due to 

Table 3.1: Instrumentation example 
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long latency traversal over PCI-E bus, and then proposed NIC integration to reduce the 

overhead. In this subsection, we architecturally breakdown the driver overhead for each 

packet and present results in Figure 3.3. In contrast to the general accepted notion that the 

long latency NIC register access results in the overhead [7], the breakdown reveals that 

the overhead comes from SKB conversion and buffer allocation. Although NIC register 

access takes ~2500 CPU cycles on mainstream servers, ~60 packets are processed per 

interrupt over 10GbE (~7 packets/interrupt over 1GbE) substantially amortizing the 

overhead. In addition, Fig.3.3 also reveals that L2 cache misses mainly result in the SKB 

conversion overhead and long instruction path is the largest contributor of the SKB buffer 

allocation overhead.  

 
Figure 3.3 Architectural breakdown 

 
Figure 3.4 L2 miss sources in step7    

0

200

400

600

800

Step 6&9 Step 7 Step 8

C
y

cl
e

s

inst Icache Dcache ITLB DTLB L2

0%

20%

40%

60%

80%

100%

Memory stalls

SKB Header Descriptor Other



27 
 

 Since L2 cache misses in SKB conversion constitute ~50% of the driver overhead, 

we do detailed instrumentation to identify data incurring those misses. We group data in 

the driver into various data types (SKB, descriptors, packet headers and other local 

variables) and measure their misses. The result presented in Figure 3.4 reveals that SKB 

is the major source of the memory stalls (~1.5 L2 misses/packet on SKB). Different from 

prior studies [6, 7], the memory stalls to packet headers are hidden and overlapped with 

computation because the recent driver uses software prefetch instructions to preload 

headers before they are accessed. Unfortunately, SKB access occurs at the very beginning 

of the driver and software prefetch instructions cannot help. Although DMA invalidates 

descriptors to maintain cache coherence, the memory stalls to descriptors are negligible 

(~0.04 L2 misses/packet). That is because each 64 bytes cache line can host 4 descriptors 

of 16 bytes each and hardware prefetchers preload several consecutive descriptors with a 

cache miss. To understand the SKB misses, we instrument kernel to study its reuse 

distance over 10GbE. It is observed that SKB has long reuse distance (~240K L2 access), 

explaining the misses.  

3.3.2. Data Copy 

After protocol processing, user applications are scheduled to copy packets from SKB 

buffers to user buffers. Data copy incurs mandatory cache misses on payload because 

DMA triggers cache invalidation to maintain cache coherence, and thus consumes a large 

number of CPU cycles. We study its architectural overhead breakdown as shown in 

Figure 3.5. 16KB I/O is segmented into small packets of MTU each in the sender and 

they are sent to the receiver. Fig.3.5 shows that L2 cache misses are the major overhead 
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(~50%, ~3.5 L2 misses/packet), followed by data cache misses (~27%, ~50 misses/packet) 

and instruction execution (~20%).  Although DCA implemented in Intel recent platforms 

avoids L2 cache misses, it is unable to reduce overheads in L1 cache misses and a series 

of load/store instructions execution (total ~47%).  Due to the small L1 cache size, routing 

network data into L1 caches would pollute caches and degrade performance [46, 85]. 

Moreover, since packets become obsolete after data copy [11], loading them into L1 

caches or keeping them in L2 caches may evict other valuable data to incur cache 

pollution. Hence, more optimizations are needed to fully address the data copy issue. 

 
Figure 3.5  Data copy breakdown   
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3.3.3. Buffer Release 

SKB buffers need to be reclaimed after packets are copied to user applications. SKB 

buffer allocation and release are managed by slab allocator [10]. The basis for this 

allocator is retaining an allocated memory that used to contain a data object of certain 

type and reusing that memory for the next allocations for another object of the same type. 

Buffer release consists of two phases: looking up an object cache controller and releasing 

the object into the controller. In the implementation of slab allocator, the page data 

structure is used to keep cache controller information and read during the object cache 

controller lookup. This technique is widely used by mainstream OS such as FreeBSD, 

Solaris and Linux etc.  

 Figure 3.6 shows architectural overhead breakdown for buffer release. We observe 

from Fig.3.6 that L2 cache misses are the single largest contributor to the overhead (~1.6 

L2 cache misses/ packet).  Similarly, we analyze data sources of L2 cache misses and 

present results in Figure 3.7. The figure reveals that L2 cache misses are from the 128 

bytes in-kernel page data structures. The structure reuse distance analysis shows that it is 

reused after ~255K L2 cache access, explaining the cache misses. 

 
Figure 3.7 L2 miss sources. 
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 The above studies reveal that besides memory stalls to itself, each packet incurs 

several cache misses on corresponding data and has considerable data copy overhead. 

Some intuitive solutions like having larger LLC (>8MB for 10GbE) or extending the 

platform optimization DCA might help to some extent, but they have major limitation. 

Our simulation results show that, without considering application memory footprint, 

16MB LLC is needed to avoid those cache misses of packet processing over 10GbE. 

When network jumps to 40GbE and beyond, increasing LLC becomes an ineffective 

solution.  More importantly, it is unable to address NIC challenges and the data copy 

issue. Unlike increasing LLC, extending DCA to deliver both packets and those missed 

data from NICs into caches is more efficient in avoiding memory stalls. Unfortunately, it 

stresses NICs more heavily and degrades PCI-E efficiency of packet transfers [69, 70], 

and does not consider the data copy issue as well. In order to attack all challenges from 

continuously increasing network speed, a holistic and intelligent I/O solution is needed.  

3.4 Summary 

In this chapter, we first studied the per-packet processing overhead on mainstream 

servers with 10GbE and pinpointed three major performance overheads: data copy, the 

driver and buffer release. Then, we did fine-grained instrumentation in the NIC driver 

and OS kernel to do a system-wide architectural analysis. Unlike existing tools attributing 

CPU cost to functions, our instrumentation was done at the data granularity and can 

pinpoint data with considerable cost. Our studies reveal several new findings: 1) the 

major network processing bottlenecks lie in the NIC driver, data copy and buffer release; 

2) in contrast to the generally accepted notion that long latency NIC register access 
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results in the driver overhead, our results show that the overhead mainly comes from 

memory stalls to network buffer data structures; 3) releasing network buffers in OS 

results in memory stalls to in-kernel page data structures, contributing to the buffer 

release overhead; 4) besides memory stalls to packets, data copy implemented as a series 

of load/store instructions, also has significant time on L1 cache misses and instruction 

execution.  
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Chapter 4  

Repartitioning CPU/NIC  

In Chapter 3, we carefully studied the TCP/IP packet processing overhead over high 

speed networks and pinpointed the bottlenecks. In this chapter, we propose a new server 

I/O architecture to tackle the performance challenge. In the new I/O architecture, we 

move DMA descriptor management from the NIC to an on-chip network engine and 

extend descriptors with information about data incurring memory stalls.  The new I/O 

architecture is not only able to effectively tackle the performance challenge, but also 

reduce NIC hardware design complexity.  Its designs are elaborated in the following 

subsections.  

4.1 New Server I/O Architecture 

The overview of the new architecture is illustrated in Figure 4.1. In the new architecture, 

we move DMA descriptor management from NICs to an added on-chip network engine 

(NEngine) near to LLC. The on-chip descriptor management enables us to easily extend 

descriptors with information about data incurring memory stalls. Similar to the memory 

controller, NEngine connects to I/O Hub (IOH) for parsing PCI-E transactions. It 

communicates with faster cache hierarchy for DMA descriptor fetches/writes and packet 

movement, alleviating the processing burden on DMA engine. Due to close proximity to 

LLC, NEngine has low communication cost with LLC. 
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 When NEngine receives a packet, it reads descriptors from cache hierarchy. Then it 

moves the packet into corresponding cache location and preloads those data incurring 

memory stalls. The new architecture exploits LLC to keep packets other than multiple 

RX/TX queues in NICs. Commodity high speed NICs allow each core to have one 

dedicated RX/TX queue, thus increasing NIC cost and impeding NIC’s scalability over 

cores. The new architecture avoids extensive buffer resources and reduces NIC hardware 

cost. Moreover, NEngine also implements efficient payload movement inside LLC and 

proactively purges obsolete packet data after data copy to address the data copy issue. 

The new architecture fundamentally reduces all three major performance overheads of 

network processing while effectively simplifying NICs. The detailed designs are 

elaborated in the following subsections.    

 

Figure 4.1 New I/O architecture overview 
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4.1.1 NEngine 

During network processing, CPUs and NICs communicate through DMA descriptors. As 

the communication channel, DMA descriptors are organized as a circular ring. Each 

descriptor is 16 bytes and includes packet metadata such as packet length, memory 

address and status etc.  In the contemporary I/O architecture, NICs fetch or write 

descriptors via PCI-E bus before or after packet movement. The descriptor fetches/writes 

have long latency stressing DMA engine [90] and also waste a large number of PCI-E 

transactions degrading PCI-E payload efficiency [69, 70]. The on-chip descriptors 

management avoids these issues, and more importantly, enables us to easily extend the 

descriptors because of much faster communication with cache hierarchy. By exploiting 

this design, we extend RX descriptors with information about data incurring memory 

stalls: SKB and page data structures, as pinpointed in Section 3. The extended descriptors 

are illustrated in Figure 4.2.  Besides original 16 bytes, the new descriptor includes 4 

bytes physical address of SKB and internal page data structures each. Two hardware 

registers in NEngine are dedicated to storing data structure length in the form of the 

number of cache lines. In Linux, SKB is 240 bytes and page structure is 128 bytes, 

corresponding to four and two cache lines of 64 bytes each, respectively. The typical ring 

buffer size of 10GbE NICs is 1024 entries and thus the new ring buffer size only 

increases by 8KB.   
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the conventional cache architecture with a new cache operation: lookup. Unlike normal 

cache operations such as cache read, write etc, the new operation lookup returns whether 

data is in caches, other than data themselves. The lookup/load unit sends lookup 

operations to lookup those data. If the data is not in caches, it generates prefetch 

commands to the existing hardware prefetching facility for loading the data. After the 

packet is moved into cache hierarchy, NEngine updates the descriptor status field and 

ring buffer pointers for the driver as traditional NICs do.   

 In addition, NEngine moves payload inside LLC to bypass L1 caches and to avoid a 

series of load/store instructions. Since the source data becomes obsolete after data copy 

[10], NEngine invalidates source cache lines to purge the data. To support efficient 

movement, we extend the cache architecture with a new cache operation: read_invalidate, 

which reads cache lines and then does cache invalidation. During data copy, TCP/IP 

protocol breaks discontinuous physical address ranges into a set of consecutive physical 

ranges and programs NEngine via three hardware registers: src, dst, len. Then, NEngine 

breaks continuous physical address ranges into a set of chunks at the cache line 

granularity and generates new read_invalidate operations to read and invalidate cache 

lines. Finally, it writes those data into destination cache lines. Our payload movement 

differs from prior copy engines [1, 95] as follows: 1) payload movement is done inside 

caches and payload in caches is invalidated after movement; 2) the virtual-to-physical 

address translation overhead is negligible because data copy is done in the OS context. In 

Linux, less than 10 cycles are needed for the address translation.  
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Figure 4.3 Basic block of NEngine 

 When we come to the transmit side, NEngine reads transmitted packets from cache 

hierarchy and transfers them into the NIC over PCI-E bus. Once the NIC receives the 

transmitted packets from NEngine, the MAC processing units automatically sends them 

over Ethernet links. Besides high efficient network processing, our designs simplify NIC 

designs in terms of buffer resource and DMA engine and also reduce PCI-E traffic used 

for descriptor fetches/writes.  

4.1.2 NIC 

In the new architecture, NICs are simplified with less hardware resource. Figure 4.4 

illustrates a traditional NIC in the left box and a new NIC in the right box.  In the 

traditional NIC, the MAC processing unit receives packets from Ethernet links and does 

RSS to load balance incoming packets among cores/queues at the connection level.  The 

packets are stored in corresponding RX queues. DMA engine uses PCI-E transactions to 

fetch descriptors from memory and to move data from RX queues to memory. Interrupt 
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coalescing unit will send interrupts to cores when the number of transferred packets reach 

up to a threshold set by the driver or a preprogrammed timer expires. Similarly, in order 

to transmit packets, the NIC fetches TX descriptors to know packet memory location and 

moves packets into corresponding TX queues. Then, packets are sent over Ethernet links 

and interrupts are sent to cores. In the new NIC, we remove large multiple hardware 

queues and DMA engine marked as grey in the left box. When RSS receives a packet 

from the MAC processing unit, it calculates the core assigned to packet processing. Then, 

the NIC directly sends the packet with core ID to NEngine. Similar to the receive side, 

when the NIC receives a transmitted packet, the MAC processing unit directly takes over 

the packet for transmission.  RSS and Interrupt coalescing units behave the same as 

traditional NICs do.    

 

Figure 4.4 Simplified NIC in the new architecture 
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4.1. 3. Software Support 

The new server I/O architecture inherits the descriptor-based software/hardware interface 

and only needs some modest support from the device driver and the data copy component. 

In the driver, when new SKB buffers are allocated to refill RX descriptors, besides DMA 

buffer address the driver sets starting address of SKB and page data structures to the 

descriptors. When packets finish protocol processing, the data copy component programs 

NEngine to move payload and waits until NEngine finishes the movement. There is no 

need to modify TCP/IP protocol stack, system call and user application.    

4.2 Performance Evaluation 

We choose the full system simulator Simics [57] to evaluate our designs by enhancing it 

with detailed cache, I/O timing models and modeling of the effects of network DMA. We 

extend the Digital Equipment Corporation 21140A Ethernet device with the support of  

interrupt coalescing using Device Modeling language DML to simulate a 10GbE Ethernet 

NIC. The device itself is connected to a lossless, full-duplex link of configurable 

bandwidth. The latency of a packet traversing the link is simply fixed to 1 us. Two 

systems (client and server) running Linux 2.6.16 are simulated and interconnected with 

10GbE. Since the stream hardware prefetcher is the most popular prefetcher in 

mainstream servers, we employ it in the simulator to speed up the memory access of 

streamed network data. 
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 We implemented the new 

I/O architecture and developed 

a NIC driver in Linux. LRO 

was implemented in the driver. 

To understand performance 

impacts of our designs on 

network processing, we first 

used the micro-benchmark Iperf in the experiments. Then, we study how much benefit 

web servers achieve by running the SPECWeb [4] benchmark. In each case, only one 

system is of interest, while the other merely serves as a stressor. SUT is configured with 

detailed timing models and the stressor runs with the fast functional mode and is not a 

bottleneck. The parameters we used in modeling the configuration are listed in Table 4.1. 

We are more interested in the relative behavior of these systems than their absolute 

performance, so some of these parameters are approximations.   

4.2.1 Network Performance 

First, we looked at network performance in the receive side by running Iperf under 

various configurations: the original system (orig), DCA routing data to L1 caches (DCA-

L1), DCA routing data into L2 caches (DCA-L2), the new server I/O architecture (new). 

LRO is included in all server configurations. Since large I/Os have all three major 

overheads, we present large I/O results in this subsection.  

Table 4.1 System configurations 
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Figure 4.5 Network throughput 

 

Figure 4.6 Utilization breakdown 

 Figure 4.5 illustrates network throughput achieved by various configurations. We 

also present corresponding core utilization and utilization breakdown in Figure 4.6. As 

shown in Fig.4.5 and Fig.4.6, orig can achieve only ~8 Gbps throughput by consuming 

~225% core utilization in the SUT with four cores. Memory subsystem is the potential 

bottleneck of achieving line rate throughput and an increase in CPU performance could 
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not further improve throughput. We observe from Fig. 4.6 that data copy, the NIC driver 

and buffer release are three major overheads. By injecting network data into L1 caches, 

DCA-L1 eliminates the memory stalls to packets and obtains line rate throughput using 

~200% core utilization. The utilization breakdown reveals that the higher network 

processing efficiency or throughput/core is from CPU cycle savings in data copy. Instead 

of L1 caches, DCA-L2 routes network data into a larger L2 cache. It achieves line rate 

throughput and consumes fewer CPU cycles than DCA-L1. That is because DCA-L1 

delivers ~64 packets or ~96KB data for each interrupt into small L1 caches of 32 KB 

each, incurring cache pollution. With high speed networks like 10GbE and beyond, DCA-

L2 is a more practical approach.   

 Although DCA is able to reduce the data copy overhead, it is unable to resolve the 

performance issues in other components such as the driver and buffer release. The new 

I/O architecture not only avoids memory stalls in the driver and buffer release, but also 

further improves data copy performance. Fig. 4.5 and Fig.4.6 show that it obtains line 

rate throughput but substantially reduces core utilization to ~125%. The utilization 

breakdown confirms that the reduction is from the driver, buffer release and data copy. 

Compared to DCA-L2 which is employed in recent commercial server platforms, the new 

I/O architecture reduces core utilization by 33%, corresponding to 47% network 

processing efficiency improvement.   

 Additionally, we also investigate cache behavior of high speed network processing 

under various configurations in Figure 4.7. As shown in the figure, orig only achieves a 

92% L2 cache hit ratio. By avoiding the memory stalls to packets, both DCA-L1 and 
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DCA-L2 increase L2 cache hit ratios to 96%. The new architecture almost avoids memory 

stalls during network processing and escalates the L2 cache hit ratio to 99%. The higher 

L2 cache hit ratio explains the benefits of core utilization shown in Fig.4.6. When we 

come to L1 cache behavior, all configurations achieve similar hit ratios except DCA-L1 

and new. Due to small cache sizes, DCA-L1 results in L1 cache pollution and decreases 

the L1 cache hit ratio. New bypasses L1 caches during data copy and has a higher L1 

cache hit ratio. Since packet transmitting performance is not significantly improved, we 

don’t present results for the sender side.  

 
Figure 4.7 Cache hit ratios    
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are from the CPU cycle savings in network processing. When we come to the new 

architecture, the network processing overhead is further reduced due to the elimination of 

the memory stalls and more efficient data copy. The improved network processing 

translates to 14% better throughput than DCA-L2.  

 
Figure 4.8 Web server throughput 

 

Figure 4.9 Utilization breakdown 
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4.2.3 NIC Design Benefits 

Besides having highly efficient network processing, the new server I/O architecture also 

simplifies NIC designs by lessening pressure on DMA engine and avoiding extensive 

NIC buffers. We measure round-trip time over PCI-E bus on mainstream servers and 

assume that each PCI-E transaction (typically, 256B transaction size) transfers 16 

descriptors. We obtain average per packet time for descriptor read/write by amortizing 

the round-trip time over the number of descriptors per transfer.  Packets themselves can 

be transferred in a pipelined way and do not stress DMA engine.  Assuming DMA engine 

runs at 200MHz, time of a MTU packet spent on DMA engine is illustrated in Figure 

4.10. Fig. 4.10 shows that the new architecture substantially ameliorates DMA engine 

pressure. Although results for DCA configurations are not shown, they do not avoid long 

latency descriptor fetches/writes and behave the same as orig. In addition to the benefits 

from DMA engine, the new I/O architecture also reduces NIC buffers. Our experiment 

results show that it only needs 8KB buffer (4KB buffer in the NEngine and 4KB buffer in 

the NIC) for the 10Gbps network, but more than 512KB NIC buffer is needed in 

traditional I/O architectures. With 40Gbps and 100Gbps networks, the new I/O 

architecture will achieve much higher benefits. In the new architecture, NEngine 

essentially behaves similarly to DMA engine but simplifies designs of DMA engine and 

reduces NIC buffers. We believe that the new I/O architecture has less overall hardware 

cost (CPU+NIC) and is a promising I/O solution for high speed networks.    
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Figure 4.10   Per packet time on DMA Engine  

4.3 Summary 

As network speed continues to grow, it becomes critical to understand and address 

challenges on mainstream servers. In this chapter, we proposed a new server I/O 

architecture for high speed networks. The new I/O architecture addresses all three 

performance challenges by using extended on-chip DMA descriptors and efficient 

payload movement. It allows hardware DMA engine to have very fast access to 

descriptors alleviating burden on DMA engine and leverages caches to keep packets 

avoiding extensive NIC buffers. Evaluation results show that the new architecture 

significantly improves network processing efficiency and achieves better web server 

performance while reducing NIC hardware design complexity. Given the trend towards 

rapid evolution of network speed in data centers, we view the new I/O architecture as a 

promising I/O solution.  
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Chapter 5  

Integrating NIC into CPU 

In the past decade, both academia and industry viewed that integrating a NIC into CPU 

die is a promising I/O solution for high speed networks [6, 7, 45, 46, 77, 83].  Binkert et 

al [7] first studied performance benefits of NIC integration and showed the driver 

overhead is reduced up to 80% even due to the smaller latency of NIC registers, thus 

improving performance up to 58%.  In industry, Sun also releases Niagara 2 processor 

[83],  a first general purpose processor integrating two 10GbE NICs.   

 Existing work on the integration of NICs was evaluated by simulation [7, 8]. 

Although simulation is flexible, it is hard to fully simulate the bandwidth and latency of 

memory and system bus protocols in real machines. It is also difficult for simulators to 

capture the whole OS behaviors. Hence, evaluations on real machines become critically 

important and are complementary to simulators.  

 In this chapter, we start with performance evaluation on a Sun Niagara 2 platform 

integrating two 10GbE NICs in Subsection 5.1, to fully understand the benefits of 

integrated NICs. We realized from our detailed analysis that the simple integration only 

gains little performance improvement. Then, in Subsection 5.2, we propose an enhanced 

integrated NIC architecture (EINIC) with many new architectural features to achieve 

significant improvement of TCP/IP packet processing performance.  
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5.1 Performance Measurement of an Integrated NIC Architecture 

5.1.1 Sun Niagara 2  

The Niagara 2 processor is the industry's first "system on a chip," packing the most small 

underpowered cores and threads, and integrating all the key functions of a server on a 

single chip: computing, networking, security and I/O [83].   

 As shown in Figure 5.1, it has two 10 GbE NICs (NIU in the figure) with a few 

features.  All the data is sourced from and destined to memory, DMA in the parlance. 

This means a core sets up the transfer and gets out of the way. The path to memory goes 

from the NIU, to the system interface unit (SIU), directly into the L2 or the crossbar. The 

CPU sets up DMA for packet transfers from the NIC to memory. 

 

Figure 5.1 Niagara 2 Architecture 

 Niagara 2, known for its massive amount of parallelism, contains eight small 

physical processor cores and each core has full hardware support for eight hardware 

threads. There are total 64 hardware threads or CPUs from the OS perspective. 

Additionally, each core has a 64-entry fully associative ITLB, a 128-entry fully 

associative DTLB, a 16K L1 Icache and an 8K L1 Dcache with associativity of the 
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Icache upped to eight. The Dcache has four-way associativity and is write-through, and 

all cores share a 4MB L2 cache. This is divided into 8 banks with16-way associativity.  

5.1.2 Experiment Methodology 

Our experimental testbed consists of a Sun T5120 server connected to an Intel® Quad 

Core DP Xeon® server, which functions as a System Under Test (SUT) and a stressor 

respectively. The Sun server has a Niagara 2 processor, which has 64 hardware threads 

and each hardware thread is operating at 1.2GHz. The Intel server is a two-processor 

platform based on the quad-core Intel® Xeon® processor 5300 series with 8 MB of L2 

cache per processor [38].  Both of the machines are equipped with 16GB DRAM.  

Table 5.1 INIC vs DNIC 

 

 In order to compare INIC with DNIC, we used two 10GbE network adapters in the 

SUN server: a discrete Sun 10GbE PCI-E NIC (a.k.a Neptune) [84] and an on-chip 

10GbE Network Interface Unit (a.k.a NIU) [83]. The on-chip NIU has the same physical 

design as Neptune except it has half less DMA transmit channels. More information is 

shown in Table 5.1. They use the same device driver, and trigger an interrupt after the 

number of received packets reaches 32 or 8 NIC hardware clocks have elapsed since the 

last packet was received. We also installed two Intel 10GbE Server Adapters (a.k.a Oplin) 
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[37] in the stressor system to connect two network adapters in the Sun server. All of 

discrete NICs connect to hosts through PCI-E x8, a 16+16 Gigabit/s full-duplex I/O 

fabric that is fast enough to keep up with the 10+10 Gigabit/s full-duplex network port.  

 The SUT runs the Solaris 10 OS while the stressor runs Vanilla Linux kernel 2.6.22. 

In Solaris 10, a STREAMS-based network stack is replaced by a new architecture named 

FireEngine [23] which provided better connection affinity to CPUs, greatly reducing the 

connection setup cost and the cost of per-packet processing. It merges all protocol layers 

into one STREAMS module that is fully multithreaded.   

 In order to optimize network processing with the 10GbE network, we use 16 soft 

rings per 10GbE NIC by setting the parameter ip_soft_rings_cnt for the driver. Soft rings 

are kernel threads that offload processing of received packets from the interrupt CPU, 

thus preventing the interrupt CPU from becoming the bottleneck. We also set 

ddi_msix_alloc_limit to 8 so that received interrupts can target 8 different CPUs. Besides, 

we retain the default settings in the device driver without specific performance tuning on 

interrupt coalescing, write combining etc.  

 Micro-benchmarks were used in our experiments to easily identify the performance 

benefits and avoid system noises from commercial applications [45, 46],  We selected 

Iperf [33] and NetPIPE [65] as  micro-benchmarks for measuring bandwidth and ping-

pong latency respectively. Because peak bandwidth can be achieved by more than 16 

connections,  Iperf is run with 32 parallel connections on 64 CPUs for 60 seconds in all 

our experiments, unless otherwise stated.    
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 In our experiments, the utility vmstat is used for capturing the corresponding CPU 

utilization. We ran tools er_kernel and er_print to collect and analyze the system 

functions overhead. Meanwhile, busstat and cpustat were chosen to obtain memory 

traffic and hardware statistical information while running the benchmark.  

5.1.3 Performance Evaluation 

In Figure 5.2, we show how the INIC and the DNIC perform with various I/Os while 

receiving packets. The bar in the figure represents achievable network bandwidth, and the 

line stands for the corresponding CPU utilization.  It can be observed that the INIC can 

achieve 8.97 Gbps bandwidth while consuming 27% CPU utilization with large I/O sizes. 

Correspondingly, 8.31 Gbps bandwidth is obtained by the DNIC with 35% CPU 

utilization. The INIC obtains 7.5% higher bandwidth and saves 20% relative CPU 

utilization on average for large I/O sizes (>1KB). The efficiency of the INIC is close to 

the DNIC with small packets. All of the results reveal that the integration improves 

network efficiency in the receive side only with large I/O sizes.  

 

Figure 5.2  Bandwidth & CPU Utilization (RX) 
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 We studied the performance comparison of DNIC and INIC while transmitting 

packets in Figure 5.3. Because less time is required in the driver for the INIC to transmit 

packets, it is expected that the higher transmitting bandwidth could be obtained by the 

INIC than the DNIC.  However, the INIC does not show noticeable benefits to the 

application in terms of network efficiency. It is possibly because: first, the number of 

transmit DMA channels in NIU is half less than that in the Neptune 10GbE card (8 TX 

DMA channels in the INIC and 12 TX DMA channels in the DINC). Fewer channels 

could reduce the capacity of transmitting packets. Second, the transmit side is much less 

latency-sensitive than the receive side [6, 93, 94].  

 

Figure 5.3 Bandwidth & CPU Utilization (TX) 

 

Figure 5.4 Performance with Various Connections 
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 To ease and expedite our analysis of the above observation, we conducted 

experiments for comparing INIC with DNIC by running Iperf with varying number of 

connections rather than 32 connections. Figure 5.4 illustrates the comparison from one 

single connection to 64 connections with 64KB messages. The following observations 

can be made from the figure: 1) greater than 16 connections are required for both INIC 

and DNIC to achieve peak bandwidth. It is due to low performance of a single hardware 

thread in Niagara 2;  2) differing from INIC, DNIC with 64 connections downgrades 10% 

bandwidth compared to 32 connections;  3) INIC improves network efficiency only with 

greater than or equal to 32 connections.  

 

Figure 5.5 Performance with Various CPUs 

 Similarly, we also studied the performance comparison by running 32 connections 

with varying number of CPUs or hardware threads in Figure 5.5.  We observe that the 

benefits only come when more than 16 CPUs are used in our experiments. With the 

combination of Figure 5.4,  we can draw two conclusions: 1) the integration could affect 

the system behaviors with a large number of connections, and different system behavior 



54 
 

mainly causes the performance difference, and 2) the benefits can only be achieved with 

large number of CPUs, and thus are tied to the highly threaded Sun system.    

 

Figure 5.6 Ping-Pong Latency 
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grouped into the following components to determine their impacts on performance: 

device driver, socket, buffer management, network stack, kernel, data copy and Iperf. 

DNIC vs INIC (Latency)

90

95

100

105

110

115

120

64 128 256 512 1K 1.5K
I/O Size(Bytes)

La
te

nc
y 

(u
s)

INIC DNIC



55 
 

 CPU overhead breakdown per packet is calculated and presented  in Figure 5.7. We 

observe that 28 µs and 20 µs are required for processing one received packet in DNIC 

and INIC respectively.  

 

Figure 5.7 CPU Overhead Breakdown 

 The comparison in the figure reveals that the CPU overhead on the driver is reduced 

from 4.7 µs to 2.6 µs by the integration. Our result shows that the overhead on the 

interrupt handler nxge_rx_intr, which frequently operates on NIC registers, is reduced by 

10X. The copy component remains the same when we switch between DNIC to INIC. It 

is because all packets in INIC are sourced and destined to memory rather than caches. 

The data copy from kernel to user buffers in both configurations incurs compulsory cache 

misses to fetch payloads from memory into caches. The overhead on the copy component 

is eliminated only if packets are delivered to caches.  Our findings so far confirm the 

observations in prior work [6, 7] even though they differ in absolute benefits.  

 We also observe that INIC also reduces the overheads on network stack, buffer 

management, socket and kernel. These unexpected improvements comprise up to 75% of 
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the total overhead reduction and thus mainly contribute to the performance benefits. We 

found that the different behavior of OS scheduler and CPU caches lead to these benefits. 

 Since the benefits of INIC over DNIC changes as the number of connections 

increases, we characterize the system behaviors with varying number of connections.   

A)  Impacts on the OS Scheduler 

 First, we did an architectural characterization by instruction for packet processing 

along various connections. In DNIC, instructions are broken down into 5 types of 

instructions: load, store, atomics, software count instructions and all other instructions as 

shown in Figure 5.8. As shown in Figure 5.8, about 3500 instructions are required to 

process a packet with less than 32 connections, but increase to 4500 instructions for 32 

and 64 connections.  The instruction breakdown shows that the instruction types of load, 

store and other instructions, increase proportionally. Figure 5.9 shows the similar 

behavior for INIC, but contrary to DNIC, increased connections do not significantly 

increase instructions per packet.  The higher instructions per packet directly translate to 

the higher CPU utilization of DNIC with a large number of connections.  

 

Figure 5.8 Instruction Breakdown (DNIC) 
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Figure 5.9 Instruction Breakdown (INIC) 

 Because the same device driver and network stack are used, INIC and DNIC have 

the same code path while processing packets. The increased instructions are incurred by 

other components in OS. The increased load and store operations reveal that more context 

switches could be required by DNIC.  Hence, we studied the OS scheduler’s behavior 

while processing packets along various connections. Average context switches per 

second are presented in Figure 5.10. The figure confirms our deduction that more context 

switches are incurred by DNIC with more than 16 connections.  

 

Figure 5.10 Context Switches with Various Connections 
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Figure 5.11 Interrupts per Second 

 

 Since the micro-benchmark was used in our experiment, the lightweight execution in 

applications does not incur system noise and yields few context switches.  Context 

switches are mainly caused by system interrupts. Hence, we studied system interrupts per 

second along various connections in Figure 5.11. The result lines up with the observation 

in Figure 5.10. Both INIC and DNIC have comparable interrupt rates with less than 32 

connections. When we come to the scenario beyond 16 connections, DNIC largely 

increases the interrupt rate but INIC keeps the same interrupt rate. The higher interrupt 

rate results in more context switches. To study the increased interrupts, we breakdown 

system interrupts with 32 connections into interrupts from NIC, cross-calls, and all other 

system interrupts in Figure 5.12.  

 

Figure 5.12 System Interrupts Breakdown 
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Figure 5.13 Icache Misses per Packet 

 We notice that INIC sent slightly more interrupts than DNIC because of the higher 

bandwidth. However, the system with DNIC is interrupted much more frequently than 

with INIC by cross-calls. We used the Dtrace utility [20] to count the number of cross-

calls incurred by various system components. It shows that more than the 96% cross-calls 

are from the OS scheduler. The scheduler uses cross-calls to notify other CPUs of 

running tasks or threads immediately.   

 We also profiled the usage for all 64 CPUs from the OS perspective and found that 

more CPUs were used by the system with DNIC. Specifically, only 18 CPUs were free 

with DNIC, while 31 CPUs are available with INIC. The result reveals that the OS 

scheduler with DNIC uses the cross-calls to distribute threads to more CPUs as compared 

to INIC.  It is because the lower processing latency with the integration makes running 

cores more efficient and lowers the likelihood that packets are dispatched to other cores.   

B)  Impacts on the CPU Caches 

Since lower processing latency intuitively embeds shorter residential life cycles of 

network data in caches, the integration could also bring impacts on CPU caches. We 

studied cache behavior in the system with INIC and with DNIC respectively.   
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 Starting from the instruction cache, we show the instruction misses per packet in 

Figure 5.13. More context switches incur higher miss rates beyond 16 connections. We 

studied the instruction misses in L2 cache in Figure 5.14 to investigate the impacts of 

those misses on the unified L2 cache. Their performance is similar but misses happen 

very rarely in larger L2 cache.  

 We also show data behaviors in both L2 and L1 data caches. We captured data 

misses per packet in L2 cache for both the DNIC and the INIC in Figure 5.15. It shows 

they have comparable miss rates with less than 32 connections. When it comes to beyond 

16 connections, the INIC has 7.6% reduction of misses.  The misses in the data cache 

behave similarly as shown in Figure 5.16, but we see a much larger gap between the 

DNIC and the INIC. The INIC has 180 fewer misses or 42% reduction of misses at most. 

 

Figure 5.14 Instruction Misses per Packet in L2 

 In our system, the L2 cache is a 4MB cache and the total data cache size of eight 

cores is 64KB.  They can accommodate up to 64 and 1 64KB I/O sizes  respectively. We 
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descriptors etc during packet processing. With the increased connections, we actually 
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need more cache size for simultaneous control plane processing. For example, different 

connections need to lookup different entries in the TCB.  Hence, the smaller access 

latency to I/O registers in the INIC is beneficial. The smaller latency means that packets 

can be provided for upper level processing faster than the DNIC, correspondingly 

resulting in smaller processing latency. Hence, in the same time interval, less packet 

footprints are left in caches with the INIC and more cache spaces can be used for other 

data. The above behavior could incur the lower miss rate with the INIC. Two conclusions 

can be drawn from our analysis: 1) the smaller latency could explain the difference 

between cache misses, and 2) the difference caused by the smaller latency is sensitive to 

the cache size. It explains why the difference on data cache is much larger than that on L2 

cache.    

 

Figure 5.15 Data Misses per Packet in L2 

 

Figure 5.16 Data Cache Misses per Packet     
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Figure 5.17 Memory Traffic per Packet 

 Last but not least, we captured traffic on the memory bus. More cache misses would 

lead to more memory accesses and thus increase memory read traffic. We gathered the 

memory traffic for both read and write operations with INIC and DNIC while running 

Iperf for 60 seconds. The memory traffic, normalized to per packet in Figure 5.17,  shows 

that DNIC incurs more memory read and write accesses. 

 Although both the behavior of the OS scheduler and CPU caches are influenced by 

the integration, we believe that there is some correlation between them. Besides the 

impact of different processing latency on CPU caches, more context switches also change 

the working data set in caches and thus incur some cache misses. Unfortunately, we now 

are unable to quantify their impacts on CPU caches.   

5.1. 5 Summary  

In our experiments, we observe that the smaller latency of accessing I/O registers itself 

does not help processing by a large extent. The different behavior of OS scheduler and 

CPU caches incurred by the smaller latency contribute to the performance gain.  It is in 

contrary to the previous observation that the reduced driver overhead can lead to the 
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performance improvement up to 58% [7]. To satisfy the processing requirement 

introduced by higher network traffic rates, more aggressive designs should be considered.  

5.2 Enhanced Integrated NIC 

In this subsection, we propose a comprehensive design to integrate a NIC into CPU die, 

and implement processing optimizations. We introduce several architectural 

optimizations to INIC designs that will reduce the TCP/IP processing overhead. 

 Figure 5.18 illustrates the new integrated NIC architecture. Similar to [6, 83], we 

incorporate a NIC into CPU. We redesign CPU/NIC interface by replacing DMA with 

software PIO and deploy many optimizations to efficiently support multi-core systems. In 

order to reduce the contention on shared resources from INIC and cores, optimizations 

are derived by first evaluating their software implementation.  

 

Figure 5.18 New Architecture Overview 

 By taking advantage of the integration, LLC is split into dedicated I/O cache and 

general cache at the way level. With a software-controlled policy in OS, the I/O cache 
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can be dynamically resized to meet the various incoming data rates. Lastly but not least, 

cache coherence protocol is optimized to reduce the unnecessary write-backs of network 

data, efficiently utilizing memory bus.  

5.2.1 NIC 

In order to cater to multiple cores, some hardware components need to be incorporated in 

INIC. RSS, a technique for mapping each TCP connection to a specific core, becomes 

critical in high speed networks. Hence, we extend our architecture to support multi-core 

systems by featuring RSS. We first evaluated our software RSS by implementing it in 

OS, which works as follows. All interrupts from  INIC are assigned to a specific core 

where the device driver is running. When the device driver receives an interrupt from 

INIC, it employs Toeplitz hash [76] to determine the affinity between incoming packets 

and CPU cores. Based on the mapping table, it inserts incoming packets into the 

corresponding receive queues and then notifies cores by sending inter-core interrupts. 

Experimental results show that each packet mapping by Toeplitz needs on an average 

1455 cycles in a 2.67 GHz Intel Duo Core 2 CPU [38], not to mention an extra interrupt 

notification. This means that to receive packets from a 10GbE (0.83 million 1.5 KB 

packets per second) 1.2 Giga cycles will be required. Hence, the new architecture deploys 

RSS as a specific hardware circuit.  

 The anatomized design of INIC is depicted in Figure 5.19. Multiple queues (RX in 

Fig.5.19) are offered and each of them is bound to a core for the interaction between 

cores and NIC. Each received packet is hashed by Toeplitz hash over a specific set of 

fields in the packet header. For a TCP connection, 4-tuple of source TCP port, source IP, 



 

destination TCP port, and destination IP address, is used.  The hashed result is

into an index of the mapping table to map the packet to a core. After identification, the 

whole packet is buffered into the corresponding hardware queue. All cores manage their 

queues in an independent way such as reading packets from queues and pr

packets. In a simple hardware implementation of 

required for mapping a packet in a TCP connection (There are two loops in the 

implementation. The outer

inner loop takes 8 cycles to do hashing

reduce to 1 cycle/packet.  

 To eliminate memory access penalties while processing packets, the 

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces 

latency, but more importantly allows incoming packets to be written into L2 cache. This 

data transfer policy intuitively implements DCA and also reduces memo

 Since the integration allows for fast CPU/NIC interaction, software PIO has very low 

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates 
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destination TCP port, and destination IP address, is used.  The hashed result is

into an index of the mapping table to map the packet to a core. After identification, the 

whole packet is buffered into the corresponding hardware queue. All cores manage their 

queues in an independent way such as reading packets from queues and pr

packets. In a simple hardware implementation of Toeplitz function, only 96 cycles are 

required for mapping a packet in a TCP connection (There are two loops in the 

outer loop requires 12 Bytes input and loops once per byte. 

inner loop takes 8 cycles to do hashing). A pipelined implementation can aggressively 

reduce to 1 cycle/packet.   

Figure 5.19 Design of the INIC 

To eliminate memory access penalties while processing packets, the 

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces 

latency, but more importantly allows incoming packets to be written into L2 cache. This 

data transfer policy intuitively implements DCA and also reduces memory read traffic.

Since the integration allows for fast CPU/NIC interaction, software PIO has very low 

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates 

destination TCP port, and destination IP address, is used.  The hashed result is masked 

into an index of the mapping table to map the packet to a core. After identification, the 

whole packet is buffered into the corresponding hardware queue. All cores manage their 

queues in an independent way such as reading packets from queues and processing 

function, only 96 cycles are 

required for mapping a packet in a TCP connection (There are two loops in the 

12 Bytes input and loops once per byte. Each 

). A pipelined implementation can aggressively 

 

To eliminate memory access penalties while processing packets, the architecture 

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces 

latency, but more importantly allows incoming packets to be written into L2 cache. This 

ry read traffic. 

Since the integration allows for fast CPU/NIC interaction, software PIO has very low 

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates 
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the high overhead of DMA descriptor management [90]. It can be observed from Fig.5.19 

that INIC is stripped down to essential components. It directly exposes RX/TX queues to 

the driver. The programmable interface between CPU and NIC becomes copy engine. All 

data transfers between NIC and caches are triggered by programming the copy engine.  

Physical address for holding a packet is first set in the register RX_Addr_Reg, and then 

real data transfer is issued by enabling the register RX_Start. Once copy engine finishes 

the transfer, the result status like packet length is stored in the register RX_Status_Reg for 

setting up the packet buffer structure in OS. In order to feed packets into multiple cores, 

the same number of copy channels is featured in the copy engine. The transfer in each 

channel is currently performed in a synchronous mode where a new transfer has to be 

served after the previous copy is finished.  

 Additionally, INIC reduces interrupt overheads by reducing the frequency of CPU 

interrupts. As shown in Fig. 5.19, INIC moderates interrupt frequency by issuing a single 

interrupt once the number of received packets reaches the threshold in the register 

ITR_Reg.   

 INIC adopts low latency interrupt mechanism to minimize the inevitable adverse 

effect of the interrupt moderation or coalesce on packet latency, such as the control 

packets whose typical size is less than 200 Bytes [58]. This allows for immediate 

generation of an interrupt upon processing received packets smaller than the size 

specified by LLIsize_Reg.   
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5.2.2 Software LRO 

The overhead in TCP/IP receiving processing is proportional to the number of data 

packets [27]. The per-packet overhead consists of buffer management and header 

processing in network stack. LRO aggregates multiple packets from a single connection 

into a larger packet, thus reducing the number of packets to be processed before they are 

passed higher up the network stack. 

 LRO is originally designed in NIC and its software version is recently proposed as 

an alternative. We first evaluated software LRO with an integrated NIC by implementing 

it as an OS component. When the driver processes packets, it calls LRO to join a SKB 

based packet with any others in the stream, making one large packet. Checksum 

information for the final packet is set to the CHECKSUM_UNNECESSARY to avoid the 

redundant checksum computation. In our driver, if the packet cannot be aggregated with 

others (it may not be a TCP packet, or it could have TCP options which require it to be 

processed separately) it will be passed directly to the network stack by calling the routine 

netif_receive_skb() as in the original system. Otherwise, the packets should be handed 

over to the function lro_receive_skb() in LRO to coalesce the packets belonging to the 

same connections. Due to the aggregation of packets, LRO on an integrated NIC pushing 

data into caches could incur longer life cycles of network data in caches and result in 

cache pollution. Our experimental examination of our LRO with 10GbE network shows 

that it does not incur cache pollution and performs effectively with only extra 2% CPU 

utilization while saving hardware cost in INIC. 
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5.2.3  I/O-Aware LLC 

As more and more cores are integrated onto the same chip, LLC is organized to be shared 

among all cores to provide lower miss rate and efficient cache utilization. When multiple 

applications run simultaneously, the performance of each individual workload depends 

on behavior of other workloads [41]. I/O performance is affected while running 

simultaneously with memory intensive applications. Even if packets can be delivered into 

caches, they could be evicted and written back to memory by other applications before 

being processed. Network data has to be fetched from memory again while processing 

packets. This interference could offset benefits of pushing packets into caches. 

 Since the integration allows network data to be directly written into LLC, it is 

straightforward for cache controller to identify the source of a cache write. By taking 

advantage of it, we propose a new I/O-aware LLC to dynamically partition LLC into I/O 

cache and general cache. It can: (1) eliminate effects of application interference on 

network data and thus improve I/O performance, (2) provide flexibility in organizing and 

managing the cache in a way that benefits I/O performance, and (3) reduce unnecessary 

memory write-backs of network data.  

 

Figure 5.20 I/O-Aware LLC 
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 The design of our I/O-aware LLC is illustrated in Figure 5.20. It consists of two 

essential components: hardware quota management and a kernel-level quota orchestration 

policy. Since a subset of cache sets cannot cover the whole address space, partition at the 

set level is infeasible for the I/O cache holding received packets which might span over 

the whole address space. In the architecture, an n-way LLC is split into m-way I/O cache 

and (n-m)-way general cache at the way level. The first m cache blocks in each set are 

always assigned to the I/O cache. This assignment policy avoids the complexity of 

hardware implementation to identify I/O cache lines. Since received packets are delivered 

to LLC in a stream order, FIFO management policy is more suitable for stream data. 

However, the rudimentary replacement policy LRU is good for general cache data. 

Combined with the cache partition, the architecture employs two replacement policies to 

manage the shared cache: FIFO for the I/O cache and LRU for the general cache. 

 In order to meet various incoming rates, OS periodically orchestrates the quota of the 

I/O cache according to the number of replaced cache lines but untouched by network 

stack. When the number of those I/O cache lines exceeds a threshold (half of current I/O 

cache quota at default), managed by OS during a period (10 interrupts in our experiment), 

the quota of the I/O cache with m-way will be increased to (m+1)-way. When the number 

of write accesses to I/O cache lines from NIC is below a threshold (half of current I/O 

cache quota at default), the quota of the I/O cache is adjusted to (m-1)-way.   

 In OS, kernel buffers holding packets are randomly allocated by general SKB 

memory management [11]. The random allocation might cause the uneven distribution of 

mapping those buffers into the I/O cache because most of allocated buffers are likely 
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mapped to some limited I/O cache lines, thus resulting in hotspots but leaving others idle. 

Instead of relying on dynamic memory allocation, we pre-allocate a consecutive physical 

memory during driver initialization and manage them as a FIFO buffer to hold incoming 

packets. This new allocation policy can guarantee that received packets can be evenly 

distributed into the I/O cache and avoid hotspots.  

 In our designs, a statistics collection register stat_write_back is introduced to count 

I/O cache lines replaced but untouched. Another register stat_nic_write is used to store 

the number of write accesses from NIC to I/O cache lines. Control register ctr_io_quota 

is provided by cache controller to orchestra the quota of the I/O cache. In order to 

identify I/O cache lines as untouched, one extra bit touch is required for each cache line 

to store the status of being touched.  Each cache line also uses one bit header to identify a 

cache line holding a packet header. 

 Cache operations are revisited, as described in Table 5.2 and 5.3 respectively.  On a 

cache read, touch field is set to true if it hits a cache line belonging to the I/O cache. 

Otherwise, data is fetched into the general cache when a cache miss occurs. When it 

comes to a cache write, the data source is identified first. The statistics register 

stat_nic_write is increased by 1 when the write is from NIC. When the write from NIC 

incurs a cache miss, FIFO is used to get a cache line. Since a typical Ethernet and TCP/IP 

header size is 54B and is less than cache line size, the first cache line being written is 

marked as header. When the replaced cache line is still untouched by network stack, the 

register stat_write_back is updated for guiding kernel to repartition LLC. Our scheme has 

no timing overhead with a little area overhead of 0.18% (two extra bits required for each 
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cache line in LLC where the line size is configured as 128B). It offers high flexibility to 

software without sophisticated hardware designs.  

Table 5.2 Cache read policy 

 

Table 5.3. Cache write policy 

 

 We adopt the default MESI cache coherence protocol in our system.  INIC places 

data into LLC and changes the state into Modified (M). The affected cache lines make an 

M to M transition when write from NIC hits the I/O cache. Otherwise, the replaced cache 

line with M would be written back to memory. Typically, a large RX queue in a stream 

order is typically allocated in the driver to avoid packets being dropped. Thus, there is a 
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high likelihood that an I/O cache line is rewritten by incoming data with different 

physical addresses before with the same address, thus resulting in extensive write-backs. 

 In OS, packet header is required by network stack to do packet processing. The 

payload is only touched when it is copied from kernel to user buffer or to another 

temporary kernel buffer when user buffer is not yet allocated. Once the network stack 

finishes copying payloads, kernel buffers holding them will be freed. It indicates that 

corresponding cache lines become useless after touched by CPU and are unnecessary to 

be written back. As shown in Fig. 5.20, we introduce an extra bit header to identify 

packet header. With this information, we optimized MESI so that the touched cache lines 

holding payloads are simply discarded. They are not written back when replaced by 

incoming data.  

 Note that when an extra cache way is incorporated into the I/O cache, the header 

fields of new I/O cache lines are set to true. It ensures that the new cache lines holding 

non-network data but with M state will be written back to memory, instead of being 

discarded.  

5.2.4 Performance Evaluation  

We used a full system simulator Simics and extended it with detailed CPU, memory, I/O 

timing models and DMA invalidation effect model. We implemented  INIC and I/O-

aware LLC in simulator and developed a device driver for INIC. Kernel-level cache 

quota management module is currently being incorporated into the driver. In our 

experiments, Linux 2.6.16 is run and Iperf is used to measure network bandwidth.   
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 Cache operations are revisited, as described in Table 5.2 and 5.3 respectively.  On a 

cache read, touch field is set to true if it hits a cache line belonging to the I/O cache. 

Otherwise, data is fetched into the general cache when a cache miss occurs. When it 

comes to a cache write, the data source is identified first. The statistics register 

stat_nic_write is increased by 1 when the write is from NIC. When the write from NIC 

incurs a cache miss, FIFO is used to get a cache line. Since a typical Ethernet and TCP/IP 

header size is 54B and is less than cache line size, the first cache line being written is 

marked as header. When the replaced cache line is still untouched by network stack, the 

register stat_write_back is updated for guiding kernel to repartition LLC. Our scheme has 

no timing overhead with a little area overhead of 0.18% (two extra bits required for each 

cache line in LLC where the line size is configured as 128B). It offers high flexibility to 

software without sophisticated hardware designs.  

Table 5.4 Simulated system parameters 

 

 All experiments use a two-system client-server configuration. In each case, only one 

system is of interest, while the other merely serves as a stressor. Each of them has four 

3GHz cores sharing a 6MB LLC. System under test (SUT) is configured with detailed 

timing models and processors are with an in-order timing model. Stressor is run with fast 
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functional mode and is not a bottleneck. The access latency to NIC registers is fixed at 30 

and 800 cycles in INIC and conventional NIC respectively [6]. The other parameters we 

used in modeling the configuration are listed in Table 5.4.  

 First, we look at the I/O performance by running Iperf over 10GbE network under 

various configurations: conventional DMA-based NIC (CNIC), CNIC with the support of 

RSS, CNIC with RSS and LRO, Integrated NIC (INIC), INIC with RSS, INIC with RSS 

and LRO. 

 

Figure 5.21 Bandwidth & CPU Utilization 

 

Figure 5.22 Breakdown of CPU Utilization 

 Experimental results of both bandwidth and CPU utilization are shown in Figure 

5.21. We breakdown CPU utilization at the component level in Figure 5.22 to understand 

the benefits.  As shown in Fig.5.21, CNIC achieves only 6 Gbps bandwidth by 

consuming 33% CPU utilization. CNIC with RSS leverages multiple cores to improve 
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network bandwidth up to 8.1 Gbps with 50% CPU utilization. Fig.5.22 shows that CPU 

utilization on each component is proportionally increased except the component “others”, 

which is due to extra scheduling cost in an unbalanced system. Memory subsystem is the 

potential bottleneck of achieving line rate bandwidth and an increase in CPU 

performance could not further improve bandwidth. LRO coalesces small packets into a 

large packet to reduce the number of packets processed. With LRO optimization in the 

device driver, 8.6 Gbps bandwidth can be obtained with 43.5% CPU utilization. The 

performance increase is 6% while saving 6.5% in CPU utilization. The breakdown of 

CPU utilization in Fig.5.22 reveals that the savings of CPU utilization is from network 

stack and buffer management. It is observed that LRO, slightly increases CPU utilization 

in driver by 2%, but it performs effectively over 10GbE.  

 As shown in Fig.5.22, driver is the biggest CPU cycles consumer due to high 

overhead of DMA descriptor management and high access latency of I/O registers. Since 

each received packet should be fetched from memory into caches when copied from 

kernel to user buffers, copy is another big overhead. We observe that 8.9 Gbps bandwidth 

can be obtained by INIC with software PIO interface with 32% CPU utilization. 

Compared to CNIC, it improves bandwidth by 48% with consuming nearly the same 

CPU cycles. RSS in INIC leverages multiple cores and escalates bandwidth up to line 

rate with a 27.5% of CPU utilization. When LRO is developed in the driver to reduce per-

packet overhead, it reduces CPU utilization to 24.5% and sustains a wire rate speed. The 

breakdown of CPU utilization in Fig.5.22 shows that LRO reduces overhead from 

network stack and buffer management components by reducing the number of processed 
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packets. INIC eliminates DMA descriptor management, reduces access latency of I/O 

register, and alleviates memory access overhead.  

 Since INIC-based architectures place RX/TX queues into CPU, the size of NIC 

queues becomes critical for CPU designers. The amount of buffering required is 

proportional to the product of network bandwidth and CPU/NIC latency. Since the 

CPU/NIC latency is extremely low due to the integration of NIC on die, much less buffer 

space is required compared to CNIC. In experiments, bandwidth does not suffer 

significantly until the number of entries in RX queues is below 64. Since transmit side is 

much less complex than receive side, a fairly small buffer is sufficient.  

 

Figure 5.23 Bandwidth with Memory Intensive Apps 

 As the receiving side of network processing is well known to be memory intensive, 

INIC significantly eliminates the burden of memory access by delivering packets into 

LLC. When network applications and memory-intensive applications run simultaneously, 

the network data residing in LLC may be evicted by running memory intensive 

applications before used, due to capacity or conflict misses. We design the I/O-aware 

LLC to ensure that network packets are not replaced and bandwidth is not effected 

significantly in this situation. In our experiment, we ran the micro-benchmark Iperf with 
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a memory intensive application, which continuously streams through a large section of 

memory. It has been used to study the impact of memory onloading on various system 

configurations. 

 Our results with the mixed workload are illustrated in Figure 5.23. It is observed that 

INIC is degraded by 12% in network bandwidth while running with the memory 

intensive application. It is mainly contributed to the cache interference from the memory 

intensive application. But our I/O-aware LLC achieves nearly the same bandwidth as 

without memory intensive application, only with a 2% bandwidth degradation.  The slight 

degradation in bandwidth is because the memory-intensive application shares CPU with 

network application. Less CPU cycles slightly impact the capacity of processing packets. 

At the same time, it may be observed from the third bar that in the absence of memory 

application the same bandwidth is maintained as INIC, meaning that there is no 

degradation due to less I/O cache. The results confirm the effectiveness of the I/O-aware 

LLC technique to eliminate the impact of cache interference from other running 

applications.  

 An advantage of the split LLC is that the quota of the I/O cache can be orchestrated.  

Figure 5.24 vividly illustrates the required associativity of LLC to maintain the best 

bandwidth along an Iperf session. In experiments with 16-way 6M LLC, 1-way I/O cache, 

with the size of 384 Kbytes, is sufficient to meet a feeding rate of 10Gbps.  It can host the 

incoming 256 1.5 KB packets. Experiment shows that there are no untouched packets 

when replacement occurs for incoming packets. The upcoming 40GbE and 100GbE 

would largely increase feeding rates and need a bigger dedicated I/O cache. Although 
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simulation has not supported 40GbE network yet, we mimic the impact by reducing the 

LLC size in 10GbE network. In Fig.5.24, we reduced LLC from 6M to 1M but kept the 

same cache way, and ran a whole session of Iperf for 10 seconds. The results show that 

the I/O cache dynamically adjusts from a default value 1-way to 2-way while processing 

packets, and finally returns back to the default value after packet processing. This shows 

that our policy can dynamically adjust I/O cache quota depending on the rate of receiving 

packets.  

 

Figure 5.24 I/O Cache’s Way across Timeline 

 

Figure 5.25 The Number of Write Backs of Network Data 

 As mentioned before, cache coherence on I/O cache is optimized to reduce 

unnecessary write-backs. We studied benefits of enhanced cache coherence protocol in 

terms of the number of write-backs of I/O cache lines. We chose two typical packet sizes 

256B and 1514B, and computed the number of write-backs required while running a 

whole session of Iperf with and without our optimization. Experimental results are shown 
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in Figure 5.25. It is observed that the new protocol eliminates the write-backs of dead 

network data and significantly reduces memory write traffic: the number of write-backs is 

reduced by 3.95X with 256B, and 23.7X with 1514B. This indicates that a slight 

enhancement in cache coherence can significantly reduce memory write traffic.  

5.3 Summary 

In this chapter, we first conducted extensive experiments on a Sun Niagara 2 platform to 

fully understand the performance benefits of an integrated NIC. We realized that a simple 

integration does not help a lot. Thus, we proposed an enhanced integrated NIC 

architecture for high speed networks. In the new architecture, we redesigned CPU/NIC 

interface from hardware DMA to software PIO by exploiting fast interaction between 

CPU and integrated NIC. We deployed hardware RSS for efficiently supporting multi-

core systems and software LRO for reducing per-packet overhead. In order to eliminate 

cache interference between I/O and other running applications, we take advantage of the 

integration of NIC to split LLC. A dedicated I/O cache is configured at the cache way 

level, and its organization can be dynamically changed to meet the various network data 

rates. Additionally, we also optimized cache coherence protocol to avoid unnecessary 

write-backs of network data for efficiently utilizing memory bus. Experiment results 

demonstrate that the new architecture achieves 10Gbps bandwidth low 24.5% CPU 

utilization, eliminates cache interference from other applications and reduces memory 

write traffic by 23.7X.    
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Chapter 6  

A TCB Cache to Manage TCP Control Blocks  

In above chapters, we analyzed network processing overheads and optimize its 

processing performance from the per-packet perspective.  However, they ignored per-

session data TCP Control Block (TCB), which is a per-session data structure of 512 bytes 

that TCP/IP uses to store its TCP session states and is accessed on the TCP critical path 

[11, 32, 44, 73]. A large number of sessions and web session behavior in web servers 

make the management of TCBs complicated and introduce challenges.  

 In this chapter, we analyze challenges incurred from TCBs when there are thousands 

of concurrent sessions in web servers and carefully study behavior of web sessions. Then 

we design a new TCB cache with extensive consideration of web session characteristics 

to efficiently manage TCB data. We extensively study the performance of various hash 

functions and propose a Universal hashing based cache indexing scheme. To couple with 

our cache indexing scheme, we design a speculative cache replacement policy by 

harnessing the ON/OFF model of web sessions. We further extend the replacement 

scheme by incorporating migration of the replaced ON data to the OFF region of the 

cache.  
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6.1 TCB Challenges 

As mentioned before, a wide spectrum of optimizations has been done for TCP/IP to 

improve its processing performance. They broadly fall into two categories: offloading the 

TCP/IP protocol stack into NICs (TOE) [13, 32, 88, 89] or pushing NICs closer to CPUs 

while keeping protocol processing on CPUs [6, 31, 45, 46, 63, 83] such as DCA or 

integrated NIC etc. In this subsection, we study the challenges of managing a large 

number of per-session TCB data for web servers in these two prevailing schemes to 

motivate our research.   

6.1.1 Challenge in TOEs 

Intel presented its 10Gb/s TOE's detailed designs in [32] and the major function units are 

illustrated in Figure 6.1.  Input sequencer analyzes an incoming packet and extracts the 4-

tuple session identifier from the packet header. The packet is stored into memory sitting 

on-board or connected externally for future transfer to applications. The session to which 

the packet belongs is looked up and the session data is loaded into internal working 

registers used by the execution unit. Then, the execution unit, controlled by instructions 

from the instruction ROM, performs the central part of the protocol processing using the 

session data. The complete micro-program implemented to perform TCP inbound 

processing consists of ~300 lines of code. The TCP fast path processing for in-order 

packets in a session takes 116 instructions and the slow path processing with complex 

out-of-order control have ~300 instructions.  In most of the cases, incoming packets are 

in-order and thus belong to the fast path.   
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Figure 6.1 Function units in TOEs 

 

Figure 6.2 Processing time with a TCB miss 

 In TOE, TCB data is accessed before protocol processing and the processing is 

unable to precede until the data is ready. The data is returned from the TCB cache with a 

cache hit, otherwise, it is fetched from the memory. It was reported in [32] that 51.2 ns is 

required for in-order packet protocol processing in a 10Gb/s TOE. With a TCB cache 

miss, Figure 6.2 shows the overall packet processing time, where we assume that memory 

access latency is 50 ns and each cache miss incurs only one memory access (TCBs are 

typically organized by a hash table in the memory and the TCB entry is found by 

traversing a linked list in each hash table bucket [11]. A TCB cache miss incurs both the 

linked-list traversal and data accesses, thus causing more than one memory accesses). 

The figure reveals that TCB accesses take more than 50% percent of the overall 

processing time and much higher if we consider several memory accesses for a cache 
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miss. With a cache hit, the TCB access latency can be substantially reduced to 6.4 ns 

[32].  Hence, the packet processing performance heavily relies on how fast TCB data is 

accessed. Currently, the TCB cache is implemented as a CPU-like cache associated with 

modular indexing and LRU. However, as the number of sessions increase in web servers, 

these simple cache designs without considering web session characteristics cannot 

efficiently keep session data. A more efficient TCB cache is required to provide high 

cache performance.    

6.1.2 Challenge in protocol processing on CPUs 

In addition to TOEs, a large number of sessions also poses a performance challenge when 

the TCP/IP protocol stack is running on CPUs [44]. We establish a server-client 

environment, where the client opens the specific number of TCP sessions and sends 1KB 

requests across all of the sessions in a round-robin way to the server. Both the server and 

client are Intel machines with 2.67 GHz Intel Quad-core processors. Intel performance 

counters are used to instrument Linux in-kernel network stack and measure the execution 

time of individual kernel functions or groups of kernel functions. The lives of processing 

a request with one session and 4K sessions are shown in Figure 6.3 and 6.4, respectively 

with a timeline scale of 500 CPU cycles per unit. The horizontal dashed line separates the 

kernel and user space, and only kernel functions are considered.  Note that the figures 

only show functions in the TCP critical path and do not consist of functions in the non-

critical path such as buffer allocation, de-allocation and scheduling etc.  
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Figure 6.3 Life of  packet (single session) 

     

Figure 6.4 Life of  packet (4K sessions) 

 The received request processing starts from the interrupt handler e1000_intr in the 

device driver. After the interrupt handler, the request is delivered up to the IP layer 

(ip_rcv) and the TCP layer (tcp_rcv). Then, the network stack performs TCB lookups to 

find the destination TCB's address and does per-session processing according to TCB 

data, both of which we refer to as TCB processing in figures. Finally, the request is 

copied to user applications by using the skb_copy_bits function. Our timing analysis 

shows that the TCB processing overhead increases rapidly with a large number of 

sessions, and becomes significant along with other two overheads in the TCP critical 

path: the driver and data copy. Since existing research [6, 31, 63] can effectively reduce 

those two overheads, it becomes important to address the remaining TCB processing 

challenge. Our analysis shows that TCB lookups and accesses mainly contribute to the 
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overhead of TCB processing.  Web servers with a large number of sessions increase the 

chance that TCB data is polluted in caches, and degrade TCB lookup performance as well 

because traversing the linked list in a bucket is prone to incurring cache misses [44].   

6.2 Characterization of Web Sessions 

In the web domain, a web session is defined as a sequence of requests made by a single 

client during its visit to a particular server [4, 15, 19]. A modern web page includes 

reference-indexed embedded files which are typically images or graphs; these files are 

required to properly display the web page to the client. Thus, a typical request for a web 

page usually results in multiple consecutive client requests for those embedded items. 

Extensive studies on real web traffics have shown that web sessions exhibit the ON/OFF 

model [4, 15, 19]. The entire transfer period for the whole page is referred as ON period, 

and the time gap between two requests for two embedded items as Idle when server 

responses are transmitted. After the client receives the whole web page, it usually takes a 

period of time for the client to read the page before sending the next page request. This 

period is referred as the OFF period. During the ON period, TCB data is frequently 

accessed, but no accesses occur in the OFF period. Thus, keeping (not replacing) cache 

contents during the ON period is critical, a property that is used later to design our 

speculative cache replacement policy.    

 We choose four popular web server traces to study the characteristics of web 

sessions: Boston University trace (BU), NASA-HTTP (NASA), ClarkNet-HTTP 

(Clarknet), Saskatchewan-HTTP (Sak). We measure both the time between two 
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consecutive requests during the page transfer (in ON) and the time between two 

consecutive ON (OFF time) for all four traces. Figures 6.5 and 6.6 show the frequency 

for the time. We observe that the inter-request time in the ON period is fairly small 

compared to the OFF time and is typically less than 1 second. The above time analysis 

guides us to design an efficient cache replacement policy. 

 
Figure 6.5 Inter-request time frequency in ON 

 
Figure 6.6 OFF time frequency (OFF) 

6.3 New TCB Cache 

In this subsection, we elaborate our TCB cache designs considering web session 

characteristics. The cache organization is described in Subsection 6.3.1 and the bit 

selection is explained in Subsection 6.3.2. In Subsection 6.3.3, we illustrate the Lifetime 

array used by our new cache replacement policy, which is presented in Subsection 6.3.4.  
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6.3.1 Cache Organization 

A cache organization is primarily defined depending on how a set is indexed. Our aim is 

to distribute the mapping uniformly that can ensure simultaneous occupancy of a large 

number of sessions being connected to the web server at a time. Universal hash functions 

are known to generate an even distribution of workload over the hash buckets and are 

relatively easy for hardware implementation [12, 75]. We present the TCB cache miss 

ratios of four web server traces with various hash functions in Figure 6.7, where all cache 

miss ratios are normalized to the miss ratio of modulo mapping (Mod). We observe the 

following: 1) both Mod and XOR are not good fit for TCB cache; 2) PMod and PDisp are 

not as good as Universal and CRC [72]; 3) having two hash functions obtains better 

performance than single hash function. It was observed in [43] that PMod and PDisp 

hash functions are better than Mod and XOR for SPEC CPU benchmarks. As we can see, 

they are also better for web server traces, but not as good as the proposed Universal hash 

functions. Among all of the hashing schemes, 2-Universal achieves the best performance. 

It may be noted that having more than two hash functions degrades performance because 

more cache banks split the original LRU set and sacrifice the effectiveness of the cache 

replacement policy.  

 In order to understand the performance gap of various hash functions, we study 

probability distribution function (PDF) of absolute deviation of the number of sessions in 

cache sets (or |X minus expected value of X|, where X is the number of sessions in a 

cache set) and show result for one trace (Sak) in Figure 6.8. The figure points out that 

multiple hash functions have higher probability at small values like 50 and thus achieve a 
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more even cache access distribution.  Although other traces studies are not shown here, 

Figure 6.7 Performance of cache hash functions 

Figure 6.8  PDF of absolute deviation of #sessions in cache set 

illustrates the hardware design of our TCB cache, which is addressed by 

Universal hash functions. Our TCB cache has tag arrays and data 

arrays as traditional CPU caches, but it adds a new Lifetime array to track the cac

status, which is used by the hardware replacement unit. As observed in Fig. 
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two Universal hash functions (hash1 and hash2) being employed by two cache banks 

give the best miss ratio. Hence, we use two cache banks in Fig. 6.9, each consisting of a 

4-way set associative cache. We also add two auxiliary Universal hash functions (hash3 

and hash4) to be used by our cache replacement policy to migrate ON cache lines. We do 

a bit-by-bit analysis of session identifiers and select 16 important bits as index bits in 

order to reduce Universal hashing hardware complexity. The selection process of the 

particular bits is described in the next subsection. In order to access a session state, CPUs 

extract a 2-tuple from a packet header and issue an operation to the cache. The cache first 

locates the two cache sets corresponding to the two hashes (hash1 and hash2) of the 16 

bits and then does the tag check with the 2-tuple in parallel. If the operation is hit in the 

cache, the session state is operated; otherwise, the cache uses auxiliary functions hash3 

and hash4 to lookup the cache again. If not found, the hardware replacement unit is 

triggered to select a cache line for the new data. Since only a portion of a 2-tuple is used 

for hashing, the tag in each cache line is a full-fledged 2-tuple. We also include 4 bytes 

TCB memory addresses in tag arrays to make the TCB cache interact with the memory. 

Although TCB is a 512 bytes data structure, only a portion of data in each TCB is 

frequently accessed during processing packets [44, 82, 11, 94]. We use full system 

simulator Simics  to study the frequency of accesses in Linux to TCB data and notice that 

only ~64 bytes are frequently accessed. This is because most of the packets belong to the 

TCP fast path, requiring much fewer than the entire TCB data of 512 bytes.  The similar 

observation have been made in TOEs that storing 64 bytes information for each session is 
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sufficient to implement the offloaded processing tasks [32]. Therefore, we use a cache 

line of 64 bytes to keep those states. 

  

Figure 6.9 TCB Cache Architecture 

6.3.2 Index Bit Selection 

The two Universal hash functions in our TCB cache are from a function class called ��, 

which has amenable hardware implementation [75]. Each hash function in �� is a linear 

transformation that maps a w-bit binary string to an r-bit binary 

string .  

 

Each bit of � is calculated as:   where 
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the bits of a hash input and � is the bits of the cache index. Since hash functions in �� are 
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the same except the parameter 

chip by providing different parameters. 

 Hashing latency and hardware complexity increase rapidly with increase in the input 

bits. We study bit distribution of session identifiers of web traces with the goal to reduce 

the number of input bits. We measure the average values of the bits distributed

address and port number and show them in Figure 

The best index bits (or important bits) should be those with an average value of 0.5; 

meaning that they are set 50% of the time over a large series of session 

notice that bits in IP address have similar importance but 8 least significant bits in port 
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the same except the parameter , each hash function can be configured from a generic 

oviding different parameters.  

Figure 6.10 Average bit value of IP address        

Figure 6.11 Average bit value of port 

Hashing latency and hardware complexity increase rapidly with increase in the input 

bits. We study bit distribution of session identifiers of web traces with the goal to reduce 

the number of input bits. We measure the average values of the bits distributed

address and port number and show them in Figure 6.10 and 6.11 (the first bit is the MSB). 

The best index bits (or important bits) should be those with an average value of 0.5; 

meaning that they are set 50% of the time over a large series of session 

notice that bits in IP address have similar importance but 8 least significant bits in port 

, each hash function can be configured from a generic 

  

 

Hashing latency and hardware complexity increase rapidly with increase in the input 

bits. We study bit distribution of session identifiers of web traces with the goal to reduce 

the number of input bits. We measure the average values of the bits distributed in IP 

(the first bit is the MSB). 

The best index bits (or important bits) should be those with an average value of 0.5; 

meaning that they are set 50% of the time over a large series of session identifiers.  We 

notice that bits in IP address have similar importance but 8 least significant bits in port 
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number are more important than other bits. That is mainly because ports start from 1024 

(ports <1024 are assigned for system services) and are typically allocated within a limited 

range of 256, but IP addresses are distributed more randomly. Given these observations, 

we choose 8 bits from port and 8 bits from IP address as our index bits, as shown in 

Figure 6.12. Our experimental results in Section 4 show that our tailored index bits can 

achieve the same performance as 48 bits 2-tuple.  

Figure 6.12 Bit selection   

 

 

 

Figure 6.13 Circuit implementation 

 The circuit implementation of calculating an output bit is illustrated in Figure 6.13 

and each bit calculation is performed in parallel. The implementation needs 5 gate delays 

at most (1 gate delay in AND circuits and 4 gate delays in XOR circuits). Each gate only 

takes ~10 picoseconds with Intel 60nm fabrication technology [40] and thus 5 gate delays 

can be easily implemented within a single CPU cycle (1000 picoseconds per cycle for 

1GhZ CPU). 
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6.3.3 Lifetime Array        

The Lifetime array is used to track the cache line's ON/OFF status and its structure is 

shown in Figure 6.14. In the Lifetime array, we maintain one 3-bit life counter for each 

TCB cache line to track the ON/OFF status. The most significant bit (MSB) of each 3-bit 

counter indicates ON or OFF. When MSB equals to 1 (111 to 100), it means ON, and 0 

(011 to 000) means OFF. The counter is always initialized to the max value "111", and 

counted down every 1/4 second. After 1 second, the status switches to OFF, as the 

counter becomes "011".  We choose 1 second as the threshold because it is highly likely 

that web sessions are in OFF if they have not been touched for 1 second. The system 

countdown signal is triggered by a clock divider which basically counts the clock cycles 

and asserts a ‘1’ by every N cycles. For example, let the system clock frequency (FREQ) 

be 2GHz and the ON period (T) 1 second. In order to get an 8Hz output, the N would be 

FREQ*T/4 = 500M cycles.  

 There are two kinds of operations for the Lifetime array:  

 Regular read/write cycle: it happens at every TCB data write. The corresponding 

life counter will be initialized to “111”. Due to the possibility of cache replacement, we 

need to read out the original ON/OFF bits (MSBs of each counter) before the write.  As 

in regular caches, we perform a read access in the first half cycle, and a write in the 

second half cycle. The read will collect the four ON/OFF bits, and sum them up through 

a bit-adder. The total number of ON will be sent to the hardware replacement unit. 
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 Refresh write cycle: Similar to a DRAM memory refresh, which prevents the 

leakage of DRAM cells, we also perform a whole array scan once every 1/4 second. The 

difference is that, after reading the current value, we do not write the same value back, 

instead, it is reduced by 1 and is then written back. The only exception is “000”, but 000-

1=111, and thus we retain the value when the counter is zero. The refresh performance or 

power overhead is negligible, as hundreds of cycle vs 500 million cycles.   

 

Figure 6.14 Lifetime array 

6.3.4 Speculative Cache Replacement Policy 

Although multiple cache banks (each has a separate hash function) can effectively reduce 

conflict misses, they make it difficult to implement cache replacement policies like LRU 

at a reasonable hardware cost and force using pseudo-LRU policies [43, 78, 79, 86].  

Topham et al. [86] presented a way to implement an affordable LRU for multiple cache 

banks by adding a timestamp to each cache line. Every time a cache line is accessed its 

timestamp is updated with the access sequence. When a miss occurs, the line with the 

least timestamp is replaced. The paper shows that a 8-bit timestamp can achieve 
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comparable performance for the SPEC95 floating point benchmarks. However, we notice 

that more than 24 bits for the timestamp are needed in the TCB cache in order to achieve 

good performance. What is more, more cache banks split original LRU sets and sacrifice 

the effectiveness of LRU.  

 We design a speculative cache replacement policy by harnessing the ON/OFF model 

to address the above issues. Since a web session in the ON mode will be accessed very 

frequently, our policy aims to keep ON cache lines as long as possible as follows. 1) 

when a cache miss occurs, the policy selects a cache bank with fewer ON cache lines in 

two corresponding cache sets indexed by hash1 and hash2, in case of a tie, we choose the 

left cache bank for simplicity. It load balances ON cache lines among cache banks and 

increases the occupancy ratio of ON cache lines in the cache. We notice from our in-

depth studies that LRU is unaware of ON cache lines and may result in imbalance of ON 

cache lines among cache banks, and thus incurs unnecessary eviction of ON cache lines. 

2) Inside each cache bank, if an OFF line is in the LRU position, we replace it for new 

data, otherwise, we check ON cache lines to find a migratable cache line (an ON cache 

line is referred to as migratable if there are OFF cache lines in its corresponding cache 

sets). A migratable cache line is randomly chosen and migrated to its corresponding 

cache set to keep ON cache lines in the cache as long as possible. The proposed scheme 

has some similarity with the hash-rehash scheme proposed long time back for direct-

mapped cache, but our scheme uses different hash functions, multiple banks, migrates 

only selected replaced data. To increase the chance that we can find a migratable cache 

line, we introduce two auxiliary Universal hash functions (hash3 and hash4) to index the 
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replaced ON cache line and migrate it to an OFF cache line if found. If an OFF cache 

line is not found during the auxiliary hash, the replaced cache line is discarded. Like 

lookup case, auxiliary hash hash3 and hash4 are simultaneously carried out for 

replacement. While sequential auxiliary hashing (or pipeline hashing) restricts cache 

access by hash1 and hash2, we notice that most of cache hits occur in the first hashing 

(hash1 and hash2) and the penalty is more than overcome due to increased cache hits. 

Although our migration scheme is similar to the hash-rehash scheme proposed for direct-

mapped caches [2], it employs Universal hash for rehashing cache lines and only 

migrates ON cache lines to OFF cache lines, avoiding eviction of valuable data.  

 

Figure 6.15 Speculative cache replacement policy 

 Figure 6.15 illustrates one example of our speculative cache replacement policy. 

Suppose there are some ON TCBs in the TCB cache, which are colored but unlabeled.  

Given a access sequence of TCBs T1, T2, T3, T4, T5, the policy places T1, T2, T4 in the 

right cache bank and T3 in the left cache bank. When T5 comes, neither of two 

corresponding cachet sets in two cache banks has OFF cache lines and T3 is replaced. 

Since T3 is still in the ON mode, our policy gives T3 one more chance to stay in the cache 
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by using two auxiliary hash functions, therefore T3 is migrated to the right bank for 

future accesses. 

6.4 Performance Evaluation 

6.4.1 Evaluation Methodology  

We developed a trace-driven cache simulator to evaluate our TCB cache designs.  Four 

web server traces: Boston University trace (BU), NASA-HTTP (NASA), ClarkNet-HTTP 

(Clarknet), Saskatchewan-HTTP (Sak) are chosen for our experiments These traces 

contain all HTTP requests to the corresponding web servers during collection periods.   

 In our experiments, we denote the TCB cache in TOEs employing both LRU and 

modular hash as TCB (Mod). Since implementing LRU with two hash functions is 

complex, we evaluate a pseudo-LRU cache replacement policy ENRU for multiple cache 

banks similar to [43, 86]. We refer to the TCB cache with the pseudo-LRU and 2-

Universal as TCB (2-hash). Finally, we evaluate the proposed TCB cache with 2-

Universal and the speculative cache replacement policy and denote it as TCB (spec). 

Since our cache also implements a migration policy, we include our TCB cache without 

the migration scheme to understand the migration benefits and denote it as TCB(no-

migrate). We test 1000 different Universal hash functions by randomly generating 1000 

parameters and observe that they have similar performance within a range of 2.5%. We 

select the best hash parameters in our experiments.  

 In addition, we also study the performance benefits of applying our TCB cache 

designs into TOEs or integrating the cache into CPUs.  We calculate the TCB access 
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overhead (per packet miss ratio * memory latency) and incorporate it into the protocol 

processing time in [32] to study the performance impacts of the new TCB cache on 

TOEs. Furthermore, we use the full system simulator Simics by enhancing it with the 

detailed cache, I/O timing models and modeling of the effects of network DMA to 

understand the benefits of integrating the TCB cache into CPUs. Note that the integrated 

cache sits in parallel with L2 cache.  Two networked systems (client and server) running 

Linux 2.6.16 are simulated.  In the client, the replay tool opens multiple sessions to the 

apache server to simulate multiple clients and then generates requests from the web traces 

while keeping the same behavior inside each session. Since accesses to heap data 

structures among tcp_v4_rcv and tcp_rcv_established functions are for TCB items [11], 

we refer to those accesses as TCB accesses.  We replace cache misses due to TCB 

accesses with cache misses of our TCB cache from our trace-driven cache simulator to 

approximate the performance benefits of integrating the TCB cache into CPUs. All 

caches in our experiments have the same cache line size of 64 bytes with detailed 

simulator parameters listed in Table 6.1. 

Table 6.1 System parameters 

Processor Two cores, 3GHz, in-order, single-
issue 

ICache/DCache Private per core, 32 KB 2-way, 2-
cycle hit latency 

L2 Unified 
Cache 

4M, 8-way split, 10 cycles hit 
latency 

Memory 300 cycles 
I/O register 800 cycles 
TCB Cache 32KB, 10 cycles hit latency 

NIC LRO, 64 packets/interrupt  
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6.4.2 TCB Cache Performance 

We study the performance of various TCB cache configurations for all the traces by 

comparing their cache miss ratios in Figure 6.16.  We use TCB (Mod) as a baseline TCB 

cache to understand the benefits of our optimizations.  We observe that the baseline TCB 

(Mod) has a 56% miss ratio per packet with the BU trace. TCB (2-hash) reduces the miss 

ratio to 37% by achieving a more uniform cache access distribution.  TCB (no-migrate) 

obtains a 32% miss ratio by load-balancing ON TCBs among cache banks. With our 

speculative cache replacement policy, TCB (spec) achieves a smaller miss ratio of 28%, 

corresponding to 50%  reduction compared to the baseline. Other three traces exhibit 

similar behaviors. The NASA trace has a 50% miss ratio when it is run on the baseline 

system. The miss ratios are lowered to 33%, 28% and 26% when we run the trace on 

TCB(2-hash), TCB(no-migrate) and TCB (spec). Similarly, cache miss ratios for the Sak 

trace are 69% TCB (Mod), 55% TCB (2-hash) and 51% TCB(no-migrate). TCB (spec) 

obtains a smaller miss ratio of 44%, corresponding to 37% relative reduction compared to 

TCB(Mod). When we come to the Clarknet trace, the miss ratios are 42% for TCB (Mod), 

31% for TCB (2-hash) and 25% for TCB (no-migrate). The TCB (spec) further reduces 

the miss ratio to 22% and achieves 47% cache miss reduction compared to the baseline. 

All above results verify the effectiveness of our cache indexing scheme and the 

speculative replacement policy. 
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Figure 6.16 Per packet miss ratio 

Figure 6.17 TCB performance of n-bit hash 

Impact of Bit Selection  

To reduce the hardware complexity of Universal hash, 16 representative bits (IP<24
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the performance but our 16-bit hash is able to achieve the same cache performance as 48

bit hash while requiring the least hardware complexity. Our 16-bit hash lowers the 

hardware complexity, which allows the Universal hash to be feasibly deployed on on

chip caches requiring low hash latency and low power consumption. Our circuit 

implementation shows that one output bit calculation in 48-bit Universal

bit XOR logic and 48 AND logics, corresponding to 7 gate delays and 95 CMOS 

gates (47 gates in the XOR logic and 48 gates for AND logics).  However, our 16

hash only uses one 16-bit XOR logic and 16 AND logics for calculating one 

output bit, corresponding to 5 gate delays and 31 CMOS gates (15 gates in the XOR logic 

and 16 gates for AND logics). 

Figure 6.18 Cache replacement policies 

Exploration of Cache Design Spaces 

We also explore TCB cache design space along three axes: cache replacement policies, 

associativity. We include three alternative replacement policies and denote 

TCB (16), TCB (Access).  TCB (RR) is the policy which chooses a 

cache bank for the new data in a round robin way. TCB (16) is the implementation of 

NASA Sak Clarknet

TCB(16) TCB(Access) TCB(spec)

bit hash is able to achieve the same cache performance as 48-

bit hash lowers the 

hash to be feasibly deployed on on-

chip caches requiring low hash latency and low power consumption. Our circuit 

Universal hash needs one 

, corresponding to 7 gate delays and 95 CMOS 

gates (47 gates in the XOR logic and 48 gates for AND logics).  However, our 16-bit 

bit XOR logic and 16 AND logics for calculating one 

and 31 CMOS gates (15 gates in the XOR logic 

 

replacement policies, 

associativity. We include three alternative replacement policies and denote 

is the policy which chooses a 

s the implementation of 

Clarknet

TCB(spec)



 

LRU with a 16-bit timestamp in each cache line. 

with fewer cache accesses to the two corresponding cache sets when a miss occurs. In 

Figure 6.18, all miss ratios are normalized to the miss ratio o

replacement policy. We observe that 

and TCB (Access) while it needs a significantly higher storage overhead, and our 

TCB(spec) achieves the lowest miss ratios for all four traces and only n

bits for each cache line.  

Figure 

 In addition to the replacement policies, we present the 

various TCB cache sizes normalized over a 32KB cache, as shown in Figure 

0.20

0.70

1.20

1.70

2.20

2.70

3.20

BU

0

0.4

0.8

1.2

1.6

2

BU

102 

bit timestamp in each cache line. TCB (Access) selects the cache bank 

with fewer cache accesses to the two corresponding cache sets when a miss occurs. In 

, all miss ratios are normalized to the miss ratio of our 

replacement policy. We observe that TCB (16) has the similar miss ratios to 

while it needs a significantly higher storage overhead, and our 

achieves the lowest miss ratios for all four traces and only n

 

Figure 6.19 Performance impact of cache sizes 
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figure shows that both 32KB and 64KB TCB cache sizes achieve good cache 

the cache size is reduced to 16KB and 8KB, the cache performance 

is dramatically degraded because of capacity misses. This study points out that 32KB is a 

suitable TCB cache size for web servers with thousands of concurrent sessions. We also 

performance impacts of set-associativity of each cache bank on our 

as shown in Figure 6.20. We observe that both 4-way and 8-way achieve good 

cache performance over all four traces.  

Using our TCB cache 

Our research resolves the issue of per-session data and is supplementary to existing 

approaches.  First, our TCB cache can be applied to TOEs to replace the traditional CPU

like TCB cache. Second, with the support of our TCB cache, DCA or Integrated NIC 

chitectures are able to address the per-session data access challenge while running 

Figure 6.21 TCP/IP receiving time in TOEs 

We show the performance impacts of using the new TCB cache in TOEs on packet 

processing time in Figure 6.21. The results are normalized to the original TOE using the 
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simple TCB cache. Our result projects that our new cache can reduce TCP/IP processing 

time by more than 20%. The reduced processing time will save web server response time.  

In addition, we also evaluate the performance benefits of integrating our TCB cache into 

CPUs in Figure 6.22 and 6.23
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our results to the processing time of the baseline system without the TCB cache. In the 

original system, frequently accessed TCB items are distributed across multiple cach

lines and hence several cache misses could occur for one packet. Also, traversing linked 

lists due to TCB lookups is prone to incurring cache misses, deteriorating cache 

performance.  By providing high cache hit ratios and avoiding linked list traversal 

cache hits, our TCB cache reduces TCP/IP request processing time by up to 23% and 

saves up to 5% web server response time.  
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simple TCB cache. Our result projects that our new cache can reduce TCP/IP processing 

by more than 20%. The reduced processing time will save web server response time.  

In addition, we also evaluate the performance benefits of integrating our TCB cache into 

6.22 and 6.23. We use the prevailing optimization DCA delivering 

kets into L2 cache as the baseline configuration and denote it as orig

our results to the processing time of the baseline system without the TCB cache. In the 

original system, frequently accessed TCB items are distributed across multiple cach

lines and hence several cache misses could occur for one packet. Also, traversing linked 

lists due to TCB lookups is prone to incurring cache misses, deteriorating cache 

performance.  By providing high cache hit ratios and avoiding linked list traversal 

cache hits, our TCB cache reduces TCP/IP request processing time by up to 23% and 

saves up to 5% web server response time.   

Figure 6.22 TCP/IP receiving time 
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6.5 Summary 

In this chapter, we conducted a detailed study for TCP/IP from the per

perspective and proposed a new TCB cache to efficiently manage per

in web servers. The dedicated cache is designed to be addressed by a specified subset of 

session identifiers. To provide high TCB cache performance, we extensively study 

performance of various hash functions and employ a new 

indexing scheme with two independent cache banks. Some important bits are carefully 

selected as hash keys to red

performance, we harness the 

cache replacement policy and employ migrating the replaced 

the cache. Our simulation results

per-session data. By envisioning the benefits, applying the new TCB cache into TOEs or 

integrating it into CPUs can significantly reduce TCP receiving time and web server 

response time.  
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Figure 6.23 Web server response time

, we conducted a detailed study for TCP/IP from the per

perspective and proposed a new TCB cache to efficiently manage per-session TCB data 

in web servers. The dedicated cache is designed to be addressed by a specified subset of 

. To provide high TCB cache performance, we extensively study 

performance of various hash functions and employ a new Universal hash based cache 

indexing scheme with two independent cache banks. Some important bits are carefully 

selected as hash keys to reduce hashing hardware complexity. To further enhance the 

performance, we harness the ON/OFF model of web sessions to design a 

cache replacement policy and employ migrating the replaced ON blocks to 

the cache. Our simulation results show that the new TCB cache can efficiently manages 

session data. By envisioning the benefits, applying the new TCB cache into TOEs or 

integrating it into CPUs can significantly reduce TCP receiving time and web server 
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Chapter 7  

Optimizing Virtualized Network Processing  

Virtualization separates hardware and software management and offers many useful 

features including functional isolation, server consolidation and live migration [5, 24, 74].  

For these reasons, virtualization is gaining popularity and has been a key enabling 

technology in cloud infrastructures. However, the network performance of virtualized 

multi-core servers still falls short of expectation. It is therefore important to understand 

the overhead implications. 

 In this chapter, we start with detailed performance analysis to understand the I/O 

virtualization performance challenge over 10GbE. Our performance analysis reveals two 

major bottlenecks of virtualized network processing: packet movement and virtual switch 

(or Linux Bridge). We then break down the overhead from an architectural viewpoint and 

observe that the cache topology greatly influences the packet movement performance in 

virtualized environment. Consequently, we develop optimizations for the VMM 

scheduler by considering cache topology and favoring I/O VCPU to improve packet 

movement performance.  We also propose efficient architectural support by extending 

DCA to consider VMM scheduling information to eliminate cache misses on packets 

along the packet movement path.  Lastly, we implement a simplified switch to 

significantly reduce the switching overhead.   
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7.1 Understanding Virtualized Network Processing Overhead 

In this subsection, we conduct extensive experiments to understand virtualized network 

processing overheads over 10GbE. Our testbed consists of a pair of server (system under 

test) and client. Server architecture is illustrated in Figure 3.1. The servers are connected 

by two PCI-E based Intel 10Gbps XF server adapters. We retain default settings of the 

Linux network subsystem and the driver, unless stated otherwise.  We ran Xen 3.1.3 on 

SUT and Linux 2.6.21 on client. The network architecture in Xen is illustrated in Figure 

7.1. When NIC driver receives a packet, it delivers the packet to Linux bridge for 

switching to a corresponding backend driver (BE) based on MAC address. The backend 

driver communicates request/response information with front end driver (FE) by 

performing event operations on the shared I/O channel (denoted as event-ops in this study) 

and then copies the packet to the guest domain (denoted as domain-copy). The front end 

driver delivers the packet to TCP/IP for packet processing. Finally, the packet is copied 

out to user buffers (denoted as user-copy) as native Linux does.  

 

Figure 7.1 Intel Xeon Clovertown Machine 
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 In the experiments, the micro-benchmark Iperf is run and its server is inside a guest 

domain on SUT. Since in current implementation, backend driver has not been 

parallelized and guest domain does not support RSS,  we only configure the guest domain 

with one virtual CPU. We find from our experiments that network processing in 

virtualized environment only achieves 2.2 Gbps bandwidth while saturating two physical 

cores (assuming ideal implementation of parallelized backend driver and RSS in guest 

domain, up to 9 cores are required for a line rate bandwidth). The high overhead 

motivates us to breakdown the per-packet processing overhead.  In this subsection, we 

choose a typical I/O size 16KB as our case study. Note that I/Os are not packets over 

Ethernet and large I/Os are segmented into several Ethernet packets (<=MTU). With 

16KB I/O size in our experiments,  packet size on average is about 1.5KB.  

Table 7.1 Component description 

Component Description  
Driver  Default 10GbE NIC driver, same as native Linux 
Buffer management SKB buffer allocation/release, same as Native Linux 
Linux Bridge De-multiplexing/Multiplexing packets into corresponding 

BE.  
Backend driver (BE) Acts a proxy in driver domain for a guest domain and 

communicates with FE 
Event operations on I/O 
channel (event-ops) 

Communicate request/response information among BE and 
FE 

Domain copy (domain-copy) Copy packets among driver domain and guest domain 
Frontend driver (FE) Virtual NIC driver for guest domain 
TCP/IP The TCP/IP protocol stack, same as Native Linux. 
Kernel-to-user data copy (user-
copy) 

After TCP/IP processing, data is moved out from kernel to 
user buffers, same as Native Linux. 

Iperf A user level benchmark to test TCP/IP capability.  
Others VMM scheduling, context switch, hypervisor calls and 

system calls etc.  

7.1.1 Per-packet processing overhead 

We use the tool Xenoprof [60] to collect system-wide function overheads while Iperf is 

running inside a guest domain over 10GbE. Along the network processing path in 
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virtualized environment, we group all profiled functions into components. Those 

components are listed and explained in Table 7.1. Per-packet processing time breakdown 

is calculated and illustrated in Figure 7.2.  

 

Figure 7.2 Per-packet processing overhead in virtualized environment 

 We obtain the following observations from Fig.7.2: 1) unlike native environment, 

packet movement in virtualization environment becomes much more complicated. It 

consists of packet movement from the driver domain to guest domain (denoted as 

domain-copy) and from kernel to user buffers inside guest domain (denoted as user-copy). 

They take around 25% and 15% of the whole packet processing time, respectively.  

Although packets reside in caches after domain-copy, user-copy still consumes many 

CPU cycles. That is because that the current VMM scheduler usually schedules driver 

domain and guest domain into two cores without sharing a LLC. When we manually ping 
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guest domain and driver domain into the same cache domain (cores with a shared LLC), 

we notice that the user-copy overhead can be reduced largely. 2) Besides packet 

movement, Linux bridge used for switching packets into corresponding backend drivers 

burns 1600 cycles per packet, thus becoming another major bottleneck. Although some 

other components (e.g. NIC driver, SKB buffer management, TCP/IP protocol stack) also 

consume some overheads, they are not related to virtualization and some existing 

software optimizations for native environment like SKB recycling, TCP onloading can be 

applied to reduce those overheads.  

7.1.2 Architectural Analysis 

In order to analyze the functional level overhead, we design a profiling methodology and 

develop a tool. Our tool can be used to quantify performance from the architectural 

characterization perspective. It instruments the VMM, driver domain, guest domain and 

network protocol stack along with the packet processing path. We adopt a performance 

counter based approach, where a small piece of code is manually inserted into the points 

of interest. Those code records the current time-stamp, retired instruction, L1 cache miss, 

L2 cache miss and TLB cache miss information of the measure point into a buffer using 

the corresponding Intel Performance counter. The overhead of the instrumental code is 

small (only 90 CPU cycles for a timestamp read and 70 cycles for a performance counter 

read) and is subtracted from the measurement.  

 One example getting L2 cache event count while running in handle_bridge (in Linux 

Bridge) routine is shown in the Table 7.1. It usually consists of two steps: set counter to 

select the architectural event of our interest and access performance counter to read the 
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corresponding event count. In the left column of Table 7.1, we select the L2 cache miss 

event via writing into performance control register the corresponding encode value which 

is specific on Intel Core micro-architecture [34]. Once architectural event is selected, the 

right column attempts to read L2 miss event count via reading the corresponding 

performance counter. This subsection presents detailed architectural analysis for major 

components: Linux bridge, domain-copy and user-copy.  

Table 7.2 Performance counter example 

Setting Counter Reading Counter 
//Enable Counter 
set_in_cr4(X86_CR4_PCE)
; 
val = 0x474024; 
//Setting L2 Cache Event 
wrmsr(0x186, val, 0); 
 

rdl2miss(){ 
// read performance counter 

rdpmc(0,low, high); 
} 
Void handle_bridge() { 
//Reading L2 cache count 
Bridge_l2miss=rdl2miss(); 
} 

A) Linux Bridge     

Linux Bridge is a way to connect two segments together in a protocol independent way 

[55]. Packets are forwarded based on Ethernet MAC address. The Linux bridge code 

implements a subset of the ANSI/IEEE 802.1d standard. In order to simplify the VMM 

design, Xen takes advantage of the existing Linux Bridge component in Linux Kernel to 

serve as a de-multiplexer. From Fig.7.2, we notice that 1600 cycles are consumed in the 

Linux Bridge module to switch each received packet to the designated backend driver. It 

has surprisingly significant overhead and would perform much worse with integrating 

some filter rules. In this subsection, we architecturally breakdown the switching overhead 

for each packet and present results in Figure 7.3. 
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Figure 7.3  Linux Bridge overhead breakdown 

 We find from Fig.7.3 that the biggest contributor of the Linux Bridge overhead is 

long path instruction execution, followed by data cache misses and instruction cache 

misses. That is because Linux bridge was designed as a sophisticated firewall and switch 

framework to check with many plugged network filters/rules. We continue doing 

functional level profiling of Linux Bridge and list functional overheads in Table 7.3. We 

realize that functions relevant to network filter framework consume most of CPU cycles 

without any plugged filters and the core switching function itself (Br_forward) only 

requires 600 cycles. All of these observations indicate that a much simpler software 

switch is required for virtualization.  

Table 7.3 Functional overhead in Linux Bridge 

Functions/Macros Description Execution time 
per packet (cycles) 

Handle Bridge Bridge interface to NIC driver 100 
Br_handle_frame Netfilter framework to check with 

inserted filters/rules 
400 

Br_handle_frame_finish Netfilter framework to check with 
inserted filters/rules 

200 

Br_forward Performing switching functionality 
using Jhash algorithm [42]   

600 

Br_forward_finish Netfilter framework to check with 
inserted filters/rules 

200 

Br_dev_queue_push_xmit Interface to backend driver 100 
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B)  Domain-copy  

After a packet is switched into a corresponding backend driver, it needs to be copied out 

from driver domain to guest domain address space. VMM provides a grant copy 

operation which maps the page, copies the packet and unmaps the page in a single 

hypercall. During a grant copy operation, VMM creates temporary mappings into VMM 

address space for both source and destination of the copy. The VMM also pins (i.e. 

increment a reference counter) both pages to prevent the pages from being freed while the 

grant is active. We architecturally breakdown the domain-copy overhead for each packet 

and present results in Figure 7.4. 

 

Figure 7.4 Domain-copy overhead breakdown 

 As shown in Figure 7.4, L2 caches misses and long instruction execution path are 

major contributors to high overheads in domain-copy. Since DMA transactions trigger 

cache invalidation to maintain cache coherence among caches and memory, Domain-

copy incurs mandatory cache misses on packets and thus consumes a large number of 

CPU cycles.  In order to copy packets between two domain address space,  driver domain 

relies on grant table copy operations provided by VMM. The grant table operation 
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consists of VMM enter/exit, page mapping/unmapping and expensive atomic instructions 

on the grant table, explaining high instruction execution overhead.  

 

Figure 7.5 Kernel-to-user data copy overhead breakdown 

C)  user-copy 

After protocol processing, user applications in guest domain are scheduled to copy 

packets from in-kernel SKB buffers to user buffers. We study its architectural overhead 

breakdown as shown in Figure 7.5.  Fig.7.5 shows that L2 cache misses are the major 

overhead (~57%, ~3.5 L2 misses/packet), followed by data cache misses (~23%, ~50 

misses/packet) and instruction execution (~17%).  Although domain-copy already fetches 

packets into caches,  driver domain and guest domain are usually scheduled by VMM to 

run on two cores without sharing a LLC, thus still incurring L2 cache misses during the 

kernel-to-user copy.  Existing optimizations like memory copy engine [95] on data copy 

in native environment help little in virtualized environment. Memory copy engine moves 

data in memory but the movement here is among separate caches. DCA injects data into 

cores where driver domain is running and cannot avoid those cache misses during data 

copy from kernel-to-user buffers. Thus, a new data movement scheme is required to 

avoid high packet movement overheads in virtualized environment.   
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7. 2 VMM Scheduler Optimizations 

The credit scheduler is designed to load balance workloads on multi-core platforms. 

Unfortunately, it tends to schedule driver domain and guest domain to cores without 

sharing a last level cache, incurring high packet movement overheads as shown in 

Subsection 7.1. In this subsection, we start with detailed study of credit scheduler and 

then propose two VMM scheduler optimizations  to improve network processing 

performance in virtualized environment.  

7.2.1 Credit Scheduler in VMM 

VMM functions as an abstraction layer of the real physical devices. As a result, 

scheduling in virtualization is based on Virtual CPUs (VCPU) because Physical CPUs 

(PCPU) are transparent to domains. Each domain can be arbitrarily allocated with 

multiple VCPUs. Besides the default credit scheduler, VMM also keeps its legacy 

scheduler Simple Earliest Deadline First (SEDF) [47].  SEDF provides weighted CPU 

sharing in an intuitive way and uses real-time algorithms to ensure real time guarantees. 

However, it lacks global load-balancing on multiprocessors and is becoming obsolete. In 

this study we focus on the default credit scheduler [17], a proportional fair share CPU 

scheduler built to achieve load balance on SMP hosts. Its overall objective is to allocate 

the processor resources fairly. 

 The scheduler organizes a local run queue of online runnable VCPUs for each PCPU 

and always picks a workload (VCPU) from the head of the queue to run. This queue is 

sorted by VCPU priority. A VCPU’s priority can be one of three values: OVER, UNDER 

and BOOST. OVER, UNDER represents whether or not this VCPU has used up its fair 
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share of CPU resource in the ongoing accounting period. The BOOST state provides a 

mechanism for domains to achieve low I/O response latency. All the VCPUs in BOOST 

state are placed in front of those in UNDER state in the runqueue, while those with 

OVER state are kept in the tail portion. Based on the predefined weight, each domain is 

initially allocated a corresponding credit which is fairly shared among all the VCPUs that 

are affinitized to the domain. As a VCPU runs, it consumes credits. Every so often, a 

system-wide accounting thread re-computes how many credits each active domain has 

earned and bumps the credits.  

 When it comes to multi-core architecture, there are a few twists while the scheduler 

functions.  First of all, when there is not a VCPU of priority UNDER on a PCPU’s local 

run queue, the scheduler will search other PCPUs for one. This load balancing ensures 

each domain receives its fair share of PCPU resources system-wide. Before a PCPU goes 

idle, the scheduler will look on other PCPUs to find any runnable VCPU. This guarantees 

that no PCPU idles when there is runnable work in the system. Secondly, VCPU 

migration might happen based on priority difference for event notification. Whenever an 

event is notified to a target VCPU while it is idle, the scheduler tickles the designated 

PCPU and re-evaluates to see if the target VCPU preempts the current running VCPU. If 

there are at least two runnable VCPUs in that PCPU, the scheduler would migrate some 

of them to the idlers in the system to achieve load balance. Last but not the least, the 

scheduler checks the state of the current running VCPU during each timer interrupt and 

redistributes the PCPU if necessary.  The running VCPU will be migrated to the online 

neighbor PCPU with the most idling neighbors PCPU. This policy distributes work 



117 
 

across distinct sockets first and then distinct cores in the same socket.  

7.2.2 Cache-aware Scheduler 

The default credit scheduler is unaware of core topology in multi-core systems, where 

some of cores are sharing a last level cache (LLC) while others are sitting in different 

sockets. It blindly migrates the VCPU running on PCPU with high workloads to PCPU 

with lightweight workloads.  

 To make the best use of the resource and to make inter-core communication efficient, 

cores in a physical package share some of the resources. Our system under test (SUT) has 

two CPU cores sharing the L2 cache which is called Intel Advanced Smart Cache [38] as 

shown in Figure 3.1. Each processor has four cores in a physical package with two L2 

caches. Each L2 cache is shared by two cores. The current credit scheduler is designed 

for SMP load balance, but is not cache-aware and cannot co-schedule the two VCPUs 

with data sharing on the two cores sharing L2 cache (a.k.a. cache domain). Since Dom0 

is designed for serving I/O requests to de-multiplex packets and move packets to 

designated DomU (I/O DomU), there is intense data sharing between Dom0 and I/O 

DomU. Co-scheduling Dom0 and I/O DomU in the same cache domain will give I/O 

DomU a free ride to access the data in the cache and avoid cache misses on packets.  

 In order to co-schedule Dom0 and I/O DomU, the first step is to identify them in the 

VMM. Currently we identify them by counting how often I/O events of boosting VCPUs 

are triggered during each time slice. If the number of triggers exceeds a threshold (default 

150), both the boosting and the boosted VCPUs are considered as I/O VCPUs (in receive 

side, boosting VCPU is I/O VCPU in Dom0). Note that our extension of the scheduler is 
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only based on VCPUs with intense I/O operations, and doesn't sacrifice the system-wide 

load-balance on multi-core platforms. After the identification of I/O VCPUs, the VMM 

scheduler always intelligently schedules boosting and boosted VCPUs to the cores 

sharing same L2 cache.  

 In default credit scheduler, when an event is notified to a target VCPU while it is idle, 

it is awaken with the state of BOOST. Then other idle PCPUs and PCPU hosting the 

VCPU are notified to re-evaluate where the VCPU will be running. In cache-aware 

scheduler, instead of notifying all idle PCPUs, VCPU with the state of BOOST is inserted 

into the runqueue of PCPU sharing L2 cache with the PCPU currently hosting boosting 

VCPU. An example is shown in Figure 7.6. The left side in the figure is the original 

system state where boosting VCPU and one running VCPU are sitting in the same cache 

domain and boosted VCPU is running on the core 4. Cache-aware scheduler will 

automatically migrate boosted VCPU into the same cache domain as boosting VCPU to 

take advantage of shared cache. The running VCPU is preempted into the core 4 for 

securing the system level load balance. The system state after migration is shown in the 

right side of the figure.  

 

Figure 7.6 An example of Cache-Aware scheduler 
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 Additionally, VCPU migration in current scheduler also occurs when a VCPU 

remains BOOST for a while and some PCPUs are idle. It chooses the target PCPU with 

the largest number of idle neighbors in its grouping. This option will distribute workload 

across distinct packages first and result in maximum resource utilization since there is no 

shared resource contention. However, virtualized network processing with data sharing 

between Dom0 and I/O DomU will suffer heavy inter-package communication penalty 

from this mechanism. Cache-aware scheduler dynamically migrates the boosted VCPU 

and boosting VCPU to the same cache domain when this migration is triggered.  

 Although our technique might preempt the running VCPU on the PCPU, the 

preempted VCPU could be migrated into other PCPUs to sustain system-level workload 

balance on multi-core platforms. 

7.2.3 Credit-Stealing for I/O VCPU in Dom0 

The number of VCPUs in Dom0 is configured by default as the number of cores in the 

platform. In credit scheduler, all VCPUs affiliated to the same domain are allocated fairly 

with the same credit. However, all of the interrupts from NIC are usually directed to a 

specific VCPU to improve the cache locality of interrupt processing in a non-virtualized 

environment. This credit allocation mechanism results in performance degradation in 

virtualized environment mainly because more VCPUs in Dom0 lead to less shared credits 

for each VCPU. I/O VCPU cannot be allocated with sufficient computing resource to 

satisfy packet processing. We propose to dynamically and temporarily steal some credits 

from other idling VCPUs to favor I/O VCPUs during each time slice while I/O VCPUs 
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are busy with processing packets. The principle to steal credits is formalized in the 

following equation: 

))_(*2/()_( VCPUsIONumVCPUsIdleCreditSteal =  

where Stealmeans the stolen credit for each I/O VCPU, )_( VCPUsIdleCredit is for the credit 

of all idling VCPUS.  )_( VCPUsIONum  represents the number of I/O VCPUs.  It shows that 

each idling VCPU’s credit is dynamically cut in half to favor I/O VCPUs to eliminate 

their burden while working with intensive NIC interrupt requests. Since our policy steals 

credits from idling VCPUs, it does not hurt the overall system performance.  

 

Figure 7.7 New architecture overview 

7.3 Virtualization-aware DCA  

Although the above VMM scheduler optimizations improve packet movement, they are 

unable to eliminate all cache misses on packets along the processing path. In virtualized 

environment, conventional Direct Cache Access (DCA) injects packets into the first 

physical core where NIC interrupts are delivered and cannot avoid cache misses on 
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packets. In this subsection, we extend DCA by considering VMM scheduling information 

to accurately inject incoming packets into right cores where corresponding domains are 

running.  The overview of architecture is illustrated in Figure 7.7. 

 In the new architecture, we add one small hardware unit (denoted as data movement 

engine) into I/O controller. When NIC receives a packet, it reads DMA descriptors to 

know DMA buffer address and then leverages DMA transactions over PCI-E 

interconnect to send the packet to I/O controller. The I/O controller passes the received 

packet into our new data movement engine.  The data movement engine maintains VM-

to-Core mapping information which is periodically updated by VMM scheduler. Thus, 

the engine can find out the destination core where the corresponding domain is running 

and directly inject packets into corresponding caches. For instance, as shown in Fig.7.7, 

all packets belonging to VM1 will be delivered to the third core where VM1 is scheduled 

by VMM scheduler to be running. The detailed architectural designs of our data 

movement engine are illustrated in Figure 7.8.   

 

Figure 7.8 Date movement engine 

 Inside the data movement engine, we use a mapping table to maintain VM-to-Core 

mapping information. When VMM scheduler finishes scheduling VMs across multiple 
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cores, it updates the mapping table. Each row in the mapping table represents one VM. 

The first running field indicates whether the corresponding VM is running or not. Last 

touch means who is the last to own the row, VMM or NIC. The last field is the 

destination core.  When the data movement engine receives a packet, it extracts the 

packet's MAC address and hashes into mapping table.  Data movement engine checks 

whether the corresponding VM is running or not. If yes, it obtains the destination core 

and then injects packets into corresponding caches. If not, data movement engine injects 

packet into a random core and then marks the last touch field as NIC.  When VMM 

receives interrupts from NIC and schedules VM across cores, it checks with this mapping 

table to see whether the last touch field in the corresponding row has been set by NIC. If 

yes, it obtains the core information and schedules VM on the core. Otherwise, the default 

scheduling policy is applied. By leveraging VMM scheduling information, the new 

architecture is able to directly inject packets into correct cores and avoids cache misses 

on packets.  

7.4 Simplified Bridge 

As shown in Subsection 7.1, packet switching function requires only 600 cycles, and 

Jhash algorithm used for multiplexing packets by hashing MAC addresses only consumes 

120 cycles. It motivates us to design a simplified bridge tailored for packet switching in 

virtualized environment. However, it must retain the same user/kernel interface as 

original bridge so that the user space bridge utility still works in virtualization 

environment. Since bridge utilities in user space are being used by domain management 

tool residing in Dom0 to create/destroy BE, the new bridge should comply with the 

original user/kernel interface to avoid interference with the current workable system. The 
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new design is required to keep bridge as simple as possible with respect to packet 

switching’s performance and scalability. 

 Packet processing path of both Linux Bridge and our tailored bridge are shown in 

Figure 7.10. It shows that we bypass most of the functions introduced by Netfilter 

interface and re-implement the internal interfaces to minimize extra function costs except 

the bridge (Xen_br_forward). The Jhash algorithm is still adopted in our design. Our 

prototype is implemented as a new feature of Linux Bridge to take advantage of its 

existence in mainstream kernel.  

 

Figure 7.9 Linux Bridge vs. our bridge 

7.5 Performance Evaluation 

We implement our two VMM scheduler optimizations and the simplified bridge in Xen 

3.1. Iperf is run over our Intel servers with our optimized Xen to understand performance 

impacts of our optimizations on network processing. We then study how much benefit 

web servers achieve by running the SPECWeb benchmark.  Since no existing simulators 
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support virtualization, we choose a full system simulator Simics and develop an 

experiment methodology to mimic virtualization environment. We enhance Simics with 

detailed cache, I/O timing models and modeling of the effects of network DMA. In order 

to mimic the virtualization overhead, we inject extra per-packet virtualization overheads 

from our profiling on real machines in the simulator. We extend the Digital Equipment 

Corporation 21140A Ethernet device with the support of  interrupt coalescing using 

Device Modeling language DML to simulate a 10GbE Ethernet NIC. The device itself is 

connected to a lossless, full-duplex link of configurable bandwidth. The latency of a 

packet traversing the link is simply fixed to 1 us. We simulate two systems (client and 

server) running Linux 2.6.16 and interconnect them with 10GbE. The parameters we use 

in modeling the configuration are listed in Table 7.2. We are more interested in the 

relative behavior of these systems than their absolute performance, so some of these 

parameters are approximations.   

Table 7.4 System configurations 

Processor four cores, 3GHz, in-order, two-issue 
ICache/DCache Private per core, 32 KB 2-way, 3-

cycle hit latency 
L2 Cache Private per core, 2M, 8-way split, 14 

cycles hit latency 
Memory 400 cycles 

I/O register 1600 cycles 
prefetch Stream prefetch, degree: 4 
Interrupt 

coalescing rate 
64 packets per interrupt 

7.5.1 System Optimizations on Xeon Servers 

This subsection first studies performance benefits of all our three system optimizations 

(cache-aware and credit-stealing scheduler optimizations and simplified bridge) in terms 
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of network bandwidth and core utilization per gigabit. We obtained these results by 

modifying Xen and running it on the Intel Xeon server. The results are presented in 

Figure 7.11.  “Default” represents the original system with credit scheduler without any 

optimization. In the figure, bars represent the bandwidth and lines stand for core 

utilization per gigabit. We observe from Fig. 7. 11 that our cache-aware scheduler 

increases bandwidth by 19%, and also saves 11% in core utilization per gigabit. The 

credit stealing policy for favoring I/O VCPUs further improves the network performance 

by 14% and saves 6% in core utilization per gigabit. It is observed that all three 

optimizations can increase the network bandwidth by 96% to 4.5 Gbps, and also save 36% 

in core utilization per gigabit. In our experiment, we notice that the total core utilization 

consumed by Dom0 is reduced from 105% to 84% by using all the optimizations. 

 

 

Figure 7.10 Network performance with system optimizations 
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various configurations is illustrated in Figure 7.12. As shown in Fig.7.12, web server 

achieves 0.9Gbps, 1.2Gbps, 1.3Gbps and 1.5Gbps bandwidth without any optimization, 

with cache-aware scheduler, two VMM scheduler optimizations and all three 

optimizations, respectively. Reduced CPU utilization per gigabit in the figure points out 

the improved processing efficiency on web servers.  

 

Figure 7.11 Web server performance with system optimizations 

7.5.2 Architectural Optimizations through Simulation 

Besides three system optimizations, we also propose efficient architectural support to 

avoid cache misses along the packet movement. In this subsection, we first look at 

network performance in the receive side by running Iperf under various configurations: 

the default system without any optimization (default), all system optimizations, all 

system optimizations with default DCA and extended DCA (new).   

 Figure 7.12 illustrates network bandwidth achieved by various configurations and 
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scheduler and Linux Bridge, the network performance is improved by up to 3.9Gbps with 

75% CPU utilization per gigabit.  Conventional DCA is unaware of location of 

destination guest  domain and injects packets into the first core, thus only achieving 

limited benefits. By considering VMM scheduling information, the new architecture 

injects packets into right caches and continues improving network performance up to 

5Gbps with 50% CPU utilization per gigabit.   

 

Figure 7.12 Network performance with architectural optimizations 

 

Figure 7.13 Web server performance with architectural optimizations 
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 Similarly, we also investigate web server performance by running the web server 

benchmark SPECweb99 over 10GbE. The same configurations are used and results are 

illustrated in Figure 7.13. We find that the new architecture escalates web server 

performance by 120% compared to the default system while saving 90% CPU utilization 

per gigabit.  

 

Figure 7.14 Web server performance with architectural optimizations 
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Our combined optimizations are able to significantly reduce two major bottlenecks in 

virtualization environment.  
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Chapter 8  

Conclusion and Future Work 

8.1 Conclusion 

Ethernet continues to be the most widely used network architecture today due to its low 

cost and backward compatibility with the existing Ethernet infrastructure. It dominates in 

modern data centers and is replacing specialized fabrics. Driven by increasing networking 

demands of cloud workloads such as Internet search, web hosting etc, network speed 

rapidly migrates from 1Gbps to 10Gbps and beyond. High speed networks require 

general purpose servers to provide efficient network processing and have low design 

complexity of NICs.  Unfortunately, traditional architectural designs of processors, cache 

hierarchies and system interconnects focused on CPU/memory-intensive applications, 

and have often been decoupled from I/O considerations, thus being inefficient for 

network processing. 

 In this dissertation, we did fine-grained NIC driver and OS instrumentation to fully 

understand the network processing overhead over 10GbE on mainstream servers. We 

obtain several new findings, which have never been reported. Motivated by the studies, 

we proposed a new server I/O architecture where DMA descriptor management is shifted 

from NICs to an on-chip network engine (NEngine) and descriptors are extended with 

information about data incurring memory stalls. NEngine relies on data lookups and 
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preloads to eliminate the stalls during network processing. Moreover, NEngine 

implements efficient packet movement inside caches to address the remaining issue in 

data copy. The new architecture allows DMA engine to have very fast access to 

descriptors and leverages CPU caches to keep packets rather than NIC buffers, 

significantly simplifying NICs.  

 Recently,  most researchers viewed integrated NIC (INIC) as a promising I/O  

solution to tackle the challenges from high speed networks on servers. In order to 

understand performance benefits of integrated NIC architectures, we studied the impact 

of INICs by extensive evaluations on a real Sun Niagara 2 platform with two integrated 

10GbE NICs. We characterized system behavior to understand the performance benefits 

with respect to different number of connections, OS overhead, instruction counts, and 

cache misses etc. Our studies reveal that there is a benefit of integrating NICs onto CPUs, 

but the gain is somewhat marginal.  

 Motivated by performance analysis on integrated NIC architectures, we proposed an 

enhanced integrated NIC architecture for high speed networks. In the new architecture, 

we redesigned CPU/NIC interface from hardware DMA to software PIO by exploiting 

fast CPU/NIC interaction. We deployed hardware RSS for efficiently supporting multi-

core systems and software LRO for reducing per-packet overhead. In order to eliminate 

cache interference between I/O and other running applications, we take advantage of the 

integration of NIC to split LLC. A dedicated I/O cache is configured at the cache way 

level, and its organization can be dynamically changed to meet the various network data 

rates. Additionally, we also optimized cache coherence protocol to avoid unnecessary 

write-backs of network data for efficiently utilizing memory bus.  
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 All above studies were conducted from the per-packet perspective and paid no 

attention to per-session data TCP Control Block (TCB). A TCB is a per-session data 

structure and is accessed on the TCP critical path [8, 13, 20, 27]. A large number of 

sessions and session behavior in web servers make the management of TCBs complicated. 

In this dissertation, we analyzed challenges incurred from TCBs when there are 

thousands of concurrent sessions and studied behavior of web sessions. Then, we 

designed a new dedicated TCB cache by fully leveraging web session characteristics to 

efficiently manage TCB data.  We designed the cache along the two dimensions: cache 

indexing and cache replacement policy. We studied the performance of various hash 

functions and proposed a Universal hashing based cache indexing scheme. To couple 

with our cache indexing scheme, we designed a speculative cache replacement policy by 

harnessing the ON/OFF model of web sessions.  The new TCB cache is able to 

effectively manage TCB data and can be adopted by integrated NIC or even TOE.   

 As virtualization has gained resurgent interest since the prevalence of multi-core 

servers and is becoming a key enabling technology in cloud infrastructures, 

understanding and improving network processing performance in virtualization 

environment becomes critical.  In this dissertation, we conducted an experimental study 

of virtualized network performance under 10GE networks to identify the performance 

bottlenecks of virtualized network processing.  We observed extremely high overheads in 

software Linux bridge switch and packet movement in virtualization environment.  In 

order to improve packet movement performance, we proposed two VMM scheduler 

optimizations and extended DCA by considering VMM scheduler information to avoid 
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cache misses on packets while moving packets. In addition, we also developed a 

simplified software switch to switch packets to corresponding guest domains. The 

experimental results show that our system and architectural optimizations can 

significantly improve virtualized network processing performance.  

8.2 Future Work 

In this dissertation, we analyzed performance challenges from high speed networks on 

mainstream servers and proposed several new architectural solutions to optimize network 

processing for both native and virtualized environment over high speed networks. Based 

on the current studies, we foresee three research directions to extend this work. 

 First of all, power consumption of I/O architectures in mainstream servers should be 

studied and considered.  Although extensive studies have been conducted to understand 

CPU and memory power consumption in servers, we are still unclear to power 

consumption of I/O architecture including both network I/O and storage I/O, not to 

mention power optimizations or management policies on I/O architectures in servers. As 

DVFS and clock gating becomes increasingly popular as part of the on chip module in 

hardware, we strongly believe that power-aware I/O architectures (e.g. NIC, PCI-E 

interconnect etc.) should be designed and be incorporated into next generation severs.   

 Secondly, many more system and architectural optimizations are still unexplored for 

integrated NIC architectures with fast CPU/NIC interactions. By exploiting fast 

CPU/NIC interaction,  existing memory management unit inside cores can be reused by 

NICs to provide fast virtual-to-physical address translation in hardware (or guest-

physical-to-host-physical for virtualization). With the support of these address translation 
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in hardware, user applications or guest domains can directly access hardware NIC. 

Additionally, the integrated NIC can quickly fetch power states of all CPU cores and 

distribute interrupts/packets across cores in a power-efficient manner.  For instance, NIC 

sends interrupts to running cores and keeps idling CPUs as long as possible.  

 Thirdly, as the whole IT industry is quickly shifting to cloud computing, we can 

extend our I/O architecture research into an emerging and broader area: data centers. We 

can start with I/O characteristic studies of some emerging cloud computing applications 

like Hadoop, Eucalyptus and then understand the I/O architecture's impacts on data 

centers in terms of cost, power and performance. Due to issues of high cost from high 

performance switches, complicated cabling management and network bandwidth 

oversubscription, we believe the conventional I/O architecture is not suited well for cloud 

infrastructure. Thus, designing a more cost-effective and energy-efficient I/O architecture 

becomes extremely important to data centers.  
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