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Mechanisms of TSC-mediated Control of Synapse
Assembly and Axon Guidance
Sarah Knox1., Hong Ge1., Brian D. Dimitroff1,2, Yi Ren1,2, Katie A. Howe1,2, Andrew M. Arsham2, Mathew C. Easterday1,2, Thomas P. Neufeld2,
Michael B. O’Connor2, Scott B. Selleck1,2*

1 The Developmental Biology Center, Department of Pediatrics, The University of Minnesota, Minneapolis, Minnesota, United States of America, 2 The
Developmental Biology Center, Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, Minnesota, United
States of America

Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes,
TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral
disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched
in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have
examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and
photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval
neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function
compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor
complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In
the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting
Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance
abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-
mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest
that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.

Citation: Knox S, Ge H, Dimitroff BD, Ren Y, Howe KA, et al (2007) Mechanisms of TSC-mediated Control of Synapse Assembly and Axon
Guidance. PLoS ONE 2(4): e375. doi:10.1371/journal.pone.0000375

INTRODUCTION
Mutations in TSC1 or TSC2 result in tuberous sclerosis, a human

syndrome characterized by formation of benign tumors, or hamar-

tomas, and a range of neurological and behavioral anomalies,

including epilepsy and autism. While neurological dysfunction in

patients with tuberous sclerosis is clearly linked to structural brain

abnormalities in the central nervous system [1], recent work has

provided evidence that TSC1/2 may affect neural development by

altering neuronal morphology and function. Loss of TSC function

produces changes in dendritic architecture of hippocampal

neurons and altered synaptic properties [2]. Rats heterozygous

for TSC2 mutations show disruption of hippocampal physiology,

including long term potentiation, a measure of synaptic plasticity

[3]. Mutations in the Drosophila ortholog of TSC2, gigas, have also

been shown to produce ectopic axon terminations in addition to

the normal projections of sensory neurons [4,5]. It is unclear to

what degree neurological deficits associated with tuberous sclerosis

complex result from disruptions of cytoarchitecture in specific

brain regions or alterations in synaptic function directly.

TSC1 and TSC2 encoded proteins form a complex that regulates

a small GTP-binding protein, Ras homolog enriched in brain

(Rheb), promoting its endogenous GTPase activity and thereby

limiting Rheb signaling. Rheb in turn controls the activity of

Target of Rapamycin (TOR), a serine-threonine kinase. The

TSC-Rheb-TOR pathway is a critical determinant of growth

during development, regulating a number of cellular functions

including translation, mRNA turnover, protein stability, and actin

organization [6]. It is responsive to growth factors, such as insulin

and insulin-like growth factors (ILGFs), and also serves as

a nutrient sensor, thus integrating numerous signals related to

cell and tissue growth. TOR plays a pivotal role in this signaling

pathway, receiving regulatory inputs from Rheb and affecting

downstream targets via two distinct molecular complexes. Tor

complex 1 (TORC1) includes Raptor and mLST8, and regulates

translation via phosphorylation of S6 kinase (S6K) and 4E-binding

protein (4EBP). Tor complex 2 (TORC2) includes Rictor in

addition to Tor and mLST8; in both yeast and mammalian cells

TORC2 influences the actin cytoskeleton. Tor complex 1, but not

Tor complex 2, is inhibited by the anti-proliferative and immuno-

suppressant compound rapamycin, emphasizing that TORC1 and

2 are pharmacologically separable entities. The distinct molecular

outputs of TORC1 and 2 have also suggested that TORC2 may

be the primary regulator of cell polarity and morphology. It is not

known which functions of TSC-Rheb-TOR in the nervous system

are mediated by either or both of the two Tor kinase-containing

complexes, and if pharmacological intervention in tuberous

sclerosis complex patients should best be directed at TORC1,

with agents such as rapamycin, or if TORC2-specific agents will

also be important.

Academic Editor: Hugo J. Bellen, Baylor College of Medicine, United States of
America

Received November 29, 2006; Accepted March 19, 2007; Published April 18, 2007

Copyright: � 2007 Knox et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: This work was supported by NIH contract grant number GM54832-09 to
SBS, the Martin Lenz Harrison Endowment to SBS, and NIH grant RO1 GMO62509
to TN. MBO is an investigator with the Howard Hughes Medical Institute.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: selle011@umn.edu

. These authors contributed equally to this work.

PLoS ONE | www.plosone.org 1 April 2007 | Issue 4 | e375



The fruit fly Drosophila has proven to be an important system for

understanding the molecular mechanisms of Tsc-Rheb-Tor

signaling during development [7]. As in vertebrates, this signaling

cascade is a critical regulator of growth. All of the principal

elements of this pathway are represented in Drosophila, including

molecular components upstream of Tsc, such as phosphatidyino-

sitol-3 kinase (Pi3K), Akt, Pten and the insulin receptor ortholog,

InR. Likewise, molecules that convey the signal downstream of

Tsc, including Rheb, Tor, and S6k serve critical roles in the fruit

fly. Mutations affecting all these genes have been identified in

Drosophila, as well as transgenes that can convey gain-of-function

effects. We have used these molecular and genetic tools to explore

the function of Tsc-Rheb-Tor signaling in two fundamental

processes essential to nervous system development, synapse

formation and axon guidance.

The Drosophila neuromuscular junction has served as a powerful

model for identifying the molecular components required for

assembly and plasticity of a defined synapse [8]. This glutamater-

gic synapse must respond to greater than a 100-fold increase in the

size of the muscle target from first to third instar larval stages.

Physiological responses of this synapse are well-characterized using

single-cell recording techniques, and morphological development

with specific molecular markers has been extensively described.

We have used this synapse to determine the role of gain or loss of

Tsc-Rheb-Tor signaling on synapse assembly and function.

The visual system of Drosophila is equally well described in both

molecular and genetic terms [9]. Photoreceptors show stereotyped

projections to the brain, and genes required for photoreceptor

axon projection and termination have been identified in numerous

screens. Methods for making somatic cell mosaics have proven

particularly powerful in determining what molecules are required

in photoreceptors or in cells along their trajectory into the brain.

Previous studies have shown that retinal clones mutant for the

Drosophila Tsc2 ortholog gigas generated enlarged ommatidia with

increased numbers of synaptic contact sites in the optic lamina

[10]. We have taken advantage of this system to examine Tsc-

Rheb-Tor requirements for photoreceptor axon guidance and

formation of functional synaptic contacts in the brain.

Our results establish that either gain or loss of signaling via the

Tsc-Rheb-Tor pathway affects synapse development at the

Drosophila NMJ. Ectopic activation of the Tsc-Rheb-Tor signaling

pathway produced profound synaptic overgrowth with commen-

surate increases in synaptic function. We show that Rheb-mediated

enhancement of synaptic function depends upon bone morphoge-

netic protein (BMP) signaling mediated by wishful thinking (wit),

a type II receptor. In the visual system, increased Tsc-Rheb-Tor

signaling produced cell autonomous defects in photoreceptor axon

guidance. Both genetic and pharmacological evidence suggest that

TORC2 serves critical functions in both synapse development and

axon guidance in Drosophila. Axon guidance phenotypes produced

by null mutations in Pten and Tsc1 are distinct, demonstrating that

regulation of signaling by these two tumor suppressor genes are not

functionally equivalent in the nervous system.

RESULTS

Activation of Tor signaling produces synaptic

growth and enhanced synaptic function
Tsc1/2 affect growth by inhibiting Rheb, a small GTP-binding

protein that in turn governs Tor activity. Overexpression of Rheb

activates the pathway independent of Tsc gene function [11–13].

We have used the Gal4-UAS system to overexpress Rheb in either

the motoneuron or the muscle of the Drosophila third instar larval

neuromuscular junction (NMJ), a well-characterized glutamatergic

synapse [8] that shows dynamic growth during larval develop-

ment. Ectopic expression of Rheb in the motoneuron of the third

instar larval NMJ using a pan-neuronal Gal4 line (elav-Gal4)

resulted in more than a doubling of synapse size, measured by the

number of synaptic boutons/muscle area (Figure 1A–C, quantified

in D). Similar results were seen using a motoneuron-specific OK6-

Gal4 line (data not shown). We found no evidence of motoneuron

axon misrouting at this level of Rheb activation; the motoneuron

axon follows the normal trajectory and synapses at the correct

location on muscle 6 and 7(data not shown). Indeed, elav-

Gal4.UAS-Rheb animals are viable, indicating this degree of

pathway activation is considerably more mild than loss of Tsc1 (see

below). Expression of Rheb selectively in muscle (G14-Gal4.UAS-

Rheb), while producing enlargement of muscle cells, did not

increase the proportional size of the synapse (bouton number/

muscle area, Figure 1D). Activation of Tor by overexpression of

Pi3K in the motoneuron also produced an enlarged synapse, but

to a lesser degree than overexpression of Rheb (Figure 1C, D).

Enlargement of the NMJ in Drosophila is not always associated

with an electrophysiologically competent synapse. For example,

highwire mutants display large NMJs but markedly compromised

synaptic function [14,15]. We therefore assessed the electrophys-

iological behavior of the NMJ in animals overexpressing Rheb in

the motoneuron. This synapse showed nearly a doubling of the

quantal content, a measure of the number of synaptic vesicles

released per motoneuron firing (Fig 1I). The amplitude of the

excitatory junctional potential (EJP), the voltage change in the

muscle elicited by a suprathreshold stimulation of the motoneuron,

also increased significantly compared to control synapses

(Figure 1E, F). Mini-excitatory junctional potentials (mEJPs) are

depolarizations of the muscle that result from spontaneous

neurotransmitter release and provide a measure of vesicular

fusion. While the mEJP frequencies of Rheb overexpressing animals

showed no significant change (Figure 1G), the mEJP amplitudes

were lower than matched controls (Figure 1H). In all, activation of

Tor signaling via overexpression of Rheb produced an expanded

synapse that was fully functional.

Reduction of Tor signaling produces a small synapse

with compromised function
To determine if reduced Tsc-Rheb-Tor signaling compromises

synapse growth and function we overexpressed Tsc1 and Tsc2 in

the motoneuron, or compromised Rheb activity using a combina-

tion of hypomorphic Rheb alleles previously shown to cause

reductions in cell size and number as well as S6k activity [11].

Overexpression of UAS-Tsc1/Tsc2 has been shown to limit growth

mediated by Rheb [11–13], and we observed that Tsc1 and 2

overexpression in the motoneuron reduced synapse size compared

to controls (Figure 2A, B, quantified in D). Consistent with this

finding, Rheb hypomorphic mutant larvae showed a significantly

reduced number of boutons per unit muscle area compared to

heterozygous controls (Fig 2C, D). The NMJs of these animals also

revealed significant changes in synaptic function. mEJP frequen-

cies in Rheb mutant animals were half that of controls (Fig 2E, G),

and EJP amplitudes were significantly reduced (Figure 2F). We

also saw a reduction in the quantal content of Rheb mutants

(Figure 2I), while mEJP amplitude showed no significant change

(Figure 2H). Thus, reducing Tor activity by either of two

mechanisms, overexpression of Tsc1/2 or partial loss-of-function

mutations in Rheb, compromised synapse morphological develop-

ment and function. Electrophysiology of hypomorphic Tor mutants

showed a reduction in mEJP frequency similar to what we saw for

Rheb mutants (data not shown).

Tsc-Tor and Neural Development
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Rapamycin does not inhibit synapse growth

mediated by overexpression of Rheb

To evaluate if Rheb overexpression-mediated synapse expansion

takes place via known growth regulatory pathways, we grew larvae

from hatching to the third instar larval stage on rapamycin-

containing food. Rapamycin has been shown to block growth

mediated by TORC1 in Drosophila, and we used a concentration

that produced clear developmental delay [16]. Culturing larvae

bearing elav-Gal4 and UAS-Rheb+ transgenes on rapamycin reduced

Figure 1. Activation of the Tor pathway produces synaptic growth and enhanced physiological function. The morphology of the third instar larval
NMJ was visualized with the presynaptic marker anti-cysteine string protein (CSP) and confocal microscopy. Images shown are stacks of 20 or more
optical sections. Neuronal (elav-Gal4) expression of either Rheb (B) or Pi3K (C) increased the size of the synapse compared to control animals bearing
the elav-Gal4 transgene alone (A). Numbers of synaptic boutons/muscle area are quantified in D. Expression of either UAS-Rheb (n = 41) or UAS-Pi3K
(n = 41) produced a significant increase in the number of boutons/muscle area compared to controls (n = 44), while expression of UAS-Rheb in the
muscle (driven by G14-Gal4, n = 18) produced a reduction. Neuron-specific expression of Rheb also produced electrophysiological changes at the
NMJ, determined by intracellular recordings from abdominal muscle 6 in third instar larvae. The amplitude of the EJP was significantly increased in
animals expressing UAS-Rheb (n = 21) compared to controls with elav-Gal4 alone (n = 12). Examples of EJP voltage traces are shown in E, and mean EJP
values are quantified in F. Quantal content, a measure of the number of synaptic quanta released in a single firing of the motoneuron, was nearly
doubled by neuron-directed expression of Rheb compared to controls (I). Mini-EJP amplitude was decreased in these animals (H), while mEJP
frequency showed no significant change (G). In this and all subsequent figures, *** denotes p-values less than 0.00005 using a student t-test
comparison with controls, ** denotes p-values less than 0.005, and * denotes p-values less than 0.05. The scale bar is 50 microns in panel A.
doi:10.1371/journal.pone.0000375.g001
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overall growth, including muscle size, but did not suppress the

synaptic enlargement measured either by the number of synaptic

boutons/muscle area or the number of motoneuron branches

(Figure 3A–C, quantified in D, E). These findings show that Rheb-

mediated synaptic growth did not require TORC1 activity,

implicating TORC2 and its regulation of the actin cytoskeleton

as serving critical functions in synaptic growth control. In-

terestingly, culturing elav-Gal4 control larvae (without the UAS-

Rheb transgene) on rapamycin produced both an increase in the

number of boutons per unit muscle area and an in increase in

motoneuron branching (Figure 3D, E). This raises the possibility

that blocking the activity of TORC1 with rapamycin indirectly

influences the activity of other Tor complexes.

The Tsc-Rheb-Tor pathway regulates translation largely by

controlling S6k [11–13]. Rheb activation of Tor produces

phosphorylation and activation of S6k. The control of translation

via S6k represents but one component of regulation affected by

this pathway and is molecularly distinct from Tsc-Rheb-Tor-

mediated control of the actin cytoskeleton. To evaluate the

contribution of S6k to synapse growth we examined the NMJs of

Figure 2. Rheb activity is required for normal synapse assembly. Panels A–C show anti-CSP staining of larval NMJs in a control animal (A, elav-Gal4
driver alone), an animal bearing elav-Gal4.UAS-Tsc1, UAS-Tsc2 (B), or a Rheb partial loss of function mutant (C). Reduction of Rheb function produced
by either neuron-directed expression of Tsc1 and Tsc2 (n = 22) or mutation of Rheb (n = 40) significantly reduced synapse size compared to controls
with elav-Gal4 alone (n = 44) or animals heterozygous for a Rheb mutation (n = 17), as measured by the number of synaptic boutons/muscle area (D).
Panel E shows sample EJP traces for wild-type and Rheb mutant NMJs, as well as baseline recordings from these preparations showing the size and
frequency of mini-EJPs. Panels F, G, and I show reductions in EJP amplitude, mini-EJP frequency, and quantal content for Rheb mutant synapses
(n = 29) compared to wild-type controls (n = 10). Mini-EJP amplitude did not show a significant change (H). The scale bar in A is 50 microns.
doi:10.1371/journal.pone.0000375.g002

Tsc-Tor and Neural Development
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animals bearing a null mutation in S6k. S6k mutants are small,

with a reduced muscle surface area compared to controls. The

synapse size, however, as measured by the number of boutons per

unit muscle area, is not reduced (data not shown). These findings

contrast with the effects of Rheb mutations or Tsc1 and Tsc2

overexpression (Figure 2), but are consistent with the finding that

rapamycin does not suppress synapse overgrowth (Figure 3).

Together, these results suggest that TORC1 and S6k do not

contribute significantly to the proportional growth of the NMJ.

Rheb-mediated changes in synapse function require

the BMP-signaling receptor encoded by wishful

thinking
Growth factor-mediated signaling, including both Wingless (Wg) and

BMP pathways, is important for normal NMJ growth in Drosophila.

Animals bearing mutations in wishful thinking (wit), a gene encoding

a BMP type II receptor, show a very small NMJ with dramatically

compromised synaptic function [17–19]. To determine the relation-

ship between Rheb-regulated synaptic growth and BMP-mediated

synapse assembly we tested the ability of Rheb overexpression to

rescue the synaptic growth defect of wit mutants. While Rheb+

expression in the motoneuron was able to restore the number of

synaptic boutons to wild-type levels in wit mutant larvae, the number

of boutons was significantly less than with Rheb overexpression

alone (Figure 4A–E). Rheb overexpression modestly increased mini

EJP frequency of wit mutants (Figure 4G), but showed no capacity to

rescue either quantal content or EJP amplitudes (Figure 4F–I),

therefore wit is clearly required for most Rheb-directed effects on

synapse function. While these results do not establish the nature of

the communication between Tor-Tsc signaling and the BMP

pathway, it does demonstrate that an intact BMP system is necessary

for Rheb-directed changes in synapse function.

Tsc-Rheb-Tor signaling is critical for axon guidance

in the visual system
Another fundamental aspect of neural development is the correct

specification of axon pathfinding and synapse formation with the

correct targets. The Drosophila visual system offers a powerful

experimental model for assessing the function of a signaling system

in axon guidance. To evaluate the function of the Tsc-Rheb-Tor

signaling pathway in axon guidance we generated genetic mosaic

animals where mutant photoreceptor neurons project to a pheno-

typically wild-type brain. In the fruit fly Drosophila, each retinal

sensory unit, or ommatidium, is comprised of eight photorecep-

tors, R1-8. In the third instar larval brain, R1-6 project to the first

optic ganglion, the lamina, and terminate to form a discrete plexus

where synapses will form later in development (Figure 5A). R7 and

R8 project to a deeper level in the brain, the medulla, forming

a discrete set of projections seen in both larval and pupal brains. In

40h pupae the R7 and R8 projections terminate in distinct layers

Figure 3. Rapamycin does not block Rheb-mediated synapse growth. Panels A–C show anti-CSP staining of NMJ synaptic boutons, demonstrating
that the TORC1 inhibitor rapamycin does not block synapse growth in control animals or in larvae with neuron-directed expression of Rheb (elav-
Gal4.UAS-Rheb). Panels D and E provide quantification of bouton numbers/muscle area and numbers of motoneuron branches, respectively, for
elav-gal4 controls (n = 44), animals with neuronal expression of Rheb (n = 41), control animals treated with rapamycin (n = 26), and Rheb expressing
animals treated with rapamycin (n = 29). The scale bar is 50 microns.
doi:10.1371/journal.pone.0000375.g003
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in the medulla, producing a highly regular and stereotyped pattern

(Figure 5E). Loss of Tsc1 function in the retina produces an

enlarged eye disc with an increased number of photoreceptors

[20–22]. Axon projections from Tsc1 mutant photoreceptors in the

brains of third instar larvae and pupae showed severe axon

guidance abnormalities (Figure 5B, F, F9, quantified in Table 1). In

third instar larvae, R1-6 termination at the lamina plexus is

disorganized, producing an irregular termination zone (compare

Figure 5A to 5B). R7/R8 terminations within the larval medulla

are also abnormal (Figure 5B, arrowhead). At the 40 hr pupal

stage we observed gaps in the R7/R8 layers with large axon

bundles, or fascicles, that projected past their appropriate

termination points (Figure 5F, F9).

To evaluate the degree of pathway activation mediated by pan-

neuronal expression of UAS-Rheb, which we used above to evaluate

the role of Tor signaling at the NMJ, we examined photoreceptor

pathfinding in elav-Gal4.UAS-Rheb larvae and pupae. These

animals survive to adulthood and show disruptions in photore-

ceptor projections, but to a significantly lesser extent than found in

Tsc1 mosaic animals (see Table 1). In elav-Gal4.UAS-Rheb pupal

Figure 4. Rheb-mediated synapse expansion and physiological function is BMP-signaling dependent. Anti-CSP staining of synaptic boutons
(panels A–C) shows the effects of wit on synapse growth (B), and the effects of neuron-directed expression of Rheb on wit mutant NMJs (C) compared
to wild-type (A). Synapse size, measured by either the number of boutons/muscle area (D) or the number of motoneuron branches (E), is dramatically
reduced in wit mutants (n = 20) compared to wild-type (n = 12), and is partially rescued by neuron-directed expression of Rheb (elav-Gal4.UAS-Rheb,
n = 24). Reductions in EJP amplitudes (F), mini-EJP amplitudes (H), and quantal content (I) mediated by loss of wit (n = 8) are not rescued by neuron-
directed expression of Rheb (n = 16) (n = 10 for wild-type). The decrease in mini-EJP frequency of wit mutants, a measure of spontaneous vesicle
release, is rescued to a significant degree by expression of Rheb in the motoneuron (G). The scale bar represents 50 microns.
doi:10.1371/journal.pone.0000375.g004
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brains, abnormal bundles of axons that penetrate into deeper

brain structures were found, but this phenotype was markedly less

severe than in Tsc1 mosaic animals (Figure 5G, G9, Table 1). Close

inspection of R7 and R8 endings in the medulla revealed

individual photoreceptor axons growing past the correct termina-

tion site (Figure 5G inset). R1-6 endings in the larval brain also

show irregularities, but the lamina plexus is less disrupted than in

Tsc1 mosaics (Figure 5C). These findings indicate that the degree

of pathway activation achieved with elav-Gal4.UAS-Rheb is

markedly less than produced by loss of Tsc1. Moreover, these

results suggest that there is a continuum of axon pathfinding

abnormalities with different levels of pathway activation.

Figure 5. Photoreceptor axon projection defects associated with increased Tor signaling. (A–D) Dorsal-posterior views of third instar optic lobes
stained with MAb24B10 to visualize photoreceptor projections. (A) Mitotic clones in an FRT82B control background show proper termination of
photoreceptor axons R1-6 at the lamina plexus (LP), and termination of photoreceptors R7 and R8 in the medulla (Med). (B) Tsc129 mutant axons
terminate at incorrect positions above and below the lamina (arrowheads) and produce a broadened lamina plexus. (C) Neuronal expression of Rheb
creates axon termination defects similar to those seen in Tsc1 mosaics (D) Ptendj189 mutant photoreceptors leave gaps and holes (arrowhead) in the
lamina plexus, which is broader and noticeably ‘‘peaked.’’ The medulla contains axon projections which are thicker and much longer than in controls
(arrow). (E–H9) Dorsal view of optic lobes from 40h pupae stained with MAb24B10. E9–H9 are lower optical planes of the optic lobes shown in E–H,
respectively. (E, E9) Control photoreceptors R7 and R8 show two distinct layers of termination in the medulla (labels), and are arranged in a highly
regular pattern (arrowhead). (F) Animals with Tsc129 mutant photoreceptors show severe disruption of the R7 and R8 termination layers. Instead of
terminating at the correct positions, the axons fail to de-fasciculate, forming dense bundles (arrowheads) that project beyond the medulla. (G, G9)
Neuron-directed expression of Rheb causes axon bundles to project beyond the medulla in a fashion similar to Tsc1 mosaics (arrowheads), but the
phenotype is much less severe. (G, inset) Individual Rheb-overexpressing axons show an intermediate termination defect, stopping several microns
beyond their normal targets (arrowheads in inset). (H) Ptendj189 mutant axons exhibit gaps and collapses in the R7/R8 termination zone (arrowhead).
Thick axon bundles can be seen that bypass their usual stopping points and then loop back to terminate at other locations in the R7/R8 layers
(arrows). (H9, F9) Axon bundles in Ptendj189 mosaics are not as densely packed as those of Tsc129 mosaics (arrowheads), but are still disorganized. All
scale bars are 50 microns.
doi:10.1371/journal.pone.0000375.g005
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Pten, another negative regulator of cell growth and proliferation,

encodes a phosphatase that converts the lipid signaling molecule

phosphatidylinositol 3,4,5 triphosphate (PIP3) to PIP2, an inactive

form, thus antagonizing PI3K activation of the TOR pathway. Like

Tsc1, Pten retinal mosaics show eye overgrowth and precocious

differentiation [23–27]. To determine if disruptions of Pten function

affect axon guidance, we generated mosaic animals. Pten mutant

photoreceptor projections showed disorganization of axon termini in

the third instar larval brain and were notable for a misshapen and

concave lamina plexus with a large number of gaps (Figure 5D,

quantified in Table 1). At the pupal stage, Pten mutant projections

showed significantly less severe defects than photoreceptors bearing

a Tsc1 null mutation (Figure 5H, H9 and Table 1), with fewer

projections failing to stop at the normal medulla termination sites.

The penetrance of pathfinding, defasciculation, and termination

defects in 40h pupae was lower in Pten than in Tsc1 null mutant

photoreceptors projecting to a wild-type CNS (Table 1). In sum, Pten

and Tsc1 mutant photoreceptor projections show distinct patterns of

photoreceptor axon guidance defects, despite the fact that these two

inhibitors of Tsc-Rheb-Tor signaling have similar influences on cell

size, growth, and differentiation [20–22,24–26,28].

We also observed distinct effects of Tsc1 and Pten retinal mosaics

on the differentiation of lamina neurons and visual system glia,

detected with anti-Dachshund and anti-Repo antibodies, re-

spectively (Figure S1). Pten mutant retinal projections produced

an abnormally large lamina not seen in Tsc1 mosaics (Figure S1A–

C). In both Pten and Tsc1 mosaics visual system glia were found in

the brain in roughly normal positions (Figure S1D–F), although

some disorganization was evident in brains receiving Tsc1 mutant

photoreceptor projections. It is possible that this disruption of glial

architecture may partially contribute to the axon projection defects

observed in Tsc1 mutants.

To evaluate the effects of reduced Tor signaling, we examined

axon guidance in animals bearing hypomorphic mutations in Tor

and Rheb, as well as a null allele of S6k, a key downstream target of

TORC1. In all three of these mutants, mild axon projection

defects were observed (Figure 6A–F, Table 1). Third instar larvae

had irregular laminas and abnormally thick projections to the

medulla (Figure 6A–C, arrowheads). In 40 h pupae, R7 and R8

terminations were largely normal, but there were projections

which misrouted and failed to terminate correctly (Figure 6D–F,

Table 1). Genetic mosaic analysis of Rheb mutant photoreceptor

projections showed the same phenotypes, demonstrating that

normal levels of Tor-Tsc signaling in the retina are required for

proper photoreceptor targeting (data not shown). These findings

establish that reductions in Tor-Tsc signaling also produce axon

guidance defects, although quite mild in comparison to activation

of the pathway achieved by loss of Tsc1 function. However, only

the S6k mutants are null in these experiments, and we cannot

therefore fully assess the contributions of Tor or Rheb to axon

guidance compared to Tsc1.

To determine if the functional relationships critical for growth

control are also in effect for axon guidance, we conducted genetic

epistasis experiments between Tsc1 and both Tor and S6k. Tsc1

mosaic pupae show severe axon guidance abnormalities and Tsc1

mutant animals do not survive to the pupal stage; in contrast,

animals bearing both a Tsc1 mutation and a hypomorphic Tor

allele survived to pupal stages and showed only modest axon

guidance abnormalities in larval and pupal brains (Figure 6G, H,

Table 1). The gross disruptions of R7/R8 terminations in the

medullas of 40h Tsc1 mosaic pupae were almost completely

rescued by the presence of a hypomorphic allele of Tor. Genetic

mosaics with Tsc1 Rheb double mutant chromosomes also showed

dramatic rescue of photoreceptor axon guidance defects (data not

Table 1. Axon guidance defects in animals with altered Tsc-Rheb-Tor signaling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Percent of optic lobes affected)

Incorrect Terminations

3rd instar larvae
Thick
LP

Gaps
in LP

LP
Peaked

Long
R7/8

Gaps
in Med.

Above
LP

Below
LP In Med.

Tsc129 (n = 58) 70 41 7 5 31 45 52 72

Ptendj189 (n = 38) 24 100 79 63 29 58 68 95

Rheb3M2/26.2 (n = 22) 68 55 0 0 41 32 18 36

TorA948V (n = 12) 17 17 0 8 0 0 17 33

S6kl-1 (n = 49) 29 41 2 0 2 10 14 4

TorA948V Tsc129 (n = 14) 21 29 0 0 7 7 0 0

S6kl-1 Tsc129 (n = 23) 65 83 0 0 70 43 17 43

wild-type +Rap (n = 80) 19 13 0 0 9 21 14 13

Tsc129 +Rap (n = 60) 76 54 2 6 59 46 71 63

40-hour pupae Pathfinding
Defects

De-fasciculation
Defects

Termination
Layer Defects

Tsc129 (n = 60) 100 100 100

elav-Gal4.UAS-Rheb (n = 23) 83 43 39

Ptendj189 (n = 73) 25 30 8

Rheb26.2 (n = 80) 36 3 19

S6kl-1 (n = 32) 28 9 25

TorA948V (n = 20) 35 0 10

TorA948V Tsc129 (n = 25) 40 4 16

*Tsc129, Ptendj189, and Rheb26.2 are eyFLP mosaics; all others are mutants. LP - lamina plexus; Med. - medulla; Rap - rapamycin
doi:10.1371/journal.pone.0000375.t001..
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shown). In contrast, S6k null mutations did not ameliorate the Tsc1

axon projection defects in the larval brain, and both the lamina

plexus and medulla projections were highly disordered (Figure 6I,

Table 1). These findings demonstrate that Tor and Rheb, but not

S6k, are critical components of the photoreceptor axon guidance

signaling system downstream of Tsc1.

In order to evaluate if the growth control functions of Tsc-

Rheb-Tor signaling are important for axon guidance, we used

rapamycin to inhibit the abnormal growth produced by loss of

Tsc1 function. Feeding animals with rapamycin between hatching

and the third instar larval stage blocked the retinal cell growth and

proliferation defects of Tsc1 mutant photoreceptor mosaics. This

was evident in both the overall size of the developing retina and

the size of the photoreceptor cell bodies (Figure 7A–C). While the

growth defects of Tsc1 mosaics were rescued by rapamycin

treatment, photoreceptors from these animals still showed severe

axon guidance abnormalities in the third instar larval brain, with

an irregular and disrupted lamina plexus, as well as disorganized

projections to the medulla (Figure 7E, Table 1). Treatment of

wild-type controls with rapamycin produced only mild defects in

the lamina plexus (Figure 7D, Table 1) supporting the hypothesis

that Tsc1-mediated regulation of axon guidance operates largely

via a rapamycin-insensitive function of Tor. We noted that the

excessive growth of Pten mutant retinas was not rescued by

rapamycin treatment, in contrast to the effects of this TORC1

inhibitor on Tsc1 mosaics. While the growth and differentiation

phenotypes of Pten and Tsc1 mutant retinas are comparable, the

difference in their rapamycin responses highlights how disruption

of signaling by these two regulators is distinct.

DISCUSSION

Tsc-Rheb-Tor signaling in neural development
The Tsc-Rheb-Tor pathway is critical for integrating a variety of

signals that govern cellular and organismal growth. Inappropriate

activation of the pathway also leads to severe neurological and

behavioral abnormalities, including mental retardation, autism,

and epilepsy [1,6]. While TSC mutations produce hamartomatous

growths in the brain, recent evidence has suggested that these

benign tumors may not be solely responsible for the nervous

system dysfunction that is a hallmark of tuberous sclerosis

complex. Loss of TSC2 in hippocampal neurons produces changes

in neuronal morphology and synaptic transmission [2]. Heterozy-

gosity for TSC2 in the rat compromises several measures of

hippocampal long term potentiation [3]. Loss of Pten, an important

upstream regulator of Tsc-Rheb-Tor signaling, in a limited set of

neurons also affects neuronal morphology and socialization

Figure 6. Effects of mutations that downregulate the Tor pathway on
photoreceptor axon guidance, and genetic epistasis with Tsc1. Optic
lobes from third instar larvae (A–C) and 40h pupae (D–F) stained with
MAb24B10. (A) Larvae heteroallelic for a hypomorphic combination of
Rheb alleles show abnormal photoreceptor patterning and contain thick
axon bundles that extend into the medulla (arrowhead). (D) At the 40 h
pupal stage, Rheb mutants display axons that bypass their normal
targets in the R7/R8 termination zones (arrowhead). (B) Larvae
homozygous for a hypomorphic Tor allele show fairly normal
photoreceptor patterning, but at the pupal stage (E) misrouted axons
can be seen in the medulla (arrowheads). (C) S6k null homozygous
larvae show thick axon bundles projecting past the lamina (arrowhead),
while S6k pupae (F) display misrouted axons that initially bypass the R7/
R8 termination zone (arrowhead). (G, H) Animals doubly mutant for Tor
and Tsc1 do not show the severe photoreceptor defects seen when
axons are mutant for Tsc1 alone (compare to Figure 5B, F, F9), although
mild defects similar to those in Tor mutants are still apparent
(arrowhead). (I) S6k-Tsc1 double homozygous mutants display a severe
phenotype dissimilar to mutants for either S6k or Tsc1 alone. The scale
bar is 25 microns in panel A, 50 microns in panel D.
doi:10.1371/journal.pone.0000375.g006

Figure 7. Axon guidance defects in Tsc1 mosaics are not suppressed
by blocking growth. (A–C) Third instar eye discs from wild type and
Tsc1 mosaic larvae raised with or without rapamycin (rap). Ommatidial
units, comprised of eight photoreceptors, were visualized with
phalloidin (red) that detects F-actin, and MAb24B10 (green). Phalloidin
staining is strongest at the perimeter of each ommatidium, outlining
each sensory unit. Rapamycin treatment of Tsc1 mosaic eye discs (C)
restored eye disk size and cell size compared to wild type (A). (D and E)
Rapamycin treated third instar larval brains stained with MAb24B10.
Rapamycin treatment blocked abnormal growth of the retina and the
increase in photoreceptor cell size, but did not ameliorate the abnormal
axon projections also characteristic to untreated Tsc129 mosaics. The
scale bars in panel A represent 50 microns in the left image, 10 microns
in the right image. The scale bar is 50 microns in panel D.
doi:10.1371/journal.pone.0000375.g007
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behavior [29]. These findings collectively provide evidence that Tsc-

Rheb-Tor signaling is critical for the morphological and functional

development of the nervous system. It is not clear, however, if the

entire Tsc-Rheb-Tor signaling network is critical for nervous system

development, or if neural function is strictly a consequence of altered

growth regulation. It is also not known if loss of signaling is as

detrimental to neuronal development as inappropriately elevated

signaling, such as occurs with loss of TSC function. We have taken

advantage of the genetic and molecular tools available in the fruit fly

Drosophila to address these questions. Our findings demonstrate that

appropriate levels of Tsc-Rheb-Tor signaling are critical for both

NMJ development and for axon guidance in the visual system. In

both these contexts, effects are independent of growth, implicating

TORC2 rather than TORC1 as the complex mediating Tsc-Rheb-

Tor signaling influences in the nervous system.

Tsc-Rheb-Tor effects on neural development are

independent of growth regulation
Given the importance of Tsc-Rheb-Tor signaling in regulating

cellular and tissue growth, it was important to determine if

disruption of this pathway affects neural development via its effects

on growth or through signaling components independent of those

that govern cellular size and growth. To address this issue we used

both pharmacological and genetic methods to block the increased

growth produced by pathway activation. The immunosuppressant

rapamycin is a TORC1-specific inhibitor that prevents activation

of S6k and blocks growth mediated by loss of Tsc1. Rapamycin

treatment retarded growth in larvae with pan-neuronal expression

of Rheb, but failed to reduce the synapse expansion characteristic of

these animals. Similarly, while rapamycin effectively reduced the

retinal overgrowth of Tsc1 mosaic animals, it failed to suppress the

photoreceptor axon guidance defects seen in the visual system.

Loss of S6k function also failed to ameliorate axon guidance defects

in Tsc1 mosaic animals. This contrasts with effects of Tor partial

loss-of-function mutations, which effectively rescued axon guid-

ance defects of Tsc1 mutants. Collectively, these findings demon-

strate that the role of Tsc-Rheb-Tor signaling in synapse assembly

and axon guidance is largely independent of TORC1, S6k, and

their effects on growth. Indeed, while animals bearing null alleles

of S6k have some axon pathfinding defects, the effects are relatively

modest compared to Tsc1 mosaics, indicating that S6k does not

provide the critical outputs affecting axon guidance.

Our findings parallel recent work in the mouse, where neuronal

hypertrophy produced by loss of Pten in granule neurons of the

cerebellum and dentate gyrus was not rescued by loss of S6k1 [30].

It is also of note that some but not all Tsc1/2-mediated changes in

dendritic morphology of hippocampal neurons in organotypic

cultures were suppressed by rapamycin treatment [2]. Our

findings suggest that inhibition of growth regulatory components

in tuberous sclerosis patients, such as achieved with rapamycin

and related agents, may not affect all processes that are deranged

in the nervous system.

Recent studies of Pi3 kinase, Akt and InR in Drosophila have

shown that activation of signaling upstream of Tsc1/2 also

produces increases in synapse size, both at the NMJ as well as

central synapses [31]. Expression of these components in adult

neurons demonstrated that Pi3 kinase-mediated synaptogenesis

was age-independent, and therefore not a developmentally re-

stricted phenomenon. In agreement with studies reported here, the

expanded NMJs produced by activation of Pi3 kinase were

functional, with increased stimulus-induced EJPs. Overexpression

of the Drosophila ortholog of the epidermal growth factor receptor

(EgfR) in central neurons increased neuronal cell size, without an

increase in synapse number. These results are consistent with those

reported here where we have been able to directly suppress growth

mediated by Tsc-Rheb-Tor pathway activation without altering

effects on synapse formation or axon guidance.

Recent studies have also demonstrated a link between Tsc1/Tsc2

and highwire, a gene known to effect synapse size and functionality in

Drosophila [32]. The highwire ortholog Pam was shown to bind Tsc2 in

pull-down assays, and it has been suggested that Pam may function

as an E3 ubiquitin ligase to regulate the intracellular levels of the

Tsc1/Tsc2 complex. This concept of Highwire as a negative

regulator of Tsc levels is consistent with our findings, since highwire

mutants have been shown to possess enlarged NMJs similar to what

we see for Rheb overexpression [14]. Despite this, the enlarged

synapses of highwire mutants display compromised synaptic function

which is contrary to what we found when overexpressing Rheb, so

Highwire is likely to have multiple functions at the synapse besides

simply the regulation of Tsc.

Contributions of TORC1 versus TORC2 in synapse

assembly and axon guidance
Tor has a number of molecular outputs that influence many

cellular processes; notable among these are cellular growth and

cellular morphology. TORC1, which contains Raptor and is

sensitive to the anti-proliferative agent rapamycin, is a major

contributor to the regulation of cellular growth, in large measure

due to its effects on protein synthesis. TORC2, which includes

Rictor, is implicated in the control of cell morphology mediated by

regulation of the actin cytoskeleton [33]. Both pharmacological

and genetic studies presented here argue in favor of Tor complex 2

providing an essential regulatory component of both synapse

growth and axon guidance in Drosophila. Our results support recent

work showing that changes in dendritic morphology of hippo-

campal neurons produced by loss of Tsc1 required regulation of

the actin-depolymerizing factor Cofilin [2], implicating TORC2-

mediated processes. There is a considerable body of work

demonstrating that control of the actin cytoskeleton is critical for

NMJ growth and function [34–36] and TORC2 may provide an

important component of that control. Regulation of actin is also

essential for axon guidance in the visual system (reviewed in

[37,38]), and disruption of Tor-mediated control of actin may be

the underlying molecular deficit in Tsc1 mosaics.

Either gain or loss of Rheb signaling compromises

neuromuscular junction assembly and axon

guidance
A number of studies have suggested that TOR activation produced

by loss of TSC1/2 affects neuronal morphology and synaptic

function. Our findings support these observations; elevated Rheb

activity produces synaptic enlargement and enhanced physiological

function at the Drosophila NMJ. However, it was not evident from

earlier studies whether loss of signaling through Rheb and Tor is also

important for neural development. We provide evidence that this is

the case. Partial loss-of-function mutations in Rheb compromise NMJ

growth and function, as well as photoreceptor axon targeting in the

visual system. Overexpression of Tsc1 and Tsc2 in the motoneuron

also limited synaptic growth, supporting the conclusion that

depressed levels of Rheb activity compromise synapse development.

Rheb-mediated synaptic development is dependent

on a functional BMP signaling system
The capacity of Tsc-Rheb-Tor signaling to affect neuronal

morphology and synapse function begs the question of whether
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these effects are dependent on signaling systems known to be

critical for synapse development. At the Drosophila NMJ, BMP

signaling is critical for normal growth and function. Mutations in

wit, a gene encoding a type II BMP receptor, produce a small and

poorly functioning NMJ [17,19]. These deficits can be rescued by

motoneuron expression of wit+, demonstrating that BMP signaling

in the motoneuron is critical for synaptic expansion during larval

growth. To determine if Rheb-mediated synaptic growth required

BMP signaling, we placed elav-Gal4 and UAS-Rheb transgenes into

a wit mutant background. While overexpression of Rheb and the

accompanying activation of the Tor pathway partially rescued the

defect in synapse growth produced by loss of wit function, it was

unable to restore a normal EJP response or rescue quantal content.

These findings establish that Tsc-Rheb-Tor mediated effects on

synapse morphology are partially dependent on BMP signaling,

and are fully dependent on BMP activity for a physiologically

competent synapse. Our findings also establish that the functional

deficits in wit mutants are not simply the result of reduced synapse

size, since restoration of synapse size by expression of UAS-Rheb

does not restore physiological function. Intersection of BMP, and

Akt/PTEN/TOR signaling has been noted for other systems, and

our results indicate the relationship between these pathways is

important for synapse growth and plasticity as well [39].

Loss of function mutations in Tsc1 and Pten have

different effects on axon guidance
Previous analysis of gigas/Tsc2 mutants demonstrated that loss of

this gene in mechanoreceptors affects axon targeting, producing

projections to novel areas in the CNS in addition to innervation of

normal targets [5]. We have used genetic mosaics to evaluate the

function of Tsc-Rheb-Tor signaling in photoreceptor axon

guidance. Animals homozygous for Tsc1 in the retina showed

grossly aberrant photoreceptor projections to both the lamina and

medulla. R7 and R8 projections to the medulla in 40h pupae

failed to terminate correctly and projected beyond normal targets

to inappropriate regions within the brain. Somatic mosaics bearing

retinal neurons mutant for Pten also showed photoreceptor axon

guidance defects, but to a notably lesser degree. Since both Tsc1

and Pten alleles used for this analysis were nulls and show

comparable effects on cellular growth and differentiation [23], it

follows that Pten is not as critical for axon guidance as Tsc1. The

distinctions between axon guidance phenotypes of Pten and Tsc1

null mutants indicate that altered timing of differentiation is not

critical for axon guidance and that control of this pathway at the

level of Pten or Tsc1 is not functionally equivalent. Our findings

that rapamycin arrests retinal overgrowth produced by loss of Tsc1

but not Pten in the retina supports earlier work demonstrating that

retinal overgrowth mediated by loss of Tsc1, but not Pten, can be

suppressed by reductions in S6k activity [40]. Those results were

interpreted as demonstrating that Pten is largely a regulator of Akt

activity, whereas Tsc1/2 serves as a tumor suppressor and

inhibitor affecting principally S6k. Our results support these

relationships and emphasize that in the nervous system regulation

of Tsc1/2 targets other than S6k are critical.

Graded activation of the Tsc-Rheb-Tor signaling axis

produces graded effects on axon guidance
We have used two different genetic methods for activating the Tsc-

Rheb-Tor pathway in the visual system; generating retinal mosaics

with a loss of function allele of Tsc1, and pan-neuronal expression

of Rheb using elav-Gal4 and UAS-Rheb. The comparison of these

methods revealed that overexpression of Rheb produced milder

axon guidance phenotypes in the visual system than complete loss

of Tsc1 function. Of interest is that the degree of activation

achieved with elav-Gal4.UAS-Rheb, a level that did not produce

lethality, did result in discernable axon targeting defects in the

visual system. This suggests that axon guidance controlled by Tsc-

Rheb-Tor is sensitive to incremental changes in signaling. The

range of neurological and behavioral phenotypes associated with

loss of one copy of TSC1 or TSC2 is consistent with this model,

where other environmental or genetic factors may affect signaling

levels, producing a range of deficits. Our findings indicate that

Drosophila can serve as a useful model for identifying how graded

changes in signaling can produce a spectrum of defects in neural

development.

MATERIALS AND METHODS

Drosophila strains
UAS-RhebEP50.084/TM6B Tb [11], UAS-DP110WT [41], and y w

hsFLP; UAS-Tsc1 UAS-Tsc2 [21] were crossed to elav-Gal4/CyO

P[w+; ubi-GFP] [42] or OK6-Gal4 [17] for expression in neurons,

and to G14-Gal4/CyO P[w+; ubi-GFP] (from C. Goodman) for

expression in muscles. Stocks used for mutant analysis and genetic

interaction studies were y w; Rheb3M2/TM6B Tb y+ [11], Rheb2D1/

TM6B Tb [11], b w; witB11/TM6B Tb [19], w; witA12/TM6B Tb

[19], S6kl-1/TM6B Tb [43], and Tor2.1/Ala948Val/CyO P[w+; ubi-

GFP] [44]. Eye-specific mosaics were generated using the FLP-

FRT technique [45] by crossing y w eyFLP GMR-lacZ; FRT82B

I(3)cl-R3/TM6B Tb [45] or y w eyFLP GMR-lacZ; I(2)cl-L3 w+

FRT40A/CyO y+ [45] to w; FRT82B Tsc129/TM6B Tb [20], w;

FRT82B Rheb26.2/TM6B Tb y+ [11], y w hsFLP; FRT40A Ptendj189/

SM6-TM6B [24], y w eyFLP GMR lacZ; FRT82B [45], or y w eyFLP

GMR lacZ; FRT40A [45]. Using this mosaic method, heterozygous

cells have a growth disadvantage since they bear a Minute and cell-

lethal mutation [l(3)cl-R3 or l(2)cl-L3]. For all retinal mosaics, we

assessed the degree of mosaicism by examining the adult retina

where mutant cells could be identified by loss of the w+ marker. In

Tsc1, Pten and Rheb mosaics, mutant cells comprised the vast

majority of the adult retina (.90%). Wild-type strains were y w,

Oregon-R, or Canton-S.

Immunohistochemistry
For visualization of neuromuscular junction synapses, third instar

larvae were filleted in PBS and fixed in 4% formaldehyde before

staining with Anti-Cysteine String Protein mAB49 at 1:1000 (a

generous gift from Zinsmaier and Buchner) and FITC-conjugated

Anti-HRP at 1:50 (Jackson Labs). Bouton numbers were de-

termined by a combination of CSP and HRP image data. Muscle

surface area measurements were performed using ImageJ data

analysis software (NIH) and represent the combined area of the

second abdominal segment muscles 6 and 7. Third instar larvae

and 40hr pupae were fixed, stained, and mounted as described

[46] for photoreceptor analysis. Antibodies from the Develop-

mental Studies Hybridoma Bank were used at 1:25 for mouse anti-

Chaoptin (MAb24B10), 1:10 for mouse anti-Repo (MAb8D12),

and 1:25 for mouse anti-Dachshund (MabDac2-3). Secondary

antibodies were from the AlexaFluor series (Invitrogen). Texas

Red-phalloidin was used at 0.165 mM (Invitrogen). All images

were acquired on a Nikon C1 upright laser confocal.

Rapamycin Treatment
Flies were raised on standard laboratory food supplemented with

rapamycin (Sigma) to a final concentration of 3 mM for NMJ

analysis or 2 mM for eye disks. Rapamycin treated Tsc129 mosaic

animals with eye discs similar in size to control animals were

selected for photoreceptor projection analysis.
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Electrophysiology
Excitatory junctional potential (EJP) recordings were taken from

muscle 6 in the second abdominal hemisegment of 3rd instar

larvae. Dissections were done in Ca++-free saline and recordings

were performed in HL3 following published protocols [47].

Recordings were acquired with an Axoclamp 2B amplifier and

pClamp9 software (Axon Instruments). EJP amplitudes and mini-

EJP amplitudes were measured with MiniAnalysis software from

Synaptosoft.

SUPPORTING INFORMATION

Figure S1 Patterning of lamina precursor cells and glia in Pten or

Tsc1 mosaic animals. (A–F) Dorsal-posterior views of third instar

larval optic lobes stained with anti-Dachshund (lamina precursor

cell marker) or anti-Repo (glial cell marker). (A–C) Pten mosaic

animals show a significantly larger lamina compared to control

animals. This is not seen to the same extent in Tsc1 mosaics. (D–F)

Glial cells successfully differentiate and migrate in both Pten and

Tsc1 mosaics, however mild patterning defects are apparent and

could possibly contribute to the photoreceptor patterning

abnormalities observed. All scale bars are 50 microns.

Found at: doi:10.1371/journal.pone.0000375.s001 (1.32 MB TIF)
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