
UC Berkeley
Controls and Information Technology

Title
Extracting Occupants’ Energy-Use Patterns from Wi-Fi Networks in Office Buildings

Permalink
https://escholarship.org/uc/item/4db8s3nr

Journal
Journal of Building Engineering, 26

ISSN
23527102

Authors
Rafsanjani, Hamed Nabizadeh
Ghahramani, Ali

Publication Date
2019-11-01

DOI
10.1016/j.jobe.2019.100864

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4db8s3nr
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


Journal of Building Engineering, Nov. 2019, Vol. 26 1 https://doi.org/10.1016/j.jobe.2019.100864   

https://escholarship.org/uc/item/4db8s3nr  

Extracting Occupants’ Energy-Use Patterns from Wi-Fi Networks in Office 

Buildings 

 

Hamed Nabizadeh Rafsanjania,*, Ali Ghahramanib 

 

a School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of 

Georgia, Athens, GA 30602, USA, E-mail: hr@uga.edu. 

b Center for the Built Environment, University of California-Berkeley, Berkeley, CA 94720, USA, 

Email: ghahramani@berkeley.edu 

 

Abstract 

Wi-Fi networks are currently considered as an efficient and economical tool for occupancy sensing 

in office buildings. Studies particularly indicated that these networks could be utilized to 

understand/predict occupants’ energy-use patterns. Despite the value that investigating this 

possibility could provide for the current research, it has not been well explored how energy-use 

pattern information could be extracted from Wi-Fi system information. In response, this study 

utilizes statistical analyses to investigate the correlation of Wi-Fi flows with miscellaneous electric 

loads (MELs) in office buildings. MELs account for more than one-third of office-building energy 

consumption and are the best representative of occupants’ energy-use patterns. In the pursuit of 

the objective, data from two offices were collected over a 3-month period of time. Results from 

the analyses show that an average 92 percent of MELs energy consumption could be predicted 

through the Wi-Fi flows in a building. This finding thereby demonstrates that occupants’ energy-

use patterns are highly positively correlated to Wi-Fi flows in a building and accordingly, the 

information of Wi-Fi networks could be utilized to understand/interpret these patterns. This 

significantly contributes to the current body of research and can be used to support efforts into 

understanding/enhancing occupants’ energy-use behaviors. In addition, since Wi-Fi networks are 

a major subset of internet of things (IoT) hardware systems and IoT implementation for intelligent 

energy management in buildings significantly depends on occupant energy-use patterns, this 

research helps IoT-based efforts by displaying how these patterns could be extracted from IoT 

infrastructure.  
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1. Introduction 

Office buildings are the main subsector of commercial buildings and are responsible for more than 

15 percent of commercial building energy consumption in the United States [1]. Accordingly, they 

have received increasing attentions in recent years for enhancing energy efficiency. Recent 

research [2–9] shows that energy conservation in office buildings require a detailed understanding 

of occupants' energy-use patterns/behaviors and intervening in these patterns/behaviors 

contributes to the energy savings up to 30 percent in such buildings [10]. In this context, it has 

been indicated that due to the direct control of occupants on miscellaneous electric loads (MELs) 

[11,12], adopting energy conservation behaviors among occupants could greatly reduce these loads 

energy consumption [10,13]; MELs represent more than 35 percent of energy consumption in 

office buildings [14]. Therefore, a correct monitoring of energy-use patterns is critical to achieve 

the ultimate goal of optimizing building energy consumption.   

Monitoring energy-use patterns has received considerable attention over the last decade 

and various approaches have been developed to estimate occupants’ energy-use profiles [8,9,15–

19]. In general, these approaches are divided to two categories: (1) Intrusive approaches where a 

plug-load meter installed at an occupant’s workstation in an office, monitors her personal 

appliances [20,21], and (2) non-intrusive approaches where the data provided by circuit-level 

meters is utilized to estimate occupant-specific energy-use profile [13,15]. While the information 

resulted from the current intrusive/non-intrusive methods is useful in understanding energy-use 

patterns, due to economic issues in implementing intrusive methods as well as the high degree of 

uncertainties for non-intrusive data, the industry hesitates to implement these methods in a real 

world. 

On the other hand, several studies [6,13,22–24] have suggested that the advent of advanced 

Wi-Fi networks/facilities could help capturing occupants’ energy-use information based on circuit-

level energy-load data (i.e. aggregate load data) in office buildings. In fact, since the information 

of Wi-Fi systems can serve as a building occupancy indicator [22], there is a possibility of using 
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such information to monitor energy-use patterns in a non-intrusive manner. However, linking Wi-

Fi data with aggregate load data to extract such information of occupants has not been well 

addressed. In particular, a gap still remains in the terms of linking MELs data (as the best 

representative of energy-use patterns) with Wi-Fi data to understand how closely MELs 

consumption is correlated with Wi-Fi flows (the number of Wi-Fi connections) in office buildings.   

To address this gap, we used data collected in two buildings to examine the correlation 

between Wi-Fi information and MELs usage through a time window approach. To validate the 

results and investigate the effect of bias factors, we developed and tested three hypotheses: (1) the 

consistency of the correlation of Wi-Fi and MELs flows over time, (2) the consistency of this 

correlation across weekdays, and (3) the consistency of the correlation across AM and PM hours. 

The findings of this study demonstrate how Wi-Fi system information could be utilized for 

understanding MELs consumption and accordingly explaining occupancy-related energy-

consuming actions. This provides helpful information for building energy management teams and 

policy makers in energy saving programs. Considering Wi-Fi networks are a subset of IoT 

hardware systems [25–28], this study also contributes to research in developing IoT-based energy 

management programs in buildings.  

 

2. Related Work 

2.1. Monitoring occupant energy-use pattern 

Energy-use patterns are generally defined as the presence of occupants in a building and their 

energy-related actions such as temperature setpoint changing [7,29–33] and light switching [34,35] 

which influence the building’s energy consumption. In office buildings, the most detailed level of 

energy-use data for individual occupants is currently provided through individual plug-level 

meters installed at occupants’ workstations. However, this data sensing approach requires high 

capital investments [15,20,36] and fails to provide information about occupants’ usage of shared 

resources such as shared office appliances.  

To address these limitations, researchers has recently developed non-intrusive monitoring 

approaches [13,37–39] to track individual occupants’ energy consumption. These approaches 

particularly add occupancy information into conventional load disaggregation methods (e.g., [40]) 

to deliver individual occupants’ energy-use information. However, such research is mainly limited 

to residential buildings and typically delivers uncertain data (compared to plug-level meters). 
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Therefore, a gap still remains in terms of economically monitoring occupant energy-use pattern in 

office buildings.  

 

2.2. MELs energy consumption 

In a building, there are typically four types of electric loads: HVAC systems, lighting, water 

heating, and MELs [11,12,41]. In fact, MELs includes the plug/hardwired electric loads consumed 

by appliances/systems outside of building’s core functions [42]. MELs are currently responsible 

for approximately 30 and 36 percent of total building energy consumption in the residential and 

commercial buildings, respectively [43]. In addition, the energy demand of MELs currently has an 

increasing rate of 13 percent in the residential sector and 27 percent in the commercial sector [44]. 

Therefore, researchers are currently looking for strategies/policies to reduce the MELs energy 

consumption.  

In particular, among the four types of electric loads in office buildings, occupants have 

more direct control over MELs [11,12] through using office appliances such as personal computers 

laptops, desk lamps, scanners, and printers. Therefore, understanding occupant energy-use actions 

over MELs could provide opportunities in reducing these loads energy consumption at a minimal 

cost in office buildings [13].   

 

2.3. Wi-Fi-based occupancy sensing in office buildings 

Currently, Wi-Fi networks with full coverage are widely installed in office buildings and play an 

important role in communication between a building’s facility management team and its residents 

[22,45]. Accordingly, Wi-Fi based tracking is currently considered as the predominant and widely 

implemented occupancy sensing method within office buildings [46–54]. In particular, since office 

building occupants have Wi-Fi enabled devices (e.g. smartphones) [55,56] and typically carry 

these devices [57], Wi-Fi-based sensing is more accurate and reliable compared to the other 

occupancy sensing approach (e.g., motion or temperature sensors) [58,59]. This method is able to 

practically determine occupancy presence with an 83 percent accuracy [23]. In addition, this 

approach uses Media Access Control addresses (MAC addresses) and/or Universally Unique 

Identifier of Wi-Fi-enabled devices to differentiate between occupants in a building. The high 
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degree of occupancy resolution as well as non-intrusiveness are also considered as the advantages 

of Wi-Fi based occupancy sensing [60].  

In terms of studying occupant energy-use pattern through Wi-Fi systems, there is a limited 

number of studies. Martani et al. [22] showed the number of Wi-Fi connections (as a building 

occupancy indicator) could be correlated with energy flows in commercial buildings. Chen and 

Ahn [6] presented that Wi-Fi connection events are viable indicators for occupancy-related load 

increases in office buildings. Rafsanjani et al. [13] utilized Wi-Fi connections/disconnections to 

extract energy-use information from aggregate load data in office buildings. Despite these 

interesting efforts, there is still much research to be done to achieve the full potential of Wi-Fi 

networks in understanding energy-use patterns. 

 

2.4. Problem statement 

Martani et al. [22] could not successfully build a strong correlation between occupancy flows and 

building energy-use because they studied overall energy load of large multi-story educational 

buildings. In such buildings, the overall energy load mainly depends to the energy consumption of 

HVAC systems which does not necessarily reflect occupant energy-use actions. Chen and Ahn [6] 

also could not successfully correlate Wi-Fi disconnections to occupants’ energy-load reductions. 

In addition, they used low-resolution trend data which could distort to build a strong correlation 

between energy and occupancy flows. Rafsanjani et al. [13] focused on smartphones’ Wi-Fi signals 

and ignored the effect of other Wi-Fi enable devices (e.g., laptops) in their study. Add to these 

limitations, the current body of research has not well studied the correlation of Wi-Fi flows and 

MELs energy consumption.  

To address this gap, we collected MELs load data as well as Wi-Fi network information of 

two offices (from their existing metering devices and wireless networks) over a 3-month period; 

two-to-four month durations are typically considered as the logical long-term length in studies 

related to energy-use patterns/behaviors in office buildings [2].  Then, the data of each office were 

statistically analyzed to assess the aforementioned correlation. Finally, we tested through three 

hypotheses whether the correlation could be affected over time or/and by a specific duration. The 

hypotheses are as follows: there is a consistency of the correlation of Wi-Fi and MELs flows (1) 

over time, (2) across weekdays, and (3) across AM and PM hours. The following sections provide 

detailed descriptions of the methodology and findings.  
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3. Methodology 

3.1. Data collection  

3.1.1. Case Study 1  

The first case study was an office space located on the second floor of a multi-story commercial 

building. The office had a gross floor area of 4172 square feet and includes one main space with 

fifteen workstations and one director room. Fifteen identical desktop computers were used at the 

workstations. In addition, one desktop computer, two printers, one coffee maker, one microwave, 

and one refrigerator were utilized during the data collection step. The lighting system of the office 

was automatic using occupancy sensor which was set to turn the lights off after five minutes of 

infrared inactivity. The total number of electrical outlets of the office was 102.  

The office had one main electric panel with several circuits fed all outlets and appliances. 

One electric meter installed in the panel monitored power consumption of the office with 15-

second interval resolution. It is noteworthy that the office water heating system was a gas heater 

and the commercial building utilized a central HVAC system controlled over by building facility 

management (i.e., the meter data did not include the HVAC data). In addition, in the office, there 

was one ceiling-mounted wireless access point which passively recorded (at one-second interval 

resolution) Wi-Fi packets transmitted form Wi-Fi enabled devices including smartphones, tablets, 

and laptops; the access point provided full coverage for the office.   

The data collection was conducted from June 6, 2018 to September 1, 2018 and during this 

time, fifteen employees and one director worked in the office on weekdays; the office working 

hours were 7:00 a.m.-6:30 p.m.  Due to the company duties, the employees typically left the office 

a couple of times each day. In fact, this office was purposefully selected since (due to the irregular 

occupancy flows) it provided a unique opportunity to understand the correlation of Wi-Fi flows 

(resulted from occupancy flows) and energy consumption.    

To collect data, the internal memory of the office electric meter was able to store the data 

for two weeks and then this data was manually transferred to a database created to store Case Study 

1’s data. In addition, the building facility management always recorded the access points’ 

information of the entire buildings and shared the data of the office with us. This data was also 

stored in the database.  

https://doi.org/10.1016/j.jobe.2019.100864
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Before the data collection, the employees and director were asked to answer a survey about 

their appliance usage and the condition of their wireless devices. The survey results suggested that 

employees had control over the shared appliances and routinely used those every day. The results 

also showed that employees usually connected their wireless devices to the office's access point 

which allowed the access point to record their information. In addition, the survey results showed 

that the desktop computers were set to go to sleep mode after five minutes of inactivity. 

 

3.1.2. Case Study 2  

The second case study was an office space located in a one-story commercial building; this office 

was a second location of the company which occupied Case Study 1. The entire office was 3090 

square feet and contained twelve cubicles. Each cubicle included one desktop computer which was 

not identical to the other desktop computers. In addition, there were one printer, one coffee maker, 

one microwave, and one refrigerator within the office, and the lighting system was manual 

switching. The total number of electrical outlets of the office was 74.  

There was one electric meter inside the main panel of the office that tracked office power 

consumption with one-min interval resolution. In this office, the building facility management 

controlled over water heating and HVAC systems and accordingly the meter data did not include 

these appliances data. In addition, there was one ceiling-mounted access point with a full coverage 

within the office and reordered the information of Wi-Fi enabled devices at one-second interval 

resolution.   

Over June 18, 2018 to September 29, 2018, we collected data from the office. Similar to 

Case Study 1, the energy-load data stored inside the internal memory of the meter was manually 

transferred a database created for Case Study 2 and the building facility management shared Wi-

Fi data. In addition, in office, eleven employees used the office on working days and (due to their 

duties) typically left the office a few of times per day; the working hours were similar to Case 

Study 1.  

We also conducted a survey (similar to the Case Study 1’s survey) and the employees 

mentioned they usually left their devices’ Wi-Fi on (which let the devices connected to the access 

point) and they had control over all office appliances and routinely used those during working 

days. They also mentioned that their desktop computers were set to go to sleep modes after three-

to-five-min inactivity (varies depending to the computers). In addition, there was one manual 

https://doi.org/10.1016/j.jobe.2019.100864
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switch for the lighting systems and the employees indicated that the first person who entered to 

the office each day typically turn the ceiling lights on and the last person who left the office was 

responsible to turn the lights off.  

Table 1 summarizes the information of the case studies. 

  

Table 1. Summary of the case studies information 

Information Case Study 1 Case Study 2 

Floor area (square feet) 4172  3090  

Number of Occupants 16 11 

Number of Outlets 102 74 

Resolution of Power Meter Data (seconds) 15 60 

Resolution of Wi-Fi data (seconds) 1 1 

Duration of Data Collection (weeks) 13 15 

 

3.2. Data analysis 

3.2.1. Pre-processing and assumptions 

After collecting the data, all corrupted data which might lead to bias in analysis were identified 

and filtered. Then, based on the office working hours (7:00 a.m.-6:30 p.m.), data between 6:30 

a.m.-7:00 p.m. of working days were selected for data analysis step; the 30-min extended durations 

at the start/end of working hours were empirically estimated.    

As mentioned, the meters of the offices recorded all loads except HVAC and water heating 

systems. Given that, the collected aggregate load data included MELs and lighting systems. Since 

there is a very low possibility that on/off state of lighting systems is changed during working hours 

in offices (lights are usually in-use during office hours), we assumed that all changes in load data 

were resulted from MELs.  

In addition, as mentioned, the workstation desktop computers were identical in Case Study 

1 and the occupants had a same control over shared appliances. Accordingly, we considered an 

equal weight for occupants’ energy consumption in Case Study 1. In Case Study 2, even if the 

https://doi.org/10.1016/j.jobe.2019.100864
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workstation desktop computers were not similar, the differences among their energy consumption 

were up to 11 percent; a plug-load meter was used to find the consumption of each device before 

the experiment. We neglected these differences and assumed that the occupants similarly 

contributed to the energy consumption in Case Study 2.  

In order to handle temporary occupants who visited the case studies very few times during 

data collection, we empirically considered a same unique MAC address that appeared less than 10 

times in the Wi-Fi data as a temporary occupant and its connections were ignored during data 

analysis process. In addition, since temporary occupant typically create Wi-Fi connections but they 

may not create energy-load changes [6], no adjustment in energy-load data was made during data 

analysis.  

 

3.2.2. Correlation analysis  

To correlate Wi-Fi flows (the number of Wi-Fi connections) with MELs consumption, the data of 

each day of each case study were divided into six-min time windows. The six-min duration was 

empirically estimated based on the resolution of energy data as well as the conditions/states of 

appliances (e.g., the power sleep mode of desktop computers); this duration reasonably covered a 

delay between a Wi-Fi connection/disconnection and its respective load changes in our case 

studies. Then, the average number of Wi-Fi connections in each time window was found and 

considered as the number of Wi-Fi connections of the time window. Accordingly, the average 

energy consumption of a time window was considered as its representative energy consumption. 

It is noteworthy that there were 7492 and 8731 time windows for Case Study 1 and 2, respectively. 

In addition, due to the resolution of energy-load data (15 and 60 seconds for Case Study 1 and 2, 

respectively), there were typically 24 and 6 energy-use data points in a time window of Case Study 

1 and 2, respectively. 

Then, the correlation of Wi-Fi flows and MELs usage for each case study was investigated. 

In the correlation analysis, the number of Wi-Fi connections was considered as an independent 

variable while the MELs energy consumption was a dependent variable. R-programming language 

was utilized for the correlation analysis. 
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3.2.3. Hypothesis tests  

In the correlation analysis, there were three potential factors which might cause biases in the data 

analysis. (1) Long-term data as a one dataset: a bias might appear in data analysis when all data of 

a case study were checked at once. (2) Weekdays: a weekday might have its own correlation 

pattern which could significantly be different from other weekdays. (3) AM vs PM: there is a 

possibility that occupancy flows and energy-use patterns in the morning might be different with 

those in the afternoon/evening.  

To explore these possibilities, we divided the data of each case study to several groups in 

three distinct ways. (1) Four observation groups: In our databases, there were 61 and 73 days for 

Case Study 1 and 2, respectively. Given that, we divided the data of each case study into four 

observation groups to have enough numbers of groups as well as enough numbers of observations 

(i.e., days) in each group (to check the possible bias in data analysis) [61]. Accordingly, Case 

Study 1’s database was divided into three groups of 15 days and one group of 16 days, and Case 

Study 2’s database was divided into three groups of 18 days and one group of 19 days. (2) Five 

days groups; each of which included data for a weekday. (3) Two groups; one group included AM 

data and the other one included PM data.  

Then, for each group the correlation of Wi-Fi and MELs flows was estimated and compared 

to its peer groups. Given that, three hypotheses were developed to statistically investigate whether 

the bias factors misled the correlation analysis. The hypotheses follow:  

 

Hypothesis 1. There is a consistency of the correlation of Wi-Fi and MELs flows across the four 

observation groups. 

- H0 = There is no statistically significant difference among the correlation of Wi-

Fi and MELs flows across the four observation groups. 

- HA = There is a statistically significant difference among the correlation of Wi-Fi 

and MELs flows across the four observation groups. 

 

Hypothesis 2. There is a consistency of the correlation of Wi-Fi and MELs flows across weekdays. 

- H0 = There is no statistically significant difference among the correlation of Wi-

Fi and MELs flows across the weekdays. 

https://doi.org/10.1016/j.jobe.2019.100864
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- HA = There is a statistically significant difference among the correlation of Wi-Fi 

and MELs flows across the weekdays. 

 

Hypothesis 3. There is a consistency of the correlation of Wi-Fi and MELs flows across AM and 

PM groups. 

- H0 = There is no statistically significant difference between the correlation of Wi-

Fi and MELs flows in the morning with that in the afternoon/evening. 

- HA = There is a statistically significant difference between the correlation of Wi-

Fi and MELs flows in the morning with that in the afternoon/evening. 

 

 

Due to having more than two groups of data for Hypothesis 1 and 2, we utilized a one-way 

ANOVA and a Kruskal-Wallis test to test these hypotheses. To test Hypothesis 3 (which included 

two groups), a two sample t-test as well as a Mann-Whitney U test were constructed. For all the 

tests, a rejection threshold of 0.05 (α=0.05) was selected. Similar to the correlation analysis, R-

programming language was utilized for the tests. 

 

4. Results 

Figure 1 and 2 present data collected from July 9, 2018 to July 20, 2018 for Case Study 1 and 2, 

respectively; since the data during working hours were only utilized for the data analysis, a base 

line with the value of zero was considered for non-working hours. Figure 1 and 2, as a sample of 

data, visually presents the trends in Wi-Fi and energy profiles of the case studies. The variances in 

Wi-Fi connections resulted from the occupancy flows; Case Study 2 displays more variance 

compared to Case Study 1. In addition, these figures show no significant difference for the range 

(minimum and maximum values) of data across different days for each case study.  
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Figure 1.  Time series of Wi-Fi flow and energy consumption of Case Study 1 from July 9, 2018 

to July 20, 2018: (a) Wi-Fi flow, (b) energy consumption 

 

Figure 2.  Time series of Wi-Fi flow and energy consumption of Case Study 2 from July 9, 2018 

to July 20, 2018: (a) Wi-Fi flow, (b) energy consumption 
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Figure 3 shows the distribution of Wi-Fi connections and energy consumption of the data 

collected for each case study. The minimum energy value of the case studies (810 and 600 watts 

for Case Study 1 and 2, respectively) presents the level of energy consumed by the ceiling lights. 

As mentioned, due to assuming no changes in the state of ceiling lights during working hours, 

these values were considered as the base value to present MELs energy distribution. Figure 3 

particularly displays that energy distribution in an office building approximately follows the 

distribution of Wi-Fi flow which could indicate Wi-Fi connections are able to clearly predict MELs 

energy consumption. 

Figure 3.  Distribution of Wi-Fi flow vs. energy consumption: (a) Case Study 1,  

(b) Case Study 2 

 

Table 2 presents the results of the correlation analysis. The results show that 90.5 and 93.2 

percent of variations in MELs consumption were predicted through Wi-Fi flow in Case Study 1 

and 2, respectively; the high level of significance (p-value < 2.2e-16) for the case studies indicates 

that the correlations are statistically significant.  
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Table 2. Results of the correlation analysis 

Case 

Study 

Degrees of 

Freedom 

Residual 

Standard Error 
R2 F P-Value 

1 7490 3.849 0.905 7.136e+04 < 2.2e-16 

2 8729 2.515 0.932 1.204e+05 < 2.2e-16 

Note: Wi-Fi flow: independent variable, MELs consumption: dependent variable 

 

Table 3, 4 and 5 list the results of the statistical tests for Hypothesis 1, 2, and 3, respectively. 

Based on the level of significance (p-value > 0.05) resulted from each test, we failed to reject the 

null hypotheses of 1, 2, and 3 for both case studies which means that the impact of each factor on 

the correlation on different time scales are not statistically significant. This demonstrates the 

consistency of the correlation between Wi-Fi flows and MELs usage over time and also indicates 

that this correlation is not generally affected by weekdays or AM/PM. In addition, it particularly 

implies that temporal changes in occupants’ usage patterns on a daily, weekly, or monthly scale 

do not impact the correlation of the Wi-Fi flows with energy consumption. 

  

Table 3 Results of Hypothesis 1 

Case Study 
one-way ANOVA Test Kruskal-Wallis Test 

F P-Value H P-Value 

1 0.368 0.776 1.016 0.797 

2 0.502 0.680 0.921 0.820 

Note: rejection threshold = 0.05 

  

Table 4. Results of Hypothesis 2 

Case Study 
one-way ANOVA Test Kruskal-Wallis Test 

F P-Value H P-Value 

1 0.920 0.451 0.051 1 

2 0.811 0.518 0.102 0.998 

Note: rejection threshold = 0.05 
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Table 5. Results of Hypothesis 3 

Case Study 
Two Sample t-Test Mann-Whitney U Test 

T P-Value W P-Value 

1 0.292 0.771 7216233 0.983 

2 0.360 0.718 9920500 1 

Note: rejection threshold = 0.05 

 

5. Discussion 

This research investigated the correlation of Wi-Fi flows (number of Wi-Fi connections) and 

MELs flows (MELs consumption) in office buildings through the data collected form two offices. 

Office buildings with the gross floor area of up to 5000 square feet are the most common type of 

offices [62,63] and  most ideal cases for studying occupants’ energy-use behaviors since these 

spaces offer occupants more control over their built environments [64]. Accordingly, the selected 

case studies were logical representatives of office buildings. In addition, the timeframe of this 

study covered thirteen and fifteen weeks for Case Study 1 and 2, respectively which is in 

accordance with the eight-to-sixteen weeks duration typically considered for studying energy-use 

patterns/behaviors [2]. Moreover, while the average number of employees per company in office 

buildings in the United States is eleven-twelve [65], the number of occupants during our study was 

sixteen and eleven for Case Study 1 and 2, respectively. In addition, occupants of the case studies 

left the offices a few times each day (occupancy flows were very changeable) which particularly 

helped us to investigate the research objectives in more accurate and logical way. 

The correlation values which were resulted from analyzing 16,223 independent time 

windows, indicated the number of Wi-Fi connections could be utilized to understand/predict MELs 

usage; the results of hypotheses indicated that the correlation of Wi-Fi and MELs flows is not 

generally affected over time, by a specific day, and/or a specific duration of a day. Since occupants 

directly control over MELs [11,12] and the changes of these loads are predominantly resulted from 

occupants’ energy-use behaviors, Wi-Fi flows could particularly be utilized to explain and predict 

occupants’ energy-consuming actions in buildings. This could significantly contribute to the 

research working on occupancy-related energy-use patterns/behaviors. Figure 4 displays the 

contribution of this research. In addition, this figure particularly indicates that prior research has 
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predominantly focused on the dynamic relationship between Wi-Fi systems and occupancy 

sensing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Research contribution to the current literature  

 

 

In addition, Martani et al. [22] considered all the loads of buildings to estimate the 

correlation and showed that Wi-Fi connections could be able to account for up to 69 percent of 

building-wide energy load variations. However, since the building-wide variations were resulted 

from all loads of the buildings (which do not necessarily result from occupancy-related actions), 

this correlation might not be able to explain occupants’ energy-use patterns. Compared to Martani 

et al. research [22], our study considered MELs usage variations to directly investigate occupant 

energy-use actions. In addition, Chen and Ahn [6] and Rafsanjani et al [13] research indicated the 

possibility of a high correlation; however, their studies were limited to beginning/end of daily 

energy-consuming behaviors. On the other hand, we investigated this objective for the entire 

working hours when occupants are present in a building. 

While existing Wi-Fi network in an office building usually records the information of Wi-

Fi enabled devices presented within the buildings; building facility management teams rarely use 
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this information to enhance building energy consumption. However, the findings of our study 

motivate such teams to utilize this ready-to-use information to understand/forecast MELs 

consumption as well as occupancy-related energy-use patterns at a minimal cost. Low numbers of 

Wi-Fi connections in a building during high-level of MELs usage could indicate that building’ 

occupants follow non-energy-saving behaviors. Accordingly, facility management teams could 

distribute feedback to prompt energy-saving behaviors. 

In addition, this research particularly indicates that existing Wi-Fi infrastructure of 

buildings can be utilized to contribute to the current efforts in smart buildings. The information of 

this infrastructure could identify the number of occupants in real-time and accordingly building 

appliances and systems would be adjusted to a level to provide occupant comfort. Additionally, 

since this information directly predicts MELs demands, it could contribute to current effort in 

smart grids by predicting MELs energy-use trend. Due to the need for no new sensor, the industry 

would like to execute such ideas at full scale.  

Currently, as we move towards IoT, this term has a remarkable growth in research and 

industry. Since IoT is implemented through a network of interconnected things [66], Wi-Fi 

networks are predominantly considered as the main part of IoT infrastructure [25–28] and widely 

used for developing IoT-based intelligent systems especially in residential and commercial 

buildings. In particular, existing advanced Wi-Fi networks in office buildings make these buildings 

as a prime candidate for IoT implementation with different applications. As an application, an IoT-

based system could be developed to assist building facility management teams to prompt energy 

saving behaviors, a practice to yield long-term energy savings in built environments [2]. We 

believe that our research provides insight into developing such intelligent systems to 

monitor/enhance occupants’ energy-use patterns/behaviors.  

 

6. Limitations 

This research yields five limitations. (1) We acknowledge that the findings of this study could have 

been benefited from a larger sample size of office buildings. In particular, each of the studied 

offices included one Wi-Fi access point, but larger offices feature several access points within their 

physical spaces. Accordingly, while a device is present in an office, it could have multiple 

connections/disconnections to the office access points which does not allow to properly correlate 
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an access point’s information flow with energy-usage flow. Thereby, such connection 

multiplicities should be identified and differentiated in data analysis.   

(2) The reported correlations and statistical results highly relied on the regular usage of 

Wi-Fi-enabled devices. Even if the survey results suggested that the case studies’ occupants always 

left their devices’ Wi-Fi on, they may have temporarily turned Wi-Fi off or changed their devices’ 

settings during few days of the data collection process, which might distort the data. We believe 

this issue could lead to decreasing correlation coefficients and detection accuracies in such studies. 

Identifying such anomalies and understanding their effects on the correlations could be an 

interesting avenue for future research. 

(3) Due to the interference of the Wi-Fi networks in the studied buildings (overlapping of 

Wi-Fi access points), while the studied occupants presented in the office spaces, their devices 

might have connected to the access points of the other offices. Accordingly, the device connections 

might have been wrongly recorded or missed. Wi-Fi network interferences (which are not bounded 

by physical spaces) generally help to locate Wi-Fi-enabled devices more accurately [6,54]; 

however, in our study, we were focusing on the physical spaces and access points of the offices 

and therefore such interferences might have leaded to inaccurate recording of the Wi-Fi packets 

sent by the devices. It is worth mentioning that due to having no ground-truth for Wi-Fi networks 

and occupancy data, we made no attempt to report the Wi-Fi accuracy.  

(4) The need of using MAC addresses could be considered a privacy challenge for this 

study. Currently, different masking techniques such as MAC randomization [67] are utilized to 

protect users from being identified in Wi-Fi networks. Accordingly, in the envisioned application 

of the method, the MAC addresses of Wi-Fi enabled devices will be masked with unidentifiable 

codes in a back-end system which prevents facility managers to track the owners of MAC 

addresses. We believe that this privacy-protecting technique can minimize the privacy issues 

associated with the implementation of this research. 

(5) While the recorded data, state of appliances, and case studies’ conditions suggested a 

six-min duration for the time windows, the findings of this study could have benefited from 

studying various size of time windows. When the size of time windows is changed, it affects the 

number of energy-load changes and Wi-Fi connections of the time windows and thereby, the 

average of the energy-usage and connections of time windows could be different. In addition, this 

size change also affects the total numbers of time windows which could alter the results of 
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correlation analysis and hypothesis tests (due to changing the degree of freedom). Future research 

is recommended to seek this effect for more robust conclusions.  

 

7. Conclusion  

This research examined the correlation between the Wi-Fi and MELs flows during working hours 

in two office buildings. The results demonstrated 90.5 and 93.2 percent of MELs’ consumption 

were predicted through Wi-Fi flows at Office 1 and 2, respectively. We particularly found that this 

correlation is independent of time; no temporal bias to time of day, day of week, and even longer 

periods. Since occupants are mainly responsible for MELs usage, Wi-Fi flows could thereby be 

utilized to understand occupants’ energy-use patterns. This adds benefits to the current application 

of existing Wi-Fi networks of office buildings and they can be used to predict energy-use 

patterns/behaviors as well as MELs consumption. Accordingly, Wi-Fi network information could 

contribute to advance smart buildings/grids. 

 Two main research lines are identified for our future studies. While in this research we 

hypothesized three factors which could affect the correlation, further investigation of such factors 

will be investigated. In addition, as the main line, we will develop an IoT-based tool which could 

act as a smart personal energy assistant. This tool will be installed as an app on occupants’ 

smartphones to monitor individual occupants’ energy-use actions and prompt energy-saving 

behaviors. In addition, this app will understand their preferred environmental conditions and 

personalize the environment around an occupant which particularly allows to drive better behavior 

performance.  
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