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ABSTRACT OF THE DISSERTATION

Accelerating I/O Processing in Server Architectures
by
Guangdeng Liao
Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2011
Dr. Laxmi N. Bhuyan, Chairperson
Ethernet continues to be the most widely used network architectuse dadao its low
cost and backward compatibility with the existing Ethernet itrisagure. Driven by
increasing networking demands of cloud workloads such as Intermeh se&b hosting
etc, network speed rapidly migrates from 1Gbps to 10Gbps and beyondsptigh
networks require general purpose servers to provide highly effivegwork processing.
However, traditional architectural designs have been focused on @RtUsoften
decoupled from I/O considerations, thus being inefficient for network processing.

In this study, we start with fine-grained driver and OS insémtation to fully
understand the network processing overhead over 10GbE on mainseeers aand
make several new observations. Motivated by the studies, we prapuse server 1/0O
architecture where DMA descriptor management is shifteth fNICs to an on-chip
network engine and descriptors are extended to address perfornssnes while
processing packets. In addition, we also conduct extensive experiments real

integrated NIC platform to understand the benefits of integrafilics into CPU die.



Our studies reveal that simple NIC integration gains little.Halp therefore propose an
enhanced integrated NIC (EINIC) to address the performance isdulegh speed
networks. We also find that TCP Control Block (TCB) can pose édecdga in web
servers with a large volume of concurrent sessions. Therefordswanalyze challenges
from a large number of concurrent web sessions on managinggsois TCB and
propose a new TCB cache architecture to manage TCB data for wets serve

As virtualization has gained resurgent interest and is becomikgy aenabling
technology in cloud infrastructures, understanding and improving virdgainetwork
processing performance over high speed networks becomes critieacowduct an
experimental study of virtualized network performance on sewignslOGE networking
to identify its performance bottlenecks. Then, we develop two Vidéheduler
optimizations and design a simplified switch to reduce the netwatkalization
overhead. We also propose efficient architectural support by extendiagt @ache

Access (DCA) to effectively avoid cache misses on packets in virtdadiavironment.

Vi
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Chapter 1

Introduction

Ethernet continues to be the most widely used network architectuse dadao its low
cost and backward compatibility with the existing Ethernet itrinagire. It dominates in
data centers and is replacing specialized fabrics such aBhnfihi[35], Quadrics [71],
Myrinet [9] and Fiber Channel [14] in high performance computerof&911, Gigabit
Ethernet-based clusters make up 44.2% of the top-500 supercomputers [87].
Driven by increasing networking demands of workloads such as éntsearch,
virtual private network, video servers and web hosting etc, network ldthdvecomes a
technology that has outstripped Moore’s Law in the past decadesedde 1995 and
2002, the IEEE Ethernet standard quickly migrated from a top spedabdvbps to 10
Gbps, at a hundred-fold rate, while in the same period the 18-month dotdikngf
Moore’s Law indicates a mere 25x increase in transistor defMdpre's Law). It was
reported that IEEE Ethernet standard group has released 40@dpslO8Gbps
specifications and corresponding products will be arriving in thefoaae [21]. Figure
1 depicts the relative increases of transistor density amebriebandwidth. This graph
shows that the rate of increase in network bandwidth is much hilgherthe rate of

increase in transistor density.
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Figure 1.1: Network speed rates versus Moore's Law

Unfortunately, even as nearall server platforms completed the transition t
Gigabit Ethernet (1GbE), the adoption of 10 Gig&tihernet (10GbE) has been Ited
to a few niche applicatio [26, 91] not to mention the upcoming higher speed netw
like 40GbE and 100GbE. For indance, as of 2011, only 1.2% of the top !
supercomputeradopt 10GbE as their interconnect, but 44.2% aterdonnected witl
1GDbE networks [87]. Hitorically, the propagation of 10GbE has been caimsd by the
cost of network interfaces and proces capability of gaeral purpose platform:As
hardware develops as fast as Moore’s Law, the abstOGbE connectivity will b
reduced to an affordablevel for network developmeint the near futur[91]. Therefore
the mismatch of hosprocessing capac with the network bandwidth becomes -
biggest challengdn the following sulsections, we will discuss major challengesed

by the deployment of high speed networks on ser
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1.1 Challenges in TCP/IP Packet Processir

As network speed increases very fast ratethe host computer systems at the endp
of these highspeed Ethernet connectic should be designed tfficienilly process the
packetsThe packet processing is accomplished through @®/IP protocol stack of tr
operating system (OS) aINIC device driver, etc that introduce laroverheads while
receiving the packetérom Ethernet networ Unfortunately, traditional architectur
desigqns of processors, cache hierarchies and systennconteectsare focused on
CPU/memorymtensive applications, and have often been deeauplrom /O
considerations being inefficient for TCP/IP packetcessin (a.k.anetwork processir

in this study). Itwas reporte that TCP/IP packet processing in the receive side

10GbE easily saturatesvo cores of an Intel Xeon Quad-Copgocessc [46, 49].

Assuming ideal scalability over multiple coresconventionalservers, TCP/IP pack

processing over upcang 40GbE and 100GbE will saturate 8 and 20 caesgpectivel

(Fig. 1.2).
25
20 -
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Figure 1.2: TCP/IP packet processing performance

3



Although a wide spectrum of research has been trying to imphevefficiency of
TCP/IP packet processing on the network server [1, 6, 31, 63, 77, 92, 93, 9Mm&H],
of them focused on the data copy overhead and did not introduce a camsprehe
solution for the problem. Based on extensive experiments and studieséyears, the
community gradually realizes that the interactions among platfade hardware
components, hardware-software interfaces and inter-softwareac#erisuch as those
between device drivers, the operating system and applications, render catgustiulti-
dimensional problems that cannot be easily addressed [6, 7, 53]. Aeatmngive
solution across the hardware platform and software stack rdusereixclusive efforts
from either side is necessary to satisfy the processiqgremnent introduced by the 10X

or more increase in the upcoming 40Gbps/100Gbps networks.

1.2 Challenges in Network Interface Designs

Despite the rapid increase in available network bandwidth, NiCservers are still
considered as peripheral devices connected through standard PCIsEREeE) bus
[69]. By using DMA engine, NICs read/write network packets ftonmhain memory
over long latency PCI-E interconnect bus.

Although PCI-E bus bandwidth continued to improve in the past few yesars, i
latency is degraded by up to 25X over earlier PCI-X incarnatioostly due to complex
PCI-E transaction layer protocol implementation [62]. It was tedahat up to ~2200s
is needed for a round-trip traversal over PCI-E bus [62]. The lalegda traversal
substantially increases the processing overhead of DMA engitlieogh PCI-E

pipelined transfers help payload, they do not work for descriptorshefgork traffic



becomes intensive, DMA engine is heavily stressed [90]. Lorgdgtdescriptor fetches
also make the need for large NIC hardware buffers or queues pioremity keep packets.
Moreover, in order to leverage conventional CMPs for packet processgly speed
NICs typically introduce a large number of receive/transmX/{X) queues and allow
each core to have a dedicated RX/TX queue. For instance, an Intel 82599 1@GSbhasNI
128 RX/TX queues for each port for CMPs, corresponding to 512KB and 160KBsbuffe
[36]. All of these complicate NIC designs and pose a big aigdleTherefore, a new
server 1/O architecture is required for high speed networksckbetéhe TCP/IP packet

processing challenge while simplifying NIC hardware designs.

1.3 Challenges in Network 1/0O Virtualization

Virtualization has become an integral component of the modern dai@rs. By
introducing hypervisor or virtual machine monitor (VMM), a new thinelapetween
operating system (OS) and hardware platforms, it provides numentual machine
(VM) transparent services [5, 16, 24, 74], such as VM replication, ciy@dkpoint, live
migration and quality of service to guarantee service levedeagent. Although the
emergence of virtualization has been a promising solution toveankr consolidation
and cloud computing, the virtualized network performance lags significbehind the
performance in native systems operating directly on physivadetke It was reported that
virtualized TCP/IP packet processing over 1GbE network consumdes d4@x CPU
cycles than TCP/IP packet processing on native environment [59, 60, Bit is

because of high cost of virtualizing network I/O devices in soéwarallow multiple



guest VMs to share a single NIC device in a secure mann&us, Tnore efficient

network 1/O virtualization is required for high speed networks.

1.4 Overview of the Research

The goal of this study is to accelerate network processn@@P/IP packet processing)
in server architectures without introducing high hardware complekayachieve this

goal, we propose several new I/O solutions to tackle all of thdéenlas mentioned
above.

In the first part of this study, we performed per-packet processing overhead
breakdown by running a network benchmark over 10GbE on Intel Xeon Quad-Core
processor based servers. We find that besides data copyritbe and buffer release,
unexpectedly take 46% of processing time for large I/O simdseven 54% for small 1/0O
sizes. To understand the overheads, we manually instrumented theaddv®S kernel
using hardware performance counters [34, 38]. Unlike existing profiholg attributing
CPU cost such as retired cycles or cache misses to funf@@ns8], our instrumentation
is implemented at the fine-grained level and can pinpoint data imguie cost. Through
the above studies, we obtain several new findings: 1) the major nepsackssing
bottlenecks lie in the device driver (>26%), data copy (up to 34% depending sizd&)
and buffer release (>20%), rather than the TCP/IP protocdfi iBjein contrast to the
generally accepted notion that long latency NIC register acmsilts in the driver
overhead [6, 7], our results show that the overhead comes from mdaltsryosnetwork
buffer data structures; 3) releasing network buffers in Odtsesn memory stalls to in-
kernel page data structures, contributing to the buffer releasehead; 4) besides

memory stalls to packets, data copy implemented as a sériead/store instructions,



also has significant time on L1 cache misses and instructiorutexec Moreover,

keeping packets in caches after data copy, which will not bedddd, 82], pollutes
caches. Prevailing platform optimizations for data copy liked Cache Access (DCA)
[31] are insufficient for addressing the copy issue.

Thesecondpart of our study is to propose new server I/O architecturacidet the
TCP/IP packet processing performance challenge whilecreg NIC design hardware
complexity. In the proposed server I/O architecture, the respotysitut managing
DMA descriptors is moved to an on-chip network engine (NEngifiég on-chip
descriptor management exposes plenty of optimization opportunitiesextending
descriptors to include information about memory stalls during networlegsow. When
the NIC receives a packet, it directly pushes the packet iBtgyide without waiting for
long latency DMA descriptors fetches. NEngine reads extendestigtess to obtain
packet destination location and information about data incurringanyestalls. Then, it
moves the packet into the right memory location and checks whe#t@rresides in
caches. If not, NEngine sends data address to the hardwaetclpref facility for
loading data. To address the data copy issue, NEngine moves paydabed last level
cache (LLC) and invalidates source cache lines after the motembe new /O
architecture allows DMA engine to have very fast accesdescriptors and leverages
CPU caches to keep packets rather than the NIC buffers. Thisn dagigtantially
eliminates burden on the DMA engine and avoids extensive NIC bubgets;ularly for
high speed networks. The new server I/O architecture amescatitmajor performance
bottlenecks of network processing and simplifies NIC designs, maedngral purpose

platforms well suited for high speed networks.



It was extensively reported before that integrating a MG CPU die is able to
significantly reduce the TCP/IP packet processing overhead, mainly cheeles$ access
latency to NIC registers [6, 7]. In thiird part of this study, we started with detailed
performance evaluation on a real Sun Niagara 2 platform with ntegrated 10GbE
NICs [83, 84] to fully compare the performance of an integrat€ti (WIC) and a PCI-E
based discrete NIC (DNIC). In our experiments, we observeltedNiC only shows its
advantage over the DNIC with large 1/O sizes. It improves otwandwidth by 7.5%
while saving 20% in relative CPU utilization. We charactersystem behavior to
understand the performance benefits with respect to different nwhbennections, OS
overheads, instruction counts, and cache misses etc. All ofunligsteveal that there is
only marginal performance benefit of integrating NICs onto @R More aggressive
integrated NIC designs are requiréde therefore proposed an enhanced integrated NIC
(EINIC) for high speed networkBy leveraging fast interactions between CPU and INIC,
we redesign CPU/NIC interface from hardware DMA to softwanggram 1/0O (P10).
Additionally, we deploy several processing optimizations ciigiently by first
evaluating their software implementations: Receive SidarigcéRSS) [76] in hardware
and Large Receive Offload (LRO) [27] in the driver. In addition.als® develop an 1/O-
aware LLC to avoid cache interference from other applicatiomd, aptimize cache
coherence protocol to reduce unnecessary write-backs of network @atal/O-aware
design splits LLC into I1/O cache and general cache at tlyelaval to eliminate cache
interference. In order to meet various incoming rates, OS orclesstingt quota of the 1/0

cache according to the number of replaced cache lines but untouched by network stack.



Thefourth part of this study is to understand the challenges of peiesedata TCP
control block (TCB) on TCP/IP packet processing when there are ahdsisof
concurrent sessions like in web servers. Through our analysisalizedethat TCB data
poses a great challenge in web servers and should be efficieantiyged for fast packet
processing. Then, we propose a new TCB cache addressed by sdssidiers to
address the challenge. We carefully redesign the TCB céohg &®vo important axes:
cache indexing and cache replacement policies. First, we propuseg eache indexing
scheme for our TCB cache by employing twoiversalhash functions [12]. Second, by
leveraging characteristics of web sessions [4, 15, 19], wedesspeculativecache

replacement policy, which can effectively work on our TCB cache with two dzaufies.

In thefifth part of this study, we extended our research to the virtualizégiorain,
which has gained resurgent interests recently. We startdd deitailed per-packet
processing overhead breakdown in virtualized environment. We realizethéhna are
two major bottlenecks introduced by network 1/O virtualization: 1) los@ds on moving
packets while processing packets in virtualized environmegt gacket copy among
driver domain and guest domain, kernel-to-user packet copy insidedpraain); 2) the
overhead of virtual switch in driver domain to de-multiplex packetstivdted by the
studies, we first develop two VMM scheduler optimizations to improvkgtanovement
overheads by co-scheduling the driver domain and guest domain intantigecsche
domain and stealing credits from idling VCPU to favor I/0O VCPW&e design and
implement a simplified virtual switch in an Intel Xeon seneesignificantly reduce the

switching overhead in Xen [60, 61]. Furthermore, in order to eli®ioache misses on



packets along the packet movement path, we extend DCA by considekihg V
scheduling information to accurately inject incoming packets intoescowhere

corresponding guest domains are running.

1.5 Outline and Contributions

This study does detailed performance analysis of network progesgar high speed
networks and then provides several effective network 1/0O solutionsdtivess the
challenges from network processing. The major contributions of stiidy can be
summarized as follows:

e We conduct NIC driver and OS instrumentation at a very fine-ggdalavel to
fully understand the TCP/IP packet processing overhead &O&bE on
mainstream servers. We pinpoint several bottlenecks and make newatibsst
which have never been reported before. The research is presented in Chapter 3.

e We propose new server I/O architecture to tackle the performancengealisile
simplifying NIC hardware designs. In the new architecture, ADNescriptor
management is shifted from NICs to an on-chip network engine auligters
are extended with information about data incurring memory stallsnd@Wweserver
I/O architecture not only addresses the network processintertpal but also
reduces hardware design complexity. The research is presented in @hapter

e We fairly compare performance of INIC and DNIC on a real Siegara 2
platform with two integrated 10GbE NICs in detail to completely tstdad the

benefits of an integrated NIC. Then, we propose an enhanced intelyiated
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(EINIC) on multi-core processors to provide highly efficient netwandcessing.
The research is presented in Chapter 5.

We analyze the challenges of TCB in web servers with thousanomofirrent
sessions, and then design a dedicated TCB cache to efficiemtgmaCBs for
web servers. The TCB cache is designed along two hardwaretamasniversal
hash functions based cache indexing apdculativecache replacement policy.
The research is presented in Chapter 6.

We do a detailed performance analysis of network /O virtuatizatbn
conventional multi-core systems over 10GbE, and then propose both system
optimizations on VMM scheduler and software switch, and effichemtiware
support (extending DCA by considering VMM scheduler information todavoi
cache misses on packets) to address the network I/O virtuahizdtallenge. The

research is presented in Chapter 7.
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Chapter 2

Background and Related Work

2.1 TCP/IP Packet Processing

TCP/IP over Ethernet is the most dominant communication protocol in eonain
servers such as web server, e-commerce, database, storage eterURlike traditional
CPU-intensive applications, TCP/IP packet processing is I/O-iwendt involves
several platform components (e.g. NIC, PCI-E, 1/0 Controllemnmeemory, CPU) and
system components (e.g. NIC driver, OS). The processing iretleéve side has much
higher processing overheads than in the transmit side, consuming thoo$aDBY)
cycles for each incoming packet. In this subsection, we revisingheork receiving
process.

In the receive side, an incoming packet starts with ti@d¥iver interaction. The
RX descriptors (typically 16 bytes each), organized in circulagsy are used as a
communication channel between the NIC driver and the NIC. The drilethe NIC
through these DMA descriptors, where in the memory to copy the ingopaickets. To
be able to receive a packet, a descriptor should be in “readg, sthich means it has
been initialized and pre-allocated with an empty packet buffer (BfBer in Linux)
accessible by the NIC [11]. The SKB buffer is the in-kernélvagk buffer to hold any

packet up to MTU (1.5 KB). It contains an SKB data structur4&f bytes carrying
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packet metadata used by the TCP/IP protocol and a DMA buff2rki8 holding the

packet itself.

NIC Driver
A A @
Skb conyersion | Allocate new skb
buffers
Read 4
Write Interrupt
Enable | Cause *
Mask A » TCP/IP Layer
(ue) buf
s) 5 \/
Interrupt @ Wite Received | & A0l skb
CPU @ Data
Read RX ot
v Descriptors | buf
NIC Skb Buffer

@ Receive
Data

Figure 2.1 Driver/NIC Interaction

The detailed interaction is illustrated in Figure 2.1. To transfeeived packets, the
NIC needs to fetch ready DMA descriptors from main memoer ®&CI-E bus to know
the DMA buffer address (step 1). When the NIC receives Ethéraetes from the
network (step2), it transfers the received packets into sjoreling DMA buffers
(denoted asouf in Fig.2.1) using DMA engine (step 3). Once the data is placed in
memory, the NIC updates descriptors with packet length and marks them asesddl. (s
Then, the NIC generates an interrupt to kick off network proogssi€PUs (step 5). In
the CPU side, the interrupt handler in the driver reads the NISteedo check the
interrupt cause (in step 6). If legally, the driver reads descsiptib obtain packet’s
address and length, and then maps the packet into SKB data str{stiepes). After the

driver delivers SKB buffers up to the protocol stack, it rein#edi and refills used
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descriptors with new allocated SKB buffers for incoming packetfie near future (in
step 8). Finally, the driver re-enables the interrupt byngethe NIC register (step 9).
After the driver, SKB buffers are delivered up to the protocolkst@nce the protocol
stack finishes processing, applications are scheduled to move paxketsrtbuffers.

Finally, the SKB buffers are reclaimed into OS [10, 11].

2.2 Research in TCP/IP Packet Processing

It is well documented that Internet servers spend a signifpzatibn of time processing

packets [1, 6, 7, 22, 28-30, 44-46, 48-54, 66, 92-96]. A wide spectrum of research has

been done on this topic to understand the overhead [7, 58, 64, 92, 93, 94]. &aium
[64] used a cache simulator to study cache behavior of the T@RfiEtol and showed
that instruction cache has the greatest effect on network paricenSimilarly, Zhaet
al. [93, 94] revealed that packets and DMA descriptors exhibit npdsahlocality. Xie
et al. [92] analyzed instructions characteristics of TCP/IP protowalksand proposed
several new instructions for the protocol stack. Binkesl. [7] did performance analysis
of system overheads in TCP/IP workloads by using a full systamiator [8]. Makineni
et al. [58] conducted architectural characterization of TCP/IP protgss the Pentium
M microprocessor with 1GbE and concluded that the receive side s mme memory-
intensive than the send side. Unfortunately, they built their studieaatr® simulators or
used low speed networks, and did not conduct a system-wide architectahgis for
high speed network processing on mainstream platforms.

In addition to the above performance analysis, extensive sthdies also been

conducted to improve TCP/IP packet processing performance. They chrodmy
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grouped into hardware optimizations and software optimizations.

2.2.1 Hardware Optimizations

Hardware improvement for TCP/IP packet processing performaaedeen done from
different dimensions. Offload support in NIC includes TCP Segmenté&iifload (TSO)

[36, 37], Interrupt Coalescing [36, 37], Receive Side Scaling (RS$)de Receive

Offload (LRO) [27], TCP/IP Offloading Engine (TOE) [13, 25, 32].&i80 in NIC has

been proposed long time back to segment a large message fronatap@iinto several
smaller packets of size up to MTU, saving CPU cycles whieloaginally dedicated to
TCP stack processing. Interrupt coalescing is also used on modarspagd NICs to
moderate interrupt frequency by issuing a single interrupt oncepraupackets have
been received or transmitted. RSS is another hardware techniqogedep hardware
NICs to distribute incoming packets across multiple cores b@sdlde connection level.
With the support of RSS, multiple cores are be leveraged toglemalpacket processing
and cache locality is also considered while processing packets.

Since packet rate in 10GbE is so high, even the slightest improvémger-packet
processing benefits the overall I/O performance. Thus, LRO is mdposhardware
NICs to reduce the overhead by aggregating multiple in-ormde&ming packets from a
single stream into a larger fragmented packet. It is recenplemented in software as
an alternative to hardware assistance. Going further, TOE adfldee whole network
stack into hardware NIC and would work for high bandwidth, low latency apioiis,

particularly IP storage network with RDMA support. However, thertegle itself has
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been somewhat controversial because of the overhead in its saftveaface as well as
security and extensibility concerns [25].

In addition to the above hardware offload in NIC, numerous studies hawme bee
conducted from the architectural perspective to reduce the dataeeghead [1, 6, 7, 31,
63, 77, 85, 95]. Mukerjeet al. [63] put a NIC in coherent memory to improtree
performance by facilitating burst transfers of whole cacloeksl and reducing control
overheads. The Joint Network Interface Controller (JNIC) [77], lnoilative research
project between HP and Intel, was designed to explore high paricemin I/O
operations. They built a system prototype by attaching 1GbE NIGohdide bus. Zhao
et al. [95] designed an off-chip asynchronous DMA engine close to mainomyeta
move data inside memory. The similar idea has been implementeieli platforms with
the Intel I/OAT technique [1], but has been widely criticizethotustry because memory

stalls are still incurred when applications read packets from memory.

To eliminate memory stalls to packets, Intel proposed DCA tee roetwork data
into CPU caches [31], and implemented it in Intel 10 GbE adapterseavel shipsets.
Its performance evaluation on real servers has demonstrateccasdedduction in data
copy [45, 46]. Recently, Tangt al. [85] claimed that DCA might incur cache pollution
on small LLC and introduced two cache designs (a dedicated DMA cacheted ways
of LLC) to keep packets. Binkeet al.[6, 7] integrated a redesigned NIC to reduce the
processing overhead by implementing zero-copy and reducingsaleteacy to NIC

registers.
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2.2.2 Software Optimizations
Software optimizations for network processing have also been ayglgsexplored as
an alternative to advanced, more costly hardware.

When concurrent processing units are provided, it is intuitive to ruR/IPC
processing on an independent computation resource, which is tightly cavptethe
application processor. Instead of using network processor to processknatific or
offload the whole TCP/IP stack onto NIC, one of the cores on a-ourki CPU can be
bound to work with network processing, while other cores can run apphs such as
http requests and/or scientific computations. To distinguish from Ti@Hast category
is named “TCP Onloading” [26, 28]. Although the idea of TCP onloading sounds
intuitive, most of such available designs require a large amoumharfiges in the
operating system level, particularly in the TCP/IP protocatkstAlso, open problems
like inter-core communication, mutual influences of processes fareliff applications
still remain unsolved.

With little hardware support from NIC, Shal@t al. [80] proposed a loosely
coupled TCP acceleration framework to separate out TCP fdstapd optimize TCP
fast path processing in software. LRO, a technique to ce@aksall receiving packets
into a large single packet, can also be deployed in the NVW@rdo reduce the number of
packets delivered up to network stack. Another technique, called zerpalopiates
memory copying by directly mapping packet payload in kernel to lusiéer and saves
memory access penalties [11]. However, it requires that alllugters should be page

aligned for the mapping of kernel to user space, thus limiting its wide deplayment
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2.3 Network 1/O Virtualization

Virtualization is a broad term that refers to the abstractigghg$ical computer resources.
A typical virtualized platform consists of a software virtuahamine monitor that
“virtualizes/abstracts” the physical resource of the platfamd provides a simulated
environment that appears to the operating system as hardwaveorkeirtualization
was invented and implemented in IBM’s System/360 and System/370 [GH.Viztual
machine in these initial virtualized architectures wasusxeely assigned a particular set
of physical devices. Data transfer relied on channel pragmxecuting in the VMM,
which ensured resource isolation.

Despite the high performance through private 1/0 access, thig oeglication of
physical devices for each virtual machine limited per domainzatitin. As a result,
research in Xen [5] designed shared access to devices mutdarla dedicated software
entity to perform physical device management. This paper focus#dteanost popular
open source virtualized system Xen.

Fig. 2.2 is an illustration of the Xen VMM. The VMM provides dstaaction layer
between the VMs and the actual hardware, leaving each guesin\ilMision of running
independently on native hardware. A privileged VM (driver domain or Dam@3 a
modified version of Linux that uses native Linux device drivers toaga physical I/O
devices. Other VMs (guest domain or DomU) transmit and receiwke{s by

communicating with DomO through shared memory I/O channels.
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Figure 2.2: Network I/O Virtualization in Xen

Once a packet arrives at the NIC, it generates an intefifiaptVMM then forwards
the interrupt to the Dom0O. When DomO acquires CPU, it DMAs the pactcetthe
reception 1/O ring. After de-multiplexing the packet through th&tete Ethernet Bridge
to an appropriate back-end driver, Dom0O employs a data copy mechaynidefault to
directly copy data from the back-end driver to the front-end drivéine corresponding
DomU. Once the packet reaches the front-end driver in DomU, bac#red requests
the VMM to send a virtual interrupt to notify the target domaithef new packet. Then

the packet is processed from the kernel space to the user sjiamedfas if it had come

directly from the physical NIC.
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2.4 Research in Network I/O Virtualization

Since the birth of VM, research in improving virtualized /0O perfance never faded
away. We summarize previous works into two categories: hardararetecture and
system optimizations.

Numerous studies have been done in server architectures tondffi¢eckle the
network 1/O virtualization challenge. In industry, Intel [35, 39] offloantgial switch (or
packet de-multiplexing) from the driver domain to hardware NIC depmoys multiple
gueues to allow guest OS to directly access hardware quauasler to avoid memory
protection and address translation overheads in software, hardwaMU(@3, 39] was
proposed and incorporated into server platforms. Recently, PCI-E stagdaug
proposes single root 10 virtualization (SR-IOV) [70] to selfudtize a physical device
into multiple lightweight PCI-E devices, significantly avoiding I/@rtualization
overheads.

For system optimizations, Ongaro et al. [67] sorted the domaihgivatsame states
in the runqueue based on their remaining credits rather than apitnaert the new
domain at the end of each state section. However, they focused tartiess of 1/0
performance with 1GE network and did not consider the VMM scheduleraorstream
multi-core systems where behaves significantly differesrhfrsingle core systems. With
the same optimizations on our experiment environment under 10 GbE, wadtnithe
blocking of scheduler tickle adversely glooms the 1/O performagaefactor of 100 and
the runqueue sort does not make any difference for /O performaraddition to VMM

scheduler optimizations, lots of engineering optimizations havebakso implemented to
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improve network 1/0O performance in virtualization environment. Megtaal. [59, 60, 61]
analyzed virtualization performance overhead and then implemented rausme
optimizations (e.g. reusing grant table, using large pagersiaang data copy to guest
etc) to bridge the gap between software and hardware techriaquié® virtualization.
Guoet al.[30] designed cache-aware scheduling for virtualization to impr@eserver
performance. Liu et al. [56] adopted virtualization technolog\HBC and allowed each
domain to directly access the high performance network. Howevertdhgeted to the
high performance network InfiniBand rather than Ethernet Networkther&et Network,
some researches including Crossbow [18] tried to address the perternssues by
taking advantage of the new Ethernet NIC features like mulligl&X queues to allow
domains to directly access the hardware. They heavily rely cdwhee and hence
sacrifice the features of portability and live migration, twajor incentives for deploying

virtualization in high end servers.
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Chapter 3

Understanding TCP/IP Packet Processing Performance

Bottleneck over 10GbE

The performance of the TCP/IP network stack plays a crucmlimahetwork servers. In
order to identify the performance problems in network stack, thgtehtrst profiles the
whole running system while processing packets over 10GbE networks ain qiet-
packet processing overhead breakdown. Then, we do fine-grained insgtatiorein NIC
driver and OS kernel to conduct a detailed performance charatterizalhe
performance problems identified in this chapter serve as a motiviar the new I/O

architecture in Chapter 4.

3.1 Experimental Setup

We conduct extensive experiments to understand network processingaoisedeer
10GbE across a range of I/O sizes. Both SUT (System underafesgtress machines

are Intel servers shown in Figure 3.1. Each server containQuwad-Core Intel Xeon

5335 processors [38]. Each core is running at 2.66GHz frequency and each prosessor ha
2 LLCs of 4MB each shared by 2 cores. The servers are conngcteo IPCI-E based

Intel 10Gbps XF server adapters [37]. They ran Linux kernel 2.6.21 and Intel 10GbE NIC

driver IXGBE version 1.3.31. We retain default settings of the Lmetwork subsystem
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and the driver, unless stated otherwise. Note that LRO, a techniqueottize the per-
packet processing overhead by combining multiple in-order packeta latge packet, is
enabled in the driver. Stream hardware prefetcher employimgraory access stride
based predictive algorithm is configured in the servers [38]. énetkperiments, the
micro-benchmark Iperf with 8 TCP connections is run to generatgoriettraffic
between servers (SUT is a receiver). We find from the expeatsrthat one core with
4AMB LLC achieves ~5.6Gbps throughput and two cores with 8MB LLC atgated to
obtain a line rate throughput. The high processing overhead motivatesdresakdown

the per-packet processing overhead.

coare a care 2 care 1 care 2

| Lzcache | | Lzcache |

| Lzcache | |  Lzcache |

||:|:|re4 | | n:u:urea| Care 5 core ¥
socket 1 Socket 2

Figure 3.1 Intel Xeon servers

3.2 Per-Packet Processing Overhead Breakdown

We use the tool Oprofile [68] to collect system-wide function owadbevhile Iperf [33]

is running over 10GbE. We group all functions into components along therketw
processing path: the NIC driver, IP, TCP, data copy, buffer eslegistem call and Iperf.

All other supportive kernel functions such as scheduling, context switltesare
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categorized as others. Per-packet processing time breakdcaicutated and illustrated
in Figure 3.2. Note that I/O sizes are not packets over Ethandetarge 1/Os larger than
MTU (1.5KB on Ethernet) are segmented into several packets (<=MTU).

We obtain the following observations from Fig.3.2: 1) the overhead & agiy
increases as the 1/0 size grows and becomes a major bottigitedkrge 1/0s (>=256
bytes); 2) the driver and buffer release consume ~1200 cycles 14t €ycles per
packet, respectively, regardless of 1/O sizes. They correspond to a@@%0% of
processing time for large 1/0Os and even higher for smah; &) the TCP/IP protocol
processing overhead is substantially reduced because LRO esafasttiple packets
into one large packet to amortize the overhead. Fig.3.2 reveals ghdedeata copy,
high speed network processing over mainstream servers has amathandxpected
major bottlenecks: the driver and buffer release.
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Figure 3.2 Per-packet processing overhead breakdown
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3.3 Fine-Grained Instrumentation

The Oprofile in

Subsection 3.2 does
profiling at the coarse-
grained level and
attributes CPU cost such

as retired cycles and

cache misses to functions.
It is unable to identify data or macro incurring the cost. In otddocate the cost, we

manually did fine-grained instrumentation inside functions. The environnment

Table 3.1: Instrumentation example

Coarse-grain

Fine-Grain

INSTRUMENT(Counterl)
ixgbe_clean_tx_irg()
INSUTRUMENT(Counter2)

ixgbe clean_tx_irg()
{
INSTRUMENT(Counter3)
Code Segment 1
INSTRUMENT (Counterd)
prefetch(skb->data - NET_IP_ALIGN);
INSTRUMENT (Counter5)

INSTRUMENT (Counter6)

}

Subsection 3.2 is used. Table 3.1 shows one instrumentation example iivéheVile

first measure the function's cost and then do fine-grained instranoenfor every code
segment if the function has considerable cost. We continue to instrieaeh code
segment with considerable cost until we locate the bottlenecksin€tmnmentation is
applied to all functions along the processing path. Most of eventobeeted including
CPU cycles, instruction and data cache misses, LLC misEEB, misses and DTLB

misses etc. Since large I/Os include all three major overhdasissubsection presents

the detailed analysis for the 16KB I/O.

3.3.1. Driver

The driver comprises of three main components: NIC registesa¢step 6 and 9), SKB

conversion (step 7) and SKB buffer allocation (step 8), as showigiB.E Existing

studies [6, 7] claimed that NIC register access contribotéiset driver overhead due to
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long latency traversal over PCI-E bus, and then proposed NIC atitggto reduce the
overhead. In this subsection, we architecturally breakdown ther aneghead for each
packet and present results in Figure 3.3. In contrast to the ganeegted notion that the
long latency NIC register access results in the overheadhE'hreakdown reveals that

the overhead comes from SKB conversion and buffer allocation. Althoughregi€ter
access takes ~2500 CPU cycles on mainstream servers, ~60spaek@rocessed per
interrupt over 10GbE (~7 packets/interrupt over 1GbE) substantialtyrtiamg the
overhead. In addition, Fig.3.3 also reveals that L2 cache missak/mesult in the SKB
conversion overhead and long instruction path is the largest contributor of the SKB buffer

allocation overhead.
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Figure 3.3 Architectural breakdown
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Figure 3.4 L2 miss sources in step7
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Since L2 cache misses in SKB conversion constitute ~50% of ther drverhead,
we do detailed instrumentation to identify data incurring thoseesid&'e group data in
the driver into various data types (SKB, descriptors, packet headdrother local
variables) and measure their misses. The result presentedune Big reveals that SKB
is the major source of the memory stalls (~1.5 L2 misses/pank8KB). Different from
prior studies [6, 7], the memory stalls to packet headers are hagdieaverlapped with
computation because the recent driver uses software prefetchctiosts to preload
headers before they are accessed. Unfortunately, SKB access otlcargeay beginning
of the driver and software prefetch instructions cannot help. AltholdA Dvalidates
descriptors to maintain cache coherence, the memory stalls tgptiescare negligible
(~0.04 L2 misses/packet). That is because each 64 bytes wechar host 4 descriptors
of 16 bytes each and hardware prefetchers preload several coreséestiriptors with a
cache miss. To understand the SKB misses, we instrument kersaldy its reuse
distance over 10GbE. It is observed that SKB has long reuse di§t@24@K L2 access),

explaining the misses.

3.3.2. Data Copy

After protocol processing, user applications are scheduled to akets from SKB
buffers to user buffers. Data copy incurs mandatory cacheesn@s payload because
DMA triggers cache invalidation to maintain cache coherence harsdcbnsumes a large
number of CPU cycles. We study its architectural overhead breaka@s shown in
Figure 3.5. 16KB I/O is segmented into small packets of MTUW @adhe sender and

they are sent to the receiver. Fig.3.5 shows that L2 cachesnaiss¢he major overhead
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(~50%, ~3.5 L2 misses/packet), followed by data cache misses (~27%jsse3/packet)
and instruction execution (~20%). Although DCA implemented in lettmt platforms
avoids L2 cache misses, it is unable to reduce overheads in hé wagses and a series
of load/store instructions execution (total ~47%). Due to thel drhadache size, routing
network data into L1 caches would pollute caches and degrade penfmnd6, 85].
Moreover, since packets become obsolete after data copy [11], loadingirttze L1
caches or keeping them in L2 caches may evict other valuatéetd incur cache

pollution. Hence, more optimizations are needed to fully address the data copy issue
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Figure 3.5 Data copy breakdown
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Figure 3.6 Buffer release breakdown
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3.3.3. Buffer Release
SKB buffers need to be reclaimed after packets are copiedetoapglications. SKB
buffer allocation and release are managed by slab allocathr Thé basis for this
allocator is retaining an allocated memory that used to coatalata object of certain
type and reusing that memory for the next allocations for anothest @bjthe same type.
Buffer release consists of two phases: looking up an object cachellerrgnd releasing
the object into the controller. In the implementation of slab allocah® page data
structure is used to keep cache controller information and reaugydhe object cache
controller lookup. This technique is widely used by mainstreans@® as FreeBSD,
Solaris and Linux etc.

Figure 3.6 shows architectural overhead breakdown for bufferseel®de observe
from Fig.3.6 that L2 cache misses are the single largegsilnator to the overhead (~1.6
L2 cache misses/ packet). Similarly, we analyze data sowfck2 cache misses and
present results in Figure 3.7. The figure reveals that L2 cads=snare from the 128
bytes in-kernel page data structures. The structure reuaaadistnalysis shows that it is
reused after ~255K L2 cache access, explaining the cache misses.
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Figure 3.7 L2 miss sources.
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The above studies reveal that besides memory stalls tq gseli packet incurs
several cache misses on corresponding data and has considerabtepabverhead.
Some intuitive solutions like having larger LLC (>8MB for 10GbE)eatending the
platform optimization DCA might help to some extent, but they hagagr limitation.
Our simulation results show that, without considering application meriomtyprint,
16MB LLC is needed to avoid those cache misses of packet processm@O&ieE.
When network jumps to 40GbE and beyond, increasing LLC becomes a@ctiveff
solution. More importantly, it is unable to address NIC challermgesthe data copy
issue. Unlike increasing LLC, extending DCA to deliver both packetsthose missed
data from NICs into caches is more efficient in avoiding memtals. Unfortunately, it
stresses NICs more heavily and degrades PCI-E efficiehpgcket transfers [69, 70],
and does not consider the data copy issue as well. In orderdk alltahallenges from

continuously increasing network speed, a holistic and intelligent 1/O solstioeeded.

3.4 Summary

In this chapter, we first studied the per-packet processing @ckrbe mainstream
servers with 10GbE and pinpointed three major performance overheaa<ogst the
driver and buffer release. Then, we did fine-grained instrumentatitimeitNIC driver
and OS kernel to do a system-wide architectural analysis. Unlike existisgatbdbuting
CPU cost to functions, our instrumentation was done at the data ayjitgnaind can
pinpoint data with considerable cost. Our studies reveal sevewalfindings: 1) the
major network processing bottlenecks lie in the NIC driver, dapy and buffer release;

2) in contrast to the generally accepted notion that long latedCyrépister access
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results in the driver overhead, our results show that the overhaedy comes from
memory stalls to network buffer data structures; 3) ratgasietwork buffers in OS
results in memory stalls to in-kernel page data structwestributing to the buffer
release overhead; 4) besides memory stalls to packets, datengpd@ynented as a series
of load/store instructions, also has significant time on L1 cadksesand instruction

execution.
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Chapter 4

Repartitioning CPU/NIC

In Chapter 3, we carefully studied the TCP/IP packet pratgssierhead over high
speed networks and pinpointed the bottlenecks. In this chapter, we prop@sesarver
I/O architecture to tackle the performance challenge. In tke If@ architecture, we
move DMA descriptor management from the NIC to an on-chip neteondine and
extend descriptors with information about data incurring memoris.stdlhe new 1/O
architecture is not only able to effectively tackle the peménce challenge, but also
reduce NIC hardware design complexity. Its designs are alaoom the following

subsections.

4.1 New Server 1/O Architecture

The overview of the new architecture is illustrated in Figureld.the new architecture,
we move DMA descriptor management from NICs to an added on-chipnkeéngine
(NEngine) near to LLC. The on-chip descriptor management enabteseasily extend
descriptors with information about data incurring memory stalls.|&irto the memory
controller, NEngine connects to I/O Hub (IOH) for parsing ECtransactions. It
communicates with faster cache hierarchy for DMA descrifgiwhes/writes and packet
movement, alleviating the processing burden on DMA engine. Due topmiosinity to

LLC, NEngine has low communication cost with LLC.
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When NEnNgine receives a packet, it reads descriptors frone ¢éetarchy. Then it
moves the packet into corresponding cache location and preloads thosecdatag
memory stalls. The new architecture exploits LLC to keegkgiacother than multiple
RX/TX queues in NICs. Commodity high speed NICs allow each amrkate one
dedicated RX/TX queue, thus increasing NIC cost and impedingsNi€lability over
cores. The new architecture avoids extensive buffer resourcesdarngseNIC hardware
cost. Moreover, NEngine also implements efficient payload movemsiae LLC and
proactively purges obsolete packet data after data copy to adldeedata copy issue.
The new architecture fundamentally reduces all three majoorpehce overheads of
network processing while effectively simplifying NICs. Thetaled designs are

elaborated in the following subsections.

Core Core Core Core €
v
Cache/Interconnect [P |

CPU

Packet

Figure 4.1 New I/O architecture overview
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4.1.1 NEngine

During network processing, CPUs and NICs communicate through DMéxigtrs. As

the communication channel, DMA descriptors are organized as aacincny. Each

descriptor is 16 bytes and includes packet metadata such as [mugkét memory
address and status etc. In the contemporary /O architectures fét€h or write

descriptors via PCI-E bus before or after packet movement. Hoeigter fetches/writes
have long latency stressing DMA engine [90] and also waséega humber of PCI-E
transactions degrading PCI-E payload efficiency [69, 70]. Thehgn-descriptors
management avoids these issues, and more importantly, enablesasgyt@xend the
descriptors because of much faster communication with cache hier&y exploiting

this design, we extend RX descriptors with information about dataringumemory

stalls: SKB and page data structures, as pinpointed in Section 8xfEmeled descriptors
are illustrated in Figure 4.2. Besides original 16 bytes, the desariptor includes 4
bytes physical address of SKB and internal page data strsiatach. Two hardware
registers in NEngine are dedicated to storing data struttagth in the form of the
number of cache lines. In Linux, SKB is 240 bytes and page steuut28 bytes,
corresponding to four and two cache lines of 64 bytes each, respeclive typical ring

buffer size of 10GbE NICs is 1024 entries and thus the new rinigrbsize only

increases by 8KB.
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Figure 4.2 Extended DMA descriptors

With the new descriptors, the block diagram of NiBags illustrated in Figur4.3.
Besides major components show Fig. 4.3 NEngine also offers dedicated register
keep ring buffer base address and ring pointermdébion as traditional NICs do. Wher
packet arrives at the NIC, without fetching DMA degtors to know memory locatic
for the packet, the NIC ceulates core ID for packet processing using RS Svienel unit
(RSS distributes packets among cores by hashingets 44tuple) and sends tt
packewith core ID into a small buffer in NEngine. Fetdascriptor unit identifies th
corresponding descriptor dress according to the ring base address of the IEband
ring buffer pointers, and then sends a cache request to get the descriptChapter 3
shows that mainstream severs exhibit extremely tegtriptor cache hit ratios even w
DMA invalidation (96%). The o-chip descriptor management avoids DMA invalida
and has a higher descriptor cache hit ratio. Tthesfetch descriptor unit can acces:
descriptors very fast and is much simpler than dhiginal DMA engine. With the
knowledge of memy location and data incurring memory stalls, thetevpacket uni
moves the packet into caches. Meanwhile, the lotbdag unit lookups those data &

loads them if they do not reside in caches. Tdifa® the lookup/load unit, we exte
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the conventional cache architecture with a new cache operktakup Unlike normal
cache operations such as cache read, write etc, the newiapkrakup returns whether
data is in caches, other than data themselves. The lookup/load nodg Isekup
operations to lookup those data. If the data is not in caches, itageEherefetch
commands to the existing hardware prefetching facility dading the data. After the
packet is moved into cache hierarchy, NEngine updates the desstgtias field and
ring buffer pointers for the driver as traditional NICs do.

In addition, NEngine moves payload inside LLC to bypass L1 cauick$o avoid a
series of load/store instructions. Since the source data becomest®ladtdr data copy
[10], NEngine invalidates source cache lines to purge the data. To sw@hfcient
movement, we extend the cache architecture with a new openationread_invalidate
which readscache lines and then does cache invalidation. During data copy)PTCP/
protocol breaks discontinuous physical address ranges into a setsetatve physical
ranges and programs NEngine via three hardware registerslst len. Then, NEngine
breaks continuous physical address ranges into a set of chunks atctie Ime
granularity and generates newad_invalidateoperations to read and invalidate cache
lines. Finally, it writes those data into destination cachesli Our payload movement
differs from prior copy engines [1, 95] as follows: 1) payload mua is done inside
caches and payload in caches is invalidated after movement; 2irtin-to-physical
address translation overhead is negligible because data copy ismdbedS context. In

Linux, less than 10 cycles are needed for the address translation.
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Figure 4.3 Basic block of NEngine

When we come to the transmit side, NEngine reads transmittkdtpdiom cache
hierarchy and transfers them into the NIC over PCI-E bus. @e&IC receives the
transmitted packets from NEngine, the MAC processing units aut@ihatsends them
over Ethernet links. Besides high efficient network processinggd@signs simplify NIC
designs in terms of buffer resource and DMA engine and atkeeePCI-E traffic used

for descriptor fetches/writes.

4.1.2 NIC

In the new architecture, NICs are simplified with less haréwresource. Figure 4.4
illustrates a traditional NIC in the left box and a new NiCthe right box. In the
traditional NIC, the MAC processing unit receives packets fEthernet links and does
RSS to load balance incoming packets among cores/queues at thetioonlegel. The
packets are stored in corresponding RX queues. DMA engine usds tPisactions to

fetch descriptors from memory and to move data from RX queues t@nmyelmterrupt
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coalescing unit will send interrupts to cores when the number ofdrest$ packets reach
up to a threshold set by the driver or a preprogrammed timeresxf@imilarly, in order
to transmit packets, the NIC fetches TX descriptors to know pawdetory location and
moves packets into corresponding TX queues. Then, packets are seftheraet links
and interrupts are sent to cores. In the new NIC, we remove nanggle hardware
gueues and DMA engine marked as grey in the left box. Whenr&®8/es a packet
from the MAC processing unit, it calculates the core assignpddket processing. Then,
the NIC directly sends the packet with core ID to NEngine.il&ino the receive side,
when the NIC receives a transmitted packet, the MAC processihdirectly takes over
the packet for transmission. RSS and Interrupt coalescing urts/ddhe same as

traditional NICs do.

PCI-E transactions

Packet 4 M interrupt
v v PCI-E transactions
PCI-E Interface Packet/core ID T interrupt
1» v v
Interrupt PCI-E Interface
7 ?
RX .. TX RSS Interrupt
4 T |
RSS
16 MAC Processing
MAC Processing NIC
7y NIC v Packet

A Packet

Figure 4.4 Simplified NIC in the new architecture
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4.1. 3. Software Support

The new server I/O architecture inherits the descriptor-basedasefhardware interface
and only needs some modest support from the device driver and the dat@mg@monent.
In the driver, when new SKB buffers are allocated to rBi{l descriptors, besides DMA
buffer address the driver sets starting address of SKB agel geta structures to the
descriptors. When packets finish protocol processing, the data copy reem poograms
NEngine to move payload and waits until NEngine finishes the movemesrte is no

need to modify TCP/IP protocol stack, system call and user application.

4.2 Performance Evaluation

We choose the full system simulator Simics [57] to evaluatelesigns by enhancing it
with detailed cache, I/O timing models and modeling of thectffef network DMA. We
extend the Digital Equipment Corporation 21140A Ethernet device withuhyeod of
interrupt coalescing using Device Modeling language DML to simula®GbE Ethernet
NIC. The device itself is connected to a lossless, full-duplek bf configurable
bandwidth. The latency of a packet traversing the link is simgbdfto 1us Two
systems (client and server) running Linux 2.6.16 are simulated ardanhected with
10GbE. Since the stream hardware prefetcher is the most popufetcipee in
mainstream servers, we employ it in the simulator to speedheaupnemory access of

streamed network data.
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We implemented the new _ ,
Table 4.1 System configurations

I/O architecture and deve|0pe(§9rr:=r:-e-ssc:r Guad-Core, 3GHz, two issue, in-order
ICache/DCache Private ner core, 32KRB 2-waysnlit, 3-cycle hit
a NIC driver in Linux. LRO latency, 64 bytes cache line
L2 Unified Cache 8, 16-way spiit, 14 cycies hit latency, 64 bytes
was Implemented in the drivel’ cacheline, shared by ail cores
Main memaory 400 cyeles
To understand performanC[: Brefetcher Stream prefetch, degree: 4
ifO Register 1600 cycies
impaCtS Of our deSignS or] !nterrupt Coalesce Rate 654 packets per interrupt
NEngine i0cyclesto L2cache
network processing, we first fling buffer 1024 entries/ring

used the micro-benchmark Iperf in the experiments. Then, we btmdymuch benefit
web servers achieve by running the SPECWeb [4] benchmark. In esshoody one
system is of interest, while the other merely servesstiseasor. SUT is configured with
detailed timing models and the stressor runs with the fast émattmode and is not a
bottleneck. The parameters we used in modeling the configuratidistacein Table 4.1.
We are more interested in the relative behavior of thesemgsthan their absolute

performance, so some of these parameters are approximations.

4.2.1 Network Performance

First, we looked at network performance in the receive sideubging Iperf under
various configurations: the original systearig), DCA routing data to L1 cacheBCA-
L1), DCA routing data into L2 cacheBCA-L2), the new server I/O architectunaefy).
LRO is included in all server configurations. Since large IKase all three major

overheads, we present large I/O results in this subsection.
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Figure 4.5 Network throughput
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Figure 4.6 Utilization breakdown

Figure 4.5 illustrates network throughput achieved by various eoafigns. We
also present corresponding core utilization and utilization breakdowigumeF4.6. As
shown in Fig.4.5 and Fig.4.6rig can achieve only ~8 Gbps throughput by consuming
~225% core utilization in the SUT with four cores. Memory subsyssethe potential

bottleneck of achieving line rate throughput and an increase in CR&frpance could
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not further improve throughput. We observe from Fig. 4.6 that data topWIC driver
and buffer release are three major overheads. By injectingprietiata into L1 caches,
DCA-L1 eliminates the memory stalls to packets and obtains lingmataghput using
~200% core utilization. The utilization breakdown reveals that théehigietwork
processing efficiency or throughput/core is from CPU cycleng@svin data copy. Instead
of L1 cachesDPCA-L2 routes network data into a larger L2 cache. It achieves liee ra
throughput and consumes fewer CPU cycles th&A-L1 That is becaus®CA-L1
delivers ~64 packets or ~96KB data for each interrupt into smallaches of 32 KB
each, incurring cache pollution. With high speed networks like 10GbE andd&CA-

L2 is a more practical approach.

Although DCA is able to reduce the data copy overhead, it isleina resolve the
performance issues in other components such as the driver and bletiser&dhe new
I/O architecture not only avoids memory stalls in the driver ancebudlease, but also
further improves data copy performance. Fig. 4.5 and Fig.4.6 dmawttobtains line
rate throughput but substantially reduces core utilization to ~1259%. ulilization
breakdown confirms that the reduction is from the driver, buffeasel@nd data copy.
Compared tdCA-L2which is employed in recent commercial server platfothes new
I/O architecturereduces core utilization by 33%, corresponding to 4iétwork
processing efficiency improvement.

Additionally, we also investigate cache behavior of high speed rlefvocessing
under various configurations in Figure 4.7. As shown in the figurg,only achieves a

92% L2 cache hit ratio. By avoiding the memory stalls to packeothDCA-L1 and
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DCA-L2increase L2 cache hit ratios to 96%. The new architecture almost avoids memory
stalls during network processing and escalates the L2 caclaibita 99%. The higher

L2 cache hit ratio explains the benefits of core utilization showhig.4.6. When we
come to L1 cache behavior, all configurations achieve similamtds excepDCA-L1
andnew Due to small cache sizd3CA-L1results in L1 cache pollution and decreases
the L1 cache hit ratidNew bypasses L1 caches during data copy and has a higher L1
cache hit ratio. Since packet transmitting performance is goifisantly improved, we

don’t present results for the sender side.
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Figure 4.7 Cache hit ratios

4.2.2 Web Server Performance

Second, we studied web server performance by running the web senatmmiaek
SPECweb99 over 10GbE. The same configurations as subsection 4.2.1 welelsed.
server throughput with various configurations is illustrated irufeigt.8. As shown in
Fig.4.8, web server achieves 2.8Gbps, 3.1Gbps and 3.3Gbps throughput in orig1DCA-

and DCA-L2. CPU utilization breakdown in Figure 4.9 reveals that throughpugtases
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are from the CPU cycle savings in network processing. Whertong to the new
architecture, the network processing overhead is further redueeth the elimination of
the memory stalls and more efficient data copy. The improwdork processing

translates to 14% better throughput than DCA-L2.
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Figure 4.8 Web server throughput
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Figure 4.9 Utilization breakdown
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4.2.3 NIC Design Benefits

Besides having highly efficient network processing, the new sé@earchitecture also
simplifies NIC designs by lessening pressure on DMA engime avoiding extensive
NIC buffers. We measure round-trip time over PCI-E bus on mmearst servers and
assume that each PCI-E transaction (typically, 256B transasti®) transfers 16
descriptors. We obtain average per packet time for descrigdfwete by amortizing
the round-trip time over the number of descriptors per transfacke®s themselves can
be transferred in a pipelined way and do not stress DMA enginein¥sg DMA engine
runs at 200MHz, time of a MTU packet spent on DMA engine istilitesd in Figure
4.10. Fig. 4.10 shows that the new architecture substantially anesidbdMA engine
pressure. Although results for DCA configurations are not shown dihveéyt avoid long
latency descriptor fetches/writes and behave the samegadn addition to the benefits
from DMA engine, the new I/O architecture also reduces NIGebsfOur experiment
results show that it only needs 8KB buffer (4KB buffer in the NEngine and 4KBrbnf
the NIC) for the 10Gbps network, but more than 512KB NIC buffer sdee in
traditional /O architectures. With 40Gbps and 100Gbps networks, the f@w I
architecture will achieve much higher benefits. In the nevhiciure, NEngine
essentially behaves similarly to DMA engine but simplifiesigns of DMA engine and
reduces NIC buffers. We believe that the new I/O architectigdelsa overall hardware

cost (CPU+NIC) and is a promising I/O solution for high speed networks.
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4.3 Summary

As network speed continues to grow, it becomes critical to understashdaddress
challenges on mainstream servers. In this chapter, we proposed @eneer 1/O

architecture for high speed networks. The new I/O architecidoresses all three
performance challenges by using extended on-chip DMA descriptods efficient

payload movement. It allows hardware DMA engine to have verly dasess to
descriptors alleviating burden on DMA engine and leverages saoch&eep packets
avoiding extensive NIC buffers. Evaluation results show that the mehitecture

significantly improves network processing efficiency and aclsigvetter web server
performance while reducing NIC hardware design complexity. rGilie trend towards
rapid evolution of network speed in data centers, we view the i@warthitecture as a

promising 1/O solution.
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Chapter 5

Integrating NIC into CPU

In the past decade, both academia and industry viewed thatatimigga NIC into CPU
die is a promising I/O solution for high speed networks [6, 7, 45, 46, 7.7,B88kertet

al [7] first studied performance benefits of NIC integration ambwed the driver
overhead is reduced up to 80% even due to the smaller latency ofeljikZers, thus
improving performance up to 58%. In industry, Sun also releases Niagamessor

[83], afirst general purpose processor integrating two 10GbE NICs.

Existing work on the integration of NICs was evaluated byuktron [7, 8].
Although simulation is flexible, it is hard to fully simulate th@ndwidth and latency of
memory and system bus protocols in real machines. It is alsouttiffor simulators to
capture the whole OS behaviors. Hence, evaluations on real mabbowse critically

important and are complementary to simulators.

In this chapter, we start with performance evaluation on a Sagahh 2 platform
integrating two 10GbE NICs in Subsection 5.1, to fully understand thefitsené
integrated NICs. We realized from our detailed analysistligasimple integration only
gains little performance improvement. Then, in Subsection 5.2, we prop@sganced
integrated NIC architecture (EINIC) with many new architesd features to achieve

significant improvement of TCP/IP packet processing performance.
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5.1 Performance Measurement of an Integrated NIC Achitecture

5.1.1 Sun Niagara 2

The Niagara 2 processor is the industry's first "system onpd’ gacking the most small
underpowered cores and threads, and integrating all the key functianseofer on a
single chip: computing, networking, security and 1/O [83].

As shown in Figure 5.1, it has two 10 GbE NICs (NIU in the figuvgh a few
features. All the data is sourced from and destined to memd&t@ D the parlance.
This means a core sets up the transfer and gets out of th&eagath to memory goes
from the NIU, to the system interface unit (SIU), directlpitite L2 or the crossbar. The

CPU sets up DMA for packet transfers from the NIC to memory.

FBIININ
FEBDIMDMI

FBDIMNIMN

FBIIMNMN

2x10/1
G

Figure 5.1 Niagara 2 Architecture

Niagara 2, known for its massive amount of parallelism, contaigist emall
physical processor cores and each core has full hardware suppeigiit hardware
threads. There are total 64 hardware threads or CPUs from th@e@Pective.
Additionally, each core has a 64-entry fully associative ITLB, a-et#t8y fully

associative DTLB, a 16K L1 Icache and an 8K L1 Dcache wsgp@ativity of the
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Icache upped to eight. The Dcache has four-way associativitysamdte-through, and

all cores share a 4MB L2 cache. This is divided into 8 banks with16-way asstciati

5.1.2 Experiment Methodology

Our experimental testbed consists of a Sun T5120 server connectedntel@nQuad
Core DP Xeon® server, which functions as a System Under Te3t) (8d a stressor
respectively. The Sun server has a Niagara 2 processor, wisid@dHsardware threads
and each hardware thread is operating at 1.2GHz. The Intel $eraetwo-processor
platform based on the quad-core Intel® Xeon® processor 5300 serie8 WiB of L2

cache per processor [38]. Both of the machines are equipped with 16GB DRAM.

Table 5.1 INIC vs DNIC

Features MMILCIMNIC)Y | Meptune (DMNIC)
Transmit DM A =} 12

Channels

Receive DMA =} =}

Channels

Bus interface Mo 8 lane PCI| Express
Bus bandwidth limit | Mo 16 Ghits/s each direction
Transmit Packet Software Software
Classification

Receive Packet Hardware | Hardware
Classification

In order to compare INIC with DNIC, we used two 10GbE network adsym the
SUN server: a discrete Sun 10GbE PCI-E NIC (a.k.a Neptune) [84panah-chip
10GbE Network Interface Unit (a.k.a NIU) [83]. The on-chip NIU hasstimae physical
design as Neptune except it has half less DMA transmit cleanvere information is
shown in Table 5.1. They use the same device driver, and triggerearuphtafter the
number of received packets reaches 32 or 8 NIC hardware clock®lagsed since the

last packet was received. We also installed two Intel 10GbieSAdapters (a.k.a Oplin)
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[37] in the stressor system to connect two network adapters inuthese3ver. All of
discrete NICs connect to hosts through PCI-E x8, a 16+16 Gigabikdufuéex I/O

fabric that is fast enough to keep up with the 10+10 Gigabit/s full-duplex network port.

The SUT runs the Solaris 10 OS while the stressor runs Vamilx kernel 2.6.22.
In Solaris 10, a STREAMS-based network stack is replaced by aménecture named
FireEngine [23] which provided better connection affinity to CPUs,tlgreaducing the
connection setup cost and the cost of per-packet processinggksradl protocol layers

into one STREAMS module that is fully multithreaded.

In order to optimize network processing with the 10GbE network, wel@ssoft
rings per 10GbE NIC by setting the paramgtesoft_rings_cnfor the driver. Soft rings
are kernel threads that offload processing of received mableh the interrupt CPU,
thus preventing the interrupt CPU from becoming the bottleneck. We sét
ddi_msix_alloc_limito 8 so that received interrupts can target 8 different CP&sdés,
we retain the default settings in the device driver without Spgmfformance tuning on

interrupt coalescing, write combining etc.

Micro-benchmarks were used in our experiments to easily igeghgf performance
benefits and avoid system noises from commercial applications [#5,\¥6 selected
Iperf [33] and NetPIPE [65] as micro-benchmarks for measurarglwidth and ping-
pong latency respectively. Because peak bandwidth can be aclwgvedre than 16
connections, Iperf is run with 32 parallel connections on 64 CPUs0Of@econds in all

our experiments, unless otherwise stated.

50



In our experiments, the utilitymstatis used for capturing the corresponding CPU
utilization. We ran toolser_kernel and er_print to collect and analyze the system
functions overhead. Meanwhildusstatand cpustatwere chosen to obtain memory

traffic and hardware statistical information while running the bendmar

5.1.3 Performance Evaluation

In Figure 5.2, we show how the INIC and the DNIC perform with varif@s while
receiving packets. The bar in the figure represents achienatl®rk bandwidth, and the
line stands for the corresponding CPU utilization. It can be olib¢nat the INIC can
achieve 8.97 Gbps bandwidth while consuming 27% CPU utilization with ldgezes.
Correspondingly, 8.31 Gbps bandwidth is obtained by the DNIC with 35% CPU
utilization. The INIC obtains 7.5% higher bandwidth and saves 20%ives|&PU
utilization on average for large 1/0O sizes (>1KB). The edficy of the INIC is close to

the DNIC with small packets. All of the results reveal the integration improves

network efficiency in the receive side only with large 1/O sizes.
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Figure 5.2 Bandwidth & CPU Utilization (RX)
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We studied the performance comparison of DNIC and INIC while rirdinsg
packets in Figure 5.3. Because less time is required in the tbivire INIC to transmit
packets, it is expected that the higher transmitting bandwidtld dmulobtained by the
INIC than the DNIC. However, the INIC does not show noticeable lentefithe
application in terms of network efficiency. It is possibly becatisst, the number of
transmit DMA channels in NIU is half less than that in the Ne@ptl0GbE card (8 TX
DMA channels in the INIC and 12 TX DMA channels in the DINC). Eewhannels
could reduce the capacity of transmitting packets. Second, tignitaside is much less

latency-sensitive than the receive side [6, 93, 94].
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To ease and expedite our analysis of the above observation, we conducted
experiments for comparing INIC with DNIC by running Iperf with vagynumber of
connections rather than 32 connections. Figure 5.4 illustrates the camp@oish one
single connection to 64 connections with 64KB messages. The followingvatises
can be made from the figure: 1) greater than 16 connectionsduriged for both INIC
and DNIC to achieve peak bandwidth. It is due to low performancesioigbe hardware
thread in Niagara 2; 2) differing from INIC, DNIC with 64 connections downgra6éo
bandwidth compared to 32 connections; 3) INIC improves network efficamgywith

greater than or equal to 32 connections.
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Figure 5.5 Performance with Various CPUs

Similarly, we also studied the performance comparison by rgnd@hconnections
with varying number of CPUs or hardware threads in Figure 5.5. Weree that the
benefits only come when more than 16 CPUs are used in our experimétitsthe
combination of Figure 5.4, we can draw two conclusions: 1) the int@geuld affect

the system behaviors with a large number of connections, and difésistam behavior
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mainly causes the performance difference, and 2) the benefientabe achieved with

large number of CPUs, and thus are tied to the highly threaded Sun system.

DNIC vs INIC (Latency)
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Figure 5.6 Ping-Pong Latency
High bandwidth and low latency are two main metrics in modern networking server

We also conducted experiments to compare ping-pong latency by camdighe SUT
with INIC or DNIC while retaining the same configuration in #teessor. NetPIPE was
used to measure the latency. Since large 1/0Os are segmetttesiniall packets less than
MTU, we focus on packets less than MTU for the ping-pong latessty ©ur results in
Figure 5.6 show that INIC can achieve a lower latency by ga¥ins It is due to the

smaller latency of accessing I/O registers and eliminatingEPi@ls latency.

5.1. 4 Detailed Performance Characterization

To understand the benefits of the INIC, we profiled the systnbdth the kernel and
application function calls as well as the assembly code. We thsetkst case with a
64KB 1/0 size and 32 concurrent connections in Figure 5.7. The ddiargatwas
grouped into the following components to determine their impacts on parice:

device driver, socket, buffer management, network stack, kernel, data copy &nd Iper
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CPU overhead breakdown per packet is calculated and presentedurm =iy We
observe that 28is and 20us are required for processing one received packet in DNIC

and INIC respectively.

DNIC vs INIC (CPU's Breakdown)
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Figure 5.7 CPU Overhead Breakdown

The comparison in the figure reveals that the CPU overhedteatriver is reduced
from 4.7 usto 2.6 us by the integration. Our result shows that the overhead on the
interrupt handlenxge_rx_intrwhich frequently operates on NIC registers, is reduced by
10X. The copy component remains the same when we switch betwdEnt®MIC. It
is because all packets in INIC are sourced and destined to meatloer than caches.
The data copy from kernel to user buffers in both configurationssrmmmpulsory cache
misses to fetch payloads from memory into caches. The overheld ooty component
is eliminated only if packets are delivered to caches. @uiings so far confirm the

observations in prior work [6, 7] even though they differ in absolute benefits.

We also observe that INIC also reduces the overheads on netimokk Buffer

management, socket and kernel. These unexpected improvements campoist% of
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the total overhead reduction and thus mainly contribute to the pamcerbenefits. We

found that the different behavior of OS scheduler and CPU caches lead to theds. benefi

Since the benefits of INIC over DNIC changes as the numberomfections

increases, we characterize the system behaviors with varying number aftammme
A) Impacts on the OS Scheduler

First, we did an architectural characterization by instoactor packet processing
along various connections. In DNIC, instructions are broken down intgpés tof
instructions: load, store, atomics, software count instructions anthall instructions as
shown in Figure 5.8. As shown in Figure 5.8, about 3500 instructions are retuired
process a packet with less than 32 connections, but increase to 450¢tiorsrfor 32
and 64 connections. The instruction breakdown shows that the instructiorotypad,
store and other instructions, increase proportionally. Figure 5.9 shwavsimilar
behavior for INIC, but contrary to DNIC, increased connections do notfisagmtly
increase instructions per packet. The higher instructions per pdicketly translate to

the higher CPU utilization of DNIC with a large number of connections.
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Figure 5.8 Instruction Breakdown (DNIC)

56



INIC (Instuctions Breakdown)
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Figure 5.9 Instruction Breakdown (INIC)

Because the same device driver and network stack are used,nNNIDNIC have
the same code path while processing packets. The increasedtimssrace incurred by
other components in OS. The increased load and store operations reveal that mare contex
switches could be required by DNIC. Hence, we studied the OS s$etisdehavior
while processing packets along various connections. Average contexheswiper
second are presented in Figure 5.10. The figure confirms our deductiondle context

switches are incurred by DNIC with more than 16 connections.
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Figure 5.10 Context Switches with Various Connectits
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DNIC vs INIC (Interrupt per Second)
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Figure 5.11 Interrupts per Second

Since the micro-benchmark was used in our experiment, the lightwexecution in
applications does not incur system noise and yields few contexthewit Context
switches are mainly caused by system interrupts. Hencepdiedtsystem interrupts per
second along various connections in Figure 5.11. The result lines uphaitibg$ervation
in Figure 5.10. Both INIC and DNIC have comparable interrupt ratds legs than 32
connections. When we come to the scenario beyond 16 connections, DNéGy larg
increases the interrupt rate but INIC keeps the same inteatgptThe higher interrupt
rate results in more context switches. To study the increaseupts, we breakdown
system interrupts with 32 connections into interrupts from NIC, aalis; and all other

system interrupts in Figure 5.12.
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Figure 5.12 System Interrupts Breakdown
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DNIC vs INIC (Icache Miss per Packet)
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Figure 5.13 Icache Misses per Packet

We notice that INIC sent slightly more interrupts than DWECause of the higher
bandwidth. However, the system with DNIC is interrupted much meguéntly than
with INIC by cross-calls. We used the Dtrace utility [20]ctunt the number of cross-
calls incurred by various system components. It shows that hmemehie 96% cross-calls
are from the OS scheduler. The scheduler uses cross-calls tp otbéer CPUs of

running tasks or threads immediately.

We also profiled the usage for all 64 CPUs from the OS pdigpemnd found that
more CPUs were used by the system with DNIC. Specificafily 18 CPUs were free
with DNIC, while 31 CPUs are available with INIC. The resw@veals that the OS
scheduler with DNIC uses the cross-calls to distribute threas®te CPUs as compared
to INIC. It is because the lower processing latency withiritegration makes running

cores more efficient and lowers the likelihood that packets are dispatchedrtoorédse

B) Impacts on the CPU Caches
Since lower processing latency intuitively embeds shorter regtdie cycles of
network data in caches, the integration could also bring impactsP&h daches. We

studied cache behavior in the system with INIC and with DNIC respectivel
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Starting from the instruction cache, we show the instructiosariper packet in
Figure 5.13. More context switches incur higher miss rates beyordrifections. We
studied the instruction misses in L2 cache in Figure 5.14 to invisstiga impacts of
those misses on the unified L2 cache. Their performance is simitamisses happen

very rarely in larger L2 cache.

We also show data behaviors in both L2 and L1 data caches. We capdtmed
misses per packet in L2 cache for both the DNIC and the INEgure 5.15. It shows
they have comparable miss rates with less than 32 connections. M¢beres to beyond
16 connections, the INIC has 7.6% reduction of misses. The missesdatéheache
behave similarly as shown in Figure 5.16, but we see a much lgagebetween the

DNIC and the INIC. The INIC has 180 fewer misses or 42% reduction of missestat mos
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Figure 5.14 Instruction Misses per Packet in L2

In our system, the L2 cache is a 4MB cache and the taimlcd@he size of eight
cores is 64KB. They can accommodate up to 64 and 1 64KB I/O sigpsctigely. We
need control plane data structures such as TCP Control Block (a@d)headers,

descriptors etc during packet processing. With the increasegections, we actually
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need more cache size for simultaneous control plane proceBsingxample, different
connections need to lookup different entries in the TCB. Hence, théesraatess
latency to 1/O registers in the INIC is beneficial. Thealer latency means that packets
can be provided for upper level processing faster than theCDBdrrespondingly
resulting in smaller processing latency. Hence, in the same ihterval, less packet
footprints are left in caches with the INIC and more cacheespe&an be used for other
data. The above behavior could incur the lower miss rate with i@ Mo conclusions
can be drawn from our analysis: 1) the smaller latency could iexfila difference
between cache misses, and 2) the difference caused by ther $at@ncy is sensitive to
the cache size. It explains why the difference on data cache is muatthaméhat on L2

cache.
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Figure 5.15 Data Misses per Packet in L2
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Figure 5.16 Data Cache Misses per Packet
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DNIC vs INIC (Memory Traffic per Packet)
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Figure 5.17 Memory Traffic per Packet

Last but not least, we captured traffic on the memory bus. Mateecaisses would
lead to more memory accesses and thus increase memoryaftfiad \ive gathered the
memory traffic for both read and write operations with INIC &MIC while running
Iperf for 60 seconds. The memory traffic, normalized to per packégure 5.17, shows

that DNIC incurs more memory read and write accesses.

Although both the behavior of the OS scheduler and CPU caches asnaatl by
the integration, we believe that there is some correlation betthesan. Besides the
impact of different processing latency on CPU caches, more cawéghes also change
the working data set in caches and thus incur some cache misfasuhhtely, we now

are unable to quantify their impacts on CPU caches.

5.1. 5 Summary

In our experiments, we observe that the smaller latency eksitg 1/O registers itself
does not help processing by a large extent. The different behavids sti@duler and
CPU caches incurred by the smaller latency contribute tpehfermance gain. Itis in

contrary to the previous observation that the reduced driver overheadachiol the
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performance improvement up to 58% [7]. To satisfy the processing reswnt

introduced by higher network traffic rates, more aggressive designs should lokeiahsi

5.2 Enhanced Integrated NIC

In this subsection, we propose a comprehensive design to ieteghiC into CPU die,
and implement processing optimizations. We introduce several atdndle
optimizations to INIC designs that will reduce the TCP/IP processiniead.

Figure 5.18 illustrates the new integrated NIC architecturaile® to [6, 83], we
incorporate a NIC into CPU. We redesign CPU/NIC interfacedpjacing DMA with
software PIO and deploy many optimizations to efficiently suppaiti-core systems. In
order to reduce the contention on shared resources from INIC and @ptiesizations

are derived by first evaluating their software implementation.

User Space
TCP/IP Protocol Stack
INIC Driver with LRO support

| Core O | | Core 1 | | Core 2 | | Core 3 |
[ s | [ La | [ La | [ La |
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Figure 5.18 New Architecture Overview

By taking advantage of the integration, LLC is split into dedtdtO cache and

general cache at the way level. With a software-controlledypol OS, the I/O cache
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can be dynamically resized to meet the various incoming dtga. Lastly but not least,
cache coherence protocol is optimized to reduce the unnecesgarpacks of network

data, efficiently utilizing memory bus.

5.2.1 NIC

In order to cater to multiple cores, some hardware components ngednimorporated in
INIC. RSS, a technique for mapping each TCP connection to a spemiéc becomes
critical in high speed networks. Hence, we extend our architetitsepport multi-core
systems by featuring RSS. We first evaluated our softwaf@ lRSimplementing it in
OS, which works as follows. All interrupts from INIC are asei to a specific core
where the device driver is running. When the device driver receivasterrupt from
INIC, it employsToeplitzhash [76] to determine the affinity between incoming packets
and CPU cores. Based on the mapping table, it inserts incomuigtpainto the
corresponding receive queues and then notifies cores by sendingoirgenterrupts.
Experimental results show that each packet mappingd®plitzneeds on an average
1455 cycles in a 2.67 GHz Intel Duo Core 2 CPU [38], not to mention ean iakgrrupt
notification. This means that to receive packets from a 10GbE (0.8®mmil.5 KB
packets per second) 1.2 Giga cycles will be required. Hence, thardeitecture deploys

RSS as a specific hardware circuit.

The anatomized design of INIC is depicted in Figure 5.19. Multiple gu@Rl€ in
Fig.5.19) are offered and each of them is bound to a core fontd&@dtion between
cores and NIC. Each received packet is hasheddaplitzhash over a specific set of

fields in the packet header. For a TCP connection, 4-tuple of sbGfegort, source IP,
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destination TCP port, and destination IP addressised. The hashed resu masked
into an index of the mapping table to map the patkex core. After identification, tF
whole packet is buffered into the correspondinglivare queue. All cores manage tf
gueues in an independent way such as reading pabflagh queues and ocessing
packets. In a simple hardware implementatiorToeplitzfunction, only 96 cycles ai
required for mapping a packet in a TCP connectibhe(e are two loops in tt
implementation. Theutel loop requiresl2 Bytes input and loops once per byEach
inner loop takes 8 cycles to do hasl). A pipelined implementation can aggressiv

reduce to 1 cycle/packe
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Figure 5.19 Design of the INIC

To eliminate memory access penalties while prongsgiackets, thearchitecture
attaches INIC to the internal bus between L1 andc&éhe. This configuration reduc
latency, but more importantly allows incoming paski be written into L2 cache. T
data transfer policy intuitively implements DCA aaldo reduces merry read traffic

Since the integration allows for fast CPU/NIC imigtion, software PIO has very Ic

CPU/NIC communication overhead. It avoids using DeESscriptors and thus eliminat
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the high overhead of DMA descriptor management [90]. It can bevaaséom Fig.5.19
that INIC is stripped down to essential components. It direcphpses RX/TX queues to
the driver. The programmable interface between CPU and NIC lescocopy engine. All
data transfers between NIC and caches are triggered byapnwgng the copy engine.
Physical address for holding a packet is first set in thstey RX_Addr_Regand then
real data transfer is issued by enabling the regig¥erStart Once copy engine finishes
the transfer, the result status like packet length is storiée iregisteRX_Status_Refpr
setting up the packet buffer structure in OS. In order to feekepainto multiple cores,
the same number of copy channels is featured in the copy efigji@dransfer in each
channel is currently performed in a synchronous mode where a nesfetraas to be
served after the previous copy is finished.

Additionally, INIC reduces interrupt overheads by reducing thguecy of CPU
interrupts. As shown in Fig. 5.19, INIC moderates interrupt frequbenegsuing a single
interrupt once the number of received packets reaches the threshtild register
ITR_Reg

INIC adopts low latency interrupt mechanism to minimize theitakle adverse
effect of the interrupt moderation or coalesce on packet latesucyy as the control
packets whose typical size is less than 200 Bytes [58]. This salfow immediate
generation of an interrupt upon processing received packets sriaierthe size

specified byLLIsize_Reg
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5.2.2 Software LRO
The overhead in TCP/IP receiving processing is proportional to uh#er of data
packets [27]. The per-packet overhead consists of buffer managemerieaddr
processing in network stack. LRO aggregates multiple packetsdrsimgle connection
into a larger packet, thus reducing the number of packets to bespeddeefore they are
passed higher up the network stack.

LRO is originally designed in NIC and its software versionersently proposed as
an alternative. We first evaluated software LRO with an iategrNIC by implementing
it as an OS component. When the driver processes packetssitB& to join a SKB
based packet with any others in the stream, making one larget.p&ikecksum
information for the final packet is set to the CHECKSUM_UNNBSRARY to avoid the
redundant checksum computation. In our driver, if the packet cannot bgagglrevith
others (it may not be a TCP packet, or it could have TCP option$ wduggiire it to be
processed separately) it will be passed directly to the nletstack by calling the routine
netif_receive_skb(as in the original system. Otherwise, the packets should be handed
over to the functiorro_receive_skb()n LRO to coalesce the packets belonging to the
same connections. Due to the aggregation of packets, LRO on an edegr&t pushing
data into caches could incur longer life cycles of network dataahes and result in
cache pollution. Our experimental examination of our LRO with 10Gh&ank shows
that it does not incur cache pollution and performs effectively arilly extra 2% CPU

utilization while saving hardware cost in INIC.
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5.2.3 I/0-Aware LLC
As more and more cores are integrated onto the same chip, ldc@aisized to be shared
among all cores to provide lower miss rate and efficient cattheation. When multiple
applications run simultaneously, the performance of each individual wdrklepends
on behavior of other workloads [41]. I/O performance is affected ewhiinning
simultaneously with memory intensive applications. Even if packetde delivered into
caches, they could be evicted and written back to memory by apipications before
being processed. Network data has to be fetched from memory agiéenpnocessing
packets. This interference could offset benefits of pushing packets into.caches
Since the integration allows network data to be directly wriitteéo LLC, it is
straightforward for cache controller to identify the sourtea @ache write. By taking
advantage of it, we propose a new I/O-aware LLC to dynalyipaltition LLC into I/O
cache and general cache. It can: (1) eliminate effelctapplication interference on
network data and thus improve I/O performance, (2) provide flexillirganizing and
managing the cache in a way that benefits 1/0O performande(3 reduce unnecessary

memory write-backs of network data.

Operating System

1 Bit 1 Bit

ctr_io quota touch [header 10 Data

stat_write_back
stat_nic_write

Cache Controller

FIFO

10 Diata

LRU

Figure 5.20 I/O-Aware LLC
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The design of our I/O-aware LLC is illustrated in Figure 5.RConsists of two
essential components: hardware quota management and a kernel-level quoteatioches
policy. Since a subset of cache sets cannot cover the whole aslaress partition at the
set level is infeasible for the 1/0 cache holding received psiakkich might span over
the whole address space. In the architecture-anyLLC is split intom-wayl/O cache
and (n-m)-waygeneral cache at the way level. The firstache blocks in each set are
always assigned to the I/O cache. This assignment policy attoedsomplexity of
hardware implementation to identify I/O cache lines. Sincevedgackets are delivered
to LLC in a stream order, FIFO management policy is maralde for stream data.
However, the rudimentary replacement policy LRU is good for génmache data.
Combined with the cache partition, the architecture employséplagement policies to
manage the shared cache: FIFO for the 1/0O cache and LRU for the gauéral

In order to meet various incoming rates, OS periodically or@testthe quota of the
I/O cache according to the number of replaced cache lines butchetd by network
stack. When the number of those I/O cache lines exceeds a thréshlblof current 1/0
cache quota at default), managed by OS during a period (10 interrupts in aimerpe
the quota of the I/O cache with-waywill be increased t@m+1)-way When the number
of write accesses to 1/0O cache lines from NIC is belahrashold (half of current I/O
cache quota at default), the quota of the 1/0 cache is adjustedlipway

In OS, kernel buffers holding packets are randomly allocated emergl SKB
memory management [11]. The random allocation might cause the unstrésution of

mapping those buffers into the I/O cache because most of allduatieds are likely
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mapped to some limited 1/O cache lines, thus resulting in hotspolisawirig others idle.
Instead of relying on dynamic memory allocation, we pre-akkbaatonsecutive physical
memory during driver initialization and manage them as a F&@er to hold incoming
packets. This new allocation policy can guarantee that recea@ds can be evenly
distributed into the 1/0O cache and avoid hotspots.

In our designs, a statistics collection registat write_backs introduced to count
I/O cache lines replaced but untouched. Another regisétrnic_writeis used to store
the number of write accesses from NIC to I/O cache lines. @aetisterctr_io_quota
is provided by cache controller to orchestra the quota of thecatDe. In order to
identify 1/0O cache lines as untouched, one extradoichis required for each cache line
to store the status of being touched. Each cache line also udasoraderto identify a
cache line holding a packet header.

Cache operations are revisited, as described in Table 5.2 and 5Q&ivefpeOn a
cache readtouchfield is set to true if it hits a cache line belonginghe t/O cache.
Otherwise, data is fetched into the general cache when a onaskeoccurs. When it
comes to a cache write, the data source is identified first. Sfaestics register
stat_nic_writeis increased by 1 when the write is from NIC. When the virdm NIC
incurs a cache miss, FIFO is used to get a cache line. SippiEea Ethernet and TCP/IP
header size is 54B and is less than cache line size, thedaisé line being written is
marked as header. When the replaced cache line is still untologhetwork stack, the
registerstat_write_backs updated for guiding kernel to repartition LLC. Our scheme has

no timing overhead with a little area overhead of 0.18% (two exadxuired for each
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cache line in LLC where the line size is configured as 12BBffers high flexibility to

software without sophisticated hardware designs.

Table 5.2 Cache read policy

Cache Read:
look up the cache lines;
if hit
Sfetch the data firom cache lines;
if (cache line is in I/O cache & untouched)
set touch to true;
else

read data into (n-m)-way general cache;

Table 5.3. Cache write policy

Cache Write
if data is from NIC
stat_nic_write ++;
look up the cache lines;
if hit
write the data to designated cache lines;
else
if data from NIC
Get a cache line from I/O cache using FIFO;

The first line of being written sets header to
true;

if replaced cache line is untouched
stat_write_backf{++;
else

Get a cache line from general cache using LRU:

We adopt the default MESI cache coherence protocol in our sydtel@. places
data into LLC and changes the state iMidified (M). The affected cache lines make an
M to M transition when write from NIC hits the 1/0O cache. Otheewibe replaced cache
line with M would be written back to memory. Typically, a large RX qu&ua stream

order is typically allocated in the driver to avoid packets beiogmkd. Thus, there is a
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high likelihood that an I/O cache line is rewritten by incomaga with different
physical addresses before with the same address, thus resulting in extensiacks.

In OS, packet header is required by network stack to do pac&eessing. The
payload is only touched when it is copied from kernel to user buifelo another
temporary kernel buffer when user buffer is not yet allocatede @me network stack
finishes copying payloads, kernel buffers holding them will be fréethdicates that
corresponding cache lines become useless after touched by CPteamhecessary to
be written back. As shown in Fig. 5.20, we introduce an extrhdatlerto identify
packet header. With this information, we optimized MESI so thatiothehed cache lines
holding payloads are simply discarded. They are not written baeh wéplaced by
incoming data.

Note that when an extra cache way is incorporated into @hedthe, thdeader
fields of new I/O cache lines are set to true. It ensuréghibanew cache lines holding
non-network data but witt state will be written back to memory, instead of being

discarded.

5.2.4 Performance Evaluation

We used a full system simulator Simics and extended it witkile@tCPU, memory, 1/O
timing models and DMA invalidation effect model. We implementedIClldnd 1/O-
aware LLC in simulator and developed a device driver for INIC.n&lelevel cache
guota management module is currently being incorporated into the dnvewurl

experiments, Linux 2.6.16 is run and Iperf is used to measure network bandwidth.
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Cache operations are revisited, as described in Table 5.2 and 5Q&ivefpeOn a
cache readtouchfield is set to true if it hits a cache line belonginghe t/O cache.
Otherwise, data is fetched into the general cache when a onaskeoccurs. When it
comes to a cache write, the data source is identified first. Sfaestics register
stat_nic_writeis increased by 1 when the write is from NIC. When the virdm NIC
incurs a cache miss, FIFO is used to get a cache line. Siypea Ethernet and TCP/IP
header size is 54B and is less than cache line size, thedaisé line being written is
marked as header. When the replaced cache line is still untologhetwork stack, the
registerstat_write_backs updated for guiding kernel to repartition LLC. Our scheme has
no timing overhead with a little area overhead of 0.18% (two exsadxuired for each
cache line in LLC where the line size is configured as 12BBffers high flexibility to

software without sophisticated hardware designs.

Table 5.4 Simulated system parameters

Processor Quad-core processor, 3GHz, single-issue, in order
ICache/Dcache private per care, 32 KB 2-way split, 1-cycle hit latency

L2 Unified Cache 6M 16-way split, 10 cycles hit latency,
shared by all cores

Main Memary 200 Cycles

HW Prefetch Sequential HW Prefetch

Prefetch Degree 3

11O Register 800 Cycles (CNIC), 30 Cycles (INIC)
110 BUS 16 Bytes, 800MHz

L1to L2 64 Bytes per CPU cycle

L2 to Memory 4 Bytes per CPU cycle

Interrupt Coalesce | 64 Packets per Interrupt
Rate

All experiments use a two-system client-server configumain each case, only one
system is of interest, while the other merely serves stsessor. Each of them has four
3GHz cores sharing a 6MB LLC. System under test (SUTpmdigured with detailed

timing models and processors are with an in-order timing modeks®iris run with fast
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functional mode and is not a bottleneck. The access latency to dikfers is fixed at 30
and 800 cycles in INIC and conventional NIC respectively [6]. The @iameters we
used in modeling the configuration are listed in Table 5.4.

First, we look at the 1/0O performance by running Iperf over 10Gbizanktunder
various configurations: conventional DMA-based NIC (CNIC), CMii@ the support of

RSS, CNIC with RSS and LRO, Integrated NIC (INIC), INICIWRSS, INIC with RSS
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Figure 5.22 Breakdown of CPU Utilization

Experimental results of both bandwidth and CPU utilization are showkigure
5.21. We breakdown CPU utilization at the component level in Figuret® @2derstand
the benefits. As shown in Fig.5.21, CNIC achieves only 6 Gbps bandwidth

consuming 33% CPU utilization. CNIC with RSS leverages multples to improve
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network bandwidth up to 8.1 Gbps with 50% CPU utilization. Fig.5.22 shows that CP
utilization on each component is proportionally increased except theoc@mt “others”,
which is due to extra scheduling cost in an unbalanced system. Meunlmmystem is the
potential bottleneck of achieving line rate bandwidth and an increas€RU
performance could not further improve bandwidth. LRO coalesces snclktpanto a
large packet to reduce the number of packets processed. Withop&R®@ization in the
device driver, 8.6 Gbps bandwidth can be obtained with 43.5% CPU utilization. The
performance increase is 6% while saving 6.5% in CPU utilizatibe. Greakdown of
CPU utilization in Fig.5.22 reveals that the savings of CHIization is from network
stack and buffer management. It is observed that LRO, sligiutlgases CPU utilization

in driver by 2%, but it performs effectively over 10GbE.

As shown in Fig.5.22, driver is the biggest CPU cycles consumer alinggh
overhead of DMA descriptor management and high access lateh€y refgisters. Since
each received packet should be fetched from memory into caches wapied from
kernel to user buffers, copy is another big overhead. We observe tit@& bandwidth
can be obtained by INIC with software PIO interface with 32%JQRilization.
Compared to CNIC, it improves bandwidth by 48% with consuming nearlpahe
CPU cycles. RSS in INIC leverages multiple cores and essabstndwidth up to line
rate with a 27.5% of CPU utilization. When LRO is developed in the driver to reduce per-
packet overhead, it reduces CPU utilization to 24.5% and sustaime eate speed. The
breakdown of CPU utilization in Fig.5.22 shows that LRO reduces owerfrean

network stack and buffer management components by reducing the nunploecexsed
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packets. INIC eliminates DMA descriptor management, reducesss latency of 1/O
register, and alleviates memory access overhead.

Since INIC-based architectures place RX/TX queues into CPUsitleeof NIC
gqueues becomes critical for CPU designers. The amount of buffezmgred is
proportional to the product of network bandwidth and CPU/NIC latency. Shee t
CPU/NIC latency is extremely low due to the integration & Nn die, much less buffer
space is required compared to CNIC. In experiments, bandwidth does et suf
significantly until the number of entries in RX queues is below G#&eSiransmit side is

much less complex than receive side, a fairly small buffer is sufficient.
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Figure 5.23 Bandwidth with Memory Intensive Apps

As the receiving side of network processing is well known to bmangeintensive,
INIC significantly eliminates the burden of memory accessdélvering packets into
LLC. When network applications and memory-intensive applicationsimultaneously,
the network data residing in LLC may be evicted by running menioignsive
applications before used, due to capacity or conflict misses. \8igndthe 1/O-aware
LLC to ensure that network packets are not replaced and bandwidth effected

significantly in this situation. In our experiment, we ran the malmenchmark Iperf with
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a memory intensive application, which continuously streams througiye $action of
memory. It has been used to study the impact of memory onloadingrionsvaystem
configurations.

Our results with the mixed workload are illustrated in Figure.3t28 observed that
INIC is degraded by 12% in network bandwidth while running with themory
intensive application. It is mainly contributed to the cache intmfex from the memory
intensive application. But our I/O-aware LLC achieves nearly #mesbandwidth as
without memory intensive application, only with a 2% bandwidth degradation. The slight
degradation in bandwidth is because the memory-intensive applicatios Sialdewith
network application. Less CPU cycles slightly impact the aapatprocessing packets.
At the same time, it may be observed from the third bar théteirabsence of memory
application the same bandwidth is maintained as INIC, meaningthiea¢ is no
degradation due to less I/O cache. The results confirm thetiefieess of the I/O-aware
LLC technique to eliminate the impact of cache interferencen flother running
applications.

An advantage of the split LLC is that the quota of the I/0O caahebe orchestrated.
Figure 5.24 vividly illustrates the required associativity of LtdC maintain the best
bandwidth along an Iperf session. In experiments détway6M LLC, 1-wayl/O cache,
with the size of 384 Kbytes, is sufficient to meet a feeding rate of 10Gbean host the
incoming 256 1.5 KB packets. Experiment shows that there are no untouchedtspac
when replacement occurs for incoming packets. The upcoming 40GbE and 100GbE

would largely increase feeding rates and need a bigger dedi¢@tezhdhe. Although
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simulation has not supported 40GbE network yet, we mimic the imgaedicing the
LLC size in 10GbE network. In Fig.5.24, we reduced LLC from 6M to 1M but #ept
same cache way, and ran a whole session of Iperf for 10 secondgslilhe show that
the 1/0O cache dynamically adjusts from a default vdhveayto 2-way while processing
packets, and finally returns back to the default value after ppobegssing. This shows
that our policy can dynamically adjust I/O cache quota dependitigeorate of receiving

packets.

Time (ms)

Figure 5.24 1/0 Cache’s Way across Timeline

Figure 5.25 The Number of Write Backs of Network Dea
As mentioned before, cache coherence on I/O cache is optimizeddtae

unnecessary write-backs. We studied benefits of enhanced cachenceharetocol in
terms of the number of write-backs of 1/0O cache lines. We dwaséypical packet sizes
256B and 1514B, and computed the number of write-backs required while ruaning

whole session of Iperf with and without our optimization. Experimentallts are shown
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in Figure 5.25. It is observed that the new protocol eliminates the-macks of dead

network data and significantly reduces memory write traffic: the numberitefacks is

reduced by 3.95X with 256B, and 23.7X with 1514B. This indicates that a slight

enhancement in cache coherence can significantly reduce memoryaifite t

5.3 Summary

In this chapter, we first conducted extensive experiments on &li@gara 2 platform to

fully understand the performance benefits of an integrated NIGeWlized that a simple

integration does not help a lot. Thus, we proposed an enhanced integi&ed N

architecture for high speed networks. In the new architectveeredesigned CPU/NIC
interface from hardware DMA to software PIO by exploitingt fanteraction between
CPU and integrated NIC. We deployed hardware RSS for effigisnfpporting multi-

core systems and software LRO for reducing per-packet owkerhearder to eliminate

cache interference between 1/0 and other running applicationgkeeativantage of the
integration of NIC to split LLC. A dedicated I/O cache is fogured at the cache way
level, and its organization can be dynamically changed to meettloais network data
rates. Additionally, we also optimized cache coherence protocatdm unnecessary
write-backs of network data for efficiently utilizing memory blsxperiment results

demonstrate that the new architecture achieves 10Gbps bandwidth low Z#8%
utilization, eliminates cache interference from other appbtoatiand reduces memory

write traffic by 23.7X.
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Chapter 6

A TCB Cache to Manage TCP Control Blocks

In above chapters, we analyzed network processing overheads andzepiisn
processing performance from the per-packet perspective. Howvibegrjgnored per-
session data TCP Control Block (TCB), which is a per-sessiorsttatdure of 512 bytes
that TCP/IP uses to store its TCP session states andessadcon the TCP critical path
[11, 32, 44, 73]. A large number of sessions and web session behavior sewels

make the management of TCBs complicated and introduce challenges.

In this chapter, we analyze challenges incurred from TQRswthere are thousands
of concurrent sessions in web servers and carefully study beloavieb sessions. Then
we design a new TCB cache with extensive consideration of vesibbeecharacteristics
to efficiently manage TCB data. We extensively study the pednce of various hash
functions and proposeldniversalhashing based cache indexing scheme. To couple with
our cache indexing scheme, we desigrspeeculativecache replacement policy by
harnessing theON/OFF model of web sessions. We further extend the replacement
scheme by incorporating migration of the repla€¥d data to theOFF region of the

cache.
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6.1 TCB Challenges

As mentioned before, a wide spectrum of optimizations has been doR€RIP to
improve its processing performance. They broadly fall into twegcates: offloading the
TCP/IP protocol stack into NICs (TOE) [13, 32, 88, 89] or pushing NIC&ictosCPUs
while keeping protocol processing on CPUs [6, 31, 45, 46, 63, 83] such asoDCA
integrated NIC etc. In this subsection, we study the challenfj@sanaging a large
number of per-session TCB data for web servers in these two Iprg@vschemes to

motivate our research.

6.1.1 Challenge in TOEs

Intel presented its 10Gb/s TOE's detailed designs in [32] andajoe function units are
illustrated in Figure 6.1. Input sequencer analyzes an incoming Eackeixtracts the 4-
tuple session identifier from the packet header. The packeiresdsnto memory sitting
on-board or connected externally for future transfer to applicatiomssd@ssion to which
the packet belongs is looked up and the session data is loaded intalimterking
registers used by the execution unit. Then, the execution unit, contoglliedtructions
from the instruction ROM, performs the central part of the proto@gssing using the
session data. The complete micro-program implemented to perf@m imbound
processing consists 6f300 lines of code. The TCP fast path processing for in-order
packets in a session take$6 instructions and the slow path processing with complex
out-of-order control have300instructions. In most of the cases, incoming packets are

in-order and thus belong to the fast path.
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Figure 6.1 Function units in TOEs
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Figure 6.2 Processing time with a TCB miss

In TOE, TCB data is accessed before protocol processing angrdbessing is
unable to precede until the data is ready. The data is retuomadie TCB cache with a
cache hit, otherwise, it is fetched from the memory. It reasrted in [32] that 51.8sis
required for in-order packet protocol processing in a 10Gb/s TOE &/TCB cache
miss, Figure 6.2 shows the overall packet processing time, where we assumentioay
access latency is 5@ and each cache miss incurs only one memory access (TCBs are
typically organized by a hash table in the memory and the TCH éentfound by
traversing a linked list in each hash table bucket [11]. A T&&he miss incurs both the
linked-list traversal and data accesses, thus causing more thaneomery accesses).
The figure reveals that TCB accesses take more than 50% pearfcehe overall

processing time and much higher if we consider several mencogsses for a cache
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miss. With a cache hit, the TCB access latency can be sulbyargduced to 6.4s
[32]. Hence, the packet processing performance heavily relieswrfast TCB data is
accessed. Currently, the TCB cache is implemented as aik#ththe associated with
modular indexing and LRU. However, as the number of sessions inaneasb servers,
these simple cache designs without considering web session tehat@s cannot
efficiently keep session data. A more efficient TCB caisheequired to provide high

cache performance.

6.1.2 Challenge in protocol processing on CPUs

In addition to TOEs, a large number of sessions also poses a perferohatienge when
the TCP/IP protocol stack is running on CPUs [44]. We establigeraer-client
environment, where the client opens the specific number of TCP seasimbsends 1KB
requests across all of the sessions in a round-robin way torttee. $&oth the server and
client are Intel machines with 2.67 GHz Intel Quad-core processtel performance
counters are used to instrument Linux in-kernel network stacknaadure the execution
time of individual kernel functions or groups of kernel functions. Theslofeprocessing
a request with one session and 4K sessions are shown in Figared®34, respectively
with a timeline scale of 500 CPU cycles per unit. The horizontdlathline separates the
kernel and user space, and only kernel functions are considered.thbliibtee figures
only show functions in the TCP critical path and do not consist ofianscin the non-

critical path such as buffer allocation, de-allocation and scheduling etc.
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The received request processing starts from the interrupt haidle0 intrin the
device driver. After the interrupt handler, the request is delivapedo the IP layer
(ip_rcv) and the TCP layetdp_rcy). Then, the network stack performs TCB lookups to
find the destination TCB's address and does per-session procassording to TCB
data, both of which we refer to B processingn figures. Finally, the request is
copied to user applications by using thikb_copy_bitfunction. Our timing analysis
shows that theTCB processingoverhead increases rapidly with a large number of
sessions, and becomes significant along with other two overheatie iTCP critical
path: the driver and data copy. Since existing research [6, 3lab3]fiectively reduce
those two overheads, it becomes important to address the rem@ildBigrocessing

challenge. Our analysis shows that TCB lookups and accessey citlibute to the

84



overhead offCB processing Web servers with a large number of sessions increase the
chance that TCB data is polluted in caches, and degrade TCB lookup performande as wel

because traversing the linked list in a bucket is prone to incurring cache m#ses |

6.2 Characterization of Web Sessions

In the web domain, a web session is defined as a sequence ofgegadstby a single
client during its visit to a particular server [4, 15, 19]. A moderb wage includes
reference-indexed embedded files which are typically imagegamhs; these files are
required to properly display the web page to the client. Thus, a ltypmaest for a web
page usually results in multiple consecutive client requests foe thiodbedded items.
Extensive studies on real web traffics have shown that webeesexhibit th@©ON/OFF
model [4, 15, 19]. The entire transfer period for the whole pagéeised asON period
and the time gap between two requests for two embedded iteidte aghen server
responses are transmitted. After the client receives the wiatigage, it usually takes a
period of time for the client to read the page before sending #igpage request. This
period is referred as th@FF period. During theON period, TCB data is frequently
accessed, but no accesses occur irORE period. Thus, keeping (not replacing) cache
contents during th€@N period is critical, a property that is used later to design our

speculativecache replacement policy.

We choose four popular web server traces to study the chastctenf web
sessions: Boston University trace (BU), NASA-HTTP (NASA),a€Net-HTTP

(Clarknet), Saskatchewan-HTTP (Sak). We measure both the hebseen two
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consecutive requests during the page transferOQN) and the time between two
consecutiveON (OFFtime) for all four traces. Figures 6.5 and 6.6 show the frequency
for the time. We observe that the inter-request time inQheperiod is fairly small
compared to th©FF time and is typically less than 1 second. The above time analysis

guides us to design an efficient cache replacement policy.

0 1 2 3
Seconds
=g BU == NASA Clarknet  ==4=Sak

Figure 6.5 Inter-request time frequency inON

0 2 4 6 8 16 32 64 128 256 512 1024
Seconds

== BU =0—NASA Clarknet Sak
Figure 6.6 OFF time frequency OFF)

6.3 New TCB Cache

In this subsection, we elaborate our TCB cache designs congideeb session
characteristics. The cache organization is described in Subsé&c8dn and the bit
selection is explained in Subsection 6.3.2. In Subsection 6.3.3, we iBusteaL ifetime

array used by our new cache replacement policy, which is presented in Subs8gtion 6.
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6.3.1 Cache Organization

A cache organization is primarily defined depending on how a satiexed. Our aim is
to distribute the mapping uniformly that can ensure simultaneous ocgupfaclarge
number of sessions being connected to the web server at &Jtimersalhash functions
are known to generate an even distribution of workload over the hash buci#edsea
relatively easy for hardware implementation [12, 75]. We pretenTCB cache miss
ratios of four web server traces with various hash functions iné-@ut where all cache
miss ratios are normalized to the miss ratio of modulo mappiioglX We observe the
following: 1) bothMod andXORare not good fit for TCB cache; PMod andPDisp are
not as good ad®Jniversal and CRC [72]; 3) having two hash functions obtains better
performance than single hash function. It was observed in [43]Pt¥iad and PDisp
hash functions are better thitod andXORfor SPEC CPU benchmarks. As we can see,
they are also better for web server traces, but not as good @eposedJniversalhash
functions. Among all of the hashing schenfeg)niversalachieves the best performance.
It may be noted that having more than two hash functions degradesr@nce because
more cache banks split the original LRU set and sacrificeffieetiveness of the cache
replacement policy.

In order to understand the performance gap of various hashofsicive study
probability distribution function (PDF) of absolute deviation of the nunolbsessions in
cache sets (or |X minus expected value of X|, where X is thdewai sessions in a
cache set) and show result for one trace (Sak) in Figure 6.8igiinie points out that

multiple hash functions have higher probability at small valuesblikand thus achieve a
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more even cache access distrion. Although other traces studies are not showas,

they behave similarly.
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Figure 6.7 Performance of cache hash functions
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Figure 6.8 PDF of absolute deviation of #sessions in cacket

Figure 6.9illustrates the hardware design of our TCB cach@clvis addressed t
session identifiers usirigniversa hash functions. Our TCB cache has tag arrays ata
arrays as traditional CPU caches, but it adds aln@time array to track the che line's

ON/OFFstatus, which is used by the hardware replacenrmentAs observed in Fi¢6.7,
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two Universal hash functionshashlandhashg being employed by two cache banks
give the best miss ratio. Hence, we use two cache banks i.gjgach consisting of a
4-way set associative cache. We also add two auxiliaryersalhash functionshiash3
andhash4 to be used by our cache replacement policy to migdateache lines. We do
a bit-by-bit analysis of session identifiers and seldctimportant bitsas index bits in
order to reducdJniversal hashing hardware complexity. The selection process of the
particular bits is described in the next subsection. In order te@ecgession state, CPUs
extract a 2-tuple from a packet header and issue an opetioe ¢ache. The cache first
locates the two cache sets corresponding to the two hdskssl Andhashl of the 16
bits and then does the tag check with the 2-tuple in paralléle Ibperation is hit in the
cache, the session state is operated; otherwise, the cashawliary functiondrash3
and hash4to lookup the cache again. If not found, the hardware replacemenis unit
triggered to select a cache line for the new data. Sinceagmdytion of a 2-tuple is used
for hashing, the tag in each cache line is a full-fledged 2-tMgéealso include 4 bytes
TCB memory addresses in tag arrays to make the TCB aatelnact with the memory.
Although TCB is a 512 bytes data structure, only a portion of dataah &CB is
frequently accessed during processing packets [44, 82, 11, 94]. We usystein
simulator Simics to study the frequency of accesses in LmIX_B data and notice that
only ~64 bytes are frequently accessed. This is because ntbstpdickets belong to the
TCP fast path, requiring much fewer than the entire TCB data oby#2. The similar

observation have been made in TOEs that storing 64 bytes informatieactosession is
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sufficient to implement the offloaded processing tasks [32]. ThereWwe use a cache

line of 64 bytes to keep those states.
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Figure 6.9 TCB Cache Architecture

6.3.2 Index Bit Selection
The twoUniversalhash functions in our TCB cache are from a function class délled
which has amenable hardware implementation [75]. Each hash funciianis a linear

transformationg™ _ ga™ that maps a w-bit binary string-aa,...a, to an r-bit binary

string B=hbb,..b, .

bD q0,0 qO,l qO,Wfl aD
bl _ ql,O ql,l ql,w—l x al
brfl qr—l‘D qr—l.l qr—l‘wfl aw—l

Each bit ofB is calculated as:y = (a, 0q,)® (a, 0q,,)...( &, 0q,) i=12.. r, Whereo

denotes AND, and denotes XOR circuits, respectively. In the T&¢Bew means

the bits of a hash input amds the bits of the cache index. Since hash functioii iare
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the same except the parame , each hash function can be configured from a ge!

chip by poviding different parameter
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Figure 6.10 Average bit value of IP address
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Figure 6.11 Average bit value of port

Hashing latency and hardware complexity increapgllawith increase in the inpi
bits. We study bit distribution of session idemtifi of web traces with the goal to red
the number of input bits. We measure the avera@geseaof the bits distributc in IP
address and port number and show them in Fi6.10 and 6.11the first bit is the MSB)
The best index bits (or important bits) should best with an average value of C
meaning that they are set 50% of the time overgelaeries of sessiddentifiers. We

notice that bits in IP address have similar imparéabut 8 least significant bits in p
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number are more important than other bits. That is mainly becausespanttfrom 1024
(ports <1024 are assigned for system services) and are tym@ttaiated within a limited
range of 256, but IP addresses are distributed more randomly. {Ges: observations,
we choose 8 bits from port and 8 bits from IP address as our intdgxabishown in
Figure 6.12. Our experimental results in Section 4 show thatadared index bits can

achieve the same performance as 48 bits 2-tuple.
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Figure 6.13 Circuit implementation

The circuit implementation of calculating an output bit is tHaied in Figure 6.13
and each bit calculation is performed in parallel. The implementateds 5 gate delays
at most (1 gate delay in AND circuits and 4 gate delays in Xiodrits). Each gate only
takes ~10 picoseconds with Intel 60nm fabrication technology [40] and thate Blelays
can be easily implemented within a single CPU cycle (1000 picodscper cycle for

1GhZ CPU).
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6.3.3 Lifetime Array

The Lifetime array is used to track the cache li@WOFF status and its structure is
shown in Figure 6.14. In the Lifetime array, we maintain one #fbitounter for each
TCB cache line to track th@N/OFF status. The most significant bit (MSB) of each 3-bit
counter indicate®©N or OFF. When MSB equals to 1 (111 to 100), it me&i$ and O
(011 to 000) mean®FF. The counter is always initialized to the max valugl] and
counted down every 1/4 second. After 1 second, the status switcli@SFoas the
counter becomes "Q1. We choose 1 second as the threshold because it is highly likely
that web sessions are @FF if they have not been touched for 1 second. The system
countdown signal is triggered by a clock divider which basicallynts the clock cycles
and asserts a ‘1’ by every N cycles. For example, lesyeeem clock frequency (FREQ)
be 2GHz and th®N period (T) 1 second. In order to get an 8Hz output, the N would be

FREQ*T/4 = 500M cycles.
There are two kinds of operations for the Lifetime array:

Regular read/write cycle it happens at every TCB data write. The corresponding
life counter will be initialized to “111”. Due to the possibility céche replacement, we
need to read out the origin@N/OFF bits (MSBs of each counter) before the write. As
in regular caches, we perform a read access in the fifsty@e, and a write in the
second half cycle. The read will collect the f@NX/OFF bits, and sum them up through

a bit-adder. The total number ©N will be sent to the hardware replacement unit.
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Refresh write cycle: Similar to a DRAM memory refresh, which prevents the
leakage of DRAM cells, we also perform a whole array scar emery 1/4 second. The
difference is that, after reading the current value, we dovntdé the same value back,
instead, it is reduced by 1 and is then written back. The only eanapti000”, but 000-
1=111, and thus we retain the value when the counter is zero. Thé pdrésrmance or

power overhead is negligible, as hundreds of cycle vs 500 million cycles.

Regular Write
Refresh Write —b\ MUX —b\ MUX —b\ MUX —b\ MUX
System Refresh  Index from N Jetlme Array
Clock Clock Signal hash()
%v 1 11 10 0 000 101

divider
R Al

MSB Bit Adder
1=ON 0=0ff
Number of ON

Figure 6.14 Lifetime array

MUX

Refresh
N = FREQ * T/4 Counter

6.3.4 Speculative Cache Replacement Policy

Although multiple cache banks (each has a separate hash functiefjecdively reduce
conflict misses, they make it difficult to implement cach@daeement policies like LRU
at a reasonable hardware cost and force using pseudo-LRU $q¢d8e78, 79, 86].
Tophamet al. [86] presented a way to implement an affordable LRU for multplhe
banks by adding a timestamp to each cache line. Every tiraeh& dine is accessed its
timestamp is updated with the access sequence. When a miss teednse with the

least timestamp is replaced. The paper shows that a 8-lestimp can achieve
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comparable performance for the SPEC95 floating point benchmarks. Howewveotice
that more than 24 bits for the timestamp are needed in the TelB caorder to achieve
good performance. What is more, more cache banks split originalse®dand sacrifice

the effectiveness of LRU.

We design apeculativecache replacement policy by harnessing@iNdOFF model
to address the above issues. Since a web session @N\theode will be accessed very
frequently, our policy aims to keepN cache lines as long as possible as follows. 1)
when a cache miss occurs, the policy selects a cache bantew&hON cache lines in
two corresponding cache sets indexedhaghlandhash2 in case of a tie, we choose the
left cache bank for simplicity. It load baland®$l cache lines among cache banks and
increases the occupancy ratio ®N cache lines in the cache. We notice from our in-
depth studies that LRU is unaware@iN cache lines and may result in imbalanc®©bf
cache lines among cache banks, and thus incurs unnecessary eviQidrcache lines.
2) Inside each cache bank, if @fF line is in the LRU position, we replace it for new
data, otherwise, we che€N cache lines to find a migratable cache line @ cache
line is referred to as migratable if there &EF cache lines in its corresponding cache
sets). A migratable cache line is randomly chosen and migtatéd corresponding
cache set to keePN cache lines in the cache as long as possible. The proposed scheme
has some similarity with the hash-rehash scheme proposed longaickefor direct-
mapped cache, but our scheme uses different hash functions, multiple inggretes
only selected replaced data. To increase the chance that viiecanmigratable cache

line, we introduce two auxiliaryniversalhash functionshash3andhash$ to index the
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replacedON cache line and migrate it to &FF cache line if found. If a®©FF cache

line is not found during the auxiliary hash, the replaced cachadidéscarded. Like
lookup case, auxiliary hashash3 and hash4 are simultaneously carried out for
replacement. While sequential auxiliary hashing (or pipelindihgp restricts cache
access byashlandhash2 we notice that most of cache hits occur in the first hashing
(hashlandhash3 and the penalty is more than overcome due to increased cache hits.
Although our migration scheme is similar to the hash-rehash sghepesed for direct-
mapped caches [2], it employdniversal hash for rehashing cache lines and only

migrates ON cache lines to OFF cache lines, avoiding eviction of valatale

Hash_1() Left Bank Right Bank Hash_2()
- _ #0of On
Hash_3() Hash_4() - T: (32) Right
- e I R . W2 T2 31 Right
r T1 T3 (33) Left
I T, T3
T4 T35T5 T3 T4 (43) Right

T p i K -
T4 5 (44) Left
-l T4,T5

L L T3 Migrated to Right

Figure 6.15 Speculative cache replacement policy

Figure 6.15 illustrates one example of @peculativecache replacement policy.
Suppose there are sor@N TCBs in the TCB cache, which are colored but unlabeled.
Given a access sequence of TABs T2, T3, T4, T8he policy placeg'1, T2, T4n the
right cache bankand T3 in the left cache bankWhen T5 comes neither of two
corresponding cachet sets in two cache bank<Of&scache linesand T3 is replaced

SinceT3is still in theON mode our policy givesT3one more chance to stay in the cache
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by using two auxiliary hash functionthereforeT3 is migrated to the right banfor

future accesses.

6.4 Performance Evaluation

6.4.1 Evaluation Methodology

We developed a trace-driven cache simulator to evaluate our T@B dasigns. Four
web server traces: Boston University trace (BU), NASA-HTTP (NASAarkNet-HTTP
(Clarknet), Saskatchewan-HTTP (Sak) are chosen for our expesinidw@se traces

contain all HTTP requests to the corresponding web servers during collection periods

In our experiments, we denote th€B cache in TOEs employing both LRU and
modular hash a§CB (Mod) Since implementing LRU with two hash functions is
complex, we evaluate a pseudo-LRU cache replacement policy BEdiRuultiple cache
banks similar to [43, 86]. We refer to the TCB cache with pseudo-LRUand 2-
Universal as TCB (2-hash).Finally, we evaluate the proposed TCB cache wdth
Universal and thespeculativecache replacement policy and denote itT&B (spec).
Since our cache also implements a migration ppliayinclude our TCB cache without
the migration scheme to understand the migration benefits and déregd CB(no-
migrate). We test 1000 differeriniversalhash functions by randomly generating 1000
parameters and observe that they have similar performance witlainge of 2.5%Ne

selectthe best hash parameters in our experiments

In addition, we also study the performance benefits of applgurgTCB cache

designs into TOEs or integrating the cache into CPUs. We atdctlie TCB access
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overhead (per packet miss ratio * memory latency) and incdgdrato the protocol
processing time in [32] to study the performance impacts ofnédve TCB cache on
TOEs. Furthermore, we use the full system simulator Simycenhancing it with the
detailed cache, I/O timing models and modeling of the effectasetfiork DMA to
understand the benefits of integrating the TCB cache into CPade.tNat the integrated
cache sits in parallel with L2 cache. Two networked sys{eh@nt and server) running
Linux 2.6.16 are simulated. In the client, the replay tool opens neultgdsions to the
apache server to simulate multiple clients and then generates requastisef web traces
while keeping the same behavior inside each session. Since emcd¢esbeap data
structures amontep_v4_rcvandtcp_rcv_establisheéunctions are for TCB items [11],
we refer to those accesses as TCB accesses. We repldoee misses due to TCB
accesses with cache misses of our TCB cache from ourdrize® cache simulator to
approximate the performance benefits of integrating the TCBecadlo CPUs. All
caches in our experiments have the same cache line size oftés! voith detailed

simulator parameters listed in Table 6.1.

Table 6.1 System parameters

Processor Two cores, 3GHz, in-order, singlef
issue
ICache/DCache Private per core, 32 KB 2-way, 2-
cycle hit latency

L2 Unified 4M, 8-way split, 10 cycles hit
Cache latency
Memory 300 cycles
I/O register 800 cycles
TCB Cache 32KB, 10 cycles hit latency
NIC LRO, 64 packets/interrupt
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6.4.2 TCB Cache Performance

We study the performance of various TCB cache configurations fdhealtraces by
comparing their cache miss ratios in Figure 6.16. WelT@ (Mod)as a baseline TCB
cache to understand the benefits of our optimizations. We obbsatvihée baselinéCB
(Mod) has a 56% miss ratio per packet with the BU tra@B (2-hashyeduces the miss
ratio to 37% by achieving a more uniform cache access distribuTi®@B (no-migrate)
obtains a 32% miss ratio by load-balancidy TCBs among cache banks. With our
speculativecache replacement policyCB (speckchieves a smaller miss ratio of 28%,
corresponding to 50% reduction compared to the baseline. Other thoeg évehibit
similar behaviors. The NASA trace has a 50% miss ratio whisnriin on the baseline
system. The miss ratios are lowered to 33%, 28% and 26% wheanwthe trace on
TCB(2-hash), TCB(no-migrate) and TCB (sp&ijnilarly, cache miss ratios for the Sak
trace are 6994 CB (Mod) 55% TCB (2-hash)and 51% TCB(no-migrate)TCB (spec)
obtains a smaller miss ratio of 44%, corresponding to 37% relativetidaompared to
TCB(Mod) When we come to the Clarknet trace, the miss ratios are @2P&B (Mod)
31% for TCB (2-hash)and 25% forTCB (no-migrate) The TCB (spec)urther reduces
the miss ratio to 22% and achieves 47% cache miss reduction cdnpdhe baseline.
All above results verify the effectiveness of our cache indexageme and the

speculativaeplacement policy.
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Figure 6.16 Per packet miss ratio
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Figure 6.17 TCB performance ofn-bit hash

6.4.3 Impact of Bit Selection

To reduce the hardware complexityUniversalhash, 16 representative bits (IP-31>
and Port<8t5>) are chosen for our TCB ca. In this subsection, we study TCB cac
performance and justify the design of ou-bit hash. We compare our -bit hash with
full-fledged 48bit hash and other possible bit lengths hash. SHa#<(-7> is not as
important as other bits of-tuple, we ony consider all other 40 bits for possible
lengths. We present the cache miss ratio comparisofrigure 6.17, where n-bit
represents a hash with the input of n least sgant bits of the 40 bits and all miss rat

are normalized to the miss raof 48-bit hash. The figure shows thab#-hash degrade
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the performance but our -bit hash is able to achieve the same cache perfaenas 4-
bit hash while requiring the least hardware comipfexOur 1¢-bit hash lowers th
hardware complexity, whicallows theUniversalhash to be feasibly deployed on-
chip caches requiring low hash latency and low powensumption. Our circu
implementation shows that one output bit calcufatio 4¢-bit Universa hash needs one
48-hit XOR logic and 48 AND logi¢, corresponding to 7 gate delays and 95 CN
gates (47 gates in the XOR logic and 48 gates fdDAogics). However, our -bit
Universalhash only uses one -bit XOR logic and 16 AND logics for calculating o
output bit, corresponding to 5 gate deland 31 CMOS gates (15 gates in the XOR I
and 16 gates for AND logic:
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Figure 6.18 Cache replacement policies

6.4.4 Exploration of Cache Design Spaces

We also explore TCB cache design space along twes: cachreplacement policie:
cache size, setssociativity. We include three alternative rephaest policies and deno
them asTCB (RR) TCB (16, TCB (Access) TCB (RR)is the policy which chooses

cache bank for the new data in a round robin vTCB (16)is the implementation ¢
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LRU with a 16bit timestamp in each cache lirTCB (Access}elects the cache ba
with fewer cache accesses to the two corresponchiohe sets when a miss occurs
Figure 6.18 all miss ratios are normalized to the miss radf our speculative
replacement policy. We observe tITCB (16)has the similar miss ratios TCB (RR)
and TCB (Access)while it needs a significantly higher storage oweadh and ou
TCB(spec)kchieves the lowest miss ratios for all four traged only ieeds three extra

bits for each cache line.
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Figure 6.19 Performance impact of cache sizes
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Figure 6.20 Performance impact of set-associativity
In addition to the replacement policies, we presbaTCB (specmiss ratios over
various TCB cache sizes normalized over a 32KB €aalk shown in Figur6.19. The
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figure shows that both 32KB and 64KB TCB cache sisehieve good cacl
performance. Whethe cache size is reduced to 16KB and 8KB, the egeformanc
is dramatically degraded because of capacity migs3es study points out that 32KB is
suitable TCB cache size for web servers with thodsaf concurrent sessions. We ¢
evaluate theperformance impacts of -associativity of each cache bank on

TCB(spechs shown in Figur6.20. We observe that both 4-way and/®y achieve goo

cache performance over all four trac

6.4.5 Using our TCB cache

Our research resolves the issue of-session data and is supplementary to exis
approaches. First, our TCB cache can be appli@®tbs to replace the traditional C-
like TCB cache. Second, with the support of our T€&#ghe, DCA or Integrated NI
architectures are able to address the-session data access challenge while run

TCP/IP on CPUSs.
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Figure 6.21 TCP/IP receiving time in TOEs

We show the performance impacts of using the ne8 Tache in TOEs on pack

processing time in Figur6.21 The results are normalized to the original TOBgishe
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simple TCB cache. Our result projects that our cashe can reduce TCP/IP proces:
time by more than 20%. The reduced processing timesaik web server response tin
In addition, we also evaluate the performance btsnef integrating our TCB cache in
CPUs in Figure6.22 and 6.2. We use the prevailing optimization DCA deliver
padets into L2 cache as the baseline configuratiah genote it aorig. We normalize
our results to the processing time of the basdystem without the TCB cache. In t
original system, frequently accessed TCB items diséributed across multiple cee

lines and hence several cache misses could occon®packet. Also, traversing link
lists due to TCB lookups is prone to incurring cactisses, deteriorating cac
performance. By providing high cache hit ratiosl @avoiding linked list traversawith

cache hits, our TCB cache reduces TCP/IP requesegsing time by up to 23% a

saves up to 5% web server response ti
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Figure 6.22 TCP/IP receiving time
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Figure 6.23 Web server response time
6.5 Summary
In this chapter we conducted a detailed study for TCP/IP from {hes-session
perspective and proposed a new TCB cache to afflgienanage p«session TCB dat
in web servers. The dedicated cache is designbd adressed by a specified subse
session identifietsTo provide high TCB cache performance, we extehgi study
performance of various hash functions and emplaew Universal hash based cacl
indexing scheme with two independent cache banéseSimportant bits are careful
selected as hash keys to uce hashing hardware complexity. To further enhahex
performance, we harness tON/OFF model of web sessions to desigrspeculative
cache replacement policy and employ migrating épéacecON blocks toOFF region of
the cache. Our simulation resi show that the new TCB cache can efficiently mani
persession data. By envisioning the benefits, applyiegnew TCB cache into TOEs
integrating it into CPUs can significantly reduc€H receiving time and web sen

response time.
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Chapter 7

Optimizing Virtualized Network Processing

Virtualization separates hardware and software managementfterd many useful
features including functional isolation, server consolidation and ligeation [5, 24, 74].
For these reasons, virtualization is gaining popularity and has bday @&nabling
technology in cloud infrastructures. However, the network performanceertoélized
multi-core servers still falls short of expectation. It isréfiere important to understand
the overhead implications.

In this chapter, we start with detailed performance anatgsisderstand the I/O
virtualization performance challenge over 10GbE. Our performancgsaatveals two
major bottlenecks of virtualized network processing: packet movementidual switch
(or Linux Bridge). We then break down the overhead from an artinigiewpoint and
observe that the cache topology greatly influences the packet ranveerformance in
virtualized environment. Consequently, we develop optimizations for the VMM
scheduler by considering cache topology and favoring /0O VCPU tooirappacket
movement performance. We also propose efficient architectupglogt by extending
DCA to consider VMM scheduling information to eliminate cachesegson packets
along the packet movement path. Lastly, we implement a sintpldigitch to

significantly reduce the switching overhead.
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7.1 Understanding Virtualized Network Processing Ogrhead

In this subsection, we conduct extensive experiments to understamalizéd network
processing overheads over 10GbE. Our testbed consists of a paiverf (system under
test) and client. Server architecture is illustrated in lBigut. The servers are connected
by two PCI-E based Intel 10Gbps XF server adapters. Wen ré¢dault settings of the
Linux network subsystem and the driver, unless stated otherwise.aiWéen 3.1.3 on
SUT and Linux 2.6.21 on client. The network architecture in Xenustitited in Figure
7.1. When NIC driver receives a packet, it delivers the packet rtaxLbridge for
switching to a corresponding backend driver (BE) based on MAC addiessackend
driver communicates request/response information with front end d(Mey by
performing event operations on the shared 1/0O channel (denoée@rsopsn this study)
and then copies the packet to the guest domain (denotkmhasn-copy. The front end
driver delivers the packet to TCP/IP for packet processimgllfz, the packet is copied

out to user buffers (denoted aser-copy as native Linux does.
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Figure 7.1 Intel Xeon Clovertown Machine
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In the experiments, the micro-benchmark Iperf is run and itsrsisrugside a guest
domain on SUT. Since in current implementation, backend driver has nat bee
parallelized and guest domain does not support RSS, we only configure the guest dom
with one virtual CPU. We find from our experiments that network mmsing in
virtualized environment only achieves 2.2 Gbps bandwidth while saturatmnghysical
cores (assuming ideal implementation of parallelized backendrdaind RSS in guest
domain, up to 9 cores are required for a line rate bandwidth). The ovigthead
motivates us to breakdown the per-packet processing overhead. $ultkection, we
choose a typical 1/0 size 16KB as our case study. Note thataf® not packets over
Ethernet and large I/Os are segmented into several Ethernedtpde=MTU). With

16KB 1/O size in our experiments, packet size on average is about 1.5KB.

Table 7.1 Component description

Component Description

Driver Default 10GbE NIC driver, same as nativaux

Buffer management SKB buffer allocation/releaseesas Native Linux

Linux Bridge De-multiplexing/Multiplexing packetsnto corresponding
BE.

Backend driver (BE) Acts a proxy in driver domaior fa guest domain and

communicates with FE
Event operations on 1/Q Communicate request/response information among fBE| a

channel (event-ops) FE

Domain copy (domain-copy) Copy packets among drienain and guest domain
Frontend driver (FE) Virtual NIC driver for guestrain

TCP/IP The TCP/IP protocol stack, same as Nativenti
Kernel-to-user data copy (userAfter TCP/IP processing, data is moved out frormkéto
copy) user buffers, same as Native Linux.

Iperf A user level benchmark to test TCP/IP cajiigbil

Others VMM scheduling, context switch, hypervisaalle and

system calls etc.

7.1.1 Per-packet processing overhead
We use the tool Xenoprof [60] to collect system-wide function overhe&ds Iperf is

running inside a guest domain over 10GbE. Along the network processingnpath i
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virtualized environment, we group all profiled functions into components. Those
components are listed and explained in Table 7.1. Per-packet pngctiss breakdown

is calculated and illustrated in Figure 7.2.
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Figure 7.2 Per-packet processing overhead in virtdzed environment

We obtain the following observations from Fig.7.2: 1) unlike native envieom
packet movement in virtualization environment becomes much more coraglidat
consists of packet movement from the driver domain to guest dofdanmoted as
domain-copy and from kernel to user buffers inside guest domain (denotestasopy.
They take around 25% and 15% of the whole packet processing tirpectresly.
Although packets reside in caches afl®main-copy user-copystill consumes many
CPU cycles. That is because that the current VMM schedulerlyuschledules driver

domain and guest domain into two cores without sharing a LLC. Wheraweathy ping
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guest domain and driver domain into the same cache domain (coresshiihed LLC),

we notice that theuser-copyoverhead can be reduced largely. 2) Besides packet
movement, Linux bridge used for switching packets into correspondirkgdcrivers
burns 1600 cycles per packet, thus becoming another major bottléidaugh some
other components (e.g. NIC driver, SKB buffer management, T@RdtBcol stack) also
consume some overheads, they are not related to virtualization ared esagting
software optimizations for native environment like SKB recyclif@P onloading can be

applied to reduce those overheads.

7.1.2 Architectural Analysis
In order to analyze the functional level overhead, we design gingahethodology and
develop a tool. Our tool can be used to quantify performance fronartthgtectural
characterization perspective. It instruments the VMM, driver doygaiest domain and
network protocol stack along with the packet processing path. We adogbanaace
counter based approach, where a small piece of code is manuaflgdnséo the points
of interest. Those code records the current time-stamp, raetsgddtion, L1 cache miss,
L2 cache miss and TLB cache miss information of the measunéiptw a buffer using
the corresponding Intel Performance counter. The overhead of the iestalmode is
small (only 90 CPU cycles for a timestamp read and 70 ciamiesperformance counter
read) and is subtracted from the measurement.

One example getting L2 cache event count while runnithgimale_bridggin Linux
Bridge) routine is shown in the Table 7.1. It usually consists ofsteps: set counter to

select the architectural event of our interest and accessmarfoe counter to read the
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corresponding event count. In the left column of Table 7.1, we shkedtt2t cache miss
event via writing into performance control register the corresporahingde value which
is specific on Intel Core micro-architecture [34]. Once aechitral event is selected, the
right column attempts to read L2 miss event count via readingcah@sponding
performance counter. This subsection presents detailed argrateghalysis for major

components: Linux bridgelomain-copyanduser-copy

Table 7.2 Performance counter example

Setting Counter Reading Counter
/[Enable Counter rdi2miss(¥{
set_in_cr4(X86_CR4_PCE) // read performance counter
; rdpmc(0,low, high);
val = 0x474024; }

/[Setting L2 Cache Event  Void handle_bridge() {

wrmsr(0x186, val, 0); /IReading L2 cache count
Bridge_l2miss=rdI2miss();
}

A) Linux Bridge

Linux Bridge is a way to connect two segments together in aqobindependent way
[55]. Packets are forwarded based on Ethernet MAC address. The limge code
implements a subset of the ANSI/IEEE 802.1d standard. In order tofgitng VMM
design, Xen takes advantage of the existing Linux Bridge componémux Kernel to
serve as a de-multiplexer. From Fig.7.2, we notice that 1600 cyeleoasumed in the
Linux Bridge module to switch each received packet to the nl@sid backend driver. It
has surprisingly significant overhead and would perform much waitbe integrating
some filter rules. In this subsection, we architecturally breakdbe switching overhead

for each packet and present results in Figure 7.3.
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Figure 7.3 Linux Bridge overhead breakdown

We find from Fig.7.3 that the biggest contributor of the Linux Bridgerlwead is
long path instruction execution, followed by data cache missesnatrdction cache
misses. That is because Linux bridge was designed as a stbdstfirewall and switch
framework to check with many plugged network filters/rules. We icoat doing
functional level profiling of Linux Bridge and list functional overheaaJ able 7.3. We
realize that functions relevant to network filter framework consomst of CPU cycles
without any plugged filters and the core switching functionlfité@r forward) only
requires 600 cycles. All of these observations indicate that a sioghler software

switch is required for virtualization.

Table 7.3 Functional overhead in Linux Bridge

Functions/Macros Description Execution time
per packet (cycles)
Handle Bridge Bridge interface to NIC driver 100
Br_handle_frame Netfilter framework to check wi(td00
inserted filters/rules
Br_handle_frame_finish Netfilter framework to chewkth | 200
inserted filters/rules
Br_forward Performing switching functionality 600
using Jhash algorithm [42]
Br_forward_finish Netfilter framework to check with200
inserted filters/rules
Br_dev_queue push_ xmit Interface to backend driver 100
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B) Domain-copy

After a packet is switched into a corresponding backend driver,disrieebe copied out
from driver domain to guest domain address space. VMM provides a g¢oagt
operation which maps the page, copies the packet and unmaps the pagegie a
hypercall. During a grant copy operation, VMM creates temparappings into VMM
address space for both source and destination of the copy. The VMMpiassdi.e.
increment a reference counter) both pages to prevent the pages from deingtiile the
grant is active. We architecturally breakdown doenain-copyoverhead for each packet

and present results in Figure 7.4.
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Figure 7.4 Domain-copy overhead breakdown

As shown in Figure 7.4, L2 caches misses and long instruction xeqatth are
major contributors to high overheadsdomain-copy Since DMA transactions trigger
cache invalidation to maintain cache coherence among caches andymBoroain-
copy incurs mandatory cache misses on packets and thus consumes rutatgg of
CPU cycles. In order to copy packets between two domain adgrass, driver domain

relies on grant table copy operations provided by VMM. The grapie toperation
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consists of VMM enter/exit, page mapping/unmapping and expensivecatwstructions

on the grant table, explaining high instruction execution overhead.

M Instruction
M [cache

m Dcache

H L2 Cache
N ITLB

m DTLB

Figure 7.5 Kernel-to-user data copy overhead breakaivn
C) user-copy
After protocol processing, user applications in guest domain arelidedeto copy
packets from in-kernel SKB buffers to user buffers. We sttglanchitectural overhead
breakdown as shown in Figure 7.5. Fig.7.5 shows that L2 cache raresdse major
overhead (~57%, ~3.5 L2 misses/packet), followed by data cachesn(iszgd, ~50
misses/packet) and instruction execution (~17%). Althalgyhain-copyalready fetches
packets into caches, driver domain and guest domain are usualiylechby VMM to
run on two cores without sharing a LLC, thus still incurring L2 caulsses during the
kernel-to-user copy. EXxisting optimizations like memory copyiren[95] on data copy
in native environment help little in virtualized environment. Memoryycepgine moves
data in memory but the movement here is among separate caclfemjBxds data into
cores where driver domain is running and cannot avoid those cache thissgsdata
copy from kernel-to-user buffers. Thus, a new data movement sclseneguired to

avoid high packet movement overheads in virtualized environment.
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7. 2 VMM Scheduler Optimizations

The credit scheduler is designed to load balance workloads on meltptatforms.
Unfortunately, it tends to schedule driver domain and guest domain te witfeut
sharing a last level cache, incurring high packet movement overfasagfiown in
Subsection 7.1. In this subsection, we start with detailed studyedit @cheduler and
then propose two VMM scheduler optimizations to improve network processi
performance in virtualized environment.
7.2.1 Credit Scheduler in VMM
VMM functions as an abstraction layer of the real physical césvi As a result,
scheduling in virtualization is based on Virtual CPUs (VCPU) bseaPhysical CPUs
(PCPU) are transparent to domains. Each domain can be arbiflabated with
multiple VCPUs. Besides the default credit scheduler, VMM alsgpkets legacy
scheduler Simple Earliest Deadline First (SEDF) [47]. Skpibivides weighted CPU
sharing in an intuitive way and uses real-time algorithms to emeatdime guarantees.
However, it lacks global load-balancing on multiprocessors and @heg obsolete. In
this study we focus on the default credit scheduler [17], a proportiainahare CPU
scheduler built to achieve load balance on SMP hosts. Its overalliebjecto allocate
the processor resources fairly.

The scheduler organizes a local run queue of online runnable VOPE&ch PCPU
and always picks a workload (VCPU) from the head of the queuantorhis queue is
sorted by VCPU priority. A VCPU's priority can be one of thvadues: OVER, UNDER

and BOOST. OVER, UNDER represents whether or not this VCPWs$e up its fair

115



share of CPU resource in the ongoing accounting period. The BOO@®Tpstaides a
mechanism for domains to achieve low I/O response latency. AY@Js in BOOST
state are placed in front of those in UNDER state in the runqueniks those with
OVER state are kept in the tail portion. Based on the predefieeght, each domain is
initially allocated a corresponding credit which is fairly skaaenong all the VCPUs that
are affinitized to the domain. As a VCPU runs, it consumestsredvery so often, a
system-wide accounting thread re-computes how many crediisaedigze domain has
earned and bumps the credits.

When it comes to multi-core architecture, there are aiasis while the scheduler
functions. First of all, when there is not a VCPU of priorityER on a PCPU'’s local
run queue, the scheduler will search other PCPUs for one. This Icattibagl ensures
each domain receives its fair share of PCPU resourcestsysitde. Before a PCPU goes
idle, the scheduler will look on other PCPUs to find any runnaRIBWY. This guarantees
that no PCPU idles when there is runnable work in the systenon@gc VCPU
migration might happen based on priority difference for event ocatiin. Whenever an
event is notified to a target VCPU while it is idle, the schedtitkles the designated
PCPU and re-evaluates to see if the target VCPU preemptarieat running VCPU. If
there are at least two runnable VCPUs in that PCPU, the schedwéd migrate some
of them to the idlers in the system to achieve load balancé.buasot the least, the
scheduler checks the state of the current running VCPU duringtiesahinterrupt and
redistributes the PCPU if necessary. The running VCPU withiggated to the online

neighbor PCPU with the most idling neighbors PCPU. This policyildlisés work
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across distinct sockets first and then distinct cores in the same socket.

7.2.2 Cache-aware Scheduler

The default credit scheduler is unaware of core topology in nmaré-systems, where
some of cores are sharing a last level cache (LLC) whilerstare sitting in different
sockets. It blindly migrates the VCPU running on PCPU with high wadd to PCPU
with lightweight workloads.

To make the best use of the resource and to make inter-core comtounngficient,
cores in a physical package share some of the resources/staim sinder test (SUT) has
two CPU cores sharing the L2 cache which is called Intel Advanoedt&ache [38] as
shown in Figure 3.1. Each processor has four cores in a physicagpaska two L2
caches. Each L2 cache is shared by two cores. The currentsaoieelduler is designed
for SMP load balance, but is not cache-aware and cannot co-schieelulgo VCPUs
with data sharing on the two cores sharing L2 cache (a.k.a. daohen). Since DomO
is designed for serving /O requests to de-multiplex packets amgk rpackets to
designated DomU (/O DomU), there is intense data sharing est®@em0O and 1/0O
DomU. Co-scheduling DomO and I/O DomU in the same cache domdimgiwel /0O
DomuU a free ride to access the data in the cache and avoid cache misses 8an packet

In order to co-schedule DomO and I/O DomU, the first step @etatify them in the
VMM. Currently we identify them by counting how often 1/0 eveot$oosting VCPUs
are triggered during each time slice. If the number of trgygeceeds a threshold (default
150), both the boosting and the boosted VCPUs are considered as 1/0 UCRideive

side, boosting VCPU is I/O VCPU in Dom0). Note that our extensiadheoscheduler is

117



only based on VCPUs with intense I/O operations, and doesn't sat¢hé system-wide
load-balance on multi-core platforms. After the identifimatof I/O VCPUs, the VMM
scheduler always intelligently schedules boosting and boosted V@®Uise cores
sharing same L2 cache.

In default credit scheduler, when an event is notified to a target VCPU wikiidle,
it is awaken with the state of BOOST. Then other idle PC&usPCPU hosting the
VCPU are notified to re-evaluate where the VCPU will be runningcache-aware
scheduler, instead of notifying all idle PCPUs, VCPU with the state of B0©®inserted
into the runqueue of PCPU sharing L2 cache with the PCPU curtesgting boosting
VCPU. An example is shown in Figure 7.6. The left side in the digsirthe original
system state where boosting VCPU and one running VCPU ang sittthe same cache
domain and boosted VCPU is running on the core 4. Cache-aware scheduler w
automatically migrate boosted VCPU into the same cache doméimoating VCPU to
take advantage of shared cache. The running VCPU is preemptetthentore 4 for
securing the system level load balance. The system statarafration is shown in the

right side of the figure.

1: Tickle Core?

2NWCPU Migratio l

Boasting VCPU) { Running VCPL Boosted WEPU Boosting VCPU ) | Boosted VCFU') ( Running WCPU
 —

corel core? core 4 corel core? core 4

Figure 7.6 An example of Cache-Aware scheduler
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Additionally, VCPU migration in current scheduler also occurs wheNCPU
remains BOOST for a while and some PCPUs are idle. It chtlosdarget PCPU with
the largest number of idle neighbors in its grouping. This optiondigiliibute workload
across distinct packages first and result in maximum resoutizatitn since there is no
shared resource contention. However, virtualized network procesgimglata sharing
between DomO and I/O DomU will suffer heavy inter-package congation penalty
from this mechanism. Cache-aware scheduler dynamically msythe boosted VCPU
and boosting VCPU to the same cache domain when this migration is triggered.

Although our technique might preempt the running VCPU on the PCPU, the
preempted VCPU could be migrated into other PCPUs to sustaimslestel workload

balance on multi-core platforms.

7.2.3 Credit-Stealing for I/0 VCPU in DomO0

The number of VCPUs in DomO is configured by default as the numbzare$ in the

platform. In credit scheduler, all VCPUs affiliated to thenealomain are allocated fairly
with the same credit. However, all of the interrupts from NI€ wsually directed to a
specific VCPU to improve the cache locality of interrupt pssagg in a non-virtualized
environment. This credit allocation mechanism results in performdageadation in

virtualized environment mainly because more VCPUs in Dom0 leaddshared credits
for each VCPU. I/0 VCPU cannot be allocated with sufficient matmg resource to
satisfy packet processing. We propose to dynamically and tempatal some credits

from other idling VCPUs to favor I1/0 VCPUs during each timeesivhile /0 VCPUs
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are busy with processing packets. The principle to steal creditsrmalized in the

following equation:

Steal = Credit (Idle _VCPUs) /(2* Num(IO _VCPUs))
where Stealmeans the stolen credit for each 1/0 VCRkditidle_VvcPugis for the credit
of all idling VCPUS. Nun(lOo_vcPus represents the number of /0O VCPUSs. It shows that
each idling VCPU's credit is dynamically cut in half tovda I/O VCPUs to eliminate
their burden while working with intensive NIC interrupt requesitsce&our policy steals

credits from idling VCPUSs, it does not hurt the overall system performance.
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Figure 7.7 New architecture overview

7.3 Virtualization-aware DCA

Although the above VMM scheduler optimizations improve packet movemegtathe
unable to eliminate all cache misses on packets along thesprogeath. In virtualized
environment, conventional Direct Cache Access (DCA) injects pmadkéo the first

physical core where NIC interrupts are delivered and cannotl asaithe misses on
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packets. In this subsection, we extend DCA by considering VMMdsiting information
to accurately inject incoming packets into right cores whereesponding domains are
running. The overview of architecture is illustrated in Figure 7.7.

In the new architecture, we add one small hardware unit (denotiadeasnovement
enging into I/O controller. When NIC receives a packet, it reads DdAcriptors to
know DMA buffer address and then leverages DMA transactions overEPCI-
interconnect to send the packet to I/O controller. The 1/0 contrp#leses the received
packet into our new data movement engine. The data movement emgittains VM-
to-Core mapping information which is periodically updated by ViMdheduler. Thus,
the engine can find out the destination core where the correspatahmgn is running
and directly inject packets into corresponding caches. For instansbpan in Fig.7.7,
all packets belonging to VM1 will be delivered to the third cehere VM1 is scheduled
by VMM scheduler to be running. The detailed architectural desggnsur data

movement engine are illustrated in Figure 7.8.

VMM
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Figure 7.8 Date movement engine
Inside the data movement engine, we use a mapping table toim&Mao-Core

mapping information. When VMM scheduler finishes scheduling VMesscmultiple

121



cores, it updates the mapping table. Each row in the mapping tpbéserts one VM.
The firstrunning field indicates whether the corresponding VM is running or bast
touch means who is the last to own the row, VMM or NIC. The Rt is the
destination core. When the data movement engine receives a packdtacts the
packet's MAC address and hashes into mapping table. Data movergard ehecks
whether the corresponding VM is running or not. If yes, it obtains tegnd&on core
and then injects packets into corresponding caches. If not, data mowengerd injects
packet into a random core and then markslase touchfield as NIC. When VMM
receives interrupts from NIC and schedules VM across cordsedks with this mapping
table to see whether thast touchfield in the corresponding row has been set by NIC. If
yes, it obtains the core information and schedules VM on the ©trerwise, the default
scheduling policy is applied. By leveraging VMM scheduling informatidre, hew
architecture is able to directly inject packets into caroeces and avoids cache misses

on packets.

7.4 Simplified Bridge

As shown in Subsection 7.1, packet switching function requires only 600scyrid
Jhash algorithm used for multiplexing packets by hashing MAC addresty consumes
120 cycles. It motivates us to design a simplified bridge tailéoe packet switching in
virtualized environment. However, it must retain the same userlkertexface as
original bridge so that the user space bridge utility still kwom virtualization
environment. Since bridge utilities in user space are beinghysddmain management
tool residing in DomO to create/destroy BE, the new bridge should gowifit the

original user/kernel interface to avoid interference with theeotiworkable system. The
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new design is required to keep bridge as simple as possible egieat to packet
switching’s performance and scalability.

Packet processing path of both Linux Bridge and our tailored badgehown in
Figure 7.10. It shows that we bypass most of the functions introducedetijter
interface and re-implement the internal interfaces to minimtea function costs except
the bridge Xen_br_forwargl. The Jhash algorithm is still adopted in our design. Our
prototype is implemented as a new feature of Linux Bridge ke talvantage of its

existence in mainstream kernel.
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Figure 7.9 Linux Bridge vs. our bridge

7.5 Performance Evaluation

We implement our two VMM scheduler optimizations and the simplifiedge in Xen
3.1. Iperf is run over our Intel servers with our optimized Xen to nstaled performance
impacts of our optimizations on network processing. We then study hal benefit

web servers achieve by running the SPECWeb benchmark. Since thagesiimulators
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support virtualization, we choose a full system simulator Simitd develop an
experiment methodology to mimic virtualization environment. We enh&mo&s with
detailed cache, 1/O timing models and modeling of the effeatet@fork DMA. In order
to mimic the virtualization overhead, we inject extra per-paciktialization overheads
from our profiling on real machines in the simulator. We extendDilggal Equipment
Corporation 21140A Ethernet device with the support of interrupt coadesming
Device Modeling language DML to simulate a 10GbE Ethernet Nl@ device itself is
connected to a lossless, full-duplex link of configurable bandwidth. Theclatef a
packet traversing the link is simply fixed tous We simulate two systems (client and
server) running Linux 2.6.16 and interconnect them with 10GbE. The parameteise
in modeling the configuration are listed in Table 7.2. We are muezessted in the
relative behavior of these systems than their absolute perfoemnaacsome of these

parameters are approximations.

Table 7.4 System configurations

Processor | four cores, 3GHz, in-order, two-isslie
ICache/DCache Private per core, 32 KB 2-way, 3-
cycle hit latency
L2 Cache Private per core, 2M, 8-way split, 14
cycles hit latency

Memory 400 cycles

I/O register 1600 cycles
prefetch Stream prefetch, degree: 4
Interrupt 64 packets per interrupt

coalescing ratg

7.5.1 System Optimizations on Xeon Servers
This subsection first studies performance benefits of all lmeetsystem optimizations

(cache-aware and credit-stealing scheduler optimizations amdifegch bridge) in terms
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of network bandwidth and core utilization per gigabit. We obtained thesdts by
modifying Xen and running it on the Intel Xeon server. The resuéispeesented in
Figure 7.11. Default’ represents the original system with credit scheduler withoyt a
optimization. In the figure, bars represent the bandwidth and linesl $ta core
utilization per gigabit. We observe from Fig. 7. 11 that our cacheeaweheduler
increases bandwidth by 19%, and also saves 11% in core utilizatiogigadit. The
credit stealing policy for favoring 1/0 VCPUs further improvwke network performance
by 14% and saves 6% in core utilization per gigabit. It is @ksethat all three
optimizations can increase the network bandwidth by 96% to 4.5 Gbpalsansave 36%
in core utilization per gigabit. In our experiment, we notice thattotal core utilization

consumed by DomO is reduced from 105% to 84% by using all the optimizations.
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Figure 7.10 Network performance with system optimiations

Second, we study web server performance by running the webr demvehmark

SPECweb99 over 10GbE. The same configurations are used. Web servedtiandbv
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various configurations is illustrated in Figure 7.12. As shown in7Hig, web server
achieves 0.9Gbps, 1.2Gbps, 1.3Gbps and 1.5Gbps bandwidth without any optimization,
with cache-aware scheduler, two VMM scheduler optimizations armd thaée
optimizations, respectively. Reduced CPU utilization per gigalite figure points out

the improved processing efficiency on web servers.
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Figure 7.11 Web server performance with system optiizations

7.5.2 Architectural Optimizations through Simulation
Besides three system optimizations, we also propose efficiehitextural support to
avoid cache misses along the packet movement. In this subsegéofirst look at
network performance in the receive side by running Iperf undesusaonfigurations:
the default system without any optimizatiodefaul), all system optimizations, all
system optimizations with default DCA and extended DG&W.

Figure 7.12 illustrates network bandwidth achieved by various aoafigns and
corresponding CPU utilization. As shown in Fig.7.d@faultcan achieve only ~1.9 Gbps

bandwidth by consuming ~100% CPU utilization per gigabit. By impgpwWMM
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scheduler and Linux Bridge, the network performance is improved by 319Gbps with
75% CPU utilization per gigabit. Conventional DCA is unaware of tiomcaof
destination guest domain and injects packets into the first ture only achieving
limited benefits. By considering VMM scheduling information, thevnarchitecture
injects packets into right caches and continues improving networ&rperice up to

5Gbps with 50% CPU utilization per gigabit.
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Figure 7.13 Web server performance with architectual optimizations

127



Similarly, we also investigate web server performanceumning the web server
benchmark SPECweb99 over 10GbE. The same configurations are used asdaresul
illustrated in Figure 7.13. We find that the new architecturaalates web server

performance by 120% compared to the default system while sa@¥gC®U utilization

per gigabit.
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Figure 7.14 Web server performance with architectual optimizations
7.6 Summary
This chapter analyzes the performance challenge of netwotahzation over 10GbE
network with a multi-core server. We found that virtualization ud@&E network adds
significant performance overhead to network processing. We proposemptimizations
for the scheduler inside the VMM to improve the packet movement performancdetn or
to avoid cache misses along moving packets in virtualized environmengxtended
DCA to virtualization environment by considering VMM scheduling infation to
accurately inject packets into cores where corresponding guesirdoare running. We

also redesigned a simplified bridge to switch packets to corresgpigdiest domains.
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Our combined optimizations are able to significantly reduce twmmimttlenecks in

virtualization environment.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Ethernet continues to be the most widely used network architeotlag tue to its low
cost and backward compatibility with the existing Ethernet itrinatire. It dominates in
modern data centers and is replacing specialized fabrics. Driven bgsimgy networking
demands of cloud workloads such as Internet search, web hostingettorknspeed
rapidly migrates from 1Gbps to 10Gbps and beyond. High speed networkserequir
general purpose servers to provide efficient network processing aedldwa design
complexity of NICs. Unfortunately, traditional architecturaligas of processors, cache
hierarchies and system interconnects focused on CPU/memoryaneteaqgplications,
and have often been decoupled from 1/O considerations, thus being iemffior
network processing.

In this dissertation, we did fine-grained NIC driver and OSunséntation to fully
understand the network processing overhead over 10GbE on mainstreans. Séfe
obtain several new findings, which have never been reported. Motibgatdee studies,
we proposed a new server I/O architecture where DMA descrignagement is shifted
from NICs to an on-chip network engine (NEngine) and descriptorexesnded with

information about data incurring memory stalls. NEngine relieglaia lookups and
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preloads to eliminate the stalls during network processing. MergoNENgine
implements efficient packet movement inside caches to addressntiagning issue in
data copy. The new architecture allows DMA engine to have vesty decess to
descriptors and leverages CPU caches to keep packets rhtdrerNIC buffers,
significantly simplifying NICs.

Recently, most researchers viewed integrated NIC (INI€)a promising /O
solution to tackle the challenges from high speed networks on semeosder to
understand performance benefits of integrated NIC architectueesiudied the impact
of INICs by extensive evaluations on a real Sun Niagara 2 platfetimtwo integrated
10GbE NICs. We characterized system behavior to understand thevzaréer benefits
with respect to different number of connections, OS overhead, instrudiorts, and
cache misses etc. Our studies reveal that there is atbh@nategrating NICs onto CPUs,
but the gain is somewhat marginal.

Motivated by performance analysis on integrated NIC achites, we proposed an
enhanced integrated NIC architecture for high speed networlke Inew architecture,
we redesigned CPU/NIC interface from hardware DMA to saf@wP10O by exploiting
fast CPU/NIC interaction. We deployed hardware RSS fociefftly supporting multi-
core systems and software LRO for reducing per-packet ovkrhrearder to eliminate
cache interference between 1/0 and other running applicationgkeeativantage of the
integration of NIC to split LLC. A dedicated I/O cache is fogured at the cache way
level, and its organization can be dynamically changed to meettloais network data
rates. Additionally, we also optimized cache coherence protocavdm unnecessary

write-backs of network data for efficiently utilizing memory bus.
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All above studies were conducted from the per-packet perspectivgaathdno
attention to per-session data TCP Control Block (TCB). A TCR [er-session data
structure and is accessed on the TCP critical path [8, 13, 20, 2@)gé& humber of
sessions and session behavior in web servers make the managent&Bs abmplicated.

In this dissertation, we analyzed challenges incurred from T@Ben there are
thousands of concurrent sessions and studied behavior of web sess$iens.wk
designed a new dedicated TCB cache by fully leveragingsesbion characteristics to
efficiently manage TCB data. We designed the cache alongvtheimensions: cache
indexing and cache replacement policy. We studied the perfornanearious hash
functions and proposed @niversal hashing based cache indexing scheme. To couple
with our cache indexing scheme, we designegexulativecache replacement policy by
harnessing theON/OFF model of web sessions. The new TCB cache is able to

effectively manage TCB data and can be adopted by integrated NIC or@zen T

As virtualization has gained resurgent interest since thealgrese of multi-core
servers and is becoming a key enabling technology in cloud infrasesc
understanding and improving network processing performance in Vvidtiahz
environment becomes critical. In this dissertation, we conductexk@erimental study
of virtualized network performance under 10GE networks to idettigéyperformance
bottlenecks of virtualized network processing. We observed extrdngtlyoverheads in
software Linux bridge switch and packet movement in virtualizationremvient. In
order to improve packet movement performance, we proposed two VMM sahedule

optimizations and extended DCA by considering VMM scheduler infoomab avoid
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cache misses on packets while moving packets. In addition, wedalsgoped a
simplified software switch to switch packets to correspondingstgdemains. The
experimental results show that our system and architectural ipgtioms can

significantly improve virtualized network processing performance.

8.2 Future Work

In this dissertation, we analyzed performance challenges fromdpged networks on
mainstream servers and proposed several new architecturars®hat optimize network
processing for both native and virtualized environment over high speed ketBased
on the current studies, we foresee three research directions to extend this work.

First of all, power consumption of I/O architectures in maiastrgervers should be
studied and considered. Although extensive studies have been conducted standder
CPU and memory power consumption in servers, we are still untbegrower
consumption of 1/0O architecture including both network 1/0O and stotége not to
mention power optimizations or management policies on 1/0O archiéscturservers. As
DVFS and clock gating becomes increasingly popular as pdhteobn chip module in
hardware, we strongly believe that power-aware 1/O architect(eey. NIC, PCI-E
interconnect etc.) should be designed and be incorporated into next generatian severs

Secondly, many more system and architectural optimizatienstiirunexplored for
integrated NIC architectures with fast CPU/NIC interactioBy exploiting fast
CPUINIC interaction, existing memory management unit insilesccan be reused by
NICs to provide fast virtual-to-physical address translation irdvisare (or guest-

physical-to-host-physical for virtualization). With the supporth&fse address translation
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in hardware, user applications or guest domains can directly abeedware NIC.
Additionally, the integrated NIC can quickly fetch power statesllo€CRU cores and
distribute interrupts/packets across cores in a power-effimannher. For instance, NIC
sends interrupts to running cores and keeps idling CPUs as long as possible.
Thirdly, as the whole IT industry is quickly shifting to cloud computiwe can
extend our I/O architecture research into an emerging and braderdata centers. We
can start with 1/0 characteristic studies of some emgrgioud computing applications
like Hadoop, Eucalyptus and then understand the 1/O architecture's snpaaiata
centers in terms of cost, power and performance. Due to is$uegh cost from high
performance switches, complicated cabling management and netasréwidth
oversubscription, we believe the conventional I/O architecture isurietisvell for cloud
infrastructure. Thus, designing a more cost-effective and emd#figient 1/0 architecture

becomes extremely important to data centers.
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