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CHAPTER 18
The gut microbiome in personalized precision
medicine
Mary M. Buschmann and Jack A. Gilbert

University of California, San Diego, CA, United States
Introduction

The humanmicrobiome is comprised of dynamic communities of microorganisms that colonize

the body and fulfill important molecular and metabolic functions that are vital for processes

including pathogen control, immune regulation, digestion, neurophysiology, and metabolite

production [1]. The term “microbiome” refers to the collection of bacteria, archaea, viruses, and

fungi that reside in distinct anatomical sites throughout the body [2]. In the past decade, our

understanding of microbial ecology has grown exponentially, creating new clarity on the

microbial composition, and signaling mechanisms that underpin both human health and

disease. The importance for the microbiome in promoting human health is emphasized when

the vast number of clinical conditions and diseases associated with imbalances in gut microbial

composition and downstream alterations are considered. These include obesity and metabolic

syndrome [3,4], inflammatory bowel disease [5], neurological disorders [6], cardiovascular

disease [7], and cancer [8].

Integrating clinical screening of human genomic information into patient care and diagnosis is

now routine to identify host polymorphisms associated with disease susceptibility and that

might affect treatment response. Fortunately, the next generation sequencing (NGS)

technologies that make these clinical tests possible have also become the standard microbiome

analysis tool. When NGS data are paired with data generated from mass spectrometry, clinical

outcomes, and highly novel bioinformatic approaches, the data bonanza can generate new

discovery and hypotheses linking structure to function [9,10].

This ever-increasing understanding of how the microbiome affects human health and disease

creates the strong argument that human microbiome data should be included in clinical

precision medicine strategies. Taking further this argument, microbiome “states” are highly

individual, even between coraised identical twins [11]. The general composition of the gut
ies.
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microbiome also remains relatively stable and unique for a person throughout their adult life.

Interestingly, less than 2% of microbiome diversity is explained by host genetics, suggesting

that microbiome data are unique from the host. The gut microbiome also creates a prime

opportunity for intervention, as the proportions of the microbial members can be influenced by

diet, lifestyle practices, and the environment, among other factors [12,13]. Thus, the human

microbiome may serve as a valuable complementary approach to traditional genomic medicine

to create novel opportunities for individualized treatments.

In the following sections we outline the current state of knowledge of the human gut

microbiome and highlight how precision medicine approaches can be applied.

Human biome in health and disease

Resident commensal microorganisms, including gram-positive Firmicutes, gram-negative

Bacteroidetes and Proteobacteria, and methanogenic archaea within the intestines [14], have

adapted complex ecological networks with the host and other microbes to acquire nutrients and

thrive within the intestinal environment. Host-microbe, microbe-microbe, and microbe

environment interactions determine the proportions and distributions of individual organisms

throughout the gastrointestinal tract, with nutrient dependencies predominately determining

niches of individual microbes. The gut microbiota provides numerous functions critical for

human health and homeostasis, including, but not limited to, biosynthesis of steroid hormones,

neurotransmitters, and vitamins, xenobiotic metabolism, cell proliferation, neurologic

signaling, vascularization, and regulation of host immune maturation [15]. An abundance of

data now suggests that gut microbial synthesis and secretion of metabolites may be equally,

if not more, important for the maintenance of health and disease prevention as the specific

composition of microbes, but the composition and their metabolic activity are relatively well

correlated [16,17]. Microbial metabolic products such as SCFAs, for example, promote

production of intestinal mucus, local immune activation, and antimicrobial peptides, which are

important for intestinal barrier integrity and robust immunity. Not surprisingly, metabolites are

also variable between individuals. For example, choline and short-chain fatty acids (SCFAs)

also seem to vary between individuals [18,19], which was supported by a study using

nontargeted shotgun mass spectrometry metaproteomics that showed microbiota composition

and function differed between individuals at the protein level [20].

That microbiomes vary between people is valuable if we are to use microbial features to predict

disease or health states. However, defining a health- or disease-associated microbiome has

proved difficult. This has been captured in the Anna Karenina hypothesis based on Tolstoy’s

books opening sentence “All happy families are alike; each unhappy family is unhappy in its

own way” [21]. While a microbiome, in equilibrium with the body, is associated with health,

a disease-associated microbiome can be different for each disorder. This has led to the term

"dysbiosis," wherein the microbiome and the body are no longer in equilibrium [22].
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Characterizing the elusive “health-” and “disease”-associated microbiome pattern may be

much harder than previous envisioned. This is in part due to the highly stochastic nature of

microbial community assembly, driven by a wide variety of external and internal influences

that can shape the accumulation of functional traits by the community. For example, pathogens

and commensal bacteria alike require particular ecological niches within the intestine to

colonize and proliferate, and as such, competitive mechanisms have evolved. Bacteriocins and

protein toxins produced by commensal bacteria, specifically, can inhibit growth or function of

the same or other bacterial species [23]. Other examples includemicrobial generation of SCFAs

to alter the local pH, which can inhibit growth and colonization of other species driving changes

in the ecological structure [24–26].

A brief outline of gut microbiome-mediated disorders are summarized in Table 1.
Table 1 A summary of gut microbiome-mediated disorders highlights the involvement of the

human microbiome across the chronic disease spectrum.

Disease/

disorder Microbial changes and consequence [27]

Microbial-based therapeutics and

outlook [27,28]

Inflammatory
bowel disease

Gut microbiota dysbiosis [29]; Decrease
Firmicutes including Roseburia hominis and

Faecalibacterium prausnitzii [30,31];
Increases in pathogenic Mycobacterium
avium paratuberculosis, adherent invasive

Escherichia coli, Clostridium difficile,
Campylobacter, and Salmonella [32].

Microbial therapeutics based on
underlying mechanisms and identifying
features for successful fecal–microbial

transplant [3,33–36].

Crohn’s disease Higher proportion of fungi to bacteria;
increased Basidiomycota:Ascomycota

ratio; decreased proportion of
Saccharomyces cerevisiae, increased Candida

albicans [37,38].

Dietary management [39].

Irritable Bowel
syndrome

Increase in SCFA producing Firmicutes,
particularly unclassified Clostridium

cluster IV and XIV [40]; higher levels of
mucin-degrading Ruminococcus torques and

Akkermansia muciniphila [40].

Dietary management [41].

Obesity Gut microbiota dysbiosis associated with
increased Firmicutes:Bacteroidetes [42];
increased systemic lipopolysaccharides
arising from Gram-negative bacteria

[43,44].

Microbiome therapeutics in trials
[45–49] with validation studies needed.

Type 2 diabetes Depleted fiber-degrading and SCFA-
producing bacteria such as Roseburia,
Eubacterium, and Fecalibacterium [50]

Next-generation microbial therapeutics
[51]; microbiome-guided dietary and

drug therapy [52,53].

Continued



Table 1 A summary of gut microbiome-mediated disorders highlights the involvement of the

human microbiome across the chronic disease spectrum—cont’d

Disease/

disorder Microbial changes and consequence

Microbial-based therapeutics and

outlook [27,28]

Cardiovascular
disease

Gut microbiota metabolism of choline,
phosphatidylcholine, and carnitine leads

to trimethylamine and oxidation to
trimethylamine, associated with

atherosclerotic plaque development
[7,18].

Therapeutic targets against bacterial
metabolism under development [54,55].

Cancer Gut microbiota can serve as diagnostic
tool for early-stage cancer [56,57];
production of metabolites and

modulation of immune states [58–60].

Microbial therapeutics (pre- and
probiotics, metabolites) [56]; activity-
based protein profiling for predicting

efficacy and adverse events [61]
Neurological
disorders

Gut microbiota may interact with the
nervous system through production of

neuroactive molecules [62,63],
implicated in Parkinson’s, Alzheimer’s,

pain [64], depression [65], other
neurodegenerative diseases [66–68].

Dietary management; GABA
manipulation [69].

NAFLD Microbiota-mediated mechanism can
result in deleterious changes in the liver
[70]; ethanol production by bacteria
might contribute to steatosis [71–73].

Bacteria and bacteriophage-based
therapies show potential in liver disease

[74,75].

Clostridioides
difficile infection

The gut microbiome is a determinant of
C. difficile infection [76]; strain-specific
differences might determine antibiotic

resistance [77].

FMT to treat recurrent C. difficile infection
with ongoing studies in replacement with
use of defined microbial communities

[78].
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Dietary choices and the microbiome

The gut microbiome is influenced by several external environmental factors, as described in the

earlier section. Of these, the long-term diet seems to be the primary environmental factor

influencing the gut microbiota proportions, function, and host–microbiome interactions. The

possibility of preventing and treating disease through modulation of the gut microbiota or their

secreted metabolites by dietary interventional strategies is an active and developing area of

research. Diets rich in fiber, from foods such as grains, legumes, and leafy greens, promote a diverse

gut microbiome and subsequent release of diverse beneficial metabolites, including SCFAs.

Conversely, diets poor in fiber display reduced microbial diversity and altered function, and are

often associated with impaired host physiology and increased susceptibility to chronic

inflammation and infection. The proportion of the commensal microbe, Prevotella copri, for

example, correlates with improved glucose and insulin tolerance in subjects consuming a high fiber

diet [79,80]. Subsequent NGS metagenomic analyses defined four distinct carbohydrate

metabolizing clades that utilized distinct plant-derived polysaccharides [79,80].
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Studies such as the one described in the earlier section have utilized African and South

American populations, whose diets are high in fiber, which contrast with the low fiber

Westernized diet [81–84]. With increased rates of obesity, diabetes, cancer, etc. in developed

nations, the question arises regarding the extent to which coevolution between humans and their

gut microbiota, and the resulting impact of a low fiber high saturated fat diet on our microbiota

and health has naturally been raised. Diverse global populations have thus become important if

we are to understand diet-influenced differences in the gut microbiota and human health. Not

surprising, differences in the gut microbiota between populations have been consistently

observed. Specifically, worldwide populations with a diet rich in fruit, vegetables, and fibrous

tubers are enriched for fiber-fermenting bacteria, including Xylanibacter, Treponema,

Lachnospira, and Prevotella [81,82,84]. When these are reduced, reduced beneficial

metabolites, including SCFAs, and a decreased capability to degrade complex polysaccharides

are also observed. [85] However, in Western populations consuming a diet rich in fiber, a

greater proportion of Prevotella and Lachnospira are again observed, along with greater

concentrations of SCFAs in stool and blood [86]. Together, data suggest a diet high in fiber

plays an important role to promote human health through enhancing microbial diversity and

production of beneficial metabolites, which raises promise that restoration of the microbiota to

a healthy state could be achieved through either dietary intervention or through treatment with

microbial carbohydrate-degrading enzymes to replace metabolic activity lost through

diet-induced microbiome changes [87].
Current clinical knowledge and interventions

Given observed connections between the microbiome and health, numerous clinical studies

have been performed to utilize the microbiome as an interventional health care strategy.

Microbiome interventions fall into two primary categories, untargeted and targeted. Untargeted

methods, including antibiotics, probiotics, dietary changes, and fecal microbiota

transplantation (FMT) seek to impact the microbiome by restoring a healthy species and

functional diversity to the entire host-associated community. Targeted methods, such as

engineering microbes and specific enzymes or metabolites, seek to restore homeostasis with a

specific microbe or drug.

Of the untargeted strategies, FMT and use of probiotic products are perhaps the most

well-known and most explored. FMT, in which the stool of a healthy donor is transplanted into

the gastrointestinal tract of a patient, is becoming a common and successful treatment for

Clostridioides difficile (C. diff ) infection. C. difficile infection can occur for a variety of

reasons including chronic illnesses or gastrointestinal conditions [88]. With this success, many

studies are exploring use of FMT to also treat metabolic diseases, including insulin sensitivity

and diabetes, with alteration of the microbial population and improved disease state noted in

multiple studies [88–90]. As further evidence of the potential for FMT, patients enrolled in a
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recent pilot study of FMT in ulcerative colitis achieved a response rate near 90%, accompanied

by changes in IL-6, CXCL5, and other immunomodulatory cytokines [91]. Despite the potential

for use of FMT to treat metabolic disease, the variation in intestinal microbiome composition

between individuals makes standardized treatment for clinical symptoms a challenge.

Probiotics, unlike FMT, have a defined composition. Commonly used probiotics include

Lactobacillus, Bifidobacterium, and E. coli Nissile 1917. Similar to FMT, probiotics have also

been shown to significantly improve disease markers such as fasting glucose, insulin

sensitivity, and cholesterol [92–96]. Further, studies using probiotic or prebiotic-probiotic

combinations have reported improvement in hepatic fat [97] and liver enzymes [98] in NAFLD

patients. However, results in probiotic studies are not always consistent, and it is unclear to date

if failed outcomes are the result of other study limitations, variability in strains, or differences in

subjects, for example in their endogenous microbiome.

In targeted microbiome intervention strategies, engineered microbes designed with specific

genetic modifications can be used to deliver microbes that carry out specific disease-relevant

function. For example, Duan et al. engineered Lactobacillus gasseri ATCC 33323 to secrete

human GLP-1 (1–37), which is a hormone that regulates glucose metabolism by stimulating

intestinal epithelial cells to secrete insulin. Administration of GLP-1-expressing Lactobacillus

increased the insulin level in diabetic rats, leading to a reduction in blood glucose level [99].

Instead of enriching or depleting such bacterial producers through engineering, another strategy

has been the use of supplements of bacteria-derivedmetabolites to restore a depletedmetabolite

pool or to inhibit the action of a specific metabolite. Experimental evidence highlights the

potential of “postbiotic” therapeutic application. For example, administration of SCFAs

improved inflammatory conditions in colitis-mouse models [100], supplementation of

flavonoids alleviated weight regain following successful dietary-weight loss in animal models

with recurrent obesity [4], and inhibitors of microbial enzymes producing the metabolite,

trimethylamine N-oxide from L-carnitine, can reduce stroke and myocardial infarction [101].

Although currently, most studies of targeted microbiome interventions have been undertaken in

animal models; to date, results show promise as a future avenue for clinical study and disease

treatment.
Microbiome analysis tools for precision medicine

Based on the direct relationship between diet, microbial composition and function, and

host-related disorders, measurements of both composition and function are required for

microbiome precision medicine to be implemented. Currently, to understand microbial

composition within the microbiota, two approaches, 16S rRNA amplicon sequencing and

shotgun metagenomics, are widely in use to extract and analyze microbial genomic DNA. The

16S rRNA gene is comprised of both highly conserved and hypervariable regions, which allows

for broad use of primers, as well as identification of base pair differences that allow species
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level identification [102,103]. Typical 16S amplicon studies compare differences between

observed communities of bacteria between differing samples to calculate statistical correlations

between microbial composition and sample descriptions. The Earth Microbiome Project’s

standardized amplicon protocols have become de facto industry standards and are widely

available with rigorous benchmarking (https://earthmicrobiome.org/). Shotgun metagenomics

is becoming increasingly popular due to the power of the approach to provide a higher

resolution of the entire microbial community, the metabolic and signaling capacity of each

taxon, at costs that are significantly less expensive with each passing year [104,105]. In this

way, taxonomy can be determined from signature genes, and phylogeny can be assigned by

comparing DNA sequences against a library of genomes from databased relatives. Genomes

can also be assembled from organism in the microbiome that are resistant to culture, enabling

exploration of taxa associated with each sample or person, and allows determination of

metabolic and signaling capacity of each taxon to understand how it might interact with the rest

of the body or its environment [104–106]. The utility of amplicon andmetagenomic sequencing

is best described by the Microbiome Wide Association Study [107] paradigm, whereby

microbial traits (genes, species, pathways) in the microbiome are statistically associated with

health or disease traits in the host population.

Both 16S rRNA amplicon sequencing and shotgun metagenomics have limitations. Primarily,

the microorganism evolution, microbial horizontal gene transfer, and subtleties in

characterization of different types of microbiomes (including body sampling site), canmake the

single snapshot of the microbiome problematic. Additionally, both approaches can have

contamination from undesired DNA and biases toward culturable organisms [108], and both

require specific training in microbiome analysis to identify correlations, with metagenomics

being more computationally complex.

Additional tools are constantly being developed to identify metabolites alongside the microbial

communities in order to understand the microbial functional traits encoded in the DNA.

Metabolomics refers to analysis of all metabolites in a given sample. Metabolomics seeks to

analyze the metabolites in a sample so that they may be quantified and associated with human

or microbial traits, in much the same MWAS analysis for DNA sequencing approaches. The

current paradigm for metabolite discovery involves molecule identification by mass

spectrometry coupled to liquid or gas chromatography (GC-MS). Although this method offers

chromatographic resolution and reproducibility, it is limited by poor dynamic range, accurate

mass, and a scan rate sufficient for more complex samples (i.e., mammalian tissue), which

ultimately results in significantly less than 30% of compounds identified; and often only �5%

of spectrum peaks identified as originating from a givenmolecule [109]. Additionally, the polar

nature of many metabolites requires specialized approaches to allow the volatilization required

for chromatography. Finally, the high-sample throughput required for -omics level analysis is

limited. To overcome these challenges, a next generation of mass spectrometers has been

developed, including the Orbitrap series by Thermo Scientific. The Orbitrap mass spectrometer

https://earthmicrobiome.org/
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coupled with liquid chromatography (LC) has contributed to the development of metabolite

annotation in a variety of public databases by providing high mass resolving power combined

with tandem MS capabilities [110–113].

Community interconnections in the microbiome

Microorganisms thrive in communities with large numbers and close interactions that benefit

the population [114]. Relationships are far from simplistic, spanning the landscape of

ecological relationships that include mutualisms, commensalism, synergism, competition,

parasitism, and predation. In this way, microbe interactions and relationships add to the genetic

diversity in microbial population. Functional genes can be dropped in a microbial genome from

random mutations and selective pressures, leading to low or medium gene frequencies [115],

and interactions can be reshaped by gaining genes that adapt and extend the niche [116]. The

breadth of these relationships has been emphasized through data collected through the Earth

Microbiome Project (EMP). The EMP is a public database and framework for sample collection

with standardized sequencing and metadata curation [117]. The data has emphasized the wired

pattern among microbial communities in different environments and emphasized that

community characteristics can be used in conjunction with microbial taxon composition

profiles. Although EMP datasets focus on environmental datasets focusing on bacterial and

archaeal communities, it has broad relevance to other lifeforms on earth, especially humans,

where the interactome is relevant to health outcomes. The EMP experimental and analysis

framework has now been referenced over 1100 times as researchers seek to understand

microbial cooccurrence patterns.

Current advances and future challenges for microbiome-mediated precision
medicine

With decreasing sampling and processing costs and the development of novel sequencing

technologies, it is becoming possible to sample more densely in time, in a longitudinal fashion,

to capture the dynamics of microbial interactions [118]. Emerging sampling techniques, such as

laser capture microdissection of intestinal crypts, are also advancing understanding of the

spatial inhomogeneous nature of the microbiome and its influence on function [119], and

development of automatic sampling devices is making longitudinal collection more accessible

and feasible (e.g., BiomeSense Gutlab, https://www.biomesense.com). However, as identifying

bacteria and their metabolisms that may be causative in health -and disease-states for unique

individuals is an important facet of precision medicine, combining these approaches with novel

analysis to understand how the overall ecology of the microbiome pertains to an individual’s

health is possibly even more vital. To do this, quantitative measures of microbiome compo-

sition and metabolites must be paired with patient health and lifestyle measures and clinical

outcomes. Such rich datasets require bioinformatic approaches for modeling to predict insights

https://www.biomesense.com
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into the relationships between the host, the microbiome, health, and disease. Although

combining datatypes is challenging, advances in artificial intelligence, and more specifically

machine learning (ML) approaches, are making it possible to explore relationships between

genetic, physical, and clinical information [120]. For example, Hollister and colleagues

used ML to analyze multiomic features to understand the connections between childhood

irritable bowel syndrome and nutritional interventions. They were able to identify associations

between abdominal pain, microorganisms, and metabolites, with the potential do precipitate

novel microbiome-mediated stratification and therapeutic strategies [121]. Novel

technologies, analysis approaches, and comprehensive data collections are also being

combined with data sharing approaches that publicly open up datasets for analysis. Such

examples include the IBD project, which includes microbiome, host genotype, phenotype data,

and transcriptomes from biopsies of greater than 1200 patients with IBD [122] and the IBD

Multiomics Database, which provides comprehensive descriptions of microbial and host

activities in IBD [123].

The future presents both opportunities and challenges for precision medicine. The range of

bacteria present, gene expression variations, and single nucleotide polymorphisms both between

regions of the gut and between individuals are vast, and often outnumber patient samples as well

as time points collected. Achieving appropriate statistical power to facilitate robust AI analyses

[124], and subsequent patient sampling is more important than ever for drawing meaningful

conclusions. Nevertheless, the combined advances in knowledge and technology have resulted in

current treatment advances and are prime for continued advances in precision medicine.
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