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Abstract
Multidimensional optical signals are commonly recorded by varying the delays
between time ordered pulses. These control the evolution of the density matrix
and are described by ladder diagrams. We propose a new non-time-ordered
protocol based on following the time evolution of the wavefunction and
described by loop diagrams. The time variables in this protocol allow one to
observe different types of resonances and reveal information about intraband
dephasing not readily available by time ordered techniques. The time variables
involved in this protocol become coupled when using entangled light, which
provides high selectivity and background free measurement of the various
resonances. Entangled light can resolve certain states even when strong back-
ground due to fast dephasing suppresses the resonant features when probed by
classical light.

Keywords: nonlinear spectroscopy, entangled light, pulse shaping

1. Introduction

In coherent nonlinear optical spectroscozpy the applied optical pulses induce a polarization in
the matter system which is then measured. There are two types of bookkeeping representations
for computing an observable (such as the polarization) in a quantum system subjected to time
dependent perturbations. Both are exact and should yield the same final results provided no
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approximations are made. However they offer a very different physical picture and suggest
different types of approximations that lead to different predictions.

In the first representation we follow the evolving density matrix in real time. This
representation is most suitable for impulsive experiments involving sequences of short,
temporally well-separated pulses ranging from NMR to the x-ray regimes [1]. The time
variables used to represent the delays between successive pulses [2] t1, t2, t3, … serve as the

primary control parameters. Spectra are displayed vs the Fourier conjugates Ω̃1, Ω̃2, Ω̃3, … to
these variables. Such signals can be represented by ladder diagrams (see figures 1(b) and 2). We
shall denote this way of displaying the multidimensional signals as the ladder delay scanning
protocol (LAP). The signals with different phase matching directions are distinct when
displayed vs ladder delays. The density matrix further allows for reduced descriptions where
bath degrees of freedom which cause pure dephasing and relaxation processes are eliminated.

Alternatively we can follow the evolving wave function. Rather than keeping track of both
the bra and the ket we can place the entire burden of the time evolution on the ket. In that case
we must use artificial time variables where the ket first evolves forward and then backward in
time, eventually returning to the initial time. This is represented by loop diagrams [3] as is
commonly done in many body theory [4]. This gives a more compact description (fewer terms).
It is harder to visualize impulsive experiments in this language. However it proves most useful
for frequency domain techniques involving long pulses where the time evolution is not
monitored directly [3]. In this picture we give up the full control over time ordering between
pulses. We will denote the delays along the loop as τ1, τ2, τ3, … (see figures 1(a), (c)). By
displaying the spectra vs the Fourier conjugates to the loop times Ω1, Ω2, Ω3 we obtain the loop
delay scanning protocol (LOP).

In this paper we compare the two display protocols for multidimensional spectroscopy in
molecular aggregates with fluorescence detection. Since the two protocols use different time
variables the resulting multidimensional signals obtained by Fourier transforms conjugate to
these variables appear very different and highlight different resonances. This can be exploited
for highlighting desired features in optical signals. We further show some advantages of the
loop representation for describing measurements with quantum light, i.e. entangled broadband
photons which have intermediate time/frequency character. We should emphasize that these
protocols offer two languages for describing the same physics. However the translation is
somewhat tricky making them suitable for different applications. We show how such LOP
signals can be realized experimentally and compare it to the LAP. Narrow exciton resonances
have been predicted recently in two dimensional spectra of aggregates and were attributed to
photon entanglement [39]. We show in contrast that these resonances are unrelated to
entanglement. Instead they are signatures of the LOP and can be observed with classical light.

The utility of each protocol depends on experimental details including e.g. the system
dynamics, bath effects and the specific light field configuration. For instance when the system is
in a pure state and the fields are classical, the loop delays τj, =j 1, 2, 3 which represent

forward and backward time propagation periods of the wave function are the natural
independent variables and it makes sense to adopt their conjugate frequencies for display, thus
using the LOP. If pure dephasing processes due to a bath are added the signal may no longer
factorize into a product of terms each depending on a single delay τj when calculating the

optical response. In this case the ladder variables tj which represent the LAP delays in real time
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and correspond to propagation of a density matrix become more natural since the signal can be
recast as a product of individual terms each depending on a single tj variable. Stochastic or

entangled light fields cause additional coupling between the interaction times imposing that the
signal may not generally be factorized in either protocol since the field correlation functions
depend on products of factors that depend on pairs of times. In that case neither protocol allows
the observed signals to be factorized in a simple way discussed above. The two protocols
highlight different resonances and processes. In the following we demonstrate what type of
information can be extracted from each protocol for Frenkel excitons in a model molecular
aggregate.

We further compare signals obtained with classical vs quantum light (entangled photons).
The LAP and LOP denote the protocols for displaying multidimensional signals. Calculations
performed with either the wavefunction or the density matrix can be displayed using either
protocol. In earlier studies ladder diagrams were denoted as double-sided Feynman diagrams,
and loop diagrams were denoted as close-time-path-loops (CTPL) [3].

We investigate the multidimensional signals in a molecular aggregate obtained by
incoherent two-photon absorption (TPA) detection. Incoherent detection is often more sensitive
than heterodyne as the latter is limited by the pulse duration so there are fewer constraints on the
laser system. In addition the low intensity requirements for biological samples limit the range of
heterodyne detection setups. This have been demonstrated [5–7] even in single molecule
spectroscopy [8]. Historically Ramsey fringes constitute the first example of incoherent
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Figure 1. The pulse sequence for unrestricted LOP [3] (a) and LAP (b). (c) Loop
diagrams for the TPA process with indicated loop delays for the phase cycling selected
the signal with ϕ ϕ ϕ ϕ+ − −ei ( )a b c d . The loop delay variables sj are centered around τ| |j ,

=j 1, 2, 3. s1, s2, s3, τ1, and τ3 are always positive, τ2 can be either positive or negative
depending on whether the chronologically last interaction occurs with c or b. tj,

=j 1, 2, 3 are always positive. (d) Level scheme for the molecular trimer used in our
simulations (for parameters see section 5).



detection [9–11]. Information similar to coherent spectroscopy can be extracted from the
parametric dependence on various pulse sequences applied prior to the incoherent detection
[12, 13]. Possible incoherent detection modes include fluorescence [14–16], photoaccoustic
[17–19], AFM [20–23] or photocurrent detection [24, 25].
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Figure 2. Ladder diagrams for the TPA signal with selected phase ϕ ϕ ϕ ϕ+ − −ei ( )a b c d . Both
loop τj and ladder tj delays, =j 1, 2, 3 are indicated. The transformation between two
is different for each diagram. Time translation invariance implies
ω ω ω ω+ − − = 0b c d . The LOP signal is a sum of all six diagrams whereas the
LAP can be separated into kI , kII and kIII signals (see text).



Quantum spectroscopy which utilizes the quantum nature of light to reveal matter properties
is an emerging field. Entangled photons is one notable example and offer several advantages.
First, the signals scale to lower order in the incoming intensity [26]. The pump-probe signal for
example scales linearly rather than quadratically. This allows to to perform nonlinear
spectroscopy with much lower intensity limiting damage in e.g. imaging applications [26–34].
Second, time-and-frequency entanglement often allows to obtain higher temporal and spectral
resolutions since the two are not Fourier conjugates. Namely, the temporal resolution Δt depends
on the length of the nonlinear crystal, that is, the entanglement time T, while spectral resolution
Δω is determined by the pump envelope. These are independent control variables, not Fourier
conjugates and not bound by the uncertainty ΔωΔ ⩾t 1. We show that entangled photons allow to
observe narrow spectral features even in the limit of fast dephasing where the classical line shapes
are broad. Elaborate pulse shaping techniques that involve standard prisms compressors and
spatial light modulators [35–38] can be used to control the amplitude and phase modulation of
entangled photon pairs necessary for creating the desired pulse sequence. This can be done using
e.g. the Franson interferometer with variable phases and delays in both arms of the interferometer
as proposed in [39]. The beam splitters in two arms allow to create four pulses using a single
entangled photon pair. In the following we do not specify the experimental details of shaping the
pulses, rather we assume a generic sequence of shaped entangled photons.

2. The loop delay scanning protocol (LOP)

We consider a model system of an aggregate described by the Frenkel exciton Hamiltonian

= + ′H H H , (1)0

  ∑ ∑ ∑ϵ
Δ

= + +†

≠

† † †H B B J B B B B B B
2

, (2)
m

m m m
m n

mn m n
m

m
m m m m0

∑= + =′ † † † † †H E t V E t V V V B( ) ( ) , , (3)
m

m m

where H0 is the excitonic part, ϵm are site energies, Jmn are hopping and Δm is an onsite repulsion
(Hubbard type), and Bm is an exciton Pauli annihilation operator at site m (e.g. pigment or
quantum dot). ′H is the dipole interaction with the optical field E in the rotating wave
approximation. E is the electric field operator. The eigenstate of equation (2) form distinct
exciton bands (see figure 1(d)). In the diagonal eigenstate representation the Hamiltonian for the
lowest three manifold of states which are relevant for the present study - ground g, single
excited e and double excited f manifolds (see figure 1(d)) reads

  ∑ ∑ω ω ω= | 〉〈 | + | 〉〈 | + | 〉〈 |H g g e e f f , (4)g
e

e
f

f0

∑ ∑= | 〉〈 | + | 〉〈 |* *†V V e g V f e . (5)
e

ge
e f

ef
,

We consider the following experiment: a sequence of four pulses centered at times Ta, Tb, Tc, and

Td with phases ϕ
a
, ϕ

b
, ϕ

c
, and ϕ

d
[40], given by the electric field = ∑α α

ϕ
=

αE E e
a b c d

i
, , ,

brings

the molecule into its doubly-excite state [41] (see figures 1(a), (b)) and the population of f states is
detected. This can be done by fluorescence →f e or after a rapid internal conversion process the
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molecule can be deexcited from f to e and fluorescence from e to g is then detected. We assume
that the →e g and →f e channels can be distinguished in time or frequency and therefore we
can isolate the TPA contributions. Thus, we define the signal as the sum of populations of states f.

∑Γ ρ Γ=S ( ) ( ), (6)
f

ff

where Γ represents collectively the set of parameters of the incoming pulses. These depend on
the protocol and will be specified later.

The signal (6) for our model is given by the single unrestricted loop diagram in figure 1(c)
(for diagram rules see [3]). a b c d, , , denote the pulse sequence ordered along the loop (not in
real time); a represents ‘first’ on the loop etc. Pulses chronologically-ordered in real time will be
denoted 1, 2, 3, 4 which are permutations of a b c d, , , determined by the time arguments, as
will be shown below. One can scan various delays −α βT T , α β = a b c d, , , , and control the

phases ϕ ϕ ϕ ϕ± ± ± ±
a b c d

. Phase cycling techniques have been successfully demonstrated as a
control tool for the selection of fixed-phase components of optical signals generated by
multiwave mixing [42–46]. Phase cycling can be easily implemented using a pulse shaper by
varying the relative inter-pulse phases, which are cycled over 2 radians in a number of equally
spaced steps [42, 43]. To realize the LOP experimentally the indices a, b, c, d are assigned as
follows: first by phase cycling we select a signal with phase ϕ ϕ ϕ ϕ+ − −

a b c d
. The two pulses

with positive phase detection are thus denoted a, b and with negative phase—c, d. In the a, b
pair pulse a comes first. In the c, d pair pulse d comes first. The time variables in figure 1(c) are
τ = −T Tb a1 , τ = −T Tc b2 , τ = −T Tc d3 . With this choice τ1 and τ3 are positive whereas τ2 can be
either positive or negative. This completely defines the LOP experimentally.

2.1. Pure states and the loop representation

In figure 1(c) two interactions with bra- and two - with ket- promote the system to the state
described by a population density matrix element ρ

ff
. In the following we omit the phase factor

ϕ ϕ ϕ ϕ+ − −ei ( )a b c d , keeping in mind that all the signals contain it. The corresponding signal (6) can be
read-off the diagrams



∫ ∫ ∫ ∫Γ = 〈 〉

× 〈 〉
−∞

∞

−∞

∞

−∞

∞

−∞

∞
† †

† †

S dr dr dr dr E r E r E r E r

V r Vr V r V r

( )
1

( ) ( ) ( ) ( )

( ) ) ( ) ( ) . (7)

a b c d d d c c b b a a

d c b a

4

Here αr , α = a b c d, , , are the interaction times of our four pulses with the aggregate, 
denotes the time ordering operator along the loop [47]. Equation (7) can be recast using the loop
intervals figure 1(c) sj, =j 1, 2, 3


 ∫ ∫ ∫ ∫Γ = 〈 − − − − 〉

× 〈 − − − −
−∞

∞ ∞ ∞ ∞
† †

† †

S dr ds ds ds E r s s E r s E r E r s

V r s s V r s V r V r s

( )
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ). (8)

b d b c b b b a b

b b b b

4
0

1
0

2
0

3 2 3 2 1

2 3 2 1

Time ordering is now explicitly specified by the integration limits and we no longer need the
time ordering operator. In this expression s2 is positive (interaction with pulse b is
chronologically the last). The contribution where the field c is the last is included by taking
the real part .
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One can alternatively recast equation (8) in frequency-domain using the electric field

operators  ∫ ω=α
ω
π

ω
−∞

∞ − − αt E e( ) ( )d i t T
2

( ), α = a b c d, , ,


 ∫ ∫ ∫

∑

τ τ τ
ω
π

ω
π

ω
π

ω ω ω ω ω ω

μ μ μ μ ω ω ω ω θ τ ω ω θ τ

θ τ θ τ

= 〈 + − 〉

× + − + −

×

* *

ω τ ω τ ω ω τ

−∞

∞

−∞

∞

−∞

∞
† †

′
′ ′ ′

† †

− + − +

S
i d d d

E E E E

G G G G

e

( , , )
2 2 2

( ) ( ) ( ) ( )

( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( ), (9)

LOP
a b d

d a b d b a

e e f
ge

a

e f

b

fe

c

eg

d
e d e a f a b f a b

i i i

1 2 3 4

, ,
2 2

( )
1 3

a d a b1 3 2

where the LOP control variables τ = −T Tb a1 , τ = −T Tc b2 , τ = −T Tc d3 are the delays between
pulse centers and ω ω ω ϵ= + − +G H i( ) 1/[ / ]g is a frequency domain Greenʼs function.

μ σ= ·α
α′ ′V

jj jj is the projection of the transition dipole moment ′Vjj , =′ ′j j g e e f, , , , onto the

polarization vector σα of the corresponding field α = a b c d, , , .
In the frequency-domain the field correlation function is defined as a Fourier transform of

the time-domain field correlation function

∫ ∫ ∫ ∫
ω ω ω ω〈 〉

= 〈 〉′ ′ ′ ′ ′ ′ ′ ′ω ω ω ω

† †

−∞

∞

−∞

∞

−∞

∞

−∞

∞
′+ ′− ′− ′ † †

E E E E

dt dt dt dt e E t E t E t E t

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) . (10)

d c b a

i t i t i t i t
d c b a1 2 3 4 3 4 2 1

a b c d1 2 3 4

In equation (9) we used equation (10) and the time translation invariance symmetry which
implies ω ω ω ω+ − − = 0a b c d .

In the absence of a bath, the matter correlation function is given by

∫ ∫ ∫ ∫

∑μ μ μ μ ω ω ω ω θ τ ω ω θ τ+ − + −

= 〈 〉

* *

′ ′ ′ ′ ′ ′ ′ ′ω ω ω ω

′
′ ′ ′

† †

−∞

∞

−∞

∞

−∞

∞

−∞

∞
− ′− ′+ ′+ ′

′ ′
† †

G G G G

dt dt dt dt e V t V t V t V t

( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) . (11)

e e f
ge

a

e f

b

fe

c

eg

d
e d e a f a b f a b

i t i t i t i t
ge e f fe eg

, ,
2 2

1 2 3 4 3 4 2 1
a b c d1 2 3 4

A Fourier transform of (9) with respect to loop delays then gives a 3D signal

∫ ∫ ∫Ω Ω Ω τ τ τ τ τ τ= Ω τ Ω τ Ω τ

−∞

∞

−∞

∞

−∞

∞
+ +S d d d e S( , , ) ( , , ). (12)LOP

i i i
LOP1 2 3 1 2 3 1 2 3

1 1 2 2 3 3

Combining equations (7)–(12) gives

Ω Ω Ω Ω Ω Ω Ω Ω Ω= + − − −′ ′*S S S( , , ) ( , , ) ( , , ), (13)LOP LOP LOP1 2 3 1 2 3 1 2 3

where

 ∫ ∫

∑

Ω Ω Ω
ω
π

ω
π

ω ω ω ω ω ω

μ μ μ μ ω ω

ω Ω ϵ ω Ω ϵ
ω ω

ω ω Ω ϵ
ω ω

ω ω Ω ϵ

= 〈 − − 〉

×
− − + +

+
+ − −

+
+

+ − +

′

* *
−∞

∞

−∞

∞
† †

′

′ ′ ′
† †⎡

⎣⎢
⎤
⎦
⎥⎥

S
d d

E E E E

G G

i i

G

i

G

i

( , , )
2

2 2
( ) ( ) ( ) ( )

( ) ( )

[ ][ ]

( ) ( )
.

(14)

LOP
a d

d d c fg d b fg a a a

e e f

ge

a

e f

b

fe

c

eg

d
e a e d

a d

f a b

a b

f a b

a b

1 2 3 4

, , 1 3 2 2

where the limit ϵ → 0 is understood. One can then evaluate the remaining frequency integrals in
equation (14) for a given light field correlation function using residue calculus.

So far we did not specify the nature of the field, and equations (9)–(14) hold for arbitrary
type of field, be it classical, stochastic or entangled. All relevant field information is contained
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in its four point field correlation function which must be evaluated separately. For classical
coherent fields this function factorizes (in time or frequency) into a product of four amplitudes.
Otherwise for entangled or stochastic fields the correlation function causes a coupling between
two interaction times, which affects the signals.

2.2. Pure dephasing, bath effects and the ladder representation

When the exciton system is coupled to a bath, it can no longer be described by a wavefunction
once the bath is eliminated. To evaluate the loop diagram it must be broken into several ladder
diagrams (for notation see [3]) which represent the density matrix. The unrestricted loop
diagram in figure 1(b) is split into the six ladder diagrams shown in figure 1(c) and the signal (9)

is given by sum of all six terms τ τ τ τ τ τ= ∑ =S S( , , ) ( , , )LOP j LOP
j

1 2 3 1

6 ( )
1 2 3 where

∫τ τ τ
ω
π

ω
π

ω
π

τ τ τ ω ω ω ω ω ω= ˜ −
−∞

∞
S

d d d
D S c c( , , )

2 2 2
( , , ; , , ) ( , , ) . ., (15)LOP

j a b d
LOP

j
a b d

j

a b d
( )

1 2 3
( )

1 2 3

( )

where

τ τ τ ω ω ω θ τ θ τ θ τ= ± ω τ ω τ ω ω τ− + − +D e( , , ; , , ) ( ) ( ) ( ) (16)LOP
j

a b d j
i i i( )

1 2 3 1 2 3
( )a d a b1 3 2

is a display function which depends on the control parameters specific to the chosen
protocol. In θ τ±( )j 2 the ‘minus’ sign applies for diagrams =j 1, 2, 3 and the ‘plus’ sign for

=j 4, 5, 6,

ω ω ω ω ω ω ω ω ω ω ω ω˜ = 〈 + − 〉† †S E E E E R( , , ) ( ) ( ) ( ) ( ) ( , , ), (17)
j

a b d d a b d b a
j

a b d

( ) ( )

and













  
  
  
  
  
  

∑

∑

∑

∑

∑

∑

ω ω ω μ μ μ μ ω ω ω ω

ω ω ω μ μ μ μ ω ω ω ω

ω ω ω μ μ μ μ ω ω ω ω

ω ω ω μ μ μ μ ω ω ω ω ω ω

ω ω ω μ μ μ μ ω ω ω ω ω ω

ω ω ω μ μ μ μ ω ω ω ω ω ω

= − − − −

= − −

= − − −

= + − +

= − + − −

= + − −

* *

* *

* *

* *

* *

* *

−

′
′ ′ ′

−

′
′ ′ ′

−

′
′ ′ ′ ′

−

′
′ ′ ′

−

′
′ ′ ′ ′ ′

−

′
′ ′ ′ ′

R

R

R

R

R

R

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ). (18)

a b d
e e f

ge

a

e f

b

fe

c

eg

d
ge d ef b gf a b

a b d
e e f

ge

a

e f

b

fe

c

eg

d
eg a ef b ee a d

a b d
e e f

ge

a

e f

b

fe

c

eg

d
ge d ef b ee a d

a b d
e e f

ge

a

e f

b

fe

c

eg

d
eg a fe a b d fg a b

a b d
e e f

ge

a

e f

b

fe

c

eg

d
ge d fe a b d ee a d

a b d
e e f

ge

a

e f

b

fe

c

eg

d
eg a fe a b d ee a d

(1) 4

, ,

(2) 4

, ,

(3) 4

, ,

(4) 4

, ,

(5) 4

, ,

(6) 4

, ,

Here we had introduced the Liouville space Greenʼs function

 ∫ω = − 〈 〉αβ
ω

α β

∞
†i dte G t G t( ) ( ) ( ) , (19)i t

B
0

where ρ〈…〉 = …Tr [ ]B B
represents the trace over the bath degrees of freedom.

θ= − −G t i t e( ) ( ) iHt / is the Hilbert space Greenʼs function, θ t( ) is the Heaviside step function.
The bra and the ket evolutions (and the corresponding time variables) are now coupled by
the bath. The effect of couplings between interaction times due to nonclassical field
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can be demonstrated by evaluating the frequency integrals in equation (15) using time-domain
display function in equation (16). The result for entangled photons is given in appendix A.
To see how this effect translates on the mixing of the frequency variables we take a Fourier
transform of equation (15) with respect to loop delay variable τj, =j 1, 2, 3 and obtain the

signal

∫∑Ω Ω Ω
ω
π

ω
π

ω
π

Ω Ω Ω ω ω ω ω ω ω

Ω Ω Ω ω ω ω ω ω ω

= ˜

− − − − ˜* *
= −∞

∞
S

d d d
D S

D S

( , , )
2 2 2

[ ( , , ; , , ) ( , , )

( , , ; , , ) ( , , )], (20)

LOP
j

a b d
LOP

j
a b d

j

a b d

LOP
j

a b d

j

a b d

1 2 3
1

6
( )

1 2 3

( )

( )
1 2 3

( )

where

Ω Ω Ω ω ω ω
ω Ω ϵ Ω ω ϵ Ω ω ω ϵ

= ∓
− − + + − − ∓

D
i

i i i
( , , ; , , )

[ ][ ][ ]
, (21)LOP

j
a b d

a d a b

( )
1 2 3

1 3 2

and minus (plus) sign corresponds to contributions of diagrams 1–3 (4–6). The coupling
between interaction times now translates into a mixing of their conjugate frequency variables
Ωj, =j 1, 2, 3. The 3D signals (20) are given by a 3D spectral overlap between Greenʼs

functions of the matter and field, where the latter are governed by Ω ω ϵ− ±α
−i[ ]j

1 dressed by a

four point field correlation function which selects the field-matter pathways. The response of
the system to classical light fields is given by nonlinear response functions which can be
expressed by sums over various quantum pathways of matter. In the case of quantum field the
response is typically treated in the joint field-matter space to account for back-reaction and
other nonclassical effects of the field. In this case the response is summed over various
quantum pathways in the joint field-matter space. Depending on the field parameters some
quantum pathways can be suppressed or enhanced. The field correlation function controls the
relevant spectral range of the pathways that contribute to the signal. Different integrations
may couple various frequencies ωα, α = a b d, , into a single field-matter Greenʼs function.
Upon evaluating the relevant frequency integrations different Ωj, =j 1, 2, 3 will be coupled.

This will result in various cross-peaks between Ωj variables, as becomes apparent by

comparing a field contribution in equation (21) with various responses in equation (18).
Together with the bath dephasing effects, the relevant spectral width of these cross-peaks
can vary significantly compared to that of the system without bath interacting with
classical fields. Below we will investigate the signatures of the bath and the state of field in
the signals.

3. The ladder delay scanning protocol (LAP)

In standard multidimensional techniques, the time variables represent the pulses as they interact
with sample in chronological order [1]. These are conveniently given by the ladder delays. In
the LOP the time ordering between pulses is maintained only on each branch of the loop but not
between branches. The LAP in contrast involves full time-ordering of all four pulses. The
arrival time of the various pulses in chronological order is < < <T T T T1 2 3 4. The indices
1, 2, 3, 4 are some permutation of a b c d, , , depending on the diagram. The ladder delays are
defined as = −t T T1 2 1, = −t T T2 3 2, = −t T T3 4 3. Ladder diagrams keep track of chronological
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delays. Each ladder diagram will have its own set of relations between tj, =j 1, 2, 3 and pulse

delays −α βT T , α β = a b c d, , , , . One can then use the phase cycling to select the diagrams

shown in figure 2 e.g. = − + +k k k kI 1 2 3, = − +k k k kII 1 2 3 and = + −k k k kIII 1 2 3. This
gives

= +S t t t S t t t S t t t( , , ) ( , , ) ( , , ), (22)LAP LAPk 1 2 3
(2)

1 2 3
(5)

1 2 3I

= +S t t t S t t t S t t t( , , ) ( , , ) ( , , ), (23)LAP LAPk 1 2 3
(3)

1 2 3
(6)

1 2 3II

= +S t t t S t t t S t t t( , , ) ( , , ) ( , , ). (24)LAP LAPk 1 2 3
(1)

1 2 3
(4)

1 2 3III

where

∫ ω
π

ω
π

ω
π

ω ω ω ω ω ω= ˜ −
−∞

∞
S t t t

d d d
D t t t S c.c.( , , )

2 2 2
( , , ; , , ) ( , , ) . (25)LAP

j a b d
LAP

j
a b d

j

a b d
( )

1 2 3
( )

1 2 3

( )

Here the LAP display functions are given by

ω ω ω θ θ θ= ω ω ω ω+ + +D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (26)LAP a b d
i t i t i t(1)

1 2 3 1 2 3
( )b d a b3 1 2

where = −t T Tb a3 , = −t T Ta c2 , = −t T Tc d1 .

ω ω ω θ θ θ= ω ω ω ω− + −D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (27)LAP a b d
i t i t i t(2)

1 2 3 1 2 3
( )b a d a3 1 2

where = −t T Tb c3 , = −t T Tc d2 , = −t T Td a1 .

ω ω ω θ θ θ= ω ω ω ω+ + −D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (28)LAP a b d
i t i t i t(3)

1 2 3 1 2 3
( )b d d a3 1 2

where = −t T Tb c3 , = −t T Tc a2 , = −t T Ta d1 .

ω ω ω θ θ θ= ω ω ω ω ω ω− + − − − +D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (29)LAP a b d
i t i t i t(4)

1 2 3 1 2 3
( ) ( )a b d a a b3 1 2

where = −t T Tc d3 , = −t T Td b2 , = −t T Tb a1 .

ω ω ω θ θ θ= ω ω ω ω ω ω− + − + + −D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (30)LAP a b d
i t i t i t(5)

1 2 3 1 2 3
( ) ( )a b d d d a3 1 2

where = −t T Tc b3 , = −t T Tb a2 , = −t T Ta d1 .

ω ω ω θ θ θ= ω ω ω ω ω ω− + − − + −D t t t t t t e( , , ; , , ) ( ) ( ) ( ) , (31)LAP a b d
i t i t i t(6)

1 2 3 1 2 3
( ) ( )a b d a d a3 1 2

where = −t T Tc b3 , = −t T Tb d2 , = −t T Td a1 . The corresponding time-domain signals (25) for
entangled photons are given in appendix B.

We now take the Fourier transform with respect to ladder delay variable tj, =j 1, 2, 3

∫ ∫ ∫Ω Ω Ω˜ ˜ ˜ = Ω Ω Ω

−∞

∞

−∞

∞

−∞

∞ ˜ + ˜ + ˜
S dt dt dt e S t t t( , , ) ( , , ). (32)LAP

j i t i t i t
LAP

j( )
1 2 3 1 2 3

( )
1 2 3

1 1 2 2 3 3

This gives

∫Ω Ω Ω
ω
π

ω
π

ω
π

Ω Ω Ω ω ω ω ω ω ω

Ω Ω Ω ω ω ω ω ω ω

˜ ˜ ˜ = ˜ ˜ ˜ ˜

− − ˜ − ˜ − ˜ ˜* *
−∞

∞ ⎡⎣
⎤⎦

S
d d d

D S

D S

( , , )
2 2 2

( , , ; , , ) ( , , )

( , , ; , , ) ( , , ) , (33)

LAP
j a b d

LAP
j

a b d

j

a b d

LAP
j

a b d

j

a b d

( )
1 2 3

( )
1 2 3

( )

( )
1 2 3

( )
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where

Ω Ω Ω ω ω ω
Ω ω ϵ Ω ω ϵ Ω ω ω ϵ

Ω Ω Ω ω ω ω
Ω ω ϵ Ω ω ϵ Ω ω ω ϵ

Ω Ω Ω ω ω ω
Ω ω ϵ Ω ω ϵ Ω ω ω ϵ

Ω Ω Ω ω ω ω
Ω ω ω ω ϵ Ω ω ϵ Ω ω ω ϵ

Ω Ω Ω ω ω ω
Ω ω ω ω ϵ Ω ω ϵ Ω ω ω ϵ

Ω Ω Ω ω ω ω
Ω ω ω ω ϵ Ω ω ϵ Ω ω ω ϵ

=
+ + + + + + +

=
+ + − + + − +

=
+ + + + + − +

=
− − + + − + − − +

=
− − + + + + + − +

=
− − + + − + + − +

D
i i i

D
i i i

D
i i i

D
i i i

D
i i i

D
i i i

( , , , , , )
1

[ ][ ][ ]
,

( , , , , , )
1

[ ][ ][ ]
,

( , , , , , )
1

[ ][ ][ ]
,

( , , , , , )
1

[ ][ ][ ]
,

( , , , , , )
1

[ ][ ][ ]
,

( , , , , , )
1

[ ][ ][ ]
.

(34)

LAP a b d
b d a b

LAP a b d
b a d a

LAP a b d
b d d a

LAP a b d
a b d a a b

LAP a b d
a b d d d a

LAP a b d
a b d a d a

(1)
1 2 3

3 1 2

(2)
1 2 3

3 1 2

(3)
1 2 3

3 1 2

(4)
1 2 3

3 1 2

(5)
1 2 3

3 1 2

(6)
1 2 3

3 1 2

We note that the frequency variables ωα, α = a b d, , in equation (34) are the same combinations
that appear in the matter responses in equation (18). This means that for a classical light the
signal will factorize into a product of several Greenʼs functions with uncoupled frequency
arguments Ω̃j, =j 1, 2, 3. Of course this holds only in the absence of additional sources of

correlating the variables caused by e.g. dephasing (bath) or the state of light. In the LOP, in
contrast, the time correlations that result in the frequency mixing are apparent. Different
frequency components ωα, α = a b d, , that enter the Greenʼs function in equation (18) interfere
when convoluted with the same display function equation (21).

4. Classical vs quantum light fields

The state of light that enters the signal via the four-point frequency domain correlation function
of the electric field in equation (17) can mix various frequency variables which arise from the
coupling between the interaction times. In the following we consider the twin photon entangled
state of light and compare it to the classical (coherent) state. Ideal multidimensional techniques
use impulsive fields well separated in time with infinite bandwidth. However as shown in the
following it is crucial to keep the finite bandwidth.

In the case of classical light, the four-point correlation function simply factorizes into a
product of four electric field amplitudes

   ω ω ω ω ω ω ω ω ω ω ω ω〈 + − 〉 = + −* *† †E E E E( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). (35)d a b d b a d a b d b a

Note, that because classical fields do not impose correlations between various interaction times,
either LOP or LAP can be used. In the following simulations we assume Lorentzian pulses and
set  ω ω ω ω σ= 〈 〉 = − +E A i( ) ( ) /[ ]p p1 .

Twin photons are created via type-I spontaneous parametric down conversion of a classical
pump pulse with frequency ω2 p into a pair of photons with central frequencies ω1

(0) and ω2
(0). For

the degenerate process ω ω ω= = p1
(0)

2
(0) the quantum state of light is given by the wave function
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∫ψ
ω
π

ω
π

Φ ω ω| 〉 = | 〉ω ω
−∞

∞
† †d d

a a
2 2

( , ) 0 , (36)1 2
1 2 1 2

where ω
†a is the photon creation operator in the frequency mode ω and Φ ω ω( , )1 2 is the two-

photon amplitude

Φ ω ω ω ω= + + + ↔ω ω ω ω− − +
ω ω ω ω− −⎡⎣ ⎤⎦A T T e T T( , ) ( )sinc ( ), (37)p e e

i T i T
e e1 2 1 2 2 1 2 2 1 2

p p
p

e
p

e1 2
1

2 1
2

2 2

where ω ω ω σ= − +A A i( ) /[ 2 ]p p p0 is the Lorentzian classical pump pulse envelope. The

variables = −T L v L v/ /e p1 1 and = −T L v L v/ /e p2 2 represent the time delays between the various

beams acquired in the course of the propagation through the crystal with length L. Here, vp, v1,2

denote the group velocity of the pump pulse, or beams 1 and 2, respectively. The entanglement
time = −T T Te e e2 1 along with the pump bandwidth σp are the two key parameters that define the

degree of correlation between twin photons. The four-point field correlation function in
equation (17) is now given by

ω ω ω ω ω ω Φ ω ω ω ω Φ ω ω〈 + − 〉 = + −*† †E E E E( ) ( ) ( ) ( ) ( , ) ( , ). (38)d a b d b a a b d d a b

It is important to note that since the four-point correlation function of the entangled twin state
factorizes into a product of two two-point correlation functions of the form ω ω〈 〉E E( ) ( )b a it
only couples different interaction times within the bra- (Ta, Tb) and within the ket- (Tc, Td). This
means that the coupling between the interaction times in this case occurs on one branch of the
loop and interaction times on different branches are not coupled. LOP thus offers a natural
scanning protocol for quantum spectroscopy with entangled twin-state of light.

5. Simulations

We have simulated the signal (20) using the LOP protocol and compared it with the standard
fully time ordered LAP protocol given by equation (32) for a model trimer described by the
Frenkel exciton Hamiltonian (2). We first present LOP results for classical and entangled light.
We then provide the reference by demonstrating the LAP results. The parameters used are
ϵ = 1.518 eV1 , ϵ = 1.530 eV2 , ϵ = 1.526 eV3 , =J 10 meV12 , =J 2 meV13 , =J 3 meV13 . All
three chromophores have the same transition dipole = =V V V1 2 3. In the eigenstate basis the
Hamiltonian (4) has parameters ω = 1.512 eVe1

, ω = 1.525 eVe2
, ω = 1.537 eVe3

,

ω = 3.044 eVf1
, ω = 3.048 eVf2

, and ω = 3.056 eVf3
. We focus on the three exciton bands:

g, e, and f. In our model we have two sources of dephasing. First intraband dephasing which is
associated with transition within excited state band, e.g. −e e. Second interband dephasing that
governs the transitions between e.g single and double excited states −e f .

5.1. LOP signals

Below we present two-dimensional signals obtained by setting one time interval to zero.
Figure 3 shows the simulated Ω τ Ω=S ( , 0, )LOP 1 2 3 for a trimer using classical light (top row)
and entangled light (mid and bottom row). This signal reveals the intraband dephasing rate γ ′ee

that enters through the resonance Ω Ω ω γ− = −′ ′iee ee1 3 . We indicate the corresponding states
rather than transitions, since in the loop all the transitions are calculated using the ground state
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as reference, thus →e e gj j . This follows from the bookkeeping of the wavefunction. We first

discuss the left column for which we set the dephasing rate γ =′ 1 meV
ee

. Figure 3(a) shows the
result for a classical light with narrow intraband dephasing γ =′ 1 meV

ee
. It gives a diagonal

cross peak = ′e e and one pair of weak side peaks parallel to the main diagonal at
=′e e e e( , ) ( , )2 3 . The remaining two pairs of side peaks at =′e e e e( , ) ( , )1 2 and =′e e e e( , ) ( , )1 3

are too weak to be seen. Figure 3(d) shows the signal obtained using entangled photons with
short entanglement time =T 10e fs. Panels a and d are very similar. The situation changes as the
entanglement time is increased further. For =T 100e fs in figure 3(g) we observe two additional
strong side cross peak pairs with =′e e e e( , ) ( , )1 3 and =′e e e e( , ) ( , )1 2 . The weak peak at

=′e e e e( , ) ( , )2 3 is significantly enhanced as well. Note that the visibility and intensity of the
side peaks is enhanced for longer entanglement time. This can be explained as follows: the long
entanglement time together with the broad pump bandwidth σp defines a parameter regime

where the entanglement manifests with positive frequency correlation, i.e. the difference
between frequencies of entangled photons has a narrow distribution [48]. In this case the narrow
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Figure 3. Ω τ Ω=S ( , 0, )LOP 1 2 3 equation (20) for a molecular trimer using classical light
- top row, entangled light with =T 10e fs - middle row and =T 100e fs - bottom row.
Intraband dephasing γ =′ 1 meV

ee
- left column, 3 meV - middle column and 5 meV -

right column. γ γ γ= = = 4 meV
eg fe fg

, σ = 20 meVp , ω =2 3.0621 eVp . All other

parameters are given in the beginning of section 5.



resonance occurs for Ω Ω−1 3 and the inverse of the entanglement time is an effective
bandwidth of the pulse envelope which oscillates as a function of frequency (sinc-function).
The oscillating envelope enhances or suppresses certain peaks and the longer entanglement time
provides the narrow bandwidth which implies a higher frequency resolution. The other two
columns in figure 3 repeat these calculations for larger dephasing rates γ ′ee

. If the intraband
dephasing γ ′ee

is broader then the classical result depicted in figure 3(b) shows broadening of the

main = ′e e peak and the side peaks are significantly suppressed compared to those shown in
figure 3(a). Further increase of γ ′ee

and use of classical fields leads to further broadening of the
main diagonal peak whereas the side peaks completely disappear (see figure 3(c)). The same
argument applies to the entangled fields with short dephasing time shown in figures 3(e)–(f).
Broader dephasing rate covers the side peaks and only the main diagonal peak = ′e e remains
strong and broad. For long entanglement time, intraband dephasing leads to broadening and
enhancement of the side peaks. For instance in figure 3(g) the side peaks at =′e e e e( , ) ( , )1 3 are
quite weak. Same peaks are broadened and enhanced in figure 3(h) and even more so in
figure 3(i). Thus, the display Ω Ω( , )1 3 in LOP allows for effective determining of the intraband
dephasing for distinct pair of e and ′e states even if intraband dephasing is broad. The advantage
of having cross peaks compared to diagonal resonances is that they allow to distinguish
individual states even if ω ′ee is degenerate for several pairs of states e and ′e . If interband
dephasing γ

eg
which determines the longitudinal dimension of the cross peak is broad, the cross-

peaks will remain distinct if properly engineered entangled light is used for probing these states.
Note that the above parameter regime is different from the one studied in [34] where a narrow
pump bandwidth and short entanglement time give rise to negative frequency correlations and a
narrow sum frequency resonance [48]. That regime will be discussed in section 6.

We now turn to interband dephasing. The LOP allows to extract the detailed information
about γ

fe
. Figure 4 depicts Ω Ω τ =S ( , , 0)LOP 1 2 3 . Figure 4(a) shows the signal using classical

light at narrow dephasing rate γ = 1 meV
fe

. The spectra are dominated by the resonance

Ω Ω ω γ− = − ife fe2 1 . There are total nine possible transitions between three states →e fj k
,

=j k, 1, 2, 3. For the small dephasing rate as in figure 4(a) one can resolve individual cross
peaks and extract the information about the interband dephasing. As the dephasing rate is
increased, excitation by classical light does not allow to resolve individual transitions but one
can rather see only well resolved group of peaks as per figure 4(b). Further increase the
dephasing rate makes the spectra broad and poorly resolved (see figure 4(c)). The short
entanglement time used here provides extra selectivity over the distribution of double-excited
states via Ω2 as follows from figure 4(d). Unlike the classical case where selectivity over Ω2 and
Ω1 is the same and is determined by the interband dephasing γ γ∼

eg fg
, in the entangled case, the

time constraint due to Te provides better selectivity over Ω2. As the dephasing rate is increased
(figure 4(e)) the Ω1 resolution decreases similarly to the classical case whereas the selectivity
over Ω2 remains fixed. The same tendency holds if the dephasing is further increased as per
figure 4(f). This allows to resolve individual quantum pathway that contain a single f and single
e state and the dephasing γ

fe
. Note, that the resolution of Ω2 is eroded for the longer

entanglement time. Therefore the selectivity in both Ω1 and Ω2 is eroded quite rapidly with
increase of γ

fe
as illustrated in figures 4(g)–(i).
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5.2. LAP signals

As we did for the LOP we show 2D signals obtained by setting one time interval to
zero. Figure 5 depicts the LAP signal Ω ω Ω˜ = − ˜S t( , 0, 2 )LAP p1 2 3 (32) (we plotted it versus

ω Ω− ˜2 p 3 for a better comparison with figure 3). As we did for the LOP we investigate the

effect of intraband dephasing γ ′ee
. We set γ =′ 1 meV

ee
. Unlike the LOP which contains

contributions from all six diagrams in figure 2, LAP allows to distinguish between the kI , kII and
kIII contributions. Figure 5(a) shows the kI signal for the narrow intraband dephasing

γ =′ 1 meV
ee

. It is dominated by two resonances for Ω ω˜ ≃ eg1 , ω ω−2 p fe, and Ω ω˜ ≃ fe3 ,

ω ω−2 p eg. The kII signal shown in figure 5(b) is dominated by a cross-peak at

Ω Ω ω ω σ γ˜ + ˜ = − − +′ ′i2 ( )p ee p ee1 3 . Note, that unlike the LOP, in the case of LAP the width

of the ′ee resonance is affected by the pump pulse bandwidth σp and the resonance is broadened
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Figure 4. Ω Ω τ =S ( , , 0)LOP 1 2 3 equation (20) for a molecular trimer using classical light -
top row, entangled light with =T 10e fs (middle row) and =T 100e fs (bottom row).
Interband dephasing γ = 1 meV

fe
(left column), 2 meV (middle column), and 4meV

(right column). γ γ γ= = =′ 10 meV
eg fg ee

. All other parameters are the same as in figure 3.



as can be seen from figure 5(b). The same applies to kIII . For comparison with the LOP we plot
the sum of all three techniques in figure 5(d). It resembles kII and kIII and shows that for the same
parameters compare to LOP, we get significantly broader resonances and thus, information
about intraband dephasing cannot be effectively extracted from this display mode. As shown
below it can be done from the Ω Ω= ˜ ˜t( 0, , )1 2 3 display. Unlike the LOP where entanglement at
long times Te plays a crucial role, LAP does not carry extra information about intraband
dephasing and essentially gives similar spectra to classical light. Slight changes in peaks
intensities can be observed at long entanglement times in kII and kIII signals (see figures 5(j), (k))
compared to short entanglement time in figures 5(f), (g) and classical light in figures 5(b), (c).

As demonstrated above, displaying the LAP signal vs Ω Ω˜ = ˜t( , 0, )1 2 3 does not allow to
extract the intraband dephasing γ ′ee

since the spectra are broadened by the pulse bandwidth (see
figure 5). However we can extract the intraband dephasing by plotting kI signal (equation (22))

and kII (equation (23)) if displayed versus Ω Ω= ˜ ˜t( 0, , )1 2 3 —see figure 6. Note, that here we
depicted the ticks along the axes corresponding to the relevant transitions keeping track of the
density matrix. The spectra are dominated by Ω ω γ˜ = −′ ′iee ee2 resonance. The kIII signal does
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Figure 5. LAP kI , kII , kIII signals equations (22)–(24) Ω Ω˜ = ˜S t( , 0, )k 1 2 3j
, =j I II III, ,

for molecular trimer using classical light (top row), entangled light with =T 10e fs
(middle row) and =T 100e fs (bottom row). The four columns represent kI , kII , kIII , and

+ +k k kI II III as indicated. Intraband dephasing γ =′ 1 meV
ee

. All other parameters are
the same as in figure 3.



not show any features in the vicinity of Ω ω˜ = ′ee2 so it is not shown. For the narrow dephasing
γ ′ee

the spectra of kI signal shown in figure 6(a) shows strong diagonal = ′e e resonance and

weak cross peaks at =′e e e e( , ) ( , )1 2 and =′e e e e( , ) ( , )2 3 . The peak at =′e e e e( , ) ( , )1 3 is
significantly weaker than the other two. Similar spectra is obtained for kII signal (figure 8(b))
and the total +k kI II signal—figure 6(c). Using entangled light with short entanglement time

=T 10e fs, the spectra are virtually identical to the classical light as shown figures 6(d)–(f)
compared to figures 6(a)–(c). The interesting effect occurs for the long entanglement time as in
the case of LOP. Figure 6(g) shows the side peaks ≠ ′e e in rephasing signal kI are suppressed,
whereas the nonrephasing contribution kII in figure 6(h) has enhanced side peaks including

=′e e e e( , ) ( , )1 3 resonance that becomes well pronounced. The total +k kI II signal depicted in
figure 6(i) shows the suppressed side resonances.

For comparison with the LOP and with figure 4 that reveals interband dephasing γ
fe
we plot

the LAP signal versus Ω Ω˜ ˜( , )2 3 in figure 7. For a narrow dephasing γ = 1 meV
fe

the spectra

reveals nine Ω ω γ˜ = − ife fe3 peaks as shown in figure 7(a). For broader dephasing γ = 2 meV
fe
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Figure 6. Left column: LAP signal Ω Ω= ˜ ˜S t( 0, , )k 1 2 3I
(equation (22)) for molecular

trimer using classical light (top row), entangled light with =T 10e fs (middle row) and
=T 100e fs (bottom row). Middle column: same for kII—equation (23), right column:

same for the +k kI II signal. The intraband dephasing is γ =′ 1 meV
ee

. All other
parameters are the same as in figure 3.



(figure 7(b)) and γ = 4 meV
fe

(figure 7(c)) the spectra are broadened and various peaks overlap.

When using entangled light the short entanglement case with =T 10e fs is very similar to the
classical light as can be seen by comparing figures 7(d)–(f) with figures 7(a)–(c). Unlike spectra
in figures 3–6, longer entanglement time does not provide any benefit. Rather it makes various
peaks suppressed compared to the classical case as can be seen in figures 7(g)–(i).

6. The interplay of entanglement and scanning protocols in two-dimensional signals

It follows from figures 3 and 5 that entanglement is not necessary to reveal the narrow intraband
dephasing γ ′ee

. The narrow resonances can be observed with classical light if displayed using the
LOP as shown in figure 3(d) with the proper choice of field parameters. The LAP on the other
hand cannot reveal the narrow dephasing irrespective of entanglement, as shown in figure 5.

2D spectra of a model dimer with classical and entangled light were calculated recently in
[39]. Narrow resonances found in that work were attributed to photon entanglement. However our
analysis shows that these resonances are solely connected with the scanning protocol and are

New J. Phys. 16 (2014) 033013 K E Dorfman and S Mukamel

18

Figure 7. LAP Ω Ω= ˜ ˜S t( 0, , )k 1 2 3III
signal equation (24) for molecular trimer using

classical light (top row), entangled light with =T 10e fs (middle row) and =T 100e fs
(bottom row). Interband dephasing γ = 1 meV

fe
(left column), 2 meV (middle column),

and 4 meV (right column). All other parameters are the same as in figure 4.



unrelated to entanglement. Figure 8 displays the signals calculated using our approach for the same
model dimer parameters of [39]. The LOP spectra for classical and entangled light are compared in
the left column. The corresponding LAP spectra are shown in the right column. We see that
entanglement makes no difference in this parameter regime (the two rows are virtually identical).
However the scanning protocol does as seen by the two columns. The LOP signals are narrow and
clearly resolve the e1 and e2 states whereas the corresponding LAP signals are broad and featureless.

For more in depth comparison we now describe the signals calculated in [39] using our
terminology. In that work the entangled LOP spectrum (bottom row of their figure 8, our
figure 8(c)) was compared with the classical LAP spectrum (bottom row of their figure 6
corresponding to our figure 8(b)). In [39] the difference was attributed to entanglement effects.
Our results show that the difference is solely due to the different scanning protocol (LAP/LOP)
and is unrelated to entanglement. Note that the LAP yields three different signals that can be
distinguished by the choice of phase, whereas the LOP combines all six contributions into one
signal. Furthermore, in order to recover the expressions in equations (21)–(23) and (24)–(29) of
[39] using our model of entangled light we had to take continuous limit for entangled case
σ → 0p with = =T T 0e e1 2 and the impulsive limit σ → ∞p in the case of classical light, which

corresponds to two completely different parameter regimes. For a consistent comparison of the
classical vs entangled light we used in figure 8 the impulsive limit for all four signals.
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Figure 8. Left column: Ω τ Ω=S ( , 0, )LOP 1 2 3 equation (20) for the molecular dimer
model of [39] calculated using classical light (a) and entangled light (c). Right column:
same for Ω Ω˜ = ˜S t( , 0, )LAP 1 2 3 equation (32). The dimer has a twist angle 75o,

coupling strength +400 −cm 1 and monomer transition energy 3.77 rad −fs 1. Population
relaxation rates γ γ= =′ ′

−0.03 fs
ee e e

1, dephasing rates γ =′
−0.04 fs

ee
1,

γ γ γ γ= = = =′ ′
−0.08 fs

eg e g fe fe
1, γ = −0.07 fs

fg
1.



The LOP protocol can be generally realized using a pulse shaper as explained earlier.
Using our analysis we conclude that the Franson interferometer proposed in [39] shall provide a
convenient method for realizing this protocol experimentally.

7. Narrowband pulses; mixed time/frequency-domain scans

So far we investigated multidimensional signals obtained by scanning various time delays
between pulses. This time-domain protocol makes sense if the pulses that interact with the
system are relatively short. For entangled light this implies that frequencies of the modes
corresponding to the twin photons are positively correlated [49]. We demonstrated that this is
crucial especially for the long entanglement time where the narrow difference-frequency-
resonances can be observed in the spectra of Ω τ Ω=S ( , 0, )LOP 1 2 3 , Ω Ω˜ = ˜S t( , 0, )LAP 1 2 3 ,

Ω Ω τ =S ( , , 0)LOP 1 2 3 , and Ω Ω= ˜ ˜S t( 0, , )LAP 1 2 3 signals.
In our recent work [34] we have investigated the effects of entanglement on the control of

the transport properties in molecular aggregates. Narrow fg resonances were observed when the
entangled pair has been generated by narrowband pump and entanglement time is short. In this
case narrow pump along with short entanglement time implies negative frequency correlation
(the sum of two frequencies is narrowly distributed). This is a different parameter regime than
used in section 5. In the following we consider narrowband pump pulse and fg resonances with
entangled photons. In this case we can adopt mixed time-and-frequency domain scanning,
where we scan one time delay between pulses and the pump frequency ωp. Again we compare

the LOP and LAP protocols.
Figure 9 depicts the corresponding time-and-frequency domain signal. Figure 9(a)

shows the signal Ω Ω τ ω= =S eV( , 3.11 , 0, )LOP p1 2 3 LOP signal which contains three distinct

New J. Phys. 16 (2014) 033013 K E Dorfman and S Mukamel

20

Figure 9. Top row: Ω Ω τ ω= =S eV( , 3.11 , 0; )LOP p1 2 3 equation (20) for entangled

light with =T 10e fs (a), LAP Ω Ω ω= ˜ = ˜S t eV( 0, 3.11 , ; )pk 1 2 3I
equation (22) (b), same

for kII signal equation (23) (c), same for kIII signal equation (24) (d), same for the
+ +k k kI II III signal (e). Bottom row: same as the top row but for =T 100e fs. The

pump bandwidth is σ = 0.8 meVp , interband dephasing γ = 2 meV
fg

. All other

parameters are the same as in figure 4.



peaks corresponding to ω ω γ= − i2 p fg fg
resonances for short entanglement time =T 10e fs.

As the entanglement time is increased, the peaks become weaker as shown in
figure 9(f). For comparison we depict the corresponding series of LAP signals

Ω Ω ω= ˜ = ˜S t eV( 0, 3.11 , ; )pk 1 2 3j
where =j I II III, , . For short entanglement time the kII

signal contains three well pronounced narrow peaks similar to LOP as seen from figure 9(c),
whereas resonances in kI and kIII signals are not as clearly seen. For longer entanglement time,
all sharp features of LAP spectra become fuzzy (see figures 9(g)–(j)) and even in the case of kII ,
ωfg resonances become suppressed. This is consistent with earlier results for narrowband pump

pulse [34].

8. Conclusions

Multidimensional optical signals are obtained by subjecting the system to sequences of short
pulses and generating and analyzing correlation plots between different resonances generated
during controlled delay periods. These allow to visualize such an event as a e.g. cross-peak in
the space of two frequency variables that are related to Fourier transform of two different delay
intervals. Most commonly, the delays are between consecutive chronologically-ordered pulses
that can differ by their frequencies, polarizations and wavevectors. Such signals can be naturally
described by the density matrix and represented by ladder diagrams. We had presented a new
protocol based on the wavefunction description that involves both forward and backward time
evolution. This protocol uses different types of delays represented by loop diagrams and can be
realized experimentally by phase cycling. This new type of bookkeeping of field-matter
interactions that is not based on chronologically time ordered pulses suggests a new way of
monitoring and displaying various resonances. We demonstrated it for two photon absorption
experiments with incoherent fluorescence detection in a molecular aggregate with classical and
entangled light.

Broadband entangled light with long entanglement time allows to selectively reduce the
background and reveal certain resonances because of intrinsic frequency correlations due to
entanglement. The resonances remain well resolved even for the short dephasing which
typically is a source of strong background for the signals measured with classical fields. In
particular, entangled light and the loop-based protocol can reveal intra and interband dephasing
in the single and double exciton manifold not possible by classical light. We demonstrated
better-resolved signals compared to those obtained with standard ladder scanning protocol.
Entangled light causes correlations of the various time delay variables thus providing new
spectroscopic windows and physical picture of the system dynamics. The current formalism can
be readily applied for an arbitrary state of light including stochastic, squeezed or other quantum
and classical states. The signals are given by sums of products of four-point correlation
functions of the electric field and matter which can be calculated for arbitrary pulse shapes and
bandwidths including temporally overlapping pulses. The necessary Liouville space Greenʼs
functions can be evaluated by taking bath effects into account, e.g. pure dephasing,
inhomogeneous broadening, transport and other dynamical bath effects.
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Appendix A. Time-domain signals using LOP with entangled photons

Here we evaluate the frequency integrals in equation (15). The time-domain LOP signal then
reads


  

 

 

   

∑τ τ τ
σ

μ μ μ μ θ τ τ τ

θ τ τ ω σ ω ω γ σ

ω γ ω γ

θ τ τ ω σ ω ω γ σ
ω γ ω γ

σ τ τ ω σ ω σ ω γ ω γ

ω γ

=

× − − − − − −

× + +

+ − − + − − +
× + +

+ − − − − + − +

× +

* *

ω σ τ τ

ω σ τ τ

′
′ ′ ′

− −

′ ′

− + −

′ ′

′ ′

⎡⎣

⎤⎦

S

e i i

i i

e i i

i i

i i i i

i

( , , )
1

2
( ) ( ) ( )

( ) ( 2 ) (2 ( ),

, )

( ) ( 2 ) (2 ( ),

, )

2 ( ) ( 2 ) ( 2 ) ( , ,

) , (A.1)

LOP
p e e

ge

a

e f

b

fe

c

eg

d
ef ge

i
gf p p p fe fe p

fe fe e g e g

i
gf p p p fe fe p

fe fe e g e g

p gf gf p p gf p p eg eg fe fe

e g e g

(1)
1 2 3 4

,
2 1 3

2 1
[2 ]( )

1 2
[2 ]( )

2 1

p p

p p

2 1

1 2


 

 


 


 


   
 


∑τ τ τ
σ

μ μ μ μ θ τ θ τ τ

θ τ τ τ τ τ ω σ

ω ω γ σ ω γ ω ω γ γ σ

θ τ τ τ τ τ ω σ
ω ω γ σ ω γ ω ω γ γ σ

θ τ τ τ ω σ
ω γ ω ω γ σ ω γ

σ τ τ τ τ τ τ τ τ
ω σ ω σ

ω γ ω γ ω γ

= −

× − + − − −
× − − − + − − − −

+ − − − − +
× − − + + − − − +

− − − −
× − − + + +
+ − − + − −
× − − − +

× − + +

* *

ω σ τ τ τ

ω σ τ τ τ

ω σ τ

′
′ ′ ′

− − +

′ ′

− + − +

′ ′

−

′ ′

′ ′

⎡⎣

⎤⎦

S

e i

i i i

e i

i i i

e i

i i i

i i

i i i

( , , )
1

2
( ) ( ) ( )

( ) ( ) ( 2 )

(2 ( ), , 2 ( ))

( ) ( ) ( 2 )

(2 ( ), , 2 ( ))

( ) ( ) ( 2 )

( , 2 ( ), )

2 [ ( ) ( ) ( ) ( )]

( 2 ) ( 2 )

( , , ) , (A.2)

LOP
p e e

ge

a

e f

b

fe

c

eg

d
ee

i
ef gf p p

p fe fe p fe fe p fe fg e g p

i
ef gf p p

p fe fe p fe fe p fe fg e g p

i
eg gf p p

eg eg p eg eg p e g e g

p ef gf eg gf

gf p p gf p p

eg eg fe fe e g e g

(2)
1 2 3 4

,
1 2 3

2 1 3
[2 ]( )

1 3

1 3 2
[2 ]( )

1 3

2
[2 ]

1 3

1 3 2 1 3 1 3 2

p p

p p

p p

2 1 3

1 3 2

2

New J. Phys. 16 (2014) 033013 K E Dorfman and S Mukamel

22






  


  


    


  


    


  


  


    


  


    


∑τ τ τ
σ

μ μ μ μ θ τ θ τ θ τ

θ τ τ τ τ ω σ

ω ω γ σ ω γ ω γ

θ τ τ τ τ ω σ
ω ω γ σ ω γ ω γ

σ τ τ τ τ ω σ ω σ
ω γ ω γ ω γ

θ τ τ τ ω σ
ω γ ω ω σ γ ω γ

σ τ τ τ ω σ ω σ
ω γ ω γ ω γ

θ τ τ τ τ τ τ ω σ
ω ω γ σ ω γ ω ω γ γ σ

θ τ τ τ τ τ τ ω σ
ω ω γ σ ω γ ω ω γ γ σ

σ τ τ τ τ τ τ ω σ ω σ
ω γ ω γ ω γ

θ τ τ τ τ ω σ
ω γ ω ω γ σ ω γ

σ τ τ τ τ ω σ ω σ

ω γ ω γ ω γ

=

× − − − +
× − − + + +

− − − −
× − − − + +
− − − − − +
× − + +

+ − −
× − − + + +
+ − − − +
× − + +

+ − − − − +
× − − + + − − − +

+ + − − − −
× − − − + − − − −
+ + − − − − − +
× − + +

− − − −
× − − + + +
− − − − − +

× − + +

* *

ω σ τ τ

ω σ τ τ

ω σ τ

ω σ τ τ τ

ω σ τ τ τ

ω σ τ

′
′ ′

− + −
′

′ ′

− −
′

′ ′

′

′ ′

−
′

′ ′

′

′ ′

− + − −
′

′ ′

− + −
′

′ ′

′

′ ′

−
′

′ ′

′

′ ′

⎡⎣

⎤⎦

S

e i

i i i

e i

i i i

i i

i i i

e i

i i i

i i

i i i

e i

i i i

e i

i i i

i i

i i i

e i

i i i

i i

i i i

( , , )
1

2
( ) ( ) ( )

( ) ( ) ( ) ( 2 )

(2 ( ), , )

( ) ( ) ( ) ( 2 )

(2 ( ), , )

2 ( ) ( ) ( ) ( 2 ) ( 2 )

( , , )

( ) ( ) ( ) ( 2 )

( , 2 ( ), )

2 ( ) ( ) ( ) ( 2 ) ( 2 )

( , , )

( ) ( ) ( ) ( 2 )

(2 ( ), , 2 ( ))

( ) ( ) ( ) ( 2 )

(2 ( ), , 2 ( ))

2 ( ) ( ) ( ) ( 2 ) ( 2 )

( , , )

( ) ( ) ( ) ( 2 )

( , 2 ( ), )

2 ( ) ( ) ( ) ( 2 ) ( 2 )

( , , ) , (A.3)

LOP
p e e

ge

a

e f

b

fe

c

eg

d

i
ef ge gf p p

p fe fe p fe fe e g e g

i
ef ge gf p p

p fe fe p fe fe e g e g

p gf ef ge gf p p gf p p

eg eg fe fe e g e g

i
eg ge gf p p

eg eg p eg p eg e g e g

p gf eg ge gf p p gf p p

eg eg fe fe e g e g

i
ef ee gf p p

p fe fe p fe fe p fe fg e g p

i
ef ee gf p p

p fe fe p fe fe p fe fg e g p

p gf ef ee gf p p gf p p

eg eg fe fe e g e g

i
eg ee gf p p

eg eg p eg eg p e g e g

p gf eg ee gf p p gf p p

eg eg fe fe e g e g

(3)
1 2 3 4

,
1 2 3

1 2
[2 ]( )

1 3

2 1
[2 ]( )

1 3

2 1 1 3

2
[2 ]

1 3

2 1 3

1 3 2
[2 ]( )

1 3 3

2 3 1
[2 ]( )

1 3 3

2 3 1 1 3 3

2
[2 ]

1 3 3

2 1 3 3

p p

p p

p p

p p

p p

p p

1 2

2 1

2

1 3 2

2 3 1

2

τ τ τ τ τ τ= *S S( , , ) ( , , ), (A.4)LOP
(4)

1 2 3
(1)

3 2 1

τ τ τ τ τ τ= *S S( , , ) ( , , ), (A.5)LOP
(5)

1 2 3
(2)

3 2 1

τ τ τ τ τ τ= *S S( , , ) ( , , ), (A.6)LOP
(6)

1 2 3
(3)

3 2 1

where

 ω ω ω Φ ω ω Φ ω ω ω ω= ˜ ˜ + −*( , , ) ( , ) ( , ). (A.7)a b d a b a b d d

and

Φ ω ω ω ω Φ ω ω= + ˜A( , ) ( ) ( , ). (A.8)a b p a b a b

New J. Phys. 16 (2014) 033013 K E Dorfman and S Mukamel

23



Appendix B. Time-domain signals using LAP with entangled photons

Evaluating the frequency integrals in (25) we obtain for the time-domain LAP signal
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