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Western  U.S.  residential,  municipal,  and  agricultural  water  supplies  depend  on  cool             

season  storms.  The  majority  of  these  storms  are  landfalling  atmospheric  rivers  which  travel  in                

the  troposphere  from  the  tropical  Pacific  Ocean.  Sudden  changes  in  mesoscale  features  or  storm                

ingredients  can  dramatically  alter  impacts  affecting  hydrologic  processes  and  communities.            

Although   storms   provide   vital   water   supplies,   they   also   induce   deleterious   flooding,   landslide,   

xx   



wind,  and  snow-related  disasters.  Precipitation  phase  and  the  type  and  severity  of  storm  impacts                

vary  depending  on  the  altitude  at  which  frozen  hydrometeors  melt  relative  to  ground  elevations.                

Thus,  this  rain-snow  transition  altitude,  or  atmospheric  snow  level,  and  its  intrastorm  vertical               

variations   are   key   in   determining   storm   benefits   and   hazards.   

While  there  has  been  a  considerable  amount  of  recent  progress  in  snow  level  research,                

there  remain  challenges  regarding  substantial  changes  in  snow  level  observed  during  high-impact              

storms.  The  primary  goal  of  this  dissertation,  therefore,  is  to  provide  a  robust  methodology  to                 

define,  catalogue,  and  describe  extreme  intrastorm  changes  in  snow  levels  during  California              

storms.  This  work  considers  10  vertically-oriented  radar  locations  over  six  recent  cool  seasons,               

defining  an   extreme  snow  level  change  as  a  one-hour  change  with  a  magnitude  of  at  least  400                   

meters.  The  provided  dissertation  identifies  134  and  113  extreme  rises  and  falls,  respectively,               

finding  strong  associations  with  periods  of  enhanced  water  vapor  transport  including             

atmospheric  rivers.  Additionally,  this  research  designs  data  quality  filters  that  reduce  spurious              

snow  level  changes.  This  work  also  defines  and  identifies  distinct  events,  termed   semicontinuous               

snow   level   events ,   in   which   to   compute   hourly   changes.     

Further,  this  dissertation  provides  statistical,  spatial,  and  temporal  descriptions  of            

semicontinuous  snow  level  events,  intrastorm  snow  level  changes,  and  extreme  changes.  Results              

indicate  an  elevated  number  of  extremes  existed  at  northern  sites,  during  December-March,  and               

during  anomalously  wet  cool  seasons.  Key  findings  reveal,  for  60-100%  of  extreme  changes  at                

each  radar,  an  atmospheric  river  occurred  within  the  six  hours  preceding  or  following  each                

extreme.  Ultimately,  this  dissertation  provides  methodologies,  findings,  and  a  catalogue  of             

extremes  beneficial  to  future  investigations  of  intrastorm  snow  level  changes,  atmospheric             
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mechanisms  controlling  these  variations,  and  implications  for  hazard  prediction  and            

preparedness.   
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Chapter   1   

Executive   Introduction   

  
1.1.   Background   

Water  from  rainfall  and  snowpacks  is  essential  to  sustain  living  creatures  and  ecosystems               

of  Earth.  At  the  same  time,  both  an  overabundance  or  absence  of  precipitation  can  lead  to                  

destruction.  A  number  of  interrelated  factors  involving  the  atmosphere,  oceans,  land,  subsurface              

water  and  soil,  and  human  activities  determine  precipitation  type,  intensity,  location,  duration,              

along  with  resultant  hydrologic  and  societal  impacts.  Sudden  changes  in  any             

precipitation-enhancing  or  inhibiting  factor  can  result  in  disasters.  Thus,  there  exists  a  fine  line                

between  hazards  and  benefits  of  precipitating  storms.  Scientists  and  communities  have  grappled             

with  this  truth  throughout  history,  and  face  challenges  with  it  today  that  are  exacerbated  by                 

anthropogenic   climate   change.   

Atmospheric  rivers  (ARs),  previously  referred  to  as  tropospheric  rivers,  are  a  relatively              

new  type  of  storm  identified  and  investigated  by  researchers.  Foundational  work  of  the  1990s                

(Newell  et  al.  1992;  Zhu  and  Newell  1994,  1998)  contributed  to  considerable  advancements  in                

AR  research  and  knowledge  between  the  early  2000s  and  present  (Gimeno  et  al.  2014;  Ralph  et                  

al.  2017a).  ARs  are  long,  narrow  corridors  of  elevated  atmospheric  moisture  that  typically  form                

over  tropical  ocean  regions  and  exist  within  the  warm  (pre-cold  front)  sector  of  an  extratropical                 

cyclone.  This  sector  often  features  a  low-level  jet,  a  region  of  strong  winds,  which  enhances                 

moisture  transport  from  tropical  and  extratropical  source  regions  (e.g.,  Zhu  and  Newell  1998,               

Ralph   et   al.   2004,   2005,   2011;   Bao   et   al.   2006;   Wick   et   al.   2013;   Dacre   et   al.   2015).   
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While  ARs  are  relatively  narrow  (~600-1000  km  wide),  they  are  responsible  for  more               

than  90%  of  the  water  vapor  transported  poleward  across  midlatitudes  (Zhu  and  Newell  1998).               

Thus,  ARs  play  important  roles  in  a  wide  range  of  challenges,  including  the  development  of                 

reliable  weather  and  flood  forecasts  and  understanding  the  global  water  budget  on  weather  and                

climate  time  scales  (e.g.,  Ralph  et  al.  2004;  Dettinger  et  al.  2011;  Dettinger  2011;  Gershunov  et                  

al.  2019).  ARs  simultaneously  supply  valuable  water  in  the  form  of  precipitation,  and  create                

weather  and  water  hazards  for  regions  across  the  globe  (e.g.,  Waliser  and  Guan  2017;  Payne  et                  

al.  2020).  Recent  studies  examined  impacts  and  characteristics  of  ARs  affecting  the  western               

U.S.,  southern  Africa  (Blamey  et  al.  2018;  Ramos  et  al.  2018),  the  Middle  East  (Dezfuli  2020),                  

western  South  America  (e.g.,  Viale  and  Nuñez  2011).  Past  studies  also  involved  ARs  in  Europe                 

(e.g.,  Lavers  et  al.  2012;  Lavers  and  Villarini  2015;  Ramos  et  al.  2015,  2016),  the  northern                  

Pacific  (Mundhenk  et  al.  2016;  Kamae  et  al.  2017),  the  central  and  eastern  U.S.  (e.g.,  Moore  et                   

al.   2012;   Debbage   et   al.   2017),   Antarctica   (Gorodetskaya   et   al.   2014;   Adusumilli   et   al.   2021).     

During  California’s  storms,  which  are  the  focus  of  this  dissertation,  rain  and  snow  in                

excess  can  result  in  natural  hazards  and  negative  societal  impacts,  from  flooding  and  landslides                

to  road  closures  and  avalanches,  all  of  which  threaten  lives  and  property.  At  the  same  time,  as                   

California  produces  the  majority  of  various  tree  nuts,  fruits,  and  vegetables  grown  in  the  U.S.,  its                  

farming  communities,  economy,  and  consumers  across  the  nation  and  world  heavily  depend  on               

water  from  mountain  snowpack  and  new  precipitation  during  cool  season  storms.  The  majority               

of  California’s  storms  are  landfalling  ARs  which  provide  up  to  40-60%  of  annual  precipitation                

(Dettinger  et  al.  2011;  Rutz  et  al.  2014;  Lamjiri  et  al.  2018)  and  up  to  40%  of  snow  water                     

equivalent   (Guan   et   al.   2010).     
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ARs  that  affect  the  western  U.S.  typically  generate  over  the  tropical  Pacific  Ocean  near                

Hawaii  or  further  west  nearer  eastern  coasts  of  Pacific  Islands  and  the  continent  of  Asia  (e.g.,  ;                   

Sellars  et  al.  2017;  Zhou  and  Guan  2018).  They  form  as  a  result  of  interactions  between  the                   

ocean  surface  and  atmosphere  involving  strong  evaporation  and  moisture  convergence.  These            

moisture  plumes  travel  to  the  northeast  or  east  towards  land.  Each  exists  within  an  extratropical                 

cyclone  which  occurs  during  the  cool  season,  typically  near  southern  or  western  coasts  of                

Alaska.  Characteristics  of  the  associated  low-atmospheric  pressure  system  and  low-level  jet  (e.g.,              

Demirdjian  et  al.  2020)  involving  magnitude,  intensity,  location,  or  variations  over  time  affect               

corresponding  impacts  and  characteristics  of  AR/s.  Upon  reaching  the  western  U.S.,  ARs              

typically  persist  for  15-25  hours  (e.g.,  Ralph  et  al.  2013a;  Rutz  et  al.  2014).  ARs  extend  through                   

the  lowest  3  km  of  the  atmosphere,  measuring  850  km  wide,  on  average,  and  at  least  1500  km                    

long  (Ralph  et  al.  2004,  2017b,  2018;  Cordeira  et  al.  2013).  Extreme  precipitation,  strong  winds,                 

floods,  landslides,  and  avalanches  can  ensue  from  these  ARs  (e.g.,  Ralph  et  al.  2006;  Dettinger                 

2016;   Lamjiri   et   al.   2017;   Hatchett   et   al.   2017a;   Oakley   et   al.   2018;   Cordeira   et   al.   2019).   

The  atmospheric  rain-snow  level,  or  the  altitude  at  which  frozen  hydrometeors  fully              

transition  to  rain,  governs  precipitation  type  during  storms  as  well  as  resultant  hydrologic               

responses  and  impacts  for  communities.  Further,  impacts  of  rain-dominated  precipitation  events             

can  differ  significantly  from  those  of  snow-dominated  events.  For  instance,  when  rain-snow              

levels  (hereafter  referred  to  as  snow  levels)  exist  above  the  majority  of  ground  elevations  within                 

a  basin,  the  majority  of  the  basin  will  experience  rain  which  can  quickly  lead  to  flooding  and                   

mass  movements.  When,  instead,  snow  levels  are  situated  below  ground  elevations,  most  of  the                
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basin  area  will  experience  snow  which  can  lead  to  avalanches  and  road  closures  and  delays,  or                  

may   be   retained   within   a   snowpack   for   a   longer   time   period.     

Additionally,  hydrometeorologically  high-impact  basins  within  regions  of  steeply-varying          

ground  elevation  such  as  in  California’s  Sierra  Nevada  (“snowy  mountains''),  are  especially              

sensitive  to  snow  levels  and  snow  level  variations  over  time.  Further,  storm-provided  snowpacks               

and  rainfall  within  these  key  regions  such  as  the  Sierra  Nevada  supply  critical  water  for  cities,                  

farms,  and  ecosystems  throughout  the  state.  Thus,  to  predict  and  plan  for  distinct  impacts  of                 

individual  storms,  it  is  important  to  explore  and  understand  characteristics  of  snow  levels  and                

their   intrastorm   variations.   

Following  the  discovery  of  the  Doppler  effect  in  the  early  1840s,  the  discovery  of  radio                 

waves  in  the  late  1800s,  and  the  invention  of  radars  in  the  mid-1930s,  radar  profilers  were                  

designed  and  used  to  measure  objects  in  the  sky.  In  the  1940s  and  1950s,  as  a  result  of  radar                     

advancements  made  during  World  War  II,  researchers  began  using  radars  to  observe              

hydrometeors  (Whiton  et  al.  1998;  Saltikoff  et  al.  2019).  Throughout  the  late  20 th  century  and                 

recent  early  21 st  century,  researchers  have  investigated  spatiotemporal  patterns,  and  physical  and              

radar-observed  characteristics  of  melting  layer  variables  including  California  snow  level.            

Researchers  utilize  vertically-oriented  radars  to  detect  snow  levels  which,  through  imagery  of              

Doppler  radar  returns,  appear  as  peak  radar  reflectivity  heights  (e.g.,  Austin  and  Bemis  1950;                

Battan  et  al.  1973;  White  et  al.  2002;  Johnston  et  al.  2017).  These  “brightband  heights”  result                  

due   to   contrasting   properties   of   rain   and   frozen   droplets,   largely   diameter   and   water-to-ice   ratio.     

Past  studies  describe  characteristics,  spatial  variations,  and  numerical  weather  model            

forecast  skill  for  western  U.S.  snow  levels  and  related  variable  within  the  melting  layer  (e.g.,                 
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Stewart  et  al.  1984;  Lundquist  et  al.  2008;  Minder  et  al.  2011;  Minder  and  Kingsmill  2013;  Henn                   

et  al.  2020;  White  et  al.  2010;  Neiman  et  al.  2014;  Hatchett  2018).  In  addition,  previous  research                   

provides  details  on  the  sensitivity  of  streamflow  responses  to  melting  layer  features  (e.g.,  White                

et  al.  2002;  Neiman  et  al.  2014;  Sumargo  et  al.  2020a).  Recent  studies  have  emphasized                 

variations  in  snow  levels  over  annual  to  decadal  timeframes  (e.g.,  Hatchett  et  al.  2017b),  and                 

spotlighted  case  studies  of  large-magnitude  snow  level  changes  occurring  during  a  single  AR               

event  or  across  consecutive  storms  (e.g.,  Hatchett  et  al.  2016,  2020;  White  et  al.  2019).  While                  

researchers  have  made  important  contributions  to  snow  level  research  over  time,  there  still               

remain  unknowns  surrounding  the  topic  of  substantial  intrastorm  snow  level  changes  which  are               

the   focus   of   this   dissertation   (refer   to   Section   1.3   for   an   introduction   to   the   dissertation).     

  

1.2.   Historical   Context      

While  the  numerous  cultural  histories  and  regional  achievements  of  atmospheric  and            

Earth  sciences  are  beyond  the  scope  of  this  dissertation,  it  is  important  to  acknowledge  and  honor                  

the  invaluable  contributions  and  the  oral  and  written  histories  of  those  before  us.  By  spotlighting                 

a  number  of  histories  here,  this  section  provides  a  broader,  global  perspective  of               

precipitation-relevant   ideologies   and   research   advancements   through   time.   

Across  the  ancient  and  present-day  world,  legends  of  hydrometeorological  extremes  in             

connection  with  deities  or  mythological  beings  have  been  passed  down  within  Indigenous              

communities.  For  instance,  West  African  Yorùbá  goddess,  Oshun  (Ọṣun  in  ancestral             

Afro-Brazilian  cultures),  is  traditionally  said  to  unleash  or  withhold  her  waters  when  angered,               

causing  floods  or  droughts.  Similar  beliefs  have  been  shared  by  other  communities  existing               
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across  oceans  and  generations.  Ancestral  Hawaiian  beliefs  suggest  the  rain  god,  Lono-makua              

(Lono  the  Provider),  supplies  the  archipelago  with  its  wintertime  rain.  The  Kumeyaay  of               

present-day  San  Diego  and  Baja  California,  Mexico,  include  storm-bringing  spirits  in  their              

ancestral   stories   (San   Diego   IRWM   Program,   2017).     

Long  before  the  Spanish  colonization  of  present-day  California  beginning  in  the  16 th  to               

18 th  century,  Indigenous  communities  depended  on  adapting  to  and  understanding  the             

interconnectivity  of  the  sky,  oceans,  land,  ecosystems,  and  Earth’s  beings.  Much  like  other               

long-established  groups  across  the  world  (e.g.,  Dube  and  Munsaka  2018;  Zhang  and  Nakagawa               

2018),  Indigenous  communities  of  the  Sierra  Nevada  (the  Kawaiisu,  Mono,  Northern  Paiute,              

Sierra  Miwok,  Tübatulabal)  and  other  California  regions  developed  and  applied  ecosystem-based             

knowledge  to  establish  best  practices  for  sustainable  living  and  for  the  management  of  land,                

livestock,  and  crops.  This  wisdom,  which  is  still  relevant  today,  has  been  used  to  increase                 

community  resilience  during  droughts,  floods,  and  other  natural  hazards  (e.g.,  Aldern  and  Goode               

2014;  Andrade-Sánchez  et  al.  2021).  From  ancient  Egypt’s  goddess  of  moisture  and  rain,  Tefnut                

(circa  BCE  3200),  to  ancient  Greece’s  god  of  the  skies,  Zeus  (circa  BCE  700),  to  spiritual  beings                   

that  are  part  of  Indigenous  beliefs,  countless  communities  throughout  history  share  legends              

regarding   rain   sans   destruction   to   be   a   gift   from   above.    

In  the  oldest  known  comprehensive  atmospheric  science  treatise  (BCE  350),  entitled             

Meteorologica ,  Greek  philosopher  Aristotle  wrote  about  the  interconnectivity  of  Earth’s  oceans,             

land,  atmosphere,  and  rivers:  “It  is  thought  that  the  water  is  raised  [from  Earth’s  land  and  ocean                   

surfaces]  by  the  sun  and  descends  in  rain...[The  rain]  gathers  below  the  earth  and  so  flows  from  a                    

great  reservoir,  all  the  rivers  from  one,  or  each  from  a  different  one.”  Over  the  lifetimes  since                   
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pre-modern  eras,  researchers  and  communities  continued  investigating  hydrometeorological          

processes  and  phenomena  and  documented  their  findings.  Challenges  in  understanding  and             

predicting  features  of  the  water  cycle,  and  mitigating  and  preparing  for  storm-related  hazards  still                

exist   today.   

Prior  to  remote  sensing,  various  instruments  were  invented  and  used  within  ancient  and               

Indigenous  communities  to  monitor  the  atmosphere  and  bodies  of  water.  For  instance,  ancient               

Egyptians  invented  and  used  the  nilometer  to  measure  water  height  and  clarity  of  the  Nile  River.                  

Rainfall  records  from  ancient  Greece  and  India  began  circa  BCE  500  and  BCE  400,  respectively.                 

During  1441  in  Korea,  a  rain  gauge  called  the  cheugugi  was  created  to  measure  rain  (Valipour                  

2020).  Within  the  United  Kingdom  and  post-colonization  U.S.,  routine  documentation  of  weather              

conditions  did  not  begin  until  around  the  1850s  and  1870s,  respectively,  around  when  the  British                 

Meteorological  Society  (i.e.,  current  Royal  Meteorological  Society)  and  the  U.S.  National             

Weather   Service   were   established.     

Since  the  early  20 th  century,  scientists  and  engineers  have  worked  to  develop  remote               

sensing  instruments  positioned  on  the  ground,  on  airplanes,  or  on  satellites  in  space.  These                

instruments  measure  objects  in  the  sky,  including  aircrafts  and  precipitation,  as  well  as               

characteristics  of  bodies  of  water,  and  more.  In  1842,  Christian  Johann  Doppler  formally               

described  the  Doppler  effect  which  is  used  in  modern-day  radars  to  measure  the  speed  of  moving                  

objects.  In  the  late  1880s,  Heinrich  Hertz  formally  proved  the  existence  of  radio  waves.  It  was                  

not  until  the  mid  1930s,  however,  that  Sir  Robert  Alexander  Watson-Watt  led  the  design  of  the                  

first  operational  radar  system  in  Britain  and  the  world.  The  British  Royal  Air  Force  used  this                  

system  to  identify  aircraft  during  war.  During  the  1940s  and  1950s,  researchers  made  major                
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developments  in  radar  remote  sensing  (Whiton  et  al.  1998;  Saltikoff  et  al.  2019).  Much  of  the                  

progress  made  in  the  U.S.  and  Europe  stemmed  from  efforts  to  support  or  strengthen  military                 

operations  during  World  War  II.  More  recently,  in  the  1960s-1980s,  the  U.S.  and  European                

countries  launched  the  first  satellites  which  allowed  scientists  to  measure  features  of  Earth  from                

space,  including  water  in  its  gaseous,  solid,  and  liquid  forms  (water  vapor,  ice,  rain  and  snow)  in                   

the   atmosphere,   in   oceans,   and   on   land.     

As  a  result  of  regional  wisdom,  the  intergenerational  sharing  of  knowledge,  and  through               

centuries  of  scientific  and  technological  advancements,  researchers  and  communities  can            

measure,  track,  and  elucidate  details  of  water  vapor  and  precipitation  during  ARs  and  other                

storms  (as  considered  in  this  dissertation  work)  as  well  as  hydrologic  responses  of  rivers  and                 

streams.  Advances  in  radar  and  satellite  meteorology  and  technologies  add  value  to  society  by                

allowing  humans  to  observe  features  of  the  Earth  and  its  atmosphere  with  enhanced  breadth,                

accuracy,  and  precision.  In  turn,  previous  achievements  and  those  of  the  future  also  allow  for  an                  

elevated   understanding   of   Earth’s   natural   hazards,   processes,   and   changes   in   a   warming   world.     

  

1.3.   Introduction   to   the   Dissertation     

The  purpose  of  this  dissertation  is  to  develop  the  first  robust  definition,  record,  and                

analysis  of   extreme  intrastorm  snow  level  changes  (magnitude  ≥400  m  within  an  hour)  which                

have  been  observed  during  high-impact  storms.  These  extremes  are  hereafter  also  referred  to  as                

extreme  changes  or  extreme  SLCs.  Compared  to  previous  studies,  the  research  presented  here               

includes  an  increased  number  of  water  years  (six  recent  cool  seasons)  and  California  radar                

locations  within  a  single  radar  network  (10  total;  consistent  in  design  and  operation).               
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Additionally,  this  dissertation  work  examines  spatiotemporal  patterns  and  characteristics  of  both             

extreme   intrastorm   rises   and   falls   in   snow   level.     

Overarching  scientific  questions  include  the  following:  (1)  What  methods  can  we  create              

and  apply  for  snow  level  event  identification,  data  quality  checks,  intrastorm  SLC  computation,               

and  the  identification  of  extremes  to  define  and  catalogue  valid  extreme  SLCs?  (2)  How  might                 

mean  characteristics  of  extreme  snow  level  rises  and  falls  vary  spatially,  annually,  and  from  one                 

month  to  the  next?  (3)  Do  relationships  exist  between  extreme  SLCs  and  AR  periods,  or  periods                  

of   enhanced   water   vapor   transport?   

We  hypothesize  anomalously  wet  winters  and  peak  AR  months  (December-March)  will             

have  elevated  counts  and  mean  magnitudes  for  extreme  snow  level  rises  and  falls.  Additionally,                

we  hypothesize  extreme  SLC  counts  and  magnitudes  will  also  exhibit  a  spatial  dependence,  with                

peak  counts  and  magnitudes  at  radars  located  within  typical  frontal  system  penetration  pathways               

or  within  regions  that  experience  orographic  precipitation  enhancements.  Further,  we            

hypothesize  strong  associations  between  extreme  SLC  periods  and  high-moisture  periods,  in             

turn,   meaning   a   strong   association   between   extreme   SLCs   and   ARs.   

To  begin,  in  Chapter  2,  we  employ  high  temporal  resolution  (10-minute)  radar-derived              

snow  levels  to  establish  a  methodology  to  identify   semicontinuous  snow  level  events .  These               

events  are  defined  through  this  dissertation  as  periods  containing  nearly-continuous  snow  levels              

which  allow  for  data  gaps  due  to  the  sporadic  nature  of  precipitation.  Next,  we  compute                 

maximum  one  and  three-hour  snow  level  rises  and  falls  within  the  predetermined  semicontinuous               

snow  level  events.  Further,  to  reduce  spurious  fairly-significant  snow  level  changes  (magnitude  ≥               

200  m),  we  develop  and  apply  quality  check  filters  for  radar-derived  snow  level  measurements.                
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We  compare  the  sensitivity  of  statistics  for  semicontinuous  snow  level  events  and  intrastorm               

snow  level  changes  pre-  and  post-quality  check  filters.  Lastly,  we  assess  patterns  and  statistics  of                 

intrastorm  snow  level  changes  and  semicontinuous  snow  level  events  from  one  year,  radar,  and                

month   to   the   next.   

Chapter  3  expands  on  Chapter  2  by  providing  a  definition  and  description  of  extreme                

intrastorm  snow  level  changes.  In  Chapter  3,  we  establish  and  apply  a  percentile-based               

methodology  to  define  and  identify  extreme  rises  and  falls  in  snow  level  within  the  dataset  of                  

intrastorm  snow  level  changes  created  in  Chapter  2.  Additionally,  we  investigate  spatiotemporal              

patterns  and  statistics  of  extreme  and  exceptional  (≥  800  m  within  one  hour)  intrastorm  snow                 

level  changes.  Further,  we  explore  associations  between  extreme  snow  level  changes  and  ARs               

and  integrated  water  vapor  transport  (IVT)  values.  To  do  so,  we  employ  a  high-resolution                

reanalysis  product  and  an  AR  catalogue  derived  from  an  IVT-based  detection  algorithm.  Both               

Chapter  2  and  3  include  content-specific  subsections  of  the  scientific  method.  Chapter  4  includes                

concluding  remarks  involving  broader  implications  of  this  dissertation.  Lastly,  in  this  final              

chapter,  we  suggest  applications  of  this  work  for  future  studies  of  physical  drivers  and                

hydro-societal   impacts   of   snow   levels   and   extreme   changes.   
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Chapter   2   

A   Methodology   to   Identify   Intrastorm   Changes     

in   Radar-Derived   Snow   Level   Elevation   

  
2.1.   Abstract     

The  elevation  of  the  transition  between  rain  and  snow  in  the  atmosphere  is  key  for                 

determining  precipitation  type,  location,  and  hydrologic  impacts.  This  transition,  known  as  the              

atmospheric  snow  level,  is  particularly  important  in  regions  of  complex  terrain  such  as               

California's  Sierra  Nevada.  Although  abrupt  snow  level  changes  have  been  observed  by              

vertically-oriented  radars  and  contribute  to  substantial  alterations  in  hydrometeor  type  and             

subsequent  hydrometeorological  impacts,  these  changes  have  not  been  comprehensively           

investigated.  Here,  we  present  a  methodology  to  compute  maximum  hourly  snow  level  changes,               

employing   radar-derived   snow   levels   during   cool   seasons   spanning   water   years   2015-2020.     

This  study  catalogues  1492  semicontinuous  snow  level  events,  defined  as  periods             

containing  at  least  50%  available  data  lasting  three  or  more  hours  with  data  gaps  no  longer  than                   

three  hours.  Within  these  semicontinuous  events,  intrastorm   snow  level  rises  and  falls  are               

computed  and  catalogued  over  one  and  three-hour  increments.  To  minimize  the  number  of               

invalid  snow  level  changes,  we  develop  and  apply  conservative  data  quality  filters  to  existing                

measurements.  Across  all  sites  and  years  considered,  the  filters  omit  2.8%  of  initial  snow  level                 

measurements.  We  assess  results  by  site,  month,  and  year,  finding  peak  counts  for  snow  levels,                 

semicontinuous  snow  level  events,  and  intrastorm  snow  level  changes  at  higher-latitude  radars,              
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during  March  compared  to  other  months,  and  during  anomalously  wet  cool  seasons  including  the                

record-setting  2017.  This  work  provides  a  foundation  for  subsequent  snow  level  studies              

investigating  spatiotemporal  variations,  impacts,  and  driving  mechanisms  of  intrastorm  snow            

level   rises   and   falls.   

  

2.2.   Significance   Statement     

In  mountainous  areas  such  as  California’s  Sierra  Nevada,  the  altitude  where  snow  melts               

to  become  rain  -  the  atmospheric  snow  level  -  is  especially  important.  Snow  level  relative  to                  

ground  elevation  determines  the  fraction  of  the  watershed  experiencing  snow  or  rain  during  a                

storm.  Flood  hazards  resulting  from  rain  or  rain-on-snow  differ  considerably  from  snow  hazards,               

and  rapid  vertical  snow  level  changes  can  produce  both  rain  and  snow  hazards  simultaneously,                

depending  on  the  location.  Thus,  we  present  a  methodology  to  compute  and  investigate  hourly                

rises  and  falls  in  radar-derived  snow  levels  after  removing  spurious  changes.  This  catalogue  of                

snow  level  events  and  changes  will  be  useful  for  subsequent  studies  examining  hydrologic  and                

societal   impacts.   

  

2.3.   Introduction   

Whether  precipitation  falls  as  rain  or  as  snow  plays  a  key  role  in  determining  the                 

magnitude  of  storm  hazards  versus  benefits.  While  rain  replenishes  reservoirs  of  the  western               

U.S.,  sustained  heavy  or  short-duration,  high-intensity  rainfall  produces  flooding  and  landslides             

(e.g.,  Ralph  et  al.  2006;  Dettinger  2016;  Oakley  et  al.  2018;  Cordeira  et  al.  2019).  New  snowfall                   

can  increase  mountain  snowpacks  that  contribute  to  water  supplies  upon  melting  in  warmer               
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temperatures,  but  extremes  lead  to  negative  impacts  such  as  traffic  delays  and  avalanches  (e.g.,                

Hatchett   et   al.   2017a,   2020;   White   et   al.   2019).   

An  important  storm  characteristic  controlling  hydrometeorological  impacts  in  mountains           

is  the  snow  level,  defined  as  the  elevation  at  which  snow  melts  into  rain.  The  snow  level                   

elevation  relative  to  basin  hypsometry  determines  the  fraction  of  a  watershed  receiving  snow               

versus  rain.  This  elevation,  also  known  as  the  rain-snow  transition  elevation,  or  rain-snow  line,  is                 

especially  important  in  regions  with  large  (>  1000  m)  elevation  gradients.  Freezing  levels,  or  0°C                 

altitudes,  are  closely  related  to  snow  levels.  Rather  than  representing  a  vertical  temperature               

contour,  snow  levels  represent  the  minimum  altitude  at  which  free-falling  frozen  hydrometeors              

melt  entirely  to  rain.  Whereas  freezing  levels  exist  at  the  top  of  the  vertical  layer  where                  

hydrometeors  melt,  snow  levels  lie  further  below,  with  an  average  difference  of  192  m  for  coastal                  

California   (White   et   al.   2002).     

California  cool  season  snow  levels  typically  occur  between  1000  and  3500  m  MSL  with                

medians  near  1500  m  MSL  (Hatchett  et  al.  2017b;  Henn  et  al.  2020),  a  range  that  also                   

encompasses  ground  elevations  throughout  much  of  California’s  Sierra  Nevada,  which  has  peaks              

at  ~3300-4400  m  MSL.  The  snow  level  can  be  deduced  from  radar  brightband  height,  which  is                  

the  elevation  of  peak  reflectivity  corresponding  to  the  vertical  melting  layer  (i.e.,  the  bright                

band).  Reflectivity  peaks  appear  largely  due  to  differences  between  the  liquid-to-solid  water  ratio               

(which  affects  the  dielectric  constant)  and  the  size  of  frozen  hydrometeors  and  rain.  Using                

vertically-oriented  S-band  radars,  we  can  identify  snow  levels  on  short  time  scales  (minutes  to                

hours)  during  brightband-containing  precipitation  events.  An  hourly  or  sub-hourly  rise  or  fall  in               

snow  level  during  a  storm,  which  we  refer  to  as  an   intrastorm  snow  level  change  (SLC),  can  alter                    
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the  fraction  of  a  basin  that  predominantly  receives  rain  or  snow.  Such  alterations  can  contribute                 

to   costly   hazards   to   life   and   property   and   create   water   management   challenges.     

Previous  studies  examined  characteristics,  climatologies,  or  model  forecast  skill  of            

western  U.S.  melting  layer  features  (e.g.,  Marwitz  1983;  Stewart  et  al.  1984;  White  et  al.  2002,                  

2010;  Lundquist  et  al.  2008;  Minder  et  al.  2011;  Minder  and  Kingsmill  2013;  Neiman  et  al.  2014;                   

Henn  et  al.  2020).  Others  considered  annual  and  decadal-scale  snow  level  variations  (Hatchett  et                

al.  2017b;  Lynn  et  al.  2020),  or  case  studies  of  single  events  containing  SLCs  (e.g.,  Hatchett  et                   

al.  2018,  2020;  White  et  al.  2019).  Within  one  winter  (2016/17),  Henn  et  al.  (2020)  found  large                   

variations  (≥  3000  m)  in  California  snow  levels  at  individual  radar  sites,  suggesting  that  snow                 

levels  play  an  important  role  in  determining  precipitation  and  impacts  for  individual  storms.               

Snow  levels  also  exhibit  spatial  variability,  with  5 th  percentile  values  up  to  ~500  m  larger  in                  

southern  regions  compared  to  northern  sites,  and  lower  heights  at  coastal  sites  compared  to               

inland   locations   at   similar   latitudes   (Henn   et   al.   2020).     

In  excess  of  40-60%  of  western  U.S.  cool  season  rain,  snow,  and  the  majority  of                 

precipitation  variability  results  from  landfalling  atmospheric  rivers  (ARs;  Dettinger  et  al.  2011;              

Rutz  and  Steenburgh  2012;  Rutz  et  al.  2014;  Dettinger  2016;  Lamjiri  et  al.  2017,  2018).  ARs  are                   

also  important  contributors  to  extreme  precipitation  which,  depending  on  antecedent  snowpack,             

soil  moisture,  and  storm  characteristics,  can  lead  to  high-impact  hydrometeorological  events             

(e.g.,  Guan  et  al.  2016;  Sumargo  et  al.  2020b).  Two  recent  high-impact  precipitation  events,  the                 

February  2017  Oroville  Spillway  Crisis  (Hollins  et  al.  2018;  White  et  al.  2019;  Vano  et  al.  2019)                   

and  the  February  2019  Valentine’s  Day  Event  (Hatchett  et  al.  2020),  both  ensued  from                
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landfalling  ARs  and  led  to  costly  damages  across  California.  Vertically-oriented  radars  observed              

large   changes   in   snow   level   within   one-hour   periods   in   these   events.     

Prior  findings  emphasize  the  important  role  melting  layer  characteristics  play  in             

hydrologic  forecasting  and  processes  (e.g.,  White  et  al.  2002;  Neiman  et  al.  2014;  Sumargo  et  al.                  

2020a).  For  example,  by  performing  a  river  forecast  model  simulation  for  a  moderate  single-day                

rain  event,  White  et  al.  (2002)  found  an  approximately  600  m  rise  in  freezing  level  tripled  peak                   

flows  at  three  northern  California  basins.  In  high  freezing  level  events  (>  2.3  km)  and  heaviest                  

rainfall  periods,  the  magnitude  of  negative  freezing  level  forecast  biases  increases  up  to  900  m                 

(White  et  al.  2010),  emphasizing  the  challenges  that  numerical  forecast  models  face  in  predicting                

bright  band  features  during  high-impact  events.  Hatchett  et  al.  (2016)  applied  a  500-m  minimum               

threshold  to  identify  and  assess  six  intrastorm  (within  ≤  24  hours)  snow  level  rises  and  linked  the                   

rises  to  midwinter  peak  runoff  events  in  the  northern  Sierra.  This  previous  study  was  limited  to                  

2010-2014   at   two   radars   and   did   not   assess   snow   level   falls.   

 Here,  we  provide  the  first  robust  computation  and  assessment  of  both  rapid  (one-  and                 

three-hourly)  snow  level  rises  and  falls  across  10  California  vertically-oriented  radars.  We              

consider  recent  cool  seasons  spanning  water  years  2015-2020  which  include  two  anomalously              

wet  years,  2017  and  2019.  These  SLCs  occur  within  what  we  define  and  identify  as                 

semicontinuous  snow  level  events ,  or  periods  with  nearly  continuous  snow  levels  and  only  brief                

data  gaps.  We  also  establish  conservative  snow  level  data  quality  check  (QC)  methods  to                

minimize  the  number  of  invalid  SLCs.  To  further  increase  reproducibility,  we  provide  a  data                

filter  flow  chart  (refer  to  Table  A.1)  and  develop  a  dataset  for  use  in  future  studies  of  intrastorm                    

SLCs   and   their   drivers   and   impacts.   
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2.4.   Data   

Snow  level  heights  (illustrated  in  Fig.  2.1)  are  provided  by  the  Physical  Sciences               

Laboratory  (PSL)  within  the  National  Oceanic  and  Atmospheric  Administration  Earth  System             

Research  Laboratory  (NOAA  ESRL),  the  California  Department  of  Water  Resources            

(CA-DWR),  and  the  Cooperative  Institute  for  Research  in  Environmental  Sciences  (CIRES).  In              

our  study,  we  employ  snow  levels  derived  from  10  vertically-oriented  Frequency-Modulated             

Continuous-Wave  Snow  Level  Radars  (FMCW  SLRs,  hereafter  referred  to  as  radars;  Table  2.1,               

Fig.  2.2).  NOAA  PSL  operates  the  radars  and  also  designed,  constructed,  and  deployed  them,                

with   funding   provided   by   the   CA-DWR   (White   et   al.   2002;   Johnston   et   al.   2017).     

The  radars  operate  within  the  S-band  (2.835  GHz)  which  is  ideal  for  measuring               

hydrometeor-size  particles,  especially  when  paired  with  FMCW  capabilities.  This  frequency            

range  is  associated  with  reduced  weakening  of  radar  signals  (attenuation)  during  heavier  rain  and                

improved  accuracy  above  the  boundary  layer  compared  to  larger  or  smaller  ranges,  respectively               

(e.g.,  White  et  al.  2000,  2002).  Through  the  interagency  Hydrometeorology  Testbed  Legacy              

Project,  these  radars  were  designed  to  be  less  costly  and  time-intensive  than  preceding  wind                

profilers   and   S-band   pulsed   radars   (White   et   al.   2013;   Ralph   et   al.   2013b;   Ray   and   White   2019).     

Radar-derived  snow  levels  are  only  available  during  brightband-containing  precipitation           

periods,  as  often  as  every  10  minutes.  Snow  levels  were  identified  using  Doppler  reflectivity                

(i.e.,  signal-to-noise  ratio)  and  vertical  radial  velocity  profiles  pre-processed  by  NOAA  through  a               

NOAA  and  CIRES  automated  snow  level  detection  algorithm,  designed  to  reduce  false  alarms               

(White  et  al.  2002;  2003b).  The  algorithm  identifies  the  snow  level  as  the  peak  reflectivity                 

altitude  above  the  lower  section  of  the  bright  band.  Reflectivity  begins  increasing  with  height  at                 
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the  top  of  this  lower  bright  band  section;  thus,  the  snow  level  is  found  in  the  upper  section  (refer                     

to   Fig.   2.1   schematic   and   Fig.   2.3a   time   series).   

These  FMCW  radars  operate  with  an  ~8-10  km  maximum  vertical  range  and  a  40-60  m                 

vertical  resolution.  We  initially  consider  all  snow  levels  at  all  10  radars  during  the  cool  season  (1                   

October  -  1  May)  of  water  years  2015  to  2020.  Radars  are  positioned  near  western  Sierra  Nevada                   

foothills,  southern  Klamath  mountains,  and  the  central  California  coast.  Five  radars  are  situated               

along  the  northwest-to-southeast  Sierra  foothills  transect,  near  high-impact  basins  which  are  key              

for  California  water  supply  and  flood  management  (Table  1,  Fig.  2.2).  Sample  size  varies                

depending  on  the  date  of  radar  installation  (Table  2.1).  Additionally,  there  were  periods  when                

FMCW  radars  were  not  operational,  most  notably  during  the  late  December  2018-late  January               

2019   U.S.   government   shutdown.     

  

2.5.   Methodology   

The  goal  of  this  algorithm  is  to  conservatively  estimate  and  understand  occurrences  of               

SLCs  within  impactful  brightband  precipitation  events.  Therefore,  we  begin  by  defining  and              

identifying  distinct  time  periods  containing  sufficient  snow  level  measurements  at  each  radar.  We               

allow  for  data  gaps  of  up  to  three  hours  due  to  the  sporadic  nature  of  snow  occurrence,  dubbing                    

these  periods  semicontinuous  snow  level  events.  Next,  we  compute  maximum  one-  and              

three-hour  SLCs  within  each  event.  To  minimize  large-magnitude  SLC  false  alarms,  we              

developed  data  QC  filters  applied  to  snow  levels  prior  to  identifying  events  and  while  computing                 

SLCs.   
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2.5.1.   Defining   Semicontinuous   Snow   Level   Events   

To  identify  and  investigate  intrastorm  SLCs,  we  first  establish  a  definition  for              

semicontinuous  snow  level  events.  We  consider  stratiform  precipitation  events  where  the  snow              

level  detection  algorithm  identified  a  snow  level  (White  et  al.  2002).  To  be  considered  a                 

semicontinuous  snow  level  event,  three  requirements  must  be  met.  First,  the  time  period  must                

contain  quality-controlled  data  for  at  least  50%  of  the  10-min  time  steps  within  the  event.                 

Second,  the  period  may  contain  gaps  in  data  lasting  up  to  three  hours.  Lastly,  the  preceding                  

requirements   must   be   met   for   a   total   duration   of   at   least   three   hours,   including   data   gaps.     

A  three-hour  minimum  duration  allows  us  to  capture  shorter  events  containing  large              

SLCs  that  may  be  flanked  by  non-brightband  precipitation  periods  not  included  here.  The  other                

requirements  were  established  to  allow  for  the  inclusion  of  intermittent  non-brightband  and              

brightband  precipitation  periods  (termed  mixed  precipitation  by  Neiman  et  al.  2005)  occurring              

within  a  single  event,  rather  than  dividing  these  periods  into  multiple  shorter-duration  events.               

Figures  2.4a  and  2.4b,  for  example,  display  three  periods  of  time  described  as  semicontinuous                

events  during  6-10  February  2017  at  Colfax.  If  data  gaps  between  these  events  were                

shorter-duration,  these  periods  may  instead  be  grouped  together  as  one  or  two  events  total.  Our                 

methods  are  informed  by  previous  work  (White  et  al.  2003a;  Neiman  et  al.  2005)  and  by  the  fact                    

that  the  majority  of  annual  precipitation  (59-82%)  occurs  during  brightband  precipitation             

(Neiman   et   al.   2005).   

The  dataset  we  construct  captures  only  stratiform  precipitation  events  containing            

brightband  heights.  By  design,  we  also  allow  for  intermittent  periods  of  brightband  and               

non-brightband  precipitation,  and  brief  periods  when  precipitation  may  cease  (e.g.,  gaps  in              
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deeper  seeder  clouds  above  shallower  feeder  clouds).  We  do  not  consider  non-brightband              

precipitation  resulting  from  colder,  solely  snow-exclusive  events  (i.e.,  snow  level  below  the              

ground  surface),  warmer  and  shallower  rain-dominated  events  (i.e.,  warmer  cloud  echo  tops              

situated  beneath  the  snow  level),  or  convective  events  where  intensified  turbulence  complicates              

attempts   to   measure   snow   level.     

  

2.5.2.   Computing   Rapid   Snow   Level   Changes   

For   each   semicontinuous   snow   level   event,   we   employ   a   rolling   10-minute   window   when   

computing  maximum  one-hour  SLCs  in  order  to  maximize  the  sample  size  for  computed  SLCs.                

We  specifically  target  intrastorm  SLCs  that  are  more  likely  to  alter  hydrologic  impacts  resulting                

after  the  change  compared  to  before.  We  identify  a  single  maximum  magnitude  change  (either  a                 

rise  or  fall)  within  each  one-hour  interval  which  can  contain  both  positive  and  negative  SLCs,                 

and  ultimately  construct  a  dataset  of  maximum  one-hour  SLCs.  For  comparison,  we  perform  the                

same   process   to   compute   maximum   three-hour   SLCs.     

  

2.5.3.   Quality   filters   for   Snow   Level   Observations   

To  further  minimize  large-magnitude  SLC  false  alarms,  we  developed  quality  check             

filters  to  apply  to  the  initial  snow  level  dataset.  Intrastorm  SLCs  are  considered  erroneous  if  they                  

are  not  clearly  explicable  by  physical  processes  or  sustained  long  enough  to  substantially  alter                

hydrologic  impacts.  Through  visual  inspection,  we  found  SLC  beginning  or  ending  heights              

typically  lie  near  pre-  or  post-change  elevations  (i.e.,  within  ±  300  m  of  one-hour  SLC  means,  or                   

±  100  m  of  values  within  ±  30  min).  Inspection  also  suggested  that  error-yielding,  particularly                 
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anomalous  snow  levels,  more  often  appear  at  low  (rather  than  high)  elevations  (as  seen  in  Fig.                  

2.4e).  We  performed  multiple  iterations  of  the  following  error-detection  methods  to  maximize              

the  number  of  realistic,  sustained  large  SLCs  while  minimizing  false  positives.  With  this               

trade-off  in  mind,  we  remained  conservative  in  constructing  four  QC  filters  (reference  Table               

A.1).  Although  a  snow  level  may  be  omitted  through  a  particular  filter  applied  before  another,                 

this   does   not   mean   an   additional   filter   would   not   also   identify   the   same   error-yielding   value.   

Sometimes,  isolated  periods  contain  large  changes  in  snow  level,  but  return  to  pre-change               

snow  level  heights  within  an  hour.  These  events  are  not  identified  as  SLCs  since  they  suggest  the                   

brightband  precipitation  period  was  too  brief  to  substantially  affect  event-total  precipitation  type              

or  intensity,  or  streamflow.  We  developed  and  applied  the  first  two  data  filters  (1a  and  1b)  to                   

catch  these  short-lived,  fairly  substantial  changes  in  snow  level  (≥  200  m  magnitude)  that  are                 

subsequently  reversed,  thus  appear  as  peaks  dissimilar  from  surrounding  values.  We  applied  a               

third  data  filter  (2)  to  identify  snow  level  observations  (note:  not  SLCs)  surrounded  by  dissimilar                 

or  nonexistent  values.  Additionally,  we  included  a  fourth  filter  (3)  to  avoid  computing  SLCs                

falling  at  the  very  beginning  or  end  of  a  semicontinuous  snow  level  event.  To  prepare  for  Filters                   

1a  and  1b,  we  computed  the  highest-resolution  SLCs  possible  within  the  raw  snow  level  dataset,                 

i.e.,  down  to  10-min  changes  if  data  allow  (or  up  to  one-hour  changes).  If  an  SLC  is  computed                    

but   is   surrounded   by   nonexistent   values   for   one   hour   or   longer   on   both   sides,   it   is   excluded.     

Filter  1a:  We  observed  snow  level  falls  of  approximately  1000  m  (or  greater)  in                

magnitude  occurring  within  short  periods  of  time  (one  hour  or  less)  followed  by  rises  to  the                  

original  snow  level  height  within  an  hour’s  time,  as  seen  at  New  Exchequer  Dam  on  2  March                   

2018  around  1:30  UTC  (Fig.  2.4e).  Similar  examples  are  seen  during  the  2-11  February  2017                 
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Oroville  Dam  Spillway  Emergency  (Figs.  2.4c  and  2.4d),  and  following  the  large  snow  level  rise                 

identified  at  Oroville  and  New  Exchequer  Dam  during  the  2019  Valentine’s  Day  Event  (Figs.                

2.3c  and  2.3d,  respectively).  In  these  cases,  the  anonymously  low  or  high  snow  level  heights                 

were   only   measured   during   one   to   four   timestamps   (i.e.,   10-40   min).   

To  address  these  error-yielding  measurements,  we  created  Filter  1a  to  eliminate  instances              

wherein  a  snow  level  measurement  appears  as  a  short-lived  peak  (as  part  of  a  fairly  substantial                  

SLC)  that  differs  considerably  from  surrounding  values  and  is  only  sustained  for  a  brief  period  of                  

time.  Further,  this  step  implicitly  pinpoints  snow  levels  surrounded  by  nonexistent  or  missing               

measurements  (explicitly  addressed  by  Filter  2).  To  do  so,  the  algorithm  omits  the  beginning                

(and/or  ending)  height  of  a  fairly  substantial  SLC  if  it  falls  outside  the   ±   300  m  range  of  the                     

mean  for  the  one  hour  preceding  and/or  one  hour  following  the  change.  Because  this  step  yields                  

medians  that  are  similar  to  means,  and  snow  levels  are  fairly  evenly  distributed  about  the  mean                  

(Gaussian),  we  consider  means.  When  there  exist  fewer  than  two  snow  level  measurements  for                

which  to  compute  a  mean  both  before  and  after  an  SLC,  we  do  not  further  assess  the  SLC  in  this                      

step.  If  the  algorithm  determines  the  SLC  beginning  snow  level,  for  instance,  falls  outside  the                 

allowable  range,  it  omits  the  beginning  height.  When  the  algorithm  can  only  compute  a  mean  on                  

one  side,  it  also  omits  the  additional  measurement  included  on  the  side  without  a  mean.  After                  

processing  the  beginning  height  of  the  SLC,  we  consider  the  ending  measurement  using  the  same                 

method.     

Filter  1b:  There  also  exist  semicontinuous  snow  level  events  in  which  additional              

short-duration,  anomalously  low  or  high  snow  level  peaks  were  measured.  For  example,              
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single-value  peaks  (one  timestamp)  can  be  seen  at  Oroville  and  New  Exchequer  Dam  during  the                 

2019   Valentine's   Day   Event   (Figs.   2.3c   and   2.3e)   and   during   every   event   shown   in   Figure   2.4.     

We  omit  these  remaining  cases  where  a  fairly  substantial  SLC   is  short-lived  and  contains                

snow  levels  that  are  dissimilar  from  surrounding  measurements.  Filter  1b  eliminates  the              

beginning  (and/or  ending)  height  of  an  SLC  if  the  radar  does  not  measure  at  least  one  similar                   

snow   level   height   (within   ±100   m)   within   ±30   min   of   the   beginning   (or   ending)   SLC   height.     

Filter  2:   If  neither  the  six-hour  period  preceding  or  following  a  snow  level  measurement                

contains  an  additional  measurement  within  ±  100  m,  we  omit  the  assessed  snow  level.  Filter  2,                  

for  instance,  eliminates  the  final  snow  level  at  Saint  Helena  during  the  2019  Valentine’s  Day                 

Event  as  it  falls  in  the  category  described  above  (Fig.  2.3e).  Similarly,  this  filter  eliminates  snow                  

level  heights  measured  at  Colfax  around  11:00  UTC  on  9  February  2017  (during  a  gap  between                  

semicontinuous   snow   level   events   identified   after   applying   QC   filters;   Figs.   2.4a   and   2.4b).   

Filter  3:  Finally,  we  also  exclude  SLCs  that  occur  at  the  beginning  or  end  of  a                  

semicontinuous  snow  level  event,  and  contain  pre-  or  post-SLC  snow  level  periods  of               

insufficient  durations  (too  brief).  For  instance,  by  initiating  computation  at  the  40-minute  mark,               

the  algorithm  avoids  capturing  the  large  snow  level  rise  at  the  beginning  of  the  9  February  2017                   

Saint  Helena  semicontinuous  snow  level  event  (Fig.  2.4f).  Another  example  appears  at  San               

Bernardino  on  13  March  2020  (not  shown)  when  the  snow  level  rises  approximately  500  m                 

during  the  last  40  minutes  of  the  semicontinuous  snow  level  event.  As  this  SLC  occurs  at  the  end                    

of  the  event  and  is  not  followed  by  a  period  of  brightband  precipitation,  it  is  less  likely  to                    

contribute  to  precipitation  phase  changes  compared  to  an  SLC  sustained  for  longer  than  30                

minutes.  To  exclude  these  and  additional  SLCs  that  occur  at  the  very  beginning  or  end  of  an                   

22   



  

  

  
event,  we  constrain  the  window  over  which  to  compute  intrastorm  SLCs  within  semicontinuous               

events.  Specifically,  we  initiate  SLC  computation  after  30  minutes  following  the  start  of  the                

event  (i.e.,  the  40-minute  mark)  and  finish  30  minutes  before  the  last  one-hour  window  (1.5  h                  

before   the   event   end).     

Through  data  filters,  we  intentionally  designed  the  algorithm  to  avoid  capturing             

large-magnitude  changes  that  were  not  sustained  long  enough  to  contribute  to  marked  differences               

in  the  precipitation  type  and  hydrologic  impacts  expected  before  and  after  the  change.  When                

discussing   results   below,   we   refer   to   post-QC   snow   levels   and   SLCs   unless   otherwise   noted.   

  

2.6.   Results   and   Discussion     

2.6.1.   Distribution   of   Snow   Levels   

Quality-controlled  snow  levels  for  all  radars  and  cool  seasons  (Fig.  2.5)  follow  a  normal                

distribution  about  a  mean  value  of  1790  m  MSL  (Table  2.1),  with  ~53%  of  all  observations                  

measured  at  the  five  key  radars.  Approximately  46%,  54%,  and  0.05%  of  snow  levels  are  higher                  

than,  lower  than,  or  equal  to  the  mean,  respectively.  Snow  levels  range  in  height  from  a                  

minimum  of  215  (pre-QC)  or  235  (post-QC)  m  MSL  to  a  maximum  of  4102  m  MSL  (Fig.  2.5).                    

The  median  and  standard  deviation  for  all  snow  levels  (post-QC)  are  1,712  m  MSL  and  665  m,                   

respectively  (Fig.  2.5,  Table  2.1).  These  California  snow  level  statistics  are  consistent  with  those                

of   previous   studies   (Hatchett   et   al.   2017b;   Henn   et   al.   2020).   

Both  pre-  and  post-QC,  ~72%  of  snow  levels  exist  within  the  same  elevation  range                

(1000-2500  m  MSL;  Fig.  2.5).  Additionally,  both  pre-  and  post-QC,  peak  occurrences  (up  to                

5400  measurements)  appear  within  the  two  bins  between  1100  and  1300  m  MSL.  Meanwhile,                
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fewer  than  100  measurements  occur  within  bins  near  either  tail  of  the  distribution  (i.e.,  bins  <                  

500,  or  >  3500  m  MSL;  Fig.  2.5).  We  find  maximum  counts  for  omitted  values  (~150-200  total)                   

within  100-m  bins  between  500  and  1800  m  MSL  (Fig.  2.5).  Overall,  only  2.8%  of  radar-derived                  

snow  levels  are  omitted  (Figs.  2.5-7),  meaning  the  NOAA  ESRL  and  CIRES  snow  level                

detection  algorithm  performs  well  and,  as  intended,  greatly  limits  the  number  of  invalid  snow                

level  measurements  (White  et  al.  2002,  2003b).  By  establishing  and  applying  additional  QC               

steps,  however,  we  identify  and  omit  snow  levels  contributing  to  large  SLC  false  alarms  which  is                  

a   key   objective   for   our   study.     

  

2.6.2.   Summary   of   Semicontinuous   Snow   Level   Events   

Across  all  radars  and  cool  seasons,  we  find  a  total  of  1492  semicontinuous  snow  level                 

events  after  QC  filters  are  applied  (Fig.  2.8;  refer  to  Section  2.5.1  for  details  on  event                  

identification).  Prior  to  applying  QC  filters,  we  identify  1490  semicontinuous  snow  level  events.               

This  increase  from  1490  (pre-QC)  to  1492  (post-QC)  final  events  is  the  result  of  a  few  possible                   

factors  which  can  slightly  alter  the  number  and  duration  distribution  of  semicontinuous  events               

before  and  after  applying  QC  methods  (Fig.  2.8).  Short-duration  events  may  be  eliminated  as                

they  no  longer  fulfill  requirements.  Longer-duration  events  may  either  be  eliminated,  truncated,              

or   split   into   two   or   more   shorter   events.     

The  data  availability  requirement  aids  in  isolating  only  events  containing  more             

continuous  snow  levels  while  simultaneously  omitting  periods  containing  sparse  measurements.            

Ultimately,  the  number  of  post-QC  events  is  reduced  from  1954  to  1492  (or  from  2080  to  1490                   

for  pre-QC  measurements)  as  a  result  of  requiring  a  data  availability  minimum  of  at  least  50%                  
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for  each  event.  We  find  a  median  event  duration  of  8.3  (post-QC)  or  8.7  h  (pre-QC)  and                   

maximum  of  77  or  94  h,  respectively  (Fig.  2.8).  Only  ~10%  of  the  events  persist  for  longer  than                    

24  hours  (near  the  90 th   percentile).  Approximately  75%  of  events  have  a  duration  between  three                 

and   15   hours   during   both   pre-   and   post-QC   steps.     

Inland  and  northern  sites  (Happy  Camp,  Shasta  Dam,  Oroville,  Colfax,  New  Exchequer              

Dam,  Pine  Flat  Dam)  have  slightly  larger  post-QC  median  events  durations  (~8.2-10.2  h)  than                

southern  and  coastal  sites  (~7-7.8  h;  not  shown).  The  previously  identified  latitudinal              

dependence  of  snow  levels  (Fig.  2.7a)  also  appears  when  assessing  semicontinuous  snow  level               

events.  The  northernmost  four  radars  contain  the  largest  number  of  semicontinuous  events  -  from                

north  to  south:  max  of  287  at  Happy  Camp,  211  at  Shasta  Dam,  and  ~180  at  both  Oroville  and                     

Colfax.  Other  radars  contain  between  a  minimum  of  84  (Saint  Helena)  and  a  maximum  of  134                  

(New  Exchequer  Dam)  events.  The  descending  order  of  semicontinuous  event  counts  across  all               

radars  by  cool  season  (not  shown)  is  the  same  as  that  of  snow  level  counts  (Fig.  2.7b),  with  a                     

peak  in  2017  (341  events),  the  wettest  year  on  record,  and  a  minimum  (182)  in  2015,  one  of  the                     

driest  cool  seasons  on  record  (Fig.  1  of  Durand  et  al.  2020).  A  slightly  longer-duration  median                  

results   for   2017   (9   h)   compared   to   other   cool   seasons   (7.8-8.3   h   medians).     

As  is  consistent  with  the  number  of  snow  level  measurements  from  one  month  to  the  next                  

(Fig.  2.7c),  fewer  semicontinuous  events  occur  during  the  beginning  and  end  of  the  cool  season.                 

For  instance,  only  74,  169,  and  155  events  are  seen  in  October,  November,  and  April,                 

respectively,  compared  to  midseason  counts  ranging  from  a  minimum  of  228  to  a  maximum  of                 

331  in  February  and  March,  respectively.  Results  align  with  previous  studies  which  identify               

December  through  February  or  March  as  a  period  of  maximum  total  precipitation  (e.g.,  Fig.  1c  of                  
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Jong  et  al.  2016),  extreme  precipitation  (e.g.,  Fig.  1  of  Dong  et  al.  2019),  and  atmospheric  river                   

(AR)   frequency   (e.g.,   Fig.   6   of   Rutz   et   al.   2014)   in   California.   

  

2.6.3.   Distribution   of   Snow   Level   Changes   

As  for  intrastorm  SLCs,  we  find  71,332  and  65,085  one-  and  three-hour  SLCs,               

respectively  (Fig.  2.9),  using  rolling  10-minute  computation  periods.  There  is  a  slightly  smaller               

percentage  of  snow  level  falls  (46%  and  45%  of  all  one-  and  three-hour  SLCs,  respectively)                 

compared  to  rises.  Nevertheless,  we  find  the  SLC  distribution  skewed  slightly  towards  negative               

values  with  medians  (i.e.,  50 th  percentiles)  of  -32  and  -81  m  for  all  one-  and  three-hour  SLCs,                   

respectively  (Fig.  2.9).  Median  magnitudes  for  -SLCs  and  +SLCs  separately  are  similar  to  one                

another;  -95  and  91  m  for  one-hour  SLCs,  and  -186  and  174  m  for  three-hour  SLCs,  respectively                   

(not   shown).   These   medians   are   also   larger   than   medians   for   SLCs   of   both   signs   together.     

As  the  time  increment  over  which  SLCs  are  computed  increases  from  one  to  three  hours,                 

percentiles  also  increase.  For  example,  90 th  percentiles  for  three-hour  SLCs  (383  and  -376  m)  are                 

of  slightly  larger  magnitudes  than  98 th  percentiles  for  one-hour  SLCs  (361  and  -319  m),  22  m                  

larger  for  +SLCs  and  57  m  larger  for  -SLCs  (Fig.  2.9).  Approximately  90%  of  one-hour  SLCs                  

fall  between  -200  and  200  m  (Fig.  2.9).  Meanwhile,  only  57%  of  all  three-hour  SLCs  exist                  

within  the  same  range.  Within  the  -50  to  50  m  SLC  subrange,  there  is  a  reduction  in  occurrences                    

compared  to  surrounding  50-m  bins  which  is  especially  noticeable  for  three-hour  SLCs  (Fig.               

2.9b).  Resultant  95 th ,  98 th ,  and  99.5 th  percentiles  are  notably  larger  for  +SLCs  than  for  -SLCs                 

(magnitudes  9,  42,  and  168  m  larger,  respectively,  for  one-hour  +SLCs  compared  to  one-hour                

-SLCs,  and  18,  78,  and  142  m  larger,  respectively,  for  three-hour  +SLCs  compared  to  three-hour                 
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-SLCs).  This  means  intrastorm  -SLCs  must  exceed  reduced  minimum  SLC  magnitudes             

(compared   to   larger   minima   for   +SLCs)   to   be   considered   anomalously   large   or   extreme.   

  

2.6.4.   Spatial   Variations:    Snow   Levels   and   Snow   Level   Changes   

Assessments  of  snow  levels  suggest  the  total  number  of  (up  to  10-minute)  measurements               

is  latitudinally-dependent,  with  three  to  more  than  four  times  as  many  observations  at  northern                

Happy  Camp  (20,404)  within  the  Klamath  Mountains  compared  to  southern  sites,  Pine  Flat  Dam,                

Kernville,  and  San  Bernardino  (Fig.  2.6a;  Fig.  2.2).  This  result  is  consistent  with  results  in  Henn                  

et  al.  (2020)  in  which  southern  and  near  coast  sites  contained  fewer  brightband  periods  (six-hour                 

periods)   compared   to   profilers   further   north.   

Overall,  northwestern  and  northern  regions  of  California  typically  experience  larger  cool             

season  precipitation  totals  than  southeastern  or  southern  locations.  Key  factors  contributing  to              

elevated  precipitation  amounts  in  northwestern  regions  involve  more  frequent  high-moisture  ARs             

(e.g.,  Guan  and  Waliser  2015;  Ralph  et  al.  2019a)  and  longer-duration  ARs  (e.g.,  Rutz  et  al.                  

2014;  Gershunov  et  al.  2017).  Additionally,  precipitation  enhancements  through  orographic            

lifting  along  windward  slopes  of  the  Sierras  (as  depicted  in  Fig.  2.1),  Klamath  Mountains,  Coast                 

Ranges,  and  other  orography  play  a  role  in  increased  precipitation  totals  near  west-facing  slopes                

(e.g.,  Smith  1979;  White  et  al.  2003a;  Dettinger  et  al.  2004;  Smith  et  al.  2010).  Finally,                  

higher-latitude  regions  maintain  cooler  temperatures  as  do  higher-elevation  regions  (i.e.,  many  of              

the   radars   in   northern   California   are   situated   within   mountainous   regions   at   varying   elevations).     

Thus,  northern  radars  may  be  more  likely  to  experience  precipitation  during  which  snow               

levels  can  be  deduced.  On  the  other  hand,  radars  will  not  measure  a  bright  band  if  all                   
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precipitation  is  falling  as  snow  which  is  more  likely  at  northern  and  high-elevation  sites.  Another                 

example  of  non-brightband  precipitation  occurs  during  periods  that  solely  contain  rain  which  are               

typical  for  warmer  temperature  profiles  at  southern  sites.  Additionally,  parcel-environment            

instabilities  can  create  high-turbulence  convective  events  which  make  it  difficult  for  radars  to               

isolate  snow  levels  -  e.g.,  within  regions  and  periods  where  atmospheric  fronts  travel,  where                

parcels  are  forced  upwards  by  steep  terrain,  or  where  near-surface  altitudes  warm  substantially               

relative  to  layers  above.  The  frequency  of  occurrence  for  each  of  these  scenarios  is  beyond  the                  

scope   of   this   study,   but   could   be   addressed   in   future   work.     

Snow  levels  nearer  the  coast  (San  Luis  Reservoir  and  Saint  Helena  radars)  are  similar  to                 

those  at  southern  sites,  with  an  overall  minimum  at  Saint  Helena  (Fig.  2.6a).  San  Bernardino                 

contains  the  largest  number  and  percentage  of  omitted  snow  level  measurements,  624  omitted               

values  or  9%  of  site-total  values,  while  all  other  radars  resulted  in  less  than  5%  of  site-total                   

values  omitted.  Of  relevance,  considerably  larger  freezing  level  forecast  errors  existed  for  San               

Bernardino  compared  to  other  California  sites  in  a  recent  study,  potentially  due  to  larger  forecast                 

errors  in  timing  and  location  of  southern  California  ARs  (Henn  et  al.  2020).  The  dataset  we                  

present  in  our  study  provides  insights  for  diagnostic  forecast  error  evaluations,  and  we  echo                

previous  recommendations  centered  on  investigating  mechanisms  lending  to  these  errors  in             

future   studies.   

Snow  level  heights  measured  at  any  particular  radar  can  vary  widely,  with  96%  of  snow                 

levels  falling  within  a  2000-3000  m-wide  range  for  each  radar  (Fig.  2.7a).  This  result  is                 

consistent  with  findings  of  Henn  et  al.  (2020)  wherein  wide  variations  in  snow  level  height  at  a                   

single  radar  site  were  also  emphasized.  An  overall  minimum  of  235  m  MSL  (Saint  Helena)  and                  

28   



  

  

  
maximum  of  4102  m  MSL  (New  Exchequer  Dam)  result.  The  majority  of  snow  levels  fall  within                  

the  800  to  2500  m  MSL  range  across  multiple  radar  locations  (Fig.  2.7a).  Snow  levels  at  San                   

Bernardino  and  Kernville,  however,  are  positively  skewed  towards  lower  ranges  (~1000-1500  m              

MSL).     

As  also  noted  by  Henn  et  al.  (2020),  median  snow  levels  increase  with  decreasing  latitude                 

from  Happy  Camp  southward  to  New  Exchequer  (refer  to  Fig.  2.7a  for  distributions  by  radar,                 

Fig.  2.2  for  the  map,  Table  2.1  for  site  information).  Nearer-coast  radars  (San  Luis  Reservoir  and                  

Saint  Helena)  experience  elevated  medians  (2058  and  1928  m  MSL,  respectively)  similar  to               

those  of  their  downstream  neighbors  (New  Exchequer  Dam  and  Colfax).  Meanwhile,  southern              

inland  sites  (Pine  Flat  Dam  and  two  southern  radars  positioned  at  higher  ground  elevations,                

Kernville  and  San  Bernardino)  exhibit  lower  medians  (between  about  1500  and  1800  m  MSL)                

similar   to   those   of   the   northernmost   three   sites.     

As  observed  for  snow  level  measurements  and  semicontinuous  snow  level  events,  sample              

sizes  for  intrastorm  SLCs  (total  counts  as  well  as  +SLC  and  -SLC  counts  separately)  are  elevated                  

for  northern  and  Sierra  radars  compared  to  all  other  locations  (Fig.  2.10a-b).  Overall,  fewer                

+SLCs  result  compared  to  -SLCs;  32,643  (one-hour)  and  29,328  (three-hour)  +SLCs  compared              

to  38,689  (one-hour)  and  35,757  (three-hour)  -SLCs  when  considering  10-minute  rolling             

intervals  during  SLC  computation.  Recall,  this  rolling  interval  means,  within  a  two-hour  time               

window,   up   to   seven   (rather   than   only   two)   one-hour   maximum   SLCs   can   be   computed.     

Medians  computed  using  all  SLCs  largely  skew  negative,  between  -5  and  -53  m  MSL  for                 

one-hour  SLCs,  and  -58  and  -135  m  MSL  for  three-hour  SLCs.  Exceptions  appear  for  Shasta                 

Dam  where  medians  of  6  and  70  m  MSL  result  for  one-  and  three-hour  SLCs,  respectively,  and                   
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for  Oroville  for  three-hour  SLCs  only  (median:  75  m  MSL).  One-hour  SLCs  medians  (both                

positive  and  negative)  negatively  increase  in  magnitude  southward  from  Shasta  Dam  (6  m  MSL)                

to  Kernville  (-53  m  MSL;  Fig.  2.10a).  A  nearly  similar  trend  is  observed  for  one-hour  +SLC                  

medians,  but  not  for  one-hour  -SLC  values  or  three-hour  +SLC  or  -SLC  medians  (Figs.  A.2  and                  

A.3;  subplots  a-b).  When  separately  assessing  medians  for  +SLCs  and  -SLCs  by  radar,  values                

fall  within  the  80-113  m  magnitude  range  and  the  164-202  m  range  for  one-  and  three-hour                  

SLCs,  respectively.  Key  differences  between  results  of  +SLCs  and  -SLCs  by  radar  appear  when                

examining  the  vertical  spread  as  well  as  the  98 th   and  99.5 th  percentiles  of  SLCs  which  are,  minus                   

a   few   exceptions,   larger   for   +SLCs   compared   to   -SLCs.     

The  two  widest  ranges  of  one-hour  SLCs  result  for  San  Luis  Reservoir  and  Colfax  with                 

differences  of  9850  and  9469  m,  respectively,  between  the  0.5 th  and  99.5 th  percentiles  for  all                 

SLCs  (Fig.  2.10a).  This  result  also  holds  true  for  three-hour  -SLCs.  Radars  exhibiting  maximum                

vertical  spreads  differ  when  considering  only  one-hour  -SLCs  (San  Luis  Reservoir  and  San               

Bernardino),  one-hour  +SLCs  (Colfax  and  Saint  Helena),  three-hour  +SLCs  (Saint  Helena  and              

New  Exchequer  Dam,  with  Colfax  as  a  close  third),  or  all  three-hour  SLCs  (San  Bernardino  and                  

Colfax).  In  summary,  central  Sierra  Nevada  foothills  sites  (Colfax  and  New  Exchequer  Dam),               

southern-inland  San  Bernardino,  and  the  two  nearer-coast  sites  (Saint  Helena  and  San  Luis               

Reservoir)   exhibit   the   most   variability   in   terms   of   SLC   magnitude.     

  

2.6.5.   Interannual   Variations:    Snow   Levels   and   Snow   Level   Changes   

The  peak  snow  level  count  (21,681)  appears  during  the  record-wet  2017  cool  season  (Fig.                

1  of  Durand  et  al.  2020).  This  value  is  considerably  larger  than  counts  for  the  other  five  cool                    
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seasons  which  range  from  ~10,000  to  ~16,000  (Fig.  2.6b).  Minimum  counts  occurred  during  the                

2015   cool   season,   when   snowpack   was   5%   of   normal   (CA-DWR   2015).   

Snow  level  height  distributions  also  vary  from  one  year  to  the  next  (Fig.  2.7b),  although                 

medians  do  not  vary  as  widely  as  when  assessed  across  radars  (Fig.  2.7a).  The  maximum  and                  

minimum  median  snow  level  heights  were  experienced  during  the  warmer-skewed  2015  and  the               

cooler  2020  season,  respectively  (486  m  lower  for  2020;  Fig.  2.7b).  Snow  level  distributions  and                 

percentiles  for  2016  and  2019  are  noticeably  similar  (Fig.  2.7b)  although  2019  contains  nearly                

1020  fewer  measurements  (Fig.  2.6b).  Unlike  during  other  years,  the  2018  distribution  appears               

bimodal  (Fig.  2.7b).  We  hypothesize  that  median  snow  levels  are  bound  to  median  characteristics                

of  temperature  and  precipitation  for  each  year.  While  our  time  series  is  not  long  enough  to                  

identify  specific  trends,  we  note  that  Hatchett  et  al.  (2017b),  which  considers  a  longer  time  series                  

(2008-2019),  finds  overall  increases  in  median  snow  level  corresponding  with  decreases  in  Sierra               

snowpack.   

Results  suggest  radars  that  receive  more  cool  season  stratiform  precipitation  overall  (to              

the  north,  or  upwind  of  mountains)  are  more  likely  to  dominate  a  snow  level  height  distribution                  

(refer  to  Fig.  2.6a  and  distributions  shown  in  Figs.  2.7b-c).  For  instance,  during  the  2017  cool                  

season,  the  percentage  contribution  decreased  from  25%  at  northern  Happy  Camp  to  12-13%  at                

Shasta  Dam,  Oroville,  and  Colfax  (not  shown;  refer  to  Fig.  A.1a  statistics).  This  percentage                

continues  to  drop  from  9%  to  5%  from  New  Exchequer  Dam  southward  to  San  Bernardino.                 

Meanwhile,  near-coast  San  Luis  Reservoir  contributed  7%  of  snow  level  measurements  that  year               

while  Saint  Helena  contributed  4%.  Contribution  percentages  for  all  other  years  follow  a  similar                
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pattern,  with  2015  exhibiting  the  largest  spread  overall  (i.e.,  standard  deviation  and  range;  Fig.                

A.1a).     

For  intrastorm  SLCs  collated  by  year,  results  mimic  snow  level  count  trends.  Cool               

seasons  2017,  2016,  and  2019  contain  the  largest  number  of  both  one-hour  -SLCs  and  +SLCs                 

(Figs.  2.10,  A.2,  A.3,  subplots  c-d).  These  three  years  also  experience  peak  three-hour  SLC                

counts.  As  noted  when  examining  SLCs  by  radar  (Figs.  2.10,  A.2,  A.3;  subplots  a-b),  the  SLC                  

magnitude  range  as  well  as  the  98 th  and  99.5 th  percentiles  are  all  notably  larger  for  +SLCs                  

compared   to   respective   -SLC   values   (Figs.   2.10,   A.2,   A.3,   subplots   c-d).     

  

2.6.6.   Seasonality:   Snow   Levels   and   Snow   Level   Changes   

We  find  the  maximum  snow  level  count  (18,983)  appears  in  March  (Fig.  2.6c).               

Percentages  of  omitted  snow  levels  peak  during  October  and  April  (both  ~5%),  during  the                

beginning  and  end  of  the  wet  AR  season  when  post-QC  snow  level  counts  are  minimal  (Fig.                  

2.6c).  At  the  same  time,  October  experiences  the  highest  median  snow  level  height  (2430  m                 

MSL)  and  the  largest  number  of  relatively  high  snow  levels  (i.e.,  within  the  2700  to  3200  m                   

MSL  range;  Fig.  2.7c).  Medians  between  November  and  April  fall  within  a  narrower  range  of                 

values,  ~1500  (March)  to  ~1800  m  MSL  (November  and  December).  Wider  ranges  for  snow                

level  heights  exist  for  both  October  and  April  (Fig.  2.7c),  while  around  96-98%  of  snow  levels                  

during   the   five   midseason   months   lie   between   ~700   and   3100   m   MSL.     

Happy  Camp  dominates  the  snow  level  dataset  for  October  with  a  contribution              

percentage  of  40%  compared  to  reduced  percentages  at  northwestern  (8-13%)  and  central              

(2-13%)  Sierra  foothills  sites  (not  shown;  refer  to  Fig.  A.1b  statistics).  October  also  has  the                 
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largest  standard  deviation  and  range  for  contribution  percentages.  For  all  other  months,              

contribution  percentages  from  Happy  Camp  southward  to  Colfax  (approximately  12-25%  each)             

exist  within  a  narrower  range  of  values  while  all  other  radars  result  in  percentages  of                 

approximately   10%   or   less.     

Results  for  SLCs  are  similar  to  those  for  snow  level  measurements.  Mid-cool  season               

months  provide  considerably  more  SLCs  compared  to  October,  November,  and  April  (Figs.  2.10,               

A.2,  A.3;  subplots  e-f).  Findings  are  consistent  whether  considering  one-hour  or  three-hour              

SLCs,  or  assessing  +SLCs,  -SLCs,  or  all  SLCs  together.  The  widest  range  of  all  one-hour  SLCs,                  

defined  as  the  largest  difference  between  0.5 th  and  99.5 th  percentiles,  occurs  in  February  (Fig.                

2.10e-f).  All  other  analyses  of  SLCs  by  month  result  in  a  maximum  SLC  range  during  February,                  

except  when  assessing  one-hour  -SLCs  and  three-hour  -SLCs.  In  these  cases,  November  and               

October,  and  January  and  November,  respectively,  exhibit  the  widest  SLC  ranges  (Figs.  2.10,               

A.2,  A.3;  subplots  e-f).  Median  SLC  magnitudes  do  not  differ  considerably  from  one  month  to                 

the  next  within  a  single  grouping  of  SLCs  (note  the  six  SLC  groupings  depending  on  sign  and                   

time  increment).  Medians  do,  however,  differ  across  SLC  groupings,  falling  within  a  -46  to  -28                 

m  MSL  range  for  all  one-hour  max  SLCs  compared  to  slightly  narrower  ranges  containing                

larger-magnitude  medians  for  one-hour  +SLCs  (88  to  98  m  MSL)  and  -SLCs  (-101  to  -90  m                  

MSL).  Larger-magnitude  medians  are  observed  for  three-hour  SLCs  (all  three-hour  SLCs:  -103              

to  -61  m  MSL,  three-hour  +SLCs:  164  to  187  m  MSL,  three-hour  -SLCs:  -202  to  -177  m  MSL).                    

Wider  median  ranges  are  also  observed  for  three-hour  SLCs  (~23-40  m-wide  versus  ~8-18               

m-wide   for   one-hour   SLC   groupings).   
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Past  studies  suggest  months  during  the  end  and  beginning  of  the  cool  season  (Apr-Mar,                

Nov-Oct)  experience  the  smallest  number  of  calendar  days  exhibiting  AR  conditions  of  all               

strengths;  each  month  featured  6-10%  of  all  AR  days  between  January  1980  and  April  2017  (Fig.                  

7  of  Ralph  et  al.  2019a).  Meanwhile,  December  experienced  the  most  AR  days,  containing  nearly                 

18%  of  the  total.  Similar  conclusions  regarding  AR  seasonality  for  California  sites  are  drawn                

from  Fig.  6  of  Rutz  et  al.  (2014)  (October  was  not  included  in  this  previous  study).   Further,                   

although  analysis  of  snow  level-influencing  mechanisms  is  reserved  for  ongoing  work,  previous              

studies  have  shown  atmospheric  modes  of  climate  variability  and  sea  surface  temperature              

anomalies  influence  precipitation  and  AR  characteristics   (e.g.,  Mock  et  al.  1996;  Guan  et  al.                

2013;  DeFlorio  et  al.  2013,  2018;  Guan  and  Waliser  2015;  Mundhenk  et  al.  2016;  Payne  and                  

Magnusdottir  2014;  Kim  et  al.  2017;  Jong  et  al.  2016;  Guirguis  et  al.  2018;  Bartusek  et  al.  2021).                    

Smaller-scale  influences,  including  local  thermodynamic  processes  (e.g.,   White  et  al.  2010;             

Raymond  et  al.  2017;  Hatchett  et  al.  2020 ),  Sierra  barrier  jets  (e.g.,   Lundquist  et  al.  2010;                  

Neiman  et  al.  2013),  fronts  and  cutoff  lows  (e.g.,  Abatzoglou  2016), and  Rossby  wave  breaking                 

events  (e.g.,   Ryoo  et  al.  2013;  Hu  et  al.  2017),  can   also  contribute  to  precipitation,  AR,  and  snow                    

level   characteristics.     

We  suggest  future  examinations  would  benefit  from  emphasis  on  influences  of             

atmospheric  mechanisms  of  various  scales  on  vertical  temperature  structure  and  precipitation,             

thus  affecting  snow  level  and  intrastorm  SLC  characteristics.  Detailed  investigations  may  prove              

helpful  as  these  atmospheric  and  oceanic  features  interact  complexly  with  one  another  and  can                

vary  in  terms  of  magnitude,  location,  and  implications  depending  on  the  year,  season,  and  region                 

of   interest.   In   future   work,   we   will   consider   such   mechanisms   with   emphasis   on   ARs.   
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2.6.7.   High   Impact   Snow   Level   Changes   at   Sierra   Nevada   Sites   

In  mid-February  2019,  much  of  California  experienced  a  high-impact  snow  level             

oscillation  event  associated  with  a  strong  AR  (Hatchett  et  al.  2020).  Similarly,  a  series  of  ARs                  

brought  heavy  rainfall  in  February  2017  which,  combined  with  water  stored  in  a  pre-existing                

snowpack  and  spillway  structural  challenges,  resulted  in  an  evacuation  order  for  nearly  188,000               

nearby  residents,  and  over  one  billion  U.S.  dollars  over  two  years  for  repairs  (Henn  et  al.  2020;                   

White  et  al.  2019;  Vano  et  al.  2019).  Snow  level  time  series  from  multiple  radars  for  each  of                    

these  events  confirms  the  snow  level  height  dropped  or  rose  on  the  order  of  several  hundred  to                   

over   1,000   meters   within   one   to   three-hour   time   periods   (Figs.   2.3,   2.4c-d).     

There  were  multiple,  sizeable  SLCs  (magnitudes   ≥   300-800  m  within  one  hour)  computed               

during  the  2019  Valentine’s  Day  Event  at  various  radars  including  Colfax,  New  Exchequer  Dam,                

and  Saint  Helena  (Fig.  2.3).  At  Colfax,  a  one-hour  snow  level  rise  from  near  1200  m  MSL  to                    

~2800  m  MSL  (initially  sustained  for  3.5  hours)  occurred  between  9:05  and  10:05  UTC  on  13                  

February  2019  (Figs.  2.3a-b).  The  elevated  height  is  sustained  for  three  hours  before  a  1568                 

m-magnitude  extreme  fall  occurs,  positioning  the  snow  level  at  an  altitude  within  200  m  of  its                  

pre-rise  altitude  (near  1350  m  MSL).  After  nearly  two  hours  elapsed  at  the  lower  altitude,                 

another  two  sizeable  rises  occur  in  succession  (+1079  m  and  +426  m,  respectively),  boosting  the                 

snow  level  to  an  elevated  height  similar  to  that  of  the  first  large  rise  (2260-2600  m  MSL).  Snow                    

levels  remain  near  this  elevated  altitude  range  (climbing  to  a  maximum  of  3000  m  MSL)  for  the                   

remaining  nearly  19-hour  duration  of  the  semicontinuous  snow  level  event,  with  the  event               

spanning   almost   30   hours   total.     
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For  New  Exchequer  Dam,  a  large  snow  level  rise  of  similar  magnitude  occurs  during  the                 

same  time  as  the  initial  rise  shown  at  Colfax,  but  no  additional  large  SLCs  are  detected  (Fig.                   

2.3d).  The  fact  that  only  one  large  SLC  is  detected  here  is  a  direct  result  of  applying  conservative                    

methods  when  eliminating  erroneous  snow  level  values  and  defining  semicontinuous  events  in              

order  to  minimize  false  positive  large  SLCs.  In  this  case,  the  notably  lower  snow  level  altitudes                  

observed  between  12  and  13  UTC  on  13  February  2019  following  the  mega-rise  are  not                 

sustained  for  long  enough  (<  one  hour)  to  substantially  alter  precipitation  or  hydrologic  impacts.                

Additionally,  unlike  for  Colfax,  post-snow  level  rise  measurements  are  situated  600  to  800  m                

lower  than  initial  snow  levels  before  the  mega-rise  (~1400  m  MSL).  Thus,  the  encompassing                

semicontinuous  event  is  truncated  to  a  shorter  period,  seven  hours,  where  no  gaps  exceeding                

three  hours  exist  and  at  least  50%  of  remaining  observations  are  available  (Fig.  2.3d).  Notably                 

large  SLCs  were  also  computed  at  other  key  Sierra  sites  including  Oroville  (Fig.  2.3c)  and  Shasta                  

Dam  during  this  event  (summary  provided  by  Hatchett  et  al.  2020).  In  Sections  2.6.1  through                 

2.6.3,  we  showed  these  events  are  representative  of  the  magnitude  and  spatiotemporal              

differences  that  can  exist  in  snow  levels  and  SLCs  within  the  radar  network.  For  ongoing  and                  

future  work,  we  propose  using  the  SLC  datasets  created  here  to  investigate  dynamical  origins                

and   impacts   (e.g.,   runoff)   associated   with   particularly   large   or   extreme   intrastorm   SLCs.     
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2.9.   Figures   and   Tables   

  

  
Figure  2.1.   Schematic  illustration  of  the  melting  layer  as  a  hypothetical  high-moisture  storm               
penetrates  inland  from  east  to  west  (left  to  right)  reaching  Sierra  slopes.  A  vertically-pointing                
radar  is  included  with  its  reflectivity  profile,  along  with  typical  precipitation  types,  atmospheric               
temperatures,  and  hydrometeors.  A  range  of  climatological  medians  for  California  snow  levels  is               
shown   beneath   the   snow   level.   Altitude   is   depicted   along   the   vertical   axis   (not   to   scale).   
  
  
  
  
  
  
  
  
  

38   



  

  

  
Table  2.1.  Information  on  the  10  FMCW  S-band  profiling  radar  sites  providing  10-minute               
resolution  snow  level  observations  during  precipitation  events  in  this  study.  Five  key  radars               
positioned  within  or  near  hydrologically  high-impact  basins  are  shown  in  boldface  text.  Details               
were  obtained  from  NOAA  PSL’s  Profiler  Network  Data  and  Image  Library             
( https://psl.noaa.gov/data/obs/datadisplay/ ).   
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Figure  2.2.  Map  of  California  topography  displaying  the  10  FMCW  radars  used  in  this  study                 
(black  circles).  The  boundaries  of  eight  Sierra  Nevada  watersheds  supplying  major  reservoirs              
(blue  outlines)  are  shown  as  follows  from  northwest  to  southeast:  Shasta  Lake,  Lake  Oroville,                
Folsom  Lake,  New  Melones  Reservoir,  Don  Pedro  Reservoir,  Lake  McClure,  Millerton  Lake,              
Pine  Flat  Lake.  Elevation  (m  MSL)  for  each  radar  is  shown  in  parentheses.  Key  radars  within                  
hydrologically-important  basins  are  labeled  in  boldface  text.  An  inset  map  and  image  of  the                
Colfax   FMCW   radar   are   also   included   (image   provided   by   NOAA   ESRL).   
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Figure  2.3.  2019  Valentine’s  Day  Event  time  series  of  (a)  radar  vertical  radial  velocity  in  m  s -1                   
and  hourly-averaged  radar-derived  snow  levels  (SLs),  and  (b)-(e)  snow  levels  at  maximum              
temporal  resolution.  (a)  and  (b)  both  display  measurements  at  Colfax.  Radar  site  elevations  are                
displayed  in  parentheses  within  each  subplot  title.  Snow  levels  retained  for  analysis  in  this  study                 
are  shown  as  solid  dark  gray  circles.  Snow  levels  omitted  as  a  result  of  conservative  data  quality                   
filters  (Filters  1a,  1b,  and  2)  are  shown  as  white  circles  with  colored  outlines  (goldenrod,  green,                  
and  medium  gray,  respectively).  In  (a),  snow  levels  are  averaged  every  hour,  positioned  at  the                 
30-minute  x-axis  mark  for  each  hour.  Vertical  dash-dot  purple  lines  denote  the  start  of  the                 
defined  semicontinuous  snow  level  event  while  solid  purple  lines  mark  the  end  of  the  event.  Red                  
and  blue  vertically-elongated  bands  indicate  the  presence  of  a  large  one-hour  snow  level  ascent                
or   descent,   respectively.   
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Figure  2.4.  Radar-derived  snow  level  time  series  as  in  Figure  2.3,  but  now  for  different  dates  and                   
radar  site  combinations.  Panels  (a)  and  (c)  assess  one-hour  maximum  vertical  snow  level  changes                
while  (b)  and  (d),  respectively,  assess  three-hour  changes  during  the  same  time  period  and  at  the                  
same  radar.  Panels  (e)  and  (f)  feature  time  periods  that  do  not  contain  extreme  SLCs  and  remain                   
the   same   whether   considering   one-   or   three-hour   SLCs.     
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Figure  2.5.  Frequency  distribution  of  all  snow  level  measurements  post-QC  (bold  black  line)  and                
pre-QC  (thinner  black  line)  filters  (1a,  1b,  and  2)  plotted  as  a  histogram.  The  number  of                  
occurrences  is  displayed  along  the  y-axis  and  the  snow  level  height  (m  MSL)  is  shown  along  the                   
x-axis  (100-m  bins).  Percentiles  are  included  as  inverted  triangles  (all  are  shown  in  purple  except                 
for  the  50 th  percentile,  i.e.,  median,  shown  in  black);  from  left  to  right,  the  0.5 th ,  2 nd ,  5 th ,  10 th ,  25 th ,                     
50 th ,   75 th ,   90 th ,   95 th ,   98 th ,   99.5 th    percentiles.     
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Figure  2.6.  Total  counts  of  snow  level  measurements  before  (light  gray  bars)  and  after  (dark  gray                  
section  of  bars)  applying  data  QC  filters  are  plotted  along  the  left  y-axis.  The  number  of                  
measurements  omitted  are  shown  as  a  negative  value  near  the  top  of  each  bar.  The  purple  dots                   
and  line  plotted  along  the  right  y-axis  represent  the  percentage  of  snow  level  measurements                
omitted.  Aforementioned  variables  are  plotted  by  (a)  radar  (in  descending  latitudinal  order  from               
left  to  right  up  to  San  Bernardino,  and  then  including  the  two  near-coast  radars  on  the  far  right;                    
with  key  radars  shown  in  bold  text),  (b)  cool  season  (1  October  -  1  May)  of  each  water  year,  and                      
(c)   month.     
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Figure  2.7.  Frequency  distributions  of  quality-controlled  snow  level  measurements  are  displayed             
within  each  violin,  organized  by  (a)  radar,  (b)  cool  season,  and  (c)  month.  Snow  level  height  is                   
plotted  along  the  vertical  axis.  The  number  of  occurrences  is  represented  by  the  width  of  each                  
violin.  Note  these  violin  widths  are  based  on  snow  levels  within  each  violin  and  are  not                  
standardized  across  violins  or  subplots.  Percentiles  computed  using  all  snow  levels  within  each               
violin  are  also  plotted.  From  bottom  to  top,  the  0.5 th ,  2 nd ,  5 th ,  10 th ,  25 th ,  50 th   (i.e.,  median),  75 th ,                    
90 th ,  95 th ,  98 th ,  99.5 th   percentiles,  are  displayed.  All  percentiles  are  plotted  as  colored  circles                
except  for  medians  which  are  displayed  as  black  asterisks.  The  lower  and  upper  horizontal  solid                 
line  for  each  violin  indicates  the  minimum  and  maximum  snow  level,  respectively.  In  (a),  the                 
radar  ground  elevation  is  also  shown  as  a  bold  line.  Violin  tails  that  extend  vertically  to                  
magnitudes  larger  than  the  minimum  or  maximum  value  do  not  contain  real  snow  level                
observations,  but  are  instead  a  result  of  kernel  density  estimation  (smoothing)  within  the  violin                
plotting   function   (Hoffman   2021).   
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Figure  2.8.  Semilog  frequency  distribution  (displayed  as  a  histogram)  of  the  duration  of  all                
semicontinuous  snow  level  events  for  all  10  radars.  The  number  of  occurrences  is  shown  in  log                  
form  on  the  y-axis  for  each  event  duration  bin  along  the  x-axis  (three-hour  bins).  Note  the  y-axis                   
begins  at  one  and  increases  by  increments  of  1-10.  Percentiles  for  post-QC  snow  levels  are                 
shown   as   inverted   triangles   as   in   Figure   2.5.   
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Figure  2.9.  Histogram  similar  to  Figures  2.5  and  2.8,  but  now  for  all  maximum  SLCs  found                  
within  (a)  one-hour  (b)  three-hour  time  increments.  The  number  of  occurrences  (light  gray  bars)                
is  plotted  in  log  form  along  the  y-axis  for  each  binned  SLC  along  the  x-axis  (binned  every  50  m).                     
Vertical  lines,  from  left  to  right,  indicate  the  98 th  percentile  for  -SLCs  (bright  blue),  90 th                 
percentile  for  -SLCs  (dark  blue),  median  (i.e.,  50 th  percentile)  for  both  positive  and  negative                
SLCs  (dash-dot  purple),  zero  line  (bold  black),  90 th  percentile  for  +SLCs  (dark  red),  and  98 th                 
percentile  for  +SLCs  (bright  red).  N  is  the  total  number  of  one-  or  three-hour  SLCs  without                  
accounting  for  overlapping  time  periods  resulting  from  rolling  10-min  windows.  Only  post-QC              
intrastorm   SLCs   of   magnitudes   exceeding   zero   are   included.     
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Figure  2.10.  Total  counts  for  one-hour,  (a),  (c),  (e),  and  three-hour,  (b),  (d),  (f),  maximum  SLCs                  
shown  as  bars  along  the  left-hand  y-axis  in  10 3 .  The  zero  line  for  the  left-hand  y-axis  is                   
positioned  near  the  centerpoint  of  the  axis,  with  medium  gray  (downwards-counting)  bars  and               
white  (upwards-counting)  bars  indicating  the  negative  and  positive  SLC  sample  sizes,             
respectively.  Along  the  right-hand  y-axis,  percentiles  for  all  SLCs  regardless  of  sign  are  plotted                
as  colorful  circles  in  m  MSL  (as  in  Fig.  2.7).  Medians  are  shown  as  black  asterisks.  The                   
background  y-axis  grid  corresponds  to  the  left-hand  y-axis.  Subplots  display  values  separated  by               
radar,  (a)  and  (b),  cool  season,  (c)  and  (d),  and  month,  (e)  and  (f).  Note  the  range  for  right-hand                     
y-axes  differs  between  the  left-column  subplots  (for  one-hour  SLCs)  and  the  right-column              
subplots   (for   three-hour   SLCs).   
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Chapter   3   

Extreme   Intrastorm   Changes   in   Radar-Derived   Snow   Levels:     

Definition   and   Characteristics   

  
3.1.   Abstract   

Abrupt,  large-magnitude  rises  and  falls  in  rain-snow  transition  elevations,  or  atmospheric             

snow  levels,  affect  precipitation  phase  and  have  implications  for  hydrologic  processes  and              

communities.  Our  study  defines,  identifies,  and  examines   extreme  snow  level  changes   (SLCs)              

derived  from  10  California  vertically-oriented  radars  during  six  recent  cool  seasons.  Through  a               

percentile-based  threshold  approach,  we  define  extreme  SLCs  as  changes  with  magnitudes  ≥  400               

m  within  a  one-hour  period.  We  identify  a  total  of  134  extreme  snow  level  rises  and  113  extreme                    

falls.  Extreme  +SLCs  occurred  ~1.5-4.4  times  more  often  in  2017  than  any  other  year  while                 

extreme  -SLCs  occurred  ~1.3-4.7  times  more  in  2016  than  any  other  cool  season.  December                

through  March  contain  the  largest  number  of  extremes  while  October  and  April  have  reduced                

counts.  February  experienced  the  peak  number  of  both  extreme  snow  level  rises  and  falls.  The                 

three  northernmost  radars  observed  quadruple  the  number  of  extreme  snow  level  rises  occurring               

at  the  three  southernmost  sites  and  nearly  twice  as  many  extreme  falls.  We  also  uncover  notable                  

spatiotemporal  relationships  for  extremes  across  close-proximity  or  downstream-upstream          

neighbor   radars.     

Further,  we  enlist  a  high-resolution  atmospheric  river  detection  catalogue,  discovering            

60-100%  of  extreme  SLCs  at  each  radar  occurred  during  an  atmospheric  river  storm  period.  By                 

49   



  

  

  
assessing  reanalysis-derived  integrated  water  vapor  transport  (IVT)  values,  we  find  an  extreme              

snow  level  rise  is  at  least  four  times  as  likely  to  occur  within  large-magnitude  IVT  maximum                  

conditions  (1000-1100  kg  m -1  s -1 )  than  with  IVT  maxima  half  as  large  (<  600  kg  m -1  s -1 ).                   

Additionally,  mean  SLCs  during  large-magnitude  IVT  periods  are  almost  twice  the  magnitude  of               

+SLCs  and  nearly  1.5  times  larger  than  those  of  -SLCs  during  small-magnitude  IVT  maximum                

events  (~100-200  kg  m -1  s -1 ).  Methodologies  established  to  detect  and  elucidate  extreme              

intrastorm  SLCs  in  this  study  support  future  studies  involving  causes  and  hydrometeorological              

impacts   of   rapid   and   substantial   changes   in   snow   level.   

  

3.2.   Significance   Statement   

California  experiences  cool  season  storms  providing  valuable  water,  but  also  contributing             

to  disasters  affecting  lives  and  property.  While  snow  from  storms  can  result  in  immediate                

hazards,  it  often  remains  at  high-elevations  until  gradually  melting  in  warmer  weather.  Rainwater               

flows  into  rivers  and  reservoirs  and  can  suddenly  lead  to  flooding  and  landslides.  To  isolate                 

instances  where  precipitation  type  changed  abruptly  and  substantially,  we  defined  and  described              

extreme  one-hour  vertical  changes  (magnitude  ≥  400  m)  in  the  radar-derived  atmospheric  snow               

level,  the  altitude  where  falling  snow  becomes  rain.  We  provide  a  statewide  climatology  of                

extreme  rises  and  falls,  and  examine  associations  with  California’s  most  prevalent  storms,              

atmospheric  rivers,  also  setting  the  stage  for  future  investigations  of  controlling  mechanisms  and               

impacts   of   extremes.     
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3.3.   Introduction   

Landfalling  atmospheric  rivers  (ARs)  provide  California  with  the  majority  of  its  annual              

precipitation  (up  to  40-60%)  and  mountain  snowpack  (up  to  40%)  for  water  supplies  in  only  a                  

few  cool  season  days  (e.g.,  Guan  et  al.  2010;  Dettinger  et  al.  2011;  Ralph  and  Dettinger  2012;                   

Rutz  and  Steenburgh  2012;  Ralph  et  al.  2013a;  Rutz  et  al.  2014).  These  transient,  elongated                 

ribbons  of  enhanced  vertically-integrated  water  vapor  transport  (IVT  exceeding  250  kg  m -1  s -1 )               

form  over  near-tropical  Pacific  regions,  extending  up  to  ~3  km  MSL  with  lengths  (>  1500  km)                  

double   the   extent   of   their   widths   (Ralph   and   Dettinger   2011;   Ralph   et   al.   2018).     

AR-attributed  precipitation  ended  33-40%  of  persistent  California  droughts  between  1950            

and  2010  (Dettinger  2013).  Each  year,  however,  an  average  of  ~1-3  ARs  impinging  on  northern                 

coastal  regions  are  categorized  as  extreme  or  exceptional,  resulting  in  flood  and  snow  hazards                

that  outweigh  water  resource  benefits  (1980-2017;  Ralph  et  al.  2019a)  and  lead  to  costly  damage                 

(Corringham  et  al.  2019).  Hazards  can  also  result  during  weaker  ARs  (reduced-IVT  and/or               

shorter-duration)  which  occur  more  frequently.  During  ARs,  orographic  lifting  mechanisms  and             

precipitation  enhancements  intensify  in  regions  upwind  of  coastal  and  inland  mountains  as  a               

result  of  moist-statically  neutral  conditions  within  the  lowest  3  km  of  the  atmosphere  (Ralph  et                 

al.  2006).  An  average  of  10-25  ARs  (of  all  strengths)  affect  northern  coastal  California  each  cool                  

season  (e.g.,  Ralph  et  al.  2013a,  2019a,  2019b;  Rutz  et  al.  2014).  Near  the  coast  and  further                   

inland,   AR   conditions   persist   for   an   average   of   ~20-25   and   15-20   hours,   respectively.     

Atmospheric  water  vapor  thresholds  (e.g.,  based  on  IVT  or  precipitable  water)  and  spatial               

and  temporal  parameters  are  often  employed  to  detect  and  track  ARs  (Shields  et  al.  2018;  Ralph                  

et  al.  2019b).  When  ARs  reach  western  coasts  and  penetrate  inland,  their  moisture  interacts  with                 
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California’s  Coast  Ranges,  Sierra  Nevada,  and  southern  Klamath  Mountains.  In  some  cases,  this               

interaction  drastically  enhances  precipitation  along  windward  slopes  through  orographic  lifting            

(e.g.,  White  et  al.  2003a;  Smith  et  al.  2010)  which,  in  turn,  affects  winter  floods  and  springtime                   

runoff  flows  (e.g.,  Dettinger  et  al.  2004).  Also  near  or  within  California’s  mountains,  there  exist                 

multiple  hydrologically-important  drainage  watersheds  which  are  sensitive  to  incoming           

precipitation   (e.g.,   the   American,   Feather,   Russian   River   basins).     

Power  outages,  transportation  complications,  and  avalanches  (Hatchett  et  al.  2017a;            

2018;  2020)  can  ensue  from  rapidly-accumulating  or  heavy  snowfall  during  precipitating  storms              

such  as  ARs.  Landslides  and  debris  flows  (Young  et  al.  2017;  Oakley  et  al.  2018;  Cordeira  et  al.                    

2013),  floods  (e.g.,  Ralph  et  al.  2006,  2019a;  Dettinger  et  al.  2011),  and  other  rain  or                  

rain-on-snow  (McCabe  et  al.  2007;  Guan  et  al.  2016)  hazards  can  swiftly  take  or  threaten  lives                  

and  damage  infrastructure  (e.g.,  Jibson  2006;  White  et  al.  2019).  Instances  of  rapid,  large                

changes  in  the  amount  of  rain  versus  the  amount  of  snow  experienced  during  precipitation                

storms   can   lead   to   multifaceted   disasters,   limiting   preparedness   for   flood   and   snow   hazards.     

The  atmospheric  snow  level  or  brightband  height,  described  as  the  minimum  altitude  at               

which  free-falling  frozen  hydrometeors  melt  completely  to  rain,  dictates  precipitation            

partitioning.  Vertically-oriented  radars  identify  the  snow  level  as  the  altitude  of  maximum  radar               

reflectivity  within  the  hydrometeor  melting  layer  (i.e.,  bright  band;  typically  300-700  m  thick;               

Matsuo  and  Sasyo  1981).  In  coastal  California,  this  max-reflectivity  altitude  is  positioned  an               

average   of   192   m   below   freezing   levels   (0°C   isothermal   altitude;   White   et   al.   2002).     

Median  cool  season  California  snow  levels  are  approximately  1500-1700  m  MSL,  with              

values  of  1200-2000  and  1800-2500  m  MSL  at  sites  north  and  south  of  Saint  Helena,                 
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respectively  (Fig.  2  of  Hatchett  et  al.  2017b;  Fig.  1  of  Henn  et  al.  2020;  Figs.  2.5  and  2.7  of  this                       

dissertation).  Because  mountain  regions  consist  of  steeply  sloped  surface  elevation  bands,             

precipitation  and  runoff  in  watershed-feeding  basins  near  the  Sierra  Nevada  and  other  California               

orography,  for  instance,  are  especially  sensitive  to  variations  in  snow  level  height.  For  two                

northern  Sierra  Nevada  basins,  a  freezing  level  forecast  error  of  only  ±  350  m  can  yield                  

watershed  runoff  volume  uncertainties  that  exceed  50%  of  each  reservoir's  flood  control  capacity               

(i.e.,   contributing   to   flooding;   Fig.   2   of   Sumargo   et   al.   2020a).   

Previous  studies  find  key  melting  layer  features,  such  as  the  freezing  level,  present               

difficulties  for  operational  atmospheric  and  hydrologic  models,  resulting  in  forecast  biases,  e.g.,              

underforecasts  on  the  order  of  100-900  m  with  larger  biases  during  high  snow  level-heavy                

rainfall  periods  (White  et  al.  2010;  Neiman  et  al.  2014;  Henn  et  al  2020).  A  recent  study                   

computed  and  assessed  one-  and  three-hourly  maximum  snow  level  changes  (SLCs)  across              

California  during  six  water  years  (2015-2020),  finding  snow  level  rises  and  falls  most  common                

during  December  through  March,  at  northern  radar  locations,  and  during  enhanced-precipitation             

cool  seasons  including  2017  which  set  the  climatological  max  for  precipitation  (findings  of               

Chapter  2  of  this  dissertation).  Smaller-magnitude  SLCs  (-200  to  200  m  in  one  hour)  occurred                 

more  often,  90%  and  57%  of  the  time  for  one-  and  three-hour  SLCs,  respectively,  but                 

larger-magnitude  intrastorm  SLCs  have  also  been  observed  (Figs.  2.9  and  2.10  of  this               

dissertation).  For  example,  recent  studies  feature  one-  and  three-hour  SLCs  on  the  order  of                

300-1000  m  occurring  during  the  hydrometeorologically  high-impact  2019  Valentine’s  Day            

Event  and  2017  Oroville  Dam  Spillway  Emergency  (White  et  al.  2019;  Hatchett  et  al.  2020;  Figs.                  

2.3   and   2.4   of   this   dissertation).     
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In  related  work,  six  cases  featuring  large-magnitude  snow  level  rises  (>  500  m  during  a                 

single  precipitation  event  or  across  successive  events;  occurring  on  the  order  of  ≤  24  hours)  were                  

assessed  during  2010-2014  cool  seasons  at  a  Colfax  and  Sacramento  site  (southwest  of  Colfax                

~80  km;  Fig.  2  of  Hatchett  et  al.  2016).  Every  one  of  these  large-magnitude  intra-  or  inter-storm                   

rises  occurred  during  one  or  multiple  landfalling  ARs.  Elevated  snow  levels  (means  of               

2100-2400  m  MSL)  and  associated  extreme  precipitation  (accumulated  liquid  precipitation            

exceeding  the  93 rd -98 th  percentile;  depending  on  event,  radar,  precipitation  station)  coincided             

with  mid-season  (December-March)  peak  runoff  events  during  five  of  these  six  large-magnitude              

snow   level   rise   cases.   

Recent  studies  prove  ARs  play  dominant  roles  in  California  precipitation  occurrence,             

intensity,  and  processes  (e.g.,  summary  provided  by  Gimeno  et  al.  2014),  but  less  is  known  about                  

changes  in  snow  level  surrounding  AR  and  storm  periods.  To  provide  a  robust  definition  for  and                  

evaluation  of   extreme  intrastorm  SLCs   we  include  snow  level  falls  in  addition  to  rises  which                 

were  solely  considered  in  previous  work.  Additionally,  we  consider  an  increased  number  of               

recent  cool  seasons  (six  total),  capturing  years  with  anomalously  high  and  low  precipitation               

totals.  Further,  we  increase  the  number  of  radar  locations  considered,  employing  measurements              

derived  from  10  vertically-oriented  California  S-band  radars  ranging  from  near-coast  regions  to              

the  southern  Klamath  mountains  to  along  the  windward  side  of  the  Sierra  Nevada.  To  start,  we                  

outline  employed  datasets  and  methodologies  to  define  and  describe  extremes  (Sections  3.4-3.5).              

Next,  we  share  results  and  discuss  (Section  3.6)  their  physical  interpretation  and  significance.  We                

present  and  describe  the  distribution  and  characteristics  of  extreme  intrastorm  SLCs  and  their               

variations  by  cool  season,  month,  and  radar.  Associations  between  SLCs  of  varying  magnitude               
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and  atmospheric  moisture  and  ARs  are  also  identified  and  explored.  Lastly,  we  summarize               

findings  in  the  context  of  societal  implications  (Chapter  4  of  this  dissertation),  providing               

motivation  for  future  studies  centering  hydro-societal  impacts  and  atmospheric  mechanisms            

driving   extreme   SLCs.   

  

3.4.   Data     

3.4.1.   Intrastorm   Snow   Level   Changes   

We  employ  both  maximum  sub-daily  (one-hourly)  SLCs  and  semicontinuous  snow  level             

events  described  and  identified  by  Osborne  et  al.  in  Chapter  2  of  this  dissertation.  Initially,  we                  

consider  all  maximum  intrastorm  SLCs  previously  computed  using  10-minute  rolling  intervals  to              

maximize  SLC  sample  size.  Later,  we  adjust  for  overlapping  or  repeating  extreme  SLCs  (Section                

3.5.1).  A  maximum  one-hour  SLC  is  described  as  a  single  peak-magnitude  SLC  within  a                

one-hour   time   window,   respectively   (a   single   rise   or   fall   per   time   window).     

We  solely  consider  SLCs  within  semicontinuous  snow  levels  events,  previously  defined  as              

time  periods  which  provide  valid  data  for  ≥  50%  of  the  event,  do  not  contain  gaps  in  snow  level                     

measurements  that  exceed  three  hours  (allowing  for  brief  breaks  in  clouds  or  intermittent               

non-brightband  precipitation  periods,  for  instance),  and  amount  to  a  total  event  duration  of  at                

least  three  hours  (including  data  gaps).  This  dataset  providing  semicontinuous  snow  level  events               

and  SLCs  is  only  capable  of  capturing  snow  level-containing  stratiform  precipitation  events,  so               

convective  (elevated  turbulence  makes  it  difficult  to  identify  snow  levels)  or  warm,  solely               

rain-containing  or  cooler  snow-exclusive  events  (which  do  not  contain  snow  levels)  are  not               

included   (White   et   al.   2003a;   Neiman   et   al.   2005;   as   described   in   Chapter   2   of   this   dissertation).     
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In  addition,  in  Chapter  2,  Osborne  et  al.  designed  and  applied  data  quality  check  (QC)                 

filters  to  minimize  the  number  of  large-magnitude  (~300-1000  m)  intrastorm  SLC  false  alarms.               

Only  ~2.8%  of  the  original  snow  level  dataset  (1  October-1  May  of  water  years  2015-2020)  was                  

omitted  to  minimize  inexplicable  or  error-yielding  snow  levels  and  cases  featuring  short-lived              

SLCs  (sustained  durations  of  less  than  one  hour)  which  are  considered  less  likely  to  contribute  to                  

notable  variations  in  hydrologic  processes.  To  assess  the  most  rapidly-occurring  SLCs  and  to               

determine  a  minimum  threshold  for  extremes  (Fig.  3.1;  Section  3.5.1),  we  employ  these  post-QC                

one-hour   SLCs.     

Original  radar-derived  snow  level  measurements  were  provided  by  the  National  Oceanic             

and  Atmospheric  Administration  Physical  Science  Laboratory  (NOAA  PSL)  of  the  Earth  System              

Research  Laboratories  (NOAA  ESRL),  the  California  Department  of  Water  Resources            

(CA-DWR),  and  the  Cooperative  Institute  for  Research  in  Environmental  Sciences  (CIRES).  The              

10  included  profilers  are  Frequency-Modulated  Continuous-Wave  (FMCW)  radars  for  which            

transmitted  signals  are  modulated  instead  of  unmodulated,  contributing  to  improved  accuracy  by              

providing  both  target  speed  and  distance.  Further,  radar  signal  transmission  and  reception  are               

continuous  instead  of  pulsed,  reducing  production  and  operation  costs  and  helping  filter  out               

larger  signals  (Battan  1973;  White  et  al.  2002;  Johnston  et  al.  2017).  These  FMCW  Snow  Level                  

Radars  (SLRs;  henceforth  termed  radars)  operate  within  the  S-band  (2.835  GHz)  which  is               

well-suited  for  measuring  differences  in  hydrometeors  even  during  extreme  precipitation  (Table             

3.1,   Fig.   3.2).     

Radars  were  run  with  40  to  60-m  vertical  bands  up  to  a  maximum  height  of  ~8-10  km.  The                    

Doppler  radars  provide  snow  levels  up  to  every  10  minutes  during  snow-level  containing               
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precipitation  events  (typically  stratiform  events  rather  than  convective).  These  reduced-cost,            

state-of-the-art  S-band  radars  and  their  accompanying  snow  level  detection  algorithm  (involving             

reflectivities  measured  as  signal-to-noise  ratios,  and  vertical  radial  velocities)  come  as  valuable              

deliverables  of  the  interagency  Hydrometeorology  Testbed  (HMT)  Legacy  Project  and  the             

Pacific  Land-falling  Jets  Experiment  (PACJET;  White  et  al.  2002,  2013).  At  present,  there  are                

limitations  regarding  the  common  period  of  record  across  radars  (six  years  considered  in  this                

study).  There  also  exist  periods  when  FMCW  radars  could  not  be  operated  (e.g.,  January  2019’s                

U.S.   government   shutdown).     

Vertically-oriented  radars  identify  the  snow  level  as  the  altitude  of  maximum  reflectivity              

within  the  melting  layer.  Reflectivity  is  simultaneously  enhanced  at  the  snow  level  (i.e.,               

brightband  height)  by  two  predominant  characteristics  of  melting  hydrometeors.  One  key  factor              

is  the  relatively  large  diameter  of  melting  hydrometeors  which  are  closer  in  size  to  snowflake                 

clusters  (~3-13  mm  diameters)  and  are  more  likely  than  rain  (diameters  near  2  mm,  with  5  mm                   

maximum)  to  grow  by  aggregation  due  to  their  water-coated  surfaces  (Austin  and  Bemis  1950;                

Matsuo  and  Sasyo  1981).  The  other  predominant  factor  involves  the  increased  liquid-to-solid              

water  ratio  of  melting  particles  compared  to  frozen  hydrometeors  (dielectric  constant  of  ~0.93               

and  0.21  for  water  and  ice,  respectively;  e.g.,  White  et  al.  2002).  During  example  cases  for                  

Bodega  Bay  (coastal  California  upstream  of  Saint  Helena)  and  a  downstream  site  near  western                

foothills  of  the  central  Sierra  Nevada,  reflectivity  values  (measured  as  signal-to-noise  ratios)  of               

around  86-88  dB  and  105  dB,  respectively,  result  at  the  snow  level  -  compared  to  reflectivities                  

1-20  and  1-15  dB  smaller  for  higher  snow-experiencing  altitudes  and  lower  altitudes  containing               

rain-snow   mixtures   or   rain,   respectively   (Fig.   2   of   White   et   al.   2002;   Fig.   2   of   White   et   al.   2010).     
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3.4.2.   Atmospheric   Moisture     

We  use  vertically-integrated  water  vapor  transport  (IVT)  values  computed  and  stored  on              

the  Center  for  Western  Weather  and  Water  Extremes  (CW3E)  supercomputer  server.  IVT  values               

were  computed  using  variables  provided  by  the  National  Aeronautics  and  Space  Administration              

(NASA)  Modern  Era  Retrospective  Analysis  for  Research  and  Applications,  Version  2             

(MERRA-2;  Gelaro  et  al.  2017).  CW3E’s  high-resolution  MERRA-2  IVT  dataset  has  a  spatial               

resolution  of  0.5°  latitude  (~50  km)  x  0.625°  longitude  and  contains  three-hourly  instantaneous               

values   derived   using   the   following   equation:     

  

where   V H  is  the  horizontal  wind  vector  (m  s -1 ,  including  zonal  and  meridional  components),   g  is                  

the  acceleration  due  to  gravity,  P b  and   P t   denote  the  bottom  and  top-level  atmospheric  pressure                 

(1000  and  200  hPa),  respectively,  and   q  is  specific  humidity  (dimensionless  ratio,  kg  kg -1 ;  mass                 

of  water  vapor  to  total  system  mass)  (Cordeira  et  al.  2013;  Shields  et  al.  2018).  Because  the                   

SLCs  we  emphasize  occur  over  one-hour  windows,  we  proceed  by  expanding  the  IVT  dataset  to                 

one-hourly  using  linear  temporal  interpolation.  We  identify  MERRA-2  grid  cells  nearest  to  each               

radar  location.  If  the  nearest  MERRA-2  grid  point  lies  east  or  north  of  the  radar,  we  instead                   

consider   the   nearest   point   upstream   of   the   radar,   to   the   west   and   south   (Fig.   3.2).   

  

3.4.3.   Atmospheric   River   Events   

To  determine  whether  or  not  an  atmospheric  river  (AR)  existed  within  ±  six  hours  of  an                  

extreme  SLC,  we  utilize  the  Guan  and  Waliser  (GW)  catalogue,  Version  2  (V2),  incorporating                

58   



  

  

  
six-hourly  MERRA-2  variables  (AR  detection  in  Guan  and  Waliser  2015  -  V1;  refined  in  Guan                 

et  al.  2018  -  V2;  AR  tracking  and  additional  AR  variables  in  Guan  and  Waliser  2019  -  V3).                    

Using  methods  and  IVT  threshold  and  land-sea  mask  files  consistent  with  Guan  et  al.  (2018),                 

Zhenhai  Zhang  of  CW3E  provided  AR  information  for  water  year  2020.  Since  the  AR  catalogue                 

spatial  grid  is  identical  to  the  MERRA-2  IVT  grid,  we  consider  the  same  10  grid  points                  

(upstream   and   near   each   radar)   used   for   IVT   in   the   previous   section.     

Results  may  vary  if  employing  other  AR  catalogues,  as  underlying  detection  and  tracking               

methods  may  require  different  moisture,  temporal,  or  spatial  criteria  (e.g.,  Shields  et  al.  2018;                

Ralph  et  al.  2019b).  The  GW  method  identifies  “AR  shapes”  using  measures  of  (i)  IVT  intensity,                  

IVT  direction,  and  moisture  plume  geometry.  To  elaborate,  AR  shapes  are  defined  as  areas                

where:  (i)  IVT  exceeds  a  minimum  of  100  kg  m -1  s -1   and  also  exceeds  a  local  (single  cell)                    

minimum  threshold  defined  by  the  seasonal  85 th  percentile  (includes  5-month  period  centered  on               

month  of  interest  from  1997-2014),  (ii)  the  plume’s  mean  IVT  indicates  considerable  poleward               

motion  within  45°  of  the  plume’s  orientation,  and  (iii)  the  enhanced  IVT  region  exceeds  a  length                  

of  2000  km  and  a  2:1  length-to-width  ratio.  Recent  refinements  to  the  algorithm  help  capture                 

ARs  with  enhanced  IVT  cores  that  lack  a  clearly-defined  85 th  percentile  IVT  contour  (Guan  et  al.                  

2018  -  V2).  The  GW  catalogue  employs  IVT  computed  using  the  same  variables  as  Equation  1                  

(integrated   up   to   300   hPa   instead   of   200   hPa;   Guan   and   Waliser   2015).   

One  reason  we  employ  the  GW  AR  detection  (and  tracking)  catalogue  is  that  it  was                

created  using  IVT  instead  of  integrated  water  vapor  (IWV;  Equation  1  without  horizontal  winds)                

alone.  IVT  accounts  for  not  only  the  intensity,  but  also  the  movement  of  column-integrated                

moisture  which  is  important  for  orographic  precipitation  processes  ( Neiman  et  al.  2002,  2009) .               
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Another  reason  is  because  the  method  considers  local  and  seasonal  measurements  to  define               

minimum  moisture  thresholds  rather  than  universal  thresholds.  Additionally,  we  selected  the  GW              

catalogue  because  it  had  a  94%  match-rate  with  manually-identified  AR  landfall  times  (using               

satellite-observed  IWV)  along  North  America’s  western  coasts  which  were  recorded  in  the              

Neiman  et  al.  (2008)  catalogue  (Guan  and  Waliser  2015).  Lastly,  AR  ranking  (rather  than                

detection  or  tracking)  methods  (e.g.,  Ralph  et  al.  2019a)  involve  temporal  requirements  for               

enhanced  IVT  that  are  valuable  for  categorizing  ARs  by  moisture  intensity,  duration,  and               

impacts.  These  duration  requirements,  however,  may  be  too  strict  for  identifying  weaker  or               

shorter-duration   ARs   in   studies   involving   atmospheric   changes   at   hourly   scales.     

  

3.5.   Methodology   

3.5.1.   Defining   and   Identifying   Extreme   Intrastorm   Snow   Level   Changes   

We  define  extremes  (Fig.  3.1)  based  on  98 th  percentiles  of  SLCs  (Table  3.1  and  Fig.  3.3)                  

within  the  maximum  one-hour  SLC  dataset  at  five  key  radars  (Fig.  3.2;  SLC  dataset  described  in                  

Chapter  2  of  this  dissertation).  Although  98 th  percentiles  for  positive  and  negative  one-hour  SLCs                

generally  lie  slightly  beneath  400  m-magnitudes,  we  intentionally  assign  400  m  as  the  minimum                

magnitude  used  to  define  extreme  intrastorm  SLCs.  As  a  result,  in  terms  of  magnitude,  we                 

isolate  and  investigate  only  the  most  extreme  sub-daily  SLCs.  Additionally,  by  rounding  the               

minimum  threshold  to  400  m  for  both  one-hour  rises  and  falls,  we  aim  to  provide  results  that  are                    

more  relevant  to  forecasting  operations,  i.e.,  numerical  weather  prediction  model  vertical             

resolutions  (vertical  pressure-adjusted  levels  with  spacing  on  the  order  of  300  m  in  the  lowest                 

1-2   km).   
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Throughout  this  study,  we  place  emphasis  on  values  and  results  from  five  key  radars                

which  are  located  within  hydrologically  high-impact  watershed  basins  along  a            

northwest-to-southeast  track  within  the  windward  side  of  the  Sierra  foothills  (bolded  in  Table  1                

and  Fig.  1:  Shasta  Dam,  Oroville,  Colfax,  New  Exchequer  Dam,  Pine  Flat  Dam).  Hereafter,                

one-hour  SLCs  of  magnitudes   ≥   400  m  are  termed   extreme .  We  later  also  refer  to  SLCs  of                   

magnitudes    ≥    800   m   as    exceptional .   

When  computing  one-hour  maximum  SLCs  in  work  described  in  Chapter  2  of  this               

dissertation,  we  used  rolling  10-min  windows  to  maximize  the  number  of  valid  SLCs.  Therefore,                

within  the  employed  intrastorm  SLC  variables,  multiple  extreme  SLCs  of  the  same  sign  can                

result  within  a  period  shared  by  multiple  one-hour  time  windows.  To  determine  local  SLC                

maxima  and  minima,  we  first  employed  a  peak  detection  algorithm  (specifically,  the  MATLAB               

findpeaks  function)  for  all  positive  and  negative  SLCs,  respectively.  Then,  we  identified              

instances  where  multiple  extreme  one-hour  SLCs  of  the  same  sign  exist  within  a  single  hour,                 

respectively,  and  proceeded  with  only  the  single  true-maximum  extreme  positive  or  negative              

SLC  for  each  window.  For  this  study,  the  most  statistically-extreme  intrastorm  SLCs  are  desired                

which  inherently  limits  the  number  of  samples.  To  predict  results  when  provided  a  larger                

population,   we   performed   bootstrap   resampling   in   certain   cases   (next   section).   

  

3.5.2.   Significance   Testing   

Bootstrap  resampling  is  employed  for  all  statistical  significance  testing  in  this  study,              

consistent  with  methods  outlined  in  Dixon  (2006)  which  were  formally  introduced  by  Efron               

(1979)  and  modified  or  expanded  upon  by  studies  that  followed.  All  resampling  efforts  consider                
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10,000  random  extractions  from  a  larger  population.  After  a  value  is  selected,  it  is  also  returned                 

to  the  population  pool  which  means  it  may  be  selected  multiple  times.  Random  resampling  in                 

this  way  allows  us  to  mimic  the  chaotic  nature  of  the  atmosphere  and  precipitating  storms  while                  

assuming  realizations  of  the  near  future  yield  a  similar  range  of  values  or  distributions  as  those  in                   

the  previous  six  years.  If  considering  realizations  further  into  the  future,  a  Monte  Carlo  method                 

(e.g.,  Metropolis  and  Ulam  1949)  could  instead  be  used  for  statistical  significance  testing,  as                

these  methods  do  not  solely  rely  on  pre-existing  measurements,  but  rather  create  new  values  to                 

consider   in   a   future   climate.   

 When  computing  exceedance  likelihood  (Fig.  3.8),  for  example,  bootstrap  resampling             

considers  10,000  random  maximum  IVT  value  extractions  from  a  pool  of  radar-averaged  (mean)               

IVT  maxima  corresponding  to  non-extreme  SLCs  for  each  radar  individually.  With  each              

extraction,  we  draw   n  number  of  samples  from  each  radar  population.  The  value  of   n  matches  the                   

total  number  of  non-extreme  SLCs  (for  all  years)  which  varies  from  radar  to  radar.  For  each                  

radar,  the  exceedance  likelihood  is  the  percentage  of  the  10,000  resampled  radar-averaged              

maximum  IVT  values  (drawn  from  the  non-extreme  SLC  IVT  maxima  pool)  that  exceeds  the                

radar’s   IVT   maximum   for   extreme   SLCs.   

We  perform  similar  testing  for  results  shown  in  Figure  3.9,  but  instead,  to  determine  90%                 

confidence  intervals  for  mean  SLCs  and  extreme  SLC  percentages  within  each  IVT  maxima  bin.                

In  this  case,  for  each  IVT  bin,  we  perform  resample  extractions  ( n  number  of  times,  where   n  =                    

number  of  SLCs)  to  determine  95 th  and  5 th  percentile  values  resulting  from  10,000  resampled                

mean   SLCs   and   extreme   SLC   percentages.   
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3.6.   Results   and   Discussion   

3.6.1.   Extreme   Snow   Level   Change   Threshold   and   Mean   Conditions   

As  explained  in  Section  3.5.1,  the  400  m-magnitude  threshold  for  extreme  one-hour              

changes  is  determined  based  on  98 th  percentile  values  (Fig.  3.1,  Table  3.1).  For  the  five  key                  

Sierra  radars  (Fig.  3.2),  the  98 th  percentile  for  snow  level  falls  is  ~70  m  smaller  in  magnitude                   

than  the  value  for  rises;  -315  m  compared  to  386  m,  or  347  m  when  considering  the  absolute                    

value  of  both  positive  and  negative  SLCs  (Table  3.1,  Fig.  3.3a).  While  ~2%  of  all  positive  and  all                    

negative  SLCs  (assessed  separately  by  sign)  at  key  radars  are  of  magnitudes  equaling  or                

exceeding  corresponding  98 th  percentile  values,  only  ~1.8%  and  0.9%,  respectively,  equal  or              

exceed  the  400  m-magnitude  extreme  threshold.  As  a  result  of  the  established  400-m  extreme               

threshold  for  both  positive  and  negative  SLCs,  this  study  yields  fewer  extreme  snow  level  falls                 

than   rises,   113   extreme   falls   and   134   extreme   rises   (Figs.   3.3,   3.4,   3.5).     

Percentiles  for  one-hour  SLCs  accounting  for  all  10  radars  are  slightly  reduced  in  most                

cases  compared  to  results  for  the  five  key  radars,  with  exceptions  for  percentiles  computed  for  all                  

-SLCs  (Table  3.1,  Fig.  3.3a).  The  98 th  percentile  for  one-hour  SLCs  varies  by  radar,  from  298  and                   

303  m  (Happy  Camp  and  Saint  Helena,  respectively)  to  417  m  (Colfax)  for  +SLCs,  and  -283                  

(Saint  Helena  and  Shasta  Dam)  to  -366  m  (San  Bernardino)  for  -SLCs  (Fig.  3.3b-c).  This  range                  

of  values  across  radars  is  narrower  for  smaller  percentiles  (90 th  and  95 th ;  0.5 th -75 th ,  not  shown)                 

and  markedly  wider  for  the  99.5 th  percentile  (Fig.  3.3a-c).  The  range  of  values  for  +SLC  99.5 th                  

percentiles  is  notably  wider  (316  m)  than  that  of  +SLC  98 th  percentiles  (119  m;  Fig.  3.3b).                  

Additionally,  the  range  of  99.5 th  -SLC  percentile  values  is  nearly  four  times  larger  than  the  range                  

for   -SLC   98 th    percentiles   (327   m   and   83   m,   respectively;   Fig.   3.3c).     
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We  find  +SLC  98 th  percentiles  of  markedly  smaller  magnitudes  resulting  at  Saint  Helena               

and  Happy  Camp  compared  to  other  sites  including  San  Luis  Reservoir  which  is  also  located                 

nearer  the  coast  (Figs.  3.2  and  3.3b-c).  For  -SLCs,  98 th  percentiles  at  Saint  Helena  and  Shasta                  

Dam  are  reduced  compared  to  all  others.  For  instance,  Saint  Helena,  which  is  ~144  km  southwest                  

(upstream)  of  Colfax  at  an  elevation  nearly  4.8  times  below  that  of  Colfax,  yields  positive  and                 

negative  SLC  98 th  percentiles  ~115  m  and  55  m  smaller,  respectively,  than  those  of  Colfax  (Figs.                  

3.2  and  3.3b-c).  We  find  similar  results  when  comparing  98 th   percentiles  at  Saint  Helena  to  those                  

for  downstream  Oroville  which  is  slightly  northwest  of  Colfax  at  an  elevation  similar  to  that  of                  

Saint  Helena  (98 th   percentiles  are  ~95  and  35  m  larger,  respectively,  at  Oroville  compared  to                 

Saint   Helena;   Figs.   3.2   and   3.3b-c).     

The  fact  that  Saint  Helena,  however,  produces  one  of  the  largest  +SLC  99.5 th  percentiles                

(803  m;  second  only  to  Colfax’s  828  m)  and  the  largest  overall  +SLC,  1714  m  during  the  2019                    

Valentine’s  Day  Event  (Fig.  7  of  Hatchett  et  al.  2020,  and  Fig.  2.3e  of  this  dissertation),  shows                   

that  exceptionally  high-magnitude  snow  level  rises  can  indeed  occur  at  this  nearer-coast  site.               

Similarly,  Colfax,  New  Exchequer,  and  Oroville  experienced  their  largest  snow  level  rise  of  1602                

m,  1537  m,  and  1295  m,  respectively,  which  arrived  5-11  hours  after  the  initial  rise  at  Saint                   

Helena  during  the  2019  Valentine’s  Day  Event  (~4:05  UTC  on  13  Feb  2019;  Fig.  2.3  of  this                   

dissertation).  Near  12:15  UTC  the  same  day,  Saint  Helena’s  most  extreme  snow  level  fall                

occurred.  This  maximum  fall  (471  m)  at  Saint  Helena  was  the  smallest  maximum  for  -SLCs  of                  

all  10  radars,  a  notable  202  m  smaller  than  Kernville  which  takes  second  place  (-673  m  max).                   

Approximately  45  minutes  later,  Colfax  saw  its  largest  fall  of  -1568  m,  more  than  3.3  times                  

64   



  

  

  
larger  in  magnitude  than  the  maximum  fall  occurring  at  Saint  Helena  (Fig.  2.3  of  this                 

dissertation).     

Overall,  -SLC  98 th  percentiles  tend  towards  a  roughly  direct  relationship  with  radar              

longitudes  with  increased  values  for  inland  sites  further  east  (refer  to  Fig.  B.1),  although  a  few                  

values  appear  as  outliers  and  there  exist  sample  size  limitations.  Based  on  the  SLC  dataset                 

considered  in  this  study,  we  do  not  note  clear  trends  involving  -SLC  98 th  percentiles  and  latitudes                  

or  radar  elevations,  or  for  +SLC  98 th  percentiles  and  radar  latitudes,  longitudes,  or  elevations.                

Medians  for  -SLCs  and  +SLCs  tend  towards  a  nearly  direct  relationship  with  radar  longitudes                

and  a  nearly  inverse  relationship  with  radar  latitudes  (more  notably  for  -SLCs;  Fig.  B.2).  Of                 

relevance,  previous  studies  found  median  snow  levels  at  southern  (climatologically-warmer  and             

drier)  California  radars  on  the  order  of  300-1000  m  higher  than  medians  for  northern  locations                 

(e.g.,  Fig.  1  of  Henn  et  al.  2020,  and  Fig.  2.7a  of  this  dissertation).  Findings  of  this  chapter                    

additionally  suggest  one-hour  SLC  medians  at  southern  (or  eastern)  radar  locations  exhibit  larger               

magnitudes   than   those   further   north   (or   nearer   the   coast).    

For  eight  of  the  radars,  -SLC  98 th  percentiles  are  between  1  and  80  m  smaller  in                  

magnitude  (mean:  ~45  m,  median:  ~50  m)  than  respective  +SLC  percentiles.  The  remaining               

radars  (Happy  Camp  and  San  Bernardino)  result  in  the  opposite,  with  -SLC  98 th   percentiles  15                 

and  18  m  larger,  respectively,  than  +SLC  percentiles.  This  result  suggests  extreme  snow  level                

rises  are  more  likely  to  exist  with  larger  magnitudes  than  those  of  extreme  falls.  We  find  21                   

fewer  -SLCs  register  as  extreme  (compared  to  +SLCs;  Fig.  3.1,  Table  3.1).  The  fact  that  the                  

400-m  threshold  for  extremes  is  nearer  the  98 th  percentile  for  one-hour  snow  level  rises  than  the                  
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value  for  falls  (Fig.  3.3)  may  contribute  to  this  sign-dependent  difference  in  the  number  of                 

extremes.   

When  considering  all  extreme  SLCs  across  the  five  key  radars,  the  mean  starting  altitude                

for  extreme  rises  is  580  m  lower  than  the  starting  altitude  for  extreme  falls  (Fig.  3.1).  The  mean                    

ending  altitude  for  extreme  rises  is  630  m  larger  than  the  mean  for  extreme  falls.  Mean  starting                   

and  ending  heights  for  extreme  SLCs  when  assessing  all  10  radars  are  similar  to  (within  ~14-40                  

m)  values  for  only  key  radars,  as  are  respective  median  heights  compared  to  means  (within                 

~18-65  m).  Additionally,  the  mean  ending  (warmer)  snow  level  altitude  for  extreme  rises  lies                

~30  m  above  the  mean  starting  (warmer)  altitude  for  extreme  falls.  Meanwhile,  the  mean  starting                 

(cooler)  snow  level  height  for  extreme  +SLCs  exists  ~20  m  above  the  mean  ending  (cooler)                 

altitude  for  -SLCs  (Fig.  3.1).  The  mean  ending  (warmer)  snow  level  altitude  and  the  mean                 

starting  (cooler)  snow  level  altitude  for  +SLCs  at  key  radars  exist  20-30  m  above  the  mean                  

starting  (warmer)  and  ending  (cooler)  altitudes  for  -SLCs,  respectively.  This  result  suggests              

extreme  snow  level  rises,  on  average,  involve  slightly  higher  snow  levels  compared  to  those                

during  extreme  falls  (note  snow  levels  ≥  ~2000  m  were  associated  with  heavier  rainfall  periods                 

in  White  et  al.  2010).  Lastly,  across  key  radars,  median  magnitudes  for  one-hour  extreme  snow                 

level  rises  and  falls  are  similar  to  one  another  (~508  m  and  -518  m,  respectively),  and  are  ~100                    

and   70   m   smaller   than   their   respective   means   (Table   3.1,   Fig.   3.4a-b).   

  

3.6.2.   Cool   Season   Variation   of   Extreme   Snow   Level   Changes   

Extreme  +SLCs  occurred  most  frequently  during  2017  and  2019,  with  counts  of  48  and                

32,  respectively,  ~2.1-4.4  times  larger  than  the  other  four  cool  seasons  (Fig.  3.4c).  Negative                
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extremes  are  more  often  identified  in  2016,  2017,  and  2019  cool  seasons  compared  to  other                 

years,  with  counts  of  33,  25,  and  24,  respectively  (Fig.  3.4d).  These  values  are  ~2.4-4.7  times                  

larger  than  the  extreme  fall  counts  of  the  three  remaining  years.  The  smallest  extreme  rise  counts                  

are  11  (2015)  and  14  (2016  and  2020),  while  the  minimum  number  of  extreme  falls,  10  and  7,                    

exist  during  2018  and  2020,  respectively  (Fig.  3.4c-d).  Maximum  -SLCs  are  of  smaller               

magnitudes  for  water  years  2015  and  2018,  70  and  645  m,  respectively,  compared  to  peaks  of                  

~980-1620  m  for  the  remaining  years.  Extreme  rise  maxima  are  also  reduced  for  2015  and  2020                  

in   addition   to   2016,   ~910-1060   m   compared   to   ~1430-1710   m   for   the   other   cool   seasons.     

When  instead  considering  medians  for  extreme  magnitudes,  we  find  values  ~5  (2019)  to               

127  (2015)  m  larger  for  extreme  snow  level  rises  compared  to  falls  to  all  years  except  2018  and                    

2020.  For  these  two  cool  seasons,  the  medians  for  extreme  +SLCs  are  ~26  and  33  m  smaller,                   

respectively,  than  corresponding  extreme  -SLC  medians.  Further,  the  range  of  median  values  for               

extreme  +SLC  magnitudes  (width  of  156  m)  is  nearly  three  times  wider  than  the  range  for                  

extreme   -SLCs   (Fig.   3.4c-d).   

Our  investigations  reveal  there  are  not  only  more  extreme  +SLCs  overall  during  2017  and                

2019  compared  to  other  cool  seasons  (Fig.  3.4c),  but  that  the  greatest  number  of  exceptional                 

+SLCs  (magnitude  ≥  800  m)  also  occur  during  these  years  (10  and  9,  respectively;  Fig.  3.5c).                  

For  -SLCs,  elevated  exceptional  SLC  occurrences  result  during  2016  and  2017  (5  and  3,                

respectively;  Fig.  3.5d).  It  should  be  noted  that  sample  sizes  for  exceptional  SLCs  are  relatively                 

small,   with   25   exceptional   rises   and   11   falls   in   total.   

Largely,  anomalously  wet  cool  seasons  yield  more  extreme  and  exceptional  snow  level              

rises  and  falls  (Figs.  3.4c-d  and  3.5c-d).  Included  is  the  recording-setting  2017  cool  season  which                 
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received  a  total  of  240  cm  of  precipitation  compared  to  a  climatological  mean  of  ~130  cm                  

(Durand  et  al.  2020).  The  2017  cool  season  contrasts  with  the  dry  2015  cool  season  (95  cm  of                    

accumulated  precipitation)  which  induced  and  exacerbated  severe  multi-year  drought  conditions            

across  the  western  U.S.  Anomalously  wet  years  inherently  offer  a  larger  number  of  precipitation                

periods  in  which  snow  levels  can  exist,  and  may  provide  the  atmospheric  and  hydrologic                

conditions  necessary  to  produce  precipitation  events  of  larger  magnitude,  intensity,  frequency,  or              

impact.  Conditions  necessary  to  generate  and  fuel  an  atmospheric  river  storm  or  those  associated                

with  an  El  Niño  period,  for  example,  may  duly  contribute  to  rapid  vertical  changes  in  low-level                  

temperatures  that  result  in  extreme  SLCs.  As  anomalously  wet  and  dry  periods  are  influenced  by                 

interconnected  atmospheric  dynamic  and  thermodynamic  mechanisms  and  air-sea          

teleconnections  of  various  spatiotemporal  scales,  investigations  of  these  interactions  and  their             

possible   influences   on   SLCs   are   appropriate   for   future   studies.     

  

3.6.3.   Seasonality   of   Extreme   Snow   Level   Changes  

Extreme  SLCs  also  exhibit  seasonality,  with  the  largest  number  of  extremes,  both  rises               

and  falls,  detected  in  December  through  February  (Fig.  3.4e-f).  Minimum  counts  occur  during               

the  first  and  last  month  of  the  season,  October  and  April.  For  instance,  2-4.7  and  2.3-2.8  times  as                    

many  extreme  +SLCs  and  -SLCs,  respectively,  are  detected  during  February  (a  total  of  33  and                 

25,  respectively)  compared  to  during  October  and  November  (early-season  months).  Further,             

February  contains  ~3.3  and  4  times  the  total  number  of  extreme  snow  level  rises  and  falls,                  

respectively,   that   occur   during   April   (late-season   month).     
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Slightly  elevated  medians  for  extreme  snow  level  rises  occur  in  February  (~590  m)  and                

April  (~600  m),  ~10-150  m  larger  than  medians  for  the  five  other  months  assessed.  October                 

through  March  experience  peak  maximum  extreme  +SLCs  of  ~1600-1710  m.  For  October,              

December,  and  March,  extreme  +SLC  maxima  that  are  roughly  double  the  magnitude  of               

respective  maxima  for  extreme  -SLCs  occurred  (Fig.  3.4e-f).  Peaks  in  the  number  of  exceptional                

+SLCs  occur  during  January  and  February,  with  total  counts  of  5  and  12,  respectively  (Fig.  3.5e).                  

For  -SLCs,  November  and  January  contain  the  largest  number  of  exceptional  SLCs,  a  total  of  4                  

each   (Fig.   3.5f).   

  

3.6.4.   Spatiotemporal   Relationship   of   Extreme   Snow   Level   Changes     

An  inverse  relationship  between  median  snow  level  and  latitude  has  been  described  in               

previous  studies  (e.g.,  Henn  et  al.  2020,  Chapter  2  of  this  dissertation).  As  an  example,  during                  

the  high-impact  2019  Valentine’s  Day  Event,  base  snow  levels  and  those  following  the  first                

extreme  snow  level  rise  were  ~100-300  m  higher  at  New  Exchequer  than  those  at  Colfax  (Fig.                  

2.3  of  this  dissertation).  Higher  snow  levels  mean  the  atmosphere  remained  warmer  or  above                

freezing  to  a  slightly  greater  atmospheric  depth  at  New  Exchequer,  which  is  ~150  km  southeast                

of   Colfax   at   an   elevation   385   m   lower   than   that   of   Colfax   (Fig.   3.2).     

Results  centered  on  the  latitudinal  variation  of  extreme  SLCs  also  support  findings              

suggesting  higher-latitude  regions  have  warmer  snow  levels  (Fig.  3.4a-b).  Northern  radars             

typically  receive  more  water-year  total  precipitation  than  southern  radars,  contributing  to  a  larger               

number  of  snow  level  samples  overall  for  identifying  extreme  SLCs  (refer  to  Figs.  2.6a  and                 

2.10a  of  this  dissertation).  These  increased  sample  sizes  at  northern  radars  may  result  in  part                 
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because  the  radars  are  positioned  within  primary  AR  pathways  (e.g.,  Rutz  et  al.  2015)  and/or                 

regions  slightly  upwind  of  Sierra  Nevada  slopes  (i.e.,  contributing  to  orographic  precipitation              

enhancements).  Snow  levels,  however,  do  not  exist  during  solely  snow-containing  precipitation             

periods,   which   are   more   likely   at   climatologically-cooler   and   higher-elevation   regions.   

Evidence  of  a  latitudinal  dependence  emerges  when  considering  counts  for  extreme  SLCs              

(Fig.  3.4a-b).  There  is  a  notably  large  number  of  extremes  detected  at  higher-latitude  mountain                

foothills  radars  (Happy  Camp,  Shasta  Dam,  Oroville,  Colfax,  New  Exchequer  Dam)  compared  to               

Sierra-foothills  radars  further  south  (Pine  Flat  Dam,  Kernville,  San  Bernardino)  and  those  nearer               

the  coast  (San  Luis  Reservoir  and  Saint  Helena).  For  example,  Oroville  experienced  5.2  times                

more  extreme  +SLCs  over  all  six  cool  seasons  than  Pine  Flat  Dam.  Happy  Camp  saw  nearly                  

three  times  more  extreme  snow  level  falls  than  Kernville.  Happy  Camp  and  Saint  Helena  had  the                  

highest-magnitude  maximum  extreme  snow  level  rises  (1650  m  and  1714  m,  respectively),  but               

substantially   lower-magnitude   maxima   for   extreme   snow   level   falls   (-848   and   -471   m).     

When  considering  exceptional  SLCs  instead  of  extremes,  a  dependence  on  latitude  or              

geographic  location  is  less  clear  (Fig.  3.5a-b).  Albeit,  the  three  southmost  radars  (Pine  Flat  Dam,                 

Kernville,  San  Bernardino)  experience  fewer  exceptional  +SLCs  compared  to  the  five  northmost              

radars  (Happy  Camp,  Shasta  Dam,  Oroville,  Colfax,  New  Exchequer  Dam).  Additionally,             

near-coast  Saint  Helena  yields  slightly  elevated  exceptional  +SLC  counts  more  similar  to  those               

of  its  downwind  neighbors,  Oroville  and  Colfax  (3  compared  to  5  and  6,  respectively).  Colfax  is                  

subjected   to   the   greatest   number   of   exceptional   SLCs,   6   rises   and   4   falls.     

By  examining  extreme  SLCs  occurring  across  radar  sites  (Figs.  3.6  and  3.7),  we  observe                

relationships  between  geographic  location,  and  the  total  percentage  of  SLCs  simultaneously             
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occurring  at  another  site  (within  ±  6h).  We  also  note  there  are  relationships  across  radars  that                  

involve  extreme  SLCs  and  anomalous  magnitudes  for  maximum  SLC  values  surrounding  each              

extreme  SLC  period  (average  of  maxima,  with  one  max  per  time-matched  extreme  SLC).  Results                

reveal  these  relationships  are  stronger  for  extreme  snow  level  rises  compared  to  extreme  falls,                

and  for  radars  in  closer  proximity  to  one  another  as  well  as  those  along  the  same  diagonal                   

southwestern  to  northeastern  pathway.  For  instance,  during  the  ±  six-hour  windows  surrounding              

extreme  snow  level  rises  at  Colfax,  the  mean  magnitudes  for  all  +SLC  maxima  at  Oroville  and                  

New   Exchequer   Dam   are   also   elevated   (Fig.   3.6).     

In  this  case,  Oroville’s  mean  SLC  maximum  registers  as  extreme  (470  m)  while  the                

maximum  at  New  Exchequer  is  only  slightly  less  than  the  400-m  minimum  threshold  for                

extremes  (370  m).  These  two  SLC-averaged  maxima  are  notably  more  similar  to  the  maxima  for                 

Colfax  (~590  m)  than  maxima  for  other  sites.  Of  the  23  extreme  snow  level  rises  at  Colfax,  20                    

(~87%)  were  time  window-matched  (within  ±  6h)  with  observed  +SLC  values  at  Oroville  and  15                 

(~65%)  at  New  Exchequer  Dam  (Fig.  3.6).  A  larger  percentage  of  Colfax  extreme  +SLCs  were                 

also  time-matched  at  sites  to  the  north,  Shasta  Dam  and  Happy  Camp  (~78%  and  52%,                 

respectively),  compared  with  those  to  the  south,  Pine  Flat  Dam,  Kernville,  San  Bernardino               

(13-35%).  Upstream  at  San  Luis  Reservoir  and  Saint  Helena,  counts  for  time-matched  rise               

periods  are  more  similar  to  those  of  the  northernmost  two  sites  (12  and  14,  or  52%  and  61%,                    

respectively).  At  these  nearer  coast  sites,  mean  +SLC  maxima  are  ~3.4  and  2.5  times  smaller,                 

respectively,  than  the  maxima  for  Colfax  (~171  m  and  233  m,  respectively)  which  are  also                 

similar   in   magnitude   to   those   of   northern   radars,   Happy   Camp   and   Shasta   Dam   (~200-230   m).   
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We  find  SLC  time-matched  percentages  and  maximum  magnitudes  are  not  always             

symmetric  when  examining  results  for  two  radars  (e.g.,  when  assessing  extremes  at  one  versus                

another).  For  example,  when  considering  extreme  +SLCs  at  New  Exchequer  Dam  (13  total),               

~54%  are  time-matched  with  +SLCs  at  Pine  Flat  Dam.  This  is  compared  to  ~100%  of  extreme                  

rises  at  Pine  Flat  Dam  (5  total)  returning  time-matched  +SLCs  at  New  Exchequer  Dam.  The  two                  

mean  SLC  maximum  resulting  from  these  cases,  however,  are  similar  to  one  another,  ~240  m                 

compared  to  260  m,  respectively.  Meanwhile,  time-matched  SLC  percentages  when  considering             

Colfax  extreme  +SLCs  matched  with  SLCs  at  Oroville  and  the  reverse  are  more  similar  to  one                  

another,  ~87%  and  85%,  respectively.  Resulting  means  for  +SLC  maxima  for  both  scenarios  are                

also   similar   to   one   another   and   are   categorized   as   extreme   (~470   m   and   ~440   m,   respectively).     

While  85%  of  extreme  +SLCs  at  New  Exchequer  Dam  are  matched  with  a  +SLC  value  to                  

the  north  at  Colfax,  ~78%  are  matched  upstream  at  San  Luis  Reservoir  and  46%  at  Saint  Helena.                   

Notably  smaller  percentages  of  these  extreme  +SLCs  are  time-matched  at  the  southernmost  two               

inland  radars,  Kernville  and  San  Bernardino  (38%  and  23%,  respectively).  In  this  scenario,               

Colfax  and  Saint  Helena  each  return  a  mean  matched-maximum  +SLC  value  flagged  as  extreme                

(457  m  and  531  m).  Additionally,  mean  +SLC  maxima  for  Happy  Camp  and  Oroville  to  the                  

northwest  are  just  shy  of  extreme  (385-395  m).  For  upstream  San  Luis  Reservoir,  the  mean  SLC                  

maximum   is   ~260   m,   more   similar   to   maxima   resulting   for   the   southernmost   three   radars.   

Similar  patterns,  where  the  likelihood  of  mean  SLC  maxima  exceeding  the  minimum              

threshold  for  extremes  increases  for  radars  in  closer  proximity  to  the  radar  in  question,  also                 

emerge  for  other  sites.  For  example,  during  extreme  +SLCs  (±  6h)  at  the  two  nearer-coast  sites,                  

San  Luis  Reservoir  and  Saint  Helena,  we  note  elevated  +SLC  maxima  at  downwind  radars,                

72   



  

  

  
Colfax  (~307  and  370  m,  respectively)  and  New  Exchequer  Dam  (~412  and  626  m,               

respectively).  It  is  also  important  to  note  the  small  sample  size  for  extreme  +SLCs,  especially  for                  

the   two   nearer-coast   sites   (7   and   6,   respectively)   and   the   southernmost   three   radars   (5-6   total).   

Results  considering  extreme  -SLCs  and  their  mean  -SLC  maxima  and  time-matched             

-SLC  percentages  differ  from  those  considering  extreme  +SLCs.  Mean  -SLC  maximum  values              

for  ±  6h  windows  surrounding  extreme  -SLCs  are  smaller  overall,  with  only  one  exceeding  a                 

magnitude  of  400  m  (Fig.  3.7).  This  exception  appears  when  considering  the  mean  -SLC                

maximum  for  Colfax  during  extreme  -SLCs  at  upstream  Saint  Helena  (2  extreme  falls  total).  The                 

mean  -SLC  maximum  within  the  time  windows  surrounding  each  extreme  fall  is  actually  2.5                

times  smaller  at  Saint  Helena  itself  (-458  m)  than  at  Colfax,  where  it  registers  as  exceptional                  

(-1145  m  with  both  extremes  matched).  Resultant  mean  maximum  -SLC  magnitudes  at  Shasta               

Dam  and  Oroville  are  near-extreme,  ~345-350  m.  When  considering  the  reverse  scenario,  i.e.,               

extreme  -SLCs  at  Shasta  Dam  and  Oroville,  mean  -SLC  maxima  for  Saint  Helena  and  San  Luis                  

Reservoir   are   of   relatively   small   magnitudes   (-120   m   to   -185   m).   

As  was  true  (and  more  pronounced)  for  extreme  +SLCs,  the  percentage  of  time-matched               

extreme  -SLCs  often  increases  with  proximity  to  the  extreme  SLC  site,  or  when  the  two                 

evaluated  radars  exist  within  a  similar  geographic  subregion  (e.g.,  both  nearer  the  coast,  or  along                 

the  western  base  of  the  southern  Sierra)  or  within  the  same  southwest-northeast  transect.  For                

instance,  ~91%  of  extreme  falls  at  Oroville  are  matched  with  a  -SLC  maximum  at  Colfax,  while                  

87%  of  Colfax’s  extreme  falls  are  matched  at  Oroville  (Fig.  3.7).  Additionally,  as  another                

example,  100%,  75%,  and  ~88%  of  the  extreme  snow  level  falls  at  San  Luis  Reservoir  (8  total)                   

return  time-matched  -SLCs  at  downwind  New  Exchequer  Dam,  Colfax,  and  Oroville,             
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respectively  (average  SLC  maxima:  ~230-300  m).  Both  time-matched  extreme  -SLC  percentages             

and   -SLC   maxima   for   these   three   downwind   radars   are   larger   than   values   for   other   radars.   

  

3.6.5.   Vertically-Integrated   Moisture   Flux   and   Extreme   Snow   Level   Changes     

When  considering  +SLCs,  radar-averaged  (mean)  IVT  maxima  associated  with  extreme            

SLCs  are  consistently  larger  than  means  for  non-extreme  SLCs  at  the  same  radar  (Fig.  3.8a).                 

Extreme  +SLC-matched  IVT  maxima  range  from  ~18  kg  m -1   s -1  (Saint  Helena)  to  ~155  kg  m -1   s -1                   

(Oroville)  larger  than  their  respective  non-extreme  radar-averaged  IVT  maxima.  Only  two  sites              

(Colfax  and  Saint  Helena)  result  in  elevated  IVT  maxima  for  extreme  +SLCs  that  are  less  than                  

~40  kg  m -1   s -1  larger  than  IVT  maxima  for  respective  non-extreme  +SLCs.  The  median  and  mean                  

of  all  10  IVT  maximum  differences  for  +SLCs  are  ~60  and  70  kg  m -1   s -1 ,  respectively.  When                   

assessing  -SLCs,  the  median  and  mean  of  all  10  difference  values  are  a  tad  larger,  ~74  and  81  kg                     

m -1   s -1 ,  respectively  (Fig.  3.8b).  For  two  radars,  averaged  IVT  maxima  associated  with  extreme                

-SLCs  are  slightly  smaller  than  means  linked  with  non-extremes  (Colfax  and  New  Exchequer               

Dam,   -0.2   and   -66   kg   m -1    s -1 ,   respectively).     

We  find  the  largest  positive  difference  between  extreme  and  non-extreme  -SLC  IVT              

maxima  at  Saint  Helena  (nearly  +260  kg  m -1   s -1 ).  For  +SLCs,  however,  Saint  Helena  has  the                  

smallest  difference  between  extreme  and  non-extreme  means.  This  dissimilarity  may  stem  from              

the  site’s  small  sample  size  for  extremes  (Table  3.1,  Fig.  3.4a-b)  and  notable  differences  in                 

results  when  considering  snow  level  rises  versus  falls.  For  example,  the  median  and  maximum                

magnitude  for  extreme  snow  level  rises  at  Saint  Helena  are  ~185  m  and  ~1240  m  larger  than  the                    

extreme   fall   median   and   maximum,   respectively   (Fig.   3.4a-b).     
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Through  significance  testing,  we  find  three  radars  each  for  snow  level  rises  and  falls  that                 

have  significant  IVT  exceedance  likelihoods,  i.e.,  a  <  5%  chance  of  resampled  radar-averaged               

IVT  maxima  for  non-extreme  SLCs  exceeding  means  for  extremes  (refer  to  triangles  in  Fig.  3.8).                 

With  the  exception  of  Happy  Camp,  sites  resulting  in  significant  exceedance  likelihoods  differ               

between  positive  and  negative  SLCs;  the  three  northernmost  radars  for  snow  level  rises,  and  a                 

southern   and   nearer-coast   radar   (San   Bernardino   and   Saint   Helena)   for   falls.     

In  summary,  we  find  the  majority  of  individual  radar-averaged  IVT  maximum  values  are               

larger  during  extremes  compared  to  non-extremes  (Fig.  3.8).  We  also  assessed  SLCs  across  all  10                 

radars  to  examine  how  SLC  magnitudes  and  percentages  of  extreme  SLCs  vary  depending  on                

IVT  maxima  bins  (average  of  each  maximum  IVT  value  found  within  ±  six  hours  of  each  SLC                   

for  all  radars;  Fig.  3.9).  The  percentage  of  extreme  snow  level  rises  is  at  least  four  times  larger                    

for  the  largest-magnitude  maximum  IVT  bin  (1000-1100  kg  m -1  s -1 )  than  for  a               

reduced-magnitude  IVT  bin  (between  the  0-100  and  500-600  kg  m -1  s -1   bin),  ~2.9%  compared  to                 

0-0.7%,  respectively  (Fig.  3.9a).  Given  the  available  snow  level  observations,  there  is  a  direct,                

nonlinear  relationship  between  maximum  IVT  magnitude  and  the  likelihood  of  detecting  an              

extreme   +SLC   (Fig.   3.9a).     

For  -SLCs,  relationships  between  IVT  maxima,  mean  SLC  magnitudes,  and  occurrences             

of  extremes  are  not  as  prominent  or  consistent  (Fig.  3.9b).  As  noted  for  +SLCs,  however,  results                  

for  -SLCs  suggest  larger-magnitude  IVT  maxima  were  associated  with  a  larger  percentage  of               

extreme  snow  level  falls  when  compared  to  smaller-magnitude  IVT  maxima.  These  percentages              

are  0.9%  and  2.3%  for  the  largest  and  second-largest  IVT  bins,  respectively,  compared  to                

~0-0.5%   for   smaller-magnitude   IVT   bins   (Fig.   3.9b).     
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Computed  90%  confidence  intervals  suggest,  if  additional  snow  levels  are  considered             

through  resampling  (allowing  for  increased  sample  sizes),  the  resulting  percentages  for  extreme              

SLCs  within  periods  of  large-magnitude  IVT  maxima  (800-1100  kg  m -1  s -1 )  can  fall  within  a                 

fairly  wide  range  of  values  (Fig.  3.9).  Narrower  confidence  intervals  result  for  smaller-               

magnitude  IVT  maxima  (100-800  kg  m -1  s -1 ).  This  result  suggests  that  extreme  SLC  percentages                

associated  with  smaller-magnitude  IVT  maxima  bins  are  more  likely  to  closely  predict              

percentages  resulting  from  a  larger  pool  of  samples  (i.e.,  a  bootstrap-expanded  snow  level               

dataset).    

Similar  to  percentages  of  extreme  SLCs,  the  mean  magnitude  of  +SLCs  and  -SLCs  also                

increases  as  the  magnitude  of  SLC-averaged  IVT  maxima  bins  increases  (Fig.  3.9).  Additionally,               

wider  confidence  intervals  and  smaller  sample  sizes  result  for  larger-magnitude  IVT  maxima              

bins  compared  to  smaller-magnitude  bins.  Further,  mean  SLC  magnitude  increases  more  steeply              

with  increasing  IVT  maxima  for  snow  level  rises  compared  to  falls  (Fig.  3.9).  Maximum                

magnitudes  for  mean  SLCs  (161  m  and  152  m  for  +SLCs  and  -SLCs,  respectively)  exist  within                  

the  two  largest-magnitude  IVT  maxima  bins.  These  peak  mean  SLC  magnitudes  are  ~1.5-2  times                

larger   than   respective   magnitudes   during   the   two   smallest-magnitude   IVT   bins.   

  

3.6.6.   Atmospheric   Rivers   and   Extreme   Snow   Level   Changes   

Because  landfalling  ARs  can  uniquely  alter  near-surface  air  temperatures  and  atmospheric             

conditions,  we  also  consider  relationships  between  SLCs  and  AR  events  using  the  Guan  and                

Waliser  (2015)  detection  method  (Fig.  3.10).  ARs  are  detected  at  radar-matching  grid  points  for                

at  least  60%  of  extreme  positive  and  negative  SLCs,  with  larger  percentages  resulting  at  certain                 
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radars  (minimum  of  ~60%  at  New  Exchequer  Dam  and  Colfax,  respectively).  ARs  occur  during                

80-100%  of  extreme  snow  level  rises  at  five  sites  (Oroville,  Pine  Flat  Dam,  Kernville,  San  Luis                  

Reservoir,  Saint  Helena).  The  same  range  of  larger  percentages  exists  for  extreme  falls  at  only                 

two  sites  (Oroville,  and  Saint  Helena).  Extreme-matched  AR  association  percentages  are  larger              

than  the  narrower  percentage  ranges  for  non-extreme  snow  level  rises  and  falls  (~35-60%  range                

for   each).     

For  only  one  radar,  Colfax,  the  percentage  of  extreme  snow  level  falls  occurring  during  an                 

AR  is  only  slightly  larger  than  the  equivalent  value  for  non-extreme  falls  (~60%  versus  58%).                 

For  all  other  cases,  AR  associations  are  ~15-55  or  ~15-40  percentage  points  larger  for  extreme                 

positive  and  negative  SLCs,  respectively,  than  corresponding  non-extreme  values.  We  compute             

AR  association  median  percentages  for  extreme  rises  and  falls  of  ~77%  and  75%,  respectively,                

and  for  non-extreme  rises  and  falls  of  ~50%  and  47%,  respectively  (means  also  fall  within                 

similar  ranges).  Results  also  suggest  an  overall  tendency  for  both  the  number  of  non-extreme  and                 

extreme  SLCs  to  peak  at  northern  radars  and  remain  smaller  for  southern  sites  (Fig.  3.10).                 

Smaller  counts  that  are  more  similar  to  those  of  southern  Sierra  foothills  or  inland  radars  are  also                   

observed  at  the  two  nearer-coast  sites  (San  Luis  Reservoir  and  Saint  Helena).  Total  SLC  counts                 

for  each  radar  are  two  to  four  orders  of  magnitude  larger  for  non-extreme  changes  compared  to                  

extremes.    

Through  bootstrap  significance  testing  (Section  3.5.2),  we  find  that  the  likelihood  of              

resampled  AR  association  percentages  for  each  radar  for  non-extremes  exceeding  those  of              

extremes  (i.e.,  exceedance  likelihood,  not  shown  here)  fell  within  a  similar  range  of  values  for                 

positive  and  negative  SLCs,  ~35-60%.  A  0%  exceedance  likelihood  for  both  positive  and               
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negative  SLCs,  however,  results  when  requiring  that  SLCs  must  simultaneously  occur  at  all  five                

key  radars  instead  of  only  one.  This  means  there  is  a  stronger  association  between  AR  periods                  

and  extreme  SLCs  (compared  to  non-extremes)  occurring  across  key  radars,  i.e.,  it  is  virtually                

impossible  for  the  AR  association  for  non-extreme  SLCs  occurring  at  all  five  key  radars  to                 

exceed   the   AR   association   for   extreme   SLCs.   

This  study  does  not  suggest  all  AR  time  periods  contain  one  or  more  extreme  SLCs,  but                  

rather  presents  evidence  that  extreme  SLCs  are  more  likely  to  occur  during  ARs  (Fig.  3.10a  and                  

c).  Because,  by  definition,  ARs  are  plumes  of  enhanced  column-integrated  moisture  (IVT              

typically  >  250  kg  m -1  s -1 )  and  results  suggest  larger-magnitude  SLCs  are  associated  with  larger                 

IVT  maxima  (Figs.  3.8  and  3.9),  findings  indicating  a  stronger  association  between  AR  periods                

and   extreme   SLCs   compared   to   non-extreme   SLCs   are   well-supported   (Fig.   3.10).     

Complex  interactions  involving  atmospheric,  ground  surface,  soil,  and  hydrologic           

conditions  are  at  play  during  ARs.  Additional  factors  that  determine  resulting  precipitation  and               

impacts  include  AR  intensity,  speed,  and  orientation  relative  to  topographic  features  (upslope              

water  vapor  flux;  e.g.,  Neiman  et  al.  2002;  Hecht  and  Cordeira  2017).  ARs  affecting  the  western                  

U.S.  are  typically  situated  within  the  warm  sector  of  the  extratropical  cyclone,  behind  a  warm                 

frontal  system  and  ahead  of  a  cold  front  (e.g.,  Zhu  and  Newell  1998;  Ralph  et  al.  2004,  2005,                    

2018).  Intruding  air  masses  can  contribute  to  changes  in  near-surface  temperatures  through  the               

horizontal  advection  of  warm  or  cool  air  and  by  altering  the  stability  of  the  atmosphere.  Further,                  

during  ARs,  evaporation,  cloud  formation,  and  precipitation  processes  can  affect  atmospheric             

temperatures   (thus   snow   levels)   through   latent   heating   or   cooling.     
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In  this  dissertation  study,  however,  we  compute  SLCs  within  one-hour  time  increments              

which  means  the  key  atmospheric  processes  contributing  to  each  extreme  SLC  must  have  an                

exceptionally  rapid  and  large  impact  on  low-level  air  temperatures.  For  future  studies,  we               

suggest  further  explorations  of  localized  thermodynamic  processes,  frontal  systems  and            

embedded  ARs  associated  with  extratropical  cyclones,  as  well  as  larger-scale  ocean-atmosphere             

interactions   which   may   also   influence   extreme   snow   level   rises   and   falls.     
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The  intrastorm  SLC  dataset  used  in  this  chapter  was  provided  by  Osborne  et  al.                

(described  in  Chapter  2).  Brian  Kawzenuk  of  CW3E  computed  IVT  values  using  NASA               

MERRA-2  variables  made  available  by  the  NASA  Goddard  Earth  Sciences  (GES)  Data  and               

Information  Services  Center  (DISC)  at  https://disc.gsfc.nasa.gov/datasets.  The  AR  detection           

code   and   catalogue,   housed   here:   https://ucla.box.com/   ARcatalog,   was   provided   by   Bin   Guan.     

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

80   



  

  

  
3.9.   Figures   and   Tables   

  

  

Figure  3.1.  Schematic  illustration  introducing  the  definition  and  mean  conditions  of  extreme              
snow  level  rises  (in  red)  and  falls  (in  blue).  Results  are  based  on  one-hour  SLCs  at  five  key                    
Sierra  Nevada  radars  during  cool  seasons  of  water  years  2015-2020.  This  interpretation  of  snow               
level  altitude  versus  time  is  centered  at  a  hypothetical  Sierra  foothills  FMCW  radar  site.  The                 
bold  dashed  black  line  separates  the  values  for  extreme  rises  (top  half;  red)  and  falls  (bottom                  
half;  blue).  Included  are  lines  denoting  the  98 th  and  99.5 th  percentile  value  for  all  (extreme  and                  
non-extreme)  positive  or  negative  one-hour  SLCs  computed.  SLC  thresholds  used  to  define              
extreme  one-hour  SLCs  (magnitude  ≥  400  m)  are  shown  as  bold  solid  black  lines.  The  mean                  
starting  and  ending  altitude  for  extreme  +SLCs,  or  average  base  altitude  at  which  extreme  snow                 
level  rises  begin  or  end  at  the  five  key  sites,  is  shown  in  red  to  the  left  above  the  dashed  black                       
line.  The  mean  for  extreme  falls  is  shown  in  blue  beneath  the  dashed  black  line.  All  computed                   
percentiles  and  mean  starting  altitudes  have  been  rounded  to  the  nearest  10.  Text  within  the                 
rightmost  column  indicates  the  total  number  of  extreme  rises  and  falls  at  all  10  radars  (in                  
parentheses),   and   lists   possible   hydrologic   and   societal   impacts   of   extreme   SLCs.   
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Table  3.1.  Details  of  the  10  FMCW  S-band  radars  (provided  by  NOAA  PSL)  and  SLC  statistics                  
resulting  from  this  study.  Bolded  text  in  the  first  two  columns  is  used  for  key  radars  within                   
hydrologically  high-impact  Sierra  Nevada  basins.   Columns  following  the  third  column  provide             
statistics  when  solely  assessing  one-hour  +SLCs  (before  comma)  or  -SLCs  (after  comma).  In  the                
fourth  column  (SLC  98 th  percentiles),  additional  results  considering  all  SLCs  are  included  in               
parentheses.  The  first  and  second  value  in  the  parentheses  result  from  considering  all  SLCs  (both                 
sign  and  magnitude)  and  from  taking  the  absolute  value  of  all  SLCs  (magnitude  only),                
respectively.  Where  indicated,  only  extreme  (ext.;  magnitude  ≥  400  m)  or  exceptional  (exp.;               
magnitude  ≥  800  m)  one-hour  SLCs  are  considered.  All  values  are  rounded  to  the  nearest  whole                  
number.   
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Figure  3.2.  Basemap  of  California  including  10  FMCW  radar  study  sites  (black  circles),  with                
radar  elevations  in  parentheses  (m  MSL).  NASA  MERRA-2  reanalysis  grid  cells  used  in  IVT                
and  AR  analysis  are  also  shown  (white  triangles  outlined  in  black).  Eight  hydrologically-               
important  watersheds  within  the  Sierra  Nevada  are  outlined  in  blue  and  labeled.  Within  these                
basins,  key  radars  are  indicated  by  bold  text.  A  photograph  of  the  vertically-oriented  Colfax                
radar   is   also   featured   (provided   by   NOAA   ESRL).     
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Figure  3.3.   Computed  one-hour  SLC  percentiles,  and  the  threshold  determined  to  define  extreme               
changes,  i.e.,  the  400  m-magnitude  (horizontal  black  dash-dot  line).  (a)  Spatiotemporal  mean              
percentiles  for  snow  level  rises  (red  markers)  and  falls  (blue  markers)  detected  at  the  five  key                  
radars  (diamonds)  and  all  10  radars  (circles)  considered  in  this  study.  (b)  and  (c):  Mean                 
percentiles  for  positive  and  negative  SLC  magnitudes,  respectively,  at  each  of  the  10  FMCW                
radar  sites.  Note  that  only  a  single  maximum  SLC  within  each  one-hour  time  window  is  used  to                   
compute  percentiles.  In  (b)  and  (c),  text  labels  for  key  radars  are  bolded  and  their  corresponding                  
circular  markers  are  color-filled.  Note  that  the  minimum  threshold  for   extreme  was  determined               
by  considering  98 th  percentiles  (bolded  label  along  the  x-axis).  Radar  sites  are  ordered               
latitudinally   from   north   to   south,   with   nearer-coast   sites   (slr   and   sth)   included   at   the   end.   
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Figure  3.4.  Extreme  SLC  counts  (left  y-axes)  and  maximum  and  50 th  percentile  values  (right                
y-axes)  by  radar,  (a)  and  (b),  cool  season,  (c)  and  (d),  and  month,  (e)  and  (f).  Radars  in  (c)  and                      
(d),  from  left  to  right,  are  ordered  from  north  to  south,  with  near-coast  radars  included  in  the                   
rightmost  two  columns  and  key  radars  in  bold  text.  The  month  assigned  to  each  SLC  is                  
determined  by  considering  the  SLC  start  time  in  Pacific  Time  (local  time).  Counts  for  extreme                 
positive  SLCs  are  shown  as  vertical  red  bars  [(a),  (c),  (e)]  while  counts  for  negative  extremes  are                   
shown  as  vertical  blue  bars  [(b),  (d),  (f)].  Maximum  and  median  (i.e.,  50 th  percentile)  values  for                  
extreme  SLCs  are  shown  as  black  lines  with  filled  squares  and  circles,  respectively.  The  five  key                  
Sierra   radars   are   in   bold   text   along   the   x-axis   in   (c)   and   (d).   
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Figure  3.5.  Extreme  SLC  counts  by  radar,  (a)  and  (b),  cool  season,  (c)  and  (d),  and  month,  (e)                    
and  (f).  The  y-axis  is  shown  in  log  form.  Within  each  subplot,  there  are  four  lines  representing                   
the  number  of  extreme  SLCs  exceeding  four  separate  large-magnitude  SLC  thresholds.  Extreme              
snow  level  rise  counts  are  plotted  in  (a),  (c),  (e)  while  counts  for  negative  extremes  are  plotted  in                    
(b),  (d),  (f).  Along  the  x-axis  of  (c)  and  (d),  the  five  key  radars  are  bolded.  Within  the  legend,  the                      
minimum  thresholds  used  to  define   extreme  and   exceptional   one-hour  SLCs  (400  and  800  m,                
respectively)   are   bolded.     
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Figure  3.6.  Relationships  between  extreme  or  substantial  one-hour  +SLCs  occurring  across             
multiple  radars.  For  each  subplot,  the  title  and  black  star  indicate  the  radar  of  interest,  or  the                   
radar  for  which  extreme  +SLCs  are  assessed.  For  all  other  radars,  means  of  the  maximum  +SLC                  
magnitudes  found  within  ±  six  hours  of  each  extreme  +SLC  (that  occurred  at  the  radar  of                  
interest)  are  plotted  as  red-gradient  circles.  Each  circle’s  gradient  shade  is  determined  based  on                
the  mean  of  +SLC  maxima  computed  at  the  radar  location  (10 2  m;  refer  to  the  color  bar),  with                    
one  max  +SLC  considered  per  time-matched  extreme.  Circles  are  outlined  in  bright  red  when  the                 
mean  +SLC  maximum  exists  within  the  extreme  range  (magnitude  ≥  400  m).  The  size  of  each                  
circle  indicates  the  percentage  of  extreme  +SLCs  (at  the  radar  of  interest)  that  are  matched  with  a                   
valid  +SLC  maxima  for  each  radar.  The  total  number  of  extreme  +SLCs  is  included  in                 
parentheses  within  each  subplot  title.  An  “x”  indicates  that  there  are  no  time-matched  +SLCs                
within   the   confined   time   window   surrounding   each   extreme.   Key   radars   are   labeled   in   bold   text.   
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Figure   3.7.    Same   as   Figure   3.6,   but   now   for   extreme   SLC   falls   (magnitudes)   instead   of   rises,   
with   blue   shading   instead   of   red.     
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Figure  3.8.  Bar  plot  of  radar-averaged  (mean)  IVT  maxima  for  one-hour  snow  level  (a)  rises  and                  
(b)  falls.  The  maximum  IVT  within  a  ±  six-hour  window  surrounding  each  SLC  is  considered.                 
Lighter  gray  bars  represent  mean  IVT  maxima  for  non-extreme  (non-Ext.)  SLCs  while  darker               
gray  bars  represent  values  for  extreme  SLCs  (Ext.).  Red  and  blue  triangles  indicate  radars  for                 
which  the  likelihood  of  a  bootstrap  resampled  radar-averaged  IVT  maxima  for  non-extreme              
changes  exceeding  the  IVT  maxima  for  extreme  changes  at  the  same  radar  is  small  (<  5%).  For                   
details  on  computing  the  exceedance  likelihood  through  bootstrapping  (refer  to  Section  3.5.2).              
Key   radar   sites   are   shown   in   boldface   text.   
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Figure  3.9.  Plots  of  both  percent  extreme  one-hour  SLCs  (left  y-axis;  square  markers)  and  mean                 
SLC  magnitude  (right  y-axis;  circle  markers)  for  max  IVT  bins  (x-axis).  (a)  Positive  and  (b)                 
negative  SLCs  are  considered  separately.  The  averaged  IVT  maximum,  which  is  the  10-radar               
mean  of  all  maximum  IVT  values  selected  from  the  ±  six-hour  window  surrounding  each  SLC                 
(one  max  IVT  per  SLC),  is  binned  every  100  kg  m -1  s -1 .  Markers  for  percent  extreme  SLCs  (red                    
and  blue  squares)  and  mean  SLC  magnitude  (gray  circles)  are  sized  based  on  the  number  of                  
extreme  SLCs  ( nExtremes )  and  the  number  of  SLC  samples  ( nSLCs )  within  each  max  IVT  bin,                 
respectively.  The  90%  confidence  intervals  for  percent  extreme  SLCs  (red  and  blue  shaded  areas)                
and  mean  SLC  magnitude  (black  vertical  bars)  are  also  included.  Statistical  confidence  intervals               
are   determined   through   bootstrap   resampling   methods   (refer   to   Section   3.5.2).   
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Figure  3.10.  Relationship  between  SLCs  and  ARs  depending  on  radar.  Counts  ( num. )  for  all                
SLCs  by  radar  (lighter  gray  bars)  and  for  SLCs  occurring  with  an  AR  within  ±  six  hours  (darker                    
gray  bars)  are  plotted  along  the  left  y-axis  for  (a)  extreme  and  (b)  non-extreme  +SLCs,  and  for                   
(c)  extreme  and  (d)  non-extreme  -SLCs.  In  (a)  and  (c),  percentages  ( prct )  of  extreme  (diamonds)                 
and  non-extreme  (circles)  SLCs  occurring  during  AR  periods  are  plotted  along  the  right  y-axis  in                 
(a)  red  and  (c)  blue.  (b)  and  (d)  only  display  non-extreme  SLC  counts  (bars),  as  corresponding                  
AR  association  percentages  are  instead  shown  on  (a)  and  (c),  respectively,  for  easier  comparison.                
Key   radars   are   indicated   in   bold   text.     
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Chapter   4   

Conclusion   and   Future   Work     

  
This  dissertation  developed  a  robust  detection  algorithm  and  methodology  to  identify  and              

describe  extreme  intrastorm  snow  level  changes  (SLCs).  A  number  of  these  rapid,  substantial               

vertical  changes  in  snow  level  were  observed  during  precipitation  events  that  resulted  in  severe                

hydrometeorological  and  societal  impacts.  This  work  defined  an  extreme  SLC  as  a  rise  or  fall  in                  

radar-derived  snow  level  with  a  magnitude  ≥  400  m  which  occurs  within  one  hour.  To  identify                  

and  investigate  extreme  changes  in  snow  level,  this  dissertation  developed  a  definition  and               

methodology  to  isolate  semicontinuous  snow  level  events,  or  periods  lasting  at  least  three  hours                

that  contain  snow  levels  (allowing  for  gaps  up  to  three  hours  long).  Further,  to  minimize  spurious                  

SLC,   this   work   established   and   applied   a   series   of   snow   level   data   quality   filters.     

Ultimately,  this  dissertation  provides  a  catalogue  and  characterization  of  extreme            

intrastorm  SLC,  semicontinuous  snow  level  events,  and  all  maximum  SLC  occurring  during  one               

and  three  hours.  Additionally,  this  work  described  extreme  intrastorm  SLC  in  terms  of               

spatiotemporal  tendencies,  uncovering  variations  in  the  magnitude  and  number  of  extremes  from              

one  radar,  cool  season,  and  month  to  another.  A  total  of  1492  semicontinuous  snow  level  events                  

were  identified  for  cool  seasons  2015-2020  across  10  California  Snow  Level  Radars.  Within               

these  events,  more  than  70,000  one-hour  SLCs  and  nearly  65,000  three-hour  SLCs  were               

computed  and  assessed.  Median  magnitudes  for  SLC  fell  between  90-95  m  for  one-hour  rises                

and  falls  separately.  Results  highlight  the  wide  range  of  magnitudes  that  intrastorm  snow  level                

rises   and   falls   span,   from   less   than   100   m   to   1600   and   2000   m,   respectively.     
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Further,  this  work  identified  and  examined  a  total  of  134  and  113  extreme  snow  level                 

rises  and  falls,  respectively,  which  occurred  during  semicontinuous  events.  The  number  of              

extreme  SLC  occurrences  exhibited  a  latitudinal  and  longitudinal  dependence.  More  specifically,             

radars  in  northern  sites  and  in  western  Sierra  foothills  regions  provided  a  larger  number  of                 

extreme  SLC  compared  to  those  further  south  or  nearer  the  coast.  Additionally,  compared  to  an                 

extreme  snow  level  fall  at  any  of  the  10  radars,  a  substantial  or  extreme  snow  level  rise  at  one                     

radar  was  more  likely  to  also  occur  (within  ±  six  hours)  at  another  radar  positioned  within  a                   

similar  geographic  subregion  (i.e.,  both  nearer  the  coast  or  part  of  the  southern  Sierra  foothills),                 

or   along   the   same   southwest-northeast   transect.     

Both  extreme  snow  level  rises  and  falls  were  more  likely  to  occur  during  anomalously                

wet  years,  and  during  December  through  March,  most  notably  in  December  and  February.  This                

dissertation  identified  similar  patterns  in  peak  counts  by  cool  season,  radar,  and  month  for                

intrastorm  SLCs  and  semicontinuous  snow  level  events.  Results  also  provided  evidence  that              

exceptional  (magnitude  ≥  800  m)  snow  level  rises,  in  addition  to  extremes,  were  considerably                

more   likely   to   occur   during   the   month   of   February   compared   to   any   other   month.     

Results  also  suggest  there  exists  a  strong  relationship  between  extreme  SLC  and  periods               

of  enhanced  integrated  water  vapor  transport  (IVT)  including  during  western  U.S.  landfalling              

atmospheric  rivers.  For  all  radars,  we  found  radar-averaged  IVT  maxima  were  larger  (by  up  to                 

~150  kg  m -1  s -1 )  during  extreme  snow  level  rises  compared  to  non-extreme  rises.  The  same  held                  

true  for  snow  level  falls  (up  to  ~260  kg  m -1  s -1   larger  for  extremes)  for  all  but  two  radars.  The                      

chances  of  detecting  an  extreme  +SLC  were  decreased  by  more  than  a  fourth  with  a                 

smaller-magnitude  averaged  maximum  IVT  (<  600  kg  m -1  s -1 )  compared  to  maximum  IVT               
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magnitudes  5-11  times  larger  (1000-1100  kg -1  m  s -1 ).  Mean  SLC  magnitudes  were  nearly  twice                

and  1.5  times  larger  in  magnitude  for  snow  level  rises  and  falls,  respectively,  during  these                 

larger-magnitude   maximum   IVT   periods   compared   to   during   smaller-magnitude   IVT   periods.     

Key  findings  of  this  dissertation  involving  relationships  between  extreme  SLCs  and             

atmospheric  rivers  also  support  the  direct  relationship  found  between  extreme  SLC  percentages              

and  SLC  magnitudes,  and  maximum  IVT  values.  Depending  on  the  radar,  60-100%  of  extreme                

SLCs  coincided  with  an  atmospheric  river  (within  ±  six  hours),  compared  to  35-60%  of                

non-extremes.  These  findings  suggest  extreme  SLCs  and  larger  mean  SLC  magnitudes  are  more               

likely  during  high-moisture  conditions  which  supply  a  key  ingredient  to  encourage  storm              

formation.  Additionally,  the  detection  algorithm  resulting  from  this  dissertation  work  identified             

extreme  intrastorm  SLCs  during  the  2017  Oroville  Spillway  Emergency,  2019  Valentine’s  Day              

event,  and  other  high-impact  events  that  motivated  these  studies.  This  result  emphasizes  the  key                

role   SLCs   can   have   in   determining   storm   impacts.     

For  future  work,  investigations  of  relationships  between  extreme  SLC  and  frontal             

systems  with  or  without  embedded  atmospheric  rivers  will  be  helpful.  More  specifically,              

considerations  of  diabatic  and  additional  thermodynamic  processes  that  may  alter  atmospheric             

stabilities  or  temperatures  within  snow  level-relevant  altitudes  are  encouraged.  Examples  include             

localized  processes  such  as  wet-bulbing,  horizontal  temperature  advection,  latent  heating  or             

cooling  through  storm  and  precipitation  processes,  and  related  interactions.  These  processes  may              

yield  local  variations  in  atmospheric  stabilities  that  allow  for  even  slight  changes  in  atmospheric                

conditions   (e.g.,   weak   temperature   advection)   to   rapidly   and   dramatically   alter   snow   levels.   
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Additionally  suggested  are  explorations  of  relationships  between  extreme  SLCs  and            

ocean-atmosphere  teleconnections  stemming  from  large-scale  modes  of  climate  variability.           

Investigations  of  relevancies  to  numerical  weather  prediction  and  regional  streamflow            

forecasting  may  also  add  value.  Included  in  this  category  are  considerations  of  localized  diabatic                

processes  which  likely  affect  snow  levels,  but  present  challenges  in  model  microphysics              

parameterization.  Future  work  may  also  benefit  from  the  use  of  reanalysis  data  to  include  a                 

longer  time  series  of  snow  level  estimates  and  computed  SLCs,  or  to  include  non-brightband  rain                 

types  when  identifying  and  examining  precipitation  periods  (e.g.,  to  compare  to  semicontinuous              

snow   level   events   identified   in   this   research).     

Further,  it  is  recommended  that  ensuing  investigations  emphasize  precipitation  during            

extreme  SLCs  of  varying  sign,  magnitude,  change-rate,  and  type  (e.g.,  one  versus  multiple               

extremes  in  a  single  event).  Finally,  this  dissertation  work  observed  certain  extreme  SLC  cases  in                 

connection  with  negative  hydro-societal  impacts.  As  such,  future  studies  should  place  emphasis              

on  comprehensively  assessing  streamflow  responses  and  societal  impacts  of  extreme  SLCs,             

including  damage  to  life  and  infrastructure,  and  disruptions  to  ecosystems.  The  methodologies,              

findings,  and  data  catalogues  provided  through  this  dissertation  support  ongoing  and             

forthcoming  research  involving  rapid  and  substantial  changes  in  snow  level  as  well  as  their                

atmospheric   drivers,   and   impacts   on   hydrology   and   communities.   
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Appendix   A:   Supplemental   Materials   for   Chapter   2   
  

Table   A.1.    Methodology   flow   table   describing   snow   level   data   quality   filters   and   steps   to   
compute   intrastorm   SLCs   (multi-page   table).   
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Table   A.1.    Methodology   flow   table,   Continued.     
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Table   A.1.    Methodology   flow   table,   Continued.     
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Figure   A.1.    Radar   contribution   to   each   snow   level   distribution   (refer   to   Figs.   2.7b-c)   computed   
as   a   percentage   of   the   total   number   of   quality-controlled   observations   for   each   (a)   cool   season   
and   (b)   month.   For   each,   the   median   (black   asterisks),   mean   (white   circles),   standard   deviation   
(white   diamonds),   and   full   range   (gray   bars)   of   radar   contribution   percentages   are   shown.   
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Figure   A.2.    Same   as   Figure   2.10,   but   only   for   +SLCs.     
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Figure   A.3.    Same   as   Figures   2.10   and   A.2,   but   only   for   -SLCs.   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

  

114   



  

  

  

Appendix   B:   Supplemental   Materials   for   Chapter   3   
  
  

  
  

Figure  B.1.   Scatter  plots  of  98 th  percentile  magnitudes  for  all  +SLCs  (left-column  panels;  red                
circles)  and  -SLCs  (right-column;  blue  circles)  by  radar  longitude  (top  row),  latitude  (middle               
row),   and   elevation   in   m   MSL   (bottom   row).   
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Figure   B.2.    Same   as   Figure   B.1,   but   now   considering   50 th    percentile   magnitudes   (medians).   
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