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Vadose Zone Journal | Advancing Critical Zone Science

On the Information Content of Cosmic-
Ray Neutron Data in the Inverse 
Estimation of Soil Hydraulic Properties
Giuseppe Brunetti, Jiří Šimůnek, Heye Bogena, Roland Baatz, 
Johan Alexander Huisman, Helen Dahlke, and Harry Vereecken*
Observations of soil moisture content from remote sensing platforms can be 
used in conjunction with hydrological models to inversely estimate soil hydraulic 
properties (SHPs). In recent years, cosmic-ray neutron sensing (CRNS) has proven 
to be a reliable method for the estimation of area-average soil moisture at field 
scales. However, its use in the inverse estimation of the effective SHPs is largely 
unexplored. Thus, the main objective of this study was to assess the informa-
tion content of aboveground fast-neutron counts to estimate SHPs using both 
a synthetic modeling study and actual experimental data from the Rollesbroich 
catchment in Germany. For this, the forward neutron operator COSMIC was exter-
nally coupled with the hydrological model HYDRUS-1D. The coupled model was 
combined with the Affine Invariant Ensemble Sampler to calculate the posterior 
distributions of effective soil hydraulic parameters as well as the model-predictive 
uncertainty for different synthetic and experimental scenarios. Measured water 
contents at different depths were used to assess estimated SHPs. The analysis of 
both synthetic and actual CRNS data from homogenous and heterogeneous soil 
profiles, respectively, led to confident estimations of the shape parameters a and 
n, while higher uncertainty was observed for the saturated hydraulic conductiv-
ity. Furthermore, results demonstrated that neutron data are less influenced by 
local sources of uncertainty compared with near-surface point measurements. 
The simultaneous use of CRNS and water content data further reduced the over-
all uncertainty, opening up new perspectives for the combination of CRNS with 
other remote sensing techniques for the inverse estimation of the effective SHPs.

Abbreviations: AIES, Affine Invariant Ensemble Sampler; CRNP, cosmic-ray neutron probe; CRNS, cosmic-
ray neutron sensing; IAT, integrated autocorrelation time; LSM, land surface model; MCMC, Markov chain 
Monte Carlo; MCNPX, Monte Carlo N-Particle eXtended; PTF, pedotransfer function; SHPs, soil hydraulic 
properties; VGM, van Genuchten–Mualem.

Soil hydraulic properties (SHPs) define the relationship between volumetric water 
content (q), pressure head (h), and hydraulic conductivity (K), thus regulating the move-
ment of water in the soil and influencing the water–energy cycle at the land surface. In 
particular, the near-surface soil moisture has a profound influence on the partitioning 
of precipitation into surface runoff, evapotranspiration, and infiltration and thus on the 
surface energy balance. In this view, there is strong evidence that land surface processes 
play a key role in climate models (Pitman, 2003). An accurate description of hydrological 
processes at the land surface is thus of crucial importance.

Land surface models (LSMs) incorporating a mechanistic description of infiltration 
require precise estimation of large-scale SHPs. Typically, the measurement scale for the 
characterization of SHPs is on the order of 10 cm, with a sample spacing of 100 m or larger 
(Hopmans et al., 2002). In this perspective, the upscaling of point measurements is time 
consuming and introduces significant uncertainty into land surface hydrological model-
ing (Vereecken et al., 2007). To overcome this problem, pedotransfer functions (PTFs) 
are often used (Van Looy et al., 2017) to translate available soil textural information into 
SHPs. However, uncertainty in PTF inputs often propagates into the poor accuracy of 
SHPs (Deng et al., 2009).
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A valid alternative is the inverse estimation of effective SHPs 
from transient data (Dane and Hruska, 1983; Kool and Parker, 
1988; Šimůnek and van Genuchten, 1996; Iden and Durner, 
2007; Ines and Mohanty, 2008; Vrugt et al., 2008a). For example, 
Gutmann and Small (2007) used the land surface model Noah (Ek 
et al., 2003) to compare the results obtained using inversely esti-
mated and PTF-based SHPs. They found a significant reduction 
in errors between measured and simulated latent heat fluxes when 
inversely estimated SHPs were used. Moreover, the use of emerging 
global optimization algorithms and statistically rigorous methods 
based on Bayesian inference now allow obtaining both a reliable 
estimate of SHPs and a proper assessment of their uncertainty (e.g., 
Huisman et al., 2010; Scharnagl et al., 2011; Wöhling and Vrugt, 
2011), which is directly related to the information content of the 
measured data used in the inverse estimation framework.

Traditionally, point measurements of pressure head and 
water content have been used for the inverse estimation of SHPs. 
However, during the last decade, soil moisture remote sensing 
techniques have gained popularity (Bogena et al., 2015; Mohanty 
et al., 2017). Despite their restriction to near-surface soil mois-
ture measurements, several studies have demonstrated that remote 
sensing data can be used to successfully estimate effective SHPs 
at the field scale (Mohanty, 2013). For example, Santanello et al. 
(2007) inversely estimated soil hydraulic parameters of a semiarid 
watershed using the Noah land surface model by combining soil 
moisture evaluated using passive microwave remote sensing by 
NASA’s push-broom microwave radiometer and active microwave 
RADARSAT-1 imagery with a parameter estimation algorithm 
and then compared the estimated and PTF-based SHPs. In 
another study, Steenpass et al. (2010) assimilated infrared-mea-
sured soil surface temperatures and time domain reflectometry 
based soil water contents to estimate SHPs for both synthetic and 
field-scale conditions.

Among the ground-based remote sensing techniques, cosmic-
ray neutron sensing (CRNS) has shown good promise to capture 
soil moisture at relevant scales. Briefly, fast neutrons are produced 
by nuclear interactions between the incoming cosmic rays and ele-
ments of the Earth’s atmosphere (Zreda et al., 2008). When they 
reach the soil surface, they penetrate to a certain depth and are 
scattered back into the atmosphere. Since fast neutrons are mainly 
moderated by hydrogen, the fast neutron intensity at near ground 
level is negatively correlated with the near-surface soil moisture. 
For this reason, soil moisture can be inferred from the fast neu-
tron intensity measured by cosmic-ray neutron probes (CRNPs) 
(Zreda et al., 2008). The CRNP measures integral soil moisture 
in a circular footprint centered on a detector. This radius varies 
between 130 and 240 m depending on the site conditions, which 
is significantly larger than the typical spatial correlation length 
of soil moisture patterns (Western et al., 2004). The penetration 
depth of CRNP measurements varies between 15 cm for wet soils 
to 55 cm for dry soils (Schrön et al., 2017). Due to this large sample 
volume, the information content of CRNP data could potentially 
improve the estimation of effective SHPs for LSMs because the 

scale mismatch between sample volume and model resolution is 
much smaller.

The applicability of the CRNP method has been demon-
strated for various land cover types, soil types, and climates, and 
CRNPs have been installed in several national monitoring net-
works (Bogena et al., 2015). The first network was established in 
the United States by the University of Arizona and has already 
deployed more than 60 CRNPs at various locations (Zreda et 
al., 2012). Similar networks have been established in Australia 
(Hawdon et al., 2014), the United Kingdom (Evans et al., 2016), 
and Germany (Baatz et al., 2014). To date, almost 200 stationary 
CRNPs have been installed worldwide (Andreasen et al., 2017). 
The required conversion of neutron intensity into soil moisture 
and the correction for important influencing factors (e.g., biomass, 
snow, and litter layer water content) have been described in detail 
in the literature (e.g., Andreasen et al., 2017; Desilets et al., 2010). 
Few recent studies have focused on the use of CRNP data for the 
estimation of SHPs with promising results. Both Finkenbiner et al. 
(2018) and Gibson and Franz (2018) combined CRNP data with 
empirical orthogonal functions to isolate spatial patterns of SHPs 
in selected agricultural fields. A statistical analysis confirmed that 
the use of CRNP data can improve the estimate of SHPs at the 
field scale.

Several types of neutron source models are available to 
study cosmic-ray neutron interactions near the soil surface. One 
of the most widely used models is the Monte Carlo N-Particle 
eXtended (MCNPX) neutron transport code (Pelowitz, 2011). 
Given the specified chemistry of the atmosphere and soil (e.g., 
soil mineralogy, soil moisture), MCNPX simulates nuclear col-
lisions of individual, randomly generated, incoming cosmic rays 
and their interaction byproducts through the atmosphere and in 
the soil using libraries of nuclear properties. In this way, MCNPX 
allows accurate simulation of the number of fast neutrons that 
enter a defined detector volume above the ground. In an attempt 
to simultaneously describe the neutrons’ dynamics and water 
f low in the unsaturated zone, Franz et al. (2012) successfully 
coupled MCNPX with the hydrological model HYDRUS-1D 
(Šimůnek et al., 2016) for calculating the effective sensor depth 
of a CRNP while accounting for three sources of hydrogen and 
their vertical variability. However, the high computational cost 
of this Monte Carlo based model makes it unsuited for Bayesian 
analysis frameworks, which require thousands of model executions. 
Recently, the Ultra Rapid Adaptable Neutron-Only Simulation 
(URANOS) model (Köhli et al., 2015) was developed to reduce 
the computational cost of CRNP simulations and to provide a 
neutron transport code tailored to environmental applications. 
By neglecting less relevant physical processes, URANOS is more 
computationally efficient than other available Monte Carlo codes 
while maintaining a similar accuracy in the simulation of neutron 
fluxes (Köhli et al., 2015). However, the computational gain is still 
not sufficient to justify its use in Bayesian analysis.

The forward neutron operator COSMIC has taken a major 
step toward the efficient integration of CRNS data in models 



VZJ | Advancing Critical Zone Science� p. 3 of 24

(Shuttleworth et al., 2013). It provides a simplified description of 
neutron interactions, and the use of a physically based analytical 
approach reduces the computational cost by four orders of mag-
nitude compared with MCNPX. COSMIC calculates the fast 
neutron flux from the soil moisture profile and can be easily cou-
pled with hydrological models. Recently, Baatz et al. (2017) were 
able to assimilate data from a network of CRNPs installed in the 
River Rur catchment into the Common Land Model (CLM4.5) 
to update soil moisture and SHPs of the catchment. In another 
study, the COSMIC and Noah models were coupled to assimilate 
CRNP data from the Santa Rita Range field site (Shuttleworth et 
al., 2013). In particular, the Noah–COSMIC model was used in 
conjunction with the global optimization algorithm AMALGAM 
(Vrugt and Robinson, 2007) to recalibrate the Noah model by 
minimizing the errors between simulated and observed neutron 
fluxes. Their results demonstrated that the assimilation of CRNP 
data could effectively improve the accuracy of the model predic-
tions. To date, the only available studies on the use of CRNP data 
in the inverse estimation of soil hydraulic properties are those 
of Rivera Villarreyes et al. (2014) and Baatz et al. (2017). In the 
former, integral soil moisture estimates obtained for the CRNP 
support volume were transformed into the soil water storage for 
direct calibration of the effective soil hydraulic parameters using 
the HYDRUS-1D model. Despite the overall promising results 
of their study, the numerical approach based on the use of soil 
water storage data led to a poor approximation of the volumetric 
water content at different depths. In Baatz et al. (2017), soil water 
contents estimated from CRNS data were assimilated with the 
local ensemble transform Kalman filter in the CLM4.5 model to 
update soil texture and organic matter used in the PTFs for the 
estimation of the SHPs. Results of that study demonstrated the 
potential of CRNS networks to improve subsurface parameter-
ization in the regional LSM. However, the use of PTFs and the 
indirect assimilation of CRNS data represent potential sources of 
additional uncertainty in the data assimilation framework.

Thus, the main aim of this study was to provide a comprehen-
sive theoretical and experimental assessment of the information 
content of CRNP data for the inverse estimation of effective 
SHPs at the field scale. The problem was addressed in the fol-
lowing way. First, a combined mechanistic description of variably 
saturated f low and soil-neutron interactions was provided by 
coupling the hydrological model HYDRUS-1D and the neutron 
transport code COSMIC. Before proceeding with an analysis of 
actual CRNP data from an experimental facility in Germany, an 
analysis of synthetic data was performed by combining the coupled 
HYDRUS–COSMIC model with a Bayesian inference algorithm. 
The synthetic example simplified the experimental case study by 
describing the soil-neutrons interactions in a homogeneous soil 
profile and provided the first proof of concept for the estimation 
of SHPs from CRNP data. Finally, the actual data from a hetero-
geneous soil profile was used to evaluate the potential of CRNP 
data for the inverse estimation of SHPs under real conditions. A 
comparison between inverse estimation using neutron fluxes and 

classical point measurements of water content completes and fur-
ther enriches the analysis.

66Materials and Methods
Theory
Subsurface Water Flow and Root Water Uptake

The finite-element hydrological model HYDRUS-1D 
(Šimůnek et al., 2016) numerically solves the one-dimensional 
Richards equation describing variably saturated water flow in the 
soil profile:

( ) 1
hK h S

t z z
é ùæ ö¶q ¶ ¶ ÷çê ú= + -÷ç ÷çê úè ø¶ ¶ ¶ë û

 	 [1]

where q is the volumetric water content [L3 L−3], h is the soil water 
pressure head [L], K(h) is the unsaturated hydraulic conductivity 
[L T−1], t is time [T], z is the soil depth [L], and S is a sink term 
[L3 L−3 T−1], defined as a volume of water removed from a unit 
volume of soil per unit of time due to plant water uptake. A solu-
tion of the Richards equation requires knowledge of the SHPs, 
which should accurately describe the hydraulic characteristics of 
the porous medium and its heterogeneity. It is well known that 
agricultural land management can significantly influence the soil 
structure and corresponding SHPs in the near surface. Under such 
circumstances, the shape of the retention curve may be constant 
with depth, but the soil hydraulic conductivity and porosity are 
expected to change significantly. Thus, in the present study, the 
vertical variability of the soil is described by combining the uni-
modal van Genuchten–Mualem (VGM) (van Genuchten, 1980) 
functions with the scaling factors proposed by Vogel et al. (1991). 
In particular, three independent dimensionless scaling factors 
are used: jq, jh, and jK for the water content, the pressure head, 
and the saturated hydraulic conductivity, respectively. These three 
scaling parameters are used to define a linear model of the actual 
spatial variability in the soil hydraulic properties as follows:

( ) ( )

( ) ( )

r r* * *

*

* *
h

K

h h
h h
K h K h

q
ì é ùïq =q +j q -qï ë ûïï =jíïïï =jïî

  	 [2]

where q*(h*) and K*(h*) are the reference soil hydraulic functions, 
which are ideally those unaffected by surface management activi-
ties. This theoretical approach guarantees high modeling flexibility 
since it can describe both homogeneous and heterogeneous soil 
profiles using a single set of reference soil hydraulic functions and 
only a few more parameters (i.e., the scaling factors). If the soil is 
homogeneous, the scaling factors are set to 1.

Feddes et al. (1978) defined S as

( ) ( ) pS h a h S=   	 [3]

where Sp is the potential root water uptake rate and a(h) is a dimen-
sionless water stress response function that depends on the soil 
pressure head h and can vary between 0 and 1. Parameters of the 



VZJ | Advancing Critical Zone Science� p. 4 of 24

stress response function for a majority of agricultural crops can 
be found in various databases (e.g., Taylor and Ashcroft, 1972; 
Wesseling et al., 1991). Potential root water uptake Sp is calculated 
from the potential transpiration rate Tp and the root distribution 
function. Beer’s equation is used to partition the reference evapo-
transpiration calculated with the Penman–Monteith equation 
(Allen et al., 1998) into potential transpiration and soil evapora-
tion fluxes (e.g., Ritchie, 1972) using leaf area index information. 
For a detailed explanation of the partitioning of evapotranspira-
tion, see Sutanto et al. (2012).

Cosmic-Ray Soil Moisture Interaction Code
The physically based COsmic-ray Soil Moisture Interaction 

Code (COSMIC) (Shuttleworth et al., 2013) is used to calculate 
the aboveground neutron intensity for a given soil moisture pro-
file. COSMIC includes simple descriptions of (i) degradation of 
the incoming high-energy neutron flux with soil depth, (ii) cre-
ation of fast neutrons at each depth in the soil, and (iii) scattering 
of the resulting fast neutrons before they reach the soil surface. 
See Shuttleworth et al. (2013) for a detailed description of the 
COSMIC model.

COSMIC requires several site-independent and site-specific 
time-invariable parameters. In particular, the parameters L1 = 
162.0 g cm−2, L2 = 129.1 g cm−2, and L4 = 3.16 g cm−2 were found 
to be site independent (Shuttleworth et al., 2013), while the param-
eters L3 (g cm−2) and a (cm3 g−1) were found to be dependent on 
the soil bulk density rb according to

3 b31.65 99.29L =- + r  	 [4]

b0.404 0.101a= - r   	 [5]

The remaining two parameters, the lattice water content q l 
[L3 L−3] and the number of high-energy neutrons at the soil sur-
face NCOSMIC (dimensionless), are also site dependent and must 
be measured and calibrated, respectively.

A FORTRAN version of the COSMIC code is freely avail-
able online (http://cosmos.hwr.arizona.edu). For this study, the 
FORTRAN code was rewritten in the Python language to enable 
a more efficient model coupling with HYDRUS-1D. The open-
source compiler Numba (Lam et al., 2015) was used to speed up 
the Python code and to significantly reduce its execution time. 
The Python version of the COSMIC code was verified against 
the original FORTRAN code before further use.

Model Coupling Strategy
The COSMIC and HYDRUS models were coupled via a 

Python interface to dynamically calculate subsurface water flow 
by HYDRUS and neutron intensity by COSMIC. To this end, 
several user-defined Python subroutines that interact with the 
HYDRUS files were developed. The coupling of the two models 
is accomplished in the following way:
1.	 Model initialization: HYDRUS is initialized by setting up 

input data, the numerical domain, and boundary conditions. 

In addition, the temporal resolution of the model output for 
the soil moisture profile is defined, which determines the tem-
poral resolution of the simulated neutron flux. Similarly, the 
COSMIC parameters are defined, and the Python code is com-
piled using Numba.

2.	 HYDRUS execution and data processing: HYDRUS-1D is 
externally executed directly from the Python code, and a check 
is performed for numerical convergence and the final mass bal-
ance error. If the simulation is successful, the calculated soil 
moisture profiles are read and stored in a matrix, in which rows 
represent the vertical discretization of the model domain and 
columns represent the selected time steps for soil moisture pro-
file information.

3.	 COSMIC execution: The matrix of soil moisture profiles is passed 
to COSMIC. Two nested loops are used to iterate through depth 
and time and to calculate a time series of simulated aboveground 
neutron fluxes that can be compared with measured CRNP data.

Uncertainty Analysis
The main goal of the uncertainty analysis is to provide a statis-

tical basis for the assessment of the information content of CRNP 
data for the inverse estimation of soil hydraulic parameters. This is 
accomplished by first using a global optimization algorithm for the 
identification of the global optimum, which is subsequently used 
as a starting point for the Bayesian uncertainty analysis based on a 
Markov chain Monte Carlo (MCMC) algorithm to reduce its auto-
correlation time, thus improving the computational efficiency of 
the analysis. The global optimum is determined using the Particle 
Swarm Optimization algorithm (Kennedy and Eberhart, 1995).

Bayesian Inference
Global optimization algorithms are generally used to find an 

optimal set of parameters that maximize a likelihood function. 
However, different sources of uncertainty can affect hydrological 
data assimilation frameworks (i.e., model inadequacy, observations 
and measurements errors, improper boundary conditions, etc.). 
Therefore, there is no reason to assume that a single optimized 
parameter set represents the only realistic model realization. It is 
more reasonable to consider it as one of many acceptable solutions 
of the problem. This idea underpins the equifinality concept first 
introduced by Beven and Binley (1992) in the early 90s, which 
emphasizes the fact that there are many acceptable (i.e., behavioral) 
representations that cannot be excluded from the analysis and that 
should be considered when quantifying the uncertainty associated 
with model predictions.

Several methods have been proposed in the literature to 
assess the model predictive uncertainty (e.g., Beven and Binley, 
1992; Kavetski et al., 2006; Vrugt et al., 2008a). However, 
during the last decade, the scientific community has focused 
on the application of statistically rigorous Bayesian meth-
ods for the calibration of hydrological models. To explain the 
Bayesian approach, let us consider a HYDRUS–COSMIC model 
realization with a symbol Y, which is a function of q model 
parameters, u = {u1, u2,…, uq}:

http://cosmos.hwr.arizona.edu
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( )f=Y u   	 [6]

Bayes’ theorem combines the prior knowledge about the 
investigated process with the observed data to obtain the poste-
rior distribution of the parameters. In a probabilistic context, this 
can be written as

( ) ( ) ( ) ( )

( ) ( ) ( )

Pr | Pr Pr Pr |
Likelihood  Prior Evidence  Posterior

d dL Z p

´ = ´

´ = ´

´p = ´

Y u u Y u Y

u u u u u

  

  	 [7]

where Ỹ are the observed data, which modulate our prior belief 
p(u)du into the posterior p(u)du. One of the main goals of Bayesian 
analysis in hydrological model calibration is the estimation of the 
parameters’ posterior distribution. This is usually accomplished by 
applying MCMC algorithms. One of the main problems faced in 
the Bayesian analysis of hydrological models is their strong nonlin-
earity and their discontinuous nature, which makes it very difficult 
to apply efficient MCMC algorithms such as Hamiltonian Monte 
Carlo sampling (Betancourt, 2017). Although the classic Metropolis–
Hastings algorithm (Metropolis et al., 1953) is easy to implement, it 
is unable to deal with highly correlated and multimodal posteriors 
often encountered in the calibration of hydrological models. Thus, a 
variety of MCMC algorithms have been developed and successfully 
applied in water-related problems in recent years.

In this study, we use the Affine Invariant Ensemble Sampler 
(AIES), which was first proposed by Goodman and Weare (2010). 
The AIES algorithm is an ensemble MCMC algorithm that has 
proven to be extremely effective when the dimensionality of the 
problem is not very high (Huijser et al., 2015), as is the case in 
this study. Each ensemble, W, consists of D walkers, which can be 
considered as a vector in the q-dimensional parameter space. The 
core of AIES is its affine invariance property, which implies that 
the performance of the method is independent of the aspect ratio 
in highly skewed distributions. This is a highly desirable property 
when calibrating hydrological models because of the prevalence of 
highly correlated posterior distributions. In AIES, the ensemble 
Markov chain is evolved using a stretch move step (Goodman and 
Weare, 2010), which significantly reduces the chain’s autocorrela-
tion time. Briefly, the main idea is that the ensemble carries useful 
information about the approximated distribution, and thus each 
walker is updated using a complementary ensemble. A parameter a, 
which is usually set to 2.0 (Foreman-Mackey et al., 2012), is used 
to “stretch” the proposal. For a thorough description of the AIES, 
see Goodman and Weare (2010), Foreman-Mackey et al. (2012), 
and Huijser et al. (2015). It is worth noting that this study is the 
first one that uses the AIES algorithm in a hydrological context.

One of the main advantages of AIES is that it requires the 
specification of only two parameters, i.e., the stretch factor, a, and 
the number of walkers, D. There are no clear indications in the lit-
erature about the best values of D and a, and they typically depend 
on the investigated problem. Based on some preliminary tests, D 
and a were set to 10q (q is the number of model parameters) and 2.0, 

respectively. In this study, the Python package emcee (Foreman-
Mackey et al., 2012) is coupled with the HYDRUS–COSMIC 
model to carry out the Bayesian analysis. Emcee is a stable and well-
tested Python implementation of the AIES method that includes 
several MCMC convergence diagnostic tools. The walkers are 
initialized by random sampling from a multivariate normal distri-
bution centered on the global optimum with a diagonal covariance 
matrix characterized by a small standard deviation of 0.01. Such 
an initialization around the global optimum is expected to reduce 
the autocorrelation time, thus increasing the overall computational 
efficiency of the analysis.

The AIES algorithm calls the coupled HYDRUS–COSMIC 
model at each iteration. However, the stochastic combination of vari-
ous SHPs can lead to non-convergent model runs for HYDRUS-1D, 
mainly due to the inability to appropriately adjust the HYDRUS-1D 
settings (e.g., mesh size) during the Monte Carlo analysis. In this 
study, non-convergent runs are identified and an unrealistically large 
value is attributed to the sum of squared residuals. This procedure, 
which is similar to what was reported by Brunetti et al. (2016) and 
Wöhling and Vrugt (2011), can significantly slow down the con-
vergence of the AIES because it introduces sudden and unrealistic 
jumps in the response surface due to the artificially low value of the 
likelihood. In future work, regularization of the response surface 
could be considered through a local interpolation or a surrogate 
model (e.g., Brunetti et al., 2017).

A non-informative uniform prior is used for all parameters 
in the uncertainty analysis. The only information provided by 
this prior are the bounds of the feasible parameter space. Within 
these bounds, all parameter values have the same probability. The 
bounds were set based on field measurements (e.g., particle size 
distribution) and literature values.

Markov Chain Monte Carlo Diagnostic
Goodman and Weare (2010) suggested using the integrated 

autocorrelation time (IAT), tint, to assess the accuracy of the AIES. 
The IAT is the number of steps (i.e., ensemble moves) required 
for the walker to produce an independent sample. This number 
is expected to be relatively large if the walkers are initialized in a 
distribution that is not equal to the stationary distribution. Such 
a transient period is usually defined as burn-in and should be dis-
carded from the analysis. In the present study, the burn-in period is 
assumed to be 2tint. It is worth noting that we avoid the use of the 
widely applied Gelman–Rubin test because walkers in the AIES 
are not formally independent.

The IAT determines statistical errors in the Monte Carlo 
analysis once a stationary distribution has been attained (Sokal, 
1996). In particular, the statistical error e of the mean of the pos-
terior depends on tint and is calculated as

int2
Dm
t

e=   	 [8]

where m is the number of steps. Obviously, a larger sample reduces 
the errors but significantly increases the computational time. Thus, 
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in this study, the admissible maximum statistical error was set to 
5%, which should guarantee a good trade-off between numerical 
accuracy and computational effort.

The estimation of the IAT is notoriously difficult because it 
is a two-point statistic. More specifically, the IAT should asymp-
totically reach its true value for a large number of samples. Thus, 
a preliminary IAT convergence analysis is performed to assess its 
calculated value. This is accomplished in the following way:

ʶʶ The AIES algorithm is preliminary run for 3000 steps to 
obtain a significant statistical sample. This requires a few days 
of computation time considering that the execution time of the 
HYDRUS–COSMIC model is <1 s.

ʶʶ Each walker is divided into 20 parts, and the IATs are calculated 
for increasing chain lengths. We adopt the numerical procedure 
described by Sokal (1996). In particular, a mean normalized 
autocorrelation function is computed by averaging the normal-
ized autocorrelation functions calculated for each walker in the 
ensemble. Then, the procedure described by Sokal (1996) is 
used to estimate the IAT for each soil hydraulic parameter. The 
IAT is expected to exhibit a logarithmic growth.

ʶʶ The analysis is assumed to converge if

max
max
int

5%

10m

ìe <ïïíï > tïî
  	 [9]

Otherwise more samples are generated by evolving the AIES. The 
second condition in Eq. [9] is meant to reduce the MCMC error 
and mitigate the effect of an imperfect estimation of the IAT.

Likelihood Function
If we assume that the error residuals are uncorrelated and 

normally distributed with constant variance, s2, the likelihood 
function L(u) can be written as
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where yi(u) and ỹi(u) are the ith model realization and its corre-
sponding measured value, respectively. For algebraic simplicity, the 
log-likelihood l(u) is used:
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Equation [11] is used in the inverse modeling with synthetic 
data because the error variance is known. In the inverse model-
ing with measured data, s2 is treated as a nuisance parameter and 
integrated out from the inference equation (e.g., Kavetski et al., 
2006). The new likelihood is then written as
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Rollesbroich Grassland Experimental Catchment
The Rollesbroich grassland experimental catchment is located 

in western Germany in the Eifel mountain range and is part of 

the TERENO observatory Eifel/Lower Rhine Valley (Bogena et 
al., 2012, 2018). It covers an area of about 40 ha with altitudes 
ranging from 474 to 518 m asl (the average slope is 1.63°). The 
mean annual air temperature and precipitation are 7.7°C and 
1033 mm, respectively. The vegetation is dominated by perennial 
ryegrass (Lolium perenne L.) and smooth meadow grass (Poa pra-
tensis L.), and the predominant soils are Cambisols in the southern 
part and Stagnosols in the northern part of the catchment. All 
components of the water balance (e.g., precipitation, evapotrans-
piration, runoff) are continuously monitored using state-of-the-art 
instrumentation. A detailed description of the instrumentation 
at the Rollesbroich experimental catchment and available hydro-
logical datasets was given by Qu et al. (2016). A SoilNet wireless 
network (Bogena et al., 2010) with more than 500 soil moisture 
sensors (ring oscillator probes, Bogena et al., 2017) was installed 
in May 2011 to measure the soil water content at depths of 5, 20, 
and 50 cm (Qu et al., 2014) at 87 locations. In particular, two 
sensors were installed in parallel at each depth with a distance of 
~10 cm to increase the sensing volume and to allow examination 
of inconsistencies in sensor reading. In May 2011 and May 2012, 
two CRNPs (Type CRS1000, HydroInnova LLC) were installed 
in the southern and northern parts of the catchment. The CRNP 
calibration and a comparison with in situ soil water content data 
obtained with SoilNet were presented in Baatz et al. (2014). This 
study uses data only from the CRNP located in the southern part 
of the catchment.

A 6-mo-long dataset (1 Apr. 2012–30 Sept. 2012) was 
selected for further analysis (Fig. 1). In particular, daily precipita-
tion and reference evapotranspiration were used as input data in 
HYDRUS for both synthetic and experimental scenarios, while 
daily measured water contents at three depths (i.e., z = −5, −20, 
and −50 cm) and the aboveground neutron fluxes were used in 
the inverse estimation of the soil hydraulic parameters in the 
experimental scenarios.

Numerical Domain and Boundary Conditions
The 200-cm-deep soil profile was discretized in HYDRUS-1D 

into 100 finite elements, refined at the top to accommodate 
pressure head gradients induced by the atmospheric conditions. An 
atmospheric boundary condition is applied at the soil surface using 
(i) precipitation and potential evaporation fluxes, (ii) a prescribed 
zero pressure head (i.e., full saturation) during ponding, and 
(iii) equilibrium between the soil surface pressure head and the 
atmospheric water vapor pressure when the atmospheric evaporative 
demand cannot be met. The effect of groundwater was not simulated 
in this study and thus a free-drainage boundary condition was used 
at the bottom of the model domain (z = −200 cm).

The initial pressure head was assumed to be constant and 
equal to −100 cm in the entire model domain. A 3-mo-long spin-
up period was used to limit the influence of the initial condition 
on the simulation results. Three observation points were set at 
depths of −5, −20, and −50 cm to retrieve simulated volumetric 
water contents.
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Inverse Estimation with Synthetic Data
Several studies have demonstrated how data assimilation 

frameworks can be significantly affected by various sources of 
uncertainty at the field scale that can lead to biased conclusions if 
not properly accounted for in the analysis (Mantovan and Todini, 
2006; Mockler et al., 2016; Montanari, 2007). Because the main 
aim of this study was to provide an objective evaluation of the 
information content of the CNRP data for the inverse estima-
tion of SHPs at the field scale, it was important to first analyze 
synthetic modeling scenarios that are not affected by uncertainty 
in the model structure and measurement errors before analyzing 
actual experimental data. Here, the synthetic modeling scenario 
is a simplification of the experimental case study and is focused 

on soil-neutron interactions in a homogeneous sandy soil. The 
strongly unsaturated conditions induced by the use of a sandy soil 
will increase the aboveground neutron intensity and thus provide 
different information than the experimental case study character-
ized by a silty soil.

Model Setup
Variably saturated water flow is simulated in a 200-cm-deep 

homogeneous loamy sand soil profile covered by grass. The VGM 
parameters reported by Carsel and Parrish (1988) for loamy sand 
were used to generate the synthetic dataset. The scaling factors 
were fixed to 1.0 to obtain a homogeneous soil profile. The rooting 
depth and density were assumed to be 15 cm and 1.0, respectively, 

Fig. 1. (A) Precipitation (bars) and reference evapotranspiration ET0 (dashed line) used as input data in HYDRUS, and (B) measured neutron fluxes 
and (C,D,E) water contents at three depths in the Rollesbroich catchment between April and September 2012.
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while a constant leaf area index of 2.0 (Qu et al., 2016) was used 
to partition reference evapotranspiration. The Feddes parameters 
for grass were chosen according to Taylor and Ashcroft (1972) and 
Wesseling et al. (1991). The COSMIC parameters were set accord-
ing to Baatz et al. (2014) (Table 1).

The synthetic dataset was generated in the following way. 
First, a forward numerical simulation by the HYDRUS-1D 
model was used to generate a time series of the volumetric water 
content at z = −5 cm and daily soil moisture profiles. The latter 
were passed to the COSMIC model for the simulation of the 
aboveground neutron fluxes. Next, synthetic noise was added to 
the original time series. The selection of s values has a signifi-
cant influence on parameter uncertainty and thus they should be 
properly set to reflect the accuracy of real measured data. Indeed, 
an unbalanced choice of such values can lead to biased conclu-
sions on the information content of the investigated data. These 
values were thus set in this study based on a preliminary analy-
sis of the noise in selected measured datasets. Briefly, a spectral 
analysis based on the Fast Fourier Transform was used to sepa-
rate the deterministic (signal) and stochastic (noise) components 
of the measured neutron f luxes and volumetric water contents. 
The Shapiro–Wilk test was then used to assess the normality of 
the noise, and the standard deviations were calculated. Based on 
this analysis, random noise with zero mean and standard devia-
tions equal to 30.0 N h−1 and 0.01 cm3 cm−3 for the neutron 
f lux and water content time series, respectively, was used. The 

input, original, and synthetic data for the selected time period 
are shown in Fig. 2.

Synthetic Modeling Scenarios
Three synthetic modeling scenarios are considered for the 

inverse estimation of soil hydraulic parameters (Table 2). Scenarios 
S1 and S2 examine the information content of the temporal evolu-
tion of aboveground neutron flux and water content, respectively, 
at one observation point. The comparison of the parameter uncer-
tainty obtained by these two scenarios will clarify the potential of 
CRNP data to estimate SHPs compared with traditional point 
measurements. Scenario S3, which combines the two synthetic 
datasets, is used to investigate the effect of the joint inversion of 
water content and neutron flux data. The parameter bounds used 
in this analysis are reported in Table 3.

Table 1. The COSMIC parameters used in the synthetic and experi-
mental scenarios (Baatz et al., 2014).

Scenario rbd† q l NCOSMIC L1 L2 L4

g cm−3

Synthetic 1.42 0.037 189 161.98 129.14 3.16

Experimental 1.09 0.068 213 161.98 129.14 3.16

† �rbd, soil bulk density; q l, lattice water content; NCOSMIC, number of high-
energy neutrons at the soil surface; L1, L2, and L3, empirical parameters.

Fig. 2. (A) Precipitation (bars) and reference evapotranspiration ET0 (dashed line) from the Rollesbroich catchment used as input data in HYDRUS, 
and simulated (solid lines) and synthetic (with added noise, diamonds) (B) neutron fluxes and (C) water contents at depth z = −5 cm between April 
and September 2012.
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Inverse Estimation with Actual Data
Model Setup

Measured particle size distributions reported by Qu et al. 
(2016) for the Rollesbroich catchment revealed negligible differ-
ences in the textural composition of the soil at different depths. 
On the other hand, bulk densities increased with depth from 0.94 
to 1.52 g cm−3, and porosities decreased with depth from 0.65 and 
0.43 cm3 cm−3. This vertical soil variability can be attributed to 
prior agricultural land management (i.e., the plow layer is 20–30 
cm thick), which reduced the compaction of the surface layer. The 
measured soil properties highlight the existence of two different 
soil horizons in the top layer (i.e., z > −30 cm). Indeed, the poros-
ity and the bulk density for z > −10 cm are 20% higher and 25% 
lower, respectively, than for the underlying topsoil. Thus, three 
soil materials are assumed in the model: Soil Material 1 extends 
to z = −10 cm; Soil Material 2 ranges from −10 to −30 cm; and 
Soil Material 3 extends below −30 cm. Since Soil Material 3 is not 
affected by agricultural land management, the scaling factors were 
set to 1.0 for this material.

The pedotransfer model ROSETTA (Schaap et al., 2001) 
was used to identify the plausible ranges of the soil hydraulic 
parameters and the scaling factors. On the basis of this analysis, the 
water content scaling factors jq were fixed to 1.4 and 1.1 for Soil 
Materials 1 and 2, respectively, thus reducing the dimensionality of 
the inverse problem. Because the residual water content exhibited 
low variability, it was fixed to 0.07, which is a common value for 
silty soils. The tortuosity and pore-connectivity parameter L 
(dimensionless) in the VGM equation was set to 0.5 in all numerical 
simulations. The aforementioned model simplifications reduced 
the number of unknown parameters to eight. The parameter 
bounds used in the analysis are reported in Table 3.

Experimental Modeling Scenarios
Three experimental data analysis scenarios are considered 

(Table 2). Scenarios E1 and E2, in analogy to Scenarios S1 and 
S2, consider only measured neutron flux and near-surface water 
content (i.e., z = −5 cm), respectively. The comparison of these 
two scenarios will clarify the information content of the CRNP 
data to estimate SHPs in layered soils relative to near-surface point 
measurements. In addition, Scenario E3 uses measured water 
contents at three different depths (i.e., z = −5, −20, and −50 cm). 
This scenario should provide more accurate estimates of SHPs 
because of the higher amount of measurements in multiple soil 
layers and thus serves as a benchmark for the other two scenarios.

66Results and Discussion
Inverse Estimation with Synthetic Data
Markov Chain Monte Carlo Diagnostic

The development of the IAT in the MCMC analyses for the 
three synthetic scenarios is reported in Fig. 3. The asymptotic 
behavior of the IAT with increasing algorithmic steps suggests 

that a reliable estimation has been obtained for all three scenarios. 
It can be seen that all three scenarios exhibit similar autocorrela-
tion times. In particular, the dynamics of the IAT indicate that 
approximately 100 ensemble moves (i.e., steps) are sufficient for 
the AIES to forget about its initial position and to start sampling 
from a stable posterior distribution. The saturated water content 
exhibits the largest IAT in Scenarios S1 and S2 (Fig. 3A and 3B), 
while in Scenario S3 (Fig. 3C) it is slightly larger for the shape 
parameter n. The short autocorrelation times lead to a maximum 
statistical error of the Monte Carlo analyses (Eq. [8]) of approxi-
mately 3.5% after 3000 steps. This is well below the prescribed 
tolerance of 5%, thus indicating a good accuracy in the estimation 
of the posterior distributions.

Uncertainty Analysis
The joint and marginal posterior distributions for each soil 

hydraulic parameter for Scenario S1 (aboveground neutron fluxes) 
are shown in Fig. 4. The inverse problem is markedly unimodal, 
with strong parameter interactions. More specifically, the joint 

Table 2. Synthetic modeling and experimental data analysis scenarios.

Data

Scenario

Synthetic 
(homogeneous soil)

Experimental 
(heterogeneous soil)

Aboveground neutron flux time series S1 E1

Near-surface water content time series 
(z = −5 cm)

S2 E2

Three water content time series (z = −5, 
−20, and −50 cm)

– E3

Near-surface water content and neutron 
flux time series

S3 –

Table 3. The bounds of the van Genuchten–Mualem parameters and 
their true values used in the synthetic and experimental scenarios.

Parameter†

Synthetic Experimental

Lower 
bound

Upper 
bound

True value 
(Carsel and 
Parrish, 1988)

Lower 
bound

Upper 
bound

qr, cm3 cm−3 0.03 0.08 0.06 0.07 0.07

qs, cm3 cm−3 0.35 0.45 0.41 0.30 0.45

log10a , cm−1 −1.50 −0.50 −0.91 −2.50 −0.85

n 1.50 3.00 2.28 1.10 2.00

log10Ks, cm d−1 1.00 3.00 2.54 0.50 3.00

jh1
1.00 1.00 1.00 1.00 5.00

jh2
1.00 1.00 1.00 1.00 5.00

jK1
1.00 1.00 1.00 1.00 20.00

jK2
1.00 1.00 1.00 1.00 5.00

† �qr, residual water content; qs, saturated water content; a and n, shape param-
eters; Ks, saturated hydraulic conductivity, jh1 and jK1, and jh2 and jK2, 
pressure head and saturated hydraulic conductivity scaling factors for Soil 
Materials 1 and 2, respectively. 
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posterior distribution of q s and Ks reveals an expected positive 
correlation, while the VGM shape parameters are negatively 
correlated. The interdependence of a and n is exacerbated, as 
indicated by their slight banana-shaped joint posterior distribu-
tion. Interestingly, the posterior for Ks is unimodal, even though 
it spans a relatively broad range of values from 83 and 602 cm 
d−1. On the other hand, the marginal posterior distribution for 
qs is flat, indicating that the neutron data do not contain enough 
information content to update the uniform prior distribution. 
This is caused mainly by the fact that the soil water content is 
relatively low (0.05–0.20 m3 m−3) in these synthetic data due to 
the use of a highly permeable loamy sand. Therefore, water content 
never approaches the saturated water content of 0.41 and little 
information is available to constrain qs. Different results would 
probably have been obtained for other (finer) soil textures. In this 
case, independent measurements of soil porosity would be needed 
to better constrain qs. The strong interaction effect shown in the 
joint posterior qs–Ks suggests the impossibility of fixing the satu-
rated water content independently from the saturated hydraulic 
conductivity. As expected in strongly unsaturated conditions, qr is 
precisely estimated. Similarly to qs, different types of Ks measure-
ments are needed to reduce the uncertainty. Similar findings were 
reported by Gibson and Franz (2018), who used a mobile CRNP 
to quantify spatial patterns of SHPs across a range of spatial scales. 
In that study, the researchers underscored how an inability to map 
near-saturated soil water contents increased the uncertainty in the 
estimation of Ks.

Overall, the marginal posterior distributions indicate a well-
posed inverse problem characterized by acceptable parameter 
identifiability and moderate uncertainty. This is confirmed by 
the Bayesian credible intervals reported in Table 4. In particular, 
the shape parameters a and n are generally well predicted, with the 
latter exhibiting a slightly narrower posterior distribution.

As shown in Fig. 5, the use of near-surface water content 
instead of neutron flux (Scenario S2) leads to similar posterior 
distributions. Again, the inverse problem is mostly unimodal and 
affected by significant parameter correlations that are similar to 
those in S1 (i.e., a positive correlation between qs and Ks, and a neg-
ative correlation between a and n). The residual water content qr 
is generally uncorrelated, except for a slight interdependence with 
n. As in Scenario S1, the near-surface water content measurements 
do not provide enough information to estimate qs. The marginal 
posterior distribution for Ks again is unimodal and spans values 
between 100 and 1000 cm d−1, thus indicating a somewhat higher 
uncertainty than in Scenario S1. This effect could be related to 
the increased information content of the neutron flux, which is 
representative of the soil moisture dynamics in the entire topsoil 
and not just for a specific depth (i.e., 5 cm in this study).

Overall, a comparison of Fig. 4 and 5 suggests a minor decrease 
in parameter uncertainty for Scenario S2 compared with Scenario S1 
(Table 4). This is particularly evident for the VGM shape parameters, 

Fig. 3. The diagnostic plot of the Affine Invariant Ensemble Sampler (AIES) algorithm for synthetic modeling scenarios showing the integrated auto-
correlation time tint against the algorithm step for the soil hydraulic parameters of residual soil water content (qr), saturated soil water content (qs), the 
van Genuchten–Mualem parameters n and a, and saturated hydraulic conductivity (Ks), along with the maximum statistical error (emax) for Scenarios 
(A) S1, (B), S2, and (C) S3.

Table 4. Original values and 95% Bayesian credible intervals of the soil 
hydraulic parameters for the three synthetic scenarios. The 2.5 and 97.5% 
quantiles are the bounds of the credible intervals.

Parameter†

Scenario
True value 
(Carsel and 
Parrish, 1988)

S1 S2 S3

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

qr, cm3 cm−3 0.05 0.06 0.05 0.06 0.05 0.06 0.057

qs, cm3 cm−3 0.35 0.44 0.35 0.44 0.35 0.44 0.41

log10a , cm−1 −1.36 −0.66 −1.19 −0.7 −1.19 −0.76 −0.91

n 2.08 2.88 1.97 2.63 2.06 2.66 2.28

log10Ks, cm d−1 1.92 2.78 2.06 2.93 2.00 2.86 2.54

† �qr, residual water content; qs, saturated water content; a and n, shape parameters; 
Ks, saturated hydraulic conductivity.
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which have narrower Bayesian credible intervals and a good agree-
ment between the most probable and true values. However, it must 
be noted that these differences depend on the selected level of syn-
thetic noise used to generate the synthetic datasets. In this view, the 
sensor accuracy, as well as different sources of noise, plays a funda-
mental role in the analysis of experimental data. Similar to Scenario 
S1, the results suggest the need to use more informative prior distri-
butions and to combine different data types to reduce the overall 
parameter uncertainty. This is investigated in Scenario S3, where 
both aboveground neutron fluxes and water contents are used.

The MCMC analysis for Scenario S3 (with both near-sur-
face water contents and aboveground neutron fluxes) resulted in 
strongly unimodal and narrow posterior distributions (Fig. 6). The 
correlations between parameters are similar to those for Scenarios 
S1 and S2, and the relatively high uncertainty in the estimation 

of qs remains. The qr is precisely estimated, while the uncertainty 
for Ks persists. The overall reduction in the parameter uncertainty 
for Scenario S3 is visually evident by comparing the joint posterior 
distributions shown in Fig. 4, 5, and 6, and is further confirmed by 
the comparison of the Bayesian credible intervals (Table 4). Indeed, 
the VGM shape parameters have narrower credible intervals, sug-
gesting that the simultaneous use of more and different data types 
reduces the uncertainty in the estimated parameters. The results 
of Scenario S3 further confirm that the saturated water content 
and hydraulic conductivity cannot be precisely inferred from data 
representative of strongly unsaturated conditions and that inde-
pendent measurements of soil porosity and hydraulic conductivity 
may be needed in such a case.

As a result of this analysis, a number of conclusions can be 
drawn:

Fig. 4. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of residual soil water content (qr), satu-
rated soil water content (qs), the van Genuchten–Mualem parameters n and a, and saturated hydraulic conductivity (Ks) for Scenario S1. The red lines 
indicate the original values of the parameters for the loamy sand, while the isolines indicate 12, 39, 68, and 84% probability levels. The dashed lines 
indicate the Bayesian credible intervals. The axis ranges correspond to the parameter bounds reported in Table 3.



VZJ | Advancing Critical Zone Science� p. 12 of 24

ʶʶ The three synthetic datasets provided sufficient information 
content to obtain a satisfactory estimate of the SHPs. More spe-
cifically, the residual water content, the VGM shape parameters, 
and the saturated hydraulic conductivity exhibited unimodal 
posterior distributions, with the latter characterized by a higher 
uncertainty. The saturated water content could not be inferred 
from the dataset (for loamy sand), suggesting that independent 
measurements of the soil porosity are needed to better constrain 
the inverse problem for this soil texture.

ʶʶ The use of the aboveground neutron flux data led to a satisfac-
tory estimate of SHPs. In particular, the use of neutron flux data 
slightly reduced the uncertainty in the estimation of Ks. This 
provides the first proof of concept for the use of CRNP data for 
the inverse estimation of effective SHPs at the field scale.

ʶʶ The simultaneous use of water content and neutron flux data 
reduced the parameter uncertainty. This suggests that the 

combination of CRNP data with sparse point measurements 
in the near-surface environment could reduce parameter 
uncertainty, in particular for the VGM shape parameters. 
However, the number of point measurements should be 
sufficient to characterize the soil heterogeneity within the 
CRNP footprint.

Inverse Estimation with Actual Data
Markov Chain Monte Carlo Diagnostic

The IAT values for the MCMC analyses for the three experi-
mental scenarios are shown in Fig. 7. The maximum statistical error 
ranges between 3 and 5%, which is under the prescribed tolerance 
and indicates a reliable estimation of the posterior distributions. 
As expected, the increased dimensionality of the inverse problem 
resulted in longer autocorrelation times and more steps before con-
vergence to the true posterior distribution. This behavior agrees 

Fig. 5. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of residual soil water content (qr), satu-
rated soil water content (qs), the van Genuchten–Mualem parameters n and a, and saturated hydraulic conductivity (Ks) for Scenario S2. The red lines 
indicate the original values of the parameters for the loamy sand, while the isolines indicate 12, 39, 68, and 84% probability levels. The dashed lines 
indicate the Bayesian credible intervals. The axis ranges correspond to the parameter bounds reported in Table 3.
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with the properties of the AIES algorithm in high dimensions 
reported by Huijser et al. (2015).

The maximum IAT for Scenario E2 (Fig. 7B) is approximately 
three times larger than the IAT obtained for Scenarios E1 and 
E3, thus indicating convergence issues. This is related to multi-
modal posterior distributions, discussed below. Poor convergence 
is particularly evident for the scaling factor jK1, which is charac-
terized by an IAT of 1600 steps. Under such circumstances, the 
ensemble samplers are known to perform poorly, mainly due to 
their inability to traverse low-probability valleys between peaks 
(Matthews et al., 2017). It is worth noting that the performance 
of the AIES for Scenario E2 was insensitive to the value of the 
stretch factor a, which was then set to the suggested value of 2.0. 
Future work should consider using multimodal nested sampling 
techniques (Feroz et al., 2009), which were found to be effective for 

such types of inverse problems. On the other hand, the relatively 
large autocorrelation time for the shape parameter n in Scenario E1 
(Fig. 7A) is partially related to the position of the high-likelihood 
region, which is close to the boundary of the numerical domain. 
Indeed, bounded prior distributions can lead to convergence issues 
when the posterior develops near the boundary.

Uncertainty Analysis
Because Scenario E3 serves as a benchmark for the other two 

scenarios, this will be discussed first. The joint and marginal pos-
terior distributions of the SHPs for this scenario are shown in Fig. 
8 and have a markedly unimodal pattern characterized by a lep-
tokurtic behavior. Consequently, the Bayesian credible intervals 
(Table 5) for the SHPs are extremely narrow, thus indicating their 
good identifiability. The Bayesian analysis reveals, as expected, a 

Fig. 6. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of saturated soil water content (qs), the 
van Genuchten–Mualem parameters n and a, saturated hydraulic conductivity (Ks) for Scenario S3. The red lines indicate the original values of the 
parameters for the loamy sand, while the isolines indicate 12, 39, 68, and 84% probability levels. The dashed lines indicate the Bayesian credible inter-
vals. The axis ranges correspond to the parameter bounds reported in Table 3.
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well-posed inverse problem characterized by low uncertainty 
mainly stemming from the simultaneous use of measured water 
contents at different depths, which better constrains the inverse 
estimation problem. Overall, the results agree well with those 
reported by Qu et al. (2016), where the ROSETTA pedotrans-
fer function was used to predict the spatial distribution of SHPs 
using the soil textural information for the top 5 cm of soil. Indeed, 
the saturated water content for Soil Material 1 ranges between 
0.50 and 0.52 cm3 cm−3, which is in line with the values of the 
porosity reported by Qu et al. (2016), ranging between 0.46 and 
0.56 cm3 cm−3 for the southern part of the Rollesbroich catchment. 
Results slightly deviate for the VGM shape parameters a and n, 
which are estimated to be higher and lower, respectively, than those 
of Qu et al. (2016), who reported a and n values ranging between 

−2.40 and −2.30 cm−1 and between 1.63 and 2.23, respectively. 
Higher uncertainty is found for the saturated hydraulic conduc-
tivity of Soil Material 1, which ranges between 10 and 40 cm d−1. 
It is worth noting that estimates of SHPs using PTFs are usually 
associated with significant uncertainty. Thus, it is preferable to use 
inversely estimated SHPs when the model inversion is well posed 
and the associated uncertainty is properly assessed.

The effect of the parameter uncertainty on the simulated 
water contents and neutron fluxes is shown in Fig. 9, which reports 
the model predictive uncertainty (gray lines) obtained by random 
sampling of 500 solutions from the posterior distribution. The 
model can accurately describe the soil moisture dynamics in the 
three observation depths with limited uncertainty. The quality 
of the fitting is significantly better than that reported by Qu et al. 
(2014), who inversely estimated the SHPs from soil water contents 
measured with a sensor network at 41 locations in the Rollesbroich 
catchment. This error reduction confirms that the use of the scal-
ing factors is a valid approach for this dataset because it results 
in a better description of water f low than the assumption of 

homogeneous soil used by Qu et al. (2014). On the other hand, 
the comparison between simulated and measured aboveground 
neutron fluxes (Fig. 9A) reveals an appreciable deviation. More 
specifically, the coupled model tends to overestimate the variability 
of neutron fluxes. This is particularly evident during August and 
September 2012. The Rollesbroich site is managed grassland with a 
relatively low biomass. Except for an occasional snow cover during 
the winter period, there are no additional transient hydrogen pools 
that have a strong influence on the measured neutron signal. As 
a consequence, such behavior can be partially explained by the 
simplifying assumptions of the COSMIC model, by an imperfect 
neutron flux correction (e.g., for variations due to fluctuations in 
the atmospheric density and humidity or incoming neutrons), and 
by an inadequate calibration of the COSMIC model parameters. 
In such circumstances, two approaches can be recommended:
1.	 Two-Step Sequential Calibration: First, the HYDRUS model 

is preliminarily calibrated against measured data from dif-
ferent locations and depths in the measurement footprint of 
the cosmic-ray probe. Next, the calibrated HYDRUS model 
is coupled with the COSMIC model for the inverse estima-
tion of the COSMIC parameters from the measured neutron 
f luxes. It must be emphasized that the possibility of using 
simulated high-resolution soil moisture profiles instead of a 
few point measurements at different soil depths can increase 
the accuracy of the COSMIC model predictions. In this 
perspective, it may be worth coupling the three-dimensional 
model (e.g., HYDRUS 2D/3D), with the COSMIC model 
to account for the horizontal and vertical soil heterogeneity 
at the field scale (»300 m). The recent work of Gibson and 
Franz (2018) suggested that sparse point measurements of the 
SHPs can significantly improve the description of spatial pat-
terns of SHPs.

2.	 Joint Calibration: The soil hydraulic and COSMIC parameters 
are jointly estimated using the coupled HYDRUS–COSMIC 

Fig. 7. The diagnostic plot of the Affine Invariant Ensemble Sampler (AIES) algorithm for the experimental data analysis scenario showing the inte-
grated autocorrelation time tint against the algorithm step for the soil hydraulic parameters of residual soil water content (qr), saturated soil water 
content (qs), the van Genuchten–Mualem parameters n and a, saturated hydraulic conductivity (Ks), and scaling factors for hydraulic head and hydrau-
lic conductivity (jh1 and jh2, and jK1 and jK2 for Soil Materials 1 and 2, respectively), along with the maximum statistical error (emax) for Scenarios 
(A) E1, (B) E2, and (C) E3.
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model using both measured neutron f luxes and volumetric 
water contents. However, this will increase the dimensionality 
of the inverse problem, which can lead to convergence issues in 
the MCMC analysis.

The joint and marginal posterior distributions of the soil 
hydraulic parameters for Scenario E1 that relies on measured 
aboveground neutron flux are shown in Fig. 10. It is evident that 
the measured neutron f luxes do not provide sufficient infor-
mation to update the prior distributions of jh2, jK1, and jK2, 
which remain almost flat after the MCMC analysis. Indeed, their 
Bayesian credible intervals (Table 5) are only marginally narrower 
than the prior bounds listed in Table 3. A similar but less pro-
nounced behavior is visible for Ks and jh1, although the marginal 
posterior distributions are right skewed, thus indicating a slight 
influence of the measured data on these parameters. It is worth 
noting that the MCMC analysis reveals a highly skewed bivariate 
posterior distribution for the pair of parameters a–Ks. In such cir-
cumstances, the affine invariant properties of the AIES algorithm 
significantly mitigate convergence issues usually encountered in 
traditional MCMC algorithms.

Interestingly, the use of measured neutron fluxes leads to well-
constrained estimates of VGM shape parameters, thus confirming 
the findings of the synthetic modeling scenarios. The confident 
estimation of qs stems from the use of near-saturated water con-
tents, which better constrain the inverse problem. This effect is 
more pronounced for n and qs, while a presents a more platykurtic 
distribution. In particular, the Bayesian credible intervals for qs 
and n range between 0.33 and 0.38 cm3 cm−3 and between 1.10 
and 1.47, respectively, which are slightly larger than those obtained 
in Scenario E3. On the other hand, a ranges between 0.004 and 
0.04 cm−1, thus indicating a tendency to overestimate the soil 
water retention capacity. Indeed, very low values of a are usually 
associated with a high retention capacity and delayed desaturation 
of the porous medium. In such circumstances, simulated water 
content f luctuations are limited and propagated in the calcula-
tion of the fast neutron fluxes. Thus, from a numerical point of 
view, the Bayesian inference process adjusted the SHPs to com-
pensate for other plausible sources of uncertainty (e.g., COSMIC 
model assumptions, COSMIC parameters). Therefore, the results 
for Scenario E1 further confirm the findings for Scenario E3 and 

Fig. 8. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of saturated soil water content (qs), the 
van Genuchten–Mualem parameters n and a, saturated hydraulic conductivity (Ks), and scaling factors for hydraulic head and hydraulic conductivity 
(jh1 and jh2, and jK1 and jK2 for Soil Materials 1 and 2, respectively) for Scenario E3. The isolines and the dashed lines indicate the 12, 39, 68, and 
84% probability levels and the Bayesian credible intervals, respectively. The axis ranges correspond to the parameter bounds reported in Table 3.
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suggest the use of a joint Bayesian calibration of the HYDRUS–
COSMIC model.

This aspect is further investigated in Fig. 11, which shows 
a comparison between measured (black circles) and modeled 
depth-weighted soil water contents. In particular, measured data 
are compared with soil water contents calculated from the CRNP 
using the standard calibration method (Baatz et al., 2014) (a gray 
line in Fig. 11) and predicted using the model with the median 
SHPs from the posterior distribution for Scenario E1 (a black line 
in Fig. 11), respectively. Depth-weighted soil water contents are 
obtained using weights of 0.852, 0.146, and 0.002 at z = −5, −20, 
and −50 cm, respectively, as reported by Baatz et al. (2014). Overall, 
both methods provide a good description of the near-surface soil 
water contents as indicated by low RMSE values. An appreciable 
overestimation of the water content can be observed for both 
methods between August and September 2012, with the magni-
tude being higher for the COSMIC-predicted water contents (a 
black line in Fig. 11), which generally exhibit a lower variability 
than water contents calculated using the standard calibration 
method. Such difference confirms potential approximations in 
the COSMIC modeling assumptions and an imperfect calibra-
tion of the COSMIC parameters, although deviation from the 
measured data is limited.

Figure 12 shows the model predictive uncertainty (gray lines) 
in the simulated neutron fluxes (Fig. 12A) and volumetric water 
contents at three different depths. It is evident that both the dis-
crepancy between measurement and model and the uncertainty 
grow with depth. The model predictive uncertainty only partially 
encompasses the measured data, and the water contents are con-
siderably underestimated at z = −50 cm. This behavior is expected 
because the measured neutron fluxes are mostly informative of 
near-surface water dynamics. Furthermore, the results indicate 
that the variability of water content is underestimated. This is 
particularly visible between June and September 2012 at z = −5 

and −20 cm, and it can be partially explained by the previously 
described underestimation of the shape parameter a .

Overall, this analysis suggests that CRNP data can provide 
reasonable estimates of the effective SHPs at the field scale, which 
can be extremely valuable in land surface hydrological modeling. 
In particular, the VGM shape parameters and the saturated water 
content are successfully inferred from the measured neutron flux, 
thus leading to a coherent simulation of the soil moisture dynam-
ics in the near surface, which is crucial for a proper description of 
the surface energy balance in LSMs (Iwema et al., 2017). The large 
uncertainty observed for Ks can significantly affect simulations of 
overland flow and the partitioning of precipitation into infiltra-
tion and surface runoff, and thus other types of measurements are 
needed to better constrain this parameter. Nevertheless, the large 
footprint of CRNPs represents an important advantage compared 
with classical near-surface point measurements, the information 
content of which can be affected by various sources of uncertainty. 
This aspect is better investigated in the final experimental data 
analysis scenario.

Figure 13 shows the joint and marginal posterior distribu-
tions for Scenario E2 that relies on near-surface water content 
measurements only. A multimodal posterior distribution with 
two peaks is observed for both a and Ks. The examination of 
the joint posterior distribution of the pair a–Ks reveals the exis-
tence of two regions of high probability, one centered around the 
location [log10a = −1.7, log10Ks = 0.5] and another one around 
[log10a = −1.2, log10Ks = 1.3]. While the first region of high prob-
ability is in line with the values obtained for Scenarios E1 and E3 
and thus probably reflects the true SHPs, the latter first region of 
high probability significantly overestimates the shape parameter a . 
Such predictions could be representative of another plausible pore 
system induced by the plowing of the top layer. These sources of 
uncertainty propagate in the credible interval (Table 5), which now 
ranges between 0.01 and 0.11 cm−1, thus indicating poor identifi-
ability of the a parameter. In this view, it must be emphasized that 
aboveground neutron fluxes are less influenced by local sources of 
uncertainty than near-surface point measurements due to their 
footprint and penetration depth.

On the other hand, qs and n are well constrained and in line 
with the values obtained in the previous two scenarios. A signifi-
cant uncertainty is noticeable for the scaling factor jK1, which 
ranges between 1.0 and 11.51, despite being characterized by an 
apparently strong unimodal posterior distribution. In particular, a 
region of high probability is evident around 1.0, followed by a flat 
valley of low probability. Such posterior distributions are mainly 
responsible for the large integrated autocorrelation time observed 
in Fig. 7. Nevertheless, a comparison of the posterior distributions 
of the scaling factors of Soil Materials 1 and 2 confirms that the 
measured water contents at z = −5 cm are mainly informative of 
the soil hydraulic properties of the surface layer. Indeed, the pos-
terior distributions of jh2 and jK2 are very similar to the prior 
distributions, whereas the posterior distributions clearly are much 
smaller for jh1 and jK1.

Table 5. 95% Bayesian credible intervals of the soil hydraulic parameters 
for the three experimental scenarios. The 2.5 and 97.5% quantiles are 
the bounds of the credible intervals.

Parameter†

Scenario

E1 E2 E3

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

qs, cm3 cm−3 0.33 0.38 0.35 0.39 0.36 0.37

log10a , cm−1 −2.40 −1.41 −1.87 −0.93 −1.67 −1.49

n 1.10 1.47 1.14 1.24 1.15 1.18

log10Ks, cm d−1 0.50 2.82 0.50 1.44 0.97 1.18

jh1
1.00 4.32 1.00 2.33 1.00 1.05

jh2
1.27 5.00 1.00 4.35 1.80 2.21

jK1
1.00 18.94 1.00 11.51 1.07 2.63

jK2
1.00 4.78 1.00 4.65 1.00 1.60

† �qs, saturated water content; a and n, shape parameters; Ks, saturated hydrau-
lic conductivity, jh1 and jK1, and jh2 and jK2, pressure head and saturated 
hydraulic conductivity scaling factors for Soil Materials 1 and 2, respectively.
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The propagation of uncertainty in the model predictions 
for Scenario E2 is shown in Fig. 14. It is again evident that the 
underestimation of the soil retention capacity, caused by the low 
inferred values of the shape parameter a , results in lower values 
of the water contents at z = −20 and −50 cm. The reduced reten-
tion capacity propagates in the simulated aboveground neutron 
fluxes, which are significantly overestimated. However, the mag-
nitude of the uncertainty is smaller than that obtained for the 
water contents at deeper soil horizons, which is expected because 

neutron fluxes are mostly influenced by the soil moisture dynam-
ics in the near surface.

As a result of these analyses, a number of conclusions can be 
drawn:

ʶʶ The results for Scenario E3 indicate that it is not possible to 
simultaneously fit the measured neutron f lux and soil water 
content data. This may be related to uncorrected effects of 
aboveground biomass on the measured neutron data or inad-
equate modeling assumptions. In particular, the deviation 

Fig. 10. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of saturated soil water content (qs), the 
van Genuchten–Mualem parameters n and a, saturated hydraulic conductivity (Ks), and scaling factors for hydraulic head and hydraulic conductivity 
(jh1 and jh2, and jK1 and jK2 for Soil Materials 1 and 2, respectively) for Scenario E1. The isolines and the dashed lines indicate the 12, 39, 68, and 
84% probability levels and the Bayesian credible intervals, respectively. The axis ranges correspond to the parameter bounds reported in Table 3.

Fig. 11. A comparison between measured 
(black circles) and modeled (solid lines) 
depth-weighted soil water contents (q). The 
gray and black lines indicate soil water con-
tents calculated from the cosmic-ray neutron 
probes (CRNP) using the standard calibra-
tion method (Baatz et al., 2014) and predicted 
using the model with the median soil hydrau-
lic parameters from the posterior distribution 
from Scenario E1, respectively.
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between measured neutron f luxes and those simulated by 
the calibrated HYDRUS model suggest potential inaccura-
cies in the COSMIC parameters. This could potentially be 
addressed with a two-step sequential or a joint calibration 
of the coupled HYDRUS–COSMIC model.

ʶʶ The use of measured aboveground neutron f luxes led to 
a reasonably confident estimation of the VGM shape 
parameters and the saturated water content. From this 
point of view, the possibility of inversely estimating the 
effective soil hydraulic parameters at the field scale from 
the CRNP data is confirmed. The combination of neutron 
data with other independent types of measurements (e.g., 
soil porosity, saturated conductivity) can further reduce 
the parameter uncertainty.

ʶʶ A comparison of inversion results obtained for near-surface 
volumetric water contents or neutron f luxes revealed that 
the latter are less influenced by typical sources of uncertainty 
associated with land surface management activities (e.g., soil 
tillage), thus leading to more reliable and representative esti-
mates of soil hydraulic parameters.

66Conclusions and Summary
The main goal of this study was to assess the information 

content of cosmic-ray neutron data for the inverse estimation of 
the effective soil hydraulic parameters. An extensive theoretical 
and experimental assessment based on the combination of the cou-
pled HYDRUS–COSMIC model with a Bayesian data analysis 
framework revealed that neutron fluxes could be used effectively to 
estimate the SHPs. In particular, the analysis of both synthetic and 
actual data from homogeneous and heterogeneous soil profiles led 
to a confident estimation of the VGM shape parameters. Moreover, 
the analysis demonstrated that the residual and saturated water 
contents can be successfully inferred from measured neutron 
fluxes if the soil approximately reaches a dry or wet state, respec-
tively. On the other hand, high uncertainty was observed for the 
saturated hydraulic conductivity, which suggests that the joint con-
sideration of CRNP data with independent measurements of this 
parameter may be required. The simultaneous use of both neutron 
flux and water content data resulted in an appreciable reduction 
in uncertainty, in particular for the VGM shape parameters and 

Fig. 13. Joint (below diagonal) and marginal (diagonal) posterior distributions of the soil hydraulic parameters of saturated soil water content (qs), the 
van Genuchten–Mualem parameters n and a, saturated hydraulic conductivity (Ks), and scaling factors for hydraulic head and hydraulic conductivity 
(jh1 and jh2, and jK1 and jK2 for Soil Materials 1 and 2, respectively) for Scenario E2. The isolines and the dashed lines indicate the 12, 39, 68, and 
84% probability levels and the Bayesian credible intervals, respectively. The axis ranges correspond to the parameter bounds reported in Table 3.
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for the saturated hydraulic conductivity. This result opens new 
perspectives to estimate soil hydraulic properties from the combi-
nation of CRNP and other remote sensing techniques. However, 
to have a precise assessment of the benefits of such joint inversion 
for LSMs, it is worth investigating numerically the propagation 
of the uncertainty in values of SHPs using LSMs. In this perspec-
tive, a model-based Bayesian experimental design could be used to 
optimize the location and the number of cosmic-ray probes and 
traditional sensors to minimize the effect of the uncertainty on 
the land surface processes analyzed.

Furthermore, the comparison between the results obtained 
with the use of traditional near-surface point measurements and 
CRNP data indicates that the latter data are less influenced by the 
typical sources of uncertainty induced by land surface management 
activities (e.g., plowing) and lead to a more representative estima-
tion of the soil hydraulic parameters, which is fundamental when 
dealing with land surface hydrological modeling. In particular, the 
shape parameter a , which characterizes the soil retention capac-
ity, was significantly overestimated when inversions were solely 
based on near-surface water content measurements, leading to a 
bimodal posterior distribution representative of another plausible 
pore system induced by former land management activities and 
macropores. On the other hand, the CRNP penetration depth and 
footprint significantly mitigate these issues. Nevertheless, to what 
extent this difference in the estimation of the SHPs is significant 
for practical purposes depends on the type of analysis performed 
by the modeler (e.g., surface runoff, infiltration, solute fluxes) and 
can be clarified only by propagating the estimated uncertainty. In 
this perspective, further studies are encouraged to better assess the 
information content gain of CRNP data in hydrological modeling.

In addition, the analysis presented here suggests that the 
coupled HYDRUS–COSMIC model can be used to detect 
and correct an imperfect calibration of the COSMIC param-
eters. Avery et al. (2016) provided extensive results about the 
correlation between lattice water and the soil clay fraction. The 
relationship reported in this study can be used to better constrain 
COSMIC parameters. Moreover, future research should con-
sider the coupling of the COSMIC model with HYDRUS-3D to 
better account for horizontal and vertical soil heterogeneity at the 
field scale. In this perspective, the use of CRNP rover data could 
improve the description of the spatial patterns of SHPs (Gibson 
and Franz, 2018). A computationally cheap alternative would be 
to use the kriging technique (Brunetti et al., 2017) to interpolate 
the HYDRUS-1D predictions.
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