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A N T H R O P O L O G Y

Current evidence allows multiple models for the 
peopling of the Americas
Ben A. Potter1*, James F. Baichtal2, Alwynne B. Beaudoin3, Lars Fehren-Schmitz4,  
C. Vance Haynes5, Vance T. Holliday5, Charles E. Holmes1, John W. Ives6, Robert L. Kelly7,  
Bastien Llamas8, Ripan S. Malhi9, D. Shane Miller10, David Reich11,12,13, Joshua D. Reuther1,14, 
Stephan Schiffels15, Todd A. Surovell7

Some recent academic and popular literature implies that the problem of the colonization of the Americas has 
been largely resolved in favor of one specific model: a Pacific coastal migration, dependent on high marine pro-
ductivity, from the Bering Strait to South America, thousands of years before Clovis, the earliest widespread cul-
tural manifestation south of the glacial ice. Speculations on maritime adaptations and typological links (stemmed 
points) across thousands of kilometers have also been advanced. A review of the current genetic, archeological, 
and paleoecological evidence indicates that ancestral Native American population expansion occurred after 
16,000 years ago, consistent with the archeological record, particularly with the earliest securely dated sites after 
~15,000 years ago. These data are largely consistent with either an inland (ice-free corridor) or Pacific coastal 
routes (or both), but neither can be rejected at present. Systematic archeological and paleoecological investiga-
tions, informed by geomorphology, are required to test each hypothesis.

INTRODUCTION
Investigation of the peopling of the Americas has generated decades 
of scholarly studies, increasingly illuminated by paleoecological and 
particularly paleogenetic research. There are currently several models 
of the peopling process differing with respect to timing, routes, and 
affiliation with modern (and ancient) populations in Asia and the 
Americas (Fig. 1). One perspective that has become prominent in 
the last decade is of an early entry (~25,000 to 15,000 years ago) into 
the Americas via a Pacific coastal migration. This perspective fur-
ther implies ecological adaptations (for example, the kelp highway 
hypothesis) and, more recently, typological relationships (stemmed 
points) (1–5). We believe that this perspective, although commonly 
disseminated in the popular press (6–8), is a prematurely narrow 
interpretation of current evidence, which yields far less certainty. 
Some proponents (1) also assert that there is near-complete agree-
ment among archeologists on these issues, but the most recent relevant 
survey (9) shows that archeologists remain divided, with substan-
tial numbers thinking migrants used both interior and coastal routes, 
as well as strong skepticism for several proposed pre-Clovis sites. 

More nuanced consideration of the proposed alternatives can also 
be found (10–12). Here, we evaluate the claims made in (1) and 
elsewhere with respect to the current genetic, archeological, and 
paleoecological data and identify model constraints. We also sug-
gest avenues of further research to refine models of the peopling of 
the Americas. Due to multiple dating techniques presented in this 
paper, we use years ago for calibrated radiocarbon dates, OSL and 
cosmogenic dates, and genetic age estimates. All of these are rough-
ly comparable.

GENETIC AND ARCHEOLOGICAL CONGRUENCE
Genetic studies provide independent information on the timing and 
nature of Native American ancestral divergence from northeast Asian 
populations, genetic isolation, and expansion into the Americas. 
The most recent comprehensive ancient mitogenomic analysis (13) 
indicates that Native American ancestors diverged from Siberian 
populations between 24,900 and 18,400 years ago with population 
expansion associated with female lineage diversification sometime 
between ~16,000 to 13,000 years ago. These results are consistent 
with a large-scale genomic study based on mostly modern Native 
American and Siberian data (14). We should be careful to insist on 
confidence intervals rather than relying on mean or median esti-
mates, because the former more accurately reflect the precision of 
the data. This approach also results in consistency with a wider range 
of colonization models rather than narrowly limiting the options. 
Models of diversification should encompass migration from the 
geographic location of the ancestral Native American population, 
which is currently unknown, but probably includes expansion into 
northeastern Siberia and Beringia. As a possible working hypothe-
sis, if Native American ancestors were situated in southern Siberia 
20,000 years ago, then the post–16,000-year expansion must include 
migration into northeast Asia.

Genetic analyses dependent on data from modern populations do 
not bear directly on the geographic locations of the divergence events 
(13). For instance, the data used to generate the Beringian Incubation 
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Model only require that Native American ancestors were geographi-
cally isolated from wherever the East Asian/Siberian ancestors in-
habited during the time of isolation (15). The genetic data do not 
require that this isolation occurred in central or eastern Beringia—
it could range across a vast area, from Cis-Baikal to Hokkaido. So 
far, complete nuclear genomes from ancient samples produced in 
recent years (16–18) are not able either to substantially narrow the 
divergence estimate or to clarify spatial routes of the initial peopling.

A recent analysis of the 11,500-year-old Upward Sun River 1 ge-
nome (19) suggests that Native Americans descend from a single 
population that separated from East Asians by 26,100 to 23,900 
years ago, with two deep branches: an Ancient Beringian popula-
tion that split off ~22,000 to 18,000 years ago and a second branch 
that split into northern and southern lineages ~17,500 to 14,600 
years ago (19). Earlier gene flow between ancestral Native Americans 
and Ancient North Eurasians (ANEs) (represented by Mal’ta and 
Afontova individuals) between ~25,000 and 20,000 years ago strongly 
suggests geographic proximity of these groups, somewhere in 
southern Siberia, where all ANE individuals have been located (see 
fig. S1 for localities and regions mentioned in the text). The record 
of human remains in northeast Asia is very sparse, but they have 
been recovered at Yana RHS, dating to ~27,000 years ago (20). Un-
fortunately, no ancient DNA analysis has yet been published, but 
Yana’s location at the extreme western edge of Beringia will make it 
difficult to draw firm conclusions about populations present in the 
rest of western, central, and eastern Beringia, for example, for 1500 
to 2000 km to the southern Beringian coasts or 2500 km to Alaska. 
The lack of an unequivocal human presence in the entire region 
during the Last Glacial Maximum (LGM) between the Yana occu-
pation (during a warm period) and the clear expansion of Diuktai 
Culture (Late Upper Paleolithic) populations moving from south to 
north after 16,000 years ago suggests a temporary expansion of 
Middle Upper Paleolithic populations followed by later contraction 
during the LGM followed by expansion after the onset of deglaciation 
(21, 22).

The locations of ancestral Native Americans between ~20,000 and 
15,000 years ago remain unknown, but two scenarios have been 
proposed (19). Scenario 1 posits that the split of Ancient Beringians 
and other Native Americans occurred in northeast Asia/Siberia, 
while scenario 2 posits that this split occurred in eastern Beringia 
(Alaska). Current archeological and paleoecological data support 
scenario 1. There is no secure evidence of ~20,000-year-old American 
sites, while there is abundant evidence of human occupation in 
northeast Asia (for example, southern Siberia, Amur basin, Primor’ye, 
and Japanese archipelago) (fig. S1) (23). The LGM is regionally 
characterized by very cold and arid conditions with evidence for 
depopulation of north Asia and no evidence throughout Eurasia for 
northward expansions of humans (24, 25). Previous genetic models 
of Native American demography indicate a bottleneck during this 
period, with expansion only after 16,000 to 13,000 years ago (13, 26). 
We observe a clear pattern of human expansion from Siberia to 
Beringia around 16,000 to 14,000 years (12) and the first unequivocal 
and widespread occupations south of glacial ice in the Americas after 
13,500 years ago, associated with Clovis and Fishtail complex tech-
nologies (27–29). We note that both point types are continent-wide 
in North and South America, respectively. They are the only point 
types with such broad distributions and are consistent with coloniz-
ing processes (30–32), although they might also represent commu-
nication of ideas among low-density early populations.

We have firmer geographic constraints on these populations af-
ter about 12,600 years ago. Ancient Beringians, associated with the 
Denali complex/Paleoarctic tradition, were in Alaska and adjacent 
areas between 12,500 and 6000 years ago (19). Although the northern 
lineage (including Na-Dene, Algonquian, Salish, Tsimshian, and 
Haida) appears constrained to northern North America (33), the 
southern lineage directly links with Clovis (Anzick) (16–18). How-
ever, we have no direct genetic evidence arising from populations 
associated with pre-Clovis sites linking them with later Native 
Americans. Thus, we should be careful to distinguish potential failed 
migrations versus the direct ancestors of Clovis and later Paleoindians. 

Archeological sites, >13 ka

Archeological sites, 13–10 ka

Geological/biological samples, 
15.7 – 13.3 ka, indicating ice-free 
and/or vegetated conditions

Archeological sites, 
post 8 ka

Glacial ice
at 14.8 ka

(48)

Glacial ice limits
(55)

15.0 ka

14.0 ka
13.4 ka

Fig. 1. Northwest North America with archeological sites older than 10,000 calibrated years before the present (Supplementary Materials) and proposed colo-
nization routes: IFC and NPC. Glacial ice extent (white) from (48), and archeological site and geological sample locations summarized in (12, 78). Laurentide Ice Sheet 
limits (dotted lines) from (55). ka, thousand years; IFC, ice-free corridor; NPC, North Pacific coast. 
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We also note that pre-Clovis sites continue to vary in site integrity, 
that is, clear associations of secure dates and unambiguous cultural 
materials. There appear to be relatively few technological or adap-
tive connections among the proposed pre-Clovis sites, or with (lat-
er) unequivocal Paleoindian complexes, represented by hundreds of 
sites and thousands of artifacts across the Americas (34, 35). How-
ever, analyses by (36) have shown that currently dated Clovis sites 
represent a sample that came from a population of sites that date to 
a time span covering 1070 to 835 years. This suggests that it is pos-
sible that some pre-Clovis sites after ~15,000 years ago may repre-
sent Clovis ancestors or are Clovis sites that lack diagnostic artifact 
types.

POTENTIAL MIGRATION ROUTES
We review here issues with both North Pacific coast (NPC) and ice-
free corridor (IFC) routes of colonization of mid-continental North 
America (Fig. 1). We note that an NPC route could originate along 
southern Beringia or from interior Beringia. The IFC route has sev-
eral potential branches funneling in from the north. These include 
a route west of the Mackenzie River between the northern sections 
of the Laurentide and Cordilleran Ice Sheets, or through the Liard 
and Peace River areas, which also deglaciated early (37).

A coastal colonization route remains a viable hypothesis; however, 
several issues relating to the proposed coastal migration have been 
typically ignored (12). Contrary to commonly asserted claims, the 
entire late Pleistocene coast was not submerged due to rising sea 
levels. A comprehensive meta-analysis (38) reviewing paleoecoastal 
geomorphology from Puget Sound to the Alaska Peninsula indicated 
that more than half of the northwest Pacific coastal regions retained 
preserved pre-Clovis–aged shorelines (Fig. 2). Surveys in these re-
gions have so far failed to discover sites securely dated to older than 
~12,600 years ago (1600 years later than the earliest unequivocal 
sites in interior Beringia), contradicting common assertions of an 
early coastal migration (12). A few potential earlier sites that have 
been reported recently, including Triquet Island, remain unreported 
in peer-reviewed sources. Calvert Island cultural materials includ-
ing human footprints are associated with bracketing ages of be-
tween 13,300 and 12,700 years ago (Stratum X) and 12,650 years ago 

(Stratum IX) (39). Hunter Island (40) contains materials that may 
date to ~13,500 years ago or to the Younger Dryas (both radiocarbon 
dates come from the same layer and do not overlap). Similarly, 
Kildit Narrows contains scattered materials from a charcoal-rich 
layer with three nonoverlapping associated dates of ~13,600, 12,800, 
and 10,700 years ago (40). In the latter two cases, the association of 
the cultural materials and dates is unclear.

Throughout most (~2000 km) of the hypothetical NPC route, 
from Yakutat Bay to the Aleutians, the earliest human occupations 
post-date 8000 years ago (more than 6000 years after the earliest 
interior Beringian occupations), long after shorelines stabilized, 
and using technology derived from earlier interior traditions 
(Fig. 1) (41, 42). Furthermore, the Siberian Diuktai Culture (~18,000 
to 12,000 years ago) is terrestrial, while there is no evidence for 
coastal or maritime economies along the northwest Pacific coast 
from the Kuriles, Kamchatka, Chukotka, or the Okhotsk Sea coast 
until the middle Holocene (43). East Beringian obsidian distribu-
tion patterns show long-distance east-west movement of obsidian 
from interior sources between 14,000 and 13,000 years ago, while 
coastal sources were only used 4900 to 2300 years after the earliest 
interior use, and no coastal obsidian has been found substantially 
inland (12). If Paleoindian ancestors moved along the southern 
coastal edge of Beringia, we would expect earlier sites in adjacent 
Pacific drainages (for example, Copper and Susitna rivers) and later 
occupations in the deep interior (for example, Tanana and Yukon 
rivers). Extant data show the earliest occupations along the Tanana 
River (~14,200 years ago), later expansion of related technologies 
into the Pacific drainages (~12,000 years ago), and much later ex-
pansion to the coast (~8000 years ago). All these patterns are incon-
sistent with an initial coastal migration along the southern edge of 
Beringia before 16,000 years ago (12).

More research is required to assess resource bases along the NPC 
route. Some coastal refugia have been identified in the southern 
part of the coastal route [for example, (44, 45)], whereas the record 
is sparse to the north, including the Alexander Archipelago, southern 
coastal Alaska, the Alaska Peninsula, and the Aleutians [see review 
in (12)]. Anadromous fish could have been a stable resource for hu-
mans, but the earliest evidence of salmon fishing is in interior Alaska 
(46, 47). Other complications to a coastal route include the potential 

7-0

4-0

11.0-0

15-13 + 5-0

14.5-0

10.5-0

10.1-0

16-12 + 4-0

10-06-0

14 + 4-0
15.5-13.0 + 6-0

15-11.5 + 5-0

14.5-0

15-0

17-0

13.5-0
15-0

16-14 + 8-0

14.1-0

17-012-0

17-0

14-0

Pre-Clovis coasts below modern sea level (submerged)
Pre-Clovis coasts above modern sea level

Fig. 2. Sea-level curves by region and periods above modern sea level (in thousands of calibrated years before the present) (that is, pre-Clovis occupations 
would be potentially accessible if they are extant), adapted from data in (38, 79).
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presence of sea ice (pack and drift), recurrent volcanism, and potential 
reduction in kelp richness and abundance in periglacial environ-
ments (12). The ecological viability of large stretches of the coastal 
route has not been fully evaluated yet, and more work needs to be 
done before we can identify the time periods when this region could 
support human populations from the Aleutian area to Puget Sound. 
Alternatively, another potential entry to the NPC from southwestern 
Yukon is constrained by the deglaciation of the White Pass, estimated 
between 13,500 and 13,000 years ago (48), likely too late to serve as 
a route for Paleoindian ancestors.

The enigmatic record at Bluefish Cave raises the possibility of 
population pulses into eastern Beringia as early as 24,000 years ago 
(49). We note that if there was successful settlement in the LGM, we 
should see more abundant evidence of sites in the succeeding mil-
lennia, which we do not. In contrast, a substantial continuous re-
cord begins ~14,200 years ago at Swan Point CZ4b with multiple 
hearth features and overlapping dates on hearth charcoal and asso-
ciated fauna, which represents an East Beringian branch of the geo-
graphically extensive Siberian Diuktai Culture (50). East Beringian 
tradition populations around 15,000 to 14,000 years ago would be 
adapted to expanding habitat in the northern funnels of the IFC. 
The southern funnel of the IFC had a detectable human presence by 
13,300 years ago (Fig. 1), where a camel and horses were butchered 
in an earliest Clovis or pre-Clovis time range in Alberta’s St. Mary 
Reservoir (51–53).

Any evaluation of the IFC must rest on a secure geological foun-
dation, involving a vast region affected by intense glacial and parag-
lacial dynamics that challenge geologists and paleoecologists. The 
IFC region has received episodic attention over the last several 
decades. There is currently, however, an almost unprecedented 
level of earth science interest in the central portion of the IFC, 
applying methods previously unavailable [from mapping using 
light detection and ranging (LIDAR) data to the increased use of 
luminescence and cosmogenic nuclide dating techniques on non-

biological materials] and leaving its geological framework in a fluid 
state of understanding. Timing of the LGM and subsequent degla-
cial sequences vary considerably in northern and southern corridor 
regions (54). Currently evolving geoarcheological and paleo
ecological studies of interior routes indicate that IFC deglaciation 
initiated by 19,000 years ago. A series of 76 10Be surface exposure 
cosmogenic nuclide ages reveal that intermediate and high eleva-
tion sites in the Peace River Corridor bottleneck were ice-free be-
tween 15,000 and 14,000 years ago, while 22 luminescence dates on 
eolian sand indicate that a broad subaerially exposed landscape was 
present by at least ~15,000 years ago (and possibly earlier) and that 
glacial lakes had already substantially drained (Fig. 3) (37, 55–57). 
Figure 1 illustrates the locations of these key late Pleistocene 
(and pre-Clovis) geological and paleoecological samples. At least 
two routes into the Peace River Corridor have been proposed: one 
along the east side of the Mackenzie Mountains (solid red line 
in Fig. 1), and the other to the west of the Mackenzie Mountains 
through the Yukon Plateau and Pelly River valley to the Liard River 
(dotted red line in Fig. 1) (58).

Moreover, 14C dates on taiga vole indicate vegetated conditions 
in some areas of the bottleneck by at least 14,870 years ago (59), and 
a poplar fragment from Boone Lake in the uplands of northwestern 
Alberta (60) indicates the presence of trees by at least 13,500 years ago. 
These data suggest a vegetated Corridor well before minimum age 
estimates of ecological viability derived from the presence of bison 
and horse at 13,100 years ago (61, 62) and plant macrofossils and 
environmental DNA at Charlie Lake at 12,600 years ago (63) (Fig. 3). 
Beyond the IFC region, other researchers have identified alternative 
inland routes through unglaciated Cordilleran areas (64–66), where 
resources such as sheep may have persisted through the LGM (67). 
Collectively, these data indicate that the Corridor and adjacent in-
terior areas could have emerged as a potential route for ancestral 
Native Americans as early as 15,000 to 14,000 years ago, and that 
movements in either direction along the entire length of the Corridor 

Demic
expansion

Biological “viability” 
minima according to (63)

Earliest Clovis

Swan Point
Paisley Cave
Page-Ladson
Monte Verde

Bison dispersal minima (61)

Other events

Dating method
       OSL
       IRSL
       14C

Fig. 3. Chronology of the central IFC. OSL and IRSL dates indicate minima ages of deglaciation and pro-glacial lake drainage (55), and calibrated 14C dates indicate 
minima dates for fauna and vegetation (12, 35, 61, 63, 80–82). Demic expansion estimates of Native American ancestors from (13). All dates are shown with 1 SD.
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were feasible well before Clovis times (12, 68). Both pathways, inte-
rior and coastal, allow viable hypotheses that need not be mutually 
exclusive and should be further tested.

STEMMED POINTS AS CULTURAL DIAGNOSTICS
Several authors (1, 3) have suggested that a variety of stemmed 
points in different contexts represent a coastal expansion before 
16,000 years ago. This hypothesis is at a nascent stage, rather than 
[as expressed in (1)] the strongest hypothesis on offer. Stemming is 
a widespread form of haft design innovated numerous times across 
multiple continents and is thus not an appropriate derived character 
on which to base a hypothesis of cultural affiliation. No detailed tech-
nological analysis has established empirical validity to connect these 
disparate assemblages. Proponents have noted (7) that stemmed points, 
crescents, and shell middens date between 12,200 and 11,400  years ago 
before the present (cal yr B.P.), about 1000 to 2000 years after wide-
spread Beringian and Clovis sites. Terrestrially oriented subsistence 
practices are evident across North America several centuries before 
the appearance of evidence for coastal adaptations. All the well-dated 
early coastal sites from North America are younger than the earliest 
Clovis sites. Two early near-coastal sites in South America, Monte 
Verde and Huaca Prieta (69, 70), have few technological connections 
with later Paleoindian groups, including the Western Stemmed tra-
dition of western North America.

Contrary to previous assertions (1, 3), Ushki Lake and Paisley 
Cave stemmed points are dissimilar to Jomon tanged points in key 
ways; despite the map symbols, these points come from interior 
sites reflecting terrestrial adaptations. The Channel Islands sites are 
not associated with dated stemmed points (and stemmed points in 
California are not well dated). Triquet Island, apparently dating to 
after earlier interior Beringian sites, may prove to be an early coastal 
site, but results for it have not yet been published in a peer-reviewed 
journal. Several other published coastal sites in this region have 
been argued by some to contain pre-Clovis archeology, but they 
have problems including unclear association with human occupa-
tion or multiple nonoverlapping dates on the same strata (12). 
There is still debate on the dating of some of the Western Stemmed 
Tradition material (71–73), as most of the securely dated sites post-
date Clovis by a considerable margin.

CONCLUSIONS
There are widespread patterns that remain unexplained by the 
coastal hypothesis: Numerous data indicate that the only early 
populations known in Siberia, Russian Far East, and Beringia had 
terrestrially oriented economies and technologies (74, 75), includ-
ing Ushki Lake, cited by (1) as part of a coastal migration of stemmed 
point using populations. Ubiquitous Paleoindian industries are also 
generally terrestrial (76), with relatively limited evidence of coastal 
exploitation in lower-latitude areas (2). East Beringian obsidian dis-
tributional analyses show an early reliance on interior sources, with 
exploitation of coastal sources thousands of years later (12). The 
empirical patterning points toward successful terrestrial adaptations 
and movement in Siberia, Beringia, and the Americas south of the 
ice sheets.

Although a wide variety of data summarized here suggest a pre-
ponderance of evidence for the IFC route over the NPC route, we 
do not take a dogmatic position here—both remain viable colonization 

pathways. Current genetic data provide a relatively wide window of 
constraints for location of the genetic isolation of Native American 
ancestors, and later expansion from Siberia into the Americas (and 
possibly northeast Asia) around 16,000 to 13,500 years ago. As geneti-
cists and archeologists and indigenous communities work together 
in a respectful and mutually beneficial manner, the opportunities to 
analyze additional human remains to infer population history in the 
Americas grow. In parallel, systematic paleogenetic analyses of se-
curely dated sediments (77) could potentially directly reveal human 
presence.

Current archeological data fit with terrestrial or coastal migrations 
(or both) that probably occurred well after the LGM, most probably 
after 16,000 years ago and before the widespread Paleoindian occu-
pations around 13,500 years ago. This configuration of the empirical 
evidence explains the absence of consensus among archeologists and 
other scientists regarding both routes and timing of the peopling of 
the Americas, and should prompt us to continue systematic, geomor-
phologically targeted investigations along both pathways.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat5473/DC1
Table S1. Late Pleistocene and Early Holocene components illustrated in Fig. 1.
Fig. S1. Locations mentioned in the text.
References (83–141)
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