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ABSTRACT OF THE DISSERTATION

Detection of Sparse Heterogeneous Mixtures: Theory, Methods and Algorithms

by

Rong Huang

Doctor of Philosophy in Mathematics (with a specialization in Statistics)

University of California San Diego, 2020

Professor Ery Arias-Castro, Chair

The detection of sparse heterogeneous mixtures becomes important in settings where a

small proportion of a population may be affected by a given treatment, for example. The situation

is typically formalized as a contamination model. We consider such models in asymptotic regimes

where the contamination proportion tends to zero at various rates. We study the following three

settings: the contamination manifests itself as a change in variance, the contamination manifests

itself as a positive dependence between the variables in the bivariate setting, and the effect is a

shift in mean without knowing the null distribution. In each setting, we study how large the effect

needs to be in order to reliably distinguish the null hypothesis and the alternative hypothesis. We

show that the corresponding higher criticism test is first-order comparable to the likelihood ratio

xi



test, while other classical tests are suboptimal. In particular, we make connections between the

first two settings. We consider the dependence problem from both parametric and nonparametric

perspectives. In the last chapter, we consider a different problem, that is to examine the extent

to which the causal inference resulting estimate is sensitive to the unmeasured confounders for

survival and competing risks data.
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Chapter 1

Introduction

The detection of rare effects becomes important in settings where a small proportion of a

population may be affected by a given treatment, for example. The situation is typically formalized

as a contamination model. Although such models have a long history (e.g., in the theory of robust

statistics), we adopt the perspective of Ingster [28] and Donoho and Jin [20]. Ingster [28] has

studied the normal mixture model, that is, considering the following contamination model:

(1−ε)N(0,1)+εN(µ,1), (1.1)

where ε ∈ [0,1/2) is the contamination proportion and µ≥ 0 is the shift in mean of the contaminated

component. The following hypothesis testing problem is considered: based on X1, . . . ,Xn drawn

iid from (1.1), decide

H0 ∶ ε = 0 versus H1 ∶ ε > 0, µ > 0.

The problem is investigated in various asymptotic regimes where the contamination proportion

tends to zero at various rates. The detection boundary of the likelihood ratio test (LRT) (then

any other tests) is derived. Donoho and Jin [20] further derived the detection boundary with the

1



generalized Gaussian mixture model:

f (x) ∝ exp(−
∣x∣γ

γ
),

where γ > 0. Note that γ = 2 corresponds to the normal distribution and γ = 1 corresponds to the

double-exponential distribution. They parameterized ε = εn as

εn = n−β, 0 < β < 1 fixed.

In the sparse setting where 1/2 < β < 1, let

µn = (γr logn)1/γ, 0 < r < 1 fixed,

then the detection boundary when γ > 1 is

ρ
∗
γ (β) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(21/(γ−1)−1)γ−1(β− 1
2),

1
2 < β < 1−2−γ/(γ−1);

(1−(1−β)1/γ)γ, 1−2−γ/(γ−1) < β < 1.

and for the case γ ≤ 1

ρ
∗
γ (β) = 2β−1.

That means, if r > ρ∗(β), H0 and H1 separate asymptotically, while if r < ρ∗(β), H0 and H1

merge asymptotically.

The detection boundary in the dense regime where 0 < β < 1/2 is given in [3]. Let

µn = ns−1/2, 0 < s < 1/2 fixed,

then the hypotheses merge asymptotically when s < β if γ ≥ 1/2 and s < 1
2 −

1−2β

1+2γ
if γ < 1/2.

2



This line of work has mostly focused on models where the effect is a shift in mean, with

some rare exceptions [12, 11]. In Chapter 2, we consider a Gaussian contamination model where

the contamination manifests itself as a change in variance. We show that the higher criticism test

is (first-order) comparable to the likelihood ratio test in all sparsity regimes, while the chi-squared

test and the extremes test are suboptimal.

In Chapter 3, in a bivariate setting, we consider the problem of detecting a sparse contami-

nation or mixture component, where the effect manifests itself as a positive dependence between

the variables, which are otherwise independent in the main component. We first look at this

problem in the context of a normal mixture model. In essence, the situation reduces to a univariate

setting where the effect is a decrease in variance. In particular, a higher criticism test based on the

pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood

ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown.

Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test

based on the pairwise rank differences achieves the detection boundary in the normal mixture

model, although not in the very sparse regime. We do not know of any rank test that has any

power in that regime.

In Chapter 4, we consider the problem of detecting sparse heterogeneous mixtures in

a two-sample setting from a nonparametric perspective, where the effect manifests itself as a

positive shift. We suggest a two-sample higher criticism test, and show that it is first-order

comparable to the likelihood ratio test for the normal mixture models in all sparsity regimes.

In Chapter 5, we turn to a causal inference problem in observational studies with survival

and competing risks outcomes. No unmeasured confounding is often assumed in estimating

treatment effects in observational data, whether using classical regression models or approaches

such as propensity scores and inverse probability weighting. However, in many such studies,

collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine

the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider

3



this problem for survival and competing risks data. Due to the complexity of models for such data,

we adapt the simulated potential confounders approach of Carnegie et al. [14], which provides a

general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify

one sensitivity parameter to quantify the association between an unmeasured confounder and the

exposure or treatment received, and another set of parameters to quantify the association between

the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity

parameters, we estimate the treatment effect of interest using the stochastic EM and the EM

algorithms. We demonstrate the performance of our methods on simulated data, and apply them

to a comparative effectiveness study in inflammatory bowel disease (IBD).

4



Chapter 2

The Sparse Variance Contamination Model

2.1 Introduction

The detection of rare effects becomes important in settings where a small proportion

of a population may be affected by a given treatment, for example. The situation is typically

formalized as a contamination model. Although such models have a long history (e.g., in the

theory of robust statistics), we adopt the perspective of Ingster [28] and Donoho and Jin [20],

who consider such models in asymptotic regimes where the contamination proportion tends to

zero at various rates. This line of work has mostly focused on models where the effect is a shift in

mean, with some rare exceptions [12, 11]. In this paper, instead, we model the effect as a change

in variance.

We consider the following contamination model:

(1−ε)N(0,1)+εN(0,σ2), (2.1)

where ε ∈ [0,1/2) is the contamination proportion and σ > 0 is the standard deviation of the

contaminated component. (Note that this is a Gaussian mixture model with two components.)

Following [28, 20], we consider the following hypothesis testing problem: based on X1, . . . ,Xn

5



drawn iid from (2.1), decide

H0 ∶ ε = 0 versus H1 ∶ ε > 0, σ ≠ 1. (2.2)

As usual, we study the behavior of the likelihood ratio test, which is optimal in this simple

versus simple hypothesis testing problem if we assume that the model parameters (ε,σ) are

known. We also study some testing procedures that, unlike the likelihood ratio test, do not require

knowledge of (ε,σ):

● The chi-squared test rejects for large values of ∣∑i X2
i −n∣. This is the typical variance test

when the sample is known to be zero mean.

● The extremes test combines the test that rejects for small values of mini ∣Xi∣ and the test that

rejects for large values of maxi ∣Xi∣ using Bonferroni’s method.

● The higher criticism test [20] amounts to applying one of the tests proposed by Anderson

and Darling [1] for normality. One variant is based on rejecting for large values of

HC = sup
x≥0

√
n ∣Fn(x)−Ψ(x)∣

√
Ψ(x)(1−Ψ(x))

, (2.3)

where Ψ(x) ∶= 2Φ(x)−1, where Φ denotes the standard normal distribution, and Fn(x) ∶=

1
n∑

n
i=1 I{∣Xi∣ ≤ x}, is the empirical distribution of ∣Xi∣.

The testing problem (2.2) was partially addressed by Cai, Jeng, and Jin [11], who consider

a contamination model where the effect manifests itself as a shift in mean and a change in variance.

However, in their setting the variance is fixed, while we let the variance change with the sample

size in an asymptotic analysis that is now standard in this literature.

In the tradition of Ingster [28], we set

ε = n−β, β ∈ (0,1) fixed. (2.4)

6



The setting where β ≤ 1/2 is often called the dense regime while the setting where β > 1/2 is often

called the sparse regime. (Note that the setting where β > 1 is uninteresting since in that case

there is no contamination with probability tending to 1.)

Our analysis reveals three distinct situations:

(a) Near zero (σ→ 0): In the sparse regime, the higher criticism test is as optimal as the

likelihood ratio test, while the chi-squared test is powerless and the extremes test is

suboptimal.

(b) Near one (σ→ 1): In the dense regime, the chi-squared test and the higher criticism test are

as optimal as the likelihood ratio test, while the extremes test has no power.

(c) Away from zero and one (σ fixed): In the sparse regime, the extremes test and the higher

criticism test are as optimal as the likelihood ratio test, while the chi-squared test is

asymptotically powerless if σ is bounded.

These results are summarized in Table 2.1 and Figure 2.1.

Table 2.1: The detection boundary for the likelihood ratio test, the chi-squared test, the extremes
test, and the higher criticism test.

dense regime (β < 1/2) sparse regime (β > 1/2)

∣σn−1∣ = n−γ, γ > 0 σ fixed σn = n−γ, γ > 0 σ fixed

likelihood ratio γ < 1/2−β σ ≠ 1 γ > 2β−1 σ > 1/
√

1−β

chi-squared γ < 1/2−β σ ≠ 1 no power no power
extremes no power σ > 1/

√
1−β γ > β σ > 1/

√
1−β

higher criticism γ < 1/2−β σ ≠ 1 γ > 2β−1 σ > 1/
√

1−β

2.2 The likelihood ratio test

We start with bounding the performance of the likelihood ratio test. As this is the most

powerful test by the Neyman–Pearson Lemma, this bound also applies to any other test. In the
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Figure 2.1: The detection boundary for the Gaussian mixture model (2.1). From left to right,
the plots correspond to (2.5), (2.8), and σ fixed. In each case, the detection boundary (defined
by the first-order performance of the likelihood ratio test) is drawn as a solid line, and is shown
to also apply to the higher criticism test. The dotted line corresponds to the detection boundary
for the extremes test. See Table 2.1 for more details.

present setting, the likelihood ratio is given by

L ∶=
n
∏
i=1

Li,

where Li is the likelihood ratio for observation Xi, which in this case is

Li =

1−ε√
2π

exp(−1
2X2

i )+
ε√
2πσ

exp(− 1
2σ2 X2

i )

1√
2π

exp(−1
2X2

i )

= 1−ε+
ε

σ
exp(

σ2−1
2σ2 X2

i ),

so that

L =
n
∏
i=1

[1−ε+
ε

σ
exp(

σ2−1
2σ2 X2

i )] .

We say that a testing procedure is asymptotically powerless if the sum of its probabilities

of Type I and Type II errors (its risk) has limit inferior at least 1 in the large sample limit. The

likelihood ratio test has optimum risk when applied with critical value equal to 1, meaning with

8



rejection region {L > 1}, and its risk is then equal to

risk(L) ∶= 1−
1
2
E0 ∣L−1∣.

(We refer the reader to [34, Problem 3.10].)

2.2.1 Near zero

Consider the testing problem (2.2) in the regime where σ = σn → 0 as n→∞. More

specifically, we adopt the following parameterization as it brings into focus the first-order

asymptotics:

σ = n−γ, γ > 0 fixed. (2.5)

Theorem 1. For the model (2.1) and the testing problem (2.2) with parameterization (2.4) and

(2.5), the likelihood ratio test (and then any other test procedure) is asymptotically powerless

when

γ < 2β−1. (2.6)

Proof. Our goal is to show that risk(L) = 1+o(1) under the stated conditions. When σ is below

and bounded away from
√

2, it turns out that a crude method, the so-called 2nd moment method

which relies on the Cauchy-Schwarz Inequality, is enough to lower bound the risk. Indeed, by the

Cauchy-Schwarz Inequality,

risk(L) ≥ 1−
1
2

√
E0[L2]−1,

and we are left with the task of finding conditions under which E0[L2] ≤ 1+o(1).

We have

E0[L2] =
n
∏
i=1

E0[L2
i ] = (E0[L2

1])
n,

9



where

E0[L2
1] =E0[(1−ε+

ε

σ
exp(

σ2−1
2σ2 X2

1 ))

2

]

= 1−ε
2+

ε2

σ2 E0[exp(
σ2−1

σ2 X2
1 )]

= 1−ε
2+ε

2[σ2(2−σ
2)]

−1/2

= 1+ε
2([σ2(2−σ

2)]
−1/2

−1).

Therefore,

E0[L2] = [1+ε
2([σ2(2−σ

2)]
−1/2

−1)]
n

≤ exp[nε
2([σ2(2−σ

2)]
−1/2

−1)],

so that E0[L2] ≤ 1+o(1) when

nε
2([σ2(2−σ

2)]
−1/2

−1)→ 0. (2.7)

Plugging in the parameterization (2.4) and (2.5), we immediately see that this condition is fulfilled

when (2.6) holds, and this concludes the proof.

2.2.2 Near one

Consider the testing problem (2.2) in the regime where σ2 → 1. More specifically, we

adopt the following parameterization:

∣σ−1∣ = n−γ, γ > 0 fixed. (2.8)

Theorem 2. For the model (2.1) and the testing problem (2.2) with parameterization (2.4) and

(2.8), the likelihood ratio test (and then any other test procedure) is asymptotically powerless

10



when

γ > 1/2−β. (2.9)

Proof. Restarting the proof of Theorem 1 at (2.7), and plugging in the parameterization (2.4) and

(2.8), we immediately see that E0[L2] ≤ 1+o(1) when (2.9) holds.

2.2.3 Away from zero and one

Consider the testing problem (2.2) in the regime where σ is fixed away from 0 and 1.

(Some of the results developed in this section are special cases of results in [11].)

Theorem 3. For the model (2.1) and the testing problem (2.2) with parameterization (2.4) and

σ > 0 is fixed, the likelihood ratio test (and therefore any other test) is asymptotically powerless

when β > 1/2 and

σ < 1/
√

1−β. (2.10)

Proof. We use a refinement of the second moment method, sometimes called the truncated

second moment method, which is based on bounding the moments of a thresholded version of

the likelihood ratio. Define the indicator variable Di = I{∣Xi∣ ≤
√

2logn} and the corresponding

truncated likelihood ratio

L̄ =
n
∏
i=1

L̄i, L̄i ∶= LiDi.

Using the triangle inequality, the fact that L̄ ≤ L, and the Cauchy-Schwarz Inequality, we

have the following upper bound:

E0[∣L−1∣] ≤E0[∣L̄−1∣]+E0[L− L̄]

≤ [E0[L̄2]−1+2(1−E0[L̄])]
1/2

+(1−E0[L̄]) ,

so that risk(L) ≥ 1+o(1) when E0[L̄2] ≤ 1+o(1) and E0[L̄] ≥ 1+o(1).

11



For the first moment, we have

E0[L̄] =
n
∏
i=1

E0[L̄i] =E0[L̄1]
n,

so that it suffices to prove that E0[L̄1] ≥ 1−o(1/n). We develop

E0[L̄1] =E0[(1−ε+
ε

σ
exp(

σ2−1
2σ2 X2

1 ))D1]

= (1−ε)(1−2Φ̄(
√

2logn))+ε(1−2Φ̄(
√

2logn/σ))

= (1−ε)(1−O(n−1/
√

logn))+ε(1−O(n−1/σ
2
/
√

logn))

= 1−o(1/n)−o(εn−1/σ
2
),

where Φ̄ is the standard normal survival function. We used the well-known fact that Φ̄(t) ∼

e−t2
/2/

√
2πt as t →∞. Since ε = n−β with β > 1/2, and (2.10) holds, we have εn−1/σ

2
= o(1/n), so

that E0[L̄1] ≥ 1−o(1/n).

For the second moment, we have

E0[L̄2] =
n
∏
i=1

E0[L̄2
i ] =E0[L̄2

1]
n,

12



so that it suffices to prove that E0[L̄2
1] ≤ 1+o(1/n). We develop

E0[L̄2
1] =E0[(1−ε+

ε

σ
exp(

σ2−1
2σ2 X2

1 ))

2

D1]

= (1−ε)2(1−2Φ̄(
√

2logn))+2(1−ε)ε(1−2Φ̄(
√

2logn/σ))

+
ε2

σ2 E0[exp(
σ2−1

σ2 X2
1 )D1]

≤ 1−ε
2+

ε2
√

2πσ2 ∫

√
2logn

−
√

2logn
exp((

σ2−1
σ2 −

1
2
)x2)dx

≤ 1+O(ε
2 exp(

(σ2−2)+
σ2 logn)

√
logn).

Hence, it suffices that −2β+(σ2−2)+/σ2 < −1, which is equivalent to (2.10).

Though we only provide lower bounds on what can be achieved, they turn out to be sharp

once we analyze the performance of other tests, especially the higher criticism test, which is

shown to achieves these lower bounds to firs-order accuracy.

2.3 Other tests

Having studied the performance of the likelihood ratio test, we now turn to studying the

performance of the chi-squared test, the extremes test, and the higher criticism test. These tests

are more practical in that they do not require knowledge of the parameters driving the alternative,

(ε,σ), to be implemented.

2.3.1 The chi-squared test

The chi-squared test is the classical variance test. It happens to only be asymptotically

optimal in the dense regime.

Proposition 1. For the model (2.1) and the testing problem (2.2) with parameterization (2.4), the

13



chi-squared test is asymptotically powerful when β < 1/2 and either σ is bounded away from 1 or

(2.8) holds with γ < 1/2−β. The chi-squared test is asymptotically powerless when β > 1/2 and σ

is bounded.

Proof. We divide the proof into the two regimes.

Dense regime (β < 1/2). We show that there is a chi-squared test that is asymptotically powerful

when β < 1/2. UnderH0, W ∶= ∑
n
i=1 X2

i has the chi-squared distribution with n degrees of freedom.

But using only the fact that E0(W) = n and Var0(W) = 2n, by Chebyshev’s inequality, we have

P0(∣W −n∣ ≥ an
√

n) → 0,

for any sequence (an) diverging to infinity. Under H1, E1(W) = n(1−ε+εσ2). Let Ii indicate

whether Xi comes from the contaminated component. Note that Ii ∼ Bernoulli(ε). Then

Var1(W) = nVar1(X1) = n[E1(Var1(X1∣I1))+Var1(E1(X1∣I1))]

= n[2−2ε+2εσ
4+(σ

2−1)2
ε(1−ε)].

Note that Var1(W) ∼ 2n eventually. By Chebyshev’s inequality,

P1(∣W −n(1−ε+εσ
2)∣ ≥ an

√
n) → 0.

We choose an = logn and consider the test with rejection region {∣W −n∣ ≥ an
√

n}. This test is

asymptotically powerful when, eventually,

∣n(1−ε+εσ
2)−n∣ ≥ 2an

√
n,

meaning,

∣σ2−1∣ε
√

n ≥ 2an.
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This is the case when β < 1/2 with no condition on σ other than remaining bounded away from 1,

and also when (2.8) holds and γ < 1/2−β.

Sparse regime (β > 1/2). To prove that the chi-squared procedure is asymptotically powerless

when β > 1/2, we argue in terms of convergence in distribution rather than the simple bounding

of moments. Under H0, the usual Central Limit Theorem implies that (W −n)/
√

2n converges

weakly to the standard normal distribution. Under H1, the same is true using the Lyapunov

Central Limit Theorem for triangular arrays. Indeed, even though the distribution of X1, . . . ,Xn

depends on (n,ε), uniformly

∑
n
i=1E1 [(X2

i −1)4]

(∑
n
i=1E1 [(X2

i −1)2])
2 =

nE1 [(X2
1 −1)4]

n2(E1 [(X2
1 −1)2])

2 ≍ 1/n→ 0,

so that (W −E1(W))/
√

Var1(W) converges weakly to the standard normal distribution. Since

W −E1(W)
√

Var1(W)
= (

W −n
√

2n
+

n−E1(W)
√

2n
)

√
2n

√
Var1(W)

,

with

E1(W) = n(1−ε+εσ
2) = n+o(

√
n), (since β > 1/2),

and

Var1(W) =
n
∑
i=1

E1 [(X2
i −1)2] = n[2−2ε+2εσ

4+(σ
2−1)2

ε(1−ε)] ∼ 2n, (since σ is bounded),

it is also the case that (W −n)/
√

2n converges weakly to the standard normal distribution by

Slutsky’s theorem. Hence, there is no test based on W that has any asymptotic power.
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2.3.2 The extremes test

The extremes test, as the name indicates, focuses on the extreme observations, disregarding

the rest of the sample. It happens to be suboptimal in the setting where σ→ 0, while it achieves

the detection boundary in the sparse regime in the setting where σ is fixed.

Proposition 2. For the model (2.1) and the testing problem (2.2) with parameterization (2.4) and

(2.5), the extremes test is asymptotically powerful when γ > β (and asymptotically powerless when

γ < β). If instead σ > 0 is fixed, the extremes test is asymptotically powerful when σ > 1/
√

1−β

(and asymptotically powerless when σ < 1/
√

1−β).

Proof. Under H0, for any an→∞, we have

P0 (min
i

∣Xi∣ ≥ 1/nan) = [P0 (∣X1∣ ≥ 1/nan)]
n

= [2Φ̄(1/nan)]
n

= [1−O(1/nan)]
n
→ 1.

Similarly, as is well-known,

P0 (max
i

∣Xi∣ ≤
√

2logn) → 1.

We thus consider the test with rejection region {mini ∣Xi∣ ≤ 1/n logn}∪{maxi ∣Xi∣ ≥
√

2logn}.

We now consider the alternative. We first consider the case where (2.5) holds. We focus on

the main sub-case where, in addition, γ < 1. Let I ⊂ {1, . . . ,n} index the contaminated observations,

meaning those sampled from N(0,σ2). In our mixture model, ∣I∣ is binomial with parameters
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(n,ε). Let Z1, . . . ,Zn be iid standard normal variables and set bn = σn logn. We have

P1 (min
i

∣Xi∣ ≤ 1/n logn) ≥ P1 (min
i∈I

∣Xi∣ ≤ 1/n logn)

= 1−E[P(min
i∈I

∣Zi∣ ≥ 1/bn ∣ I)]

= 1−E[(2Φ̄(1/bn))
∣I∣]

= 1−[1−ε+ε2Φ̄(1/bn)]
n
.

Since we have assumed that γ < 1 in (2.5), we have 1/bn→ 0, and therefore

2Φ̄(1/bn) = 1−
2+o(1)
√

2πbn
.

This in turn implies that

[1−ε+ε2Φ̄(1/bn)]
n
= [1−

(2+o(1))ε
√

2πbn
]

n

→ 0

when nε/bn→∞, which is the case when γ > β.

Assume instead that γ < β. Fix a level α ∈ (0,1) and consider the extremes test at that level.

Based on the same calculations, this test has rejection region {mini ∣Xi∣ ≤ cn}∪{maxi ∣Xi∣ ≥ dn},

where cn and dn are defined by [2Φ̄(cn)]
n = 1−α/2 and [2Φ(dn)−1]n = 1−α/2, respectively.

Note that

cn ∼ −
√

π/2 log(1−α/2)/n, dn ∼
√

2logn.

For the minimum, we have

P1 (min
i

∣Xi∣ ≤ cn) ≤ P1 (min
i∉I

∣Xi∣ ≤ cn)+P1 (min
i∈I

∣Xi∣ ≤ cn).
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Let Z1, . . . ,Zn be iid standard normal variables. Clearly,

P1 (min
i∉I

∣Xi∣ ≤ cn) ≤ P(min
i

∣Zi∣ ≤ cn) = α/2,

and, as was derived above,

P1 (min
i∈I

∣Xi∣ ≤ cn) = P1 (min
i∈I

∣Zi∣ ≤ cn/σ)

= 1−[1−ε+ε2Φ̄(cn/σ)]
n
,

with

[1−ε+ε2Φ̄(cn/σ)]
n
= [1−

(2+o(1))εcn
√

2πσ
]

n

→ 1,

since εcn/σ ≍ n−1−β+γ = o(1/n). Thus, P1(mini ∣Xi∣ ≤ cn) → 0. And since maxi ∣Xi∣ under the

alternative is stochastically bounded from above by its distribution under the null (since σ < 1), we

also have P1(maxi ∣Xi∣ ≥ dn) ≤ α/2. Hence, the extremes test (at level α arbitrary) has asymptotic

power α, meaning it is asymptotically powerless. (It is no better than random guessing.)

Next, we consider the case where σ is fixed. Following similar arguments, now with

bn = σ−1√2logn, we have

P1 (max
i

∣Xi∣ ≥
√

2logn) ≥ P1 (max
i∈I

∣Xi∣ ≥
√

2logn)

= 1−E[P(max
i∈I

∣Zi∣ ≤ bn ∣ I)]

= 1−E[(2Φ(bn)−1)∣I∣]

= 1−[1−ε+ε(2Φ(bn)−1)]
n
.

We have

2Φ(bn)−1 ≍ 1−o(n−1/σ
2
),
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so that

[1−ε+ε(2Φ(bn)−1)]
n
≍ [1−o(εn−1/σ

2
)]

n
→ 0

when nεn−1/σ
2
→∞, which is the case when σ > 1/

√
1−β.

Using a similar line of arguments, it can also be shown that the test is asymptotically

powerless when σ < 1/
√

1−β is fixed.

2.3.3 The higher criticism test

The higher criticism, which looks at the entire sample via excursions of its empirical

process, happens to achieve the detection boundary in all regimes, and is thus (first-order)

comparable to the likelihood ratio test while being adaptive to the model parameters.

Proposition 3. For the model (2.1) and the testing problem (2.2) with parameterization (2.4), the

higher criticism test is asymptotically powerful when either (2.5) holds with γ > 2β−1, or (2.8)

holds with γ < 1/2−β, or σ > 1/
√

1−β is fixed, or β < 1/2 and σ ≠ 1 is fixed.

Proof. Jaeschke [29] derived the asymptotic distribution of HC defined in (2.3) under the null,

and this weak convergence result in particular implies that

P0 (HC ≥
√

3loglogn) → 0.

For simplicity, because it is enough for our purposes, we consider the test with rejection region

{HC ≥ logn}. Note that the test is asymptotically powerful if, under the alternative, there is tn ≥ 0

such that
√

n ∣Fn(tn)−Ψ(tn)∣
√

Ψ(tn)(1−Ψ(tn))
≥ logn

with probability tending to 1. To establish this, we will apply Chebyshev’s inequality. Indeed,
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nFn(t) is binomial with parameters n and Λ(t) ∶= (1−ε)Ψ(t)+εΨ(t/σ), so that

√
n ∣Fn(tn)−Λ(tn)∣

√
Λ(tn)(1−Λ(tn))

≤ logn

with probability tending to 1. When this is the case, we have

√
n ∣Fn(tn)−Ψ(tn)∣

√
Ψ(tn)(1−Ψ(tn))

≥ un−(logn)
√

vn,

where

un ∶=

√
nε ∣Ψ(tn/σ)−Ψ(tn)∣
√

Ψ(tn)(1−Ψ(tn))
, vn ∶=

Λ(tn)(1−Λ(tn))
Ψ(tn)(1−Ψ(tn))

,

and only need to prove that

un ≥ (
√

vn+1) logn. (2.11)

First, assume that (2.5) holds with γ > 2β−1. We focus on the interesting sub-case where

γ < β. Fix q such that q > γ and 1/2−β−q/2+ γ > 0 and set tn = n−q. Then, using the fact that

ε/σ = nγ−β = o(1), we have

Ψ(tn) ≍ tn, Ψ(tn/σ) ≍ tn/σ, Λ(tn) ≍ tn+εtn/σ ≍ tn,

so that

un ≍
√

nε(tn/σ)/
√

tn = n1/2−β−q/2+γ ≫ logn, vn ≍ 1,

and therefore (2.11) is fulfilled, eventually.

Next, we assume that (2.8) holds with γ < 1/2−β. Here we set tn = 1, and get 0 <Ψ(tn) =

Ψ(1) < 1, and

∣Ψ(tn/σ)−Ψ(tn)∣ ∼ ∣(1/σ−1)Ψ
′(1)∣ ≍ ∣σ−1∣, Λ(tn) ≍ 1,

20



so that

un ≍
√

nε∣σ−1∣ = n1/2−β−γ ≫ logn, vn ≍ 1,

and therefore (2.11) is fulfilled, eventually.

The same arguments apply to the case where β < 1/2 and σ ≠ 1 is fixed. (It essentially

corresponds to the previous case with γ = 0.)

The remaining case is where σ > 1/
√

1−β is fixed, with β > 1/2 (for otherwise it is

included in the previous case). We choose tn =
√

2q logn, with q ∶= β/(1−1/σ2), and get

tnΨ̄(tn) ≍ e−t2
n/2 = n−q, tnΨ̄(tn/σ) ≍ e−t2

n/2σ
2
= n−q/σ

2
,

and

tnΛ̄(tn) ≍ e−t2
n/2+εe−t2

n/2σ
2
= n−q+n−β−q/σ

2
= 2n−q,

so that

un ≍

√
nεe−t2

n/2σ
2
/tn

√

e−t2
n/2/tn

≍ n1/2−β−q/σ
2
+q/2/(logn)1/4 ≫ logn, vn ≍ 1,

and therefore (2.11) is fulfilled, eventually.

2.4 Numerical experiments

We performed some numerical experiments to investigate the finite sample performance

of the tests considered here: the likelihood ratio test, the chi-squared test, the extremes test, the

higher criticism test. The sample size n was set large to 105 in order to capture the large-sample

behavior of these tests. We tried four scenarios with different combinations of (β,σ). The

p-values for each test are calibrated as follows:

(a) For the likelihood ratio test and the higher criticism test, we simulated the null distribution

based on 104 Monte Carlo replicates.
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(b) For the extremes test and the chi-squared test, we used the exact null distribution, which in

each case is available in closed form.

For each combination of (β,σ), we repeated the whole process 200 times and recorded

the fraction of p-values smaller than 0.05, representing the empirical power at the 0.05 level.

The result of this experiment is reported in Figure 2.2 and is largely congruent with the theory

developed earlier in the paper.
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(d) β = 0.6

Figure 2.2: Empirical power comparison with 95% error bars for the likelihood ratio test (black),
the higher criticism test (red), the extremes test (blue) and the chi-squared test (green). (a)
Sparse regime where β = 0.6 and σ→ 0. (b) Dense regime where β = 0.4 and σ fixed. Note that
the LR test is here asymptotically powerful at any σ ≠ 1. (c) Dense regime where β = 0.4 and
σ→ 1. (d) Sparse regime where β = 0.6 and σ > 1. The horizontal line marks the level (set at
0.05) and the vertical line marks the asymptotic detection boundary derived earlier. The sample
size is n = 105 and the power curves and error bars are based on 200 replications.
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Chapter 3

Detection of Sparse Positive Dependence

3.1 Introduction

The detection of rare effects has been an important problem for years in settings, and may

be particularly relevant today, for example, with the search for personalized care in the health

industry, where a small fraction of a population may respond particularly well, or particularly

poorly, to some given treatment [47].

Following a theoretical investigation initiated in large part by Ingster [28] and broadened

by Donoho and Jin [20], we are interested in studying two-component mixture models, also

known as contamination models, in various asymptotic regimes defined by how the small mixture

weight converges to zero. Most of the existing work in the setting of univariate data has focused

on models where the contamination manifests itself as a shift in mean [22, 21, 26, 12, 43] with a

few exceptions where the effect is a change in variance [2], or a change in both mean and variance

[11].

In the present paper, we are interested in bivariate data, instead, and more specifically in a

situation where the effect felt in the dependence between the two variables being measured. This

setting has been recently considered in the literature in the context of assessing the reproducibility
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of studies. For example, [36] aims to identify significant features from separate studies using an

expectation-maximization (EM) algorithm. They applied a copula mixture model and assumed

that changes in the mean and covariance matrix differentiate the contaminated component from

the null component. [57] studies another model where variables from the contamination are

stochastically larger marginally. In both models, the marginal distributions have some non-null

effects. Similar settings have been considered within a multiple testing framework [9, 56].

While existing work has focused on models motivated by questions of reproducibility,

in the present work we come back to basics and directly address the problem of detecting a

bivariate mixture with a component where the variables are independent and a component where

the variables are positively dependent.

3.1.1 Gaussian mixture model

Ingster [28] and Donoho and Jin [20] started with a mixture of Gaussians, and we do the

same, and in our setting, this means we consider the following mixture model

(X ,Y) ∼ (1−ε)N(0,I)+εN(0,Σρ), Σρ ∶=

⎛
⎜
⎜
⎝

1 ρ

ρ 1

⎞
⎟
⎟
⎠

, (3.1)

where ε ∈ [0,1/2) is the contamination proportion and 0 ≤ ρ ≤ 1 is the correlation between the two

variables under contamination. We consider the following hypothesis testing problem: based on

(X1,Y1), . . . ,(Xn,Yn) drawn iid from (3.1), decide

H0 ∶ ε = 0 versus H1 ∶ ε > 0, ρ > 0. (3.2)

Note that under the null hypothesis, (X ,Y) is from the bivariate standard normal. Under

the alternative, X and Y remain standard normal marginally. Following the literature on the

detection of sparse mixtures [28, 20], we are most interested in a situation, asymptotic as n→∞,
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where ε = εn→ 0, and the central question is how large ρ = ρn needs to be in order to reliability

distinguish these hypotheses.

The formulation (3.1) suggests that the alternative hypothesis is composite, but if we

assume that (ε,ρ) are known under the alternative, then the likelihood ratio test (LRT) is optimal

by Neyman-Pearson lemma. We start with characterizing the behavior of the LRT, which provides

a benchmark. We then study some other testing procedures that do not require knowledge of the

model parameters:1

● The covariance test rejects for large values of ∑i XiYi, and coincides with Rao’s score test

in the present context. This is the classical test for independence, specifically designed for

the case where ε = 1 and ρ > 0 under the alternative. We shall see that it is suboptimal in

some regimes.

● The extremes test rejects for small values of mini ∣Xi−Yi∣. This test exploits the fact that,

because ρ is assumed positive, the variables in the contaminated component are closer to

each other than in the null component.

● The higher criticism test was suggested by John Tukey and deployed by [20] for the testing

of sparse mixtures. We propose a version of that test based on the pairwise differences,

Ui ∶= (Xi−Yi)/
√

2. In detail, the test rejects for large values of

sup
u≥0

√
n(F̂(u)−Ψ(u))

√
Ψ(u)(1−Ψ(u))

, (3.3)

where Ψ(u) ∶= 2Φ(u)−1, with Φ denotes the standard normal distribution function, and

F̂(u) ∶= 1
n∑

n
i=1 I{∣Ui∣ ≤ u}, the empirical distribution function of ∣U1∣, . . . , ∣Un∣.

As is common practice in this line of work [28, 20], under H1 we set

ε = n−β, β ∈ (0,1) fixed. (3.4)
1Such procedures are said to be adaptive.
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The setting where β ≤ 1/2 is often called the dense regime and the setting where β > 1/2 is often

called the sparse regime. Our analysis reveals the following:

(a) Dense regime. The dense regime is most interesting when ρ→ 0. In that case, we find that

the covariance test and the higher criticism test match the asymptotic performance of the

likelihood ratio test to first-order, while the extremes test has no power.

(b) Sparse regime. The sparse regime is most interesting when ρ→ 1. In that case, we find that

the higher criticism test still performs as well as the likelihood ratio test to first order, while

the covariance test is powerless, and the extremes test is suboptimal.

3.1.2 Gaussian mixture copula model

From a practical point of view, the assumption that both X and Y are normally distributed

is quite stringent. Hence, we would like to know if there are nonparametric procedures that do

not require such a condition but can still achieve the same performance as the likelihood ratio test.

In the univariate setting where the effect arises as a shift in mean, this was investigated in [3]. In

the bivariate setting, in a model for reproducibility, [57] proposes a nonparametric test based on a

weighted version of Hoeffding’s test for independence.

Here, instead of model (3.1), we suppose (X ,Y) follows a Gaussian mixture copula model

(GMCM) [8], meaning that there is a latent random vector (Z1,Z2) such that

F(X) =Φ(Z1), G(Y) =Φ(Z2), (3.5)

(Z1,Z2) ∼ (1−ε)N(0,I)+εN(0,Σρ), Σρ ∶=

⎛
⎜
⎜
⎝

1 ρ

ρ 1

⎞
⎟
⎟
⎠

,

where F and G are unknown distribution functions on the real line, and Φ is the standard normal

distribution function, while ε ∈ [0,1/2) is the contamination proportion and 0 ≤ ρ ≤ 1 is the

correlation between Z1 and Z2 in the contaminated component, as before in model (3.1). [36]
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also uses a copula mixture model, but they placed emphasis on the mean while we focus on the

dependence.

We still consider the testing problem (3.2), but now in the context of Model (3.5). The

setting is nonparametric in that both F and G are unknown. Model (3.5) is crafted in such a way

that the marginal distributions of X and Y contain absolutely no information that is pertinent to

the testing problem under consideration.

The model is also attractive because of an invariance under all increasing marginal

transformations of the variables. This is the same invariance that leads to considering rank based

methods such as the Spearman correlation test [34, Ch 6]. In fact, we analyze the Spearman

correlation test, which is the nonparametric analog to the covariance test, showing that it is first-

order asymptotically optimal in the dense regime. We also propose and analyze a nonparametric

version of the higher criticism based on ranks which we show is first-order asymptotically optimal

in the moderately sparse regime where 1/2 < β < 3/4. In the very sparse regime, where β > 3/4,

we do not know of any rank-based test that has any power.

3.2 Gaussian mixture model

In this section, we focus on the Gaussian mixture model (3.1). We start by deriving a

lower bound on the performance of the likelihood ratio test, which provides a benchmark for the

other (adaptive) tests, which we subsequently analyze.

We distinguish between the dense and sparse regimes:

dense regime ρ = n−γ, γ > 0 fixed; (3.6)

sparse regime ρ = 1−n−γ, γ > 0 fixed. (3.7)

We say that a testing procedure is asymptotically powerful (resp. powerless) if the sum of
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its probabilities of Type I and Type II errors (its risk) has limit 0 (resp. limit inferior at least 1) in

the large sample asymptote.

3.2.1 The likelihood ratio test

Theorem 4. Consider the testing problem (3.2) with ε parameterized as in (3.4). In the dense

regime, with ρ parameterized as in (3.6), the likelihood ratio test is asymptotically powerless

when γ > 1/2−β. In the sparse regime, with ρ parameterized as in (3.7), the likelihood ratio test

is asymptotically powerless when γ < 4(β−1/2).

This only provides a lower bound on what can be achieved, but it will turn out that to be

sharp once we establish the performance of the higher criticism test in Proposition 5 below.

Proof. The proof techniques are standard and already present in [22, 28], and many of the

subsequent works.

Defining U ∶= (X −Y)/
√

2 and V ∶= (X +Y)/
√

2, the model (3.1) is equivalently expressed

in terms of (U,V), which has distribution

(U,V) ∼ (1−ε)N(0,I)+εN(0,∆ρ), ∆ρ ∶= diag(1−ρ,1+ρ). (3.8)

Note that U and V are independent only conditional on knowing what distribution they were

sampled from. In terms of the (U,V)’s, the likelihood ratio is

L ∶=
n
∏
i=1

Li,

where Li is the likelihood ratio for observation (Ui,Vi), which in the present case takes the
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following expression

Li =

1−ε

2π
exp(−1

2U2
i −

1
2V 2

i )+ ε

2π

√
1−ρ2

exp(− 1
2(1−ρ)

U2
i −

1
2(1+ρ)

V 2
i )

1
2π

exp(−1
2U2

i −
1
2V 2

i )

= 1−ε+ε(1−ρ
2)−1/2 exp(− ρ

2(1−ρ)
U2

i +
ρ

2(1+ρ)
V 2

i ).

The risk of the likelihood ratio test is equal to [34, Problem 3.10]

risk(L) ∶= 1−
1
2
E0[∣L−1∣].

We show that risk(L) = 1+o(1) under each of the stated conditions. We consider each regime in

turn.

Dense regime. It turns out that it suffices to bound the second moment. Indeed, using the

Cauchy-Schwarz inequality, we have

risk(L) ≥ 1−
1
2

√
E0[L2]−1,

reducing the task to showing that E0[L2] ≤ 1+o(1). We have

E0[L2] =
n
∏
i=1

E0[L2
i ] = (E0[L2

1])
n

where

E0[L2
1] =E0 [(1−ε+ε(1−ρ

2)−1/2 exp(− ρ

2(1−ρ)
U2

1 +
ρ

2(1+ρ)
V 2

1 ))
2
]

= (1−ε)2+2(1−ε)ε

+ε
2(1−ρ

2)−1E0 [exp(− ρ

(1−ρ)
U2

1 )]E0 [exp( ρ

(1+ρ)
V 2

1 )]

= 1−ε
2+ε

2(1−ρ
2)−1E0 [exp(− ρ

(1−ρ)
U2

1 )]E0 [exp( ρ

(1+ρ)
V 2

1 )].
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For the third term, we have

E0 [exp(− ρ

(1−ρ)
U2

1 )] =
1

√
2π
∫

∞

−∞
e−

ρ

1−ρ
u2
− 1

2 u2
du =

√
1−ρ

1+ρ
,

and

E0 [exp( ρ

(1+ρ)
V 2

1 )] =
1

√
2π
∫

∞

−∞
e

ρ

1+ρ
v2
− 1

2 v2
dv =

√
1+ρ

1−ρ
.

Hence, we have

E0[L2
1] = 1+ε

2
ρ

2/(1−ρ
2),

and, therefore,

E0[L2] = [1+ε
2
ρ

2/(1−ρ
2)]

n
≤ exp[nε

2
ρ

2/(1−ρ
2)],

so that E0[L2] ≤ 1+o(1) when

nε
2
ρ

2 = o(1),

since ρ is assumed to be bounded away from 1. Under the specified parameterization, this happens

exactly when γ > 1/2−β.

Sparse regime. It turns out that simply bounding the second moment, as we did above, does not

suffice. Instead, we truncate the likelihood and study the behavior of its first two moments. Define

the indicator variable Di = I{∣Vi∣ ≤
√

2logn} and the corresponding truncated likelihood ratio

L̄ =
n
∏
i=1

L̄i, L̄i ∶= LiDi.

Using the triangle inequality, the fact that L̄ ≤ L, and the Cauchy-Schwarz inequality, we have the
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following upper bound:

E0 ∣L−1∣ ≤E0 ∣L̄−1∣ +E0(L− L̄)

≤ [E0[L̄2]−1+2(1−E0[L̄])]
1/2

+(1−E0[L̄]) ,

so that risk(L) = 1+o(1) when E0[L̄2] ≤ 1+o(1) and E0[L̄] ≥ 1−o(1).

For the first moment, we have

E0[L̄] =
n
∏
i=1

E0[L̄i] = (E0[L̄1])
n

where, using the independence of U1 and V1, and taking the expectation with respect to U1 first,

E0[L̄1] =E0 [(1−ε+ε(1+ρ)−1/2 exp( ρ

2(1+ρ)
V 2

1 ))D1]

= (1−ε)Ψ(
√

2logn)+εΨ(
√

2logn/
√

1+ρ)

= (1−ε)(1−O(n−1/
√

logn))+ε(1−O(n−1/(1+ρ)/
√

logn))

= 1−o(1/n)−o(εn−1/(1+ρ)),

where, for t ≥ 0,

Ψ(t) = P(∣N(0,1)∣ ≤ t) = 2Φ(t)−1 = ∫
t

−t

e−s2
/2

√
2π

ds,

and we used the fact that 1−Ψ(t) ≍ e−t2
/2/t when t →∞. Since ε = n−β with β > 1/2 in the sparse

regime, for ρ sufficiently close to 1, εn−1/(1+ρ) ≤ 1/n, in which case E0[L̄1] ≥ 1−o(1/n). This

yields

E0[L̄] ≥ (1−o(1/n))n = 1−o(1).
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For the second moment, we have

E0[L̄2] =
n
∏
i=1

E0[L̄2
i ] =E0[L̄2

1]
n,

where

E0[L̄2
1] =E0 [(1−ε+ε(1−ρ

2)−1/2 exp(− ρ

2(1−ρ)
U2

1 +
ρ

2(1+ρ)
V 2

1 ))
2
D1]

= (1−ε)2
Ψ(

√
2logn)+2(1−ε)εΨ(

√
2logn/

√
1+ρ)

+ε
2(1−ρ

2)−1E0[exp(− ρ

(1−ρ)
U2

1 )]E0[exp( ρ

(1+ρ)
V 2

1 )D1].

The sum of first two terms is bounded from above by (1−ε)2+2(1−ε)ε = 1−ε2. For the third

term, we have

E0[exp(− ρ

(1−ρ)
U2

1 )] =
1

√
2π
∫

∞

−∞
e−

ρ

1−ρ
u2
− 1

2 u2
du =

√
1−ρ

1+ρ
,

and

E0[exp( ρ

(1+ρ)
V 2

1 )D1] =
1

√
2π
∫

√
2logn

−
√

2logn
e

ρ

1+ρ
v2
− 1

2 v2
dv ≤

1
√

2π
2
√

2logn,

using the fact that ρ ≤ 1. Hence,

E0[L̄2
1] ≤ 1−ε

2+ε
2(1−ρ

2)−1

√
1−ρ

1+ρ

1
√

2π
2
√

2logn

≤ 1+ε
2(1−ρ)−1/2(logn)1/2,

when ρ is sufficiently close to 1. This in turn yields the following bound

E0[L̄2] ≤ [1+ε
2(1−ρ)−1/2(logn)1/2]

n
≤ exp[nε

2(1−ρ)−1/2(logn)1/2],
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so that E0[L̄2] ≤ 1+o(1) when

nε
2(1−ρ)−1/2(logn)1/2 = o(1).

Under the specified parameterization, this happens exactly when γ < 4β−2.

In the dense regime, with ρ parameterized as in (3.6), we say that a test achieves the

detection boundary if it is asymptotically powerful when γ < 1/2−β, and in the sparse regime,

with ρ parameterized as in (3.7), we say that a test achieves the detection boundary if it is

asymptotically powerful when γ > 4(β−1/2).

3.2.2 The covariance test

Recall that the covariance test rejects for large values of Tn ∶= ∑
n
i=1 XiYi, calibrated under

the null where X1, . . . ,Xn,Y1, . . . ,Yn are iid standard normal.

Proposition 4. For the testing problem (3.2), the covariance test achieves the detection boundary

in the dense regime, while it is asymptotically powerless in the sparse regime.

Proof. We divide the proof into the two regimes.

Dense regime. Under H0, we have

E0(Tn) = nE0(X1Y1) = nE0(X1)E0(Y1) = 0,

Var0(Tn) = nVar0(X1Y1) = nE0(X2
1 )E0(Y 2

1 ) = n,

so that, by Chebyshev’s inequality,

P0(∣Tn∣ ≥ an
√

n) → 0,

for any sequence (an) diverging to infinity.
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Under H1, we have

E1(Tn) = nE1(X1Y1) = nερ,

Var1(Tn) = nVar1(X1Y1) = n(1+2ερ
2−ε

2
ρ

2) ≤ 3n,

so that, by Chebyshev’s inequality,

P1(∣Tn−nερ∣ ≥ an
√

n) → 0.

Thus the test with rejection region {Tn ≥ an
√

n} is asymptotically powerful when

√
nερ ≥ 2an.

If we choose an = logn, for example, and ρ is parameterized as in (3.6), this happens for n large

enough when γ < 1/2−β.

Sparse regime. To prove that the covariance test is asymptotically powerless when β > 1/2, we

show that, under H1, Tn converges to the same limiting distribution as under H0.

Under H0, by the central limit theorem,

Tn
√

n
⇀N(0,1).

Under H1 the distribution of the (Xi,Yi)’s (which remain iid) depends on n, but the

condition for applying Lyapunov’s central limit theorem are satisfied since

E1[(XiYi−ερ)4] ≤ 8(E1[(XiYi)
4]+(ερ)4),
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with (ερ)4 ≤ 1 and

E1[(XiYi)
4] ≤ [E1(X8

i )E1(Y 8
i )]

1/2
=E(Z8) = const,

where Z ∼N(0,1) and the inequality is Cauchy-Schwarz’s, while

Var1(XiYi) = 1+2ερ
2−ε

2
ρ

2 ≥ 1,

so that the test statistic still converges weakly to a normal distribution,

Tn−E1(Tn)
√

Var1(Tn)
⇀N(0,1).

In the present regime, we have

E1(Tn) = nερ, Var1(Tn) = n(1+2ερ
2−ε

2
ρ

2),

so that E1(Tn)/
√

Var1(Tn)→ 0 and Var1(Tn) ∼ n, and thus we conclude by Slutsky’s theorem that

Tn/
√

n⇀N(0,1).

Remark 1. There are good reasons to consider the covariance test in this specific form since the

means and variances are known. It is worth pointing out that the Pearson correlation test, which

is more standard in practice since it does not require knowledge of the means or variances, has

the same asymptotic power properties.

3.2.3 The higher criticism test and the extremes test

Define Ui = (Xi−Yi)/
√

2, and note that

U1, . . . ,Un
iid
∼ (1−ε)N(0,1)+εN(0,1−ρ).

36



Seen through the Ui’s, the problem becomes that of detecting a sparse contamination where the

effect is in the variance. We recently studied this problem in detail [2], extending previous work

by Cai et al [11], who considered a setting where the effect is both in the mean and variance.

Borrowing from our prior work, we consider a higher criticism test, already defined in (3.3), and

an extremes test, which rejects for small values of mini ∣Ui∣.

Proposition 5. For the testing problem (3.2), the higher criticism test achieves the detection

boundary in the dense and sparse regimes.

Proof. Set σ2 = 1−ρ, which is the variance of the contaminated component. In our prior work [2,

Prop 3], we showed that the higher criticism test as defined in (3.3) is asymptotically powerful

when

(a) σ2 = n−γ with γ > 0 fixed such that γ > 4(β−1/2);

(b) ∣σ2−1∣ = n−γ with γ > 0 fixed such that γ < 1/2−β.

This can be directly translated into the present setting, yielding the stated result.

Proposition 6. For the testing problem (3.2), the extremes test is asymptotically powerless when

ρ is bounded away from 1, while when ε parameterized as in (3.4) and ρ parameterized as in

(3.7), it is asymptotically powerful when γ > 2β, and asymptotically powerless when γ < 2β.

Proof. This is also a direct corollary from our prior work our prior work [2, Prop 2].

Thus the extremes test is grossly suboptimal in the dense regime, while it is suboptimal in

the sparse regime due to the fact that 2β−4(β−1/2) = 2−2β > 0.

Remark 2. The higher criticism and extremes tests are both based on the Ui’s. This was convenient

as it reduced the problem of testing for independence to the problem of testing for a change in

variance (both in a contamination model). However, reducing the original data, meaning the

(Xi,Yi)’s, to the Ui’s implies a loss of information. Indeed, a lossless reduction would be from the
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(Xi,Yi)’s to the (Ui,Vi)’s, where Vi ∶= (Xi+Yi)/
√

2, with joint distribution given in (3.8). It just

turns out that ignoring the Vi’s does not lead to any loss in first-order asymptotic power.

3.2.4 Numerical experiments

We performed some numerical experiments to investigate the finite sample performance

of the tests considered here: the likelihood ratio test, the Pearson correlation test (instead of the

covariance test from a practical point of view), the extremes test, the higher criticism test, and

also a plug-in version of the higher criticism test where the parameters of the bivariate normal

distribution (the two means and two variances) are estimated under the null. The sample size n

is set large to n = 106 in order to capture the large-sample behavior of these tests. We tried four

sparsity levels, setting β ∈ {0.2,0.4,0.6,0.8}. The p-values for each test are computed as follows:

(a) For the likelihood ratio test, the p-values are estimated based on 103 permutations.

(b) For the higher criticism test and the plug-in higher criticism test, the p-values are estimated

based on 200 permutations.

(c) For the extremes test, we used the exact null distribution, which is available in a closed

form.

(d) For the Pearson correlation test, the p-values are from the limiting distribution.

For each scenario, we repeated the process 200 times and calculated the fraction of

p-values smaller than 0.05, representing the empirical power at the 0.05 level.

The results of this experiment are reported in Figure 3.1 and are broadly consistent with

the theory developed earlier in this section. Though we show that the higher criticism test is

first-order comparable to the likelihood ratio test in the dense regime, even with a large sample,

its power is much lower. The Pearson correlation test does better in that regime. The plug-in

higher criticism test has a similar performance as the higher criticism test in the dense regime,
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while it loses some power in the moderately sparse regime, and is powerless in the very sparse

regime.
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(c) β = 0.6
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Figure 3.1: Empirical power comparison with 95% error bars for the likelihood ratio test (black),
the Pearson correlation test (green), the extremes test (blue), the higher criticism test (red, solid)
and the plug-in higher criticism test (red, dashed). (a) Dense regime where β = 0.2. (b) Dense
regime where β = 0.4. (c) Sparse regime where β = 0.6 and ρ→ 1. (d) Sparse regime where
β = 0.8 and ρ→ 1. The horizontal line marks the level (set at 0.05) and the vertical line marks
the asymptotic detection boundary derived earlier. The sample size is n = 106 and the power
curves and error bars are based on 200 replications.
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3.3 Gaussian mixture copula model

In this section we turn to the Gaussian mixture copula model introduced in (3.5). The

setting is thus nonparametric, since the marginal distributions are completely unknown, and

standard invariance considerations [34, Ch 6] lead us to consider test procedures that are based

on the ranks. For this, we let Ri denote the rank of Xi among {X1, . . . ,Xn}, and similarly, we let Si

denote the rank of Yi among {Y1, . . . ,Yn}. (The ranks are in increasing order, say.)

Although not strictly necessary, we will assume that F and G in (3.5) are strictly increasing

and continuous. In that case, the ranks are invariant with respect to transformations of the form

(x,y) ↦ (p(x),q(y)) with p and q strictly increasing on the real line. In particular, for the rank

tests that follow, this allows us to reduce their analysis under (3.5) to their analysis under (3.1).

3.3.1 The covariance rank test

The covariance rank test is the analog of the covariance test of Section 3.2.2. It rejects for

large values of Tn ∶= ∑i RiSi (redefined). As is well-known, this is equivalent to rejecting for large

values of the Spearman rank correlation.

Proposition 7. For the testing problem (3.2) under the model (3.5), the covariance rank test

achieves the detection boundary in the dense regime, while it is asymptotically powerless in the

sparse regime.

Proof. We again divide the proof into the two regimes.

Dense regime. We start by considering the null hypothesis H0. From [25, Eq 3.11-3.12, Ch

11], we have

E0(Tn) = n(n+1)2/4 = n3/4+O(n2),

Var0(Tn) = n2(n−1)(n+1)2/144 ≍ n5, (3.9)

40



so that, using Chebyshev’s inequality,

P0(Tn ≥ n3/4+ann5/2) → 0,

for any sequence (an) diverging to infinity.

We now turn to the alternative hypothesis H1. For convenience, we assume that the ranks

run from 0 to n−1. This does not change the test procedure since Tn = −
1
2∑i(Ri−Si)

2+const, but

makes the derivations somewhat less cumbersome. In particular, we have

Ri =
n
∑
j=1

Ai j, Ai j ∶= I{Xi > X j},

Si =
n
∑
j=1

Bi j, Bi j ∶= I{Yi >Yj},

so that

Tn =
n
∑
i=1

n
∑
j=1

n
∑
k=1

Ai jBik.

For the expectation, we have

E1(Tn) = n(n−1)(n−2)E1[A12B13]+O(n2)

= n3E1[A12B13]+O(n2).

The expectation is with respect to (X1,Y1),X2,Y3 independent, with (X1,Y1) drawn from the

mixture (3.1), and X2 and Y3 standard normal. Let U = (X1 −X2)/
√

2 and V = (Y1 −Y3)/
√

2,

so that E1[A12B13] = P1(U > 0,V > 0). We note that (U,V) is bivariate normal with standard

marginals. Moreover, when (X1,Y1) comes from the main component, U and V are uncorrelated,

and therefore independent; while when (X1,Y1) comes from the contaminated component, U and
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V have correlation ρ/2. Therefore,

E1[A12B13] = (1−ε)Λ(0)+εΛ(ρ/2),

where Λ(ρ) = P(U > 0,V > 0) under (U,V) ∼ N(0,Σρ). We immediately have Λ(0) = 1/4, and

in general,2

Λ(ρ) =
1
4
+

1
2π

sin−1
(ρ).

We conclude that

E1(Tn) = n3[1
4 +

1
2π

εsin−1
(ρ/2)]+O(n2)

≥ 1
4n3+ 1

4π
n3

ερ+O(n2),

using the fact that sin−1
(a) ≥ a for all a ≥ 0. For the variance, we start with the second moment

E1(T 2
n ) = n(n−1)⋯(n−5)E1[A12B13A45B46]+O(n5)

= n6E1[A12B13A45B46]+O(n5),

which then implies that

Var1(Tn) = n6E1[A12B13A45B46]+O(n5)−[n3E1[A12B13]+O(n2)]
2

=O(n5),

the same bound we had for Var0(Tn). Thus, by Chebyshev’s inequality, we have

P1 (Tn ≤
1
4n3+ 1

4π
n3

ερ−ann5/2) → 0,

2This identity is well-known, and not hard to prove (https://math.stackexchange.com/questions/
255368/getting-px0-y0-for-a-bivariate-distribution). It also appears, for example, in [55, Lem 1].
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for any sequence (an) diverging to infinity.

We consider the test with rejection region {Tn ≥ n3/4+ann5/2}. Our analysis implies that

this test is asymptotically powerful when

n3
ερ/4π ≥ 2ann5/2,

If we choose an = logn, for example, and ρ is parameterized as in (3.6), this happens for n large

enough when γ < 1/2−β.

Sparse regime. To prove that the covariance rank test is asymptotically powerless when β > 1/2,

similarly as the covariance test, we show that, under H1, Tn converges to the same limiting

distribution as under H0. Under H0, we have [25, Ch 11],

Tn−ζn

τn
⇀N(0,1), n→∞, (3.10)

where ζn ∶= E0(Tn) and τ2
n ∶= Var0(Tn). We place ourselves under H1, and show that (3.10)

continues to hold. For this we use a simple coupling. We couple Tn with a new statistic T ′
n ,

defined just like Tn, except that, for each pair (Xi,Yi) drawn from the contaminated component,

we replace Yi by Y ′
i ∼ N(0,1) independent of Xi and any other variable. Let M denote the

number of pairs drawn from the contaminated component, and note that M is random, having

the binomial distribution with parameters (n,ε). It’s not hard to show that ∣Tn−T ′
n ∣ ≤Mn2, so that

∣Tn−T ′
n ∣ = OP(n3ε). And by construction, T ′

n has the same distribution as Tn under H0. We use

this in what follows
Tn−ζn

τn
=

T ′
n −ζn

τn
+

Tn−T ′
n

τn
,

where, on the RHS, the first term converges weakly to the standard normal distribution, while the

second term is =OP(n3ε/τn) = oP(1), since ε = n1−β with β > 1/2 and τn ≍ n5/2 by (3.9). We thus

conclude that (3.10) with an application of Slutsky’s theorem.
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3.3.2 The higher criticism rank test

The analog of the higher criticism test of (3.3) is a higher criticism based on the pairwise

differences in ranks, Di ∶= ∣Ri−Si∣. To be specific, we define

HCrank = max
0≤t≤n/2

∑
n
i=1 I{Di ≤ t}−nu(t)
√

nu(t)(1−u(t))
,

where u(t) is the probability P0(Di ≤ t), which can be expressed in closed form as

u(t) =
n2−(n− t)(n− t −1)

n2 =
n(2t +1)− t(t +1)

n2 .

Note that in this definition the denominator is only an approximation to the standard

deviation of the numerator. The standard deviation has a closed-form expression which can be

derived from a more general result of Hoeffding [27, Th 2], but it is cumbersome and relatively

costly to compute (although its computation is only done once for each n). Also, there is a fair

amount of flexibility in the choice of range of thresholds t considered. This particular choice

seems to work well enough. As any other rank test, it is calibrated by permutation (or Monte

Carlo if there are no ties in the data).

Theorem 5. For the testing problem (3.2) under the model (3.5), the higher criticism rank test

achieves the detection boundary in the dense and in the moderately sparse regimes.

Proof. As usual, we first control the test statistic under the null, and then analyze its behavior

under the alternative.

Under the null hypothesis

We start with the situation under the null hypothesisH0, where we show that HCrank is of order at

most O(logn) based on the concentration inequality for randomly permuted sums. Fixing critical
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value t, define

ai, j = I{∣i− j∣ ≤ t}, for 1 ≤ i, j ≤ n.

Since X is independent of Y , as we are under the null, we have that

∆(t) ∶=
n
∑
i=1

I{Di ≤ t} (3.11)

has the same distribution as An ∶= ∑
n
i=1 ai,πn(i) when πn is a uniformly distributed random permu-

tation of [n] ∶= {1,⋯,n}. Note that

E(An) =
1
n

n
∑
i=1

n
∑
j=1

ai, j =
n(2t +1)− t(t +1)

n
= nu(t). (3.12)

By [15, Prop 1.1],

P(∣An−E(An)∣ ≥ b) ≤ 2exp(−
b2

4E(An)+2b
) . (3.13)

This implies that, for q ≥ 1,

P0 (∆(t) ≥ nu(t)+q
√

nu(t)(1−u(t)))

≤ 2exp
⎛

⎝
−

q2nu(t)(1−u(t))

4nu(t)+2q
√

nu(t)(1−u(t))

⎞

⎠

≤ 2exp(−q/c1) ,

for some other constant c1 > 0, using the fact that 1/n ≤ u(t) ≤ 3/4+1/2n when 0 ≤ t ≤ n/2, which

is the range of t’s we are considering. Hence, choosing q = 2c1 logn and using the union bound,
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we have

P0(HCrank ≥ q) ≤ ∑
t≤n/2

P0 (∆(t) ≥ nu(t)+q
√

nu(t)(1−u(t)))

≤ 2(n/2+1)exp(−q/c1) ≍ 1/n→ 0.

Under the alternative hypothesis

We now consider the alternative H1, and show that HCrank ≫ logn in probability under the stated

condition. For this, it suffices to find some t = tn ≤ n/2 such that, for some q = qn ≫ logn,

∆(t) ≥ nu(t)+q
√

nu(t)(1−u(t)), (3.14)

with probability tending to 1 (under H1).

Since rank-based methods are invariant with respect to increasing transformations, in the

following analysis we simply assume that F =G =Φ.

Dense regime. Define F̂(x) = 1
n∑

n
i=1 I{Xi ≤ x} and Ĝ(y) = 1

n∑
n
i=1 I{Yi ≤ y}. These empirical

distribution functions are useful because, by definition, Ri = nF̂(Xi) and Si = nĜ(Yi), so that

Di/n = ∣Ri−Si∣/n

= ∣F̂(Xi)− Ĝ(Yi)∣

≤ ∣F̂(Xi)−Φ(Xi)∣+ ∣Φ(Xi)−Φ(Yi)∣+ ∣Φ(Yi)− Ĝ(Yi)∣

≤ ∣Φ(Xi)−Φ(Yi)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mi

+∥F̂ −Φ∥∞+∥Ĝ−Φ∥∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

.

This gives

∆(t) ≥ I{K ≤ k/n}Λ(t), Λ(t) ∶=
n
∑
i=1

I{Mi ≤ (t −k)/n}. (3.15)

By the Dvoretzky-Kiefer-Wolfowitz (DKW) concentration inequality, there is a universal
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constant c0 such that, for any b ≥ 0,

P(K ≥ b) ≤ c0 exp(−nb2/c0).

We choose k = (logn)
√

n, and with that choice we have that I{K ≤ k/n} = 1−Qn, where Qn is

Bernoulli with parameter bounded by η ∶= c0 exp(−(logn)2/c0) (so that Qn =OP(η)).

As for the sum, the Mi are iid, and for an observation (Xi,Yi) that comes from the null

component, Xi,Yi are iid standard normal, while when it comes from the contaminated component,

Xi,Yi are still marginally standard normal but no longer independent: Yi =
√

1−ρ2 Ỹi+ρXi, where

Ỹi is independent of Xi and also standard normal. We thus have

P1(Mi ≤ s) = (1−ε)vs(0)+εvs(ρ),

where

vs(ρ) ∶=E[ fs(Z,
√

1−ρ2Z′+ρZ)],

where in the expectation Z,Z′ are iid standard normal, and fs(z,z′) ∶= I{∣Φ(z) −Φ(z′)∣ ≤ s}

is bounded and measurable. Elementary calculations show that vs(0) = 1− (1− s)2, and an

application of Lemma 1 shows that vs is infinitely differentiable, with derivative at 0 equal to

E[ fs(Z,Z′)ZZ′], and second derivative uniformly bounded over [−1/2,1/2] by some numerical

constant, say c2, independently of s. Recalling that ρ is small in the present regime, a Taylor

development based on the above gives

vs(ρ) ≥ 1−(1− s)2+v′s(0)ρ−c2ρ
2/2, ρ ∈ [−1/2,1/2].

In the dense regime, remember that 0 < β < 1/2 and ρ = n−γ. We place ourselves above the

detection boundary, meaning that we fix γ < 1/2−β. Here we choose t = n/2 (assumed to be an

integer for convenience), let s = (t −k)/n = 1/2−k/n. We note that v′s(0) is continuous in s (by
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dominated convergence), and because s→ 1/2 in our setting, we have

v′s(0) → v′1/2(0) =E[I{∣Φ(Z)−Φ(Z′)∣ ≤ 1/2}ZZ′] =∶ c1 > 0.

Indeed, using the fact that

∣Φ(z)−Φ(z′)∣ ≤ 1/2 ⇔ (Φ(z)−1/2)∨0 ≤Φ(z′) ≤ (Φ(z)+1/2)∧1,

with Φ(z) ≤ 1/2 if and only if z ≤ 0, we have

c1 = ∫

∞

0
∫

∞

Φ−1(Φ(z)−1/2)
φ(z′)dz′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

φ(z)z
´¸¶
>0

dz

+∫

0

−∞
∫

Φ
−1

(Φ(z)+1/2)

−∞
φ(z′)dz′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

φ(z)z
´¸¶
<0

dz,

where the inner integrals are positive by the fact that φ is symmetric, and the inequalities are

indeed strict except when z = 0.

Thus, eventually (as n→∞),

vs(ρ) ≥ 1−(1− s)2+(c1/2)ρ.

Thus, an application of Chebyshev’s inequality gives

Λ(n/2) ≥ n[(1−ε)vs(0)+εvs(ρ)]+OP(
√

n).
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Putting everything together, we have

∆(t)−nu(t)

= (1+OP(η))n[(1−ε)vs(0)+εvs(ρ)]+OP(
√

n)−nu(t)

≥ n[1−(1−(t −k)/n)2−u(t)]+nε(c1/2)ρ+OP(nη)+OP(
√

n)

= nε(c1/2)ρ+OP((logn)
√

n),

using the fact that η = o(1/n2). For (3.14) to hold it thus suffices that nερ≫(logn)
√

n, which is

the case since nερ = n1−β−γ with 1−β−γ > 1/2.

Moderately sparse regime. Let I0 and I1 index the observations coming from the null and

contaminated components, respectively. We have

∆(t) =∑
i∈I0

I{Di ≤ t}+∑
i∈I1

I{Di ≤ t} =∶ ∆0(t)+∆1(t). (3.16)

We lower bound both terms on the right-hand side, starting with ∆0(t). To do this, we consider a

slightly smaller threshold, specifically t0 = (1−ω)t with ω = o(1) specified below, and compare

∆0(t) with ∆0(t0) ∶= ∑i∈I0 I{D0
i ≤ t0}, where D0

i ∶= ∣R0
i −S0

i ∣ with R0
i denoting the rank of Xi among

{X j ∶ j ∈ I0} and S0
i denoting the rank of Yi among {Yj ∶ j ∈ I0}. Conditional on ∣I0∣ = n0, ∆0(t0) has

the same distribution as ∆(t0) in (3.11) under the null hypothesis but with n replaced by n0, so

that from (3.12) we deduce that it has expectation

µ ∶= (n0(2t0+1)− t0(t0+1))/n0,

and from (3.13) that

∆
0(t0) ≥ µ−8(logn)

√
µ∨ logn

with probability at least 1−2/n when n is large enough. (Again, this is conditional on ∣I0∣ = n0.)
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Because ε ≪ n−1/2 in the present regime, we have ∣I0∣ ≥ n−(logn)
√

n with probability at least

1−1/n when n is large enough. Also, we will choose t below such that
√

n≪ t ≪ n, and ω such

that ω≪ 1, so that t0 ∼ t. Together, this implies that

∆
0(t0) ≥ 2t0+1−

t0(t0+1)
n−(logn)

√
n
−8(logn)

√
2t0+1 = 2t0−

t2
0
n
−O((logn)

√
t),

eventually, with probability at least 1−3/n.

We now claim that, with probability tending to 1, ∆0(t) ≥ ∆0(t0). Indeed, by definition of

the ranks Ri and modified ranks R0
i , we have

Ri−R0
i = ∑

j∈I1

I{X j ≤ Xi} = ∣I1∣F̂1(Xi),

where F̂1(x) ∶= 1
∣I1∣
∑ j∈I1 I{X j ≤ x} is the empirical distribution function associated with the con-

taminated X observations. In particular, when ∣I0∣ = n0, so that ∣I1∣ = n−n0 =∶ n1, we have

∣Ri−R0
i −n1Φ(Xi)∣ ≤ n1∥F̂1−Φ∥∞,

valid for all i ∈ I0. At the same time, and with analogous notation, we also have

∣Si−S0
i −n1Φ(Yi)∣ ≤ n1∥Ĝ1−Φ∥∞,

valid for all i ∈ I0. Combining these, we obtain

∣Ri−Si∣
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Di

≤ ∣R0
i −S0

i ∣

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
D0

i

+n1∣Φ(Xi)−Φ(Yi)∣+n1 (∥F̂1−Φ∥∞+∥Ĝ1−Φ∥∞)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶K1

,

valid for all i ∈ I0. Letting F̂0 denote the empirical distribution function of {Xi ∶ i ∈ I0} and Ĝ0
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denote that of {Yi ∶ i ∈ I0}, we have

∣Φ(Xi)−Φ(Yi)∣ ≤ ∣F̂0(Xi)− Ĝ0(Yi)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D0
i /n0

+∥F̂0−Φ∥∞+∥Ĝ0−Φ∥∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K0

, (3.17)

valid for all i ∈ I0. Note that this is conditional on ∣I0∣ = n0 and that the distributions of K0 and K1

depend (implicitly) on n0 (and n1). We conclude that, conditional on ∣I0∣ = n0, for any i ∈ I0,

Di ≤ (n/n0)D0
i +n1(K0+K1). (3.18)

Applying the DKW inequality with the tight constant, we have that K0 ≤ (logn)/
√

n0 and K1 ≤

(logn)/
√

n1 with probability at least 1−2/n when n is large enough, and when this is the case,

Di ≤ (n/n0)D0
i +2(logn)

√
n1, assuming that n0 ≥ n1. This is given ∣I0∣ = n0 and (therefore) ∣I1∣ = n1,

and we also know that ∣I0∣ ≥ n−(logn)
√

n and ∣I1∣ ≤ 2nε with probability at least 1−1/n when

n is large enough. (We are using that ∣I1∣ ∼ Bin(n,ε) with nε = n1−β with β < 1.) Hence, with

probability at least 1−3/n,

Di ≤
nD0

i

n−(logn)
√

n
+2(logn)

√
2nε,

for any i ∈ I0. In particular, if we choose ω = (logn)2 max(1/
√

n,
√

nε/t), then, with probability

at least 1−2/n when n is large enough, D0
i ≤ t0 implies that Di ≤ t for any i ∈ I0, implying that

∆0(t) ≥ ∆0(t0).

We thus conclude that

∆0(t) ≥ 2t0− t2
0/n−OP((logn)

√
t).
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As for ∆1(t), as in (3.15), we have

∆1(t) ≥ I{K ≤ k/n}Λ1(t), Λ1(t) ∶= ∑
i∈I1

I{Mi ≤ (t −k)/n}.

We choose k = (logn)
√

n as we did before, so that I{K ≤ k/n} = 1+OP(η), with the same η

defined previously. As for the sum, Λ1(t) has the same distribution as∑B
i=1 I{M̃i ≤ (t−k)/n}, with

B binomial with parameters (n,ε) and M̃i = ∣Φ(X̃i)−Φ(Ỹi)∣ with (X̃i,Ỹi) iid normal with standard

normal marginals and correlation ρ. In particular,

M̃i ≤
1√
2π

∣X̃i−Ỹi∣ =∶
1√
π
∣Ũi∣,

by the fact that Φ has derivative bounded by 1/
√

2π everywhere, and where Ũi ∼N(0,1−ρ), and

simple calculations give

v(s) ∶= P(M̃i ≤ s) ≥Ψ(

√
πs

√
1−ρ

) =∶ λ(s), s ∈ [0,1].

We thus have

E1(Λ1(t)) = nεv((t −k)/n),

and

Var1(Λ1(t)) =Var(B)v((t −k)/n)2+E(B)v((t −k)/n) ≤ 2nεv((t −k)/n),

and applying Chebyshev’s inequality, we thus have

Λ1(t) = nεv((t −k)/n)+O(
√

nεv((t −k)/n))

≥ (1+oP(1))nελ((t −k)/n)),

as long as the right-hand side diverges.
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In the moderately sparse regime, remember that 1/2 < β < 3/4 and ρ = 1−n−γ. We place

ourselves just above the detection boundary, meaning that we fix γ > 4(β−1/2). We focus on the

harder sub-case where, in addition, γ < 2β. In that case, we can fix a such that 1/2 > a > γ/2 and

1/2−β+γ/2−a/2 > 0, and set t = ⌊n1−a⌋. Note that such a real number a exists, and that t ≤ n/2

with t ≫ k. We also have nε = n1−β and u(t) ≍ t/n ≍ n−a, as well as

λ((t −k)/n) =Ψ(

√
π(t −k)

n
√

1−ρ
) ≍ nγ/2−a, since

√
π(t −k)

n
√

1−ρ
≍ nγ/2−a→ 0,

and Ψ is differentiable at 0 with positive derivative. In particular, nελ((t−k)/n) ≍ n1−β+γ/2−a→∞.

Putting everything together, we have

∆(t)−nu(t) ≥ 2t0− t2
0/n−OP((logn)

√
t)+(1+oP(1))nελ((t −k)/n)

−(2t +1− t(t +1)/n)

= −OP((logn)
√

t)+nε(1+oP(1))λ((t −k)/n),

after some simplifications, using the definition of ω above and the fact that
√

n ≪ t ≪ n. For

(3.14) to hold, it is thus enough to have nελ((t −k)/n)≫ (logn)
√

t, which is the case since

nελ((t −k)/n)
√

t
≍

n1−β+γ/2−a

n1/2−a/2
= n1/2−β+γ/2−a/2,

with 1/2−β+γ/2−a/2 > 0 by our choice of a.

Lemma 1. Let A,B be iid standard normal, and for f ∶R2→ [0,1] measurable and r ∈ [−1,1], de-

fine Γ f (r)=E[ f (A,
√

1− r2B+rA)]. Then Γ f is infinitely differentiable, with Γ′f (0)=E[ f (A,B)AB],

and with sup∣r∣≤1/2 ∣Γ
′′
f (r)∣ bounded by some numerical constant (independent of f ).

Proof. We have

Γ f (r) = ∫
∞

−∞
∫

∞

−∞
f (a,b)φ(a,b;r)dadb,
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where

φ(a,b;r) ∶=
exp[−(a2−2rab+b2)/(2−2r2)]

2π
√

1− r2
.

An application of the dominated convergence theorem allows us to differentiate under the integral

at will. In particular,

Γ
(k)
f (r) = ∫

∞

−∞
∫

∞

−∞
f (a,b)∂

k
rφ(a,b;r)dadb,

Elementary calculations show that ∂rφ(a,b;0) = (2π)−1abexp[−(a2+b2)/2]. We also obtain

∣Γ′′f (r)∣ ≤ ∫
∞

−∞
∫

∞

−∞
∣∂2

r φ(a,b;r)∣dadb,

which is easily seen to uniformly bounded for ∣r∣ ≤ 1/2.

It is natural to wonder whether the higher criticism rank test has some power in the very

sparse regime. The following indicates that it is powerless in that regime.

Proposition 8. Consider the very sparse regime in the most extreme case where ρ = 1. In that

setting, any test that rejects for large values of ∆(t) ∶= ∑n
i=1 I{Di ≤ t} (where the threshold t is

allowed to vary with n) is asymptotically powerless.

Proof. By a compactness argument, we may assume that either t→∞ or t is constant (as n varies).

We start with the former and address the latter at the end. We focus on the case where t ≪ n, as

the case where t ≍ n can be dealt with in a very similar fashion.

Under the null hypothesis

We first consider the behavior of ∆(t) under the null hypothesis, and argue that ∆(t) is asymptoti-

cally normally distributed. This is based on an application of a combinatorial central limit theorem

due to Hoeffding [27]. Remember that under H0, ∆(t) has the distribution of An = ∑
n
i=1 ai,πn(i)
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when πn is a uniformly distributed random permutation of [n] and ai, j = I{∣i− j∣ ≤ t}. We saw that

E(An) =
1
n

n
∑
i=1

n
∑
j=1

ai, j =
n(2t +1)− t(t +1)

n
= nu(t),

and, as derived in [27], we also have

Var(An) =
1

n−1

n
∑
i=1

n
∑
j=1

d2
i, j,

where

di, j = ai, j −
1
n

n
∑
g=1

ag, j −
1
n

n
∑
h=1

ai,h+
1
n2

n
∑
g=1

n
∑
h=1

ag,h.

[27, Th 3] implies that An is asymptotically normal when

max i, j∈[n]d2
i, j

1
n2 ∑i∈[n]∑ j∈[n]d2

i, j

→ 0.

Elementary but somewhat tedious calculations yield that this is the case if and only if t →∞,

which we assume. Further elementary calculations, in part similar to some appearing in the proof

of Theorem 5, yield that
Var(An)

nu(t)(1−u(t))
→ 1,

We thus have, under the null hypothesis,

∆(t)−nu(t)
√

nu(t)(1−u(t))
⇀N(0,1),

and therefore, together with the fact that 1≪ t ≪ n, we conclude that

∆(t)−2t + t2/n
√

2t
⇀N(0,1), (3.19)

again under the null hypothesis.
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Under the alternative hypothesis

We now consider the alternative, again in the very sparse regime and in the most advantageous

case where ρ = 1, and show that the same weak limit holds. For this, we follow the arguments

of the proof of Theorem 5 in the moderately sparse regime, although in the reverse direction

so-to-speak. We use the same notation.

Starting from the decomposition (3.16), we have

∆(t)−2t + t2/n
√

2t
=

∆0(t)−2t + t2/n
√

2t
+

∆1(t)
√

2t
. (3.20)

In what follows, we first show that the first term on the RHS is asymptotically standard normal,

and then we show that the second term converges to 0 in probability.

First term in (3.20). For i ∈ I0, as in (3.18) but in reverse, we have

D0
i ≤ (1+ ∣I1∣/n)Di+ ∣I1∣(K0+K1)

≤ (1+ε+(logn)
√

ε/n)Di+(logn)
√

nε,

with probability tending to 1 uniformly over i ∈ I0. Assuming this is true, then Di ≤ t implies that

D0
i ≤ (1+ε+(logn)

√
ε/n)t +(logn)

√
nε

≤ t0 ∶= (1+ε)t +2(logn)
√

nε.

Hence, with probability tending to 1,

∆0(t) ≤ ∆
0(t0).

As before, conditional on ∣I0∣ = n0, ∆0(t0) has the same distribution as ∆(t0) in (3.11) under the

null hypothesis but with n replaced by n0. This, the fact that ∣I0∣ ≥ n−OP(
√

n), and (3.19), implies
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that
∆0(t0)−2t0+ t2

0/n√
2t0

⇀N(0,1).

We used the fact that t2
0/n ≤ t2

0/∣I0∣ ≤ t2
0/(n−O(

√
n)), which implies that

t2
0/∣I0∣
√

t0
=

t2
0/n√

t0
+O(t0

√
t0/n

√
n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
o(1)

,

where the O term is o(1) by the fact that t0/n = o(1). Continuing, with probability tending to 1,

we have

∆0(t)−2t + t2/n
√

2t
≤

∆0(t0)−2t + t2/n
√

2t

=
√

t0/t
∆0(t0)−2t0+ t2

0/n√
2t0

+
2t0− t2

0/n−2t + t2/n
√

2t

⇀N(0,1), (3.21)

whenever t0/t → 1 and (t0 − t)/
√

t → 0 (using the fact that t ≤ t0 ≪ n). This is the case exactly

when t ≫(logn)2nε.

We now consider the complementary case. In fact, what follows applies when t ≤
√

n. We

use a slightly different strategy. Recall that, for i ∈ I0,

Ri−R0
i = ∑

j∈I1

I{X j ≤ Xi},

Si−S0
i = ∑

j∈I1

I{Yj ≤Yi},

and combined with the triangle inequality, and recalling that X j =Yj when j ∈ I1, we have

∣Di−D0
i ∣ ≤Wi ∶= ∑

j∈I1

I{Xi∧Yi ≤ X j ≤ Xi∨Yi}.
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Consider the event

Ω = {∣I1∣ ≤ 2nε,K0 ≤ (logn)/
√

n},

which happens with probability tending to one. Given Ω, we have

{Di ≤ t} = {Di ≤ t,D0
i ≤ t}∪{Di ≤ t,D0

i > t}

⊂ {D0
i ≤ t}∪{Wi ≥D0

i − t,2nε+ t ≥D0
i > t},

using the fact that D0
i ≤Di+ ∣I1∣, so that

∆0(t) ≤ ∆
0(t)+∑

i∈I0

I{Wi ≥D0
i − t,2nε+ t ≥D0

i > t}. (3.22)

Given {(Xk,Yk) ∶ k ∈ I0}, and conditional on (∣I0∣, ∣I1∣) = (n0,n1), Wi is binomial with parameters n1

and Pi ∶= ∣Φ(Xi)−Φ(Yi)∣. As in (3.17), the latter is bounded by D0
i /n+K0, which itself is bounded

(eventually) by 2(logn)/
√

n under Ω when D0
i = d with d ≤ t +2nε (since we work under the

assumption that t ≤
√

n). Thus, for such a d, eventually,

P(Wi ≥w ∣ Ω,D0
i = d) ≤E[P(Wi ≥w ∣ Ω,D0

i = d,(Xk,Yk)k∈I0)]

≤ 2P(Wi ≥w ∣ Pi ≤ 2(logn)/
√

n)

≤ 2Prob(Bin(2nε,2(logn)/
√

n) ≥w)

≤ c0(nε×(logn)/
√

n)w,

where c0 is a universal constant. The factor of 2 in the second inequality comes from de-

conditioning from {K0 ≤ (logn)/
√

n. In the last line we used the fact that Prob(Bin(m,q) ≥ k) ≤

(
m
k)qk, referred to as the Giné–Zinn inequality in [18]. We also have

P(D0
i = d ∣ Ω) ≤ 2P(D0

i = d ∣ ∣I1∣ ≤ 2nε) ≤ 2
2

n−2nε
≤

5
n
,

58



eventually, using the fact that P(D0
i = d ∣ ∣I0∣ = n0) ≤ 2/n0. Together, this yields

P(Wi ≥D0
i − t,2nε+ t ≥D0

i > t ∣ Ω)

≤

t+2⌊nε⌋

∑
d≥t+1

P(Wi ≥ d− t ∣ Ω,D0
i = d)×P(D0

i = d ∣ Ω)

≤ c1

t+2⌊nε⌋

∑
d≥t+1

((logn)
√

nε)d−t ×
1
n
,

≤ c1×
2
n
×((logn)

√
nε).

Hence, the second term on the RHS of (3.22) has expectation of order at most n times the last

term in our last derivations, which is of order at most (logn)
√

nε = o(1). Since that term is

integer-valued, this implies that ∆0(t) ≤∆0(t) with probability tending to one. In particular, (3.21)

applies.

Second term in (3.20). Consider i ∈ I1. Because ρ = 1, we have Xi =Yi, and conditional on Xi = z,

Ri−1 and Si−1 are iid with distribution Bin(n−1, p) where p ∶=Φ(z). In particular, Di has the

distribution of ∣U −V ∣ where U and V are iid with distribution Bin(n−1,P) and P ∼ Unif(0,1).

Let u2(t) denote the probability that Di ≤ t. We want to bound u2(t) from above.

For p ∈ [0,1], define g(p) as the probability that ∣U −V ∣ ≤ t when U and V are iid Bin(n−

1, p), and note that u2(t) = ∫
1

0 g(p)dp. Define σ2 = 2(n−1)p(1− p), which is the variance of

U −V , and also h(a) = P((U −V)/σ ≤ a). Using the fact that U −V is integer valued, we have

g(p) = h(t/σ)−h(−(t +1)/σ) ≤Φ(t/σ)−Φ(−(t +1)/σ)+2∥h−Φ∥∞.

Where Φ is the standard normal distribution function. Because Φ has derivative bounded by

1/
√

2π everywhere, the first term on the RHS is =O(t/σ). For the second term, we use the Berry–

Esseen inequality (seeing U and V , each, as the sum of n−1 iid Ber(p) random variables), to get

that it is =O(1/σ). Therefore, since t ≥ 1, there is a universal constant c0 such that g(p) ≤ c0t/σ.

59



Of course, being a probability, we also have g(p) ≤ 1. Hence,

u2(t) = ∫
1

0
g(p)dp ≤ ∫

1

0
(1∧

c0t
2(n−1)p(1− p)

)dp ≍ 1∧ t/
√

n.

Now, by Markov’s inequality, and the fact that ∣I1∣ is binomial with parameters (n,ε), the

second term in (3.20) is

=
OP(nε)OP(u2(t))
√

nu(t)(1−u(t))
≍

n1−β(1∧ t/
√

n)
√

t
≍ n1−βt−1/2∧n1/2−βt1/2→ 0,

for any choice of t when β > 3/4 (very sparse regime).

Special case: t constant. When t is constant, the null distribution of ∆(t) is known to converge to

the Poisson distribution of mean 2t +1. (See [5, Exa 1.3], which is only cosmetically different.)

The control under the alternative can be secured in exactly the same way. In particular, it holds that

∆0(t) ≤ ∆0(t) with probability tending to one, with ∆0(t) having the same asymptotic distribution

(Poisson with mean 2t +1).

3.3.3 Numerical experiments

We consider the same setting as in Section 3.2 and compare the two nonparametric tests,

the covariance rank test and the higher criticism rank test, to the parametric tests. The p-values

for the higher criticism rank test are obtained based on 105 permutations, while the p-values for

the covariance rank test are taken from the limiting distribution based on its correspondence with

the Spearman rank correlation.

The results are presented in Figure 3.2. In finite samples, the higher criticism rank test

exhibits substantially more power than the higher criticism in the dense and moderately sparse

regime. We have no good explanation for this rather surprising phenomenon. However, the higher

criticism rank test has no power in the very sparse regime, and neither does the covariance rank
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Figure 3.2: Empirical power comparison with 95% error bars for the likelihood ratio test (black),
the covariance rank test (green), the higher criticism test (red) and the higher criticism rank
test (purple). (a) Dense regime where β = 0.2. (b) Dense regime where β = 0.4. (c) Sparse
regime where β = 0.6 and ρ→ 1. (d) Sparse regime where β = 0.8 and ρ→ 1. The horizontal
line marks the level (set at 0.05) and the vertical line marks the asymptotic detection boundary
derived earlier. The sample size is n = 106 and the power curves and error bars are based on 200
replications.
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3.4 Discussion

The power residing in the Vi In Proposition 5 we established that the higher criticism test

based on U1, . . . ,Un achieves the detection boundary in the Gaussian mixture model. It is natural,

however, to ask whether one could do better in finite samples by also utilizing V1, . . . ,Vn. We

performed some side experiments to quantify this by comparing the full LRT, meaning the LRT

based on (U1,V1), . . . ,(Un,Vn), the LRT based on U1, . . . ,Un only, and the LRT based on V1, . . . ,Vn

only. We did so in the same parametric setting of Section 3.2.4. The results are reported in

Figure 3.3, and can be to some extent anticipated from our previous work [2]. In a nutshell, in the

dense regime, what matters is the deviation of the variance from 1, and this is felt by all tests,

so that the U-LRT and the V -LRT are seen to be also as powerful as the full LRT. In the sparse

regime, however, we can see that the V -LRT has essentially no power. This is due to the fact

that the Vi’s in that case have variance 1+ρ, which is bounded from above by 2, so that no test

depending on the Vi’s can have any power as we show in [2]. The U-LRT, which we know to be

asymptotically optimal to first order, remains competitive, although now clearly less powerful

than the full LRT.

The power of rank tests in the very sparse regime In Proposition 8 we argued, we hope

convincingly, that no test that resembles the higher criticism rank test has any power in the very

sparse regime (β > 3/4). This seems clear from the experiments reported in Figure 3.2. This begs

the question of whether there are any rank tests that have any (asymptotic) power in the very

sparse regime. We do not know the answer to that question, but are willing to conjecture that

there are no such tests.

The two-sided problem We focused on the one-sided setting (3.1), effectively testing ρ = 0

versus ρ > 0. Knowing the sign of ρ is not crucial, as one can apply a one-sided test for ρ > 0

to the transformed data (X1,−Y1), . . . ,(Xn,−Yn). Less trivial is the case where there are three
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Figure 3.3: Empirical power comparison with 95% error bars for the full LRT (black), the
U-LRT (red) and the V -LRT (blue). (a) Dense regime where β = 0.4. (b) Sparse regime where
β = 0.6 and ρ→ 1. The horizontal line marks the level (set at 0.05) and the vertical line marks
the asymptotic detection boundary derived earlier. The sample size is n = 106 and the power
curves and error bars are based on 200 replications.

components

(X ,Y) ∼ (1−ε)N(0,I)+
ε

2
N(0,Σρ)+

ε

2
N(0,Σ−ρ).

We did not look at this model, in part because we wanted to test against a monotonic association (in

the contamination component), which is perhaps the most popular alternative in a nonparametric

context.
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Chapter 4

Detecting Sparse Heterogeneous Mixtures

in a Two-sample Problem

4.1 Introduction

The detection of sparse mixtures has been studied for decades [28, 20]. Most work has

focused on detecting deviation of data from the known distribution. However, in practice, it’s

more common that we do not have access to the null distribution and have to estimate it from a

control group. For example, in a clinical trial, patients were assigned to two groups randomly,

given either the placebo or the treatment. For some reasons, the treatment could only affect a

small proportion of the patients treated, while the remaining patients reacted the same as patients

in the control group. Similar settings were investigated in Conover and Salsburg [16] and they

modeled the shift in the distribution as a Lehmann alternative and focused on the locally most

powerful tests.

We study this situation in parallel with the work of Ingster [28] and Donoho and Jin [20].

Let F and G be two continuous (unknown) distribution functions on the real line. We consider

the following hypothesis testing problem: based on a random sample X1,⋯,Xm drawn iid from F
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and another independent random sample Y1,⋯,Yn drawn iid from G, decide

H0 ∶G = F versus H1 ∶G = (1−ε)F +εF(⋅−µ), ε > 0, µ > 0. (4.1)

where ε ∈ (0,1/2) is the fraction of non-null effect and µ is the size of the location shift. Hence,

under the alternative, G is stochastic larger than F . We assume that

lim
m,n→∞

n
m+n

= η ∈ (0,1/2] (4.2)

at a sufficient fast rate.

The optimum of rank tests was mainly investigated as locally most powerful [33]. Follow-

ing the line of our work in the one-sample setting, we still focus on the asymptotically optimum

here. As usual, a testing procedure is asymptotically powerful (resp. powerless) if the sum of its

probabilities of Type I and Type II errors (its risk) has limit 0 (resp. inferior at least 1) in the large

sample asymptote.

4.1.1 A benchmark: generalized Guassian mixture model

The normal mixture model has been studied in Ingster [28] considering the one-sample

setting, that is, F is known to be standard normal and only the Y -sample is collected. The problem

is investigated in various asymptotic regimes defined by how fast ε goes to zero. The detection

boundary of the likelihood ratio test (LRT) (then any other tests) is derived. Donoho and Jin [20]

further derived the detection boundary when F is generalized Gaussian:

f (x) ∝ exp(−
∣x∣γ

γ
),
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where γ > 0. Note that γ = 2 corresponds to the normal distribution and γ = 1 corresponds to the

double-exponential distribution. They parameterized ε = εn as

εn = n−β, 0 < β < 1 fixed. (4.3)

In the sparse setting where 1/2 < β < 1, let

µn = (γr logn)1/γ, 0 < r < 1 fixed, (4.4)

then the detection boundary when γ > 1 is

ρ
∗
γ (β) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(21/(γ−1)−1)γ−1(β− 1
2),

1
2 < β < 1−2−γ/(γ−1);

(1−(1−β)1/γ)γ, 1−2−γ/(γ−1) < β < 1.

and for the case γ ≤ 1

ρ
∗
γ (β) = 2β−1.

That means, if r > ρ∗(β), H0 and H1 separate asymptotically, while if r < ρ∗(β), H0 and H1

merge asymptotically.

The detection boundary in the dense regime where 0 < β < 1/2 is given in [3]. Let

µn = ns−1/2, 0 < s < 1/2 fixed, (4.5)

then the hypotheses merge asymptotically when s < β if γ ≥ 1/2 and s < 1
2 −

1−2β

1+2γ
if γ < 1/2.

4.1.2 The two-sample higher criticism test

The one-sample higher criticism test was suggested in Donoho and Jin [20] and proved

to be first-order asymptotically comparable to the LRT in the normal mixture model. In the
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two-sample setting, an analogous higher criticism statistic was proposed as [13, 24]:

HC = sup
t∈R

√
mn

m+n
[Fm(t)−Gn(t)]

√
Hm+n(t)(1−Hm+n(t))

, (4.6)

where Fm and Gn are empirical distributions of the X-sample and the Y -sample, respectively, and

Hm+n(t) = 1
m+n(mFm(t)+nGn(t)) is the empirical distribution of the combined sample. The test

rejects for large values of (4.6). This is to the two-sample Kolmogorov-Smirnov test [51] what

the Anderson-Darling test (aka the higher criticism test) is to the Kolmogorov-Smirnov test.

Pettitt [46] proposed the integral version of the two-sample Anderson-Darling statistic and

gave an approximation of the distribution. Finner and Gontscharuk [24] studied the supremum

version (4.6) in terms of local levels and focused on the Type I error. It is also connected to the

work of Zhao et al [57], which normalizes the Hoeffding test for independence in an analogous

way. Note that all these tests are based on ranks only, so they are nonparametric tests. Distribution-

free tests for sparse heterogeneous mixtures in the one-sample setting was investigated in [3]

where they assumed that F is symmetric about zero and the true effects have positive median. In

our work, we do not pose any assumptions on F except it is continuous, and we use the X-sample

to estimate F . In addition, the two-sample higher criticism is parallel to the CUSUM sign test in

[3] as the Wilcoxon test to the Wilcoxon signed-rank test [53].

4.2 Lower bound

The formulation (4.1) indicates that both the null and the alternative hypotheses are

composite. If we assume model parameters (F,ε,µ) are known, then the likelihood ratio test

(LRT) is the most powerful test by Neyman-Pearson lemma. In particular, if F is given, we don’t

need the X-sample, then the question is reduced to the one-sample situation [28, 20, 12]. The

general detection boundary was given in [4, Lemma A.1] as follows in our context: let f denote

the density of F , then the hypotheses (4.1) merge asymptotically when there is a sequence (xn)
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such that

nF̄(xn) → 0, nεnF̄(xn−µn) → 0,

and

nε
2
n[∫

xn

−∞

f (x−µn)
2

f (x)
dx−1]

+
→ 0.

4.3 The two-sample higher criticism test

For a distribution F , F̄(x) = 1−F(x) will denote its survival function.

Theorem 6. For the testing problem (4.1) and under (4.2), the two-sample higher criticism test

is asymptotically powerful if either there is a sequence (tn) such that tn→∞,

n(F̄(tn)∨εF̄(tn−µ))≫ log2 n, (4.7)

and
√

nε[F̄(tn−µ)− F̄(tn)]
√

F̄(tn)+εηF̄(tn−µ)
≫ logn; (4.8)

or t is the median of F and
√

nε[F̄(t −µ)−
1
2
] ≫ logn. (4.9)

Proof. Finner and Gontscharuk [24] showed that the two-sample HC statistic (4.6) is almost

surely equal to

HC∗ = sup
s∈Im,n

√
m+n

m+n−1
[Vm,s−E0[Vm,s]]
√

Var0[Vm,s]
,

where Vm,s denotes the number of ranks related to the X-sample being not larger than s and

Im,n ∶= {1,⋯,m+n−1}. They also showed that HC∗ coincides asymptotically in distribution with

the one-sample HC statistic with sample size n under the null as we assume that n ≤m, which was
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derived in [29]. Thus, we have

P0 (HC ≥
√

3loglogn) → 0.

For simplicity, we consider the test with rejection region {HC ≥ logn}. Hence, the test is

asymptotically powerful if, under the alternative, there is tn (or t) ∈R such that

P1(

√
mn

m+n
[Fm(tn)−Gn(tn)]

√
Hm+n(tn)(1−Hm+n(tn))

≥ logn)→ 1.

Indeed, mFm(t) is binomial with parameters m and F(t), nGn(t) is binomial with parameters n

and G(t) = (1−ε)F(t)+εF(t −µ), and

Hm+n(t) =
m

m+n
Fm(t)+

n
m+n

Gn(t).

We also define H(⋅) as

H(t) = (1−η)F(t)+ηG(t) = (1−εη)F(t)+εηF(t −µ).

Hence, by Chebyshev’s inequality, we have

√
m∣Fm(tn)−F(tn)∣

√
F(tn)(1−F(tn))

≤ logm

with probability tending to 1, and

√
n∣Gn(tn)−G(tn)∣

√
G(tn)(1−G(tn))

≤ logn
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with probability tending to 1. By triangular inequality, we have

∣F(tn)−G(tn)∣ = ∣F(tn)−Fm(tn)+Fm(tn)−Gn(tn)+Gn(tn)−G(tn)∣

≤ ∣F(tn)−Fm(tn)∣+ ∣Fm(tn)−Gn(tn)∣+ ∣Gn(tn)−G(tn)∣

≤ ∣Fm(tn)−Gn(tn)∣+ logm

√
F(tn)(1−F(tn))

m
+ logn

√
G(tn)(1−G(tn))

n

Hence, we have

√
mn

m+n
[Fm(tn)−Gn(tn)]

√
Hm+n(tn)(1−Hm+n(tn))

≥ an−bn,

where

an ∶=

√
mn

m+n
ε[F̄(tn−µ)− F̄(tn)]

√
Hm+n(tn)(1−Hm+n(tn))

,

bn ∶=

√
n

m+n
logm

¿
Á
ÁÀ F(tn)(1−F(tn))

Hm+n(tn)(1−Hm+n(tn))
+

√
m

m+n
logn

¿
Á
ÁÀ G(tn)(1−G(tn))

Hm+n(tn)(1−Hm+n(tn))
,

as we know that F >G under the alternative, and it suffices to show that

an ≥ bn+ logn (4.10)

with probability tending to 1.
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∣H̄m+n(tn)− H̄(tn)∣ = ∣
m

m+n
F̄m(tn)+

n
m+n

Ḡn(tn)−(1−η)F̄(tn)−ηḠ(tn)∣

= ∣
m

m+n
(F̄m(tn)− F̄(tn))+(

m
m+n

−(1−η))F̄(tn)

+
n

m+n
(Ḡn(tn)− Ḡ(tn))+(

n
m+n

−η)Ḡ(tn)∣

≤ ∣
m

m+n
(F̄m(tn)− F̄(tn))∣+ ∣

n
m+n

(Ḡn(tn)− Ḡ(tn))∣

+O(
logn
√

n
)(F̄(tn)+ Ḡ(tn))

≤
m

m+n
logm

√
F̄(tn)(1− F̄(tn))

m
+

n
m+n

logn

√
Ḡ(tn)(1− Ḡ(tn))

n

+O(
logn
√

n
)(F̄(tn)+ Ḡ(tn))

≍O(
logm
√

m

√
F̄(tn))+O(

logn
√

n

√

Ḡ(tn))+O(
logn
√

n
(F̄(tn)+ Ḡ(tn)))

≍O(
logn
√

n

√
(1−ε)F̄(tn)+εF̄(tn−µ)),

as we assume that

∣
n

m+n
−η∣ =O(logn/

√
n).

Thus, under (4.7) or (4.9), we have

∣H̄m+n(tn)− H̄(tn)∣ ≪ H̄(tn).

71



Then if tn→∞, we have H(tn) → 1, and

an =

√
mn

m+n
ε[F̄(tn−µ)− F̄(tn)]

√
Hm+n(tn)(1−Hm+n(tn))

≍

√
n(1−η)ε[F̄(tn−µ)− F̄(tn)]

√
(1−εη)F̄(tn)+εηF̄(tn−µ)

⋅

¿
Á
ÁÀ H̄(tn)

H̄m+n(tn)

≍

√
nε[F̄(tn−µ)− F̄(tn)]

√
F̄(tn)+εηF̄(tn−µ)

≫ logn,

under (4.8).

If t is the median of F such that F(t) = 1/2, then H(t) is bounded away from 0 and 1, and

under condition (4.9),

an =

√
mn

m+n
ε[F̄(t −µ)− F̄(t)]

√
Hm+n(t)(1−Hm+n(t))

=
√

nε[F̄(t −µ)−
1
2
] ≫ logn.

In addition, we have

bn ≍ logn.

Therefore, (4.10) is fulfilled eventually.

In the generalized Gaussian mixture model, with parameterization (4.3) and (4.4), we

choose tn = (γq logn)1/γ, r < q ≤ 1 fixed. By the tail behavior of F , we have

F̄(tn) = Lnn−q, F̄(tn−µn) = Lnn−(q1/γ
−r1/γ

)
γ

,

where Ln denotes any factor logarithmic in n.

If γ > 1, we define rγ = (1−2−1/(γ−1))γ. If r < rγ, we set q = r/rγ. Then the LHS in (4.7) is

n(Lnn−r/rγ ∨εLnn−r(r−1/γ
γ −1)γ

) ≍ Ln(n1−r/rγ ∨n1−β−r(r−1/γ
γ −1)γ

)≫ log2 n.
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The LHS in (4.8) is

Ln
n

1
2−β(n−r(r−1/γ

γ −1)γ

−n−r/rγ)
√

n−r/rγ +εηn−r(r−1/γ
γ −1)γ

≍ Ln(n
1+r/rγ

2 −β−r(r−1/γ
γ −1)γ

∧n
1
2(1−β−r(r−1/γ

γ −1)γ
)),

where both exponents are positive when r > (21/(γ−1)−1)γ−1(β− 1
2).

If r ≥ rγ, we set q = 1. Then the LHS in (4.7) is

n(Lnn−1∨εLnn−(1−r1/γ
)

γ

) ≍ Ln(1∨n1−β−(1−r1/γ
)

γ

)≫ log2 n,

if 1−β−(1− r1/γ)γ > 0. And the LHS in (4.8) is

Ln
n

1
2−β(n−(1−r1/γ

)
γ

−n−1)
√

n−1+εηn−(1−r1/γ)γ

≍ Ln(n1−β−(1−r1/γ
)

γ

∧n
1
2(1−β−(1−r1/γ

)
γ
)),

where both exponents are positive when if 1−β−(1− r1/γ)γ > 0.

If γ ≤ 1, we set q = r, so that tn = µn. Then the LHS in (4.7) is

n(Lnn−r ∨Ln)≫ log2 n,

and the LHS in (4.8) is

Ln
n

1
2−β(1−n−r)
√

n−r +n−β
≍ Lnn

1
2−β+ r

2 ,

where the exponent is positive when r > 2β−1. Comparing with the detection boundary, we

see that the two-sample higher criticism test achieves the detection boundary in the generalized

Gaussian model in the sparse regimes for any γ > 0.

In the dense regime, with parameterization (4.3) and (4.5), t = F−1(1/2) = 0, hence,

√
nε[F̄(−µ)−

1
2
] ≍

√
nεµ = ns−β,
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and the exponent is positive when s < β. So that the two-sample HC test achieves the detection

boundary when γ ≥ 1/2.

4.4 Other tests

It is well-known that in the more classical setting, the two-sample situation is closely

related to the one-sample tests for symmetry. Essentially, the main two-sample tests have the

same relatively efficiency between them as the corresponding one-sample tests. We analyzed

some classical tests in this section.

4.4.1 The Wilcoxon test

The Wilcoxon test is the classical nonparametric test for location shift between two

samples [53, 41]. In particular, in this case, it rejects for large values of the Wilcoxon statistic U

which counts the number of pairs Xi, Yj with Xi <Y j.

Proposition 9. For the testing problem (4.1) and under (4.2), the Wilcoxon test is asymptotically

powerful (resp. powerless) when

√
nε[

1
2
−∫ F(⋅−µ)dF] ≫ logn (reps.→ 0). (4.11)

Proof. Mann and Whitney [41] proved that under the null F =G, for large samples,

U
mn −E0(

U
mn)

σ0(
U
mn)

is approximately normally distributed. In particular, the first two moments of U are [41, 33]

E(
U
mn

) = ∫ FdG,
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mnVar(
U
mn

) = [
m+n+1

12
+(m−1)(λ−ε1)+(n−1)(λ−ε2)−λ

2(m+n−1)],

where

λ =
1
2
−∫ FdG, ε1 =

1
3
−∫ F2dG, ε2 =

1
3
−∫ (1−G)2dF.

Hence, we have

E0(
U
mn

) = ∫ FdF =
1
2
,

Var0(
U
mn

) =
m+n+1

12mn
.

By Chebyshev’s inequality, we have

P0(∣U −
mn
2

∣ ≥ an

√
(m+n+1)mn

12
)→ 0,

for any sequence an diverging to infinity. Under H1, G = (1−ε)F +εF(⋅−µ), we have

E1(
U
mn

) = ∫ FdG =
1
2
+

ε

2
−ε∫ F(⋅−µ)dF,

and

Var1(
U
mn

) =O(
m+n+1

12mn
),

as 0 ≤ ∫ FkdG ≤ 1, k = 1,2 and 0 ≤ ∫ (1−G)2dF ≤ 1. Then by Chebyshev’s inequality, we have

P1(∣U −mn(
1
2
+

ε

2
−ε∫ F(⋅−µ)dF)∣ ≥ an

√
(m+n+1)mn

12
)→ 0,

for any sequence an diverging to infinity. We choose an = logn and consider the test with rejection

region {U − mn
2 ≥ logn

√
(m+n+1)mn

12 }. The test is asymptotically powerful when, eventually,

ε[
1
2
−∫ F(⋅−µ)dF] ≥ logn

√
m+n+1

12mn
,
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which is satisfied under (4.2) and (4.11).

Next we show that the Wilcoxon test is asymptotically powerless when (4.11) converges

to zero. Lehmann [32] showed that asymptotic normality still holds for U under the alternative

and (4.2), that is
U
mn −E1(

U
mn)

σ1(
U
mn)

→N(0,1).

Hence, under H1, we have

U −E0(U)

σ0(U)
= (

U −E1(U)

σ1(U)
+
E1(U)−E0(U)

σ1(U)
) ⋅

σ1(U)

σ0(U)
,

where E1(U)−E0(U)

σ1(U)
≍
√

nε[1
2 −∫ F(⋅−µ)dF] → 0 and σ1(U)/σ0(U) ≍ 1. Therefore, by Slutsky’s

theorem, (U −E0(U))/σ0(U) also converges to N(0,1) as under the null. No test based on U

would have any power.

Note that the Wilcoxon test is asymptotically powerless when
√

nεn→0. In the generalized

Gaussian mixture model, in the dense regime with parameterization (4.3) and (4.5), we have

√
nεn[

1
2
−∫ F(⋅−µn)dF] ≈

√
nεn[

1
2
−∫ (F −µn f )dF] =

√
nεnµn∫ f dF ≍ ns−β,

where f is the density function. Hence, the Wilcoxon test is asymptotically powerful when s > β,

and it achieves the detection boundary when γ > 1/2.

4.4.2 The two-sample Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov test [51] rejects for larges values of

Dm,n = sup
t∈R

[Fm(t)−Gn(t)].

Proposition 10. For the testing problem (4.1) and under (4.2), the two-sample Kolmogorov-
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Smirnov test is asymptotically powerful (resp. powerless) when

√
nεsup

t∈R
[F̄(t −µ)− F̄(t)] →∞ (resp.→ 0). (4.12)

Proof. We already know the limiting distribution of
√

mn/(m+n)Dm,n under the null hypothesis

[51]. Under H1, by triangle inequality,

√
nsup

t∈R
[Fm(t)−Gn(t)] ≥

√
nsup

t∈R
[F(t)−G(t)]−

√
nsup

t∈R
∣Fm(t)−F(t)∣−

√
nsup

t∈R
∣Gn(t)−G(t)∣

=
√

nεsup
t∈R

[F(t)−F(t −µ)]−Op(1) →∞,

when the limit in (4.12) is infinity.

When the limit in (4.12) is 0, let I0 and I1 index the observations in the Y - sample coming

from the null and contaminated components, respectively. Let G j
n(t) = 1

∣I j ∣
∑i∈I j I{yi ≤ t}, j = 0,1.

We have

Gn(t) =
∣I0∣

n
G0

n(t)+
∣I1∣

n
G1

n(t).

By triangle inequality,

∣
√

nsup
t∈R

[Fm(t)−Gn(t)]−
√

∣I0∣sup
t∈R

[Fm(t)−G0
n(t)]∣

≤ ∣

√
∣I0∣

n
−1∣∣

√
∣I0∣sup

t∈R
[Fm(t)−G0

n(t)]∣+

√
∣I1∣

n
∣
√

∣I1∣sup
t∈R

[Fm(t)−G1
n(t)]∣

≤ ∣

√
∣I0∣

n
−1∣Op(1)+

√
∣I1∣

n
∣
√

∣I1∣sup
t∈R

[F(t)−F(t −µ)]+Op(1)∣ = op(1),

by the fact that ∣I0∣ ∼p n, ∣I1∣ ∼p nε and (4.12) converges to 0. Hence,
√

nDm,n ∼
√

∣I0∣Dm,∣I0∣
under

H1, which has the same limiting distribution as under H0.

Note that the two-sample Kolmogorov-Smirnov test has no power in the sparse regime.

In the generalized Gaussian mixture model, in the dense regime with parameterization (4.3) and

77



(4.5), we have

√
nεsup

t∈R
[F̄(t −µ)− F̄(t)] ≥

√
nε[F̄(−µ)− F̄(0)] ≍ ns−β→∞,

when s > β. Same as the Wilcoxon test, it only achieves the detection boundary with γ > 1/2.

4.4.3 The tail-run test

We now consider the tail-run test. Let ζ( j) = 0 or 1, according to whether the jth largest

observation is from the X-sample or the Y -sample, j = 1,⋯,m+n. Then the tail-run test rejects

for large values of

L∗ =max{l ≥ 0 ∶ ζ(1) =⋯ = ζ(l) = 1}.

The one-sample tail-run test for sparse mixtures is investigated in [3]. It is also analogous to the

extremes tests in the normal mixture model.

Proposition 11. For the testing problem (4.1) and under (4.2), and let (ln) be a divergent

sequence of positive integers. The tail-run test is asymptotically powerful when there exits a

sequence (tn) such that

mF̄(tn) → 0, nεF̄(tn−µ) ≥ 2ln. (4.13)

Proof. We consider the tail-run test with rejection region {L∗ ≥ ln}. Note that L∗ is the number

of the Y -samples until the first X-sample is encountered. Under H0, L∗ is following negative

hypergeometric distribution with the population size m+n, and we have

E0(L∗) =
n

m+1
, Var0(L∗) =

(m+n+1)n
(m+1)(m+2)

[1−
1

m+1
].

Hence, L∗ =Op(1) and ln→∞, we have P0(L∗ ≥ ln) → 0 as n→∞.
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Under H1, note that

PX(maxXi ≤ tn) = (1− F̄(tn))m→ 1,

under the condition mF̄(xn) → 0. Therefore, L∗ ≥ N ∶= #{ j,Yj > tn} with high probability. And

N ∼ Bin(n, py) where py = (1− ε)F̄(tn) + εF̄(tn − µ). Eventually, under (4.13) , we have N =

(1+op(1))npy ≥ ln.

In the generalized Gaussian mixture model, with parameterization (4.3) and (4.4), we

choose tn = (γ(1+q) logn)1/γ, q > 0 fixed. By the tail behavior of F , we have

mF̄(tn) = Lnn−q, nεF̄(tn−µn) = Lnn1−β−((1+q)1/γ
−r1/γ

)
γ

,

where Ln denotes any factor logarithmic in n. When r > (1−(1−β)1/γ)γ is fixed, we can choose

q > 0 small enough that 1−β−((1+q)1/γ− r1/γ)γ > 0. Hence, the tail-run test is suboptimal in the

moderately sparse regime and is optimal in the very sparse regime.

4.5 Numerical experiments

We performed some numerical experiments to investigate the finite sample performance

of the likelihood ratio test (LRT), the two-sample higher criticism (HC) test, the Wilcoxon

test, the two-sample Kolmogorov-Smirnov (KS) test and the tail-run test. We set sample sizes

m = n = 105 in order to capture the large-sample behavior of these tests. The p-values for each test

are calibrated as follows:

(a) For the likelihood ratio test and the two-sample higher criticism test, we simulated the null

distribution based on 4,000 Monte Carlo replicates.
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(b) For the Wilcoxon test and the two-sample Kolmogorov-Smirnov test, the p-values are from

the limiting distributions.

(c) For the tail-run test, we used the exact null distribution, that is the negative hypergeometric

distribution.

For each scenario, we repeated the whole process 200 times and recorded the fraction of

p-values smaller than 0.05, representing the empirical power at the 0.05 level.

Normal mixture model

In this model, F is standard normal. The results are reported in Figure 4.1 and are largely

congruent with the theory developed earlier.

Dense regime. We set β = 0.2 and µn = ns−1/2 with s ranging from 0.05 to 0.5 with

increments of 0.05. The two-sample HC test, the Wilcoxon test and the two-sample KS test

perform comparable to the LRT, while the tail-run test is obviously suboptimal.

Moderately sparse regime. We set β = 0.6 and µn =
√

2r logn with r ranging from 0.05 to

0.5 with increments of 0.05. The two-sample HC performs slightly worse than the LRT but better

than the tail-run test, while the Wilcoxon test and the KS test are powerless.

Very sparse regime. We set β = 0.8 and µn =
√

2r logn with r ranging from 0.1 to 0.9 with

increments of 0.1. Though our theory show that both the two-sample HC test and the tail-run test

achieve the detection boundary, they both perform significantly below the LRT. The tail-run test

is more powerful than the two-sample HC test, which is consistent with the observation in the

one-sample setting [2].

Double-exponential mixture model

In this model, F is double-exponential with variance 1. The simulation results are reported

in Figure 4.2. The results are largely congruent with our theory.
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(b) β = 0.6
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Figure 4.1: Empirical power comparison with 95% error bars for the likelihood ratio test
(black), the two-sample higher criticism test (red), the Wilcoxon test (blue), the two-sample
Kolmogorov-Smirnov test (green) and the tail-run test (purple). (a) Dense regime where β = 0.2.
(b) Moderately sparse regime where β = 0.6. (c) Very sparse regime where β = 0.8. The
horizontal line marks the level (set at 0.05) and the vertical line marks the asymptotic detection
boundary derived earlier. The sample size is m = n = 105 and the power curves and error bars are
based on 200 replications.
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Figure 4.2: Empirical power comparison with 95% error bars for the likelihood ratio test
(black), the two-sample higher criticism test (red), the Wilcoxon test (blue), the two-sample
Kolmogorov-Smirnov test (green) and the tail-run test (purple). (a) Dense regime where β = 0.2.
(b) Moderately sparse regime where β = 0.6. (c) Very sparse regime where β = 0.8. The
horizontal line marks the level (set at 0.05) and the vertical line marks the asymptotic detection
boundary derived earlier. The sample size is m = n = 105 and the power curves and error bars are
based on 200 replications.
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Chapter 5

Sensitivity Analysis of Treatment Effect to

Unmeasured Confounding in

Observational Studies with Survival and

Competing Risks Outcomes

5.1 Introduction

One widely used yet untestable assumption when analyzing data from observational

studies is that there is no unobserved confounding, which means that the treatment received and

the potential outcomes are independent conditional on the observed pre-treatment covariates.

Sensitivity analysis offers an approach to assess the extent to which the inference is robust to

violation of this assumption. Rosenbaum [49] contains a nice introduction describing the idea

based on association between the unobserved confounder and the treatment, and between the

unobserved confounder and the outcome. Analytical approaches have been developed for simpler

outcomes such as binary [38], as well as for survival outcomes under the assumption that the
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event is rare or the effect of the unmeasured confounder on the survival time is small [37]. Li

et al. [35] and Shen et al. [50] considered sensitivity analysis methods for inverse probability

weighted (IPW) estimators using propensity scores, an approach that was gaining popularity in

practice [6].

Our motivation came from studies in inflammatory bowel disease (IBD). IBD is an

umbrella term for two conditions, ulcerative colitis (UC) and Crohn’s disease (CD), that are

characterized by chronic inflammation of the gastrointestinal tract [31]. With rapid growth in

treatment options, head-to-head comparisons are entirely lacking due to difficulty in performing

randomized clinical trials (RCT). In order to compare the effectiveness between Vedolizumab and

tumor necrosis factor (TNF)-antagonist therapies for UC and CD patients, data were collected

between May 2014 and December 2017 from a North American based consortium registry

[44, 23], which is a multi-center collaborative research group where outcomes are pooled for

consecutive UC and CD patients treated with biologics. Our primary endpoint is time to clinical

remission since treatment initiation. Although data collection was rather extensive and accounted

for most known measurable confounders, treatment selection for IBD is known to be preference

sensitive and influenced by patient and provider perceptions, experiences, and understandings of

potential benefit and risk based on the data available to them, all of which are unmeasurable. We

aim to assess to what extent our inference from the data is affected by potentially unmeasured

confounding.

Time to clinical remission since treatment initiation is a survival endpoint; however,

patients need time to achieve this endpoint. Wide variability exists across centers, patients,

and providers, for their preference to proceed with surgery while awaiting response to therapy.

Therefore, surgery presents a competing risk to clinical remission, in that surgery prevents the

event of achieving clinical remission. In Lukin et al. [40] and Bohm et al. [10] the authors

considered propensity score methods with IPW as the primary approach to account for the

observed covariates. However, it is possible that there might be confounders not captured by
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the observed covariates. To carry out sensitivity analysis for this type of complex outcomes, we

found the simulated unobserved confounder approach [14] to be useful, in particular since the

analytical approaches seem difficult to derive for competing risks.

The paper is organized as follows. We describe our models in Section 5.2, including

both the survival models and the competing risks models. We consider estimation in Section 5.3,

using both the Expectation-Maximization (EM) algorithms and a stochastic EM algorithm. In

Section 5.4, we demonstrate the performance of our algorithms via simulations. We apply our

methods to the IBD data in Section 5.5. Finally, we conclude with discussion in Section 5.6.

5.2 Models

5.2.1 Survival outcome

Denote T 0 a time-to-event outcome, Z a binary treatment indicator, and XXX a vector of

observed covariates. Due to possible right censoring, we observe T =min(T 0,C) and δ = I(T 0 ≤

C), where C is the censoring time, and I(⋅) the indicator function. We consider U which represents

the portion of unmeasured confounder(s) that is independent of XXX , and will simply refer to U

as the unmeasured confounder for the rest of the paper. We assume U to be binary for ease of

implementation, although other distributions are possible and will be discussed later. Given Z, XXX

and U , the hazard rate of T 0 is modeled using the Cox proportional hazards (PH) regression [17]:

λ(t ∣Z,XXX ,U) = λ0(t)exp(τZ+XXX ′
βββ+ζU), (5.1)

where λ0(⋅) is the baseline hazard function, and τ, βββ and ζ are the regression coefficients. In

addition, we assume that given XXX and U , Z follows a generalized linear model; for illustration
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purposes we assume a probit link below, although logistic would be an obvious alternative:

P(Z = 1∣XXX ,U) =Φ(XXX ′
βββzzz+ζzU), (5.2)

where Φ is the standard normal cumulative distribution function (CDF), and βββzzz and ζz are the

regression coefficients. In the above ζz and ζ are sensitivity parameters, which quantify the

relationships between the unobserved confounder and the treatment received and the outcome,

respectively. Finally, we assume that U ∼ Bernoulli(π), and we set π = 0.5.

Our goal is to simulate U given the observed T , δ, Z and XXX . We note that if the parameters

in the above models are known, then

U ∣T,δ,Z,XXX ∼Bernoulli(
P(T,δ,Z,U = 1∣XXX)

P(T,δ,Z∣XXX)
) , (5.3)

where P(T,δ,Z,U = u∣XXX) is the joint probability of (T,δ,Z,U = u) given XXX for u = 0,1, and

P(T,δ,Z∣XXX) = P(T,δ,Z,U = 1∣XXX)+P(T,δ,Z,U = 0∣XXX). In particular,

P(T,δ,Z,U ∣XXX) =P(U ∣XXX) ⋅P(Z∣XXX ,U) ⋅P(T,δ∣Z,XXX ,U) (5.4)

=π
U(1−π)1−U {Φ(XXX ′

βββzzz+ζzU)}
Z
{1−Φ(XXX ′

βββzzz+ζzU)}
1−Z

⋅ {λ0(T)eτZ+XXX ′
βββ+ζU}

δ

exp{−Λ0(T) ⋅eτZ+XXX ′
βββ+ζU} .

Expression (5.3) will be used to simulate Ui given the observed Ti, δi, Zi and XXX i, where

(Ti,δi,Zi,XXX i) for i= 1, ...,n are independent and identically distributed (i.i.d.) from the distribution

of (T,δ,Z,XXX).

5.2.2 Competing risks

In the presence of competing risks, when an event occurs it may be one of m distinct types

of failures indexed by j = 1,2,⋯,m. Again denote T 0 the time-to-event, Z a binary treatment
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indicator, and XXX a vector of observed covariates. We observe T = min(T 0,C), δ = I(T 0 ≤C), J

the type of failure if δ = 1 and J = 0 otherwise for notational purpose. We again consider an

unmeasured binary confounder U that is independent of XXX . The cause-specific hazard function

[30] for the j-th failure type is λ j(t ∣Z,XXX ,U) = lim∆t→0P(t ≤ T 0 < t +∆t,J = j∣T 0 ≥ t,Z,XXX ,U)/∆t.

Using the proportional hazards modeling of the cause-specific hazard function, we have:

λ j(t ∣Z,XXX ,U) = λ j0(t)exp(τ jZ+XXX ′
βββ jjj +ζ jU), j = 1,2,⋯,m. (5.5)

where λ j0(⋅) is the baseline hazard function for type j, and (τ j, βββ jjj, ζ j) are the regression

coefficients. The interpretation of treatment effect in the presence of competing risks needs

caution, and is further discussed in the data analysis section. As before we also assume that given

XXX and U , Z follows a generalized linear model (5.2) with a probit link. Then parallel to (5.4) we

have the joint probability of (T,δ,J,Z,U) given XXX as [30]

P(T,δ,J,Z,U ∣XXX) = π
U(1−π)1−U {Φ(XXX ′

βββzzz+ζzU)}
Z
{1−Φ(XXX ′

βββzzz+ζzU)}
1−Z

⋅
m
∏
j=1

{λ j0(T)eτ jZ+XXX ′
βββ jjj+ζ jU}

I(δ=1,J= j)
exp{−Λ j0(T) ⋅eτ jZ+XXX ′

βββ jjj+ζ jU} ,

where I(δ = 1,J = j) indicates whether subject had the event j. The posterior probability of U

is then obtained similar to (5.3). In general, if there are m distinct types of failures, then there

would be m+1 sensitivity parameters, ζz,ζ1,⋯,ζm.

5.3 Estimation

In order to simulate U given the observed data, we first need to estimate the unknown

parameters. As before denote n the number of subjects. Conditional on the unobserved U as well
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as Z and XXX , the likelihood function of the survival outcome without competing risks is

L1(τ,βββ,ζ;T,δ∣Z,XXX ,U) =
n
∏
i=1

λ(ti∣zi,xxxiii,ui)
δi exp{−Λ(ti∣zi,xxxiii,ui)}

=
n
∏
i=1

{λ0(ti)eτzi+xxx′iiiβββ+ζui}
δi

exp{−Λ0(ti)eτzi+xxx′iiiβββ+ζui} .

Similarly, the likelihood function of the competing risks outcome is

L1(τ,βββ jjj,ζ j;T,δ,J∣Z,XXX ,U) =
n
∏
i=1

m
∏
j=1

λ j(ti∣zi,xxxiii,ui)
δi j exp{−Λ j(ti∣zi,xxxiii,ui)} (5.6)

=
n
∏
i=1

m
∏
j=1

{λ j0(ti)eτ jzi+xxx′iiiβββ jjj+ζ jui}
δi j

exp{−Λ j0(ti)eτ jzi+xxx′iiiβββ jjj+ζ jui} ,

where δi j ∶= I(δi = 1,Ji = j) indicates whether subject i had event j.

5.3.1 The EM algorithm

The EM algorithm [19] is a commonly used approach to handle missing data, in this case

U , in the likelihood function. Let θθθ denote the unknown parameters, and yi the survival outcome

for subject i. The EM algorithm iterates between the E-steps and the M-steps that are described

below, where in the notation the covariate xxxiii is suppressed which is always being conditioned

upon. The initial values can be set using the parameter estimates from the regression models

ignoring U . We note that the sensitivity parameters, as well as π = 0.5, are known.

E-step

In the E-step we compute the conditional expectation of the log-likelihood of the complete

data (yi,zi,ui) given the observed data and the current parameter value θ̃θθ. For the survival outcome
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without competing risks, let

Q(θθθ) =E[l(θθθ;y,z,u)∣y,z, θ̃θθ]

=E[l1(βββ,τ,λ0;y∣z,u)∣y,z, θ̃θθ]+E[l2(βββzzz;z∣u)∣y,z, θ̃θθ]+E[l3(u)∣y,z, θ̃θθ]

∶= Q1(βββ,τ,λ0)+Q2(βββzzz)+Q3, (5.7)

where

Q1(βββ,τ,λ0) =
n
∑
i=1

[δi{logλ0(ti)+xxx′iiiβββ+ζE[ui∣yi,zi, θ̃θθ]+τzi} (5.8)

−Λ0(ti)exp{xxx′iiiβββ+ logE[eζui ∣yi,zi, θ̃θθ]+τzi}] ,

Q2(βββzzz) =
n
∑
i=1

{ziE[log(Φ(xxx′iiiβββzzz+ζzui))∣yi,zi, θ̃θθ]+(1− zi)E[log(1−Φ(xxx′iiiβββzzz+ζzui))∣yi,zi, θ̃θθ]},

(5.9)

Q3 =
n
∑
i=1

{logπE[ui∣yi,zi, θ̃θθ]+ log(1−π)E[1−ui∣yi,zi, θ̃θθ]}.

We note that Q3 is in fact not used in the M-step since it does not involve unknown parameters.

As described earlier, given the observed data, U follows Bernoulli (π̃i) as in (5.3) where π̃i is

calculated based on the current parameter value θ̃θθ. So for any function h(ui) in (5.8) and (5.9),

we have E[h(ui)∣yi,zi, θ̃θθ] = h(1)π̃i+h(0)(1− π̃i).

For competing risks outcome, from (5.6) we see that the likelihood function is a product of

m likelihoods, one for each type of event with its own type specific parameters. The corresponding

Q1 function is then a sum of Q1 j(βββ jjj,τ j,λ j0)’s, each having the same form as Q1(βββ,τ,λ0) above

but with parameters βββ jjj,τ j,λ j0 and data for the event type j instead.
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M-step

From (5.7) it is clear that in the M-step we can update (βββ,τ,λ0) and βββzzz separately. In

order to maximize Q1, we note that it has the same form as the log-likelihood in a Cox regression

model with known offset logE[eζui ∣yi,zi, θ̃θθ], just like the Cox model with random effects [52].

For competing risks again because Q1 is a sum of Q1 j(βββ jjj,τ j,λ j0)’s for j = 1, ...,m, each set of

parameters βββ jjj,τ j,λ j0 is updated separately using the Cox model software with offsets, the same

way as a single survival outcome.

To maximize Q2, we have

Q2(βββzzz) =
n
∑
i=1

(zi [log{Φ(xxx′iiiβββzzz+ζz)}π̃i+ log{Φ(xxx′iiiβββzzz)}(1− π̃i)]

+(1− zi)[log{1−Φ(xxx′iiiβββzzz+ζz)}π̃i+ log{1−Φ(xxx′iiiβββzzz)}(1− π̃i)]) .

This function can be maximized using the R function ‘optim’.

Variance estimation

As in typical nonparametric maximum likelihood inference under semiparametric models,

the variance-covariance matrix of θ̂θθ is estimated by the inverse of a discrete observed information

matrix I(θ̂θθ) following the EM algorithm, which is given by Louis’ formula [39] based on missing

information principle:

I(θθθ) =E[−l̈(θθθ;y,z,u)∣y,z,θθθ]−E[s(θ;y,z,u)s(θ;y,z,u)′∣y,z,θθθ], (5.10)

where l̈ and s denote the second and first derivatives of l with respect to θθθ. The components of l̈

and s are given in the Appendix.
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5.3.2 The stochastic EM algorithm

Instead of the EM algorithm described above, the stochastic EM algorithm was used in

Carnegie et al. [14], we think primarily due to its ease of implementation for practitioners as well

as intuitive appeal. It is similar to a Monte Carlo EM (MCEM) but in the E-steps only a single U

is drawn from the conditional distribution of U given the observed data, so that in the M-steps the

parameters are updated using that single sample of U as if it were observed. A typical MCEM

would otherwise draw many samples of U in order to approximate the conditional expectations in

the E-steps. The E- and M-steps are as described above for the models that we consider in this

paper, for both survival and competing risks outcomes.

In order to obtain a more accurate estimate, the whole procedure is repeated K times,

and the final estimate of the treatment effect on the survival outcome is τ̂ =∑
K
k=1 τ̂k/K, with the

corresponding standard error

σ̂τ̂ =

¿
Á
ÁÀ 1

K

K
∑
k=1

σ̂2
τ̂k
+(1+

1
K
)

1
K−1

K
∑
k=1

(τ̂k− τ̂)2, (5.11)

where σ̂2
τ̂k

is the estimated variance of τ̂k pretending that the singly sampled Uk is observed.

For competing risks we have similarly for type j event τ̂ j = ∑
K
k=1 τ̂ jk/K, and the corresponding

standard error is obtained using (5.11) with τ̂k replaced by τ̂ jk and τ̂ replaced by τ̂ j.

Nielsen et al. [45] studied the asymptotic behavior of the stochastic EM algorithm, and

showed that under certain assumptions it is root-n consistent but not fully efficient. We show

in our data analysis that it can be naturally adapted to the IPW approach and obtain inferential

results in sensitivity analysis.

The implementation of R scripts used in the simulation and data analysis below are

available on Github: https://github.com/Rong0707/sensitivity survival
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5.4 Simulations

We conducted simulation studies to investigate the performance of the EM as well as

the stochastic EM algorithms, as compared to the estimation of the treatment effect using the

true confounder U with the given sensitivity parameters. For both survival and competing risks

outcomes, we set sample size n = 1,000, U ∼ Bernoulli(0.5), and two independent covariates

X1 ∼N(0,1), X2 ∼N(1,1) with βββzzz = (0.25,−0.25)′ in (5.2). The number of EM or stochastic EM

steps was set to 20 (see Figure 5.1 and related discussion below), and true sensitivity parameter

values were used in fitting the models. The final estimates from the stochastic EM were obtained

by averaging over K = 40 estimates to reduce the variability. For each case we show the results of

200 simulation runs.

5.4.1 Survival outcome

To simulate survival outcomes under model (5.1), we set λ0(t) = 1, βββ = (0.5,−1)′ and

τ = 1. In addition, we set censoring times C ∼ Uniform(1, 2) which led to between 25∼60%

censoring, depending on the combinations of the parameter values.

We run simulations over each combination of ζz ∈ {0,1,2} and ζ ∈ {−2,−1,0,1,2}. The

results of the simulation are reported in Table 5.1 and Supplement Figure A.1. From the table

and figure it is clear that ignoring U led to bias in the estimated treatment effect as long as ζ ≠ 0;

this bias also increases with the magnitude of ζ as well as the magnitude of ζz. On the other

hand, both the stochastic EM and the EM algorithm gave good estimates of the treatment effect

compared with the estimates using the true U’s. Closer comparison of the results in Table 5.1

shows that the EM algorithm gave more accurate estimates than the stochastic EM algorithm,

both in terms of generally less bias and smaller variances.

92



Table 5.1: Estimated treatment effect (standard deviation) for the simulated survival data with
τ = 1.

Method ζz = 0 ζz = 1 ζz = 2

ζ = −2

True U 1.0171 (0.1244) 1.0108 (0.1171) 1.0033 (0.1166)
EM 1.0216 (0.1496) 1.0101 (0.1469) 1.0015 (0.1297)
Sto EM 1.0257 (0.1502) 1.0132 (0.1468) 1.0066 (0.1296)
No U 0.7873 (0.1219) 0.1512 (0.1257) -0.2052 (0.1141)

ζ = −1

True U 1.0206 (0.1015) 1.0144 (0.1067) 1.0129 (0.1071)
EM 1.0203 (0.1153) 1.0121 (0.1173) 1.0104 (0.1103)
Sto EM 1.0220 (0.1157) 1.0125 (0.1172) 1.0118 (0.1105)
No U 0.9310 (0.1068) 0.5664 (0.1109) 0.3524 (0.1068)

ζ = 0

True U 1.0159 (0.0868) 1.0124 (0.0996) 1.0095 (0.1035)
EM 1.0159 (0.0868) 1.0124 (0.0996) 1.0095 (0.1035)
Sto EM 1.0159 (0.0868) 1.0124 (0.0996) 1.0095 (0.1035)
No U 1.0159 (0.0868) 1.0124 (0.0996) 1.0095 (0.1035)

ζ = 1

True U 1.0148 (0.0797) 1.0134 (0.0896) 1.0110 (0.1004)
EM 1.0188 (0.0891) 1.0167 (0.0977) 1.0139 (0.1072)
Sto EM 1.0195 (0.0894) 1.0183 (0.0977) 1.0164 (0.1068)
No U 0.9059 (0.0802) 1.2601 (0.0878) 1.4993 (0.0971)

ζ = 2

True U 1.0133 (0.0768) 1.0164 (0.0875) 1.0154 (0.1031)
EM 1.0226 (0.1047) 1.0260 (0.1122) 1.0263 (0.1218)
Sto EM 1.0225 (0.1052) 1.0271 (0.1127) 1.0303 (0.1228)
No U 0.6946 (0.0783) 1.2618 (0.0835) 1.6734 (0.0942)
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5.4.2 Competing risks outcomes

To simulate competing risks outcomes, we followed the approach designed in Beyersmann

et al. [7]. We assumed that m = 2, the baseline hazard functions for type 1 and type 2 failures

to be λ10(t) = λ20(t) = 1, and βββ111 = (0.5,−1)′, τ1 = 1, βββ222 = (−0.5,0.2)′, τ2 = −1 in model (5.5).

We then simulated the survival times with all-causes hazard λ = λ1 +λ2, and the cause J was

generated from Bernoulli trials with P(J = 1∣Z,XXX ,U) = λ1/(λ1+λ2). We also set censoring times

C ∼ Uniform(0.3, 0.7).

Similarly as the survival model, we first ran simulations over each combination of ζz ∈

{0,1,2} and ζ1 = ζ2 ∈ {−2,−1,0,1,2}. This gave about 20∼60% censoring, depending on the

combinations of the parameter values, and about equal numbers of type 1 and type 2 events.

In a second scenario, we fixed ζ1 = 1 and ζ2 ∈ {−2,−1,0,1,2} as before, which gave about

20∼40% censoring, and type 1/2 event rates between 40/20% and 30/50%, again depending on

the combinations of the parameter values. The results of experiments are reported in Table 5.2 -

Table 5.5 and Figure A.2 - Figure A.5. All results show that for each type of failure, the estimated

treatment effect by either the stochastic EM or the EM recovered the true treatment effect quite

well, while ignoring U induced a substantial bias. In particular, Table 5.4 and Supplement

Figure A.4. show that varying ζ2 had a noticeable impact on the estimation of τ1, i.e. unobserved

confounding for type 2 failure had a noticeable impact on the estimation of the treatment effect

on type 1 failure.

Finally, we take a closer look at the EM and the stochastic EM algorithm in a single run.

Figure 5.1 plots the values of the corresponding τ̂ j’s during the first 50 EM or stochastic EM steps.

Such plots are often used to examine the behavior and convergence of EM type algorithms for a

given data set. It is seen that the EM sequence displays a much smoother line than the stochastic

EM sequence; and even at convergence, the stochastic EM sequence has quite some fluctuation

compared to the EM sequence.
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Table 5.2: Treatment effect estimate (standard deviation) on type 1 failures for the simulated
competing risks data with τ1 = 1.

method ζz = 0 ζz = 1 ζz = 2

ζ1 = ζ2 = −2

True U 1.0150 (0.1428) 1.0293 (0.1603) 1.0305 (0.1644)
EM 1.0154 (0.1767) 1.0357 (0.1801) 1.0354 (0.1831)
StoEM 1.0180 (0.1788) 1.0390 (0.1825) 1.0428 (0.1844)
No U 0.9312 (0.1583) 0.3192 (0.1670) -0.0215 (0.1678)

ζ1 = ζ2 = −1

True U 1.0141 (0.1327) 1.0185 (0.1542) 1.0269 (0.1613)
EM 1.0141 (0.1390) 1.0186 (0.1585) 1.0280 (0.1677)
StoEM 1.0150 (0.1388) 1.0191 (0.1584) 1.0304 (0.1675)
No U 0.9817 (0.1339) 0.6243 (0.1536) 0.4260 (0.1635)

ζ1 = ζ2 = 0

True U 1.0153 (0.1212) 1.0258 (0.1329) 1.0317 (0.1593)
EM 1.0153 (0.1212) 1.0258 (0.1329) 1.0317 (0.1593)
StoEM 1.0153 (0.1212) 1.0258 (0.1329) 1.0317 (0.1593)
No U 1.0153 (0.1212) 1.0258 (0.1329) 1.0317 (0.1593)

ζ1 = ζ2 = 1

True U 1.0078 (0.1115) 1.0276 (0.1259) 1.0348 (0.1524)
EM 1.0088 (0.1226) 1.0251 (0.1415) 1.0320 (0.1549)
StoEM 1.0095 (0.1230) 1.0272 (0.1422) 1.0346 (0.1549)
No U 0.9745 (0.1130) 1.3518 (0.1319) 1.5750 (0.1470)

ζ1 = ζ2 = 2

True U 1.0064 (0.1094) 1.0263 (0.1238) 1.0345 (0.1570)
EM 1.0022 (0.1370) 1.0174 (0.1600) 1.0266 (0.1645)
StoEM 1.0031 (0.1369) 1.0230 (0.1615) 1.0345 (0.1652)
No U 0.9238 (0.1141) 1.5064 (0.1300) 1.8424 (0.1411)
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Table 5.3: Treatment effect estimate (standard deviation) on type 2 failures for the simulated
competing risks data with τ2 = −1.

method ζz = 0 ζz = 1 ζz = 2

ζ1 = ζ2 = −2

true U -1.0170 (0.1974) -0.9969 (0.1829) -0.9994 (0.1707)
EM -1.0170 (0.2143) -0.9892 (0.1837) -0.9937 (0.1826)
stoEM -1.0176 (0.2163) -0.9892 (0.1845) -0.9911 (0.1822)
no U -0.9893 (0.2002) -1.6139 (0.1713) -2.0409 (0.1709)

ζ1 = ζ2 = −1

true U -1.0236 (0.1702) -0.9996 (0.1484) -0.9964 (0.1469)
EM -1.0231 (0.1772) -0.9945 (0.1518) -0.9940 (0.1517)
stoEM -1.0233 (0.1774) -0.9951 (0.1518) -0.9936 (0.1515)
no U -1.0109 (0.1728) -1.3505 (0.1482) -1.5975 (0.1485)

ζ1 = ζ2 = 0

true U -1.0152 (0.1472) -0.9851 (0.1189) -0.9797 (0.1238)
EM -1.0152 (0.1472) -0.9851 (0.1189) -0.9797 (0.1238)
stoEM -1.0152 (0.1472) -0.9851 (0.1189) -0.9797 (0.1238)
no U -1.0152 (0.1472) -0.9851 (0.1189) -0.9797 (0.1238)

ζ1 = ζ2 = 1

true U -1.0088 (0.1316) -0.9886 (0.1019) -0.9836 (0.1097)
EM -1.0108 (0.1423) -0.9950 (0.1109) -0.9887 (0.1115)
stoEM -1.0110 (0.1434) -0.9953 (0.1117) -0.9883 (0.1114)
no U -0.9776 (0.1328) -0.5956 (0.1039) -0.3335 (0.1074)

ζ1 = ζ2 = 2

true U -1.0069 (0.1281) -0.9950 (0.0976) -0.9910 (0.1069)
EM -1.0180 (0.1647) -1.0093 (0.1322) -1.0029 (0.1275)
stoEM -1.0184 (0.1662) -1.0070 (0.1338) -0.9983 (0.1282)
no U -0.9075 (0.1313) -0.2871 (0.1038) 0.1522 (0.1050)
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Table 5.4: Treatment effect estimate (standard deviation) on type 1 failures for the simulated
competing risks data with τ1 = 1 and ζ1 = 1 fixed.

method ζz = 0 ζz = 1 ζz = 2

ζ2 = −2

true U 0.9971 (0.1011) 1.0187 (0.1163) 1.0271 (0.1505)
EM 0.9963 (0.1093) 1.0174 (0.1320) 1.0263 (0.1545)
stoEM 0.9971 (0.1101) 1.0189 (0.1320) 1.0282 (0.1549)
no U 0.8893 (0.0998) 1.2872 (0.1214) 1.5816 (0.1468)

ζ2 = −1

true U 1.0020 (0.1008) 1.0212 (0.1227) 1.0292 (0.1508)
EM 1.0028 (0.1080) 1.0203 (0.1369) 1.0280 (0.1544)
stoEM 1.0034 (0.1091) 1.0214 (0.1368) 1.0299 (0.1548)
no U 0.9023 (0.0992) 1.2980 (0.1264) 1.5844 (0.1465)

ζ2 = 0

true U 1.0033 (0.0966) 1.0271 (0.1183) 1.0326 (0.1481)
EM 1.0040 (0.1045) 1.0258 (0.1338) 1.0305 (0.1507)
stoEM 1.0050 (0.1045) 1.0275 (0.1338) 1.0325 (0.1510)
no U 0.9243 (0.0965) 1.3220 (0.1244) 1.5863 (0.1431)

ζ2 = 1

true U 1.0078 (0.1115) 1.0276 (0.1259) 1.0348 (0.1524)
EM 1.0088 (0.1226) 1.0251 (0.1415) 1.0320 (0.1549)
stoEM 1.0095 (0.1230) 1.0272 (0.1422) 1.0346 (0.1549)
no U 0.9745 (0.1130) 1.3518 (0.1319) 1.5750 (0.1470)

ζ2 = 2

true U 1.0148 (0.1231) 1.0245 (0.1402) 1.0301 (0.1592)
EM 1.0135 (0.1353) 1.0195 (0.1506) 1.0255 (0.1609)
stoEM 1.0146 (0.1356) 1.0223 (0.1511) 1.0295 (0.1615)
no U 1.0452 (0.1271) 1.3591 (0.1415) 1.5158 (0.1520)
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Table 5.5: Treatment effect estimate (standard deviation) on type 2 failures for the simulated
competing risks data with τ2 = −1 and ζ1 = 1 fixed.

method ζz = 0 ζz = 1 ζz = 2

ζ2 = −2

true U -1.0113 (0.1926) -1.0100 (0.1818) -1.0107 (0.1747)
EM -1.0118 (0.2107) -0.9985 (0.1886) -1.0031 (0.1832)
stoEM -1.0142 (0.2111) -1.0001 (0.1898) -1.0002 (0.1831)
no U -0.8715 (0.1996) -1.4541 (0.1786) -1.8513 (0.1766)

ζ2 = −1

true U -1.0224 (0.1803) -1.0066 (0.1556) -1.0082 (0.1537)
EM -1.0222 (0.1887) -0.9995 (0.1546) -1.0038 (0.1567)
stoEM -1.0227 (0.1888) -1.0001 (0.1549) -1.0035 (0.1568)
no U -0.9510 (0.1841) -1.2829 (0.1511) -1.5228 (0.1547)

ζ2 = 0

true U -1.0170 (0.1693) -1.0010 (0.1383) -0.9957 (0.1329)
EM -1.0170 (0.1693) -1.0010 (0.1383) -0.9957 (0.1329)
stoEM -1.0170 (0.1693) -1.0010 (0.1383) -0.9957 (0.1329)
no U -1.0170 (0.1693) -1.0010 (0.1383) -0.9957 (0.1329)

ζ2 = 1

true U -1.0088 (0.1316) -0.9886 (0.1019) -0.9836 (0.1097)
EM -1.0108 (0.1423) -0.9950 (0.1109) -0.9887 (0.1115)
stoEM -1.0110 (0.1434) -0.9953 (0.1117) -0.9883 (0.1114)
no U -0.9776 (0.1328) -0.5956 (0.1039) -0.3335 (0.1074)

ζ2 = 2

true U -1.0054 (0.1153) -0.9918 (0.0933) -0.9876 (0.0969)
EM -1.0143 (0.1513) -1.0037 (0.1272) -0.9976 (0.1175)
stoEM -1.0139 (0.1522) -1.0026 (0.1276) -0.9927 (0.1174)
no U -0.7921 (0.1136) -0.1505 (0.0981) 0.3065 (0.0977)
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Figure 5.1: Convergence of the EM (top) and stochastic EM (bottom) algorithms in a single
simulation run. The red horizontal lines indicate the true values of τ j’s, and ζ1 = ζ2 = ζz = 1. The
blue triangles correspond to the estimated treatment effects with true U , the green diamonds
correspond to the estimates without U , and the black lines show the values of τ̂ j during the first
50 steps. All sequences met the convergence criterion in 50 steps.
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5.5 Sensitivity analysis of the IBD data

5.5.1 Ulcerative colitis data

Ulcerative colitis (UC) is one type of IBD that occurs in the large intestine (colon) and

the rectum, which is characterized clinically by bloody diarrhea and urgency. We are interested in

comparing the effectiveness between Vedolizumab and TNF-antagonist therapy for UC patients.

The data were collected between May 2014 and December 2017 from the North American based

VICTORY consortium registry [44]. In brief, a total of 719 (453 treated with Vedolizumab,

266 with TNF-antagonist) UC patients with a median follow-up of 12 months were included.

We focus on the treatment effect of Vedolizumab (Z = 1) versus TNF-antagonist (Z = 0) on

clinical remission, which is defined as resolution of diarrhea, rectal bleeding and urgency. In

the Vedolizumab group, 187 patients had clinical remission and no one had surgery, while in

the TNF-antagonist group, 100 patients had clinical remission and 3 patients had surgery. Since

there were only 3 competing events of surgery, too few to fit any model, we had to simply treat

surgery as independent censoring and applied our approach under the survival models (i.e. without

competing risks) to approximate the treatment effect of Vedolizumab.

In Lukin et al. [40] the propensity score for each subject i, denoted PSi, was calculated

using the R package ‘twang’ [42] based on pre-treatment variables, including age, disease extent,

clinical disease severity, UC related hospitalization within the preceding 1-year, prior TNF-

antagonist exposure, baseline steroid dependency or refractoriness, concomitant steroid use, and

concomitant immunomodulator use.

To be consistent with Lukin et al. [40], here we consider a single covariate Xi =Φ−1(PSi)

in our models, as this quantity is more likely to be normally distributed than PSi. In the models

without unmeasured confounding (ζz = ζ = 0), the estimates were β̂z (SE) = 1.1002 (0.0926), β̂

(SE) = -0.3250 (0.0994), and τ̂ (SE) = 0.5756 (0.1423), where ‘SE’ stands for standard error. We

note that β̂z would have been exactly one if, instead of ‘twang’, probit regression had been used to
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fit the propensity score model. In addition, the estimated treatment effect τ̂ here was obtained by

regression adjustment, compared to the IPW estimate of Lukin et al. [40] (see sensitivity analysis

for IPW below also).

We then assume that there is an unmeasured confounder U ∼ Bernoulli(0.5). To determine

the range for the sensitivity parameters, we take into consideration the observed association

between a measured confounder and the treatment received or the outcome, in this case all less

than one in absolute value in terms of log odds ratio (OR) or log hazard ratio (HR). In addition,

a probit coefficient on a binary variable (U) is likely to lie in [−2,2] in practice as suggested

by Carnegie et al. [14]. Similarly under the Cox PH model, the log hazard ratio of ±2 is very

substantial for a binary variable. Therefore, we focused on ζz ∈ [−2,2] and ζ ∈ [−2,2].

The EM and stochastic EM algorithms were then applied as described in Section 5.3.

The estimates from the stochastic EM were obtained by averaging over K = 100 estimates. The

sensitivity analysis results are reported in Figure 5.2 panels (a) and (b) and Supplement Table A.1.

Figure 5.2 (a) and (b) show that over a wide range of sensitivity parameters, the EM and the

stochastic EM gave very similar results. Note that except for very small random fluctuation in

the stochastic EM results, the contours and curves are symmetric about the origin (ζz,ζ) = (0,0),

where the estimated τ̂ = 0.5756 is marked.

A main usage of these sensitivity plots is to identify the magnitude of the unmeasured

confounding, i.e. the sensitivity parameters (ζz,ζ), needed to alter a conclusion on the treatment

effect. This can be reflected in two ways: 1) to drive the estimated treatment effect to zero, or 2) to

lead to a non-significant estimated treatment effect in this case. From the plots we see that (ζz,ζ)

will need to be close to (1.5, 1) or (1, 1.5), for example, in order to drive the estimated treatment

effect to zero. To understand whether such a magnitude is likely in practice, we may again

compare them to the observed association between a measured confounder and the treatment or

the outcome, which were all less than one in absolute value in terms of log OR or log HR as we

noted earlier (the largest log HR being just under 0.6 in absolute value). We may also compare
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them to the fitted values of β̂z = 1.1002 and β̂ = −0.3250 above. We see that such a very strong

association between U and the survival outcome, in particular, seems unlikely.

In Figure 5.2 (a) and (b) any combination of (ζz,ζ) in the region between two red curves

in the upper right or lower left quadrant leads to a non-significant estimated treatment effect at

0.05 level two-sided. For example, (ζz,ζ) will need to be close to (1, 0.8), in order to drive the

estimate to be non-significant. Similar to the discussion above, such a magnitude of unmeasured

confounding seems unlikely in practice.

Finally, as IPW with PSi was the main statistical approach used in Lukin et al. [40]

to estimate the treatment effect, we also carried out sensitivity analysis for this approach. We

implemented this by combining the stochastic EM with IPW as follows. At convergence of

the algorithm we simulated Ui and estimated the propensity score P(Z = 1∣X ,U) by regressing

Zi on Xi = Φ−1(PSi) and the simulated Ui, i = 1, ...n. Stabilized weights were obtained and

further trimmed to be within (0.1, 10) if necessary. The IPW approach was then applied. The

final estimates were also obtained by averaging over K = 100 estimates, with the corresponding

standard errors obtained using (5.11) where σ̂2
τ̂k

was the sandwich variance estimator following

the IPW. The results are reported in Figure 5.2 (c) and Supplement Table A.1. It is seen that

unlike the regression adjustment results above, where the estimated treatment effect remained the

same as long as ζ = 0, here instead the estimated treatment effect remained the same as long as

ζz = 0. We also note much larger standard errors when ∣ζz∣ is large, perhaps understandable as the

treatment groups become more imbalanced. However, similar to the regression adjustment results

above, in order to drive the estimated treatment effect to zero, (ζz,ζ) will need to be close to (1.5,

1) or (1, 1.5). On the other hand, the estimated treatment effect may become non-significant at

0.05 level if (ζz,ζ) = (0.5,1) or (ζz,ζ) = (0.8,0.5).
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Figure 5.2: Sensitivity analysis results for UC patients data for outcome clinical remission. In
all plots, the blue contours show the sensitivity parameter values corresponding to the estimated
treatment effect τ̂, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂/σ̂τ̂∣ = 1.96.
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5.5.2 Crohn’s disease data

Crohn’s disease (CD) is another type of IBD that can cause inflammation along anywhere

of the digestive tract. We are again interested in comparing the effectiveness between Vedolizumab

and TNF-antagonist therapy for CD patients. The data were collected between May 2014 and

December 2017 from the North American based consortium registry [23]. A total of 1,242 patients

were included (655 treated with Vedolizumab, 587 with TNF-antagonist therapy). The primary

interest is the treatment effect of Vedolizumab (Z = 1) versus TNF-antagonist (Z = 0) on clinical

remission, which is defined as complete resolution of CD-related symptoms. In the Vedolizumab

group, 196 patients had clinical remission and 9 had surgery, while in the TNF-antagonist group,

255 patients had clinical remission and 18 patients had surgery. Supplement Figure A.6 shows the

cumulative incidence curves for time to clinical remission and time to surgery in these patients.

Due to the presence of competing events, we applied our approach under the competing risks

models to estimate the treatment effect of Vedolizumab.

In Bohm et al. [10], the propensity score for each subject i, denoted PSi, was calculated us-

ing the R package ‘twang’ [42] based on pre-treatment variables, including prior TNF-antagonist

exposure and number of prior TNF-antagonists exposed, disease extent, history of fistulizing dis-

ease, prior bowel surgery, disease phentyope, clinical disease severity, CD related hospitalization

within the preceding 1-year, baseline steroid dependency or refractoriness, concomitant steroid

use, or concomitant immunomodulator use.

To be consistent with Bohm et al. [10], we consider a single covariate Xi =Φ−1(PSi) in

our models. In the models without unmeasured confounding (ζz = ζ1 = ζ2 = 0), the estimate of βz

as defined in model (5.2) is β̂z (SE) = 1.0631 (0.0513), the estimates of β j ( j = 1,2) as defined in

model (5.5) are β̂1 (SE) = −0.1664 (0.0562) and β̂2 (SE) = −0.2601 (0.2401), and the estimates

of τ j ( j = 1,2) are τ̂1 (SE) = 0.0605 (0.1318) and τ̂2 (SE) = −0.0537 (0.5705).

We then assume an unmeasured confounder U ∼ Bernoulli(0.5). The range for the

sensitivity parameters is determined similarly as the UC data. We focus on ζz ∈ [−2,2] and
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ζ1 ∈ [−2,2], and ζ2 ∈ {−2,0,2}. The EM and stochastic EM algorithms were then applied as

described in Section 5.3. The estimates from the stochastic EM were obtained by averaging over

K = 100 estimates. The sensitivity analysis results are reported in Figure 5.3 panels (a) and (b)

and Supplement Table A.2 - Table A.4.

Note that by our algorithms, ζ2 affects τ̂1 only through the conditional probability of U as

shown in (5.3). In these data, as the number of surgery is relatively small compared to the number

of clinical remission, the effect of ζ2 on τ̂1 is subtle (Supplement Table A.2 - Table A.4.). This is,

of course, not necessarily true if the number of the competing risk events is comparable to the

number of events of interest. We further discuss the impact of the competing risk towards the end

of this analysis.

Figure 5.3 (a) and (b) show that when ζ2 = 0, over a wide range of (ζz,ζ1), the EM and

the stochastic EM gave similar results. In the plots, the blue contours show the values of (ζz,ζ1)

corresponding to the estimated treatment effect τ̂1, and the red curves correspond to where the

absolute value of the t−statistic ∣t ∣ = ∣τ̂1/σ̂τ̂1 ∣ = 1.96. Hence, any combination of (ζz,ζ1) in the

region surrounded by four red curves leads to a non-significant estimated treatment effect at level

0.05 two-sided. Except for very small random fluctuation in the stochastic EM results, the contours

and curves are symmetric about the origin (ζz,ζ1) = (0,0), where the estimated τ̂1 = 0.0605 is

marked. We see that in order to drive the estimated treatment effect to being significant, given

ζ2 = 0, (ζz,ζ1) will need to be close to (1,1) or (−0.8, 0.8), for example. Compared to β̂z = 1.0631

and β̂1 = −0.1664 above, such a strong association between U and the outcome seems unlikely in

practice.

As IPW with PSi was the main statistical approach used in Bohm et al. [10] to estimate

the treatment effect, we also carried out sensitivity analysis for this approach by combining the

stochastic EM with IPW as under the survival models. The final estimates were also obtained

by averaging over K = 100 estimates. The results are reported in Figure 5.3 (c) and Supplement

Table A.2 - Table A.4. Similar to the regression adjustment results, in order to drive the estimated

105



treatment effect to being significant, given ζ2 = 0, (ζz,ζ1) will need to be close to (1, 1) or (-1,

1.5), which seems unlikely in practice.

We emphasize that the interpretation of treatment effect in the presence of competing risks

needs caution in general. Here the comparison of the two treatment groups as reflected in the

effect τ1 for clinical remission is among those without surgery. In this case, the effect of treatment

on the competing risk, i.e. time to surgery, is not significant for a broad range of sensitivity

parameter values (data not shown). Therefore we are not in a situation where a treatment appears

to increase the risk of one type of events while reducing the risk of another type of events, which

could otherwise happen in practice as the probabilities from different types of events must sum

up to one as time goes to infinity.

Finally, as suggested by a reviewer, we explore the sensitivity analyses when the distri-

bution of U , instead of being symmetric, has π = 0.7 or 0.3. The results are in the Supplement

Figure A.7 - Figure A.10. It is seen that for the same values of ζ or ζz, the change in the estimated

treatment effect is not as large. A possible explanation is that the magnitude of unmeasured

confounding, as reflected in the variance of U , is reduced when π = 0.7 or 0.3. We also note that

in this case the contours are no longer symmetric about the origin (ζz,ζ1) = (0,0).

5.6 Discussion

In this paper we developed approaches to perform sensitivity analysis of the estimated

treatment effect with regard to unobserved confounding in observational studies with survival or

competing risks outcomes. The approaches we developed are based on models for survival or

competing risks outcomes, which allow simulating the unobserved confounder given the observed

data. The sensitivity parameters reflect the association between the unobserved confounder and

the outcomes, as well as the association between the unobserved confounder and the treatment

assignments. The interpretation of these sensitivity parameters is straightforward, which leads to
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Figure 5.3: Sensitivity analysis results for CD patients data for outcome clinical remission.
In all plots, the blue contours show the values of (ζz,ζ1) corresponding to the estimated
treatment effect τ̂1, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂1/σ̂τ̂1 ∣ = 1.96.
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relative ease in choosing plausible ranges for them. Simulation studies show that both the EM and

the stochastic EM algorithm are able to recover the true treatment effect if the correct sensitivity

parameter values are used. The EM algorithm is clearly optimal in theory [45], although the

stochastic EM allows easy incorporation of IPW approaches for estimating treatment effects,

which are commonly used in practice and as we have illustrated in our data analysis.

Lin et al. [37] developed an analytic approach with closed-form formulas for assessing the

sensitivity of regression results to unmeasured confounders in observational studies with either

binary or survival outcomes. Under certain conditions, they derived simple algebraic relationships

between the true treatment effect and the apparent treatment effect ignoring the unmeasured

confounder U . For survival data, they assumed that the event was rare or the effect of U on the

survival outcome was small. Their parameterization is different from ours here: they parametrized

the conditional distribution of U given the treatment Z, and assumed that U was independent of

the observed covariates X given Z; in contrast we have modeled the distribution of Z given X and

U . The Lin et al. approach does not apply to competing risks.

For the distribution of the unobserved confounder we used binary 0, 1 with probability

0.5 each, which were recommended and used throughout the book by Rosenbaum [49]. It is also

possible to incorporate normally distributed U , such as in Shen et al. [50] and Xu et al. [54], in

which case the probit link in model (5.2) allows closed-form marginal propensity scores given

X after integrating out U . The Q1 part of the EM algorithm would be similar to that under the

proportional hazards mixed-effects model (PHMM) and Monte Carlo approximation would be

needed in the E-steps [52].

Carnegie et al. [14] discussed the advantages and disadvantages of using parametric versus

nonparametric approaches in sensitivity analysis. Parametric approaches are typically needed in

order to simulate the unobserved confounder; in survival analysis however, the outcome models

are often semiparametric, allow flexibility in modeling in particular the nuisance parameters. On

the other hand, nonparametric bounds might be considered under minimal assumptions in place
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of sensitivity analysis [48]. However, such bounds can be very difficult to derive for complex

outcomes like what we consider here in the presence of right censoring, which is unlike in Shen

et al. [50] where it is possible to derive these bounds for binary or continuous outcomes without

censoring. Also evident in Shen et al. [50] is that parametric settings are often needed in order to

aid in the interpretation of the sensitivity parameters in the corresponding nonparametric settings,

and extensive simulations have to be conducted in order to determine sensible ranges for these

sensitivity parameters [54].

5.7 Acknowledgement

This work was partially supported by National Institutes of Health, Grant UL1TR001442

of CTSA funding. Chapter 5, in full, is a version of the paper “Sensitivity Analysis of Treatment

Effect to Unmeasured Confounding in Observational Studies with Survival and Competing Risks

Outcomes”, Huang, Rong; Xu, Ronghui; Dulai, Parambir S. The manuscript has been submitted

for publication in a major statistical journal. The dissertation author was the primary investigator

and author of this material.

5.8 Appendix

In the following we write out the components of l̈ and s for competing risks with j =1, ...,m.

For a single survival outcome without competing risks, we should simply take m = 1 and the

corresponding parameters are the same as without the subscript j.
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The components of s are:

∂l
∂βββ jjj

=
n
∑
i=1

xxxiii{δi j −Λ j0(ti)exp(τ jzi+xxx′iiiβββ jjj +ζ jui)}

∂l
∂τ j

=
n
∑
i=1

zi{δi j −Λ j0(ti)exp(τ jzi+xxx′iiiβββ jjj +ζ jui)}

∂l
∂λ j0(ti)

=
1

λ j0(ti)
− ∑

tk≥ti
exp(τ jzk+xxx′kkkβββ jjj +ζ juk)

∂l
∂βββzzz

=
n
∑
i=1

{zi
φ(xxx′iiiβββzzz+ζzui)

Φ(xxx′iiiβββzzz+ζzui)
−(1− zi)

φ(xxx′iiiβββzzz+ζzui)

1−Φ(xxx′iiiβββzzz+ζzui)
}xxxiii

for j = 1,⋯,m. For the second derivatives,

∂2l

∂βββ
2
jjj

= −
n
∑
i=1

xxx⊗2
iii Λ j0(ti)exp(τ jzi+xxx′iiiβββ jjj +ζ jui)

∂2l
∂τ2

j
= −

n
∑
i=1

ziΛ j0(ti)exp(τ jzi+xxx′iiiβββ jjj +ζ jui)

∂2l
∂λ j0(ti)2 = −

1
λ j0(ti)2

∂2l
∂βββ jjj∂τ j

= −
n
∑
i=1

zixxxiiiΛ j0(ti)exp(τ jzi+xxx′iiiβββ jjj +ζ jui)

∂2l
∂βββ jjj∂λ j0(ti)

= −∑
tk≥ti

xxxkkk exp(τ jzk+xxx′kkkβββ jjj +ζ juk)

∂2l
∂τ j∂λ j0(ti)

= −∑
tk≥ti

zk exp(τ jzk+xxx′kkkβββ jjj +ζ juk)

∂2l

∂βββ
2
zzz

= −
n
∑
i=1

φ(xxx′iiiβββzzz+ζzui){zi
φ(xxx′iiiβββzzz+ζzui)+(xxx′iiiβββzzz+ζzui)Φ(xxx′iiiβββzzz+ζzui)

Φ(xxx′iiiβββzzz+ζzui)2

+(1− zi)
φ(xxx′iiiβββzzz+ζzui)−(xxx′iiiβββzzz+ζzui)(1−Φ(xxx′iiiβββzzz+ζzui))

(1−Φ(xxx′iiiβββzzz+ζzui))2 }xxx⊗2
iii

where aaa⊗2 = aaaaaa′ for a vector aaa, φ is the probability density function (pdf) of the standard normal

distribution, and all other off-diagonal elements are zeros. The computation of the first term in

(5.10) is similar to the computation in the E-step for different functions h(ui). To calculate the

second term in (5.10), we sample U from Bernoulli(π̃) for 1,000 times after convergence of the
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EM, and take the average of s(θθθ;y,z,u)s(θθθ;y,z,u)′ over the sampled U’s.
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Figure A.1: Distributions of the estimated treatment effect (τ̂) for the simulated survival data.
ζz ∈ {0,1,2} on the horizontal label and ζ ∈ {−2,−1,0,1,2} on the vertical label. Each boxplot
displays τ̂ from 200 simulations.

113



●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●●

●
●●

●
●

●
●

●
●

●
●

●
●●

●● ●● ●● ●●

● ●

●

●

●
●
●
●

●●●● ●
●●● ●●

●
●●●

●
●●

●
●●

●●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●●

0 1 2

−
2

−
1

0
1

2

no
 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U

−0.5
0.0
0.5
1.0
1.5
2.0

−0.5
0.0
0.5
1.0
1.5
2.0

−0.5
0.0
0.5
1.0
1.5
2.0

−0.5
0.0
0.5
1.0
1.5
2.0

−0.5
0.0
0.5
1.0
1.5
2.0

Figure A.2: Distributions of the estimated treatment effect on type 1 failures for the simulated
competing risks data. ζz ∈ {0,1,2} on the horizontal label and ζ1 = ζ2 ∈ {−2,−1,0,1,2} on the
vertical label. Each boxplot displays τ̂1 from 200 simulation runs.

114



●
●

●
●

●

●
●

● ●

● ● ●
●

●

●

● ● ●

●

●

● ● ●

●● ●● ●● ●●

●

● ●

●

●●

●●●

● ●

●

●●

●

●
●

●●
●

●
●

●●
●

●

●

●
●

●

● ● ●

●● ●● ●● ●●

●

●●

● ●

0 1 2

−
2

−
1

0
1

2

no
 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U

−2

−1

0

−2

−1

0

−2

−1

0

−2

−1

0

−2

−1

0

Figure A.3: Distributions of the estimated treatment effect on type 2 failures for the simulated
competing risks data. ζz ∈ {0,1,2} on the horizontal label and ζ1 = ζ2 ∈ {−2,−1,0,1,2} on the
vertical label. Each boxplot displays τ̂2 from 200 simulations.

115



●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●
●
●
●

●

● ● ●

●

●
●

● ● ●
●●

●

● ●
●

●

●

● ● ●●

● ●

●

●●

●

●●

●
●

●

●
●
●

●

●
●●

●●

●

●●

●

●●

●

●●●

●

●●●

●●
●

●●
●

●●

●●●

●●●● ●●●● ●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

● ●

0 1 2

−
2

−
1

0
1

2

no
 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Figure A.4: Distributions of the estimated treatment effect on type 1 failures for the simulated
competing risks data. ζz ∈ {0,1,2} on the horizontal label, ζ1 = 1 and ζ2 ∈ {−2,−1,0,1,2} on
the vertical label. Each boxplot displays τ̂1 from 200 simulation runs.

116



●

●●

●

●●

●

●●

●

●

●●
●● ●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

● ● ●

●

●

●

●

●

● ●

●

● ●
●

●●
●● ●●

●● ●●
●● ●●

●●

●

0 1 2

−
2

−
1

0
1

2

no
 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U
no

 U

sto
 E

M
 U

EM
 U

tru
e 

U

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−2.0
−1.5
−1.0
−0.5

0.0
0.5

Figure A.5: Distributions of the estimated treatment effect on type 2 failures for the simulated
competing risks data. ζz ∈ {0,1,2} on the horizontal label, ζ1 = 1 and ζ2 ∈ {−2,−1,0,1,2} on
the vertical label. Each boxplot displays τ̂2 from 200 simulations.

117



Ta
bl

e
A

.1
:

Se
ns

iti
vi

ty
an

al
ys

is
re

su
lts

on
th

e
IB

D
fo

r
U

C
pa

tie
nt

s
da

ta
fo

r
ou

tc
om

e
cl

in
ic

al
re

m
is

si
on

.

ζ
m

et
ho

d
ζ

z
=

0
ζ

z
=

0.
5

ζ
z
=

1
ζ

z
=

1.
5

ζ
z
=

2

-2
E

M
0.

58
33

(0
.1

82
5)

1.
01

76
(0

.1
78

0)
1.

39
87

(0
.1

73
1)

1.
69

22
(0

.1
69

0)
1.

90
05

(0
.1

67
7)

st
oE

M
0.

59
48

(0
.1

71
8)

1.
02

38
(0

.1
70

2)
1.

40
00

(0
.1

63
7)

1.
71

16
(0

.1
65

8)
1.

90
64

(0
.1

62
9)

IP
W

0.
52

41
(0

.1
56

3)
0.

84
06

(0
.1

69
1)

1.
05

89
(0

.1
86

6)
1.

16
15

(0
.2

01
9)

1.
21

21
(0

.2
12

5)

-1
.5

E
M

0.
59

54
(0

.1
64

0)
0.

91
19

(0
.1

62
6)

1.
18

86
(0

.1
61

6)
1.

40
33

(0
.1

58
2)

1.
55

70
(0

.1
56

0)
st

oE
M

0.
58

66
(0

.1
60

1)
0.

91
48

(0
.1

60
5)

1.
19

17
(0

.1
57

0)
1.

40
16

(0
.1

55
8)

1.
56

72
(0

.1
53

5)
IP

W
0.

52
41

(0
.1

56
3)

0.
77

63
(0

.1
70

3)
0.

97
01

(0
.1

98
1)

1.
07

16
(0

.2
07

2)
1.

09
61

(0
.2

18
3)

-1
E

M
0.

58
95

(0
.1

52
3)

0.
79

50
(0

.1
52

0)
0.

97
59

(0
.1

50
6)

1.
11

85
(0

.1
49

5)
1.

22
17

(0
.1

48
5)

st
oE

M
0.

58
94

(0
.1

53
2)

0.
79

64
(0

.1
50

7)
0.

96
91

(0
.1

48
8)

1.
11

97
(0

.1
49

1)
1.

22
12

(0
.1

47
3)

IP
W

0.
52

41
(0

.1
56

3)
0.

71
26

(0
.1

70
4)

0.
83

27
(0

.1
98

5)
0.

88
35

(0
.2

20
7)

0.
92

21
(0

.2
38

7)

-0
.5

E
M

0.
57

98
(0

.1
44

9)
0.

68
11

(0
.1

44
8)

0.
77

11
(0

.1
44

5)
0.

84
31

(0
.1

44
2)

0.
89

56
(0

.1
44

0)
st

oE
M

0.
57

99
(0

.1
45

0)
0.

67
82

(0
.1

45
1)

0.
77

32
(0

.1
44

3)
0.

84
16

(0
.1

44
4)

0.
89

87
(0

.1
43

9)
IP

W
0.

52
41

(0
.1

56
3)

0.
62

10
(0

.1
69

3)
0.

68
62

(0
.2

07
9)

0.
72

87
(0

.2
31

5)
0.

72
46

(0
.2

30
9)

0
E

M
0.

57
56

(0
.1

42
4)

0.
57

56
(0

.1
42

4)
0.

57
56

(0
.1

42
4)

0.
57

56
(0

.1
42

4)
0.

57
56

(0
.1

42
4)

st
oE

M
0.

57
56

(0
.1

42
3)

0.
57

56
(0

.1
42

3)
0.

57
56

(0
.1

42
3)

0.
57

56
(0

.1
42

3)
0.

57
56

(0
.1

42
3)

IP
W

0.
52

41
(0

.1
56

3)
0.

52
16

(0
.1

70
0)

0.
49

79
(0

.2
08

8)
0.

48
47

(0
.2

39
1)

0.
47

30
(0

.2
50

6)

0.
5

E
M

0.
57

98
(0

.1
44

9)
0.

47
77

(0
.1

45
1)

0.
38

52
(0

.1
44

5)
0.

31
05

(0
.1

44
1)

0.
25

61
(0

.1
43

6)
st

oE
M

0.
58

29
(0

.1
44

7)
0.

47
74

(0
.1

44
3)

0.
38

75
(0

.1
44

8)
0.

31
35

(0
.1

44
2)

0.
25

73
(0

.1
43

8)
IP

W
0.

52
41

(0
.1

56
3)

0.
41

96
(0

.1
70

1)
0.

31
32

(0
.2

01
2)

0.
25

40
(0

.2
24

3)
0.

24
08

(0
.2

47
0)

1
E

M
0.

58
95

(0
.1

52
4)

0.
38

11
(0

.1
51

6)
0.

19
23

(0
.1

50
8)

0.
04

00
(0

.1
49

0)
-0

.0
70

1
(0

.1
47

7)
st

oE
M

0.
58

88
(0

.1
49

3)
0.

38
50

(0
.1

50
2)

0.
18

44
(0

.1
49

8)
0.

04
42

(0
.1

50
6)

-0
.0

68
8

(0
.1

46
8)

IP
W

0.
52

41
(0

.1
56

3)
0.

31
56

(0
.1

67
5)

0.
12

31
(0

.1
97

1)
-0

.0
15

2
(0

.2
26

4)
-0

.0
44

3
(0

.2
48

6)

1.
5

E
M

0.
59

54
(0

.1
64

1)
0.

27
67

(0
.1

62
9)

-0
.0

10
5

(0
.1

58
1)

-0
.2

41
9

(0
.1

58
7)

-0
.4

08
4

(0
.1

54
1)

st
oE

M
0.

59
01

(0
.1

61
8)

0.
26

99
(0

.1
55

1)
-1

e-
04

(0
.1

57
4)

-0
.2

46
9

(0
.1

54
9)

-0
.4

04
0

(0
.1

52
8)

IP
W

0.
52

41
(0

.1
56

3)
0.

22
80

(0
.1

65
2)

-0
.0

64
9

(0
.1

92
4)

-0
.2

37
1

(0
.2

21
3)

-0
.2

93
2

(0
.2

34
0)

2
E

M
0.

58
33

(0
.1

78
4)

0.
15

60
(0

.1
75

6)
-0

.2
25

0
(0

.1
74

3)
-0

.5
36

5
(0

.1
72

0)
-0

.7
61

1
(0

.1
61

5)
st

oE
M

0.
59

27
(0

.1
67

7)
0.

14
59

(0
.1

63
1)

-0
.2

26
8

(0
.1

68
5)

-0
.5

52
4

(0
.1

65
0)

-0
.7

51
9

(0
.1

61
4)

IP
W

0.
52

41
(0

.1
56

3)
0.

14
34

(0
.1

61
0)

-0
.1

95
0

(0
.1

85
5)

-0
.3

99
6

(0
.2

07
0)

-0
.5

29
4

(0
.2

30
9)

118



Ta
bl

e
A

.2
:

Se
ns

iti
vi

ty
an

al
ys

is
re

su
lts

on
th

e
IB

D
fo

r
C

D
pa

tie
nt

s
da

ta
fo

r
ou

tc
om

e
cl

in
ic

al
re

m
is

si
on

w
ith

ζ
2
=−

2.

ζ
1

m
et

ho
d

ζ
z
=

0
ζ

z
=

0.
5

ζ
z
=

1
ζ

z
=

1.
5

ζ
z
=

2

-2
E

M
0.

02
29

(0
.1

53
5)

0.
42

37
(0

.1
54

6)
0.

80
01

(0
.1

58
8)

1.
09

66
(0

.1
55

1)
1.

29
68

(0
.1

50
9)

st
oE

M
0.

03
36

(0
.1

48
6)

0.
41

95
(0

.1
48

5)
0.

79
58

(0
.1

50
9)

1.
10

31
(0

.1
49

0)
1.

29
63

(0
.1

48
0)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
23

09
(0

.1
50

1)
0.

40
44

(0
.1

54
)

0.
46

51
(0

.1
58

6)
0.

45
16

(0
.1

64
2)

-1
.5

E
M

0.
04

03
(0

.1
47

1)
0.

35
05

(0
.1

46
1)

0.
62

94
(0

.1
46

3)
0.

84
22

(0
.1

43
8)

0.
98

54
(0

.1
43

3)
st

oE
M

0.
03

94
(0

.1
42

1)
0.

34
88

(0
.1

44
1)

0.
62

79
(0

.1
43

3)
0.

84
75

(0
.1

42
2)

0.
98

56
(0

.1
42

7)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

16
44

(0
.1

50
6)

0.
31

40
(0

.1
54

7)
0.

36
62

(0
.1

67
1)

0.
34

98
(0

.1
66

6)

-1
E

M
0.

05
19

(0
.1

39
2)

0.
26

00
(0

.1
38

1)
0.

44
26

(0
.1

38
8)

0.
58

01
(0

.1
37

2)
0.

67
28

(0
.1

36
5)

st
oE

M
0.

05
31

(0
.1

37
1)

0.
25

66
(0

.1
37

9)
0.

43
97

(0
.1

37
5)

0.
58

35
(0

.1
36

5)
0.

67
30

(0
.1

36
3)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
10

68
(0

.1
53

0)
0.

19
91

(0
.1

59
1)

0.
23

24
(0

.1
63

4)
0.

19
95

(0
.1

67
7)

-0
.5

E
M

0.
05

83
(0

.1
33

7)
0.

16
19

(0
.1

33
6)

0.
25

16
(0

.1
33

5)
0.

31
88

(0
.1

33
3)

0.
36

41
(0

.1
33

0)
st

oE
M

0.
05

67
(0

.1
33

4)
0.

15
80

(0
.1

33
6)

0.
25

28
(0

.1
33

2)
0.

32
02

(0
.1

33
1)

0.
36

36
(0

.1
33

0)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

01
96

(0
.1

54
8)

0.
08

20
(0

.1
62

6)
0.

08
44

(0
.1

64
8)

0.
06

85
(0

.1
68

7)

0
E

M
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

st
oE

M
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.0

70
3

(0
.1

54
0)

-0
.0

75
1

(0
.1

60
9)

-0
.0

79
2

(0
.1

67
6)

-0
.0

74
4

(0
.1

71
9)

0.
5

E
M

0.
05

91
(0

.1
33

6)
-0

.0
43

2
(0

.1
33

5)
-0

.1
30

6
(0

.1
33

3)
-0

.1
95

7
(0

.1
33

2)
-0

.2
39

6
(0

.1
33

2)
st

oE
M

0.
05

61
(0

.1
33

1)
-0

.0
44

7
(0

.1
33

4)
-0

.1
33

8
(0

.1
33

2)
-0

.1
96

4
(0

.1
33

6)
-0

.2
40

7
(0

.1
33

2)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.1
58

4
(0

.1
55

6)
-0

.2
14

1
(0

.1
62

5)
-0

.2
31

4
(0

.1
77

2)
-0

.2
35

7
(0

.1
71

1)

1
E

M
0.

05
38

(0
.1

38
2)

-0
.1

48
9

(0
.1

38
5)

-0
.3

21
5

(0
.1

37
7)

-0
.4

50
4

(0
.1

37
3)

-0
.5

37
5

(0
.1

37
5)

st
oE

M
0.

05
84

(0
.1

37
6)

-0
.1

46
4

(0
.1

36
5)

-0
.3

16
0

(0
.1

37
1)

-0
.4

58
4

(0
.1

37
0)

-0
.5

37
3

(0
.1

36
4)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.2

45
3

(0
.1

52
9)

-0
.3

51
1

(0
.1

62
5)

-0
.3

90
8

(0
.1

61
2)

-0
.3

82
7

(0
.1

67
8)

1.
5

E
M

0.
04

32
(0

.1
45

3)
-0

.2
54

2
(0

.1
44

4)
-0

.5
08

4
(0

.1
43

9)
-0

.7
01

1
(0

.1
44

8)
-0

.8
32

2
(0

.1
43

0)
st

oE
M

0.
03

22
(0

.1
44

1)
-0

.2
53

0
(0

.1
42

1)
-0

.5
16

4
(0

.1
41

7)
-0

.6
96

3
(0

.1
41

4)
-0

.8
39

6
(0

.1
42

1)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.3
19

2
(0

.1
53

0)
-0

.4
69

1
(0

.1
58

4)
-0

.5
32

1
(0

.1
60

7)
-0

.5
28

9
(0

.1
65

2)

2
E

M
0.

02
68

(0
.1

52
7)

-0
.3

52
0

(0
.1

51
9)

-0
.6

80
6

(0
.1

53
5)

-0
.9

39
4

(0
.1

52
7)

-1
.1

18
1

(0
.1

50
8)

st
oE

M
0.

02
80

(0
.1

52
3)

-0
.3

61
2

(0
.1

48
1)

-0
.6

90
9

(0
.1

45
4)

-0
.9

49
6

(0
.1

48
1)

-1
.1

19
5

(0
.1

46
6)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.3

87
8

(0
.1

50
8)

-0
.5

72
9

(0
.1

53
2)

-0
.6

32
2

(0
.1

57
4)

-0
.6

32
2

(0
.1

60
1)

119



Ta
bl

e
A

.3
:

Se
ns

iti
vi

ty
an

al
ys

is
re

su
lts

on
th

e
IB

D
fo

r
C

D
pa

tie
nt

s
da

ta
fo

r
ou

tc
om

e
cl

in
ic

al
re

m
is

si
on

w
ith

ζ
2
=0

.

ζ
1

m
et

ho
d

ζ
z
=

0
ζ

z
=

0.
5

ζ
z
=

1
ζ

z
=

1.
5

ζ
z
=

2

-2
E

M
0.

02
63

(0
.1

53
8)

0.
42

27
(0

.1
54

4)
0.

79
52

(0
.1

56
8)

1.
09

20
(0

.1
55

1)
1.

29
41

(0
.1

51
3)

st
oE

M
0.

03
63

(0
.1

50
6)

0.
41

26
(0

.1
49

1)
0.

79
55

(0
.1

50
8)

1.
10

13
(0

.1
48

7)
1.

29
55

(0
.1

48
8)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
23

00
(0

.1
50

7)
0.

40
10

(0
.1

53
7)

0.
46

28
(0

.1
57

9)
0.

44
88

(0
.1

63
8)

-1
.5

E
M

0.
04

27
(0

.1
46

9)
0.

34
92

(0
.1

45
1)

0.
62

57
(0

.1
46

2)
0.

83
88

(0
.1

43
7)

0.
98

33
(0

.1
42

9)
st

oE
M

0.
04

06
(0

.1
42

0)
0.

34
94

(0
.1

41
9)

0.
62

60
(0

.1
42

2)
0.

84
78

(0
.1

42
7)

0.
98

40
(0

.1
42

6)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

16
41

(0
.1

50
7)

0.
30

87
(0

.1
54

3)
0.

36
22

(0
.1

69
5)

0.
34

83
(0

.1
66

1)

-1
E

M
0.

05
33

(0
.1

38
7)

0.
25

91
(0

.1
38

1)
0.

44
04

(0
.1

38
5)

0.
57

81
(0

.1
37

2)
0.

67
14

(0
.1

36
5)

st
oE

M
0.

05
34

(0
.1

36
8)

0.
25

58
(0

.1
38

0)
0.

43
82

(0
.1

37
1)

0.
58

01
(0

.1
36

6)
0.

67
17

(0
.1

36
0)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
10

78
(0

.1
52

6)
0.

19
56

(0
.1

60
2)

0.
22

41
(0

.1
63

0)
0.

19
65

(0
.1

67
8)

-0
.5

E
M

0.
05

88
(0

.1
33

6)
0.

16
15

(0
.1

33
5)

0.
25

07
(0

.1
33

3)
0.

31
80

(0
.1

33
2)

0.
36

36
(0

.1
33

0)
st

oE
M

0.
05

81
(0

.1
33

2)
0.

15
74

(0
.1

33
4)

0.
25

36
(0

.1
33

2)
0.

31
94

(0
.1

33
2)

0.
36

27
(0

.1
32

9)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

02
10

(0
.1

55
4)

0.
07

78
(0

.1
62

3)
0.

08
02

(0
.1

64
3)

0.
06

31
(0

.1
67

9)

0
E

M
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

st
oE

M
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.0

70
3

(0
.1

54
5)

-0
.0

78
2

(0
.1

61
2)

-0
.0

82
6

(0
.1

69
2)

-0
.0

80
7

(0
.1

71
8)

0.
5

E
M

0.
05

88
(0

.1
33

6)
-0

.0
42

9
(0

.1
33

5)
-0

.1
30

1
(0

.1
33

3)
-0

.1
95

2
(0

.1
33

3)
-0

.2
39

3
(0

.1
33

2)
st

oE
M

0.
05

61
(0

.1
33

0)
-0

.0
42

5
(0

.1
33

4)
-0

.1
32

7
(0

.1
33

4)
-0

.1
96

6
(0

.1
33

6)
-0

.2
40

0
(0

.1
33

2)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.1
59

7
(0

.1
55

9)
-0

.2
17

9
(0

.1
62

5)
-0

.2
41

1
(0

.1
76

9)
-0

.2
43

6
(0

.1
70

9)

1
E

M
0.

05
33

(0
.1

38
3)

-0
.1

48
5

(0
.1

38
6)

-0
.3

20
7

(0
.1

37
8)

-0
.4

49
8

(0
.1

37
5)

-0
.5

37
1

(0
.1

37
4)

st
oE

M
0.

05
76

(0
.1

37
7)

-0
.1

43
7

(0
.1

36
4)

-0
.3

15
0

(0
.1

37
0)

-0
.4

57
2

(0
.1

36
9)

-0
.5

37
9

(0
.1

36
3)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.2

45
5

(0
.1

53
0)

-0
.3

55
4

(0
.1

62
0)

-0
.3

97
6

(0
.1

61
8)

-0
.3

88
7

(0
.1

69
7)

1.
5

E
M

0.
04

27
(0

.1
45

3)
-0

.2
53

6
(0

.1
44

2)
-0

.5
07

5
(0

.1
44

0)
-0

.7
00

5
(0

.1
44

8)
-0

.8
31

9
(0

.1
43

0)
st

oE
M

0.
03

01
(0

.1
44

7)
-0

.2
55

5
(0

.1
42

0)
-0

.5
18

9
(0

.1
41

8)
-0

.6
97

4
(0

.1
41

8)
-0

.8
37

9
(0

.1
41

4)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.3
19

2
(0

.1
53

4)
-0

.4
75

1
(0

.1
59

9)
-0

.5
37

8
(0

.1
60

9)
-0

.5
35

1
(0

.1
64

6)

2
E

M
0.

02
63

(0
.1

52
7)

-0
.3

51
4

(0
.1

53
4)

-0
.6

80
0

(0
.1

54
0)

-0
.9

39
0

(0
.1

52
8)

-1
.1

17
9

(0
.1

50
8)

st
oE

M
0.

02
86

(0
.1

51
2)

-0
.3

63
4

(0
.1

48
2)

-0
.6

89
0

(0
.1

46
7)

-0
.9

51
2

(0
.1

48
4)

-1
.1

17
8

(0
.1

47
2)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.3

87
8

(0
.1

50
9)

-0
.5

79
1

(0
.1

54
1)

-0
.6

40
8

(0
.1

57
4)

-0
.6

41
0

(0
.1

59
7)

120



Ta
bl

e
A

.4
:

Se
ns

iti
vi

ty
an

al
ys

is
re

su
lts

on
th

e
IB

D
fo

r
C

D
pa

tie
nt

s
da

ta
fo

r
ou

tc
om

e
cl

in
ic

al
re

m
is

si
on

w
ith

ζ
2
=2

.

ζ
1

m
et

ho
d

ζ
z
=

0
ζ

z
=

0.
5

ζ
z
=

1
ζ

z
=

1.
5

ζ
z
=

2

-2
E

M
0.

02
68

(0
.1

53
3)

0.
42

54
(0

.1
54

5)
0.

80
06

(0
.1

56
8)

1.
09

91
(0

.1
54

7)
1.

30
10

(0
.1

50
9)

st
oE

M
0.

03
49

(0
.1

48
8)

0.
41

52
(0

.1
48

7)
0.

80
02

(0
.1

50
6)

1.
10

81
(0

.1
48

2)
1.

30
77

(0
.1

49
0)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
23

13
(0

.1
50

8)
0.

39
76

(0
.1

54
3)

0.
45

47
(0

.1
56

8)
0.

44
15

(0
.1

63
7)

-1
.5

E
M

0.
04

32
(0

.1
46

6)
0.

35
16

(0
.1

45
7)

0.
63

04
(0

.1
46

3)
0.

84
50

(0
.1

43
5)

0.
98

96
(0

.1
42

7)
st

oE
M

0.
04

23
(0

.1
41

6)
0.

35
51

(0
.1

42
5)

0.
63

04
(0

.1
42

5)
0.

85
37

(0
.1

42
6)

0.
99

07
(0

.1
42

8)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

16
81

(0
.1

51
2)

0.
30

73
(0

.1
55

1)
0.

35
36

(0
.1

68
6)

0.
33

72
(0

.1
64

9)

-1
E

M
0.

05
38

(0
.1

38
7)

0.
26

10
(0

.1
38

0)
0.

44
40

(0
.1

38
6)

0.
58

28
(0

.1
37

1)
0.

67
64

(0
.1

36
5)

st
oE

M
0.

05
37

(0
.1

36
6)

0.
25

74
(0

.1
38

0)
0.

44
11

(0
.1

37
3)

0.
58

55
(0

.1
36

9)
0.

67
80

(0
.1

35
8)

IP
W

-0
.0

56
3

(0
.1

49
6)

0.
11

06
(0

.1
53

4)
0.

19
43

(0
.1

59
6)

0.
21

51
(0

.1
62

6)
0.

18
71

(0
.1

66
2)

-0
.5

E
M

0.
05

91
(0

.1
33

5)
0.

16
26

(0
.1

33
4)

0.
25

28
(0

.1
33

3)
0.

32
07

(0
.1

33
2)

0.
36

64
(0

.1
33

0)
st

oE
M

0.
05

82
(0

.1
33

1)
0.

15
95

(0
.1

33
2)

0.
25

53
(0

.1
33

1)
0.

32
25

(0
.1

33
0)

0.
36

57
(0

.1
32

8)
IP

W
-0

.0
56

3
(0

.1
49

6)
0.

02
02

(0
.1

55
9)

0.
07

58
(0

.1
61

8)
0.

07
35

(0
.1

64
7)

0.
05

67
(0

.1
66

4)

0
E

M
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

0.
06

05
(0

.1
31

9)
0.

06
05

(0
.1

31
9)

st
oE

M
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

0.
06

05
(0

.1
31

8)
0.

06
05

(0
.1

31
8)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.0

68
8

(0
.1

54
6)

-0
.0

79
7

(0
.1

61
1)

-0
.0

90
7

(0
.1

69
1)

-0
.0

89
3

(0
.1

71
7)

0.
5

E
M

0.
05

83
(0

.1
33

7)
-0

.0
44

6
(0

.1
33

7)
-0

.1
32

8
(0

.1
33

3)
-0

.1
98

6
(0

.1
33

3)
-0

.2
42

7
(0

.1
33

2)
st

oE
M

0.
05

60
(0

.1
33

2)
-0

.0
43

5
(0

.1
33

3)
-0

.1
35

4
(0

.1
33

4)
-0

.2
00

5
(0

.1
33

5)
-0

.2
43

7
(0

.1
33

2)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.1
56

7
(0

.1
56

7)
-0

.2
18

6
(0

.1
61

6)
-0

.2
46

1
(0

.1
78

1)
-0

.2
51

1
(0

.1
70

0)

1
E

M
0.

05
19

(0
.1

38
4)

-0
.1

52
3

(0
.1

38
7)

-0
.3

27
0

(0
.1

38
1)

-0
.4

57
1

(0
.1

37
3)

-0
.5

44
0

(0
.1

37
5)

st
oE

M
0.

05
66

(0
.1

38
0)

-0
.1

49
1

(0
.1

36
3)

-0
.3

21
7

(0
.1

36
8)

-0
.4

64
9

(0
.1

37
2)

-0
.5

44
3

(0
.1

36
1)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.2

45
8

(0
.1

54
4)

-0
.3

56
1

(0
.1

62
5)

-0
.4

04
0

(0
.1

61
4)

-0
.3

97
2

(0
.1

70
8)

1.
5

E
M

0.
04

03
(0

.1
46

4)
-0

.2
60

0
(0

.1
45

1)
-0

.5
17

6
(0

.1
44

5)
-0

.7
11

5
(0

.1
44

1)
-0

.8
41

4
(0

.1
42

9)
st

oE
M

0.
02

96
(0

.1
45

4)
-0

.2
66

4
(0

.1
41

0)
-0

.5
27

0
(0

.1
42

3)
-0

.7
08

7
(0

.1
42

5)
-0

.8
46

6
(0

.1
40

8)
IP

W
-0

.0
56

3
(0

.1
49

6)
-0

.3
15

3
(0

.1
53

8)
-0

.4
77

1
(0

.1
59

9)
-0

.5
40

3
(0

.1
61

6)
-0

.5
39

5
(0

.1
63

4)

2
E

M
0.

02
29

(0
.1

53
1)

-0
.3

59
1

(0
.1

54
8)

-0
.6

92
9

(0
.1

54
0)

-0
.9

52
1

(0
.1

52
8)

-1
.1

27
9

(0
.1

50
7)

st
oE

M
0.

02
94

(0
.1

54
4)

-0
.3

70
7

(0
.1

47
1)

-0
.6

99
4

(0
.1

47
4)

-0
.9

55
8

(0
.1

46
6)

-1
.1

31
0

(0
.1

48
4)

IP
W

-0
.0

56
3

(0
.1

49
6)

-0
.3

86
9

(0
.1

51
1)

-0
.5

79
6

(0
.1

54
3)

-0
.6

43
1

(0
.1

58
5)

-0
.6

40
5

(0
.1

59
0)

121



0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Days

P
ro

ba
bi

lit
y

remission (Anti−TNF)
remission (Vedolizumab)
surgery (Anti−TNF)
surgery (Vedolizumab)

Figure A.6: Estimated cumulative incidence functions for time to clinical remission and time to
surgery in CD patients.
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Figure A.7: Sensitivity analysis results for UC patients data for outcome clinical remission. In
all plots, the blue contours show the sensitivity parameter values corresponding to the estimated
treatment effect τ̂, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂/σ̂τ̂∣ = 1.96. U ∼ Bernoulli(0.7).
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Figure A.8: Sensitivity analysis results for UC patients data for outcome clinical remission. In
all plots, the blue contours show the sensitivity parameter values corresponding to the estimated
treatment effect τ̂, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂/σ̂τ̂∣ = 1.96. U ∼ Bernoulli(0.3).
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Figure A.9: Sensitivity analysis results for CD patients data for outcome clinical remission. In
all plots, the blue contours show the sensitivity parameter values corresponding to the estimated
treatment effect τ̂1, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂1/σ̂τ̂1 ∣ = 1.96. U ∼ Bernoulli(0.7).
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Figure A.10: Sensitivity analysis results for CD patients data for outcome clinical remission. In
all plots, the blue contours show the sensitivity parameter values corresponding to the estimated
treatment effect τ̂1, and the red curves correspond to where the absolute value of the t-statistic
∣t ∣ = ∣τ̂1/σ̂τ̂1 ∣ = 1.96. U ∼ Bernoulli(0.3).
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