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Optimization of Brain Segmentation in Multiple Sclerosis Patients 

Alyssa Zhu 

 

ABSTRACT  

Multiple sclerosis is an idiopathic, autoimmune disease that affects the central 

nervous system (CNS). Imaging studies have shown that gray matter volume, rather 

than whole brain or white matter volume, acts as the best imaging biomarker for MS 

progression. Previous studies were performed via cross-sectional analysis of each 

time point and then interrogating the difference between values. Because of 

variability inherent in software tools, the population of cross-sectional analysis 

studies is dependent on the segmentation program being utilized with smaller 

standard deviations allowing for smaller subject populations, particularly when the 

tissue volume difference being studied is small in comparison those standard 

deviations. Longitudinal analysis aims to minimize that variability and give more 

accurate segmentation results. Segmentation in MS is also plagued by the presence of 

white matter lesions, whose T1 hypointensities can result in the tissue being 

misclassified as gray matter. Two longitudinal programs that have been validated for 

healthy controls and patients with Alzheimer’s disease – aBEAT and FreeSurfer – 

were explored by retrospectively analyzing 7 sets of longitudinal data both cross-

sectionally and longitudinally. A comparison between programs revealed that 

FreeSurfer produced more accurate both segmentation and anatomical parcellation 

results. Quantitative analysis of gray matter volumes also showed FreeSurfer to be 

superior to aBEAT with FreeSurfer’s cross-sectional processing yielding the 
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smoothest transition from time point to time point. The investigation into cortical 

thicknesses obtained by FreeSurfer, on the other hand, yielded slightly conflicting 

results between R2 values and observed longitudinal trends. Further analysis of both 

longitudinal processing and lesion segmentation is required to evaluate the 

usefulness of currently available longitudinal processing programs and to avoid the 

need for manual segmentation respectively. Currently, cross-sectional segmentation 

is the optimal method for longitudinal brain volume analysis as longitudinal 

segmentation programs have proven inferior rather than superior to their cross-

sectional counterparts. 
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INTRODUCTION 

 

Multiple Sclerosis 

Multiple sclerosis (MS) is a debilitating, autoimmune disease that affects the central 

nervous system (CNS) resulting in lesions and cerebral atrophy (National Multiple 

Sclerosis Society). It is idiopathic with several working theories regarding the 

interplay between the immune system, neurodegeneration, and genetics. Diagnosis 

comes from a combination of medical history and neurologic exam, MRI, visual 

evoked potential, spinal tap, and/or blood test. A physician’s assessment includes 

medical history to identify potential symptoms caused by MS and scores that gauge 

physical, mental, or emotional functions. Physicians will then often turn to MR images 

to confirm or further support the diagnosis, looking for the presence of CNS lesions, 

though it should be noted that early stages of MS may not show lesions (National 

Multiple Sclerosis Society). A spinal tap can show immune system activity indicative 

of MS in the cerebrospinal fluid (CSF), whereas blood test results are used to eliminate 

other possibilities. There are four disease courses: relapsing-remitting (RRMS), 

primary progressive (PPMS), secondary progressive (SPMS), progressive-relapsing 

(RPMS). The courses are differentiated by the progression of a patient’s symptoms, 

i.e. is there a period of recovery and if so does the patient recover to baseline. For 

example, patients with RRMS can recover back to baseline after acute attacks, 

whereas patients with PRMS will not. One course can develop into another – e.g. 

RRMS to SPMS – or it can stand on its own (PPMS). As there is no cure, various 

treatments are employed in combination, e.g. working to affect disease course or 
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manage symptoms. In order to gauge the progression of the disease and the efficacy 

of treatments, tissue quantification via imaging is being employed and explored as a 

biomarker. 

MS was traditionally viewed as a white matter disease due to MRI’s higher 

sensitivity for white matter volume changes compared to gray matter changes 

(Horakova et al., 2012). Previous hardware and pulse sequences resulted in low 

resolution images and, with cortical thickness being on the order of 2-3 mm, MRI’s 

sensitivity to gray matter changes was extremely susceptible to partial volume 

effects. Additionally, white matter injury was found to be partially independent to 

gray matter injury (Fillipi et al., 2010), making it impossible to study white matter 

effects in lieu of those of gray matter. With the improvement in MRI technology, gray 

matter has emerged as the more indicative of the two as an imaging biomarker for MS 

progression (Honce, 2013). Gray matter atrophy, being less susceptible to 

inflammation (Horakova et al., 2012), fluctuates less than whole brain and white 

matter atrophy (Medscape Review). It is detectable early in the disease, accelerates 

over time (Honce, 2013), and may accumulate to a greater extent than white matter 

atrophy (Anderson et al., 2009). Gray matter atrophy has also been associated with 

MS clinical disability and has been found to correlate more strongly with disability 

than lesion volumes and white matter atrophy (Honce, 2013). Cortical lesion loads – 

a measure that combines lesion sizes and abundance – have been proposed to be a 

superior metric than gray matter atrophy, but detection requires special pulse 

sequences such as double inversion recovery (DIR) and phase sensitive inversion 

recovery (PSIR). These sequences benefit from higher field strengths (Honce, 2013). 
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While DIR and PSIR improve cortical lesion detection by hundreds of percent, 

measurements are less reliable and results less reproducible between sites compared 

to those of gray matter atrophy (Honce, 2013).  

 

Segmentation  

For many years, longitudinal studies analyzing changes in brain tissue volumes were 

performed by cross-sectionally processing all images in a longitudinal data set and 

then observing trends in or differences between values obtained of each individual 

time point. A pitfall of that methodology is the inherent variability of processing 

algorithms. For example, tissue volume quantification of images from two different 

time points may change either because of atrophy or because of the standard 

deviation of the method. The standard deviation of the volume measurement in the 

absence of atrophy determines the sample size needed to achieve a statistical 

significance (p = 0.05). A study by de Boer et al. (2010) investigated the differences 

between utilizing various cross-sectional segmentation programs for longitudinal 

analysis and extrapolated the approximate study sizes needed by each program to 

obtain results with statistical significance. FSL’s FAST segmentation program (Zhang 

et al., 2001), which is implemented in Siena and SienaX (Smith et al., 2002), had the 

best reproducibility and would therefore require the smallest subject population out 

of the studied methods. In contrast, SPM5 (Ashburner and Friston, 2005) had the 

lowest reproducibility and accuracy for brain segmentation and would therefore 

need a lot more subjects.   
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Longitudinal processing programs have mostly been developed and validated 

in context of Alzheimer’s disease by comparing brain volumes of healthy controls and 

patients with mild cognitive impairment or Alzheimer’s disease. This processing 

involves considering scans of all time points together in a 4D data set to minimize the 

variability in segmentation from scan to scan. In literature, papers putting forth their 

new, successful algorithms for longitudinal segmentation often use results from 

Consistent Longitudinal Alignment and Segmentation for Serial Image Computing 

(CLASSIC) and to a degree FreeSurfer’s longitudinal pipeline for comparison to their 

own and therefore validation of their programs. The Adult Brain Extraction and 

Analysis Toolbox (aBEAT) was one such program (Dai et al., 2013) that appeared to 

provide better results than either of the previous two.  

An additional consideration for tissue segmentation in MS is the appearance 

of white matter lesions, which appear as hypointensities on T1 weighted images and 

are therefore often misclassified as gray matter (Honce, 2013). Some methods like 

SienaX allow for the integration of a lesion mask, which will prevent voxels identified 

as lesions from being classified as gray matter. However, that requires that lesion 

masks be initially segmented, and the gold standard approach to identifying lesions 

is manual, which requires a lot of time and effort. Though some methods consider 

combining information from other image contrasts (FLAIR or T2 images) in addition 

to T1 images to properly segment lesions, resulting lesion masks have been found to 

be inadequate and still require manual editing. Lesion segmentation has been a 

persistent problem, and in 2008 an MS lesion segmentation challenge was held to 
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compare lesion segmentation algorithms (Styner et al., 2008). While submissions 

from the challenge were promising, automated lesion segmentation remains elusive. 

 

This study aimed to evaluate two segmentation programs – one commonly used 

(FreeSurfer) and one recently released (aBEAT) – to assess their applicability for 

large scale cross-sectional and longitudinal processing pipelines. The analysis aimed 

to determine whether an existing pipeline was adequate for longitudinal 

segmentation studies or whether there were substantive deficiencies with current 

approaches. This determination is critical to the efficacy and practicality of 

longitudinal studies that aim to utilize the imaging results as a disease biomarker. 

 

METHODS  

 

Subjects 

Subjects consisted of seven patients (4 men and 3 women, average age 44.7±8.0 at 

baseline) with diagnosed MS who showed focal symptoms, i.e. attacks were limited to 

one or a few limbs. As part of the Expression, Proteomics, Imaging, Clinical (EPIC) 

study, subjects had been scanned at yearly intervals for a total of 6 scans per patient 

with the exception of one who missed follow-up scans for years 3 and 4. Inversion 

recovery spoiled gradient echo (IR-SPGR) T1-weighted images (TR = 7.496 ms, TE = 

1.652 ms, TI = 400 ms, FOV = 24x24 cm2, matrix = 256 x 192, flip angle = 15°, NEX = 

1) were acquired at University of California, San Francisco’s China Basin Campus on  



6 
 

 

Figure 1: Processing Pipeline. Seven longitudinal data sets were retrospectively analyzed using two 
segmentation programs: aBEAT and FreeSurfer. Using aBEAT, images were segmented cross-sectionally and 
longitudinally. In FreeSurfer, the data was segmented individually first followed by longitudinal processing 
using the cross-sectional results to create a base image and then to initialize the 4D processing algorithms. 
Altogether, segmentation of each image resulted in four volume values. 

 

a 3T GE Signa EXCITE scanner. These T1 images served as the segmentation program 

inputs. 

 

Tissue Segmentation and Anatomical Parcellation 

The first longitudinal segmentation program tested was University of Pennsylvania’s 

Multiplicative Intrinsic Component Optimization (MICO). While validation of the 

program was not complete, a lack of references for the program and discouraging 

preliminary results led to its abandonment. The next two programs tested were 

aBEAT and FreeSurfer. The longitudinal data sets were segmented using both cross-

sectional and longitudinal processes for both programs (Figure 1).  
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Processing in aBEAT consisted of preprocessing, brain extraction, 

segmentation, and anatomical parcellation based on the Colin27 atlas mask (Dai et al., 

2013).  

1. Preprocessing consisted of image orientation to aBEAT’s coordinate system 

and non-parametric non-uniform intensity normalization (N3) bias field 

correction to remove intensity inhomogeneities. To remove intra-subject 

intensity variations, longitudinal preprocessing also included intensity 

histogram matching of each image to the baseline image.  

2. In 4D brain extraction, all images were affinely registered to a common space, 

then a brain probability map was warped onto the registered subject images 

and was used to remove non-brain voxels. If the brain extraction contained 

parts of the skull, the manual mask editor was used to create a new mask, 

which would then be used to perform a final brain extraction.  

3. aBEAT’s longitudinal segmentation first involved cross-sectional 

segmentation of all images with a spatial cortical thickness constraint, 

followed by 4D registration to align all segmentation results. Iterative 4D 

segmentation then occurred with the algorithm taking three terms into 

consideration: fitting of intensity distributions for white matter, gray matter, 

and CSF; a spatial cortical thickness constraint; and a temporal cortical 

thickness restraint. It should be noted that, while longitudinal segmentation in 

aBEAT did involve an initial cross-sectional segmentation of each image, the 

inputs for the longitudinal processing pipeline were the raw images. 
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4. In 4D anatomical labeling, longitudinal images were registered to their group-

mean image based on four key points with distinctive features. The 

deformation field was also calculated for registering the Colin27 atlas to the 

group mean image. A combination of the two deformation pathways resulted 

in the mapping of Colin27’s 90 regions of interest (ROIs) – 45 per hemisphere 

– to each time point image.  

5. ROI analysis was then performed using the aBEAT graphical user interface 

(GUI), which allows the user to select subject(s), tissue type, and ROI for 

analysis. 

In FreeSurfer, cross-sectional processing is a prerequisite to longitudinal processing 

(Reuter and Fischl, 2012), i.e. the inputs for longitudinal processing were previously 

segmented images. Individual processing was completed at each time point, and a 

median image was established as a base or template for longitudinal processing. 

Longitudinal preprocessing consisted of resampling to the base voxel space, followed 

by individual N3 bias field corrections. The base was then affinely registered to the 

Talairach coordinate system (Talairach and Tournoux, 1988). A longitudinal brain 

mask was created by taking the union of the registered brain masks of all time points 

to avoid eliminating any brain-containing voxels. Subcortical structure 

segmentations from each time point’s cross-sectional processing were fused together 

with longitudinal weighting of each voxel’s intensity determining the anatomical 

structure label to which the voxel will be assigned. Surfaces reconstruction, cortical 

atlas registration, and parcellations on the other hand were initialized using the base 

segmentation. Unlike aBEAT and its imposed cortical thickness constraints, 
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FreeSurfer allows its segmentation and surface reconstruction procedures to evolve 

freely.  

 

Method Assessment 

aBEAT and FreeSurfer’s segmented and anatomically parcellated images were 

registered back to their corresponding T1 space using FSL’s FLIRT (Jenkinson et al., 

2002) and FreeSurfer’s mri_convert command respectively. The output being 

analyzed was then overlaid on the T1 image at which point accuracy was qualitatively 

assessed by radiologist (Eduardo Caverzasi) and radiology resident (Valentina 

Panara) review. Lesion masks were obtained from FreeSurfer results by selecting for 

the white matter hypointensities label. The lesion masks were then overlaid on its 

corresponding T1 image and reviewed by a radiologist (E.C.).  

Quantitative analysis of the segmentation results was analyzed by examining 

the smoothness of the gray matter volume profiles over time. As aging is thought to 

result in a non-linear decrease in brain volume (Scahill et al., 2003) and MS can be 

thought of as an accelerated aging process, each subject’s results from each 

segmentation process was fit with a quadratic equation and then ranked by R2 values. 

A higher R2 value indicated smoother transition between the gray matter volumes at 

each time point, which was preferred. Data from the subject with only four time 

points was excluded from this part of the analysis due to the limited number of points 

for the quadratic fit. Volumes were also averaged across subjects for each time point 

and segmentation method to gauge how the programs dealt with the population as a 
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whole. Cortical thickness values obtained from FreeSurfer were also analyzed with 

quadratic fits and averaging.  

 

RESULTS 

 

A comparison between programs showed FreeSurfer to prevail as the more accurate 

of the two for both segmentation and anatomical parcellation. aBEAT and FreeSurfer 

showed similar results for cortical segmentation; however, aBEAT showed an 

inability to completely segmenting the basal ganglia (Figure 2(b)). In regards to the 

anatomical parcellation, aBEAT showed inaccuracy in its labeling, as ROIs did not 

adhere to the surfaces of sulci and gyri (Figure 3(b)). aBEAT also showed an inability 

to deal with lesions, classifying them as gray matter (Figure 4(c)). FreeSurfer showed 

more accurate results overall, which can be seen in Figures 2(a), 3(a), and 4(b) 

respectively. Figure 4(b) for example shows FreeSurfer’s white matter hypointensity 

segmentation, which correctly views lesions not as gray matter but as the white 

matter abnormalities.  

Averaged volumes across subjects showed similar trends between processing 

pipelines, with the longitudinal processing having quantified less total gray matter 

for both programs. FreeSurfer’s cross-sectional and longitudinal results paralleled 

each other, and aBEAT’s two volume profiles were nearly identical (Figure 5). 

Quantitative analysis of gray matter volumes showed FreeSurfer to be superior to 

aBEAT with FreeSurfer’s cross-sectional processing yielding the smoothest results 

(Table 1).  In fact, gray matter volume profiles of the longitudinal data sets show 
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Figure 2: Segmentation Results. (a) FreeSurfer’s subcortical segmentation algorithm is weighted across all 
time points to ensure that voxels are consistently labeled. This leads to the more accurate basal ganglia 
segmentation seen here. (b) While aBEAT is very stringent about its cortical thickness restraints, there are 
no such considerations for other parts of the brain. The incomplete segmentation of the left and right 
putamen – circled in red – demonstrate perhaps a need for more than just histogram-based segmentation 
for non-cortical regions as well.  

  

Figure 3: Anatomical Parcellation Results. (a) FreeSurfer’s cortical segmentation shows a strict adherence 
to the surfaces of the sulci and gyri. (b) The aBEAT anatomical mask overlaid on the subject’s T1 image shows 
that the left precentral gyrus – circled in red – is colored inaccurately with both orange and white thereby 
labeling the posterior portion as the postcentral gyrus instead. 

(a)            (b) 

(a)            (b) 
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Figure 4: Lesion Segmentation Results. (a) A subject’s baseline T1 image. (b) The white matter 
hypointensities label mask extracted from FreeSurfer’s parcellation of (a), which covers the lesions. (c) 
aBEAT’s segmentation of (a), showing that lesions were either misclassified as gray matter or CSF. (d) A 
different axial slice showing some missed lesions by FreeSurfer, compared to (e) in which lesions were 
manually segmented. 

 

better smoothness with cross-sectional processing in both aBEAT and FreeSurfer. 

The investigation into cortical thicknesses obtained by FreeSurfer, on the other hand, 

yielded conflicting results. Smoothness analysis showed the cross-sectional cortical 

thickness profiles to be better (R2 of 0.53 vs. 0.47 for longitudinal processing), 

(a)    (b)     (c) 

 

 

 

(d)       (e) 
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whereas graphically viewing the average cortical thicknesses across time showed less 

fluctuation with longitudinal processing (Figure 6). 

 

 

Figure 5: Total Gray Matter Volumes. The average volumes across subjects for each time point and 
segmentation procedure are shown here. The FreeSurfer cross-sectional and longitudinal results parallel 
each other, whereas the aBEAT two are nearly identical. Though the quantification of the two programs 
may be different (approximately 50 mm3 apart), the volume profile of all four pipelines are extremely 
similar.  

 

Method R2 

aBEAT cross-sectional 0.55 

aBEAT longitudinal 0.50 

FreeSurfer cross-sectional 0.75 

FreeSurfer longitudinal 0.56 
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Figure 6: Cortical Thickness Values. With the exception of the last time point, the FreeSurfer-derived 
cortical thicknesses of the two pipelines nearly paralleled each other. The cross-sectional’s sixth time point 
is most likely influenced by the standard deviations as cortical thickness is on the order of 0.4 – 0.9 mm.  

 

DISCUSSION 

 

Segmentation and Parcellation Results 

By its own admission, aBEAT does not have a surface-based ROI analysis function, 

and while that is in reference to surface reconstruction tools, it is evident in the 

anatomical parcellation results. As can be seen in Figure 3B, the Colin27 anatomical 

labels mask used by aBEAT does not adhere to the sulci and gyri of the T1 image that 

it is overlaid upon. The inaccurate segmentation of lesions and regions such as the 

basal ganglia poses a problem in analysis that would be relevant to MS. Lesion 

volumes being quantified as gray matter is problematic in that total lesion volume 

varies widely from patient to patient and that as the disease progresses lesion volume 

increases whereas gray matter is expected to atrophy, thereby decreasing sensitivity 

to gray matter volume changes. As the basal ganglia is involved with motor control, it 
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is a region of interest for MS and therefore complete, consistent segmentation of this 

specific ROI is important.  

Thus far evaluation shows that longitudinal processing for gray matter 

segmentation and atrophy analysis is not beneficial despite its intent to be so. The R2 

values that correspond to smoothness showed FreeSurfer’s cross-sectional analysis 

provided the smoothest or least stochastic changes between yearly image 

acquisitions. The difference in results found in the FreeSurfer cortical thickness and 

gray matter volume analyses are likely due to the difference in nature of each metric. 

Average cortical thickness is approximately 2.5 mm (Figure 6), and standard 

deviations within any given cortical region can range from 0.4 mm to 0.9 mm. This 

variability and outliers in particular can hugely sway the results. Total gray matter 

volume, on the other hand, is a singular measure that is much larger in comparison. 

Therefore the variability of a cross-sectional segmentation program is more likely to 

have a larger effect on cortical thickness measurements than gray matter atrophy. 

Longitudinal processing may therefore prove more useful for cortical thickness 

analysis rather than that of gray matter volume. This is due to the fact that 

longitudinal processing was intended in part for better researching subtle disease 

effects that may be hidden or convoluted by a program’s inherent variability (Reuter 

and Fischl, 2012).  

Though atrophy was expected, both the gray matter volume and cortical 

thickness results showed unexpected increases at various time points (Figures 5 and 

6). Those increases were consistent between programs and can either indicate that 

the MS subject population for this study is unusual or that all the segmentation 



16 
 

methods, though validated on healthy controls and patients suffering from 

neurodegenerative diseases, suffer inaccuracies when faced with MS. The latter is 

unlikely to be true, however, as the gray matter metric fluctuations over time were 

consistent between programs and between cross-sectional and longitudinal 

segmentation processing results. This indicates that the fluctuations are data-driven 

and are possibly due to presently uncharacterized physiologic changes. 

 

Additional Considerations 

The sample size is notably small; however, this study was not intended to derive any 

new meaning from the results but rather to determine best practices in a larger 

cohort. Even with a larger sample size, validation of such segmentation methods 

proves to be challenging, as all accepted, known trends of brain volume changes in 

MS are based on imaging. Therefore, correlating segmentation results to previously 

observed and currently accepted trends will be in essence to correspond the results 

with the image processing pipeline used to discover that trend and not necessarily 

what is actually happening physiologically. A similar study completed by Durand-

Dubief et al. (2012) evaluated methods for measuring brain volume loss in MS 

patients, though they only studied cross-sectional segmentation programs, and 

likewise made a point that it was examining robustness of methods, not accuracy. The 

lack of a validated gold standard that establishes truth is a fundamental limitation 

that presently does not have a solution. 

An important attribute of the programs is how automatable they are, 

especially when the need for large scale batch processing arises. FreeSurfer operates 
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on command lines, whereas aBEAT is a GUI-based program. GUIs require constant 

human attention, and particularly with aBEAT additional attention is needed for 

quality control. It was not uncommon for one of the processing steps in aBEAT to fail 

for one out of a patient’s six scans. In such instances the program would continue on 

and display no error or warning. Additionally, FreeSurfer calculates more measures 

(e.g. volume, thickness, curvature, etc), whereas aBEAT only calculates volumes, 

though cortical thickness can be derived with additional post-processing in MATLAB. 

It should be noted, however, that aBEAT is much newer than FreeSurfer and that it 

plans to incorporate surface-based ROI analysis and cortical thickness calculations 

into its next version. The only aspect in which aBEAT is presently preferable to 

FreeSurfer is computational time. Reported processing time for FreeSurfer is 20 to 40 

hours per subject per time point for cross-sectional processing on an AMD Opteron 

64bit 2.5GHz processor. aBEAT uses a parallel computing strategy and takes 6.7 

hours for longitudinal processing of a single subject with four time points on 8 CPU 

cores (Intel Xeon, 2.4 GHz) in Linux operating system, and cross-sectional processing 

takes even less time (Dai et al., 2013).  

 

Future Directions 

As all images were obtained from the same scanner, future directions include further 

validating the processing pipeline with the inclusion of images from other scanners 

and sites. Durand-Dubief et al. (2012) previously found FreeSurfer’s cross-sectional 

processing to show “significant differences in [brain volume] percentages between… 

2 sites”.  Batch processing will also be explored as the sequential processing of the 
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lab’s entire data set (3000+ images with more incoming) via FreeSurfer would take 

years. Therefore, alternate grid options are being considered. Additional future work 

with regards to FreeSurfer lies in further analysis of the longitudinal segmentation in 

cortical thickness analysis and verifying if it truly is or is not beneficial in a larger 

cohort.  

Additional research is also needed in lesion segmentation. Manual 

segmentation is a slow and painstaking process that often holds up the rest of image 

processing pipeline that requires pre-made lesion masks. FreeSurfer shows promise, 

though it is limited by its single input of a T1-weighted image, as some lesions are only 

seen on T2 or FLAIR images, and even then approximately 33% of pathologically 

identified white matter lesions are missed (Honce, 2013). Investigation into manual 

segmentation is currently ongoing to determine inter-operator variability as well as 

the differences between lesion segmentation based on T2 vs. FLAIR images. Despite 

ongoing efforts, manual lesion segmentation followed by cross-sectional 

segmentation remains the current, optimal approach.  

 

CONCLUSION 

 

We analyzed two software programs for their ability to automatically segment brain 

tissue. FreeSurfer proved to be more accurate than aBEAT for tissue segmentation 

and anatomical parcellation. In addition, FreeSurfer’s cross-sectional analysis 

pipeline showed the best results for analyzing gray matter volume changes in the 

seven longitudinal data sets in this study. Longitudinal analysis did not appear to 
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provide a significant improvement in gray matter volume analysis for either of the 

two programs, though FreeSurfer’s longitudinal pipeline showed some promise in 

cortical thickness analysis. Lesion segmentation remains an ongoing issue to be 

addressed with further research, which also includes further exploration of new 

longitudinal segmentation programs as they arise. As it stands, optimal segmentation 

in MS patients requires cross-sectional processing with manual lesion segmentation. 

  



20 
 

REFERENCES  

1. Anderson VM, Fisniku LK, Altmann DR, Thompson AJ, Miller DH. MRI measures 
show significant cerebellar gray matter volume loss in multiple sclerosis and are 
associated with cerebellar dysfunction. Mult Scler. 2009 Jul; 15(7): 811-7.  

2. Ashburner, J., Friston, K.J. Unified Segmentation. Neuroimage 2005; 26: 839-
851. 

3. Ceccarelli, A., Bakshi, R., Neema, M. MRI in Multiple Sclerosis: A Review of the 
Current Literature. Curr Opin Neurol. 2012; 25(4): 402-409. 

4. Dai, Y., Wang, Y., Wang, L., Wu, G., Shi, F., Shen, D., ADNI. aBEAT: a toolbox for 
consistent analysis of longitudinal adult brain MRI.  PLoS One. 2013; 8(4): 
e60344.  

5. de Boer, R., Vrooman, H.A., Ikram, M.A., Vernooij, M.W., Breteler, M.M.B., van 
der Lugt, A., Niessen, W.J.  Accuracy and reproducibility study of automatic MRI 
brain tissue segmentation methods. Neuroimage. 2010 Jul 1;51(3):1047-56.  

6. Durand-Dubief et al.  Reliability of longitudinal brain volume loss measurements 
between 2 sites in patients with multiple sclerosis: comparison of 7 
quantification techniques. AJNR Am J Neuroradiol. 2012 Nov; 33(10): 1918-24.  

7. Fillipi, M., Rocca, M.A. MR imaging of gray matter involvement in multiple 
sclerosis: implications for understanding disease pathophysiology and 
monitoring treatment efficacy. AJNR Am J Neuroradiol. 2010 Aug; 31(7): 1171-
1177.  

8. Honce, Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations. 
Multiple Sclerosis International. 2013; Volume 2013, Article ID 627870, 16 
pages. doi:10.1155/2013/627870. 

9. Horakova, D., Kalincik, T., Dusankova, J.B., Dolezal, O. Clinical correlates of grey 
matter pathology in multiple sclerosis. BMC Neurology 2012, 12:10. doi: 
10.1186/1471-2377-12-10. 

10. Jenkinson, M., Bannister, P., Brady, J. M. and Smith, S. M. Improved Optimisation 
for the Robust and Accurate Linear Registration and Motion Correction of Brain 
Images. NeuroImage, 2002; 17(2), 825-841. 

11. National Multiple Sclerosis Society. National Multiple Sclerosis Society. 
Retrieved August 29, 2013, from http://www.nationalmssociety.org  

12. Reuter, M., Fischl, B. Within-Subject Template Estimation for Unbiased 
Longitudinal Image Analysis. NeuroImage 2012; 61(4): 1402-1418. 

13. Scahill, R.I., Frost, C., Jenkins, R., Whitewell, J.L., Rossor M.N., Fox, N.C. A 
Longitudinal Study of Brain Volume Changes in Normal Aging Using Serial 
Registered Magnetic Resonance Imaging. Arch Neurol. 2003; 60(7):989-994. 

14. Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., De 
Stefano, N. Accurate, robust and automated longitudinal and cross-sectional 
brain change analysis. NeuroImage 2002; 17(1), 479-489. 

15. Styner, M., Lee, J., Chin, B., Chin, M.S., Commowick, M., Tran, H-H., Jewells, V., 
Warfield, S. 3D Segmentation in the Clinic: A Grand Challenge II: MS Lesion 
Segmentation. 2008.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Anderson%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=19465449
http://www.ncbi.nlm.nih.gov/pubmed?term=Fisniku%20LK%5BAuthor%5D&cauthor=true&cauthor_uid=19465449
http://www.ncbi.nlm.nih.gov/pubmed?term=Altmann%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=19465449
http://www.ncbi.nlm.nih.gov/pubmed?term=Thompson%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=19465449
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=19465449
http://www.ncbi.nlm.nih.gov/pubmed/19465449
http://www.ncbi.nlm.nih.gov/pubmed/23577105
http://www.ncbi.nlm.nih.gov/pubmed/20226258
http://www.ncbi.nlm.nih.gov/pubmed/22790248
http://www.ncbi.nlm.nih.gov/pubmed/20044503
http://www.nationalmssociety.org/


21 
 

16. Talairach, J., Tournoux, P. Co-planar Sterotaxic Atlas of the Human Brain: 3-
Dimensional Proportional System – an Approach to Cerebral Imaging. Thieme 
Medical Publishers, New York, NY, 1988. 

17. Zhang, Y., Brady, M., Smith, S. Segmentation of brain MR mages through a 
hidden Markov random field model and the expectation-maximization 
algorithm. IEEE Trans Med Imag 2001; 20(1): 45-47. 

 






