
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Accelerating I/O Processing in Server Architectures

Permalink
https://escholarship.org/uc/item/4dk5k736

Author
Liao, Guangdeng

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dk5k736
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Accelerating I/O Processing in Server Architectures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Guangdeng Liao

August 2011

 Dissertation Committee:
 Dr. Laxmi N. Bhuyan, Chairperson
 Dr. Rajiv Gupta
 Dr. Najjar Walid

Copyright by
Guangdeng Liao

2011

 The Dissertation of Guangdeng Liao is approved:

 Committee Chairperson

 University of California, Riverside

iv

Acknowledgements

 Finishing this dissertation ends one major chapter of my life and triggers the

beginning of another. As with any major step in life, I feel lucky and grateful for the

endless support from many people. Without their support, I could not have reached this

point.

 First, I have to thank my advisor, Dr. Laxmi N. Bhuyan, for his guidance and

continuous support over the past five years. He gave me the freedom to explore my ideas

and was always willing to work through and discuss them with me. He taught me how to

choose a research topic, do research and write a high-quality paper. He exemplifies a

distinguished scholar, a motivating advisor and a true friend. I also want to thank Dr.

Najjar Walid and Dr. Rajiv Gupta for serving on my dissertation committee. Their

constructive suggestions helped improve the quality of this dissertation.

 In addition to the support from academia, I also earned many helps from my intern

mentors at Intel Labs: Steve King, Ram Huggahulli, Xia Zhu. They are patient and are

willing to share what they know with me. My internships not only broadened my horizon,

but also lay a good foundation for my career.

 I would also like to thank former and current members of the architecture lab at UCR,

Danhua Guo, Lan Gao, Jia Yu, Jingnan Yao, Satya Mohanty, Jilong Kuang, for their

help during my stay at UCR and valuable discussions on my research.

 Last but certainly not the least; I dedicate my accomplishment to my wife and

parents. Without their endless love and support throughout my life, I will not be what I

am today.

v

ABSTRACT OF THE DISSERTATION

Accelerating I/O Processing in Server Architectures

by

Guangdeng Liao

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, August 2011
Dr. Laxmi N. Bhuyan, Chairperson

Ethernet continues to be the most widely used network architecture today due to its low

cost and backward compatibility with the existing Ethernet infrastructure. Driven by

increasing networking demands of cloud workloads such as Internet search, web hosting

etc, network speed rapidly migrates from 1Gbps to 10Gbps and beyond. High speed

networks require general purpose servers to provide highly efficient network processing.

However, traditional architectural designs have been focused on CPUs and often

decoupled from I/O considerations, thus being inefficient for network processing.

 In this study, we start with fine-grained driver and OS instrumentation to fully

understand the network processing overhead over 10GbE on mainstream servers and

make several new observations. Motivated by the studies, we propose a new server I/O

architecture where DMA descriptor management is shifted from NICs to an on-chip

network engine and descriptors are extended to address performance issues while

processing packets. In addition, we also conduct extensive experiments on a real

integrated NIC platform to understand the benefits of integrating NICs into CPU die.

vi

Our studies reveal that simple NIC integration gains little help. We therefore propose an

enhanced integrated NIC (EINIC) to address the performance issues of high speed

networks. We also find that TCP Control Block (TCB) can pose a challenge in web

servers with a large volume of concurrent sessions. Therefore, we also analyze challenges

from a large number of concurrent web sessions on managing per-session TCB and

propose a new TCB cache architecture to manage TCB data for web servers.

 As virtualization has gained resurgent interest and is becoming a key enabling

technology in cloud infrastructures, understanding and improving virtualized network

processing performance over high speed networks becomes critical. We conduct an

experimental study of virtualized network performance on servers with 10GE networking

to identify its performance bottlenecks. Then, we develop two VMM scheduler

optimizations and design a simplified switch to reduce the network virtualization

overhead. We also propose efficient architectural support by extending Direct Cache

Access (DCA) to effectively avoid cache misses on packets in virtualized environment.

vii

Contents

List of Tables ... xii

List of Figures ... xiii

Chapter 1 Introduction... 1

1.1 Challenges in TCP/IP Packet Processing .. 3

1.2 Challenges in Network Interface Designs... 4

1.3 Challenges in Network I/O Virtualization .. 5

1.4 Overview of the Research ... 6

1.5 Outline and Contributions ... 10

Chapter 2 Background and Related Wrok .. 12

2.1 TCP/IP Packet Processing... 12

2.2 Research in TCP/IP Packet Processing ... 14

2.2.1 Hardware Optimizations .. 15

2.2.2 Software Optimizations ... 17

2.3 Network I/O Virtualization ... 18

2.4 Research in Network I/O Virtualization ... 20

Chapter 3 Understanding TCP/IP Packet Processing Performance Bottleneck over

10GbE... 22

3.1 Experimental Setup ... 22

viii

3.2 Per-Packet Processing Overhead Breakdown .. 23

3.3 Fine-Grained Instrumentation ... 25

3.3.1. Driver .. 25

3.3.2. Data Copy ... 27

3.3.3. Buffer Release ... 29

3.4 Summary ... 30

Chapter 4 Repartitioning CPU/NIC... 32

4.1 New Server I/O Architecture .. 32

4.1.1 NEngine ... 34

4.1.2 NIC ... 37

4.1. 3. Software Support ... 39

4.2 Performance Evaluation .. 39

4.2.1 Network Performance .. 40

4.2.2 Web Server Performance ... 43

4.2.3 NIC Design Benefits .. 45

4.3 Summary ... 46

Chapter 5 Integrating NIC into CPU ... 47

5.1 Performance Measurement of an Integrated NIC Architecture 48

5.1.1 Sun Niagara 2 ... 48

ix

5.1.2 Experiment Methodology .. 49

5.1.3 Performance Evaluation ... 51

5.1. 4 Detailed Performance Characterization .. 54

5.1. 5 Summary ... 62

5.2 Enhanced Integrated NIC .. 63

5.2.1 NIC ... 64

5.2.2 Software LRO .. 67

5.2.3 I/O-Aware LLC ... 68

5.2.4 Performance Evaluation ... 72

5.3 Summary ... 79

Chapter 6 A TCB Cache to Manage TCP Control Blocks ... 80

6.1 TCB Challenges .. 81

6.1.1 Challenge in TOEs ... 81

6.1.2 Challenge in protocol processing on CPUs ... 83

6.2 Characterization of Web Sessions .. 85

6.3 New TCB Cache ... 86

6.3.1 Cache Organization .. 87

6.3.2 Index Bit Selection ... 90

6.3.3 Lifetime Array ... 93

x

6.3.4 Speculative Cache Replacement Policy ... 94

6.4 Performance Evaluation .. 97

6.4.1 Evaluation Methodology .. 97

6.4.2 TCB Cache Performance ... 99

6.4.3 Impact of Bit Selection .. 100

6.4.4 Exploration of Cache Design Spaces ... 101

6.4.5 Using our TCB cache ... 103

6.5 Summary ... 105

Chapter 7 Optimizing Virtualized Network Processing... 106

7.1 Understanding Virtualized Network Processing Overhead 107

7.1.1 Per-packet processing overhead ... 108

7.1.2 Architectural Analysis ... 110

7.2 VMM Scheduler Optimizations .. 115

7.2.1 Credit Scheduler in VMM ... 115

7.2.2 Cache-aware Scheduler .. 117

7.2.3 Credit-Stealing for I/O VCPU in Dom0 .. 119

7.3 Virtualization-aware DCA .. 120

7.4 Simplified Bridge .. 122

7.5 Performance Evaluation .. 123

xi

7.5.1 System Optimizations on Xeon Servers .. 124

7.5.2 Architectural Optimizations through Simulation ... 126

7.6 Summary ... 128

Chapter 8 Conclusion and Future Work ... 130

8.1 Conclusion .. 130

8.2 Future Work .. 133

Bibliography .. 135

xii

List of Tables

Table 3.1: Instrumentation example ... 25

Table 4.1 System configurations... 40

Table 5.1 INIC vs DNIC ... 49

Table 5.2 Cache read policy .. 71

Table 5.3. Cache write policy ... 71

Table 5.4 Simulated system parameters.. 73

Table 6.1 System parameters .. 98

Table 7.1 Component description ... 108

Table 7.2 Performance counter example .. 111

Table 7.3 Functional overhead in Linux Bridge ... 112

Table 7.4 System configurations... 124

xiii

List of Figures

Figure 1.1: Network speed rates versus Moore's Law .. 2

Figure 1.2: TCP/IP packet processing performance .. 3

Figure 2.1 Driver/NIC Interaction .. 13

Figure 2.2: Network I/O Virtualization in Xen .. 19

Figure 3.1 Intel Xeon servers ... 23

Figure 3.2 Per-packet processing overhead breakdown .. 24

Figure 3.3 Architectural breakdown ... 26

Figure 3.4 L2 miss sources in step7 .. 26

Figure 3.5 Data copy breakdown ... 28

Figure 3.6 Buffer release breakdown .. 28

Figure 3.7 L2 miss sources. .. 29

Figure 4.1 New I/O architecture overview ... 33

Figure 4.2 Extended DMA descriptors ... 35

Figure 4.3 Basic block of NEngine ... 37

Figure 4.4 Simplified NIC in the new architecture ... 38

Figure 4.5 Network throughput... 41

Figure 4.6 Utilization breakdown ... 41

Figure 4.7 Cache hit ratios .. 43

xiv

Figure 4.8 Web server throughput .. 44

Figure 4.9 Utilization breakdown ... 44

Figure 4.10 Per packet time on DMA Engine... 46

Figure 5.1 Niagara 2 Architecture ... 48

Figure 5.2 Bandwidth & CPU Utilization (RX) .. 51

Figure 5.3 Bandwidth & CPU Utilization (TX).. 52

Figure 5.4 Performance with Various Connections .. 52

Figure 5.5 Performance with Various CPUs... 53

Figure 5.6 Ping-Pong Latency .. 54

Figure 5.7 CPU Overhead Breakdown ... 55

Figure 5.8 Instruction Breakdown (DNIC) ... 56

Figure 5.9 Instruction Breakdown (INIC) .. 57

Figure 5.10 Context Switches with Various Connections .. 57

Figure 5.11 Interrupts per Second ... 58

Figure 5.12 System Interrupts Breakdown ... 58

Figure 5.13 Icache Misses per Packet ... 59

Figure 5.14 Instruction Misses per Packet in L2 .. 60

Figure 5.15 Data Misses per Packet in L2 .. 61

Figure 5.16 Data Cache Misses per Packet ... 61

Figure 5.17 Memory Traffic per Packet ... 62

Figure 5.18 New Architecture Overview .. 63

Figure 5.19 Design of the INIC .. 65

xv

Figure 5.20 I/O-Aware LLC ... 68

Figure 5.21 Bandwidth & CPU Utilization... 74

Figure 5.22 Breakdown of CPU Utilization ... 74

Figure 5.23 Bandwidth with Memory Intensive Apps.. 76

Figure 5.24 I/O Cache’s Way across Timeline ... 78

Figure 5.25 The Number of Write Backs of Network Data .. 78

Figure 6.1 Function units in TOEs .. 82

Figure 6.2 Processing time with a TCB miss .. 82

Figure 6.3 Life of packet (single session) .. 84

Figure 6.4 Life of packet (4K sessions) ... 84

Figure 6.5 Inter-request time frequency in ON ... 86

Figure 6.6 OFF time frequency (OFF) ... 86

Figure 6.7 Performance of cache hash functions .. 88

Figure 6.8 PDF of absolute deviation of #sessions in cache set 88

Figure 6.9 TCB Cache Architecture ... 90

Figure 6.10 Average bit value of IP address ... 91

Figure 6.11 Average bit value of port ... 91

Figure 6.12 Bit selection ... 92

Figure 6.13 Circuit implementation .. 92

Figure 6.14 Lifetime array .. 94

Figure 6.15 Speculative cache replacement policy ... 96

Figure 6.16 Per packet miss ratio .. 100

xvi

Figure 6.17 TCB performance of n-bit hash ... 100

Figure 6.18 Cache replacement policies ... 101

Figure 6.19 Performance impact of cache sizes .. 102

Figure 6.20 Performance impact of set-associativity .. 102

Figure 6.21 TCP/IP receiving time in TOEs ... 103

Figure 6.22 TCP/IP receiving time ... 104

Figure 6.23 Web server response time .. 105

Figure 7.1 Intel Xeon Clovertown Machine ... 107

Figure 7.2 Per-packet processing overhead in virtualized environment 109

Figure 7.3 Linux Bridge overhead breakdown .. 112

Figure 7.4 Domain-copy overhead breakdown ... 113

Figure 7.5 Kernel-to-user data copy overhead breakdown ... 114

Figure 7.6 An example of Cache-Aware scheduler .. 118

Figure 7.7 New architecture overview .. 120

Figure 7.8 Date movement engine .. 121

Figure 7.9 Linux Bridge vs. our bridge... 123

Figure 7.10 Network performance with system optimizations 125

Figure 7.11 Web server performance with system optimizations 126

Figure 7.12 Network performance with architectural optimizations 127

Figure 7.13 Web server performance with architectural optimizations 127

Figure 7.13 Web server performance with architectural optimizations 128

1

Chapter 1

Introduction

Ethernet continues to be the most widely used network architecture today due to its low

cost and backward compatibility with the existing Ethernet infrastructure. It dominates in

data centers and is replacing specialized fabrics such as InfiniBand [35], Quadrics [71],

Myrinet [9] and Fiber Channel [14] in high performance computers. As of 2011, Gigabit

Ethernet-based clusters make up 44.2% of the top-500 supercomputers [87].

 Driven by increasing networking demands of workloads such as Internet search,

virtual private network, video servers and web hosting etc, network bandwidth becomes a

technology that has outstripped Moore’s Law in the past decades. Between 1995 and

2002, the IEEE Ethernet standard quickly migrated from a top speed of 100 Mbps to 10

Gbps, at a hundred-fold rate, while in the same period the 18-month doubling rate of

Moore’s Law indicates a mere 25x increase in transistor density (Moore's Law). It was

reported that IEEE Ethernet standard group has released 40Gbps and 100Gbps

specifications and corresponding products will be arriving in the near future [21]. Figure

1 depicts the relative increases of transistor density and network bandwidth. This graph

shows that the rate of increase in network bandwidth is much higher than the rate of

increase in transistor density.

Figure 1.

 Unfortunately, even as nearly

Gigabit Ethernet (1GbE), the adoption of 10 Gigabit Ethernet (10GbE) has been limi

to a few niche applications

like 40GbE and 100GbE.

supercomputers adopt 10GbE as their interconnect, but 44.2% are interconnected with

1GbE networks [87]. Historically, the propagation of 10GbE has been constrained by the

cost of network interfaces and processing

hardware develops as fast as Moore’s Law, the cost of 10GbE connectivity will be

reduced to an affordable

the mismatch of host processing capacity

biggest challenge. In the following

by the deployment of high speed networks on servers.

2

Figure 1.1: Network speed rates versus Moore's Law

Unfortunately, even as nearly all server platforms completed the transition to 1

Gigabit Ethernet (1GbE), the adoption of 10 Gigabit Ethernet (10GbE) has been limi

to a few niche applications [26, 91], not to mention the upcoming higher speed networks

like 40GbE and 100GbE. For instance, as of 2011, only 1.2% of the top 500

adopt 10GbE as their interconnect, but 44.2% are interconnected with

storically, the propagation of 10GbE has been constrained by the

cost of network interfaces and processing capability of general purpose platforms.

hardware develops as fast as Moore’s Law, the cost of 10GbE connectivity will be

 level for network development in the near future

processing capacity with the network bandwidth becomes the

In the following subsections, we will discuss major challenges fac

the deployment of high speed networks on servers.

all server platforms completed the transition to 1

Gigabit Ethernet (1GbE), the adoption of 10 Gigabit Ethernet (10GbE) has been limited

, not to mention the upcoming higher speed networks

tance, as of 2011, only 1.2% of the top 500

adopt 10GbE as their interconnect, but 44.2% are interconnected with

storically, the propagation of 10GbE has been constrained by the

neral purpose platforms. As

hardware develops as fast as Moore’s Law, the cost of 10GbE connectivity will be

in the near future [91]. Therefore

the network bandwidth becomes the

sections, we will discuss major challenges faced

1.1 Challenges in TCP/IP Packet Processing

As network speed increases at a

of these high-speed Ethernet connections

packets. The packet processing is accomplished through the TCP/IP protocol stack of the

operating system (OS) and

receiving the packets from Ethernet network.

designs of processors, cache hierarchies and system interconnects

CPU/memory-intensive applications, and have often been decoupled from I/O

considerations being inefficient for TCP/IP packet processing

in this study). It was reported

10GbE easily saturates

Assuming ideal scalability over multiple cores in

processing over upcoming 40GbE and 100GbE will saturate 8 and 20 cores, respectively

(Fig. 1.2).

Figure 1.

0

5

10

15

20

25

C
or

es

3

1.1 Challenges in TCP/IP Packet Processing

As network speed increases at a very fast rate, the host computer systems at the endpoints

speed Ethernet connections should be designed to efficient

The packet processing is accomplished through the TCP/IP protocol stack of the

operating system (OS) and NIC device driver, etc that introduce large

from Ethernet network. Unfortunately, traditional architectural

ns of processors, cache hierarchies and system interconnects

intensive applications, and have often been decoupled from I/O

considerations being inefficient for TCP/IP packet processing (a.k.a network processing

was reported that TCP/IP packet processing in the receive side over

 two cores of an Intel Xeon Quad-Core processor

ssuming ideal scalability over multiple cores in conventional servers, TCP/IP packet

ing 40GbE and 100GbE will saturate 8 and 20 cores, respectively

Figure 1.2: TCP/IP packet processing performance

10G 40G 100G

the host computer systems at the endpoints

efficiently process the

The packet processing is accomplished through the TCP/IP protocol stack of the

device driver, etc that introduce large overheads while

Unfortunately, traditional architectural

ns of processors, cache hierarchies and system interconnects are focused on

intensive applications, and have often been decoupled from I/O

network processing

TCP/IP packet processing in the receive side over

processor [46, 49].

servers, TCP/IP packet

ing 40GbE and 100GbE will saturate 8 and 20 cores, respectively

4

 Although a wide spectrum of research has been trying to improve the efficiency of

TCP/IP packet processing on the network server [1, 6, 31, 63, 77, 92, 93, 94, 95], most

of them focused on the data copy overhead and did not introduce a comprehensive

solution for the problem. Based on extensive experiments and studies in these years, the

community gradually realizes that the interactions among platform-wide hardware

components, hardware-software interfaces and inter-software interfaces such as those

between device drivers, the operating system and applications, render sophisticated multi-

dimensional problems that cannot be easily addressed [6, 7, 53]. A comprehensive

solution across the hardware platform and software stack rather than exclusive efforts

from either side is necessary to satisfy the processing requirement introduced by the 10X

or more increase in the upcoming 40Gbps/100Gbps networks.

1.2 Challenges in Network Interface Designs

Despite the rapid increase in available network bandwidth, NICs in servers are still

considered as peripheral devices connected through standard PCI Express (PCI-E) bus

[69]. By using DMA engine, NICs read/write network packets from/to main memory

over long latency PCI-E interconnect bus.

 Although PCI-E bus bandwidth continued to improve in the past few years, its

latency is degraded by up to 25X over earlier PCI-X incarnations mostly due to complex

PCI-E transaction layer protocol implementation [62]. It was reported that up to ~2200 ns

is needed for a round-trip traversal over PCI-E bus [62]. The long latency traversal

substantially increases the processing overhead of DMA engine (although PCI-E

pipelined transfers help payload, they do not work for descriptors). As network traffic

5

becomes intensive, DMA engine is heavily stressed [90]. Long latency descriptor fetches

also make the need for large NIC hardware buffers or queues to temporarily keep packets.

Moreover, in order to leverage conventional CMPs for packet processing, high speed

NICs typically introduce a large number of receive/transmit (RX/TX) queues and allow

each core to have a dedicated RX/TX queue. For instance, an Intel 82599 10GbE NIC has

128 RX/TX queues for each port for CMPs, corresponding to 512KB and 160KB buffers

[36]. All of these complicate NIC designs and pose a big challenge. Therefore, a new

server I/O architecture is required for high speed networks to tackle the TCP/IP packet

processing challenge while simplifying NIC hardware designs.

1.3 Challenges in Network I/O Virtualization

Virtualization has become an integral component of the modern data centers. By

introducing hypervisor or virtual machine monitor (VMM), a new thin layer between

operating system (OS) and hardware platforms, it provides numerous virtual machine

(VM) transparent services [5, 16, 24, 74], such as VM replication, rapid checkpoint, live

migration and quality of service to guarantee service level agreement. Although the

emergence of virtualization has been a promising solution towards sever consolidation

and cloud computing, the virtualized network performance lags significantly behind the

performance in native systems operating directly on physical devices. It was reported that

virtualized TCP/IP packet processing over 1GbE network consumes up to 4.0x CPU

cycles than TCP/IP packet processing on native environment [59, 60, 61]. That is

because of high cost of virtualizing network I/O devices in software to allow multiple

6

guest VMs to share a single NIC device in a secure manner. Thus, more efficient

network I/O virtualization is required for high speed networks.

1.4 Overview of the Research

The goal of this study is to accelerate network processing (or TCP/IP packet processing)

in server architectures without introducing high hardware complexity. To achieve this

goal, we propose several new I/O solutions to tackle all of the challenges mentioned

above.

 In the first part of this study, we performed per-packet processing overhead

breakdown by running a network benchmark over 10GbE on Intel Xeon Quad-Core

processor based servers. We find that besides data copy, the driver and buffer release,

unexpectedly take 46% of processing time for large I/O sizes and even 54% for small I/O

sizes. To understand the overheads, we manually instrumented the driver and OS kernel

using hardware performance counters [34, 38]. Unlike existing profiling tools attributing

CPU cost such as retired cycles or cache misses to functions [60, 68], our instrumentation

is implemented at the fine-grained level and can pinpoint data incurring the cost. Through

the above studies, we obtain several new findings: 1) the major network processing

bottlenecks lie in the device driver (>26%), data copy (up to 34% depending on I/O sizes)

and buffer release (>20%), rather than the TCP/IP protocol itself; 2) in contrast to the

generally accepted notion that long latency NIC register access results in the driver

overhead [6, 7], our results show that the overhead comes from memory stalls to network

buffer data structures; 3) releasing network buffers in OS results in memory stalls to in-

kernel page data structures, contributing to the buffer release overhead; 4) besides

memory stalls to packets, data copy implemented as a series of load/store instructions,

7

also has significant time on L1 cache misses and instruction execution. Moreover,

keeping packets in caches after data copy, which will not be reused [11, 82], pollutes

caches. Prevailing platform optimizations for data copy like Direct Cache Access (DCA)

[31] are insufficient for addressing the copy issue.

 The second part of our study is to propose new server I/O architecture to tackle the

TCP/IP packet processing performance challenge while reducing NIC design hardware

complexity. In the proposed server I/O architecture, the responsibility for managing

DMA descriptors is moved to an on-chip network engine (NEngine). The on-chip

descriptor management exposes plenty of optimization opportunities like extending

descriptors to include information about memory stalls during network processing. When

the NIC receives a packet, it directly pushes the packet into NEngine without waiting for

long latency DMA descriptors fetches. NEngine reads extended descriptors to obtain

packet destination location and information about data incurring memory stalls. Then, it

moves the packet into the right memory location and checks whether data resides in

caches. If not, NEngine sends data address to the hardware prefetching facility for

loading data. To address the data copy issue, NEngine moves payload inside last level

cache (LLC) and invalidates source cache lines after the movement. The new I/O

architecture allows DMA engine to have very fast access to descriptors and leverages

CPU caches to keep packets rather than the NIC buffers. This design substantially

eliminates burden on the DMA engine and avoids extensive NIC buffers, particularly for

high speed networks. The new server I/O architecture ameliorates all major performance

bottlenecks of network processing and simplifies NIC designs, making general purpose

platforms well suited for high speed networks.

8

 It was extensively reported before that integrating a NIC into CPU die is able to

significantly reduce the TCP/IP packet processing overhead, mainly due to the less access

latency to NIC registers [6, 7]. In the third part of this study, we started with detailed

performance evaluation on a real Sun Niagara 2 platform with two integrated 10GbE

NICs [83, 84] to fully compare the performance of an integrated NIC (INIC) and a PCI-E

based discrete NIC (DNIC). In our experiments, we observe that the INIC only shows its

advantage over the DNIC with large I/O sizes. It improves network bandwidth by 7.5%

while saving 20% in relative CPU utilization. We characterize system behavior to

understand the performance benefits with respect to different number of connections, OS

overheads, instruction counts, and cache misses etc. All of our studies reveal that there is

only marginal performance benefit of integrating NICs onto CPU die. More aggressive

integrated NIC designs are required. We therefore proposed an enhanced integrated NIC

(EINIC) for high speed networks. By leveraging fast interactions between CPU and INIC,

we redesign CPU/NIC interface from hardware DMA to software program I/O (PIO).

Additionally, we deploy several processing optimizations cost-efficiently by first

evaluating their software implementations: Receive Side Scaling (RSS) [76] in hardware

and Large Receive Offload (LRO) [27] in the driver. In addition, we also develop an I/O-

aware LLC to avoid cache interference from other applications, and optimize cache

coherence protocol to reduce unnecessary write-backs of network data. Our I/O-aware

design splits LLC into I/O cache and general cache at the way level to eliminate cache

interference. In order to meet various incoming rates, OS orchestrates the quota of the I/O

cache according to the number of replaced cache lines but untouched by network stack.

9

 The fourth part of this study is to understand the challenges of per-session data TCP

control block (TCB) on TCP/IP packet processing when there are thousands of

concurrent sessions like in web servers. Through our analysis, we realized that TCB data

poses a great challenge in web servers and should be efficiently managed for fast packet

processing. Then, we propose a new TCB cache addressed by session identifiers to

address the challenge. We carefully redesign the TCB cache along two important axes:

cache indexing and cache replacement policies. First, we propose a new cache indexing

scheme for our TCB cache by employing two Universal hash functions [12]. Second, by

leveraging characteristics of web sessions [4, 15, 19], we design a speculative cache

replacement policy, which can effectively work on our TCB cache with two cache banks.

 In the fifth part of this study, we extended our research to the virtualization domain,

which has gained resurgent interests recently. We started with detailed per-packet

processing overhead breakdown in virtualized environment. We realized that there are

two major bottlenecks introduced by network I/O virtualization: 1) overheads on moving

packets while processing packets in virtualized environment (e.g. packet copy among

driver domain and guest domain, kernel-to-user packet copy inside guest domain); 2) the

overhead of virtual switch in driver domain to de-multiplex packets. Motivated by the

studies, we first develop two VMM scheduler optimizations to improve packet movement

overheads by co-scheduling the driver domain and guest domain into the same cache

domain and stealing credits from idling VCPU to favor I/O VCPUs. We design and

implement a simplified virtual switch in an Intel Xeon server to significantly reduce the

switching overhead in Xen [60, 61]. Furthermore, in order to eliminate cache misses on

10

packets along the packet movement path, we extend DCA by considering VMM

scheduling information to accurately inject incoming packets into cores where

corresponding guest domains are running.

1.5 Outline and Contributions

This study does detailed performance analysis of network processing over high speed

networks and then provides several effective network I/O solutions to address the

challenges from network processing. The major contributions of this study can be

summarized as follows:

• We conduct NIC driver and OS instrumentation at a very fine-grained level to

fully understand the TCP/IP packet processing overhead over 10GbE on

mainstream servers. We pinpoint several bottlenecks and make new observations,

which have never been reported before. The research is presented in Chapter 3.

• We propose new server I/O architecture to tackle the performance challenge while

simplifying NIC hardware designs. In the new architecture, DMA descriptor

management is shifted from NICs to an on-chip network engine and descriptors

are extended with information about data incurring memory stalls. The new server

I/O architecture not only addresses the network processing challenge, but also

reduces hardware design complexity. The research is presented in Chapter 4.

• We fairly compare performance of INIC and DNIC on a real Sun Niagara 2

platform with two integrated 10GbE NICs in detail to completely understand the

benefits of an integrated NIC. Then, we propose an enhanced integrated NIC

11

(EINIC) on multi-core processors to provide highly efficient network processing.

The research is presented in Chapter 5.

• We analyze the challenges of TCB in web servers with thousands of concurrent

sessions, and then design a dedicated TCB cache to efficiently manage TCBs for

web servers. The TCB cache is designed along two hardware axes: two-universal

hash functions based cache indexing and speculative cache replacement policy.

The research is presented in Chapter 6.

• We do a detailed performance analysis of network I/O virtualization on

conventional multi-core systems over 10GbE, and then propose both system

optimizations on VMM scheduler and software switch, and efficient hardware

support (extending DCA by considering VMM scheduler information to avoid

cache misses on packets) to address the network I/O virtualization challenge. The

research is presented in Chapter 7.

12

Chapter 2

Background and Related Work

2.1 TCP/IP Packet Processing

TCP/IP over Ethernet is the most dominant communication protocol in commercial

servers such as web server, e-commerce, database, storage over IP, etc. Unlike traditional

CPU-intensive applications, TCP/IP packet processing is I/O-intensive. It involves

several platform components (e.g. NIC, PCI-E, I/O Controller, main memory, CPU) and

system components (e.g. NIC driver, OS). The processing in the receive side has much

higher processing overheads than in the transmit side, consuming thousands of CPU

cycles for each incoming packet. In this subsection, we revisit the network receiving

process.

 In the receive side, an incoming packet starts with the NIC/driver interaction. The

RX descriptors (typically 16 bytes each), organized in circular rings, are used as a

communication channel between the NIC driver and the NIC. The driver tells the NIC

through these DMA descriptors, where in the memory to copy the incoming packets. To

be able to receive a packet, a descriptor should be in “ready” state, which means it has

been initialized and pre-allocated with an empty packet buffer (SKB buffer in Linux)

accessible by the NIC [11]. The SKB buffer is the in-kernel network buffer to hold any

packet up to MTU (1.5 KB). It contains an SKB data structure of 240 bytes carrying

13

packet metadata used by the TCP/IP protocol and a DMA buffer of 2 KB holding the

packet itself.

Figure 2.1 Driver/NIC Interaction

 The detailed interaction is illustrated in Figure 2.1. To transfer received packets, the

NIC needs to fetch ready DMA descriptors from main memory over PCI-E bus to know

the DMA buffer address (step 1). When the NIC receives Ethernet frames from the

network (step2), it transfers the received packets into corresponding DMA buffers

(denoted as buf in Fig.2.1) using DMA engine (step 3). Once the data is placed in

memory, the NIC updates descriptors with packet length and marks them as used (step 4).

Then, the NIC generates an interrupt to kick off network processing in CPUs (step 5). In

the CPU side, the interrupt handler in the driver reads the NIC register to check the

interrupt cause (in step 6). If legally, the driver reads descriptors to obtain packet’s

address and length, and then maps the packet into SKB data structures (step 7). After the

driver delivers SKB buffers up to the protocol stack, it reinitializes and refills used

14

descriptors with new allocated SKB buffers for incoming packets in the near future (in

step 8). Finally, the driver re-enables the interrupt by setting the NIC register (step 9).

After the driver, SKB buffers are delivered up to the protocol stack. Once the protocol

stack finishes processing, applications are scheduled to move packets to user buffers.

Finally, the SKB buffers are reclaimed into OS [10, 11].

2.2 Research in TCP/IP Packet Processing

It is well documented that Internet servers spend a significant portion of time processing

packets [1, 6, 7, 22, 28-30, 44-46, 48-54, 66, 92-96]. A wide spectrum of research has

been done on this topic to understand the overhead [7, 58, 64, 92, 93, 94]. Nahum et al.

[64] used a cache simulator to study cache behavior of the TCP/IP protocol and showed

that instruction cache has the greatest effect on network performance. Similarly, Zhao et

al. [93, 94] revealed that packets and DMA descriptors exhibit no temporal locality. Xie

et al. [92] analyzed instructions characteristics of TCP/IP protocol stack and proposed

several new instructions for the protocol stack. Binkert et al. [7] did performance analysis

of system overheads in TCP/IP workloads by using a full system simulator [8]. Makineni

et al. [58] conducted architectural characterization of TCP/IP processing on the Pentium

M microprocessor with 1GbE and concluded that the receive side is much more memory-

intensive than the send side. Unfortunately, they built their studies on cache simulators or

used low speed networks, and did not conduct a system-wide architectural analysis for

high speed network processing on mainstream platforms.

 In addition to the above performance analysis, extensive studies have also been

conducted to improve TCP/IP packet processing performance. They can be broadly

15

grouped into hardware optimizations and software optimizations.

2.2.1 Hardware Optimizations

Hardware improvement for TCP/IP packet processing performance has been done from

different dimensions. Offload support in NIC includes TCP Segmentation Offload (TSO)

[36, 37], Interrupt Coalescing [36, 37], Receive Side Scaling (RSS) [76], Large Receive

Offload (LRO) [27], TCP/IP Offloading Engine (TOE) [13, 25, 32] etc. TSO in NIC has

been proposed long time back to segment a large message from applications into several

smaller packets of size up to MTU, saving CPU cycles which are originally dedicated to

TCP stack processing. Interrupt coalescing is also used on modern high speed NICs to

moderate interrupt frequency by issuing a single interrupt once multiple packets have

been received or transmitted. RSS is another hardware technique deployed in hardware

NICs to distribute incoming packets across multiple cores based on the connection level.

With the support of RSS, multiple cores are be leveraged to parallelize packet processing

and cache locality is also considered while processing packets.

 Since packet rate in 10GbE is so high, even the slightest improvement in per-packet

processing benefits the overall I/O performance. Thus, LRO is proposed in hardware

NICs to reduce the overhead by aggregating multiple in-order incoming packets from a

single stream into a larger fragmented packet. It is recently implemented in software as

an alternative to hardware assistance. Going further, TOE offloads the whole network

stack into hardware NIC and would work for high bandwidth, low latency applications,

particularly IP storage network with RDMA support. However, the technique itself has

16

been somewhat controversial because of the overhead in its software interface as well as

security and extensibility concerns [25].

 In addition to the above hardware offload in NIC, numerous studies have been

conducted from the architectural perspective to reduce the data copy overhead [1, 6, 7, 31,

63, 77, 85, 95]. Mukerjee et al. [63] put a NIC in coherent memory to improve the

performance by facilitating burst transfers of whole cache blocks and reducing control

overheads. The Joint Network Interface Controller (JNIC) [77], a collaborative research

project between HP and Intel, was designed to explore high performance in I/O

operations. They built a system prototype by attaching 1GbE NIC on front side bus. Zhao

et al. [95] designed an off-chip asynchronous DMA engine close to main memory to

move data inside memory. The similar idea has been implemented in Intel platforms with

the Intel I/OAT technique [1], but has been widely criticized in industry because memory

stalls are still incurred when applications read packets from memory.

 To eliminate memory stalls to packets, Intel proposed DCA to route network data

into CPU caches [31], and implemented it in Intel 10 GbE adapters and server chipsets.

Its performance evaluation on real servers has demonstrated overhead reduction in data

copy [45, 46]. Recently, Tang et al. [85] claimed that DCA might incur cache pollution

on small LLC and introduced two cache designs (a dedicated DMA cache or limited ways

of LLC) to keep packets. Binkert et al. [6, 7] integrated a redesigned NIC to reduce the

processing overhead by implementing zero-copy and reducing access latency to NIC

registers.

17

2.2.2 Software Optimizations

Software optimizations for network processing have also been aggressively explored as

an alternative to advanced, more costly hardware.

 When concurrent processing units are provided, it is intuitive to run TCP/IP

processing on an independent computation resource, which is tightly coupled with the

application processor. Instead of using network processor to process network traffic or

offload the whole TCP/IP stack onto NIC, one of the cores on a multi-core CPU can be

bound to work with network processing, while other cores can run applications such as

http requests and/or scientific computations. To distinguish from TOE, the last category

is named “TCP Onloading” [26, 28]. Although the idea of TCP onloading sounds

intuitive, most of such available designs require a large amount of changes in the

operating system level, particularly in the TCP/IP protocol stack. Also, open problems

like inter-core communication, mutual influences of processes for different applications

still remain unsolved.

 With little hardware support from NIC, Shalev et al. [80] proposed a loosely

coupled TCP acceleration framework to separate out TCP fast path and optimize TCP

fast path processing in software. LRO, a technique to coalesce small receiving packets

into a large single packet, can also be deployed in the NIC driver to reduce the number of

packets delivered up to network stack. Another technique, called zero-copy, eliminates

memory copying by directly mapping packet payload in kernel to user buffer and saves

memory access penalties [11]. However, it requires that all user buffers should be page

aligned for the mapping of kernel to user space, thus limiting its wide deployment.

18

2.3 Network I/O Virtualization

Virtualization is a broad term that refers to the abstraction of physical computer resources.

A typical virtualized platform consists of a software virtual machine monitor that

“virtualizes/abstracts” the physical resource of the platform and provides a simulated

environment that appears to the operating system as hardware. Network virtualization

was invented and implemented in IBM’s System/360 and System/370 [74]. Each virtual

machine in these initial virtualized architectures was exclusively assigned a particular set

of physical devices. Data transfer relied on channel programs executing in the VMM,

which ensured resource isolation.

 Despite the high performance through private I/O access, the costly replication of

physical devices for each virtual machine limited per domain utilization. As a result,

research in Xen [5] designed shared access to devices and relied on a dedicated software

entity to perform physical device management. This paper focused on the most popular

open source virtualized system Xen.

 Fig. 2.2 is an illustration of the Xen VMM. The VMM provides an abstraction layer

between the VMs and the actual hardware, leaving each guest VM an illusion of running

independently on native hardware. A privileged VM (driver domain or Dom0) runs a

modified version of Linux that uses native Linux device drivers to manage physical I/O

devices. Other VMs (guest domain or DomU) transmit and receive packets by

communicating with Dom0 through shared memory I/O channels.

19

Figure 2.2: Network I/O Virtualization in Xen

 Once a packet arrives at the NIC, it generates an interrupt. The VMM then forwards

the interrupt to the Dom0. When Dom0 acquires CPU, it DMAs the packet into the

reception I/O ring. After de-multiplexing the packet through the nested Ethernet Bridge

to an appropriate back-end driver, Dom0 employs a data copy mechanism by default to

directly copy data from the back-end driver to the front-end driver in the corresponding

DomU. Once the packet reaches the front-end driver in DomU, back-end driver requests

the VMM to send a virtual interrupt to notify the target domain of the new packet. Then

the packet is processed from the kernel space to the user space of DomU as if it had come

directly from the physical NIC.

20

2.4 Research in Network I/O Virtualization

Since the birth of VM, research in improving virtualized I/O performance never faded

away. We summarize previous works into two categories: hardware architecture and

system optimizations.

 Numerous studies have been done in server architectures to efficiently tackle the

network I/O virtualization challenge. In industry, Intel [35, 39] offloads virtual switch (or

packet de-multiplexing) from the driver domain to hardware NIC and deploys multiple

queues to allow guest OS to directly access hardware queues. In order to avoid memory

protection and address translation overheads in software, hardware IOMMU [3, 39] was

proposed and incorporated into server platforms. Recently, PCI-E standard group

proposes single root IO virtualization (SR-IOV) [70] to self-virtualize a physical device

into multiple lightweight PCI-E devices, significantly avoiding I/O virtualization

overheads.

 For system optimizations, Ongaro et al. [67] sorted the domains with the same states

in the runqueue based on their remaining credits rather than arbitrarily insert the new

domain at the end of each state section. However, they focused on the fairness of I/O

performance with 1GE network and did not consider the VMM scheduler on mainstream

multi-core systems where behaves significantly different from single core systems. With

the same optimizations on our experiment environment under 10 GbE, we find that the

blocking of scheduler tickle adversely glooms the I/O performance by a factor of 100 and

the runqueue sort does not make any difference for I/O performance. In addition to VMM

scheduler optimizations, lots of engineering optimizations have also been implemented to

21

improve network I/O performance in virtualization environment. Menon et al. [59, 60, 61]

analyzed virtualization performance overhead and then implemented numerous

optimizations (e.g. reusing grant table, using large page size, moving data copy to guest

etc) to bridge the gap between software and hardware techniques for I/O virtualization.

Guo et al. [30] designed cache-aware scheduling for virtualization to improve web server

performance. Liu et al. [56] adopted virtualization technology for HPC and allowed each

domain to directly access the high performance network. However, they targeted to the

high performance network InfiniBand rather than Ethernet Network. In Ethernet Network,

some researches including Crossbow [18] tried to address the performance issues by

taking advantage of the new Ethernet NIC features like multiple TX/RX queues to allow

domains to directly access the hardware. They heavily rely on hardware and hence

sacrifice the features of portability and live migration, two major incentives for deploying

virtualization in high end servers.

22

Chapter 3

Understanding TCP/IP Packet Processing Performance

Bottleneck over 10GbE

The performance of the TCP/IP network stack plays a crucial role in network servers. In

order to identify the performance problems in network stack, this chapter first profiles the

whole running system while processing packets over 10GbE networks to obtain per-

packet processing overhead breakdown. Then, we do fine-grained instrumentation in NIC

driver and OS kernel to conduct a detailed performance characterization. The

performance problems identified in this chapter serve as a motivation for the new I/O

architecture in Chapter 4.

3.1 Experimental Setup

We conduct extensive experiments to understand network processing overheads over

10GbE across a range of I/O sizes. Both SUT (System under Test) and stress machines

are Intel servers shown in Figure 3.1. Each server contains two Quad-Core Intel Xeon

5335 processors [38]. Each core is running at 2.66GHz frequency and each processor has

2 LLCs of 4MB each shared by 2 cores. The servers are connected by two PCI-E based

Intel 10Gbps XF server adapters [37]. They ran Linux kernel 2.6.21 and Intel 10GbE NIC

driver IXGBE version 1.3.31. We retain default settings of the Linux network subsystem

23

and the driver, unless stated otherwise. Note that LRO, a technique to amortize the per-

packet processing overhead by combining multiple in-order packets into a large packet, is

enabled in the driver. Stream hardware prefetcher employing a memory access stride

based predictive algorithm is configured in the servers [38]. In the experiments, the

micro-benchmark Iperf with 8 TCP connections is run to generate network traffic

between servers (SUT is a receiver). We find from the experiments that one core with

4MB LLC achieves ~5.6Gbps throughput and two cores with 8MB LLC are saturated to

obtain a line rate throughput. The high processing overhead motivates us to breakdown

the per-packet processing overhead.

Figure 3.1 Intel Xeon servers

3.2 Per-Packet Processing Overhead Breakdown

We use the tool Oprofile [68] to collect system-wide function overheads while Iperf [33]

is running over 10GbE. We group all functions into components along the network

processing path: the NIC driver, IP, TCP, data copy, buffer release, system call and Iperf.

All other supportive kernel functions such as scheduling, context switches etc. are

24

categorized as others. Per-packet processing time breakdown is calculated and illustrated

in Figure 3.2. Note that I/O sizes are not packets over Ethernet and large I/Os larger than

MTU (1.5KB on Ethernet) are segmented into several packets (<=MTU).

 We obtain the following observations from Fig.3.2: 1) the overhead in data copy

increases as the I/O size grows and becomes a major bottleneck with large I/Os (>=256

bytes); 2) the driver and buffer release consume ~1200 cycles and ~1100 cycles per

packet, respectively, regardless of I/O sizes. They correspond to ~26% and 20% of

processing time for large I/Os and even higher for small I/Os; 3) the TCP/IP protocol

processing overhead is substantially reduced because LRO coalesces multiple packets

into one large packet to amortize the overhead. Fig.3.2 reveals that besides data copy,

high speed network processing over mainstream servers has another two unexpected

major bottlenecks: the driver and buffer release.

Figure 3.2 Per-packet processing overhead breakdown

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Driver Buffer Release IP TCP Data Copy System Call Iperf others

C
P

U
 C

y
cl

e
s

64B 256B 1KB 4KB 16KB

25

3.3 Fine-Grained Instrumentation

The Oprofile in

Subsection 3.2 does

profiling at the coarse-

grained level and

attributes CPU cost such

as retired cycles and

cache misses to functions.

It is unable to identify data or macro incurring the cost. In order to locate the cost, we

manually did fine-grained instrumentation inside functions. The environment in

Subsection 3.2 is used. Table 3.1 shows one instrumentation example in the driver. We

first measure the function's cost and then do fine-grained instrumentation for every code

segment if the function has considerable cost. We continue to instrument each code

segment with considerable cost until we locate the bottlenecks. Our instrumentation is

applied to all functions along the processing path. Most of events are collected including

CPU cycles, instruction and data cache misses, LLC misses, ITLB misses and DTLB

misses etc. Since large I/Os include all three major overheads, this subsection presents

the detailed analysis for the 16KB I/O.

3.3.1. Driver

The driver comprises of three main components: NIC register access (step 6 and 9), SKB

conversion (step 7) and SKB buffer allocation (step 8), as shown in Fig.2.1. Existing

studies [6, 7] claimed that NIC register access contributes to the driver overhead due to

Table 3.1: Instrumentation example

26

long latency traversal over PCI-E bus, and then proposed NIC integration to reduce the

overhead. In this subsection, we architecturally breakdown the driver overhead for each

packet and present results in Figure 3.3. In contrast to the general accepted notion that the

long latency NIC register access results in the overhead [7], the breakdown reveals that

the overhead comes from SKB conversion and buffer allocation. Although NIC register

access takes ~2500 CPU cycles on mainstream servers, ~60 packets are processed per

interrupt over 10GbE (~7 packets/interrupt over 1GbE) substantially amortizing the

overhead. In addition, Fig.3.3 also reveals that L2 cache misses mainly result in the SKB

conversion overhead and long instruction path is the largest contributor of the SKB buffer

allocation overhead.

Figure 3.3 Architectural breakdown

Figure 3.4 L2 miss sources in step7

0

200

400

600

800

Step 6&9 Step 7 Step 8

C
y

cl
e

s

inst Icache Dcache ITLB DTLB L2

0%

20%

40%

60%

80%

100%

Memory stalls

SKB Header Descriptor Other

27

 Since L2 cache misses in SKB conversion constitute ~50% of the driver overhead,

we do detailed instrumentation to identify data incurring those misses. We group data in

the driver into various data types (SKB, descriptors, packet headers and other local

variables) and measure their misses. The result presented in Figure 3.4 reveals that SKB

is the major source of the memory stalls (~1.5 L2 misses/packet on SKB). Different from

prior studies [6, 7], the memory stalls to packet headers are hidden and overlapped with

computation because the recent driver uses software prefetch instructions to preload

headers before they are accessed. Unfortunately, SKB access occurs at the very beginning

of the driver and software prefetch instructions cannot help. Although DMA invalidates

descriptors to maintain cache coherence, the memory stalls to descriptors are negligible

(~0.04 L2 misses/packet). That is because each 64 bytes cache line can host 4 descriptors

of 16 bytes each and hardware prefetchers preload several consecutive descriptors with a

cache miss. To understand the SKB misses, we instrument kernel to study its reuse

distance over 10GbE. It is observed that SKB has long reuse distance (~240K L2 access),

explaining the misses.

3.3.2. Data Copy

After protocol processing, user applications are scheduled to copy packets from SKB

buffers to user buffers. Data copy incurs mandatory cache misses on payload because

DMA triggers cache invalidation to maintain cache coherence, and thus consumes a large

number of CPU cycles. We study its architectural overhead breakdown as shown in

Figure 3.5. 16KB I/O is segmented into small packets of MTU each in the sender and

they are sent to the receiver. Fig.3.5 shows that L2 cache misses are the major overhead

28

(~50%, ~3.5 L2 misses/packet), followed by data cache misses (~27%, ~50 misses/packet)

and instruction execution (~20%). Although DCA implemented in Intel recent platforms

avoids L2 cache misses, it is unable to reduce overheads in L1 cache misses and a series

of load/store instructions execution (total ~47%). Due to the small L1 cache size, routing

network data into L1 caches would pollute caches and degrade performance [46, 85].

Moreover, since packets become obsolete after data copy [11], loading them into L1

caches or keeping them in L2 caches may evict other valuable data to incur cache

pollution. Hence, more optimizations are needed to fully address the data copy issue.

Figure 3.5 Data copy breakdown

 Figure 3.6 Buffer release breakdown

0%

20%

40%

60%

80%

100%

data copy

L2

DTLB

ITLB

Dcache

Icache

inst

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Buffer release

L2

DTLB

ITLB

Dcache

Icache

inst

29

3.3.3. Buffer Release

SKB buffers need to be reclaimed after packets are copied to user applications. SKB

buffer allocation and release are managed by slab allocator [10]. The basis for this

allocator is retaining an allocated memory that used to contain a data object of certain

type and reusing that memory for the next allocations for another object of the same type.

Buffer release consists of two phases: looking up an object cache controller and releasing

the object into the controller. In the implementation of slab allocator, the page data

structure is used to keep cache controller information and read during the object cache

controller lookup. This technique is widely used by mainstream OS such as FreeBSD,

Solaris and Linux etc.

 Figure 3.6 shows architectural overhead breakdown for buffer release. We observe

from Fig.3.6 that L2 cache misses are the single largest contributor to the overhead (~1.6

L2 cache misses/ packet). Similarly, we analyze data sources of L2 cache misses and

present results in Figure 3.7. The figure reveals that L2 cache misses are from the 128

bytes in-kernel page data structures. The structure reuse distance analysis shows that it is

reused after ~255K L2 cache access, explaining the cache misses.

Figure 3.7 L2 miss sources.

93%

94%

95%

96%

97%

98%

99%

100%

Memory stalls

others

page structure

30

 The above studies reveal that besides memory stalls to itself, each packet incurs

several cache misses on corresponding data and has considerable data copy overhead.

Some intuitive solutions like having larger LLC (>8MB for 10GbE) or extending the

platform optimization DCA might help to some extent, but they have major limitation.

Our simulation results show that, without considering application memory footprint,

16MB LLC is needed to avoid those cache misses of packet processing over 10GbE.

When network jumps to 40GbE and beyond, increasing LLC becomes an ineffective

solution. More importantly, it is unable to address NIC challenges and the data copy

issue. Unlike increasing LLC, extending DCA to deliver both packets and those missed

data from NICs into caches is more efficient in avoiding memory stalls. Unfortunately, it

stresses NICs more heavily and degrades PCI-E efficiency of packet transfers [69, 70],

and does not consider the data copy issue as well. In order to attack all challenges from

continuously increasing network speed, a holistic and intelligent I/O solution is needed.

3.4 Summary

In this chapter, we first studied the per-packet processing overhead on mainstream

servers with 10GbE and pinpointed three major performance overheads: data copy, the

driver and buffer release. Then, we did fine-grained instrumentation in the NIC driver

and OS kernel to do a system-wide architectural analysis. Unlike existing tools attributing

CPU cost to functions, our instrumentation was done at the data granularity and can

pinpoint data with considerable cost. Our studies reveal several new findings: 1) the

major network processing bottlenecks lie in the NIC driver, data copy and buffer release;

2) in contrast to the generally accepted notion that long latency NIC register access

31

results in the driver overhead, our results show that the overhead mainly comes from

memory stalls to network buffer data structures; 3) releasing network buffers in OS

results in memory stalls to in-kernel page data structures, contributing to the buffer

release overhead; 4) besides memory stalls to packets, data copy implemented as a series

of load/store instructions, also has significant time on L1 cache misses and instruction

execution.

32

Chapter 4

Repartitioning CPU/NIC

In Chapter 3, we carefully studied the TCP/IP packet processing overhead over high

speed networks and pinpointed the bottlenecks. In this chapter, we propose a new server

I/O architecture to tackle the performance challenge. In the new I/O architecture, we

move DMA descriptor management from the NIC to an on-chip network engine and

extend descriptors with information about data incurring memory stalls. The new I/O

architecture is not only able to effectively tackle the performance challenge, but also

reduce NIC hardware design complexity. Its designs are elaborated in the following

subsections.

4.1 New Server I/O Architecture

The overview of the new architecture is illustrated in Figure 4.1. In the new architecture,

we move DMA descriptor management from NICs to an added on-chip network engine

(NEngine) near to LLC. The on-chip descriptor management enables us to easily extend

descriptors with information about data incurring memory stalls. Similar to the memory

controller, NEngine connects to I/O Hub (IOH) for parsing PCI-E transactions. It

communicates with faster cache hierarchy for DMA descriptor fetches/writes and packet

movement, alleviating the processing burden on DMA engine. Due to close proximity to

LLC, NEngine has low communication cost with LLC.

33

 When NEngine receives a packet, it reads descriptors from cache hierarchy. Then it

moves the packet into corresponding cache location and preloads those data incurring

memory stalls. The new architecture exploits LLC to keep packets other than multiple

RX/TX queues in NICs. Commodity high speed NICs allow each core to have one

dedicated RX/TX queue, thus increasing NIC cost and impeding NIC’s scalability over

cores. The new architecture avoids extensive buffer resources and reduces NIC hardware

cost. Moreover, NEngine also implements efficient payload movement inside LLC and

proactively purges obsolete packet data after data copy to address the data copy issue.

The new architecture fundamentally reduces all three major performance overheads of

network processing while effectively simplifying NICs. The detailed designs are

elaborated in the following subsections.

Figure 4.1 New I/O architecture overview

34

4.1.1 NEngine

During network processing, CPUs and NICs communicate through DMA descriptors. As

the communication channel, DMA descriptors are organized as a circular ring. Each

descriptor is 16 bytes and includes packet metadata such as packet length, memory

address and status etc. In the contemporary I/O architecture, NICs fetch or write

descriptors via PCI-E bus before or after packet movement. The descriptor fetches/writes

have long latency stressing DMA engine [90] and also waste a large number of PCI-E

transactions degrading PCI-E payload efficiency [69, 70]. The on-chip descriptors

management avoids these issues, and more importantly, enables us to easily extend the

descriptors because of much faster communication with cache hierarchy. By exploiting

this design, we extend RX descriptors with information about data incurring memory

stalls: SKB and page data structures, as pinpointed in Section 3. The extended descriptors

are illustrated in Figure 4.2. Besides original 16 bytes, the new descriptor includes 4

bytes physical address of SKB and internal page data structures each. Two hardware

registers in NEngine are dedicated to storing data structure length in the form of the

number of cache lines. In Linux, SKB is 240 bytes and page structure is 128 bytes,

corresponding to four and two cache lines of 64 bytes each, respectively. The typical ring

buffer size of 10GbE NICs is 1024 entries and thus the new ring buffer size only

increases by 8KB.

 With the new descriptors, the block diagram of NEngine is illustrated in Figure

Besides major components shown in

keep ring buffer base address and ring pointer information as traditional NICs do. When a

packet arrives at the NIC, without fetching DMA descriptors to know memory location

for the packet, the NIC calc

(RSS distributes packets among cores by hashing packet'

packetwith core ID into a small buffer in NEngine. Fetch descriptor unit identifies the

corresponding descriptor ad

ring buffer pointers, and then sends a cache read request to get the descriptor.

shows that mainstream severs exhibit extremely high descriptor cache hit ratios even with

DMA invalidation (96%). The on

and has a higher descriptor cache hit ratio. Thus, the fetch descriptor unit can access to

descriptors very fast and is much simpler than the original DMA engine. With the

knowledge of memory location and data incurring memory stalls, the write packet unit

moves the packet into caches. Meanwhile, the lookup/load unit lookups those data and

loads them if they do not reside in caches. To facilitate the lookup/load unit, we extend

35

Figure 4.2 Extended DMA descriptors

With the new descriptors, the block diagram of NEngine is illustrated in Figure

Besides major components shown in Fig. 4.3, NEngine also offers dedicated registers to

keep ring buffer base address and ring pointer information as traditional NICs do. When a

packet arrives at the NIC, without fetching DMA descriptors to know memory location

for the packet, the NIC calculates core ID for packet processing using RSS hardware unit

(RSS distributes packets among cores by hashing packet's 4-tuple) and sends the

with core ID into a small buffer in NEngine. Fetch descriptor unit identifies the

corresponding descriptor address according to the ring base address of the core ID and

ring buffer pointers, and then sends a cache read request to get the descriptor.

shows that mainstream severs exhibit extremely high descriptor cache hit ratios even with

n (96%). The on-chip descriptor management avoids DMA invalidation

and has a higher descriptor cache hit ratio. Thus, the fetch descriptor unit can access to

descriptors very fast and is much simpler than the original DMA engine. With the

ry location and data incurring memory stalls, the write packet unit

moves the packet into caches. Meanwhile, the lookup/load unit lookups those data and

loads them if they do not reside in caches. To facilitate the lookup/load unit, we extend

With the new descriptors, the block diagram of NEngine is illustrated in Figure 4.3.

, NEngine also offers dedicated registers to

keep ring buffer base address and ring pointer information as traditional NICs do. When a

packet arrives at the NIC, without fetching DMA descriptors to know memory location

ulates core ID for packet processing using RSS hardware unit

tuple) and sends the

with core ID into a small buffer in NEngine. Fetch descriptor unit identifies the

dress according to the ring base address of the core ID and

ring buffer pointers, and then sends a cache read request to get the descriptor. Chapter 3

shows that mainstream severs exhibit extremely high descriptor cache hit ratios even with

chip descriptor management avoids DMA invalidation

and has a higher descriptor cache hit ratio. Thus, the fetch descriptor unit can access to

descriptors very fast and is much simpler than the original DMA engine. With the

ry location and data incurring memory stalls, the write packet unit

moves the packet into caches. Meanwhile, the lookup/load unit lookups those data and

loads them if they do not reside in caches. To facilitate the lookup/load unit, we extend

36

the conventional cache architecture with a new cache operation: lookup. Unlike normal

cache operations such as cache read, write etc, the new operation lookup returns whether

data is in caches, other than data themselves. The lookup/load unit sends lookup

operations to lookup those data. If the data is not in caches, it generates prefetch

commands to the existing hardware prefetching facility for loading the data. After the

packet is moved into cache hierarchy, NEngine updates the descriptor status field and

ring buffer pointers for the driver as traditional NICs do.

 In addition, NEngine moves payload inside LLC to bypass L1 caches and to avoid a

series of load/store instructions. Since the source data becomes obsolete after data copy

[10], NEngine invalidates source cache lines to purge the data. To support efficient

movement, we extend the cache architecture with a new cache operation: read_invalidate,

which reads cache lines and then does cache invalidation. During data copy, TCP/IP

protocol breaks discontinuous physical address ranges into a set of consecutive physical

ranges and programs NEngine via three hardware registers: src, dst, len. Then, NEngine

breaks continuous physical address ranges into a set of chunks at the cache line

granularity and generates new read_invalidate operations to read and invalidate cache

lines. Finally, it writes those data into destination cache lines. Our payload movement

differs from prior copy engines [1, 95] as follows: 1) payload movement is done inside

caches and payload in caches is invalidated after movement; 2) the virtual-to-physical

address translation overhead is negligible because data copy is done in the OS context. In

Linux, less than 10 cycles are needed for the address translation.

37

Figure 4.3 Basic block of NEngine

 When we come to the transmit side, NEngine reads transmitted packets from cache

hierarchy and transfers them into the NIC over PCI-E bus. Once the NIC receives the

transmitted packets from NEngine, the MAC processing units automatically sends them

over Ethernet links. Besides high efficient network processing, our designs simplify NIC

designs in terms of buffer resource and DMA engine and also reduce PCI-E traffic used

for descriptor fetches/writes.

4.1.2 NIC

In the new architecture, NICs are simplified with less hardware resource. Figure 4.4

illustrates a traditional NIC in the left box and a new NIC in the right box. In the

traditional NIC, the MAC processing unit receives packets from Ethernet links and does

RSS to load balance incoming packets among cores/queues at the connection level. The

packets are stored in corresponding RX queues. DMA engine uses PCI-E transactions to

fetch descriptors from memory and to move data from RX queues to memory. Interrupt

38

coalescing unit will send interrupts to cores when the number of transferred packets reach

up to a threshold set by the driver or a preprogrammed timer expires. Similarly, in order

to transmit packets, the NIC fetches TX descriptors to know packet memory location and

moves packets into corresponding TX queues. Then, packets are sent over Ethernet links

and interrupts are sent to cores. In the new NIC, we remove large multiple hardware

queues and DMA engine marked as grey in the left box. When RSS receives a packet

from the MAC processing unit, it calculates the core assigned to packet processing. Then,

the NIC directly sends the packet with core ID to NEngine. Similar to the receive side,

when the NIC receives a transmitted packet, the MAC processing unit directly takes over

the packet for transmission. RSS and Interrupt coalescing units behave the same as

traditional NICs do.

Figure 4.4 Simplified NIC in the new architecture

39

4.1. 3. Software Support

The new server I/O architecture inherits the descriptor-based software/hardware interface

and only needs some modest support from the device driver and the data copy component.

In the driver, when new SKB buffers are allocated to refill RX descriptors, besides DMA

buffer address the driver sets starting address of SKB and page data structures to the

descriptors. When packets finish protocol processing, the data copy component programs

NEngine to move payload and waits until NEngine finishes the movement. There is no

need to modify TCP/IP protocol stack, system call and user application.

4.2 Performance Evaluation

We choose the full system simulator Simics [57] to evaluate our designs by enhancing it

with detailed cache, I/O timing models and modeling of the effects of network DMA. We

extend the Digital Equipment Corporation 21140A Ethernet device with the support of

interrupt coalescing using Device Modeling language DML to simulate a 10GbE Ethernet

NIC. The device itself is connected to a lossless, full-duplex link of configurable

bandwidth. The latency of a packet traversing the link is simply fixed to 1 us. Two

systems (client and server) running Linux 2.6.16 are simulated and interconnected with

10GbE. Since the stream hardware prefetcher is the most popular prefetcher in

mainstream servers, we employ it in the simulator to speed up the memory access of

streamed network data.

40

 We implemented the new

I/O architecture and developed

a NIC driver in Linux. LRO

was implemented in the driver.

To understand performance

impacts of our designs on

network processing, we first

used the micro-benchmark Iperf in the experiments. Then, we study how much benefit

web servers achieve by running the SPECWeb [4] benchmark. In each case, only one

system is of interest, while the other merely serves as a stressor. SUT is configured with

detailed timing models and the stressor runs with the fast functional mode and is not a

bottleneck. The parameters we used in modeling the configuration are listed in Table 4.1.

We are more interested in the relative behavior of these systems than their absolute

performance, so some of these parameters are approximations.

4.2.1 Network Performance

First, we looked at network performance in the receive side by running Iperf under

various configurations: the original system (orig), DCA routing data to L1 caches (DCA-

L1), DCA routing data into L2 caches (DCA-L2), the new server I/O architecture (new).

LRO is included in all server configurations. Since large I/Os have all three major

overheads, we present large I/O results in this subsection.

Table 4.1 System configurations

41

Figure 4.5 Network throughput

Figure 4.6 Utilization breakdown

 Figure 4.5 illustrates network throughput achieved by various configurations. We

also present corresponding core utilization and utilization breakdown in Figure 4.6. As

shown in Fig.4.5 and Fig.4.6, orig can achieve only ~8 Gbps throughput by consuming

~225% core utilization in the SUT with four cores. Memory subsystem is the potential

bottleneck of achieving line rate throughput and an increase in CPU performance could

0

2

4

6

8

10

12

orig DCA-L1 DCA-L2 new

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

0%

50%

100%

150%

200%

250%

orig DCA-L1 DCA-L2 new

C
o

re
 U

ti
li

za
ti

o
n

Others

Iperf

System Call

Data Copy

TCP/IP

Buffer Release

NIC Driver

42

not further improve throughput. We observe from Fig. 4.6 that data copy, the NIC driver

and buffer release are three major overheads. By injecting network data into L1 caches,

DCA-L1 eliminates the memory stalls to packets and obtains line rate throughput using

~200% core utilization. The utilization breakdown reveals that the higher network

processing efficiency or throughput/core is from CPU cycle savings in data copy. Instead

of L1 caches, DCA-L2 routes network data into a larger L2 cache. It achieves line rate

throughput and consumes fewer CPU cycles than DCA-L1. That is because DCA-L1

delivers ~64 packets or ~96KB data for each interrupt into small L1 caches of 32 KB

each, incurring cache pollution. With high speed networks like 10GbE and beyond, DCA-

L2 is a more practical approach.

 Although DCA is able to reduce the data copy overhead, it is unable to resolve the

performance issues in other components such as the driver and buffer release. The new

I/O architecture not only avoids memory stalls in the driver and buffer release, but also

further improves data copy performance. Fig. 4.5 and Fig.4.6 show that it obtains line

rate throughput but substantially reduces core utilization to ~125%. The utilization

breakdown confirms that the reduction is from the driver, buffer release and data copy.

Compared to DCA-L2 which is employed in recent commercial server platforms, the new

I/O architecture reduces core utilization by 33%, corresponding to 47% network

processing efficiency improvement.

 Additionally, we also investigate cache behavior of high speed network processing

under various configurations in Figure 4.7. As shown in the figure, orig only achieves a

92% L2 cache hit ratio. By avoiding the memory stalls to packets, both DCA-L1 and

43

DCA-L2 increase L2 cache hit ratios to 96%. The new architecture almost avoids memory

stalls during network processing and escalates the L2 cache hit ratio to 99%. The higher

L2 cache hit ratio explains the benefits of core utilization shown in Fig.4.6. When we

come to L1 cache behavior, all configurations achieve similar hit ratios except DCA-L1

and new. Due to small cache sizes, DCA-L1 results in L1 cache pollution and decreases

the L1 cache hit ratio. New bypasses L1 caches during data copy and has a higher L1

cache hit ratio. Since packet transmitting performance is not significantly improved, we

don’t present results for the sender side.

Figure 4.7 Cache hit ratios

4.2.2 Web Server Performance

Second, we studied web server performance by running the web server benchmark

SPECweb99 over 10GbE. The same configurations as subsection 4.2.1 were used. Web

server throughput with various configurations is illustrated in Figure 4.8. As shown in

Fig.4.8, web server achieves 2.8Gbps, 3.1Gbps and 3.3Gbps throughput in orig, DCA-L1

and DCA-L2. CPU utilization breakdown in Figure 4.9 reveals that throughput increases

86%

88%

90%

92%

94%

96%

98%

100%

orig DCA-L1 DCA-L2 new

C
a

ch
e

 h
it

 r
a

ti
o

s

L1 Cache L2 Cache

44

are from the CPU cycle savings in network processing. When we come to the new

architecture, the network processing overhead is further reduced due to the elimination of

the memory stalls and more efficient data copy. The improved network processing

translates to 14% better throughput than DCA-L2.

Figure 4.8 Web server throughput

Figure 4.9 Utilization breakdown

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

orig DCA-L1 DCA-L2 new

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

0%

20%

40%

60%

80%

100%

120%

orig DCA-L1 DCA-L2 new

TCP/IP procesisng users

45

4.2.3 NIC Design Benefits

Besides having highly efficient network processing, the new server I/O architecture also

simplifies NIC designs by lessening pressure on DMA engine and avoiding extensive

NIC buffers. We measure round-trip time over PCI-E bus on mainstream servers and

assume that each PCI-E transaction (typically, 256B transaction size) transfers 16

descriptors. We obtain average per packet time for descriptor read/write by amortizing

the round-trip time over the number of descriptors per transfer. Packets themselves can

be transferred in a pipelined way and do not stress DMA engine. Assuming DMA engine

runs at 200MHz, time of a MTU packet spent on DMA engine is illustrated in Figure

4.10. Fig. 4.10 shows that the new architecture substantially ameliorates DMA engine

pressure. Although results for DCA configurations are not shown, they do not avoid long

latency descriptor fetches/writes and behave the same as orig. In addition to the benefits

from DMA engine, the new I/O architecture also reduces NIC buffers. Our experiment

results show that it only needs 8KB buffer (4KB buffer in the NEngine and 4KB buffer in

the NIC) for the 10Gbps network, but more than 512KB NIC buffer is needed in

traditional I/O architectures. With 40Gbps and 100Gbps networks, the new I/O

architecture will achieve much higher benefits. In the new architecture, NEngine

essentially behaves similarly to DMA engine but simplifies designs of DMA engine and

reduces NIC buffers. We believe that the new I/O architecture has less overall hardware

cost (CPU+NIC) and is a promising I/O solution for high speed networks.

46

Figure 4.10 Per packet time on DMA Engine

4.3 Summary

As network speed continues to grow, it becomes critical to understand and address

challenges on mainstream servers. In this chapter, we proposed a new server I/O

architecture for high speed networks. The new I/O architecture addresses all three

performance challenges by using extended on-chip DMA descriptors and efficient

payload movement. It allows hardware DMA engine to have very fast access to

descriptors alleviating burden on DMA engine and leverages caches to keep packets

avoiding extensive NIC buffers. Evaluation results show that the new architecture

significantly improves network processing efficiency and achieves better web server

performance while reducing NIC hardware design complexity. Given the trend towards

rapid evolution of network speed in data centers, we view the new I/O architecture as a

promising I/O solution.

0

20

40

60

80

100

120

140

orig new

P
e

r
p

a
ck

e
t

ti
m

e
 o

n
 D

M
A

 e
n

g
in

e

(n
s)

descriptor packet

47

Chapter 5

Integrating NIC into CPU

In the past decade, both academia and industry viewed that integrating a NIC into CPU

die is a promising I/O solution for high speed networks [6, 7, 45, 46, 77, 83]. Binkert et

al [7] first studied performance benefits of NIC integration and showed the driver

overhead is reduced up to 80% even due to the smaller latency of NIC registers, thus

improving performance up to 58%. In industry, Sun also releases Niagara 2 processor

[83], a first general purpose processor integrating two 10GbE NICs.

 Existing work on the integration of NICs was evaluated by simulation [7, 8].

Although simulation is flexible, it is hard to fully simulate the bandwidth and latency of

memory and system bus protocols in real machines. It is also difficult for simulators to

capture the whole OS behaviors. Hence, evaluations on real machines become critically

important and are complementary to simulators.

 In this chapter, we start with performance evaluation on a Sun Niagara 2 platform

integrating two 10GbE NICs in Subsection 5.1, to fully understand the benefits of

integrated NICs. We realized from our detailed analysis that the simple integration only

gains little performance improvement. Then, in Subsection 5.2, we propose an enhanced

integrated NIC architecture (EINIC) with many new architectural features to achieve

significant improvement of TCP/IP packet processing performance.

48

5.1 Performance Measurement of an Integrated NIC Architecture

5.1.1 Sun Niagara 2

The Niagara 2 processor is the industry's first "system on a chip," packing the most small

underpowered cores and threads, and integrating all the key functions of a server on a

single chip: computing, networking, security and I/O [83].

 As shown in Figure 5.1, it has two 10 GbE NICs (NIU in the figure) with a few

features. All the data is sourced from and destined to memory, DMA in the parlance.

This means a core sets up the transfer and gets out of the way. The path to memory goes

from the NIU, to the system interface unit (SIU), directly into the L2 or the crossbar. The

CPU sets up DMA for packet transfers from the NIC to memory.

Figure 5.1 Niagara 2 Architecture

 Niagara 2, known for its massive amount of parallelism, contains eight small

physical processor cores and each core has full hardware support for eight hardware

threads. There are total 64 hardware threads or CPUs from the OS perspective.

Additionally, each core has a 64-entry fully associative ITLB, a 128-entry fully

associative DTLB, a 16K L1 Icache and an 8K L1 Dcache with associativity of the

49

Icache upped to eight. The Dcache has four-way associativity and is write-through, and

all cores share a 4MB L2 cache. This is divided into 8 banks with16-way associativity.

5.1.2 Experiment Methodology

Our experimental testbed consists of a Sun T5120 server connected to an Intel® Quad

Core DP Xeon® server, which functions as a System Under Test (SUT) and a stressor

respectively. The Sun server has a Niagara 2 processor, which has 64 hardware threads

and each hardware thread is operating at 1.2GHz. The Intel server is a two-processor

platform based on the quad-core Intel® Xeon® processor 5300 series with 8 MB of L2

cache per processor [38]. Both of the machines are equipped with 16GB DRAM.

Table 5.1 INIC vs DNIC

 In order to compare INIC with DNIC, we used two 10GbE network adapters in the

SUN server: a discrete Sun 10GbE PCI-E NIC (a.k.a Neptune) [84] and an on-chip

10GbE Network Interface Unit (a.k.a NIU) [83]. The on-chip NIU has the same physical

design as Neptune except it has half less DMA transmit channels. More information is

shown in Table 5.1. They use the same device driver, and trigger an interrupt after the

number of received packets reaches 32 or 8 NIC hardware clocks have elapsed since the

last packet was received. We also installed two Intel 10GbE Server Adapters (a.k.a Oplin)

50

[37] in the stressor system to connect two network adapters in the Sun server. All of

discrete NICs connect to hosts through PCI-E x8, a 16+16 Gigabit/s full-duplex I/O

fabric that is fast enough to keep up with the 10+10 Gigabit/s full-duplex network port.

 The SUT runs the Solaris 10 OS while the stressor runs Vanilla Linux kernel 2.6.22.

In Solaris 10, a STREAMS-based network stack is replaced by a new architecture named

FireEngine [23] which provided better connection affinity to CPUs, greatly reducing the

connection setup cost and the cost of per-packet processing. It merges all protocol layers

into one STREAMS module that is fully multithreaded.

 In order to optimize network processing with the 10GbE network, we use 16 soft

rings per 10GbE NIC by setting the parameter ip_soft_rings_cnt for the driver. Soft rings

are kernel threads that offload processing of received packets from the interrupt CPU,

thus preventing the interrupt CPU from becoming the bottleneck. We also set

ddi_msix_alloc_limit to 8 so that received interrupts can target 8 different CPUs. Besides,

we retain the default settings in the device driver without specific performance tuning on

interrupt coalescing, write combining etc.

 Micro-benchmarks were used in our experiments to easily identify the performance

benefits and avoid system noises from commercial applications [45, 46], We selected

Iperf [33] and NetPIPE [65] as micro-benchmarks for measuring bandwidth and ping-

pong latency respectively. Because peak bandwidth can be achieved by more than 16

connections, Iperf is run with 32 parallel connections on 64 CPUs for 60 seconds in all

our experiments, unless otherwise stated.

51

 In our experiments, the utility vmstat is used for capturing the corresponding CPU

utilization. We ran tools er_kernel and er_print to collect and analyze the system

functions overhead. Meanwhile, busstat and cpustat were chosen to obtain memory

traffic and hardware statistical information while running the benchmark.

5.1.3 Performance Evaluation

In Figure 5.2, we show how the INIC and the DNIC perform with various I/Os while

receiving packets. The bar in the figure represents achievable network bandwidth, and the

line stands for the corresponding CPU utilization. It can be observed that the INIC can

achieve 8.97 Gbps bandwidth while consuming 27% CPU utilization with large I/O sizes.

Correspondingly, 8.31 Gbps bandwidth is obtained by the DNIC with 35% CPU

utilization. The INIC obtains 7.5% higher bandwidth and saves 20% relative CPU

utilization on average for large I/O sizes (>1KB). The efficiency of the INIC is close to

the DNIC with small packets. All of the results reveal that the integration improves

network efficiency in the receive side only with large I/O sizes.

Figure 5.2 Bandwidth & CPU Utilization (RX)

INIC vs DNIC (RX with 32 Connections)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

I/O Size

B
an

dw
id

th
 (
G
bp

s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

C
P
U
 U

til
iz
at
io

n

INIC (BW) DNIC (BW) INIC (CPU Util) DNIC (CPU Util)

52

 We studied the performance comparison of DNIC and INIC while transmitting

packets in Figure 5.3. Because less time is required in the driver for the INIC to transmit

packets, it is expected that the higher transmitting bandwidth could be obtained by the

INIC than the DNIC. However, the INIC does not show noticeable benefits to the

application in terms of network efficiency. It is possibly because: first, the number of

transmit DMA channels in NIU is half less than that in the Neptune 10GbE card (8 TX

DMA channels in the INIC and 12 TX DMA channels in the DINC). Fewer channels

could reduce the capacity of transmitting packets. Second, the transmit side is much less

latency-sensitive than the receive side [6, 93, 94].

Figure 5.3 Bandwidth & CPU Utilization (TX)

Figure 5.4 Performance with Various Connections

DNIC vs INIC (TX 32 connections)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

I/O Size

B
an

dw
id
th
 (
G
bp

s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C
P
U
 U

til
iz
at
io
n

INIC(BW) DNIC(BW) INIC(CPU Util) DNIC(CPU Util)

DNIC vs INIC with Different Connections

0

1

2

3

4

5

6

7

8

9

10

1 4 8 16 32 64

Connections

B
an

dw
id

th
 (
G

bp
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

C
P
U
 U

til
iz

at
io

n

DNIC(BW) INIC(BW) DNIC(CPU Util) INIC(CPU Util)

53

 To ease and expedite our analysis of the above observation, we conducted

experiments for comparing INIC with DNIC by running Iperf with varying number of

connections rather than 32 connections. Figure 5.4 illustrates the comparison from one

single connection to 64 connections with 64KB messages. The following observations

can be made from the figure: 1) greater than 16 connections are required for both INIC

and DNIC to achieve peak bandwidth. It is due to low performance of a single hardware

thread in Niagara 2; 2) differing from INIC, DNIC with 64 connections downgrades 10%

bandwidth compared to 32 connections; 3) INIC improves network efficiency only with

greater than or equal to 32 connections.

Figure 5.5 Performance with Various CPUs

 Similarly, we also studied the performance comparison by running 32 connections

with varying number of CPUs or hardware threads in Figure 5.5. We observe that the

benefits only come when more than 16 CPUs are used in our experiments. With the

combination of Figure 5.4, we can draw two conclusions: 1) the integration could affect

the system behaviors with a large number of connections, and different system behavior

54

mainly causes the performance difference, and 2) the benefits can only be achieved with

large number of CPUs, and thus are tied to the highly threaded Sun system.

Figure 5.6 Ping-Pong Latency

 High bandwidth and low latency are two main metrics in modern networking servers.

We also conducted experiments to compare ping-pong latency by configuring the SUT

with INIC or DNIC while retaining the same configuration in the stressor. NetPIPE was

used to measure the latency. Since large I/Os are segmented into small packets less than

MTU, we focus on packets less than MTU for the ping-pong latency test. Our results in

Figure 5.6 show that INIC can achieve a lower latency by saving 6 µs. It is due to the

smaller latency of accessing I/O registers and eliminating PCI-E bus latency.

5.1. 4 Detailed Performance Characterization

To understand the benefits of the INIC, we profiled the system for both the kernel and

application function calls as well as the assembly code. We used the test case with a

64KB I/O size and 32 concurrent connections in Figure 5.7. The data gathered was

grouped into the following components to determine their impacts on performance:

device driver, socket, buffer management, network stack, kernel, data copy and Iperf.

DNIC vs INIC (Latency)

90

95

100

105

110

115

120

64 128 256 512 1K 1.5K
I/O Size(Bytes)

La
te

nc
y

(u
s)

INIC DNIC

55

 CPU overhead breakdown per packet is calculated and presented in Figure 5.7. We

observe that 28 µs and 20 µs are required for processing one received packet in DNIC

and INIC respectively.

Figure 5.7 CPU Overhead Breakdown

 The comparison in the figure reveals that the CPU overhead on the driver is reduced

from 4.7 µs to 2.6 µs by the integration. Our result shows that the overhead on the

interrupt handler nxge_rx_intr, which frequently operates on NIC registers, is reduced by

10X. The copy component remains the same when we switch between DNIC to INIC. It

is because all packets in INIC are sourced and destined to memory rather than caches.

The data copy from kernel to user buffers in both configurations incurs compulsory cache

misses to fetch payloads from memory into caches. The overhead on the copy component

is eliminated only if packets are delivered to caches. Our findings so far confirm the

observations in prior work [6, 7] even though they differ in absolute benefits.

 We also observe that INIC also reduces the overheads on network stack, buffer

management, socket and kernel. These unexpected improvements comprise up to 75% of

DNIC vs INIC (CPU's Breakdown)

0

5

10

15

20

25

30

DNIC INIC

C
P
U
's
 B

re
ak

do
w
n

pe
r P

ac
ke

t (
us

)

Kernel

Iperf

Copy

Stack

Driver

Socket

Buffer

56

the total overhead reduction and thus mainly contribute to the performance benefits. We

found that the different behavior of OS scheduler and CPU caches lead to these benefits.

 Since the benefits of INIC over DNIC changes as the number of connections

increases, we characterize the system behaviors with varying number of connections.

A) Impacts on the OS Scheduler

 First, we did an architectural characterization by instruction for packet processing

along various connections. In DNIC, instructions are broken down into 5 types of

instructions: load, store, atomics, software count instructions and all other instructions as

shown in Figure 5.8. As shown in Figure 5.8, about 3500 instructions are required to

process a packet with less than 32 connections, but increase to 4500 instructions for 32

and 64 connections. The instruction breakdown shows that the instruction types of load,

store and other instructions, increase proportionally. Figure 5.9 shows the similar

behavior for INIC, but contrary to DNIC, increased connections do not significantly

increase instructions per packet. The higher instructions per packet directly translate to

the higher CPU utilization of DNIC with a large number of connections.

Figure 5.8 Instruction Breakdown (DNIC)

DNIC (Instructions Breakdown)

0

1000

2000

3000

4000

5000

1 4 8 16 32 64

Connections

In
st
ru

ct
io
ns

 p
er

 P
ac

ke
t

atomic

inst_sw

inst_other

store

load

57

Figure 5.9 Instruction Breakdown (INIC)

 Because the same device driver and network stack are used, INIC and DNIC have

the same code path while processing packets. The increased instructions are incurred by

other components in OS. The increased load and store operations reveal that more context

switches could be required by DNIC. Hence, we studied the OS scheduler’s behavior

while processing packets along various connections. Average context switches per

second are presented in Figure 5.10. The figure confirms our deduction that more context

switches are incurred by DNIC with more than 16 connections.

Figure 5.10 Context Switches with Various Connections

INIC(Instuctions Breakdown)

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 8 16 32 64
Connections

In
st
ru

ct
io
ns

 p
er

 P
ac

ke
t

atomic

inst_sw

inst_other

store

load

DNIC vs INIC (Context Switch)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

1 4 8 16 32 64
Connections

C
on

te
xt

 S
w
itc

h
pe

r

S
ec

on
d

DNIC INIC

58

Figure 5.11 Interrupts per Second

 Since the micro-benchmark was used in our experiment, the lightweight execution in

applications does not incur system noise and yields few context switches. Context

switches are mainly caused by system interrupts. Hence, we studied system interrupts per

second along various connections in Figure 5.11. The result lines up with the observation

in Figure 5.10. Both INIC and DNIC have comparable interrupt rates with less than 32

connections. When we come to the scenario beyond 16 connections, DNIC largely

increases the interrupt rate but INIC keeps the same interrupt rate. The higher interrupt

rate results in more context switches. To study the increased interrupts, we breakdown

system interrupts with 32 connections into interrupts from NIC, cross-calls, and all other

system interrupts in Figure 5.12.

Figure 5.12 System Interrupts Breakdown

DNIC vs INIC (Interrupt per Second)

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05

1 4 8 16 32 64
Connections

In
te
rr
up

t p
er

 S
ec

on
d

DNIC INIC

DNIC vs INIC (Interrupt Breakdown)

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

DNIC INIC

In
te

rru
pt

s
pe

r S
ec

on
d Others

Cross-
Call

NIC
intterrupt

59

Figure 5.13 Icache Misses per Packet

 We notice that INIC sent slightly more interrupts than DNIC because of the higher

bandwidth. However, the system with DNIC is interrupted much more frequently than

with INIC by cross-calls. We used the Dtrace utility [20] to count the number of cross-

calls incurred by various system components. It shows that more than the 96% cross-calls

are from the OS scheduler. The scheduler uses cross-calls to notify other CPUs of

running tasks or threads immediately.

 We also profiled the usage for all 64 CPUs from the OS perspective and found that

more CPUs were used by the system with DNIC. Specifically, only 18 CPUs were free

with DNIC, while 31 CPUs are available with INIC. The result reveals that the OS

scheduler with DNIC uses the cross-calls to distribute threads to more CPUs as compared

to INIC. It is because the lower processing latency with the integration makes running

cores more efficient and lowers the likelihood that packets are dispatched to other cores.

B) Impacts on the CPU Caches

Since lower processing latency intuitively embeds shorter residential life cycles of

network data in caches, the integration could also bring impacts on CPU caches. We

studied cache behavior in the system with INIC and with DNIC respectively.

DNIC vs INIC (Icache Miss per Packet)

0

50

100

150

200

250

1 4 8 16 32 64

Connections

IC
ac

he
 M

is
s
pe

r P
ac

ke
t DNIC INIC

60

 Starting from the instruction cache, we show the instruction misses per packet in

Figure 5.13. More context switches incur higher miss rates beyond 16 connections. We

studied the instruction misses in L2 cache in Figure 5.14 to investigate the impacts of

those misses on the unified L2 cache. Their performance is similar but misses happen

very rarely in larger L2 cache.

 We also show data behaviors in both L2 and L1 data caches. We captured data

misses per packet in L2 cache for both the DNIC and the INIC in Figure 5.15. It shows

they have comparable miss rates with less than 32 connections. When it comes to beyond

16 connections, the INIC has 7.6% reduction of misses. The misses in the data cache

behave similarly as shown in Figure 5.16, but we see a much larger gap between the

DNIC and the INIC. The INIC has 180 fewer misses or 42% reduction of misses at most.

Figure 5.14 Instruction Misses per Packet in L2

 In our system, the L2 cache is a 4MB cache and the total data cache size of eight

cores is 64KB. They can accommodate up to 64 and 1 64KB I/O sizes respectively. We

need control plane data structures such as TCP Control Block (TCB) and headers,

descriptors etc during packet processing. With the increased connections, we actually

DNIC vs INIC (Inst Miss of L2 Per Packet)

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 8 16 32 64
Connections

In
st

 M
is
s

of
 L

2
pe

r

P
ac

ke
t

DNIC INIC

61

need more cache size for simultaneous control plane processing. For example, different

connections need to lookup different entries in the TCB. Hence, the smaller access

latency to I/O registers in the INIC is beneficial. The smaller latency means that packets

can be provided for upper level processing faster than the DNIC, correspondingly

resulting in smaller processing latency. Hence, in the same time interval, less packet

footprints are left in caches with the INIC and more cache spaces can be used for other

data. The above behavior could incur the lower miss rate with the INIC. Two conclusions

can be drawn from our analysis: 1) the smaller latency could explain the difference

between cache misses, and 2) the difference caused by the smaller latency is sensitive to

the cache size. It explains why the difference on data cache is much larger than that on L2

cache.

Figure 5.15 Data Misses per Packet in L2

Figure 5.16 Data Cache Misses per Packet

DNIC vs INIC (L2 Miss per Packet)

10

12

14

16

18

20

22

24

26

1 4 8 16 32 64

Connections

L2
 C

ac
he

 M
is
s
pe

r P
ac

ke
t DNIC INIC

DNIC vs INIC (DCache Miss per Packet)

0
50

100
150
200
250
300
350
400
450
500

1 4 8 16 32 64

Connections

D
C
ac

he
 M

is
s
pe

r P
ac

ke
t DNIC INIC

62

Figure 5.17 Memory Traffic per Packet

 Last but not least, we captured traffic on the memory bus. More cache misses would

lead to more memory accesses and thus increase memory read traffic. We gathered the

memory traffic for both read and write operations with INIC and DNIC while running

Iperf for 60 seconds. The memory traffic, normalized to per packet in Figure 5.17, shows

that DNIC incurs more memory read and write accesses.

 Although both the behavior of the OS scheduler and CPU caches are influenced by

the integration, we believe that there is some correlation between them. Besides the

impact of different processing latency on CPU caches, more context switches also change

the working data set in caches and thus incur some cache misses. Unfortunately, we now

are unable to quantify their impacts on CPU caches.

5.1. 5 Summary

In our experiments, we observe that the smaller latency of accessing I/O registers itself

does not help processing by a large extent. The different behavior of OS scheduler and

CPU caches incurred by the smaller latency contribute to the performance gain. It is in

contrary to the previous observation that the reduced driver overhead can lead to the

DNIC vs INIC (Memory Traffic per Packet)

0

500

1000

1500

2000

2500

3000

Memory Read Memory Write

B
yt
es

 p
er

 P
ac

ke
t

DNIC INIC

63

performance improvement up to 58% [7]. To satisfy the processing requirement

introduced by higher network traffic rates, more aggressive designs should be considered.

5.2 Enhanced Integrated NIC

In this subsection, we propose a comprehensive design to integrate a NIC into CPU die,

and implement processing optimizations. We introduce several architectural

optimizations to INIC designs that will reduce the TCP/IP processing overhead.

 Figure 5.18 illustrates the new integrated NIC architecture. Similar to [6, 83], we

incorporate a NIC into CPU. We redesign CPU/NIC interface by replacing DMA with

software PIO and deploy many optimizations to efficiently support multi-core systems. In

order to reduce the contention on shared resources from INIC and cores, optimizations

are derived by first evaluating their software implementation.

Figure 5.18 New Architecture Overview

 By taking advantage of the integration, LLC is split into dedicated I/O cache and

general cache at the way level. With a software-controlled policy in OS, the I/O cache

64

can be dynamically resized to meet the various incoming data rates. Lastly but not least,

cache coherence protocol is optimized to reduce the unnecessary write-backs of network

data, efficiently utilizing memory bus.

5.2.1 NIC

In order to cater to multiple cores, some hardware components need to be incorporated in

INIC. RSS, a technique for mapping each TCP connection to a specific core, becomes

critical in high speed networks. Hence, we extend our architecture to support multi-core

systems by featuring RSS. We first evaluated our software RSS by implementing it in

OS, which works as follows. All interrupts from INIC are assigned to a specific core

where the device driver is running. When the device driver receives an interrupt from

INIC, it employs Toeplitz hash [76] to determine the affinity between incoming packets

and CPU cores. Based on the mapping table, it inserts incoming packets into the

corresponding receive queues and then notifies cores by sending inter-core interrupts.

Experimental results show that each packet mapping by Toeplitz needs on an average

1455 cycles in a 2.67 GHz Intel Duo Core 2 CPU [38], not to mention an extra interrupt

notification. This means that to receive packets from a 10GbE (0.83 million 1.5 KB

packets per second) 1.2 Giga cycles will be required. Hence, the new architecture deploys

RSS as a specific hardware circuit.

 The anatomized design of INIC is depicted in Figure 5.19. Multiple queues (RX in

Fig.5.19) are offered and each of them is bound to a core for the interaction between

cores and NIC. Each received packet is hashed by Toeplitz hash over a specific set of

fields in the packet header. For a TCP connection, 4-tuple of source TCP port, source IP,

destination TCP port, and destination IP address, is used. The hashed result is

into an index of the mapping table to map the packet to a core. After identification, the

whole packet is buffered into the corresponding hardware queue. All cores manage their

queues in an independent way such as reading packets from queues and pr

packets. In a simple hardware implementation of

required for mapping a packet in a TCP connection (There are two loops in the

implementation. The outer

inner loop takes 8 cycles to do hashing

reduce to 1 cycle/packet.

 To eliminate memory access penalties while processing packets, the

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces

latency, but more importantly allows incoming packets to be written into L2 cache. This

data transfer policy intuitively implements DCA and also reduces memo

 Since the integration allows for fast CPU/NIC interaction, software PIO has very low

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates

65

destination TCP port, and destination IP address, is used. The hashed result is

into an index of the mapping table to map the packet to a core. After identification, the

whole packet is buffered into the corresponding hardware queue. All cores manage their

queues in an independent way such as reading packets from queues and pr

packets. In a simple hardware implementation of Toeplitz function, only 96 cycles are

required for mapping a packet in a TCP connection (There are two loops in the

outer loop requires 12 Bytes input and loops once per byte.

inner loop takes 8 cycles to do hashing). A pipelined implementation can aggressively

reduce to 1 cycle/packet.

Figure 5.19 Design of the INIC

To eliminate memory access penalties while processing packets, the

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces

latency, but more importantly allows incoming packets to be written into L2 cache. This

data transfer policy intuitively implements DCA and also reduces memory read traffic.

Since the integration allows for fast CPU/NIC interaction, software PIO has very low

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates

destination TCP port, and destination IP address, is used. The hashed result is masked

into an index of the mapping table to map the packet to a core. After identification, the

whole packet is buffered into the corresponding hardware queue. All cores manage their

queues in an independent way such as reading packets from queues and processing

function, only 96 cycles are

required for mapping a packet in a TCP connection (There are two loops in the

12 Bytes input and loops once per byte. Each

). A pipelined implementation can aggressively

To eliminate memory access penalties while processing packets, the architecture

attaches INIC to the internal bus between L1 and L2 cache. This configuration reduces

latency, but more importantly allows incoming packets to be written into L2 cache. This

ry read traffic.

Since the integration allows for fast CPU/NIC interaction, software PIO has very low

CPU/NIC communication overhead. It avoids using DMA descriptors and thus eliminates

66

the high overhead of DMA descriptor management [90]. It can be observed from Fig.5.19

that INIC is stripped down to essential components. It directly exposes RX/TX queues to

the driver. The programmable interface between CPU and NIC becomes copy engine. All

data transfers between NIC and caches are triggered by programming the copy engine.

Physical address for holding a packet is first set in the register RX_Addr_Reg, and then

real data transfer is issued by enabling the register RX_Start. Once copy engine finishes

the transfer, the result status like packet length is stored in the register RX_Status_Reg for

setting up the packet buffer structure in OS. In order to feed packets into multiple cores,

the same number of copy channels is featured in the copy engine. The transfer in each

channel is currently performed in a synchronous mode where a new transfer has to be

served after the previous copy is finished.

 Additionally, INIC reduces interrupt overheads by reducing the frequency of CPU

interrupts. As shown in Fig. 5.19, INIC moderates interrupt frequency by issuing a single

interrupt once the number of received packets reaches the threshold in the register

ITR_Reg.

 INIC adopts low latency interrupt mechanism to minimize the inevitable adverse

effect of the interrupt moderation or coalesce on packet latency, such as the control

packets whose typical size is less than 200 Bytes [58]. This allows for immediate

generation of an interrupt upon processing received packets smaller than the size

specified by LLIsize_Reg.

67

5.2.2 Software LRO

The overhead in TCP/IP receiving processing is proportional to the number of data

packets [27]. The per-packet overhead consists of buffer management and header

processing in network stack. LRO aggregates multiple packets from a single connection

into a larger packet, thus reducing the number of packets to be processed before they are

passed higher up the network stack.

 LRO is originally designed in NIC and its software version is recently proposed as

an alternative. We first evaluated software LRO with an integrated NIC by implementing

it as an OS component. When the driver processes packets, it calls LRO to join a SKB

based packet with any others in the stream, making one large packet. Checksum

information for the final packet is set to the CHECKSUM_UNNECESSARY to avoid the

redundant checksum computation. In our driver, if the packet cannot be aggregated with

others (it may not be a TCP packet, or it could have TCP options which require it to be

processed separately) it will be passed directly to the network stack by calling the routine

netif_receive_skb() as in the original system. Otherwise, the packets should be handed

over to the function lro_receive_skb() in LRO to coalesce the packets belonging to the

same connections. Due to the aggregation of packets, LRO on an integrated NIC pushing

data into caches could incur longer life cycles of network data in caches and result in

cache pollution. Our experimental examination of our LRO with 10GbE network shows

that it does not incur cache pollution and performs effectively with only extra 2% CPU

utilization while saving hardware cost in INIC.

68

5.2.3 I/O-Aware LLC

As more and more cores are integrated onto the same chip, LLC is organized to be shared

among all cores to provide lower miss rate and efficient cache utilization. When multiple

applications run simultaneously, the performance of each individual workload depends

on behavior of other workloads [41]. I/O performance is affected while running

simultaneously with memory intensive applications. Even if packets can be delivered into

caches, they could be evicted and written back to memory by other applications before

being processed. Network data has to be fetched from memory again while processing

packets. This interference could offset benefits of pushing packets into caches.

 Since the integration allows network data to be directly written into LLC, it is

straightforward for cache controller to identify the source of a cache write. By taking

advantage of it, we propose a new I/O-aware LLC to dynamically partition LLC into I/O

cache and general cache. It can: (1) eliminate effects of application interference on

network data and thus improve I/O performance, (2) provide flexibility in organizing and

managing the cache in a way that benefits I/O performance, and (3) reduce unnecessary

memory write-backs of network data.

Figure 5.20 I/O-Aware LLC

69

 The design of our I/O-aware LLC is illustrated in Figure 5.20. It consists of two

essential components: hardware quota management and a kernel-level quota orchestration

policy. Since a subset of cache sets cannot cover the whole address space, partition at the

set level is infeasible for the I/O cache holding received packets which might span over

the whole address space. In the architecture, an n-way LLC is split into m-way I/O cache

and (n-m)-way general cache at the way level. The first m cache blocks in each set are

always assigned to the I/O cache. This assignment policy avoids the complexity of

hardware implementation to identify I/O cache lines. Since received packets are delivered

to LLC in a stream order, FIFO management policy is more suitable for stream data.

However, the rudimentary replacement policy LRU is good for general cache data.

Combined with the cache partition, the architecture employs two replacement policies to

manage the shared cache: FIFO for the I/O cache and LRU for the general cache.

 In order to meet various incoming rates, OS periodically orchestrates the quota of the

I/O cache according to the number of replaced cache lines but untouched by network

stack. When the number of those I/O cache lines exceeds a threshold (half of current I/O

cache quota at default), managed by OS during a period (10 interrupts in our experiment),

the quota of the I/O cache with m-way will be increased to (m+1)-way. When the number

of write accesses to I/O cache lines from NIC is below a threshold (half of current I/O

cache quota at default), the quota of the I/O cache is adjusted to (m-1)-way.

 In OS, kernel buffers holding packets are randomly allocated by general SKB

memory management [11]. The random allocation might cause the uneven distribution of

mapping those buffers into the I/O cache because most of allocated buffers are likely

70

mapped to some limited I/O cache lines, thus resulting in hotspots but leaving others idle.

Instead of relying on dynamic memory allocation, we pre-allocate a consecutive physical

memory during driver initialization and manage them as a FIFO buffer to hold incoming

packets. This new allocation policy can guarantee that received packets can be evenly

distributed into the I/O cache and avoid hotspots.

 In our designs, a statistics collection register stat_write_back is introduced to count

I/O cache lines replaced but untouched. Another register stat_nic_write is used to store

the number of write accesses from NIC to I/O cache lines. Control register ctr_io_quota

is provided by cache controller to orchestra the quota of the I/O cache. In order to

identify I/O cache lines as untouched, one extra bit touch is required for each cache line

to store the status of being touched. Each cache line also uses one bit header to identify a

cache line holding a packet header.

 Cache operations are revisited, as described in Table 5.2 and 5.3 respectively. On a

cache read, touch field is set to true if it hits a cache line belonging to the I/O cache.

Otherwise, data is fetched into the general cache when a cache miss occurs. When it

comes to a cache write, the data source is identified first. The statistics register

stat_nic_write is increased by 1 when the write is from NIC. When the write from NIC

incurs a cache miss, FIFO is used to get a cache line. Since a typical Ethernet and TCP/IP

header size is 54B and is less than cache line size, the first cache line being written is

marked as header. When the replaced cache line is still untouched by network stack, the

register stat_write_back is updated for guiding kernel to repartition LLC. Our scheme has

no timing overhead with a little area overhead of 0.18% (two extra bits required for each

71

cache line in LLC where the line size is configured as 128B). It offers high flexibility to

software without sophisticated hardware designs.

Table 5.2 Cache read policy

Table 5.3. Cache write policy

 We adopt the default MESI cache coherence protocol in our system. INIC places

data into LLC and changes the state into Modified (M). The affected cache lines make an

M to M transition when write from NIC hits the I/O cache. Otherwise, the replaced cache

line with M would be written back to memory. Typically, a large RX queue in a stream

order is typically allocated in the driver to avoid packets being dropped. Thus, there is a

72

high likelihood that an I/O cache line is rewritten by incoming data with different

physical addresses before with the same address, thus resulting in extensive write-backs.

 In OS, packet header is required by network stack to do packet processing. The

payload is only touched when it is copied from kernel to user buffer or to another

temporary kernel buffer when user buffer is not yet allocated. Once the network stack

finishes copying payloads, kernel buffers holding them will be freed. It indicates that

corresponding cache lines become useless after touched by CPU and are unnecessary to

be written back. As shown in Fig. 5.20, we introduce an extra bit header to identify

packet header. With this information, we optimized MESI so that the touched cache lines

holding payloads are simply discarded. They are not written back when replaced by

incoming data.

 Note that when an extra cache way is incorporated into the I/O cache, the header

fields of new I/O cache lines are set to true. It ensures that the new cache lines holding

non-network data but with M state will be written back to memory, instead of being

discarded.

5.2.4 Performance Evaluation

We used a full system simulator Simics and extended it with detailed CPU, memory, I/O

timing models and DMA invalidation effect model. We implemented INIC and I/O-

aware LLC in simulator and developed a device driver for INIC. Kernel-level cache

quota management module is currently being incorporated into the driver. In our

experiments, Linux 2.6.16 is run and Iperf is used to measure network bandwidth.

73

 Cache operations are revisited, as described in Table 5.2 and 5.3 respectively. On a

cache read, touch field is set to true if it hits a cache line belonging to the I/O cache.

Otherwise, data is fetched into the general cache when a cache miss occurs. When it

comes to a cache write, the data source is identified first. The statistics register

stat_nic_write is increased by 1 when the write is from NIC. When the write from NIC

incurs a cache miss, FIFO is used to get a cache line. Since a typical Ethernet and TCP/IP

header size is 54B and is less than cache line size, the first cache line being written is

marked as header. When the replaced cache line is still untouched by network stack, the

register stat_write_back is updated for guiding kernel to repartition LLC. Our scheme has

no timing overhead with a little area overhead of 0.18% (two extra bits required for each

cache line in LLC where the line size is configured as 128B). It offers high flexibility to

software without sophisticated hardware designs.

Table 5.4 Simulated system parameters

 All experiments use a two-system client-server configuration. In each case, only one

system is of interest, while the other merely serves as a stressor. Each of them has four

3GHz cores sharing a 6MB LLC. System under test (SUT) is configured with detailed

timing models and processors are with an in-order timing model. Stressor is run with fast

74

functional mode and is not a bottleneck. The access latency to NIC registers is fixed at 30

and 800 cycles in INIC and conventional NIC respectively [6]. The other parameters we

used in modeling the configuration are listed in Table 5.4.

 First, we look at the I/O performance by running Iperf over 10GbE network under

various configurations: conventional DMA-based NIC (CNIC), CNIC with the support of

RSS, CNIC with RSS and LRO, Integrated NIC (INIC), INIC with RSS, INIC with RSS

and LRO.

Figure 5.21 Bandwidth & CPU Utilization

Figure 5.22 Breakdown of CPU Utilization

 Experimental results of both bandwidth and CPU utilization are shown in Figure

5.21. We breakdown CPU utilization at the component level in Figure 5.22 to understand

the benefits. As shown in Fig.5.21, CNIC achieves only 6 Gbps bandwidth by

consuming 33% CPU utilization. CNIC with RSS leverages multiple cores to improve

0

1

2

3

4

5

6

7

8

9

10

CNIC w/ RSS w/ RSS &
LRO

INIC w/ RSS w/ RSS &
LRO

Ba
nd
w
id
th
 (
G
bp
s)

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

C
pu
 U
til
iz
at
io
n

BW Cpu Util

0%

10%

20%

30%

40%

50%

60%

CNIC w / RSS w / RSS &
LRO

INIC w / RSS w / RSS &
LRO

C
P
U
 U

til
iz
at
io
n

others

Copy

Stack

buffer

Driver

75

network bandwidth up to 8.1 Gbps with 50% CPU utilization. Fig.5.22 shows that CPU

utilization on each component is proportionally increased except the component “others”,

which is due to extra scheduling cost in an unbalanced system. Memory subsystem is the

potential bottleneck of achieving line rate bandwidth and an increase in CPU

performance could not further improve bandwidth. LRO coalesces small packets into a

large packet to reduce the number of packets processed. With LRO optimization in the

device driver, 8.6 Gbps bandwidth can be obtained with 43.5% CPU utilization. The

performance increase is 6% while saving 6.5% in CPU utilization. The breakdown of

CPU utilization in Fig.5.22 reveals that the savings of CPU utilization is from network

stack and buffer management. It is observed that LRO, slightly increases CPU utilization

in driver by 2%, but it performs effectively over 10GbE.

 As shown in Fig.5.22, driver is the biggest CPU cycles consumer due to high

overhead of DMA descriptor management and high access latency of I/O registers. Since

each received packet should be fetched from memory into caches when copied from

kernel to user buffers, copy is another big overhead. We observe that 8.9 Gbps bandwidth

can be obtained by INIC with software PIO interface with 32% CPU utilization.

Compared to CNIC, it improves bandwidth by 48% with consuming nearly the same

CPU cycles. RSS in INIC leverages multiple cores and escalates bandwidth up to line

rate with a 27.5% of CPU utilization. When LRO is developed in the driver to reduce per-

packet overhead, it reduces CPU utilization to 24.5% and sustains a wire rate speed. The

breakdown of CPU utilization in Fig.5.22 shows that LRO reduces overhead from

network stack and buffer management components by reducing the number of processed

76

packets. INIC eliminates DMA descriptor management, reduces access latency of I/O

register, and alleviates memory access overhead.

 Since INIC-based architectures place RX/TX queues into CPU, the size of NIC

queues becomes critical for CPU designers. The amount of buffering required is

proportional to the product of network bandwidth and CPU/NIC latency. Since the

CPU/NIC latency is extremely low due to the integration of NIC on die, much less buffer

space is required compared to CNIC. In experiments, bandwidth does not suffer

significantly until the number of entries in RX queues is below 64. Since transmit side is

much less complex than receive side, a fairly small buffer is sufficient.

Figure 5.23 Bandwidth with Memory Intensive Apps

 As the receiving side of network processing is well known to be memory intensive,

INIC significantly eliminates the burden of memory access by delivering packets into

LLC. When network applications and memory-intensive applications run simultaneously,

the network data residing in LLC may be evicted by running memory intensive

applications before used, due to capacity or conflict misses. We design the I/O-aware

LLC to ensure that network packets are not replaced and bandwidth is not effected

significantly in this situation. In our experiment, we ran the micro-benchmark Iperf with

7

7.4

7.8

8.2

8.6

9

9.4

9.8

INIC w / RSS &
LRO

w / Memory Apps I/O-Cache LLC w / Memory Apps

B
an

dw
id
th

(G
bp

s)

77

a memory intensive application, which continuously streams through a large section of

memory. It has been used to study the impact of memory onloading on various system

configurations.

 Our results with the mixed workload are illustrated in Figure 5.23. It is observed that

INIC is degraded by 12% in network bandwidth while running with the memory

intensive application. It is mainly contributed to the cache interference from the memory

intensive application. But our I/O-aware LLC achieves nearly the same bandwidth as

without memory intensive application, only with a 2% bandwidth degradation. The slight

degradation in bandwidth is because the memory-intensive application shares CPU with

network application. Less CPU cycles slightly impact the capacity of processing packets.

At the same time, it may be observed from the third bar that in the absence of memory

application the same bandwidth is maintained as INIC, meaning that there is no

degradation due to less I/O cache. The results confirm the effectiveness of the I/O-aware

LLC technique to eliminate the impact of cache interference from other running

applications.

 An advantage of the split LLC is that the quota of the I/O cache can be orchestrated.

Figure 5.24 vividly illustrates the required associativity of LLC to maintain the best

bandwidth along an Iperf session. In experiments with 16-way 6M LLC, 1-way I/O cache,

with the size of 384 Kbytes, is sufficient to meet a feeding rate of 10Gbps. It can host the

incoming 256 1.5 KB packets. Experiment shows that there are no untouched packets

when replacement occurs for incoming packets. The upcoming 40GbE and 100GbE

would largely increase feeding rates and need a bigger dedicated I/O cache. Although

78

simulation has not supported 40GbE network yet, we mimic the impact by reducing the

LLC size in 10GbE network. In Fig.5.24, we reduced LLC from 6M to 1M but kept the

same cache way, and ran a whole session of Iperf for 10 seconds. The results show that

the I/O cache dynamically adjusts from a default value 1-way to 2-way while processing

packets, and finally returns back to the default value after packet processing. This shows

that our policy can dynamically adjust I/O cache quota depending on the rate of receiving

packets.

Figure 5.24 I/O Cache’s Way across Timeline

Figure 5.25 The Number of Write Backs of Network Data

 As mentioned before, cache coherence on I/O cache is optimized to reduce

unnecessary write-backs. We studied benefits of enhanced cache coherence protocol in

terms of the number of write-backs of I/O cache lines. We chose two typical packet sizes

256B and 1514B, and computed the number of write-backs required while running a

whole session of Iperf with and without our optimization. Experimental results are shown

0

1

2

3

0 1 …
10
00 …

50
00 …

10
00
0

10
00
1

Time (ms)

I/O
 C

ac
he

 W
ay

1M 6M

0

10

20

30

40

50

60

70

80

90

100

256 Bytes 1514 Bytes

M
ill
io
ns

Packet Size

W
rit
e-
B
ac

ks

MESI

New MESI

79

in Figure 5.25. It is observed that the new protocol eliminates the write-backs of dead

network data and significantly reduces memory write traffic: the number of write-backs is

reduced by 3.95X with 256B, and 23.7X with 1514B. This indicates that a slight

enhancement in cache coherence can significantly reduce memory write traffic.

5.3 Summary

In this chapter, we first conducted extensive experiments on a Sun Niagara 2 platform to

fully understand the performance benefits of an integrated NIC. We realized that a simple

integration does not help a lot. Thus, we proposed an enhanced integrated NIC

architecture for high speed networks. In the new architecture, we redesigned CPU/NIC

interface from hardware DMA to software PIO by exploiting fast interaction between

CPU and integrated NIC. We deployed hardware RSS for efficiently supporting multi-

core systems and software LRO for reducing per-packet overhead. In order to eliminate

cache interference between I/O and other running applications, we take advantage of the

integration of NIC to split LLC. A dedicated I/O cache is configured at the cache way

level, and its organization can be dynamically changed to meet the various network data

rates. Additionally, we also optimized cache coherence protocol to avoid unnecessary

write-backs of network data for efficiently utilizing memory bus. Experiment results

demonstrate that the new architecture achieves 10Gbps bandwidth low 24.5% CPU

utilization, eliminates cache interference from other applications and reduces memory

write traffic by 23.7X.

80

Chapter 6

A TCB Cache to Manage TCP Control Blocks

In above chapters, we analyzed network processing overheads and optimize its

processing performance from the per-packet perspective. However, they ignored per-

session data TCP Control Block (TCB), which is a per-session data structure of 512 bytes

that TCP/IP uses to store its TCP session states and is accessed on the TCP critical path

[11, 32, 44, 73]. A large number of sessions and web session behavior in web servers

make the management of TCBs complicated and introduce challenges.

 In this chapter, we analyze challenges incurred from TCBs when there are thousands

of concurrent sessions in web servers and carefully study behavior of web sessions. Then

we design a new TCB cache with extensive consideration of web session characteristics

to efficiently manage TCB data. We extensively study the performance of various hash

functions and propose a Universal hashing based cache indexing scheme. To couple with

our cache indexing scheme, we design a speculative cache replacement policy by

harnessing the ON/OFF model of web sessions. We further extend the replacement

scheme by incorporating migration of the replaced ON data to the OFF region of the

cache.

81

6.1 TCB Challenges

As mentioned before, a wide spectrum of optimizations has been done for TCP/IP to

improve its processing performance. They broadly fall into two categories: offloading the

TCP/IP protocol stack into NICs (TOE) [13, 32, 88, 89] or pushing NICs closer to CPUs

while keeping protocol processing on CPUs [6, 31, 45, 46, 63, 83] such as DCA or

integrated NIC etc. In this subsection, we study the challenges of managing a large

number of per-session TCB data for web servers in these two prevailing schemes to

motivate our research.

6.1.1 Challenge in TOEs

Intel presented its 10Gb/s TOE's detailed designs in [32] and the major function units are

illustrated in Figure 6.1. Input sequencer analyzes an incoming packet and extracts the 4-

tuple session identifier from the packet header. The packet is stored into memory sitting

on-board or connected externally for future transfer to applications. The session to which

the packet belongs is looked up and the session data is loaded into internal working

registers used by the execution unit. Then, the execution unit, controlled by instructions

from the instruction ROM, performs the central part of the protocol processing using the

session data. The complete micro-program implemented to perform TCP inbound

processing consists of ~300 lines of code. The TCP fast path processing for in-order

packets in a session takes 116 instructions and the slow path processing with complex

out-of-order control have ~300 instructions. In most of the cases, incoming packets are

in-order and thus belong to the fast path.

82

Figure 6.1 Function units in TOEs

Figure 6.2 Processing time with a TCB miss

 In TOE, TCB data is accessed before protocol processing and the processing is

unable to precede until the data is ready. The data is returned from the TCB cache with a

cache hit, otherwise, it is fetched from the memory. It was reported in [32] that 51.2 ns is

required for in-order packet protocol processing in a 10Gb/s TOE. With a TCB cache

miss, Figure 6.2 shows the overall packet processing time, where we assume that memory

access latency is 50 ns and each cache miss incurs only one memory access (TCBs are

typically organized by a hash table in the memory and the TCB entry is found by

traversing a linked list in each hash table bucket [11]. A TCB cache miss incurs both the

linked-list traversal and data accesses, thus causing more than one memory accesses).

The figure reveals that TCB accesses take more than 50% percent of the overall

processing time and much higher if we consider several memory accesses for a cache

83

miss. With a cache hit, the TCB access latency can be substantially reduced to 6.4 ns

[32]. Hence, the packet processing performance heavily relies on how fast TCB data is

accessed. Currently, the TCB cache is implemented as a CPU-like cache associated with

modular indexing and LRU. However, as the number of sessions increase in web servers,

these simple cache designs without considering web session characteristics cannot

efficiently keep session data. A more efficient TCB cache is required to provide high

cache performance.

6.1.2 Challenge in protocol processing on CPUs

In addition to TOEs, a large number of sessions also poses a performance challenge when

the TCP/IP protocol stack is running on CPUs [44]. We establish a server-client

environment, where the client opens the specific number of TCP sessions and sends 1KB

requests across all of the sessions in a round-robin way to the server. Both the server and

client are Intel machines with 2.67 GHz Intel Quad-core processors. Intel performance

counters are used to instrument Linux in-kernel network stack and measure the execution

time of individual kernel functions or groups of kernel functions. The lives of processing

a request with one session and 4K sessions are shown in Figure 6.3 and 6.4, respectively

with a timeline scale of 500 CPU cycles per unit. The horizontal dashed line separates the

kernel and user space, and only kernel functions are considered. Note that the figures

only show functions in the TCP critical path and do not consist of functions in the non-

critical path such as buffer allocation, de-allocation and scheduling etc.

84

Figure 6.3 Life of packet (single session)

Figure 6.4 Life of packet (4K sessions)

 The received request processing starts from the interrupt handler e1000_intr in the

device driver. After the interrupt handler, the request is delivered up to the IP layer

(ip_rcv) and the TCP layer (tcp_rcv). Then, the network stack performs TCB lookups to

find the destination TCB's address and does per-session processing according to TCB

data, both of which we refer to as TCB processing in figures. Finally, the request is

copied to user applications by using the skb_copy_bits function. Our timing analysis

shows that the TCB processing overhead increases rapidly with a large number of

sessions, and becomes significant along with other two overheads in the TCP critical

path: the driver and data copy. Since existing research [6, 31, 63] can effectively reduce

those two overheads, it becomes important to address the remaining TCB processing

challenge. Our analysis shows that TCB lookups and accesses mainly contribute to the

85

overhead of TCB processing. Web servers with a large number of sessions increase the

chance that TCB data is polluted in caches, and degrade TCB lookup performance as well

because traversing the linked list in a bucket is prone to incurring cache misses [44].

6.2 Characterization of Web Sessions

In the web domain, a web session is defined as a sequence of requests made by a single

client during its visit to a particular server [4, 15, 19]. A modern web page includes

reference-indexed embedded files which are typically images or graphs; these files are

required to properly display the web page to the client. Thus, a typical request for a web

page usually results in multiple consecutive client requests for those embedded items.

Extensive studies on real web traffics have shown that web sessions exhibit the ON/OFF

model [4, 15, 19]. The entire transfer period for the whole page is referred as ON period,

and the time gap between two requests for two embedded items as Idle when server

responses are transmitted. After the client receives the whole web page, it usually takes a

period of time for the client to read the page before sending the next page request. This

period is referred as the OFF period. During the ON period, TCB data is frequently

accessed, but no accesses occur in the OFF period. Thus, keeping (not replacing) cache

contents during the ON period is critical, a property that is used later to design our

speculative cache replacement policy.

 We choose four popular web server traces to study the characteristics of web

sessions: Boston University trace (BU), NASA-HTTP (NASA), ClarkNet-HTTP

(Clarknet), Saskatchewan-HTTP (Sak). We measure both the time between two

86

consecutive requests during the page transfer (in ON) and the time between two

consecutive ON (OFF time) for all four traces. Figures 6.5 and 6.6 show the frequency

for the time. We observe that the inter-request time in the ON period is fairly small

compared to the OFF time and is typically less than 1 second. The above time analysis

guides us to design an efficient cache replacement policy.

Figure 6.5 Inter-request time frequency in ON

Figure 6.6 OFF time frequency (OFF)

6.3 New TCB Cache

In this subsection, we elaborate our TCB cache designs considering web session

characteristics. The cache organization is described in Subsection 6.3.1 and the bit

selection is explained in Subsection 6.3.2. In Subsection 6.3.3, we illustrate the Lifetime

array used by our new cache replacement policy, which is presented in Subsection 6.3.4.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
Seconds

BU NASA Clarknet Sak

0

0.04

0.08

0.12

0.16

0.2

0 2 4 6 8 16 32 64 128 256 512 1024

Seconds

BU NASA Clarknet Sak

87

6.3.1 Cache Organization

A cache organization is primarily defined depending on how a set is indexed. Our aim is

to distribute the mapping uniformly that can ensure simultaneous occupancy of a large

number of sessions being connected to the web server at a time. Universal hash functions

are known to generate an even distribution of workload over the hash buckets and are

relatively easy for hardware implementation [12, 75]. We present the TCB cache miss

ratios of four web server traces with various hash functions in Figure 6.7, where all cache

miss ratios are normalized to the miss ratio of modulo mapping (Mod). We observe the

following: 1) both Mod and XOR are not good fit for TCB cache; 2) PMod and PDisp are

not as good as Universal and CRC [72]; 3) having two hash functions obtains better

performance than single hash function. It was observed in [43] that PMod and PDisp

hash functions are better than Mod and XOR for SPEC CPU benchmarks. As we can see,

they are also better for web server traces, but not as good as the proposed Universal hash

functions. Among all of the hashing schemes, 2-Universal achieves the best performance.

It may be noted that having more than two hash functions degrades performance because

more cache banks split the original LRU set and sacrifice the effectiveness of the cache

replacement policy.

 In order to understand the performance gap of various hash functions, we study

probability distribution function (PDF) of absolute deviation of the number of sessions in

cache sets (or |X minus expected value of X|, where X is the number of sessions in a

cache set) and show result for one trace (Sak) in Figure 6.8. The figure points out that

multiple hash functions have higher probability at small values like 50 and thus achieve a

more even cache access distributi

they behave similarly.

Figure

 Figure 6.9 illustrates the hardware design of our TCB cache, which is addressed by

session identifiers using Universal

arrays as traditional CPU caches, but it adds a new Lifetime array to track the cac

ON/OFF status, which is used by the hardware replacement unit. As observed in Fig.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

NASA

Mod XOR Pmod Pdisp

0

0.2

0.4

0.6

0.8

1

50 100

Mod XOR Pmod Pdisp

88

more even cache access distribution. Although other traces studies are not shown here,

Figure 6.7 Performance of cache hash functions

Figure 6.8 PDF of absolute deviation of #sessions in cache set

illustrates the hardware design of our TCB cache, which is addressed by

Universal hash functions. Our TCB cache has tag arrays and data

arrays as traditional CPU caches, but it adds a new Lifetime array to track the cac

status, which is used by the hardware replacement unit. As observed in Fig.

Clarknet Sak

Pdisp Universal CRC 2-Pdisp 2-XOR 2-Universal 4-Pdisp 4-XOR

150 250 300 350 400

Pdisp Universal CRC 2-Pdisp 2-XOR 2-Universal 4-Pdisp

on. Although other traces studies are not shown here,

illustrates the hardware design of our TCB cache, which is addressed by

hash functions. Our TCB cache has tag arrays and data

arrays as traditional CPU caches, but it adds a new Lifetime array to track the cache line's

status, which is used by the hardware replacement unit. As observed in Fig. 6.7,

BU

XOR 4-Universal

450 500

4-XOR 4-Universal

89

two Universal hash functions (hash1 and hash2) being employed by two cache banks

give the best miss ratio. Hence, we use two cache banks in Fig. 6.9, each consisting of a

4-way set associative cache. We also add two auxiliary Universal hash functions (hash3

and hash4) to be used by our cache replacement policy to migrate ON cache lines. We do

a bit-by-bit analysis of session identifiers and select 16 important bits as index bits in

order to reduce Universal hashing hardware complexity. The selection process of the

particular bits is described in the next subsection. In order to access a session state, CPUs

extract a 2-tuple from a packet header and issue an operation to the cache. The cache first

locates the two cache sets corresponding to the two hashes (hash1 and hash2) of the 16

bits and then does the tag check with the 2-tuple in parallel. If the operation is hit in the

cache, the session state is operated; otherwise, the cache uses auxiliary functions hash3

and hash4 to lookup the cache again. If not found, the hardware replacement unit is

triggered to select a cache line for the new data. Since only a portion of a 2-tuple is used

for hashing, the tag in each cache line is a full-fledged 2-tuple. We also include 4 bytes

TCB memory addresses in tag arrays to make the TCB cache interact with the memory.

Although TCB is a 512 bytes data structure, only a portion of data in each TCB is

frequently accessed during processing packets [44, 82, 11, 94]. We use full system

simulator Simics to study the frequency of accesses in Linux to TCB data and notice that

only ~64 bytes are frequently accessed. This is because most of the packets belong to the

TCP fast path, requiring much fewer than the entire TCB data of 512 bytes. The similar

observation have been made in TOEs that storing 64 bytes information for each session is

90

sufficient to implement the offloaded processing tasks [32]. Therefore, we use a cache

line of 64 bytes to keep those states.

Figure 6.9 TCB Cache Architecture

6.3.2 Index Bit Selection

The two Universal hash functions in our TCB cache are from a function class called ��,

which has amenable hardware implementation [75]. Each hash function in �� is a linear

transformation that maps a w-bit binary string to an r-bit binary

string .

Each bit of � is calculated as: where

denotes AND, and denotes XOR circuits, respectively. In the TCB cache, � means

the bits of a hash input and � is the bits of the cache index. Since hash functions in �� are

TT QAB = waaaA21=

rbbbB ...21=



















×



















=



















−−−−−

−

−

− 1

1

0

1,11,10,1

1,11,10,1

1,01,00,0

1

1

0

...

...

............

...

...

...

wwrrr

w

w

r a

a

a

qqq

qqq

qqq

b

b

b

)).....(()(2211 iwwiii qaqaqab οοο ⊕= ,,...,2,1 ri = ο

⊕

the same except the parameter

chip by providing different parameters.

 Hashing latency and hardware complexity increase rapidly with increase in the input

bits. We study bit distribution of session identifiers of web traces with the goal to reduce

the number of input bits. We measure the average values of the bits distributed

address and port number and show them in Figure

The best index bits (or important bits) should be those with an average value of 0.5;

meaning that they are set 50% of the time over a large series of session

notice that bits in IP address have similar importance but 8 least significant bits in port

91

the same except the parameter , each hash function can be configured from a generic

oviding different parameters.

Figure 6.10 Average bit value of IP address

Figure 6.11 Average bit value of port

Hashing latency and hardware complexity increase rapidly with increase in the input

bits. We study bit distribution of session identifiers of web traces with the goal to reduce

the number of input bits. We measure the average values of the bits distributed

address and port number and show them in Figure 6.10 and 6.11 (the first bit is the MSB).

The best index bits (or important bits) should be those with an average value of 0.5;

meaning that they are set 50% of the time over a large series of session

notice that bits in IP address have similar importance but 8 least significant bits in port

, each hash function can be configured from a generic

Hashing latency and hardware complexity increase rapidly with increase in the input

bits. We study bit distribution of session identifiers of web traces with the goal to reduce

the number of input bits. We measure the average values of the bits distributed in IP

(the first bit is the MSB).

The best index bits (or important bits) should be those with an average value of 0.5;

meaning that they are set 50% of the time over a large series of session identifiers. We

notice that bits in IP address have similar importance but 8 least significant bits in port

92

number are more important than other bits. That is mainly because ports start from 1024

(ports <1024 are assigned for system services) and are typically allocated within a limited

range of 256, but IP addresses are distributed more randomly. Given these observations,

we choose 8 bits from port and 8 bits from IP address as our index bits, as shown in

Figure 6.12. Our experimental results in Section 4 show that our tailored index bits can

achieve the same performance as 48 bits 2-tuple.

Figure 6.12 Bit selection

Figure 6.13 Circuit implementation

 The circuit implementation of calculating an output bit is illustrated in Figure 6.13

and each bit calculation is performed in parallel. The implementation needs 5 gate delays

at most (1 gate delay in AND circuits and 4 gate delays in XOR circuits). Each gate only

takes ~10 picoseconds with Intel 60nm fabrication technology [40] and thus 5 gate delays

can be easily implemented within a single CPU cycle (1000 picoseconds per cycle for

1GhZ CPU).

93

6.3.3 Lifetime Array

The Lifetime array is used to track the cache line's ON/OFF status and its structure is

shown in Figure 6.14. In the Lifetime array, we maintain one 3-bit life counter for each

TCB cache line to track the ON/OFF status. The most significant bit (MSB) of each 3-bit

counter indicates ON or OFF. When MSB equals to 1 (111 to 100), it means ON, and 0

(011 to 000) means OFF. The counter is always initialized to the max value "111", and

counted down every 1/4 second. After 1 second, the status switches to OFF, as the

counter becomes "011". We choose 1 second as the threshold because it is highly likely

that web sessions are in OFF if they have not been touched for 1 second. The system

countdown signal is triggered by a clock divider which basically counts the clock cycles

and asserts a ‘1’ by every N cycles. For example, let the system clock frequency (FREQ)

be 2GHz and the ON period (T) 1 second. In order to get an 8Hz output, the N would be

FREQ*T/4 = 500M cycles.

 There are two kinds of operations for the Lifetime array:

 Regular read/write cycle: it happens at every TCB data write. The corresponding

life counter will be initialized to “111”. Due to the possibility of cache replacement, we

need to read out the original ON/OFF bits (MSBs of each counter) before the write. As

in regular caches, we perform a read access in the first half cycle, and a write in the

second half cycle. The read will collect the four ON/OFF bits, and sum them up through

a bit-adder. The total number of ON will be sent to the hardware replacement unit.

94

 Refresh write cycle: Similar to a DRAM memory refresh, which prevents the

leakage of DRAM cells, we also perform a whole array scan once every 1/4 second. The

difference is that, after reading the current value, we do not write the same value back,

instead, it is reduced by 1 and is then written back. The only exception is “000”, but 000-

1=111, and thus we retain the value when the counter is zero. The refresh performance or

power overhead is negligible, as hundreds of cycle vs 500 million cycles.

Figure 6.14 Lifetime array

6.3.4 Speculative Cache Replacement Policy

Although multiple cache banks (each has a separate hash function) can effectively reduce

conflict misses, they make it difficult to implement cache replacement policies like LRU

at a reasonable hardware cost and force using pseudo-LRU policies [43, 78, 79, 86].

Topham et al. [86] presented a way to implement an affordable LRU for multiple cache

banks by adding a timestamp to each cache line. Every time a cache line is accessed its

timestamp is updated with the access sequence. When a miss occurs, the line with the

least timestamp is replaced. The paper shows that a 8-bit timestamp can achieve

95

comparable performance for the SPEC95 floating point benchmarks. However, we notice

that more than 24 bits for the timestamp are needed in the TCB cache in order to achieve

good performance. What is more, more cache banks split original LRU sets and sacrifice

the effectiveness of LRU.

 We design a speculative cache replacement policy by harnessing the ON/OFF model

to address the above issues. Since a web session in the ON mode will be accessed very

frequently, our policy aims to keep ON cache lines as long as possible as follows. 1)

when a cache miss occurs, the policy selects a cache bank with fewer ON cache lines in

two corresponding cache sets indexed by hash1 and hash2, in case of a tie, we choose the

left cache bank for simplicity. It load balances ON cache lines among cache banks and

increases the occupancy ratio of ON cache lines in the cache. We notice from our in-

depth studies that LRU is unaware of ON cache lines and may result in imbalance of ON

cache lines among cache banks, and thus incurs unnecessary eviction of ON cache lines.

2) Inside each cache bank, if an OFF line is in the LRU position, we replace it for new

data, otherwise, we check ON cache lines to find a migratable cache line (an ON cache

line is referred to as migratable if there are OFF cache lines in its corresponding cache

sets). A migratable cache line is randomly chosen and migrated to its corresponding

cache set to keep ON cache lines in the cache as long as possible. The proposed scheme

has some similarity with the hash-rehash scheme proposed long time back for direct-

mapped cache, but our scheme uses different hash functions, multiple banks, migrates

only selected replaced data. To increase the chance that we can find a migratable cache

line, we introduce two auxiliary Universal hash functions (hash3 and hash4) to index the

96

replaced ON cache line and migrate it to an OFF cache line if found. If an OFF cache

line is not found during the auxiliary hash, the replaced cache line is discarded. Like

lookup case, auxiliary hash hash3 and hash4 are simultaneously carried out for

replacement. While sequential auxiliary hashing (or pipeline hashing) restricts cache

access by hash1 and hash2, we notice that most of cache hits occur in the first hashing

(hash1 and hash2) and the penalty is more than overcome due to increased cache hits.

Although our migration scheme is similar to the hash-rehash scheme proposed for direct-

mapped caches [2], it employs Universal hash for rehashing cache lines and only

migrates ON cache lines to OFF cache lines, avoiding eviction of valuable data.

Figure 6.15 Speculative cache replacement policy

 Figure 6.15 illustrates one example of our speculative cache replacement policy.

Suppose there are some ON TCBs in the TCB cache, which are colored but unlabeled.

Given a access sequence of TCBs T1, T2, T3, T4, T5, the policy places T1, T2, T4 in the

right cache bank and T3 in the left cache bank. When T5 comes, neither of two

corresponding cachet sets in two cache banks has OFF cache lines and T3 is replaced.

Since T3 is still in the ON mode, our policy gives T3 one more chance to stay in the cache

97

by using two auxiliary hash functions, therefore T3 is migrated to the right bank for

future accesses.

6.4 Performance Evaluation

6.4.1 Evaluation Methodology

We developed a trace-driven cache simulator to evaluate our TCB cache designs. Four

web server traces: Boston University trace (BU), NASA-HTTP (NASA), ClarkNet-HTTP

(Clarknet), Saskatchewan-HTTP (Sak) are chosen for our experiments These traces

contain all HTTP requests to the corresponding web servers during collection periods.

 In our experiments, we denote the TCB cache in TOEs employing both LRU and

modular hash as TCB (Mod). Since implementing LRU with two hash functions is

complex, we evaluate a pseudo-LRU cache replacement policy ENRU for multiple cache

banks similar to [43, 86]. We refer to the TCB cache with the pseudo-LRU and 2-

Universal as TCB (2-hash). Finally, we evaluate the proposed TCB cache with 2-

Universal and the speculative cache replacement policy and denote it as TCB (spec).

Since our cache also implements a migration policy, we include our TCB cache without

the migration scheme to understand the migration benefits and denote it as TCB(no-

migrate). We test 1000 different Universal hash functions by randomly generating 1000

parameters and observe that they have similar performance within a range of 2.5%. We

select the best hash parameters in our experiments.

 In addition, we also study the performance benefits of applying our TCB cache

designs into TOEs or integrating the cache into CPUs. We calculate the TCB access

98

overhead (per packet miss ratio * memory latency) and incorporate it into the protocol

processing time in [32] to study the performance impacts of the new TCB cache on

TOEs. Furthermore, we use the full system simulator Simics by enhancing it with the

detailed cache, I/O timing models and modeling of the effects of network DMA to

understand the benefits of integrating the TCB cache into CPUs. Note that the integrated

cache sits in parallel with L2 cache. Two networked systems (client and server) running

Linux 2.6.16 are simulated. In the client, the replay tool opens multiple sessions to the

apache server to simulate multiple clients and then generates requests from the web traces

while keeping the same behavior inside each session. Since accesses to heap data

structures among tcp_v4_rcv and tcp_rcv_established functions are for TCB items [11],

we refer to those accesses as TCB accesses. We replace cache misses due to TCB

accesses with cache misses of our TCB cache from our trace-driven cache simulator to

approximate the performance benefits of integrating the TCB cache into CPUs. All

caches in our experiments have the same cache line size of 64 bytes with detailed

simulator parameters listed in Table 6.1.

Table 6.1 System parameters

Processor Two cores, 3GHz, in-order, single-
issue

ICache/DCache Private per core, 32 KB 2-way, 2-
cycle hit latency

L2 Unified
Cache

4M, 8-way split, 10 cycles hit
latency

Memory 300 cycles
I/O register 800 cycles
TCB Cache 32KB, 10 cycles hit latency

NIC LRO, 64 packets/interrupt

99

6.4.2 TCB Cache Performance

We study the performance of various TCB cache configurations for all the traces by

comparing their cache miss ratios in Figure 6.16. We use TCB (Mod) as a baseline TCB

cache to understand the benefits of our optimizations. We observe that the baseline TCB

(Mod) has a 56% miss ratio per packet with the BU trace. TCB (2-hash) reduces the miss

ratio to 37% by achieving a more uniform cache access distribution. TCB (no-migrate)

obtains a 32% miss ratio by load-balancing ON TCBs among cache banks. With our

speculative cache replacement policy, TCB (spec) achieves a smaller miss ratio of 28%,

corresponding to 50% reduction compared to the baseline. Other three traces exhibit

similar behaviors. The NASA trace has a 50% miss ratio when it is run on the baseline

system. The miss ratios are lowered to 33%, 28% and 26% when we run the trace on

TCB(2-hash), TCB(no-migrate) and TCB (spec). Similarly, cache miss ratios for the Sak

trace are 69% TCB (Mod), 55% TCB (2-hash) and 51% TCB(no-migrate). TCB (spec)

obtains a smaller miss ratio of 44%, corresponding to 37% relative reduction compared to

TCB(Mod). When we come to the Clarknet trace, the miss ratios are 42% for TCB (Mod),

31% for TCB (2-hash) and 25% for TCB (no-migrate). The TCB (spec) further reduces

the miss ratio to 22% and achieves 47% cache miss reduction compared to the baseline.

All above results verify the effectiveness of our cache indexing scheme and the

speculative replacement policy.

6.4.3 Impact of Bit Selection

To reduce the hardware complexity of

and Port<8-15>) are chosen for our TCB cache

performance and justify the design of our 16

full-fledged 48-bit hash and other possible bit lengths hash. Since Port<0

important as other bits of 2

lengths. We present the cache miss ratio comparison in Figure

represents a hash with the input of n least significant bits of the 40 bits and all miss ratios

are normalized to the miss ratio

20%

30%

40%

50%

60%

70%

80%

BU

Mod

0.9

0.95

1

1.05

1.1

Sak

8-bit 16-bit

100

Figure 6.16 Per packet miss ratio

Figure 6.17 TCB performance of n-bit hash

Impact of Bit Selection

To reduce the hardware complexity of Universal hash, 16 representative bits (IP<24

15>) are chosen for our TCB cache. In this subsection, we study TCB cache

performance and justify the design of our 16-bit hash. We compare our 16

bit hash and other possible bit lengths hash. Since Port<0

important as other bits of 2-tuple, we only consider all other 40 bits for possible bit

lengths. We present the cache miss ratio comparison in Figure 6.17

represents a hash with the input of n least significant bits of the 40 bits and all miss ratios

are normalized to the miss ratio of 48-bit hash. The figure shows that 8-bit hash degrades

NASA SAK Clarknet

TCB(2-hash) TCB(no-migrate) TCB(spec)

nasa clark

bit 24-bit 32-bit 40-bit

hash, 16 representative bits (IP<24-31>

In this subsection, we study TCB cache

bit hash. We compare our 16-bit hash with

bit hash and other possible bit lengths hash. Since Port<0-7> is not as

y consider all other 40 bits for possible bit

6.17, where n-bit

represents a hash with the input of n least significant bits of the 40 bits and all miss ratios

bit hash degrades

Clarknet

TCB(spec)

BU

48-bit

the performance but our 16

bit hash while requiring the least hardware complexity. Our 16

hardware complexity, which

chip caches requiring low hash latency and low power consumption. Our circuit

implementation shows that one output bit calculation in 48

48-bit XOR logic and 48 AND logics

gates (47 gates in the XOR logic and 48 gates for AND logics). However, our 16

Universal hash only uses one 16

output bit, corresponding to 5 gate delays

and 16 gates for AND logics).

6.4.4 Exploration of Cache Design Spaces

We also explore TCB cache design space along three axes: cache

cache size, set-associativity. We include three alternative replacement policies and denote

them as TCB (RR), TCB (16)

cache bank for the new data in a round robin way.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BU

TCB(RR)

101

the performance but our 16-bit hash is able to achieve the same cache performance as 48

bit hash while requiring the least hardware complexity. Our 16-bit hash lowers the

hardware complexity, which allows the Universal hash to be feasibly deployed on on

chip caches requiring low hash latency and low power consumption. Our circuit

implementation shows that one output bit calculation in 48-bit Universal

bit XOR logic and 48 AND logics, corresponding to 7 gate delays and 95 CMOS

gates (47 gates in the XOR logic and 48 gates for AND logics). However, our 16

hash only uses one 16-bit XOR logic and 16 AND logics for calculating one

output bit, corresponding to 5 gate delays and 31 CMOS gates (15 gates in the XOR logic

and 16 gates for AND logics).

Figure 6.18 Cache replacement policies

Exploration of Cache Design Spaces

We also explore TCB cache design space along three axes: cache replacement policies,

associativity. We include three alternative replacement policies and denote

TCB (16), TCB (Access). TCB (RR) is the policy which chooses a

cache bank for the new data in a round robin way. TCB (16) is the implementation of

NASA Sak Clarknet

TCB(16) TCB(Access) TCB(spec)

bit hash is able to achieve the same cache performance as 48-

bit hash lowers the

hash to be feasibly deployed on on-

chip caches requiring low hash latency and low power consumption. Our circuit

Universal hash needs one

, corresponding to 7 gate delays and 95 CMOS

gates (47 gates in the XOR logic and 48 gates for AND logics). However, our 16-bit

bit XOR logic and 16 AND logics for calculating one

and 31 CMOS gates (15 gates in the XOR logic

replacement policies,

associativity. We include three alternative replacement policies and denote

is the policy which chooses a

s the implementation of

Clarknet

TCB(spec)

LRU with a 16-bit timestamp in each cache line.

with fewer cache accesses to the two corresponding cache sets when a miss occurs. In

Figure 6.18, all miss ratios are normalized to the miss ratio o

replacement policy. We observe that

and TCB (Access) while it needs a significantly higher storage overhead, and our

TCB(spec) achieves the lowest miss ratios for all four traces and only n

bits for each cache line.

Figure

 In addition to the replacement policies, we present the

various TCB cache sizes normalized over a 32KB cache, as shown in Figure

0.20

0.70

1.20

1.70

2.20

2.70

3.20

BU

0

0.4

0.8

1.2

1.6

2

BU

102

bit timestamp in each cache line. TCB (Access) selects the cache bank

with fewer cache accesses to the two corresponding cache sets when a miss occurs. In

, all miss ratios are normalized to the miss ratio of our

replacement policy. We observe that TCB (16) has the similar miss ratios to

while it needs a significantly higher storage overhead, and our

achieves the lowest miss ratios for all four traces and only n

Figure 6.19 Performance impact of cache sizes

Figure 6.20 Performance impact of set-associativity

In addition to the replacement policies, we present the TCB (spec)

various TCB cache sizes normalized over a 32KB cache, as shown in Figure

NASA Sak Clarknet

8K 16K 32K 64K

NASA Sak Clarknet

1-way 2-way 4-way 8-way

selects the cache bank

with fewer cache accesses to the two corresponding cache sets when a miss occurs. In

f our speculative

has the similar miss ratios to TCB (RR)

while it needs a significantly higher storage overhead, and our

achieves the lowest miss ratios for all four traces and only needs three extra

TCB (spec) miss ratios over

various TCB cache sizes normalized over a 32KB cache, as shown in Figure 6.19. The

Clarknet

Clarknet

figure shows that both 32KB and 64KB TCB cache sizes achieve good cache

performance. When the cache size is reduced to 16KB and 8KB, the cache performance

is dramatically degraded because of capacity misses. This study points out that 32KB is a

suitable TCB cache size for web servers with thousands of concurrent sessions. We also

evaluate the performance impacts of set

TCB(spec) as shown in Figure

cache performance over all four traces.

6.4.5 Using our TCB cache

Our research resolves the issue of per

approaches. First, our TCB cache can be applied to TOEs to replace the traditional CPU

like TCB cache. Second, with the support of our TCB cache, DCA or Integrated NIC

architectures are able to address the per

TCP/IP on CPUs.

 We show the performance impacts of using the new TCB cache in TOEs on packet

processing time in Figure

0.50

0.60

0.70

0.80

0.90

1.00

1.10

BU

103

figure shows that both 32KB and 64KB TCB cache sizes achieve good cache

the cache size is reduced to 16KB and 8KB, the cache performance

is dramatically degraded because of capacity misses. This study points out that 32KB is a

suitable TCB cache size for web servers with thousands of concurrent sessions. We also

performance impacts of set-associativity of each cache bank on our

as shown in Figure 6.20. We observe that both 4-way and 8-way achieve good

cache performance over all four traces.

Using our TCB cache

Our research resolves the issue of per-session data and is supplementary to existing

approaches. First, our TCB cache can be applied to TOEs to replace the traditional CPU

like TCB cache. Second, with the support of our TCB cache, DCA or Integrated NIC

chitectures are able to address the per-session data access challenge while running

Figure 6.21 TCP/IP receiving time in TOEs

We show the performance impacts of using the new TCB cache in TOEs on packet

processing time in Figure 6.21. The results are normalized to the original TOE using the

BU NASA SAK Clarknet

TOE TOE+TCB(spec)

figure shows that both 32KB and 64KB TCB cache sizes achieve good cache

the cache size is reduced to 16KB and 8KB, the cache performance

is dramatically degraded because of capacity misses. This study points out that 32KB is a

suitable TCB cache size for web servers with thousands of concurrent sessions. We also

associativity of each cache bank on our

way achieve good

session data and is supplementary to existing

approaches. First, our TCB cache can be applied to TOEs to replace the traditional CPU-

like TCB cache. Second, with the support of our TCB cache, DCA or Integrated NIC

session data access challenge while running

We show the performance impacts of using the new TCB cache in TOEs on packet

. The results are normalized to the original TOE using the

Clarknet

simple TCB cache. Our result projects that our new cache can reduce TCP/IP processing

time by more than 20%. The reduced processing time will save web server response time.

In addition, we also evaluate the performance benefits of integrating our TCB cache into

CPUs in Figure 6.22 and 6.23

packets into L2 cache as the baseline configuration and denote it as

our results to the processing time of the baseline system without the TCB cache. In the

original system, frequently accessed TCB items are distributed across multiple cach

lines and hence several cache misses could occur for one packet. Also, traversing linked

lists due to TCB lookups is prone to incurring cache misses, deteriorating cache

performance. By providing high cache hit ratios and avoiding linked list traversal

cache hits, our TCB cache reduces TCP/IP request processing time by up to 23% and

saves up to 5% web server response time.

0.5

0.6

0.7

0.8

0.9

1

1.1

BU

104

simple TCB cache. Our result projects that our new cache can reduce TCP/IP processing

by more than 20%. The reduced processing time will save web server response time.

In addition, we also evaluate the performance benefits of integrating our TCB cache into

6.22 and 6.23. We use the prevailing optimization DCA delivering

kets into L2 cache as the baseline configuration and denote it as orig

our results to the processing time of the baseline system without the TCB cache. In the

original system, frequently accessed TCB items are distributed across multiple cach

lines and hence several cache misses could occur for one packet. Also, traversing linked

lists due to TCB lookups is prone to incurring cache misses, deteriorating cache

performance. By providing high cache hit ratios and avoiding linked list traversal

cache hits, our TCB cache reduces TCP/IP request processing time by up to 23% and

saves up to 5% web server response time.

Figure 6.22 TCP/IP receiving time

NASA Sak Clarknet

Orig TCB(spec)

simple TCB cache. Our result projects that our new cache can reduce TCP/IP processing

by more than 20%. The reduced processing time will save web server response time.

In addition, we also evaluate the performance benefits of integrating our TCB cache into

. We use the prevailing optimization DCA delivering

orig. We normalize

our results to the processing time of the baseline system without the TCB cache. In the

original system, frequently accessed TCB items are distributed across multiple cache

lines and hence several cache misses could occur for one packet. Also, traversing linked

lists due to TCB lookups is prone to incurring cache misses, deteriorating cache

performance. By providing high cache hit ratios and avoiding linked list traversal with

cache hits, our TCB cache reduces TCP/IP request processing time by up to 23% and

Clarknet

6.5 Summary

In this chapter, we conducted a detailed study for TCP/IP from the per

perspective and proposed a new TCB cache to efficiently manage per

in web servers. The dedicated cache is designed to be addressed by a specified subset of

session identifiers. To provide high TCB cache performance, we extensively study

performance of various hash functions and employ a new

indexing scheme with two independent cache banks. Some important bits are carefully

selected as hash keys to red

performance, we harness the

cache replacement policy and employ migrating the replaced

the cache. Our simulation results

per-session data. By envisioning the benefits, applying the new TCB cache into TOEs or

integrating it into CPUs can significantly reduce TCP receiving time and web server

response time.

0.92

0.94

0.96

0.98

1

1.02

BU

105

Figure 6.23 Web server response time

, we conducted a detailed study for TCP/IP from the per

perspective and proposed a new TCB cache to efficiently manage per-session TCB data

in web servers. The dedicated cache is designed to be addressed by a specified subset of

. To provide high TCB cache performance, we extensively study

performance of various hash functions and employ a new Universal hash based cache

indexing scheme with two independent cache banks. Some important bits are carefully

selected as hash keys to reduce hashing hardware complexity. To further enhance the

performance, we harness the ON/OFF model of web sessions to design a

cache replacement policy and employ migrating the replaced ON blocks to

the cache. Our simulation results show that the new TCB cache can efficiently manages

session data. By envisioning the benefits, applying the new TCB cache into TOEs or

integrating it into CPUs can significantly reduce TCP receiving time and web server

NASA Sak Clarknet

Orig TCB(spec)

, we conducted a detailed study for TCP/IP from the per-session

session TCB data

in web servers. The dedicated cache is designed to be addressed by a specified subset of

. To provide high TCB cache performance, we extensively study

hash based cache

indexing scheme with two independent cache banks. Some important bits are carefully

uce hashing hardware complexity. To further enhance the

model of web sessions to design a speculative

blocks to OFF region of

show that the new TCB cache can efficiently manages

session data. By envisioning the benefits, applying the new TCB cache into TOEs or

integrating it into CPUs can significantly reduce TCP receiving time and web server

Clarknet

106

Chapter 7

Optimizing Virtualized Network Processing

Virtualization separates hardware and software management and offers many useful

features including functional isolation, server consolidation and live migration [5, 24, 74].

For these reasons, virtualization is gaining popularity and has been a key enabling

technology in cloud infrastructures. However, the network performance of virtualized

multi-core servers still falls short of expectation. It is therefore important to understand

the overhead implications.

 In this chapter, we start with detailed performance analysis to understand the I/O

virtualization performance challenge over 10GbE. Our performance analysis reveals two

major bottlenecks of virtualized network processing: packet movement and virtual switch

(or Linux Bridge). We then break down the overhead from an architectural viewpoint and

observe that the cache topology greatly influences the packet movement performance in

virtualized environment. Consequently, we develop optimizations for the VMM

scheduler by considering cache topology and favoring I/O VCPU to improve packet

movement performance. We also propose efficient architectural support by extending

DCA to consider VMM scheduling information to eliminate cache misses on packets

along the packet movement path. Lastly, we implement a simplified switch to

significantly reduce the switching overhead.

107

7.1 Understanding Virtualized Network Processing Overhead

In this subsection, we conduct extensive experiments to understand virtualized network

processing overheads over 10GbE. Our testbed consists of a pair of server (system under

test) and client. Server architecture is illustrated in Figure 3.1. The servers are connected

by two PCI-E based Intel 10Gbps XF server adapters. We retain default settings of the

Linux network subsystem and the driver, unless stated otherwise. We ran Xen 3.1.3 on

SUT and Linux 2.6.21 on client. The network architecture in Xen is illustrated in Figure

7.1. When NIC driver receives a packet, it delivers the packet to Linux bridge for

switching to a corresponding backend driver (BE) based on MAC address. The backend

driver communicates request/response information with front end driver (FE) by

performing event operations on the shared I/O channel (denoted as event-ops in this study)

and then copies the packet to the guest domain (denoted as domain-copy). The front end

driver delivers the packet to TCP/IP for packet processing. Finally, the packet is copied

out to user buffers (denoted as user-copy) as native Linux does.

Figure 7.1 Intel Xeon Clovertown Machine

108

 In the experiments, the micro-benchmark Iperf is run and its server is inside a guest

domain on SUT. Since in current implementation, backend driver has not been

parallelized and guest domain does not support RSS, we only configure the guest domain

with one virtual CPU. We find from our experiments that network processing in

virtualized environment only achieves 2.2 Gbps bandwidth while saturating two physical

cores (assuming ideal implementation of parallelized backend driver and RSS in guest

domain, up to 9 cores are required for a line rate bandwidth). The high overhead

motivates us to breakdown the per-packet processing overhead. In this subsection, we

choose a typical I/O size 16KB as our case study. Note that I/Os are not packets over

Ethernet and large I/Os are segmented into several Ethernet packets (<=MTU). With

16KB I/O size in our experiments, packet size on average is about 1.5KB.

Table 7.1 Component description

Component Description
Driver Default 10GbE NIC driver, same as native Linux
Buffer management SKB buffer allocation/release, same as Native Linux
Linux Bridge De-multiplexing/Multiplexing packets into corresponding

BE.
Backend driver (BE) Acts a proxy in driver domain for a guest domain and

communicates with FE
Event operations on I/O
channel (event-ops)

Communicate request/response information among BE and
FE

Domain copy (domain-copy) Copy packets among driver domain and guest domain
Frontend driver (FE) Virtual NIC driver for guest domain
TCP/IP The TCP/IP protocol stack, same as Native Linux.
Kernel-to-user data copy (user-
copy)

After TCP/IP processing, data is moved out from kernel to
user buffers, same as Native Linux.

Iperf A user level benchmark to test TCP/IP capability.
Others VMM scheduling, context switch, hypervisor calls and

system calls etc.

7.1.1 Per-packet processing overhead

We use the tool Xenoprof [60] to collect system-wide function overheads while Iperf is

running inside a guest domain over 10GbE. Along the network processing path in

109

virtualized environment, we group all profiled functions into components. Those

components are listed and explained in Table 7.1. Per-packet processing time breakdown

is calculated and illustrated in Figure 7.2.

Figure 7.2 Per-packet processing overhead in virtualized environment

 We obtain the following observations from Fig.7.2: 1) unlike native environment,

packet movement in virtualization environment becomes much more complicated. It

consists of packet movement from the driver domain to guest domain (denoted as

domain-copy) and from kernel to user buffers inside guest domain (denoted as user-copy).

They take around 25% and 15% of the whole packet processing time, respectively.

Although packets reside in caches after domain-copy, user-copy still consumes many

CPU cycles. That is because that the current VMM scheduler usually schedules driver

domain and guest domain into two cores without sharing a LLC. When we manually ping

0

500

1000

1500

2000

2500

3000

3500

C
y

cl
e

s

110

guest domain and driver domain into the same cache domain (cores with a shared LLC),

we notice that the user-copy overhead can be reduced largely. 2) Besides packet

movement, Linux bridge used for switching packets into corresponding backend drivers

burns 1600 cycles per packet, thus becoming another major bottleneck. Although some

other components (e.g. NIC driver, SKB buffer management, TCP/IP protocol stack) also

consume some overheads, they are not related to virtualization and some existing

software optimizations for native environment like SKB recycling, TCP onloading can be

applied to reduce those overheads.

7.1.2 Architectural Analysis

In order to analyze the functional level overhead, we design a profiling methodology and

develop a tool. Our tool can be used to quantify performance from the architectural

characterization perspective. It instruments the VMM, driver domain, guest domain and

network protocol stack along with the packet processing path. We adopt a performance

counter based approach, where a small piece of code is manually inserted into the points

of interest. Those code records the current time-stamp, retired instruction, L1 cache miss,

L2 cache miss and TLB cache miss information of the measure point into a buffer using

the corresponding Intel Performance counter. The overhead of the instrumental code is

small (only 90 CPU cycles for a timestamp read and 70 cycles for a performance counter

read) and is subtracted from the measurement.

 One example getting L2 cache event count while running in handle_bridge (in Linux

Bridge) routine is shown in the Table 7.1. It usually consists of two steps: set counter to

select the architectural event of our interest and access performance counter to read the

111

corresponding event count. In the left column of Table 7.1, we select the L2 cache miss

event via writing into performance control register the corresponding encode value which

is specific on Intel Core micro-architecture [34]. Once architectural event is selected, the

right column attempts to read L2 miss event count via reading the corresponding

performance counter. This subsection presents detailed architectural analysis for major

components: Linux bridge, domain-copy and user-copy.

Table 7.2 Performance counter example

Setting Counter Reading Counter
//Enable Counter
set_in_cr4(X86_CR4_PCE)
;
val = 0x474024;
//Setting L2 Cache Event
wrmsr(0x186, val, 0);

rdl2miss(){
// read performance counter

rdpmc(0,low, high);
}
Void handle_bridge() {
//Reading L2 cache count
Bridge_l2miss=rdl2miss();
}

A) Linux Bridge

Linux Bridge is a way to connect two segments together in a protocol independent way

[55]. Packets are forwarded based on Ethernet MAC address. The Linux bridge code

implements a subset of the ANSI/IEEE 802.1d standard. In order to simplify the VMM

design, Xen takes advantage of the existing Linux Bridge component in Linux Kernel to

serve as a de-multiplexer. From Fig.7.2, we notice that 1600 cycles are consumed in the

Linux Bridge module to switch each received packet to the designated backend driver. It

has surprisingly significant overhead and would perform much worse with integrating

some filter rules. In this subsection, we architecturally breakdown the switching overhead

for each packet and present results in Figure 7.3.

112

Figure 7.3 Linux Bridge overhead breakdown

 We find from Fig.7.3 that the biggest contributor of the Linux Bridge overhead is

long path instruction execution, followed by data cache misses and instruction cache

misses. That is because Linux bridge was designed as a sophisticated firewall and switch

framework to check with many plugged network filters/rules. We continue doing

functional level profiling of Linux Bridge and list functional overheads in Table 7.3. We

realize that functions relevant to network filter framework consume most of CPU cycles

without any plugged filters and the core switching function itself (Br_forward) only

requires 600 cycles. All of these observations indicate that a much simpler software

switch is required for virtualization.

Table 7.3 Functional overhead in Linux Bridge

Functions/Macros Description Execution time
per packet (cycles)

Handle Bridge Bridge interface to NIC driver 100
Br_handle_frame Netfilter framework to check with

inserted filters/rules
400

Br_handle_frame_finish Netfilter framework to check with
inserted filters/rules

200

Br_forward Performing switching functionality
using Jhash algorithm [42]

600

Br_forward_finish Netfilter framework to check with
inserted filters/rules

200

Br_dev_queue_push_xmit Interface to backend driver 100

Instruction

Icache

Dcache

L2 Cache

ITLB

DTLB

113

B) Domain-copy

After a packet is switched into a corresponding backend driver, it needs to be copied out

from driver domain to guest domain address space. VMM provides a grant copy

operation which maps the page, copies the packet and unmaps the page in a single

hypercall. During a grant copy operation, VMM creates temporary mappings into VMM

address space for both source and destination of the copy. The VMM also pins (i.e.

increment a reference counter) both pages to prevent the pages from being freed while the

grant is active. We architecturally breakdown the domain-copy overhead for each packet

and present results in Figure 7.4.

Figure 7.4 Domain-copy overhead breakdown

 As shown in Figure 7.4, L2 caches misses and long instruction execution path are

major contributors to high overheads in domain-copy. Since DMA transactions trigger

cache invalidation to maintain cache coherence among caches and memory, Domain-

copy incurs mandatory cache misses on packets and thus consumes a large number of

CPU cycles. In order to copy packets between two domain address space, driver domain

relies on grant table copy operations provided by VMM. The grant table operation

Instruction

Icache

Dcache

L2 Cache

ITLB

DTLB

114

consists of VMM enter/exit, page mapping/unmapping and expensive atomic instructions

on the grant table, explaining high instruction execution overhead.

Figure 7.5 Kernel-to-user data copy overhead breakdown

C) user-copy

After protocol processing, user applications in guest domain are scheduled to copy

packets from in-kernel SKB buffers to user buffers. We study its architectural overhead

breakdown as shown in Figure 7.5. Fig.7.5 shows that L2 cache misses are the major

overhead (~57%, ~3.5 L2 misses/packet), followed by data cache misses (~23%, ~50

misses/packet) and instruction execution (~17%). Although domain-copy already fetches

packets into caches, driver domain and guest domain are usually scheduled by VMM to

run on two cores without sharing a LLC, thus still incurring L2 cache misses during the

kernel-to-user copy. Existing optimizations like memory copy engine [95] on data copy

in native environment help little in virtualized environment. Memory copy engine moves

data in memory but the movement here is among separate caches. DCA injects data into

cores where driver domain is running and cannot avoid those cache misses during data

copy from kernel-to-user buffers. Thus, a new data movement scheme is required to

avoid high packet movement overheads in virtualized environment.

Instruction

Icache

Dcache

L2 Cache

ITLB

DTLB

115

7. 2 VMM Scheduler Optimizations

The credit scheduler is designed to load balance workloads on multi-core platforms.

Unfortunately, it tends to schedule driver domain and guest domain to cores without

sharing a last level cache, incurring high packet movement overheads as shown in

Subsection 7.1. In this subsection, we start with detailed study of credit scheduler and

then propose two VMM scheduler optimizations to improve network processing

performance in virtualized environment.

7.2.1 Credit Scheduler in VMM

VMM functions as an abstraction layer of the real physical devices. As a result,

scheduling in virtualization is based on Virtual CPUs (VCPU) because Physical CPUs

(PCPU) are transparent to domains. Each domain can be arbitrarily allocated with

multiple VCPUs. Besides the default credit scheduler, VMM also keeps its legacy

scheduler Simple Earliest Deadline First (SEDF) [47]. SEDF provides weighted CPU

sharing in an intuitive way and uses real-time algorithms to ensure real time guarantees.

However, it lacks global load-balancing on multiprocessors and is becoming obsolete. In

this study we focus on the default credit scheduler [17], a proportional fair share CPU

scheduler built to achieve load balance on SMP hosts. Its overall objective is to allocate

the processor resources fairly.

 The scheduler organizes a local run queue of online runnable VCPUs for each PCPU

and always picks a workload (VCPU) from the head of the queue to run. This queue is

sorted by VCPU priority. A VCPU’s priority can be one of three values: OVER, UNDER

and BOOST. OVER, UNDER represents whether or not this VCPU has used up its fair

116

share of CPU resource in the ongoing accounting period. The BOOST state provides a

mechanism for domains to achieve low I/O response latency. All the VCPUs in BOOST

state are placed in front of those in UNDER state in the runqueue, while those with

OVER state are kept in the tail portion. Based on the predefined weight, each domain is

initially allocated a corresponding credit which is fairly shared among all the VCPUs that

are affinitized to the domain. As a VCPU runs, it consumes credits. Every so often, a

system-wide accounting thread re-computes how many credits each active domain has

earned and bumps the credits.

 When it comes to multi-core architecture, there are a few twists while the scheduler

functions. First of all, when there is not a VCPU of priority UNDER on a PCPU’s local

run queue, the scheduler will search other PCPUs for one. This load balancing ensures

each domain receives its fair share of PCPU resources system-wide. Before a PCPU goes

idle, the scheduler will look on other PCPUs to find any runnable VCPU. This guarantees

that no PCPU idles when there is runnable work in the system. Secondly, VCPU

migration might happen based on priority difference for event notification. Whenever an

event is notified to a target VCPU while it is idle, the scheduler tickles the designated

PCPU and re-evaluates to see if the target VCPU preempts the current running VCPU. If

there are at least two runnable VCPUs in that PCPU, the scheduler would migrate some

of them to the idlers in the system to achieve load balance. Last but not the least, the

scheduler checks the state of the current running VCPU during each timer interrupt and

redistributes the PCPU if necessary. The running VCPU will be migrated to the online

neighbor PCPU with the most idling neighbors PCPU. This policy distributes work

117

across distinct sockets first and then distinct cores in the same socket.

7.2.2 Cache-aware Scheduler

The default credit scheduler is unaware of core topology in multi-core systems, where

some of cores are sharing a last level cache (LLC) while others are sitting in different

sockets. It blindly migrates the VCPU running on PCPU with high workloads to PCPU

with lightweight workloads.

 To make the best use of the resource and to make inter-core communication efficient,

cores in a physical package share some of the resources. Our system under test (SUT) has

two CPU cores sharing the L2 cache which is called Intel Advanced Smart Cache [38] as

shown in Figure 3.1. Each processor has four cores in a physical package with two L2

caches. Each L2 cache is shared by two cores. The current credit scheduler is designed

for SMP load balance, but is not cache-aware and cannot co-schedule the two VCPUs

with data sharing on the two cores sharing L2 cache (a.k.a. cache domain). Since Dom0

is designed for serving I/O requests to de-multiplex packets and move packets to

designated DomU (I/O DomU), there is intense data sharing between Dom0 and I/O

DomU. Co-scheduling Dom0 and I/O DomU in the same cache domain will give I/O

DomU a free ride to access the data in the cache and avoid cache misses on packets.

 In order to co-schedule Dom0 and I/O DomU, the first step is to identify them in the

VMM. Currently we identify them by counting how often I/O events of boosting VCPUs

are triggered during each time slice. If the number of triggers exceeds a threshold (default

150), both the boosting and the boosted VCPUs are considered as I/O VCPUs (in receive

side, boosting VCPU is I/O VCPU in Dom0). Note that our extension of the scheduler is

118

only based on VCPUs with intense I/O operations, and doesn't sacrifice the system-wide

load-balance on multi-core platforms. After the identification of I/O VCPUs, the VMM

scheduler always intelligently schedules boosting and boosted VCPUs to the cores

sharing same L2 cache.

 In default credit scheduler, when an event is notified to a target VCPU while it is idle,

it is awaken with the state of BOOST. Then other idle PCPUs and PCPU hosting the

VCPU are notified to re-evaluate where the VCPU will be running. In cache-aware

scheduler, instead of notifying all idle PCPUs, VCPU with the state of BOOST is inserted

into the runqueue of PCPU sharing L2 cache with the PCPU currently hosting boosting

VCPU. An example is shown in Figure 7.6. The left side in the figure is the original

system state where boosting VCPU and one running VCPU are sitting in the same cache

domain and boosted VCPU is running on the core 4. Cache-aware scheduler will

automatically migrate boosted VCPU into the same cache domain as boosting VCPU to

take advantage of shared cache. The running VCPU is preempted into the core 4 for

securing the system level load balance. The system state after migration is shown in the

right side of the figure.

Figure 7.6 An example of Cache-Aware scheduler

119

 Additionally, VCPU migration in current scheduler also occurs when a VCPU

remains BOOST for a while and some PCPUs are idle. It chooses the target PCPU with

the largest number of idle neighbors in its grouping. This option will distribute workload

across distinct packages first and result in maximum resource utilization since there is no

shared resource contention. However, virtualized network processing with data sharing

between Dom0 and I/O DomU will suffer heavy inter-package communication penalty

from this mechanism. Cache-aware scheduler dynamically migrates the boosted VCPU

and boosting VCPU to the same cache domain when this migration is triggered.

 Although our technique might preempt the running VCPU on the PCPU, the

preempted VCPU could be migrated into other PCPUs to sustain system-level workload

balance on multi-core platforms.

7.2.3 Credit-Stealing for I/O VCPU in Dom0

The number of VCPUs in Dom0 is configured by default as the number of cores in the

platform. In credit scheduler, all VCPUs affiliated to the same domain are allocated fairly

with the same credit. However, all of the interrupts from NIC are usually directed to a

specific VCPU to improve the cache locality of interrupt processing in a non-virtualized

environment. This credit allocation mechanism results in performance degradation in

virtualized environment mainly because more VCPUs in Dom0 lead to less shared credits

for each VCPU. I/O VCPU cannot be allocated with sufficient computing resource to

satisfy packet processing. We propose to dynamically and temporarily steal some credits

from other idling VCPUs to favor I/O VCPUs during each time slice while I/O VCPUs

120

are busy with processing packets. The principle to steal credits is formalized in the

following equation:

))_(*2/()_(VCPUsIONumVCPUsIdleCreditSteal =

where Stealmeans the stolen credit for each I/O VCPU,)_(VCPUsIdleCredit is for the credit

of all idling VCPUS.)_(VCPUsIONum represents the number of I/O VCPUs. It shows that

each idling VCPU’s credit is dynamically cut in half to favor I/O VCPUs to eliminate

their burden while working with intensive NIC interrupt requests. Since our policy steals

credits from idling VCPUs, it does not hurt the overall system performance.

Figure 7.7 New architecture overview

7.3 Virtualization-aware DCA

Although the above VMM scheduler optimizations improve packet movement, they are

unable to eliminate all cache misses on packets along the processing path. In virtualized

environment, conventional Direct Cache Access (DCA) injects packets into the first

physical core where NIC interrupts are delivered and cannot avoid cache misses on

121

packets. In this subsection, we extend DCA by considering VMM scheduling information

to accurately inject incoming packets into right cores where corresponding domains are

running. The overview of architecture is illustrated in Figure 7.7.

 In the new architecture, we add one small hardware unit (denoted as data movement

engine) into I/O controller. When NIC receives a packet, it reads DMA descriptors to

know DMA buffer address and then leverages DMA transactions over PCI-E

interconnect to send the packet to I/O controller. The I/O controller passes the received

packet into our new data movement engine. The data movement engine maintains VM-

to-Core mapping information which is periodically updated by VMM scheduler. Thus,

the engine can find out the destination core where the corresponding domain is running

and directly inject packets into corresponding caches. For instance, as shown in Fig.7.7,

all packets belonging to VM1 will be delivered to the third core where VM1 is scheduled

by VMM scheduler to be running. The detailed architectural designs of our data

movement engine are illustrated in Figure 7.8.

Figure 7.8 Date movement engine

 Inside the data movement engine, we use a mapping table to maintain VM-to-Core

mapping information. When VMM scheduler finishes scheduling VMs across multiple

122

cores, it updates the mapping table. Each row in the mapping table represents one VM.

The first running field indicates whether the corresponding VM is running or not. Last

touch means who is the last to own the row, VMM or NIC. The last field is the

destination core. When the data movement engine receives a packet, it extracts the

packet's MAC address and hashes into mapping table. Data movement engine checks

whether the corresponding VM is running or not. If yes, it obtains the destination core

and then injects packets into corresponding caches. If not, data movement engine injects

packet into a random core and then marks the last touch field as NIC. When VMM

receives interrupts from NIC and schedules VM across cores, it checks with this mapping

table to see whether the last touch field in the corresponding row has been set by NIC. If

yes, it obtains the core information and schedules VM on the core. Otherwise, the default

scheduling policy is applied. By leveraging VMM scheduling information, the new

architecture is able to directly inject packets into correct cores and avoids cache misses

on packets.

7.4 Simplified Bridge

As shown in Subsection 7.1, packet switching function requires only 600 cycles, and

Jhash algorithm used for multiplexing packets by hashing MAC addresses only consumes

120 cycles. It motivates us to design a simplified bridge tailored for packet switching in

virtualized environment. However, it must retain the same user/kernel interface as

original bridge so that the user space bridge utility still works in virtualization

environment. Since bridge utilities in user space are being used by domain management

tool residing in Dom0 to create/destroy BE, the new bridge should comply with the

original user/kernel interface to avoid interference with the current workable system. The

123

new design is required to keep bridge as simple as possible with respect to packet

switching’s performance and scalability.

 Packet processing path of both Linux Bridge and our tailored bridge are shown in

Figure 7.10. It shows that we bypass most of the functions introduced by Netfilter

interface and re-implement the internal interfaces to minimize extra function costs except

the bridge (Xen_br_forward). The Jhash algorithm is still adopted in our design. Our

prototype is implemented as a new feature of Linux Bridge to take advantage of its

existence in mainstream kernel.

Figure 7.9 Linux Bridge vs. our bridge

7.5 Performance Evaluation

We implement our two VMM scheduler optimizations and the simplified bridge in Xen

3.1. Iperf is run over our Intel servers with our optimized Xen to understand performance

impacts of our optimizations on network processing. We then study how much benefit

web servers achieve by running the SPECWeb benchmark. Since no existing simulators

Br_dev_queue_push_ximt

Br_handle_frame

Br_handle_frame_finish

Br_forward

Br_forward_finish

Handle_bridge Handle_bridge

Xen_br_forward

Xen_br_dev_queue_push_ximt

Linux Bridge Our Bridge

124

support virtualization, we choose a full system simulator Simics and develop an

experiment methodology to mimic virtualization environment. We enhance Simics with

detailed cache, I/O timing models and modeling of the effects of network DMA. In order

to mimic the virtualization overhead, we inject extra per-packet virtualization overheads

from our profiling on real machines in the simulator. We extend the Digital Equipment

Corporation 21140A Ethernet device with the support of interrupt coalescing using

Device Modeling language DML to simulate a 10GbE Ethernet NIC. The device itself is

connected to a lossless, full-duplex link of configurable bandwidth. The latency of a

packet traversing the link is simply fixed to 1 us. We simulate two systems (client and

server) running Linux 2.6.16 and interconnect them with 10GbE. The parameters we use

in modeling the configuration are listed in Table 7.2. We are more interested in the

relative behavior of these systems than their absolute performance, so some of these

parameters are approximations.

Table 7.4 System configurations

Processor four cores, 3GHz, in-order, two-issue
ICache/DCache Private per core, 32 KB 2-way, 3-

cycle hit latency
L2 Cache Private per core, 2M, 8-way split, 14

cycles hit latency
Memory 400 cycles

I/O register 1600 cycles
prefetch Stream prefetch, degree: 4
Interrupt

coalescing rate
64 packets per interrupt

7.5.1 System Optimizations on Xeon Servers

This subsection first studies performance benefits of all our three system optimizations

(cache-aware and credit-stealing scheduler optimizations and simplified bridge) in terms

125

of network bandwidth and core utilization per gigabit. We obtained these results by

modifying Xen and running it on the Intel Xeon server. The results are presented in

Figure 7.11. “Default” represents the original system with credit scheduler without any

optimization. In the figure, bars represent the bandwidth and lines stand for core

utilization per gigabit. We observe from Fig. 7. 11 that our cache-aware scheduler

increases bandwidth by 19%, and also saves 11% in core utilization per gigabit. The

credit stealing policy for favoring I/O VCPUs further improves the network performance

by 14% and saves 6% in core utilization per gigabit. It is observed that all three

optimizations can increase the network bandwidth by 96% to 4.5 Gbps, and also save 36%

in core utilization per gigabit. In our experiment, we notice that the total core utilization

consumed by Dom0 is reduced from 105% to 84% by using all the optimizations.

Figure 7.10 Network performance with system optimizations

 Second, we study web server performance by running the web server benchmark

SPECweb99 over 10GbE. The same configurations are used. Web server bandwidth with

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Default Cache-aware

optimization

Cache-aware &

Credit-stealing

optimizations

Two scheduler

optimizations +

simplified bridge

C
P

U
 u

ti
li

za
it

o
n

 p
e

r
G

b
p

s

b
a

n
d

w
d

it
h

126

various configurations is illustrated in Figure 7.12. As shown in Fig.7.12, web server

achieves 0.9Gbps, 1.2Gbps, 1.3Gbps and 1.5Gbps bandwidth without any optimization,

with cache-aware scheduler, two VMM scheduler optimizations and all three

optimizations, respectively. Reduced CPU utilization per gigabit in the figure points out

the improved processing efficiency on web servers.

Figure 7.11 Web server performance with system optimizations

7.5.2 Architectural Optimizations through Simulation

Besides three system optimizations, we also propose efficient architectural support to

avoid cache misses along the packet movement. In this subsection, we first look at

network performance in the receive side by running Iperf under various configurations:

the default system without any optimization (default), all system optimizations, all

system optimizations with default DCA and extended DCA (new).

 Figure 7.12 illustrates network bandwidth achieved by various configurations and

corresponding CPU utilization. As shown in Fig.7.12, default can achieve only ~1.9 Gbps

bandwidth by consuming ~100% CPU utilization per gigabit. By improving VMM

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Default Cache-aware

optimization

Cache-aware &

Credit-stealing

optimizations

Two scheduler

optimizations +

simplified bridge

C
P

U
 u

ti
li

za
ti

o
n

 p
e

r
G

b
p

s

b
a

n
d

w
id

th
(G

b
p

s)

127

scheduler and Linux Bridge, the network performance is improved by up to 3.9Gbps with

75% CPU utilization per gigabit. Conventional DCA is unaware of location of

destination guest domain and injects packets into the first core, thus only achieving

limited benefits. By considering VMM scheduling information, the new architecture

injects packets into right caches and continues improving network performance up to

5Gbps with 50% CPU utilization per gigabit.

Figure 7.12 Network performance with architectural optimizations

Figure 7.13 Web server performance with architectural optimizations

0%

20%

40%

60%

80%

100%

120%

0

1

2

3

4

5

6

Default Two scheduler

optimizations +

simplified bridge

Two scheduler

optimizations +

simplified

bridge+DCA

new

C
P

U
 U

ti
li

za
ti

o
n

 p
e

r
g

b
p

s

B
a

n
d

w
id

th
(g

b
p

s)

0%
20%

40%
60%
80%
100%
120%
140%
160%

180%
200%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Default Two scheduler

optimizations +

simplified bridge

Two scheduler

optimizations +

simplified

bridge+DCA

new

C
P

U
 U

ti
li

za
ti

o
n

 p
e

r
G

b
p

s

b
a

n
d

w
id

th
 (

G
b

p
s)

128

 Similarly, we also investigate web server performance by running the web server

benchmark SPECweb99 over 10GbE. The same configurations are used and results are

illustrated in Figure 7.13. We find that the new architecture escalates web server

performance by 120% compared to the default system while saving 90% CPU utilization

per gigabit.

Figure 7.14 Web server performance with architectural optimizations

7.6 Summary

This chapter analyzes the performance challenge of network virtualization over 10GbE

network with a multi-core server. We found that virtualization under 10GE network adds

significant performance overhead to network processing. We proposed two optimizations

for the scheduler inside the VMM to improve the packet movement performance. In order

to avoid cache misses along moving packets in virtualized environment, we extended

DCA to virtualization environment by considering VMM scheduling information to

accurately inject packets into cores where corresponding guest domains are running. We

also redesigned a simplified bridge to switch packets to corresponding guest domains.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Default Two scheduler

optimizations +

simplified bridge

Two scheduler

optimizations +

simplified

bridge+DCA

new

C
P

U
 U

ti
li

za
ti

o
n

 p
e

r
G

b
p

s

b
a

n
d

w
id

th
 (

G
b

p
s)

129

Our combined optimizations are able to significantly reduce two major bottlenecks in

virtualization environment.

130

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Ethernet continues to be the most widely used network architecture today due to its low

cost and backward compatibility with the existing Ethernet infrastructure. It dominates in

modern data centers and is replacing specialized fabrics. Driven by increasing networking

demands of cloud workloads such as Internet search, web hosting etc, network speed

rapidly migrates from 1Gbps to 10Gbps and beyond. High speed networks require

general purpose servers to provide efficient network processing and have low design

complexity of NICs. Unfortunately, traditional architectural designs of processors, cache

hierarchies and system interconnects focused on CPU/memory-intensive applications,

and have often been decoupled from I/O considerations, thus being inefficient for

network processing.

 In this dissertation, we did fine-grained NIC driver and OS instrumentation to fully

understand the network processing overhead over 10GbE on mainstream servers. We

obtain several new findings, which have never been reported. Motivated by the studies,

we proposed a new server I/O architecture where DMA descriptor management is shifted

from NICs to an on-chip network engine (NEngine) and descriptors are extended with

information about data incurring memory stalls. NEngine relies on data lookups and

131

preloads to eliminate the stalls during network processing. Moreover, NEngine

implements efficient packet movement inside caches to address the remaining issue in

data copy. The new architecture allows DMA engine to have very fast access to

descriptors and leverages CPU caches to keep packets rather than NIC buffers,

significantly simplifying NICs.

 Recently, most researchers viewed integrated NIC (INIC) as a promising I/O

solution to tackle the challenges from high speed networks on servers. In order to

understand performance benefits of integrated NIC architectures, we studied the impact

of INICs by extensive evaluations on a real Sun Niagara 2 platform with two integrated

10GbE NICs. We characterized system behavior to understand the performance benefits

with respect to different number of connections, OS overhead, instruction counts, and

cache misses etc. Our studies reveal that there is a benefit of integrating NICs onto CPUs,

but the gain is somewhat marginal.

 Motivated by performance analysis on integrated NIC architectures, we proposed an

enhanced integrated NIC architecture for high speed networks. In the new architecture,

we redesigned CPU/NIC interface from hardware DMA to software PIO by exploiting

fast CPU/NIC interaction. We deployed hardware RSS for efficiently supporting multi-

core systems and software LRO for reducing per-packet overhead. In order to eliminate

cache interference between I/O and other running applications, we take advantage of the

integration of NIC to split LLC. A dedicated I/O cache is configured at the cache way

level, and its organization can be dynamically changed to meet the various network data

rates. Additionally, we also optimized cache coherence protocol to avoid unnecessary

write-backs of network data for efficiently utilizing memory bus.

132

 All above studies were conducted from the per-packet perspective and paid no

attention to per-session data TCP Control Block (TCB). A TCB is a per-session data

structure and is accessed on the TCP critical path [8, 13, 20, 27]. A large number of

sessions and session behavior in web servers make the management of TCBs complicated.

In this dissertation, we analyzed challenges incurred from TCBs when there are

thousands of concurrent sessions and studied behavior of web sessions. Then, we

designed a new dedicated TCB cache by fully leveraging web session characteristics to

efficiently manage TCB data. We designed the cache along the two dimensions: cache

indexing and cache replacement policy. We studied the performance of various hash

functions and proposed a Universal hashing based cache indexing scheme. To couple

with our cache indexing scheme, we designed a speculative cache replacement policy by

harnessing the ON/OFF model of web sessions. The new TCB cache is able to

effectively manage TCB data and can be adopted by integrated NIC or even TOE.

 As virtualization has gained resurgent interest since the prevalence of multi-core

servers and is becoming a key enabling technology in cloud infrastructures,

understanding and improving network processing performance in virtualization

environment becomes critical. In this dissertation, we conducted an experimental study

of virtualized network performance under 10GE networks to identify the performance

bottlenecks of virtualized network processing. We observed extremely high overheads in

software Linux bridge switch and packet movement in virtualization environment. In

order to improve packet movement performance, we proposed two VMM scheduler

optimizations and extended DCA by considering VMM scheduler information to avoid

133

cache misses on packets while moving packets. In addition, we also developed a

simplified software switch to switch packets to corresponding guest domains. The

experimental results show that our system and architectural optimizations can

significantly improve virtualized network processing performance.

8.2 Future Work

In this dissertation, we analyzed performance challenges from high speed networks on

mainstream servers and proposed several new architectural solutions to optimize network

processing for both native and virtualized environment over high speed networks. Based

on the current studies, we foresee three research directions to extend this work.

 First of all, power consumption of I/O architectures in mainstream servers should be

studied and considered. Although extensive studies have been conducted to understand

CPU and memory power consumption in servers, we are still unclear to power

consumption of I/O architecture including both network I/O and storage I/O, not to

mention power optimizations or management policies on I/O architectures in servers. As

DVFS and clock gating becomes increasingly popular as part of the on chip module in

hardware, we strongly believe that power-aware I/O architectures (e.g. NIC, PCI-E

interconnect etc.) should be designed and be incorporated into next generation severs.

 Secondly, many more system and architectural optimizations are still unexplored for

integrated NIC architectures with fast CPU/NIC interactions. By exploiting fast

CPU/NIC interaction, existing memory management unit inside cores can be reused by

NICs to provide fast virtual-to-physical address translation in hardware (or guest-

physical-to-host-physical for virtualization). With the support of these address translation

134

in hardware, user applications or guest domains can directly access hardware NIC.

Additionally, the integrated NIC can quickly fetch power states of all CPU cores and

distribute interrupts/packets across cores in a power-efficient manner. For instance, NIC

sends interrupts to running cores and keeps idling CPUs as long as possible.

 Thirdly, as the whole IT industry is quickly shifting to cloud computing, we can

extend our I/O architecture research into an emerging and broader area: data centers. We

can start with I/O characteristic studies of some emerging cloud computing applications

like Hadoop, Eucalyptus and then understand the I/O architecture's impacts on data

centers in terms of cost, power and performance. Due to issues of high cost from high

performance switches, complicated cabling management and network bandwidth

oversubscription, we believe the conventional I/O architecture is not suited well for cloud

infrastructure. Thus, designing a more cost-effective and energy-efficient I/O architecture

becomes extremely important to data centers.

135

Bibliography

[1] Accelerating High-Speed Networking with Intel I/O Acceleration Technology,
http://download.intel.com/support/network/sb/98856.pdf.

[2] A. Agarwal, J. Hennessy, M. Horowitz, Cache Performance of Operating Systems
and Multiprogramming, ACM Transactions on Computer Systems, Nov. 1998.

[3] AMD64 Virtualization "Pacifica" Technology, Secure Virtual Machine Architecture
Reference Manual, May 2005.

[4] P. Barford, M. Crovella, Generating Representative Web Workloads for Network
and Server Performance Evaluation. In Measurement and Modeling of Computer
Systems, 1998.

[5] P. Barham, et al., Xen and the art of virtualization, SOSP, Oct 2003.

[6] N. L. Binkert, A. G. Saidi, S. K. Reinhardt, Integrated Network Interfaces for High-
Bandwidth TCP/IP. ASPLOS, 2006.

[7] N. L. Binkert, L. R. Hsu, A. G. Saidi et al., Performance Analysis of System
Overheads in TCP/IP Workloads, PACT, 2004.

[8] N. L. Binkert, R. G. Dreslinski, L. R. Hsu et al., The M5 simulator: Modeling
networked systems. IEEE Micro, Jul/Aug 2006.

[9] N. J. Boden, D. Cohen, R. E. Felderman et al., Myrinet: A Gigabit-per-Second
Local Area Network. IEEE MICRO 1995.

[10] J. Bonwick, The Slab Allocator: An Object-Caching Kernel Memory Allocator,
USENIX Technical Conference, 1994.

[11] D.P. Bovet et al. Understanding the Linux Kernel.

[12] J. Carter, M. Wegman, Universal Classes of Hash Functions. Journal of Computer
and System Sciences, 1979.

[13] Chelsio Communications. http://www.chelsio.com/.

[14] L. Cherkasova, V. Kotov, T. Rokichi et al., Fiber Channel Fabrics: Evaluation and
Design, 29th HICSS, 1996.

[15] K. Claffy, Internet Workload Characterization. Ph.D. thesis, UC San Diego, June
1994.

[16] C. Clark, K. Fraser, S. Hand, et al., Live Migration of Virtual Machines, OSDI,
2004.

[17] Credit scheduler, http://xen.org/files/summit_3/sched.pdf.

[18] Crossbow, http://opensolaris.org/os/project/crossbow/.

136

[19] C. A. Cunha, A. Bestavros, M. E. Crovella, Characteristics of WWW Client-based
Traces. Boston University Department of Computer Science, Technical Report TR-
95-010, April 1995.

[20] Dtrace, http://en.wikipedia.org/wiki/DTrace.

[21] Economic Feasibility, 10G vs 40G vs 100G.
http://www.ieee802.org/3/hssg/public/apr07/vandoorn_01_0407.pdf.

[22] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance
Characterization of a 10-Gigabit Ethernet TOE. HotI, 2005.

[23] Fireengine, http://www.sun.com/bigadmin/content/networkperf/FireEngine_WP.pdf.

[24] K. Fraser, S. Hand, R. Neugebauer et al., Safe hardware access with the Xen virtual
machine monitor. In 1st OASIS, Oct 2004.

[25] D. Freimuth et al. Server network scalability and TCP offload. In Proc. 2005
USENIX Technical Conference.

[26] S. GadelRab. 10-Gigabit Ethernet Connectivity for Computer Servers Volume
27, Issue 3, IEEE Micro, 2007

[27] L. Grossman. Large Receive Offload Implementation in Neterion 10GbE Ethernet
Driver. Linux Symposium, 2005.

[28] D. Guo, G. Liao, L. N. Bhuyan, A Scalable Multithreaded L7-filter Design for
Virtualized Multi-Core Servers, 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, San Jose, USA, 2008.

[29] D. Guo, G. Liao, L. N. Bhuyan et al., An Adaptive Hash-Based Multilayer Scheduler
for L7-Filter on a Highly Threaded Hierarchical Multi-Core Server, 5th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems,
Princeton, NJ, 2009.

[30] D. Guo, G. Liao, L. N. Bhuyan, Performance Characterization and Cache-Aware
Core Scheduling in a Virtualized Multi-Core Server under 10GbE, International
Symposium on Workload Characterization, Austin, TX, 2009.

[31] R. Huggahalli, R. Iyer, S. Tetrick. Direct cache access for high bandwidth network
I/O, ISCA, 2005.

[32] Y. Hoskote, B. A. Bloechel, G. E. Dermer et al., A TCP Offload Accelerator for
10Gb/s Ethernet in 90-nm CMOS, IEEE Journal of Solid-State Circuits, Vol 38.
No.11, 2003.

[33] Iperf, http://sourceforge.net/projects/iperf/.

[34] Inside Intel Core Micro-architecture: Setting New Standards for Energy-Efficient
Performance, http://www.intel.com/technology/architecture-silicon/core.

[35] Infiniband Trade Association. http://www.infinibandta.org.

137

[36] Intel 82599, http://download.intel.com/design/network/prodbrf/321731.pdf.

[37] Intel 10 Gigabit Ethernet Controllers
http://download.intel.com/design/network/prodbrf/317796.pdf.

[38] Intel Core 2 Extreme quad-core processor.
http://www.intel.com/products/processor/core2XE/.

[39] Intel Virtualization Technology Specification for the IA-32 Intel Architecture, April
2005.

[40] Intel Technology Journal, 130nm Logic Technology Featuring 60nm Transistors.
Low-K Dielectrics and Cu Interconnects.

[41] R. Iyer et al. QoS Policies and Architecture for Cache/Memory in CMP Platforms,
ACM SIGMETRICS, June 2007.

[42] Jhash. http://www.burtleburtle.net/bob/hash/doobs.html.

[43] M. Kharbutli, K. Irwin, Y.Solihin, et al., Using Prime Numbers for Cache Indexing
to Eliminate Conflict Misses, HPCA 2004.

[44] H. Kim, S. Rixner, Performance Characterization of the FreeBSD Network Stack.
CS Technical Report TR05-450, Rice University, 2005.

[45] A. Kumar, R. Huggahalli, Impact of Cache Coherence Protocols on the Processing
of Network Traffic. MICRO, 2007.

[46] A. Kumar, R. Huggahalli, S. Makineni, Characterization of Direct Cache Access on
Multi-core Systems and 10GbE. HPCA, 2009.

[47] I. M. Leslie, D. Mcauley, R. Black et al., The Design and Implementation of an
Operating System to Support Distributed Multimedia Applications. IEEE Journal of
Selected Areas in Communication, 1996.

[48] G. Liao, L. Bhuyan, Performance Measurement of an Integrated NIC Architecture
with 10GbE. HotI 09, USA.

[49] G. Liao, X. Zhu, L. N. Bhuyan, A New Server I/O Architecture for High Speed
Networks, in 17th High Performance Computer Architecture, 2011.

[50] G. Liao, L. N. Bhuyan, W. Wu et al., A New TCB Cache to Efficiently Manage TCP
Sessions for Web Servers, 6th ACM/IEEE Symposium on Architecture for
Networking and Communication Systems, La Jolla, CA, 2010.

[51] G. Liao, X. Zhu, S. Larsen et al., Understanding Power Efficiency of TCP/IP Packet
Processing over 10GbE, 18th Symposium on High-Performance Interconnects,
Mountain View, CA, 2010.

[52] G. Liao, H. Yu, L. N. Bhuyan, A New IP Lookup Cache for High Performance IP
Routers, in 47th Design Automation Conference, CA, 2010.

138

[53] G. Liao, L. N. Bhuyan, D. Guo et al., EINIC: An Architecture for High Bandwidth
Network I/O on Multi-Core Processors, 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, Princeton, NJ, 2009.

[54] G. Liao, D. Guo, L. N. Bhuyan et al. Software Techniques to Improve Virtualized
I/O on Multi-core Platforms, 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, San Jose, USA, 2008.

[55] Linux Bridge. http://bridge.sourceforge.net/.

[56] J. Liu, W. Huang, B. Abali et al., High Performance VMM-Bypass I/O in Virtual
Machines, USENIX Annual Technical Conference, June 2006.

[57] P. S. Magnusson, M. Christensson, J. Eskilson et al., Simics: A Full System
Simulation Platform. IEEE Computer, February 2002.

[58] S. Makineni, R. Iyer, Architectural Characterization of TCP/IP Packet Processing on
the Pentium M Microprocessor. HPCA, 2004.

[59] A. Menon, J. R. Santos, Y. Turner et al., Diagnosing Performance overheads in the
Xen Virtual Machine Environment, VEE, 2005.

[60] A.Menon, J. R. Santos, Y. Turner et al., Xenoprof - Performance profiling in Xen.

[61] A. Menon, A. Cox, W. Zwaenepoel, Optimizing Network Virtualization in Xen,
USENIX Annual Technical Conference, 2006.

[62] D. J. Miller, P. M. Watts, A.W. Moore, Motivating Future Interconnects: A
Differential Measurement Analysis of PCI Latency, ANCS, 2009.

[63] S. S. Mukherjee, B. Falsafi, M. D. Hill et al., A Coherent Network Interfaces for
Fine-Grain Communication. ISCA 1996.

[64] E. Nahum, D. Yates, D. Towsley et al., Cache Behavior of Network Protocols,
SIGMETRICS 1997.

[65] Netpipe, http://www.scl.ameslab.gov/netpipe/.

[66] G. Narayanaswamy, P. Balaji, W.Feng, An Analysis of 10-Gigabit Ethernet Protocol
Stacks in Multicore Environments, HotI, 2007.

[67] D, Ongaro., A. L, Cox., S, Rixne. 2008. Scheduling I/O in virtual machine monitors.
VEE, 2008.

[68] Oprofile, http://oprofile.sourceforge.net/news/.

[69] PCI-E Performance Measurement, http://cp.literature.agilent.com/litweb/pdf/5989-
4076EN.pdf.

[70] PCI-E Specification, http://www.pcisig.com/specifications/pciexpress/base2/.

[71] F. Petrini, W. Feng, A. Hoisie et al., The Quadrics Network (QsNet): High-
Performance Clustering Technology. HotI , 2001.

139

[72] W. W. Peterson, D.T. Brown, Cyclic Codes for Error Detection. In Proceedings of
the IRE, January 1961.

[73] F. Pong, Fast and Robust TCP Session Lookup by Digest Hash. ICPADS, 2006.

[74] M. Rosemblum, T. Garfinkel. Virtual Machine Monitors: Current Technology and
Future trends. IEEE computer, 38(5): 39-47, 2005.

[75] M. Ramakrishna, E. Fu, E. Bahcekapili, Efficient Hardware Hashing Functions for
High Performance Computers. IEEE Trans on Computers, 1997.

[76] Scalable Networking: Eliminating the Receive Processing Bottleneck. Microsoft
WinHEC April 2004.

[77] M. Schlansker, N. Chitlur, E. Oertli et al., High-Performance Ethernet-Based
Communications for Future Multi-Core Processors. Proceedings of the 2007
SuperComputing Conference. November 2007.

[78] A. Seznec. A Case for Two-way Skewed Associative Caches. ISCA 1993.

[79] A. Seznec. A New Case for Skewed-associativity. IRISA Technical Report #1114,
1997.

[80] L. Shalev, V. Makhervaks, Z. Machulsky et al., Loosely Coupled TCP Acceleration
Architecture, HOTI , 2006.

[81] Standard Performance Evaluation Corporation. SPECweb benchmark.
http://www.spec.org.

[82] R. Stevens, TCP/IP Illustrated Volume 1, Addison-Wesley Professional.

[83] Sun Niagara 2, http://www.sun.com/processors/niagara/index.jsp.

[84] Sun 10GbE multithread Networking Cards,
http://www.sun.com/products/networking/ethernet/10gigethernet/

[85] D. Tang, Y. Bao, W. Hu et al., DMA Cache: Using On-chip Storage to
Architecturally Separate I/O Data from CPU Data for Improving I/O Performance,
HPCA , 2010.

[86] N. Topham, A. Gonzalez, J. Gonzalez. Eliminating Cache Conflict Misses through
XOR-based Placement Functions. ISC 1997.

[87] Top500 supercomputer list. http://www.top500.org.

[88] US Patent 7,287,092, Generating A hash for A TCP/IP Offload Device.

[89] US Patent 7,406,087, Systems and Methods for Accelerating TCP/IP Data Stream
Processing.

[90] P. Willmann, H. Kim, S. Rixner et al.,An Efficient Programmable 10 Gigabit
Ethernet Network Interface Card. HPCA, 2005.

[91] Worldwide Ethernet Semiconductor 2006–2011 Forecast, Research Report#
IDC204254, November 2006.

140

[92] H. Xie, L. Zhao, L. N. Bhuyan, Architectural Analysis and Instruction Set
Optimization for Network Protocol Processors, Proc. IEEE ISSS+CODES, October
2003.

[93] L. Zhao, S. Makineni, R. Illikkal et al., Efficient Caching Techniques for Server
Network Acceleration, ANCHOR, 2004.

[94] L. Zhao, R. Illikkal, S. Makineni, L. Bhuyan, TCP/IP Cache Characterization in
Commercial Server Workloads. CAECW-7, 2004.

[95] L. Zhao, L. Bhuyan, R. Iyer et al., Hardware Support for Accelerating Data
Movement in Server platform, IEEE Transactions On Computer, Vol 56, No. 6,
2007.

