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Abstract

An Auditory Memory System for Individual Vocal Recognition in the Zebra Finch

by

Kevin Yu

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Frederic Theunissen, Chair

The zebra finch is a social songbird that lives in large groups and produces vocal communi-
cation calls to facilitate social interactions. A subset of these calls can be used for individual
recognition, via distinct acoustic features that are stereotyped within a bird but individu-
alized across birds. Given their large natural group sizes and the ethological importance
of individual recognition, one might expect that zebra finches would have the capacity to
recognize the calls of a large number of conspecifics. In this thesis, I describe a set of neu-
roethological experiments to test the memory of zebra finches for individual conspecifics by
their vocalizations. We hypothesized that the caudal nidopallium (NCM), a higher-order
auditory region of the avian brain analogous to mammalian auditory association cortex, is
involved in the learning and retention of these auditory memories. Using an operant task in
which birds were trained to associate the calls of some individuals with food reward, zebra
finches were found to have a large capacity for recognizing individuals by their calls and song,
and that those associations could be learned with just a few training examples and persist for
at least a month without reinforcement. Furthermore, lesions to NCM eliminated previously
formed associations but did not prevent re-learning or learning of novel stimuli, in contrast
with lesions to vocal pre-motor pathways which had no effect on the recognition ability of the
birds. Finally, using the spiking activity from single neurons across the cortical-like auditory
regions of the brain, we found that familiar and task-relevant vocalizations elicited more
reliable neural responses, with higher information capacity, than in response to unfamiliar
and less behaviorally relevant calls.
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Chapter 1

Introduction

Many animals, including humans and songbirds, share the natural ability to recognize
the other members of one’s species by their vocalizations. This general ability is known
as individual vocal recognition (Carlson et al., 2020; Tibbetts & Dale, 2007). The neural
basis for this skill is an auditory memory system capable of learning and recognizing the
acoustic features that distinguish one individual from the next. Individual recognition can
be accomplished through vocal communication calls that convey identifying attributes of the
caller, such as sex (Blumstein & Munos, 2005; D’Amelio, Klumb, et al., 2017), age (Akçay
et al., 2016; Blumstein & Munos, 2005), or size (Davies & Halliday, 1978; Favaro et al.,
2017), or the specific identity of the vocalizer via distinct acoustic features (Blumstein &
Munos, 2005; Favaro et al., 2017; Hare, 1998).

The skill of individual vocal recognition is particularly important in social animals, for
whom the vocal recognition of a conspecific may be necessary for maintaining dominance
hierarchies, familial relationships, and mate preferences (Vignal et al., 2008). Maintain-
ing these social relationships require these memories to persist over weeks, months, and
years. Long term vocal recognition memory has been observed in migratory birds (Godard,
1991), ravens (Boeckle & Bugnyar, 2012), mammals (Insley, 2000; McComb et al., 2000),
and humans (Aglieri et al., 2017). In the brain, hierarchical circuits map natural sounds,
decomposed into acoustic feature spaces described by modulations in time and frequency
(Theunissen et al., 2000; Woolley et al., 2005) to more abstract categories (Russ et al.,
2008) and their associated meaning. To facilitate learning and storage of auditory memories,
these circuits are shaped by the sensory and cognitive experience of the animal. Presented
here is a set of experiments in a model songbird, the zebra finch, aimed at linking auditory
memory behavior to the animal’s neurobiology. In these experiments, we demonstrate the
zebra finch’s impressive memory capacity for conspecific vocalizations and identify neural
correlates of its auditory memory system.
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The songbird as a model for the neural basis of individual vocal
recognition

The songbird has been the subject of scientific study for several decades due to its amazing
vocal learning capabilities. As a result, the behavior and neurophysiology of the songbird has
been well described and songbird species have become excellent models for understanding
the neural basis of vocal communication, from the perspective of both motor production
(Hahnloser et al., 2002; Nottebohm, 2005) and perception (Gentner, 2004; Woolley et al.,
2005).

The zebra finch is a social species of songbird known to live in colonies of over 100 indi-
viduals (Zann, 1996), travel and forage with smaller groups of other individuals (McCowan
et al., 2015), and form mating pairs that can last for life (Adkins-Regan, 2002). Recognition
of others is particularly important in these social networks; a fledgling may need to recog-
nize its parents (Jouventin et al., 1999), parents need to recognize their offspring and mate,
and unpaired birds may need to recognize other local singles in their area. Zebra finches
communicate with a diverse repertoire of at least 12 distinct call types each with specific
behavioral contexts in which they are used (Zann, 1996). Among these types, the song and
distance call (DC) are particularly interesting in the context of individual vocal recognition.
These calls are stereotyped, individualized (Elie & Theunissen, 2018), and socially affiliative;
although in some species song may be used in territorial aggression and competition over
mates (Krebs et al., 1978; McGregor et al., 1993). Considering the ethological importance of
recognition and the group sizes found in nature, zebra finches may be capable of recognizing
a large number of individuals by their song and DC. However, the memory capacity of zebra
finches for conspecific vocalizers is hitherto unknown. Quantifying this memory capacity is
the subject of the experiments described in Chapter 2.

Higher-order auditory regions of the avian pallium involved in
auditory memory

Where in the avian brain are these auditory memories for conspecific vocalizers? In hu-
mans, specific regions of the auditory association cortex have been shown to be involved in
speaker recognition tasks and may represent voice identity (Andics et al., 2010). Analogous
regions in the avian brain are thought to be the interconnected regions of the caudal nidopal-
lium (NCM) and the caudal mesopallium (CM) (Bolhuis & Gahr, 2006; Bolhuis et al., 2010).
NCM has been suggested as a potential repository for learned vocalizations, with evidence
from immediate early gene expression studies (Bolhuis et al., 2001), lesions (Canopoli et al.,
2014; Gobes & Bolhuis, 2007), and electrophysiology (Chew et al., 1996; Phan et al., 2006;
Thompson & Gentner, 2010; Yanagihara & Yazaki-Sugiyama, 2016).

Another possibility is that long-term memory for auditory stimuli are associated with
representations in vocal motor systems for production of those sounds (Massaro & Chen,
2008; Schulze et al., 2012; Williams & Nottebohm, 1985). This “motor theory of speech
perception” is supported by the discovery of auditory, tutor song selective neurons in the
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anterior forebrain pathway (AFP) necessary for song learning (Doupe & Konishi, 1991;
Mooney, 2014). These motor neuron responsive to auditory stimuli have been hypothesized
to be part of a circuit that compares incoming sounds to the stored auditory memory of
the tutor template. Are motor circuits required for the storage and retrieval of auditory
memories for conspecific vocalizations? In Chapter 3, we use neurotoxic lesions to test the
role of NCM and HVC in birds’ ability to recall previously formed auditory memories and
their ability to acquire new ones.

Neural encoding of learned vocalizations

A central question in auditory neuroscience is how auditory objects are represented in
neural circuits. Much is known about the hierarchical organization of the auditory system
(Meliza et al., 2010; Russ et al., 2008; Woolley et al., 2005), in which lower brain regions
such as Field L (analogous to primary auditory cortex in mammals) encode acoustic features
such as the spectro-temporal modulations found in natural sounds (Theunissen et al., 2000;
Woolley et al., 2005), while neurons in higher-order regions such as NCM and CM are better
represented by complex receptive fields (Kaardal et al., 2017) and feature sparser responses
(Meliza & Margoliash, 2012). Circuits in these higher-order brain regions have been shown to
undergo neuroplastity during learning, with increased selectivity to learned auditory objects
or object categories during both song learning (Thompson & Gentner, 2010; Yanagihara &
Yazaki-Sugiyama, 2016, 2019) and in operant tasks (Gentner & Margoliash, 2003; Meliza &
Margoliash, 2012). However, selectivity for specific auditory objects is only one way that
circuits might change to better encode information about learned stimuli. At the single
neuron level, it has been shown that the firing rates of single units can be used to extract
more information about learned song motifs than novel motifs (Jeanne et al., 2011), and
at the population level, modulations in noise correlation structure have been observed in
response to learned versus untrained stimuli (Jeanne et al., 2013; Theilman et al., 2021). In
Chapter 4, we quantify the information in the spiking activity of single units and ensembles,
recorded across primary and secondary auditory brain regions of the anesthetized zebra finch,
in response to playbacks of both unfamiliar and learned vocalizations.

Outline

Chapter 2, entitled High-capacity auditory memory for vocal communication in a social
songbird, was previously published as (Yu et al., 2020) and included here with minor mod-
ifications. It describes the results of an experiment to test the memory capacity of zebra
finches for several individual vocalizers. The experimental design expands on an operant
task previously used in the lab to test auditory categorization (Elie & Theunissen, 2018)
by gradually increasing the number of vocalizers, allowing us to test for a large number of
individual vocalizers. We analyzed if birds could respond correctly to each individual vo-
calizer presented and how quickly they learned to do so, and found that they could learn
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vocalizers quickly, retain those memories for at least a month, and recognize a large number
of individuals in this way, perhaps more than the 54 vocalizers we could test.

Chapter 3, entitled Lesions to NCM impair individual vocal recognition memory in the
zebra finch, reports the effect of bilateral neurotoxic lesions to two brain regions, NCM and
HVC, on learned auditory memories of conspecific vocalizers. We found that lesions to NCM
destroy learned auditory associations, those associations can quickly be re-learned, and that
memory capacity may be decreased. In contrast, lesions to HVC have little to no effect on
either stored auditory associations for individual vocalizers or the ability to learn to recognize
new vocalizers. This provides further evidence for NCM as a site of auditory memory for
conspecific vocalizations.

Chapter 4, entitled Neural encoding of learned communication calls in the anesthetized
zebra finch presents an analysis of single neuron responses across auditory cortical-like brain
areas in the anesthetized zebra finch. This section includes a description of the custom
data processing pipeline we developed for extracellular, multi-electrode array recordings,
including a detailed description of a semi-automated spike sorting algorithm used to identify
and isolate neurons with non-stationary spike shapes in long recordings. Neurons identified
this way were used to quantify the information content of the neural response. We found
that the information needed to identify individual vocalizers was distributed across neurons
in all auditory areas, and that past experience with familiar and task-relevant vocalizations
(learned in the memory capacity experiments of Chapter 2) influenced the reliability of the
neural response and thus the information capacity of the neurons.
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Chapter 2

High-capacity auditory memory for
vocal communication in a social
songbird

Yu, Kevin, Wood, William E., & Theunissen, Frederic

2.1 Abstract

Effective vocal communication often requires the listener to recognize the identity of
a vocalizer, and this recognition is dependent on the listener’s ability to form auditory
memories. We tested the memory capacity of a social songbird, the zebra finch, for vocalizer
identities using conditioning experiments and found that male and female zebra finches can
remember a large number of vocalizers (mean, 42) based solely on the individual signatures
found in their songs and distance calls. These memories were formed within a few trials,
were generalized to previously unheard renditions, and were maintained for up to a month.
A fast and high-capacity auditory memory for vocalizer identity has not been demonstrated
previously in any nonhuman animals and is an important component of vocal communication
in social species.

2.2 Introduction

In species with large vocal repertoires and sophisticated social behaviors, learning to in-
terpret vocal signals requires a large capacity memory system. For example, a high-capacity
memory for defining sounds of words is needed to process human language semantics (Brys-
baert et al., 2016). Similarly, humans can recognize a large number of individuals based on
the sound of their voices as well as linguistic idiosyncrasies (Aglieri et al., 2017; Perrachione
et al., 2011) and must therefore have formed memories for those unique acoustic features
(Belin et al., 2004). Young humans form these auditory memories rapidly and retain them
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for long periods in a process called fast mapping (Markson & Bloom, 1997)—the formation
of these auditory memories with few exposures and their maintenance for long periods of
time. While the complexity of animal vocal communication pales in comparison with human
spoken language (Hauser et al., 2002), auditory memory also plays an important role in
the vocal communication of nonhuman social species. In particular, songbirds demonstrate
aptitude in several communicative tasks that require auditory memories for vocal signals
(Elie & Theunissen, 2020). For example, young male songbirds imitate the song of a tutor
that they have stored as an auditory memory (Sakata et al., 2020); some birds can learn the
alarm calls from other species to avoid dangerous situations (Potvin et al., 2018) and can
even mimic alarm calls of mammals for deceit purposes (Flower et al., 2014); and territorial
birds learn to recognize their neighbors based on their voice, enabling them to identify and
react to unfamiliar intruders at the boundaries of their local territory (Kroodsma, 1976).

Individual recognition based on voice also plays a central role for creating and maintaining
bonds in social songbird species such as the zebra finch. In the wild, zebra finches are
a gregarious and nomadic species, living and traveling in multifamily colonies sometimes
comprising more than 100 individuals (Zann, 1996). Zebra finches also mate for life, making
strong pair bonds with their partners that are maintained through vocal communication
(Elie et al., 2010; Zann, 1996). Laboratory studies have shown that their songs have a
strong individual signature and can be used to recognize one’s mate (Miller, 1979a), father
(Miller, 1979b), and peers (Honarmand et al., 2015). Individual recognition by vocalizations
is not restricted to song; distance calls (DCs) (Vignal et al., 2004), begging calls (Ligout et
al., 2016), and soft contact calls (D’Amelio, Klumb, et al., 2017) are also used for individual
recognition in juveniles and adults. In previous work, we have shown that all the call
types of the zebra finch repertoire are individualized by distinct individual acoustical cues
for each call type and that zebra finches could use those cues to discriminate between two
vocalizers, irrespective of the call type (Elie & Theunissen, 2018). Given that zebra finches
live in large social groups and that vocal communication plays a key role in the creation and
maintenance of their social networks, we hypothesized that they might have a high-capacity
auditory memory for the acoustic individual signatures found in their calls. We were also
interested in investigating whether zebra finches are capable of fast mapping. To answer
these questions, we tested the ability of zebra finches to learn to discriminate the identities
of unseen vocalizers based on either their song or DC; the song and the DC are the two
loud call types in the zebra finch repertoire with strong individual signatures that birds use
to recognize and localize each other often without visual contact (Elie & Theunissen, 2016,
2018).

2.3 Results

We trained male and female zebra finches to recognize several conspecifics by their songs
(n = 19) or DC (n = 19) using a modified go–no go task with food reward (Figure 2.1A).
To test the birds on a large number of vocalizers, we used a 5-day learning ladder procedure
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Figure 2.1: Learning ladder for assessing auditory memory capacity. (A) The
structure of a single trial. Subjects initiate a trial by pecking a key. A randomly chosen 6-s
stimulus file is then played (20% of trials are rewarded, and 80% of trials are nonrewarded).
If the stimulus is interrupted by another peck on the same key before the 6-s playback is
completed, then a new trial is immediately initiated. If the stimulus is not interrupted and
the stimulus is in the rewarded group, then the subject receives 12 s of seed access from
a mechanical food hopper. (B) The learning ladder procedure gradually introduces new
rewarded and nonrewarded vocalizers to the stimulus set each day. Ten stimuli are used
for each vocalizer and vocalization type. Each stimulus is, in turn, composed of random
sequences of renditions of DCs or songs sampled from our repertoire library for that vocalizer
(see also fig. S1 for full-size exemplar spectrograms). (C) The lines show the probability
of stimulus interruption of individual vocalizers by a single subject in 20 trial bins (blue,
rewarded; red, nonrewarded). Tick marks above the plot indicate interrupted trials, and
those below the plot indicate noninterrupted trials. (D) Average odds ratio (OR) for song
and DC assessed after training, on days 4 and 5, for all subjects (n = 19). Birds perform
better on songs (OR, 15.5; 95% CI, 9.9 to 24.4) than on DC (OR, 8.4; 95% CI, 5.6 to 12.9)
(p = 0.004, log-transformed paired t test). Error bars show 2 SEM.
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in which subjects began by discriminating one rewarded vocalizer from one nonrewarded
vocalizer, while additional vocalizers were added to the test on subsequent days (Figure
2.1, B and C). Zebra finches individualize each of their call types, and, although their song
and DCs are fairly idiosyncratic and stereotyped, there is also acoustical variability across
renditions produced by a single vocalizer (Elie & Theunissen, 2018). Thus, each vocalizer
was represented by multiple renditions of its song or DC (Figure 2.1B).

The performance of each subject was evaluated on days 4 and 5, after they had had at
least 1 day of training on each vocalizer. Overall, task performance was measured using
an odds ratio (OR): the odds of interruption for nonrewarded trials (correct responses)
divided by the odds of interruption on rewarded trials (incorrect responses). An OR of 1
indicates behavior at chance level, and greater than 1 indicates that the subject successfully
distinguished rewarded from nonrewarded trials. Nearly all subjects had ORs significantly
greater than 1, indicating that they were successful at this task, both when tested on songs
(19 of 19 subjects) and on DCs (18 of 19 subjects) (p < 0.0026, one-sided Fisher’s exact test,
Bonferroni corrected; Figure 2.1D). There was no difference between males and females on
this task as assessed with a mixed effects model, with subject identity as the random effect
and call type (DC or song) and subject sex as the fixed effects (Figure 2.7A); the effect of
subject sex on the overall log OR was not significant [β = −0.163; 95% confidence interval
(CI), −1.012 to 0.687; p = 0.707], and neither was the interaction between subject sex and
call type (β = −0.449; 95% CI, −1.315 to 0.416; p = 0.309).

To see whether this performance was driven by memorization of all vocalizers in the
test or just recognition of a subset of them, we looked at each subject’s performance in
detail by evaluating their behavior per individual vocalizer (Figure 2.2). We defined the
per-vocalizer OR as the ratio of the odds of interrupting a specific vocalizer by the odds
of interrupting a random stimulus sampled equally from rewarded and nonrewarded trials.
Using this definition, a vocalizer is memorized if the OR is significantly greater than 1 for
nonrewarded vocalizers or less than 1 for rewarded vocalizers. We found that 2 of the 19
subjects were able to memorize the entire set of 16 vocalizers from their songs (12 of 19
learned at least half) and 4 of the 19 subjects were able to memorize the entire set of 12
vocalizers from DCs (15 of 19 learned at least half).

To assess the limits of the auditory memory capacity in these songbirds, for four subjects,
we intermixed and doubled the size of the two stimulus sets (song and DCs) in the same
session. This resulted in a set of DCs from 24 vocalizers and songs from 32 vocalizers for
a total of 56 distinct vocalizers. On the first week after completing the two initial learning
ladders and testing (song and DC), subjects were trained on the larger song repertoire (16v16)
and DC repertoire (12v12) for 3 days each, thus doubling the total number of vocalizers in 6
days. The following week, subjects were given a single day testing session in which previously
learned songs and DCs were intermixed for the first time, with only two vocalizers for each
rewarding condition and call type. Under this mixed call type condition, subjects continued
to self-initiate trials and interrupt the stimuli at rates seen in previous weeks. We then
increased the stimulus set to all vocalizers learned thus far (32 vocalizers on song and 24
vocalizers on DC) and evaluated performance on the next 4 days. The results from these four
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Figure 2.2: Memory capacity for vocalizer identity over all subjects. Discrimination
performance per vocalizer and subject (n = 19) for songs (A), DCs (B), and both songs
and DCs (n = 4) (C). The mixed condition (C) was performed by four subjects who were
additionally tested with a total of 56 vocalizers: 24 vocalizers of DCs and 32 vocalizers of
songs. For each subject (white/gray plot background), the dots indicate the OR of inter-
rupting a given vocalizer. Red dots correspond to nonrewarded vocalizers (NoRe) and blue
dots to rewarded vocalizers (Re). The number of vocalizers that are discriminated signifi-
cantly above chance (p < 0.05, controlling for false discovery rate using Benjamin-Hochberg
procedure) are indicated above each subject’s plot (maximum number of vocalizers are 12
for DCs, 16 for songs, and 56 for the mixed condition). Note that the order of the dots
on the x axis is random and that the rewarded and nonrewarded vocalizers are not paired.
Error bars correspond to the one-sided 95% CI (Fisher’s exact test). OR of 1 corresponds
to chance. Error bars for nonrewarded stimuli are generally smaller because they are played
more frequently.
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Figure 2.3: Speed of memory acquisition. (A and B) Learning rates are analyzed by
plotting the behavioral response (probability of interruption) as a function of informative
trials (see Results section) for rewarded (blue) and nonrewarded vocalizers (red). (C and D)
The separation between the red and blue curves in A and B quantifies the learning and is
shown in C and D as an OR of odds for nonrewarded divided by the odds of rewarded as in
Fig. 2.1D [(C), song; and (D), DC]. Shaded regions show 2 SEM. Asterisks indicate region
where OR was significantly greater than 0 (n = 19, p < 0.05, false discovery correction).

subjects demonstrated that 40, 52, 30, and 47 (mean, 42) vocalizers could be distinguished
successfully.

To assess how quickly stimuli were learned, we generated learning curves showing the
interruption probability versus the number of informative trials seen, where an “informative
trial” is a trial in which the subject did not interrupt the stimulus, giving the bird an
opportunity to learn the reward association (interrupted trials do not give the subject new
information about whether the stimulus is rewarded or not) (Figure 2.5). For both songs and
DCs, the probability of interrupting rewarded and nonrewarded stimuli is indistinguishable
when no informative trials have been seen (intercepts in Figure 2.3, A and B), as one would
expect. However, the interruption probabilities for rewarded and nonrewarded vocalizers
begin to diverge after only a few informative trials, demonstrating very rapid learning of
vocalizers’ identity (Figure 2.3, A and B). There is a significant effect of call type on the
rate of this divergence (β = 0.155; 95% CI, 0.086 to 0.222; p < 0.001, mixed effects model),
suggesting that songs may be learned more quickly and with fewer examples (Figure 2.3, C
and D, and Figure 2.7B). One can also notice that the default “baseline” interruption rates
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Figure 2.4: Generalization and long-term memory. (A and B) The plots show the
average probability of interruption across all subjects (n = 19) for each of the 10 rendi-
tions the first time they are heard by the subject; the renditions are ordered on the x axis
according to the presentation order. Error bars are 2 SEM. (C and D) Interruption rates
for nonrewarded and rewarded vocalizers in two subjects (S1 and S2 of Figure 2.2) during
three epochs for songs (left) and DCs (right). The three epochs shown are Näıve (initial
exposure to the stimuli), Learned (last two sessions of initial learning ladders), and Month
later (1 month after Learned without any reinforcement). The interruption rates to a par-
ticular vocalizer are restricted to trials before the second informative trial of that vocalizer
during the relevant epoch. Asterisks indicate epochs during which nonrewarded stimuli were
interrupted at a significantly higher rate than rewarded stimuli (p < 0.05, one-sided t test).
Error bars indicate 2 SEM. n.s., not significant.

differed between songs and DCs when no informative trials have been seen [song baseline,
0.08±0.01 (2 SEM); DC baseline, 0.16±0.02; mixed effect models, p < 0.001]. The difference
in the baseline interruption rates or in the learning rates between male and female subjects
was not significant (mixed effects models, p = 0.563).

As mentioned above, to encourage subjects to use the individual signature and not a
particular acoustical feature present in a given rendition, a vocalizer is represented by ran-
domly chosen call renditions. If subjects are identifying the vocalizer and not memorizing
the individual recordings, then they should be able to correctly predict to which reward
contingency a novel rendition belongs when they have already heard and learned some of the
renditions of a vocalizer. Birds are at chance levels for the first few renditions they hear but
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begin to correctly categorize previously unheard renditions after exposure to other rendi-
tions from the same vocalizer (Figure 2.4, A and B); post hoc analysis of the order in which
renditions were first presented to subjects reveals that the interruption probability of unseen
nonrewarded stimuli increases with the rendition presentation order (R2

adj,song = 0.90 and
R2

adj,DC = 0.81). In the same vein, the interruption probability of rewarded stimuli decreases
with the rendition presentation order for song (R2

adj,song = 0.71), but the same decrease was
not apparent for DC (R2

adj,DC = 0.00). The slopes are steeper for the nonrewarded renditions
because nonrewarded stimuli are being presented four times more frequently than rewarded
stimuli; thus, they are also learned faster. Thus, birds are learning to identify the identity
of the vocalizers and do not just memorize the individual sound files.

To test whether these memories are stable over longer times and without any additional
reinforcement, we retested two subjects on the largest stimulus set (32 songs and 24 DCs
intermixed) after a month during which they were not exposed to any of the vocalizations
from the test. While their overall performance slightly decreased from optimal performance
during the initial test as measured by the change in log OR [0.12± 0.18 (2 SEM) in subject
1 and −0.73± 0.23 in subject 2], the overall ORs and OR per vocalizer were still well above
chance (p < 0.001), indicating that reward associations were retained after a month. To
validate that these responses were remembered and not rapidly relearned, we examined the
interruption rates for the first informative trials after 1 month and compared them to the
rates found for the first informative trials during initial learning (Figure 2.4, C and D). These
results indicate that these memories for rewarded and nonrewarded vocalizers are stable and
can be recalled a month after learning. This is particularly remarkable given that these
memories were acquired rapidly and were only reinforced for a short time.

2.4 Discussion

Zebra finches have exceptional auditory memory abilities for the individual signature
found in their communication calls. We found that they are able to quickly learn to recognize
the identity of up to 40 vocalizers and to maintain these auditory memories for a long period
of time. The recognition of vocalizers is a nontrivial task since it requires the extraction of the
individual signature present in each call while ignoring the variability across call renditions.
Thus, these are not auditory memories for specific sounds but for the information bearing
invariant features constituting the individual signature of the vocalizer (Elie & Theunissen,
2018). We showed that zebra finches can learn and memorize this individual signature with
a very small number of exposures (less than 5), can simultaneously remember a large number
of these vocalizers, and are able to use these memories to classify call renditions that they
have not heard before (generalization).

The memory capacity in zebra finches for recognizing individuals from their vocalizations
is large and might exceed the limits that could be tested with our experimental design. We
found that 16 vocalizers based on song and 12 vocalizers based on DC could be regularly
discriminated by our subjects. When subjects were tested on as many vocalizers as could
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be practically tested in a single session, birds were able to discriminate up to 52 distinct
vocalizers. The capacity of this auditory memory is similar to other forms of avian memory
that have been well quantified, such as spatial memories in food-caching birds (Balda &
Kamil, 1992) or visual memories in pigeons (Cook et al., 2005). Auditory memories for
object labels have also been shown in parrots (Pepperberg, 1981) and in some mammals
(Herman et al., 1984), including the exceptional example of Rico, the border collie, who
could correctly fetch 200 distinct objects on vocal commands (Kaminski et al., 2004). We
also found that birds make an efficient use of informative trials during their very rapid
learning, as they are able to memorize the individual signature of a vocalizer after only a few
examples (less than 10). This fast mapping for communicative vocal signals has only been
shown in humans and dogs and is thought to be a key cognitive ability for language learning
(Kaminski et al., 2004; Markson & Bloom, 1997). Last, this memory was long lasting; birds
could still remember which vocalizers were assigned to reward versus nonrewarded groups
after 1 month without any reinforcement. While previous experiments had shown that song
exposure in zebra finches improves auditory recognition, suggestive of a capacity for long-
term auditory memories for conspecific vocalizations (Braaten et al., 2007), this is the first
study that quantifies the auditory memory capacity in a songbird for individual signature
and demonstrates its remarkable performance. Just as in humans, we postulate that birds
use an abstract neural representation of these auditory objects to facilitate both working
memory manipulation and long-term memory storage (Joseph et al., 2015).

Since most songbirds are also vocal imitators, one might postulate that the memory
mechanisms needed for the song imitation behavior overlap with ones that are needed for
individual recognition. The auditory memories could be stored as learned motor programs
(Williams & Nottebohm, 1985), and the high-level abstract representation could then be a
motor code. There are many problems with such a motor theory of perception in songbirds:
Individual recognition based on vocalizations is present for calls that are not learned (Elie
& Theunissen, 2018); it is equally similar in male and female zebra finches, while only male
zebra finches learn to sing; and male zebra finches learn a single song, but, as we have shown,
they can remember the individual signature of songs and calls from a much larger number
of vocalizers. Therefore, although the motor song nuclei might play a role, we and others
(Gobes & Bolhuis, 2007) postulate that a separate neural mechanism representing high-level
auditory features is involved in the formation and use of memories for all auditory objects
that are relevant for vocal communication. The second order avian auditory pallial areas
NCM (nidopallium caudal medial) and CM (caudal mesopallium) are good candidates for
the locus of such an engram. NCM neurons show neural correlates of memories for the
tutor song before vocal learning (Yanagihara & Yazaki-Sugiyama, 2016), and CM neurons
show neural correlates for categories of natural sounds learned in operant conditioning tasks
(Gentner & Margoliash, 2003; Jeanne et al., 2011). Experiments that have exploited the
stimulus-specific habituation observed in NCM neurons also suggest that this auditory area
can exhibit a large-capacity memory for conspecific song (Chew et al., 1996). The identity
and the connectivity of neural networks involved for storing and recalling these auditory
objects as well as the nature of the neural representation for vocalizations, while an active
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area of research (Elie & Theunissen, 2015, 2019; Jeanne et al., 2013; Kozlov & Gentner,
2016; Moore & Woolley, 2019), remain relatively unexplored in the birdsong field (Elie &
Theunissen, 2020). Just as the neural basis of the song imitation behavior has led to many
insights into mechanisms of vocal production and learning (Sakata et al., 2020), we predict
that future work on the neural basis of these auditory memories and their rapid formation
will reveal core knowledge of the neural circuits and computations needed for recognizing
learned meaning in vocal sounds, including in human speech.

The fast-learning and exceptional memory for auditory objects in songbirds is a behav-
ioral trait that is essential for vocal communication in social species. This skill can be added
to their well-studied vocal imitation behavior, their ability to learn grammar like rules (Cate
& ten Cate, 2018; Gentner et al., 2006), and their capacity to combine call types to generate
complex meaning (Suzuki et al., 2018). Individual recognition plays an important role for be-
haviors in social groups and, in particular, for fission-fusion societies such as those observed
in some bird species, including the zebra finch (Silk et al., 2014), and in mammals such as in
the African elephant (McComb et al., 2000). We suggest that these auditory memories for
vocalizers are not only important for mate and kin recognition but also to facilitate group
dynamics. Studying vocal communication in gregarious bird species should therefore include
the role of higher cognitive functions, such as memory, and take into account the species
social dynamics. These vocal and perceptual performances can, in turn, be added to the list
of cognitive faculties that have been found in social birds, such as episodic spatial memory
(Balda & Kamil, 1992; Clayton & Dickinson, 1999), social cognition (Emery et al., 2004;
Vignal et al., 2004), number sense (Nieder, 2017), or puzzle solving (Heinrich & Bugnyar,
2005), and that rival the cognitive faculties found in social primates (Emery, 2006; Emery
& Clayton, 2004).

2.5 Materials and Methods

Ethics statement

All animal procedures were approved by the Animal Care and Use Committee of the
University of California, Berkeley (AUP-2016-09-9157) and were in accordance with the Na-
tional Institutes of Health guidelines regarding the care and use of animals for experimental
procedures.

Testing apparatus and software

The operant conditioning apparatus and our go–no go paradigm had been described in
detail in our previous publication (Elie & Theunissen, 2018). Briefly, our operant chamber is
composed of one pecking key and one food hopper (Med Associates). Subjects initiate trials
by pecking the key, which triggers a 6-s auditory stimulus to be played. Sound levels are
calibrated to match natural levels of intensity for each call type when vocalizations are used
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as stimuli. After 6 s, a food reward is either given (if the stimulus was rewarded) or nothing
happens (if the stimulus was nonrewarded). Alternatively, as the sound is played, the bird
can terminate a trial and start a new one by pecking the same key. In this case, the initial trial
will not result in food whether the stimulus is rewarded or not, and a new trial is immediately
initiated. To maximize the rate at which reward is received in a session, the subjects learn
to skip stimuli that are recognized as nonrewarded to avoid the full 6-s waiting period and
move on to the next trial. Subjects are food restricted with access to water but limited seed
in between test sessions to maintain motivation. Subjects were weighed before and after
every test session, and seed consumed in a daily session was measured and supplemented at
the end of day so that the birds maintain their weight within 10% of their starting weight.
Daily handling of subjects did not seem to affect the birds’ motivation or ability to do the
task once they became comfortable with the experiment chamber. Once trained, birds are
able to get all of their daily food allowance during the testing period.

The birds learn to use the apparatus during a shaping session that lasts approximately 1
week. During the shaping session, the bird first learns to associate pecking of the key with
sounds and food reward and then learn to interrupt nonrewarded sounds. The initial shaping
task involves the discrimination of two clearly distinct song stimuli. We have also performed
control experiments, clearly showing that apparatus is not providing any extraneous clues
that the birds could use to distinguish rewarded from nonrewarded trials (Elie & Theunissen,
2018).

The presentation of the sound stimuli, the detection of key pecks, and the operation
of the food hopper were controlled by a Python program. We used a custom branch of
the Python-based pyOperant software (https://github.com/theunissenlab/pyoperant),
originally developed by J. Kiggins and M. Thielk in T. Gentner’s laboratory at University
of California San Diego (https://github.com/gentnerlab/pyoperant).

Auditory discrimination experiments

Subjects were tasked with discriminating between a set of rewarded and nonrewarded
individuals based on the playback of their vocalizations. By design, 20% of trials are rewarded
after the end of the stimulus playback, while 80% of trials are not rewarded so that subjects
learn to peck for a new trial (interrupting the current trial) when they recognize a stimulus
as nonrewarded.

For each vocalizer, we generated 10 unique stimuli that could be played on each trial so
that specific extraneous acoustic features of a particular stimulus file that did not encode
the vocalizer identity (e.g., length, intensity, and background noise) could not be used as a
reward cue. Each song stimulus file consisted of three randomly selected song bouts of two
motifs, each from the same vocalizer, separated by randomly chosen intervals such that the
duration of the stimulus file would be exactly 6 s. Most introductory notes (repeated short
vocalizations preceding a song bout with sometimes long internote intervals) were removed
to avoid great variability in stimulus duration. Similarly, each DC stimulus file consisted
of six randomly selected DC renditions from one vocalizer, separated by randomly chosen
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intervals. The amplitudes of the audio files were normalized within stimuli of the same type,
i.e., songs or DCs.

On the first day of the test, a subject is tasked with discriminating between one rewarded
vocalizer and one nonrewarded vocalizer. Over this single session of about 8 hours, subjects
learned to interrupt nonrewarded trials and to wait on rewarded trials. On subsequent days,
additional vocalizers were added to the test (Figure 2.1): After the first day of 1 rewarded
vocalizer versus 1 nonrewarded vocalizer (1v1), we added stimuli from three more rewarded
and three more nonrewarded vocalizers, resulting in four rewarded versus four nonrewarded
(4v4), again with 10 unique renditions per vocalizer. After the day of 4v4, the birds moved
on to 8v8 (for songs) or 6v6 (for DCs). Because subjects do as few as 200 trials per day
and we only play rewarded trials 20% of the time, a single vocalizer may be heard as few
as five times per day on average once we reach 8v8. We expected that this would make
learning at that stage of the ladder difficult. To aid in learning and allow the birds more
opportunities to learn every stimulus, on the first day of 8v8 or 6v6, we played stimuli from
the new vocalizers twice as frequently as stimuli from vocalizers previously seen on the 1v1
and 4v4 days. On the last 2 days of 6v6/8v8, the probability was set again to be equal
across all vocalizers of the same reward outcome. We used these last 2 days to evaluate task
performance. In a few cases, the 1v1 or 4v4 day was repeated (4 of 19 during 1v1 days, 4 of
19 during 4v4 days) because the subject failed to trigger a sufficiently large number of trials.

Vocalizers were randomly assigned to the rewarded or nonrewarded set. Moreover, we
used a balanced procedure where the rewarded and nonrewarded sets were switched for
each half of the birds in the experiment. Last, for DCs, male and female vocalizers were
also randomly assigned to rewarded and nonrewarded sets. The zebra finch DC is sexually
dimorphic (Elie & Theunissen, 2016), and by mixing male and female vocalizers in each
set, we forced our subjects to use the individual signature and not the acoustic features
characteristic of the sex of the vocalizer.

Subjects

Twenty adult domestic zebra finches (10 males and 10 females) were used as subjects
in this study. One female subject was excluded from the song memory test analysis due to
errors in stimulus selection. A different female subject was excluded from the DC memory
test analysis for the same reason, resulting in n = 19 for both the song and DC analysis.
Subjects were housed in a colony room (usually 10 to 30 individuals in a large flight cage)
at the University of California (UC) Berkeley. Of these 20 subjects, 4 subjects were chosen
(randomly) to participate in a second session with the combined and larger stimulus set, and
2 of those 4 birds were chosen in the third session to assess long-term memory.

Song vocalization recordings were from 32 male zebra finches from the Theunissen Lab
at UC Berkeley, the Perkel laboratory at the University of Washington, and the Leblois
laboratory, Bordeaux (France) Neurocampus. DC vocalizations came from 24 zebra finches
(12 male and 12 female), all from our colony at UC Berkeley. Vocalizations used as stimuli
were recorded as part of previous experiments in the laboratory, and the vocalizers were
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Interruptions Waits
Nonrewarded a c
Rewarded b d

Table 2.1: Contingency matrix used to estimate the OR of interruption for nonrewarded vs
rewarded vocalizer.

Interruptions Waits
Vocalizer a c
Random b d

Table 2.2: Contingency matrix used to estimate the OR of interruption for a particular
vocalizer relative to a random vocalizer.

unfamiliar to the subjects in the present study. The 12 male DCs were produced by a
subset of the males also used in the song stimulus set—however, reward associations were
randomized (7 switched, 5 same).

Statistical analyses

Performance on the task overall was quantified as an OR obtained by dividing the odds of
interrupting a nonrewarded stimulus by the odds of interrupting a rewarded stimulus. The
odds of interrupting a stimulus in a given reward group was calculated by taking all trials
of that reward category and computing the probability of interruption. For Fig. 1C, this
was computed on the trials from the last 2 days of tests (6v6 DCs and 8v8 songs) when all
vocalizers were played at equal rates. Performance on songs was compared to performance
on DCs with a paired t test over subjects. All ORs and 95% CIs were computed using the
Fisher’s exact test using the contingency matrix shown in Table 2.1.

The odds of interruption of the nonrewarded stimulus is ONoRe =
a
c
; similarly, the odds

of interruption of the rewarded stimuli is ORe = b
d
. The OR is OR = ad

bc
. The Fisher’s

exact test calculates the probability of obtaining an OR as extreme (equal or greater) by
calculating the distribution of all ORs obtained for all possible contingency matrices that
have the same marginals as those in the actual data. Zero values in any cell cause the OR to
be undefined or go to infinity. To avoid this issue, we used the Haldane-Anscombe correction
by adding 0.5 to all cells before computing the OR.

Performance per vocalizer was quantified as an OR obtained by dividing the odds of
interrupting a given vocalizer by the odds of interrupting a random vocalizer during the time
period of interest (Figure 2.2). The odds of interrupting a random vocalizer was computed
by sampling equal numbers of rewarded and nonrewarded trials on the last 2 days of the
8v8 song and 6v6 DC ladders (Figure 2.2, A and B) or over 5 days of the 28v28 mixed set
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(Figure 2.2C), using the contingency matrix shown in Table 2.2.
Learning curves (Figure 2.3) were computed as a function of informative trials, where an

informative trial is defined as a trial in which the subject did not interrupt. The probability
of interruption in bin k for a subject vocalizer pair is computed by pooling over all trials
after the kth interruption and up to and including the (k + 1)th noninterruption of that
vocalizer. Interruption rates of 0 were adjusted by replacing them with 0.5 times the mean
interruption rate across all vocalizers for the same reward contingency in that informative
trial bin. Population mean and SEM were then computed across subjects. Significance in
bin k was evaluated using the Bonferroni correction. Learning rate is evaluated as the rate at
which the log OR between interruption rates on nonrewarded and rewarded trials increases.
The effect of call type (song versus DC) on the learning rate was measured using a mixed
effects model, with subject as the random effect and call type and informative trials as the
fixed effects, predicting the log OR between nonrewarded and rewarded interruptions.
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Figure 2.5: Visual description of informative trials used in Figures 2.3 and 2.4. In-
formative trials are non-interrupted trials which give the subject a chance to learn whether
a vocalizer is rewarded. Shown is an example of trials from one subject in response to two
vocalizers in a session. The white boxes indicate informative trials, and all trials between
subsequent informative trials for one vocalizer are used to estimate the probability of inter-
ruption in that window (indicated by black lines). A trial is labeled by how many informative
trials for that specific vocalizer has been seen previously (i.e. how many opportunities the
subject had to learn the reward contingency for that vocalizer). In Figures 2.3A&B, each
data point is the mean interruption probability across subjects for bin k, where the subject
interruption probability in k is the mean interruption probability across vocalizers. In Fig-
ures 2.4C&D, probability of interruption is computed for all trials where k < 2.
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Figure 2.6: Examples of DC and song stimuli. Spectrograms showing examples of
DC stimuli from 2 vocalizers (top quadrants) and song stimuli from 2 vocalizers (bottom
quadrants). Each vocalizer is represented by 10 stimulus files containing either six DCs or
three song motifs, separated by random gaps and aligned such that the resulting stimulus
duration is 6 seconds long.
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CallType Sex CallType

x

Sex CallType

Informative

Trials
CallType

x

InformativeTrials

β

A B

β Std. Err z p > |z| [0.025 0.975]
Intercept 2.003 0.313 6.405 0.000 1.390 2.616

CallType[Song] 0.418 0.325 1.288 0.198 -0.218 1.054
Sex[M] -0.163 0.433 -0.375 0.707 -1.012 0.687

CallType[Song] x Sex[M] -0.449 0.442 -1.017 0.309 -1.315 0.416
Group Var 0.386 0.085

β Std. Err z p > |z| [0.025 0.975]
Intercept 0.322 0.517 -2.052 0.040 -0.629 -0.014

CallType[Song] -0.117 0.204 -0.573 0.567 -0.516 0.283
InfoTrials 0.208 0.024 8.552 0.000 0.161 0.256

CallType[Song] x InfoTrials 0.155 0.034 4.495 0.000 0.087 0.222
Group Var 0.076 0.039

Figure 2.7: Mixed effects modeling for sex and call type. (A) Mixed effect model
for per-vocalizer log odds-ratios. The log odds-ratio was inverted for rewarded vocalizers
(log2

1
OR

) for a direct comparison to the non-rewarded condition (log2OR). Call type (Song or
DC) and subject sex were used as fixed effects and subject identity as the random effect. Task
performance was not significantly affected by subject sex and performance was slightly higher
for songs than distance calls. Error bars show 95% confidence intervals. (B) The log odds-
ratio between interruptions of unrewarded to rewarded trials (Figure 2.3C&D) was modeled
using a mixed effects model with call type (Song or DC) and number of of informative trials
seen as fixed effects and subject identity as the random effect. Performance on task increases
as a function of informative trials seen, indicated by significant effect of informative trials
seen on the log odds-ratio. Rate of increase is greater for songs than distance calls, shown
by the significant interaction term between informative trials and call type.
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Chapter 3

Lesions to NCM impair individual
vocal recognition memory in the
zebra finch

3.1 Abstract

Social animals that use vocalizations to communicate are often able to recognize other
individuals by their sounds. The neural basis for this skill is a sophisticated auditory memory
system capable of mapping incoming acoustic signals to one out of many known individuals.
Using the zebra finch, a social songbird that uses songs and distance calls to communicate
individual identity (Elie & Theunissen, 2018), we tested the role of two higher-order brain
regions in a vocal recognition task. We found that the caudomedial nidopallium (NCM),
a secondary auditory region of the avian brain analogous to auditory association cortex in
humans (Bolhuis & Gahr, 2006), was necessary for maintaining stored auditory memories
for conspecific vocalizations, while HVC, a premotor area that gates auditory input into the
vocal motor and song learning pathways (Roberts & Mooney, 2013), was not. However,
neither an intact NCM nor HVC were required for acquiring new auditory memories.

3.2 Introduction

Successful vocal interactions often require individuals to recognize the identity of another
vocalizer. In social species that live and move in groups, such as humans and some songbirds,
this requires the brain to store memories of known individuals and to map the acoustic
features of a sound to one out of potentially hundreds of known individuals, a skill known as
“individual vocal recognition” (Carlson et al., 2020; Tibbetts & Dale, 2007). The zebra finch
is one such social songbird that uses communication calls for speaker recognition, and its
repertoire of communication calls is well documented (Elie & Theunissen, 2016; Zann, 1996).
In particular, the zebra finch uses two socially affiliative vocalization types, the song and
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distance call (DC), to signal vocalizer identity. These two call types have acoustic signatures
that are unique to each individual, and stereotyped within an individual (D’Amelio, Klumb,
et al., 2017; Elie & Theunissen, 2018). We have previously shown that zebra finches have a
large capacity memory for recognizing conspecific vocalizers, and those memories are learned
quickly and can persist for several weeks (See Chapter 2). How and where are these memories
formed, stored, and retrieved in the brain?

Studies using lesions and fMRI have shown that the auditory association cortex in humans
is broadly involved in the memory and classification of sounds, and in speaker recognition
(Andics et al., 2010). One region of the avian brain thought to be analogous to auditory
association cortex is NCM (caudomedial nidopallium) (Bolhuis & Gahr, 2006; Bolhuis et al.,
2010). This area is at the top of the hierarchical auditory processing pathway and receives di-
rect projections from the primary thalamo-recipient auditory region, Field L (Figure 3.1A).
Substantial evidence implicates NCM as the primary site of auditory memory formation.
Studies on stimulus-specific habituation properties in NCM suggest that it has a large ca-
pacity for unique vocalizations (Chew et al., 1996). It has also been observed that response
strengths in NCM are lower in response to learned songs of conspecifics than novel songs
(Thompson & Gentner, 2010). In song imitation learning, NCM has been implicated in mem-
ory and recognition of the tutor song in juvenile songbirds through immediate early gene
studies (Bolhuis et al., 2001; Mello et al., 1995), changes in neural tuning (Phan et al., 2006;
Yanagihara & Yazaki-Sugiyama, 2016), stimulus-specific habituation (Chew et al., 1995) and
pharmacological inactivations (London & Clayton, 2008; Pagliaro et al., 2020). Pharmaco-
logical disruption of NCM during a learning task using pure tones reduces learning rate but
not final performance, suggesting a role in association learning but not memory retrieval
(Macedo-Lima & Remage-Healey, 2020). Lesions to NCM, in contrast to the manipulations
cited above, have not been shown to affect song imitation learning (Canopoli et al., 2014;
Canopoli et al., 2016; Canopoli et al., 2017), although lesions do impair song recognition
when assayed with a tutor song preference test (Gobes & Bolhuis, 2007). Despite this body
of evidence for NCM’s involvement in vocal imitation learning and auditory memory, its role
in recognition memory for the vocalizations of specific individuals is unknown. By pairing
NCM lesions with an operant discrimination task designed to stress the memorization ability
of zebra finches for conspecific calls and song, details of NCM’s involvement in the storage
and retrieval of these auditory memories may be revealed.

Another hypothesis, not mutually exclusive to the above, is a “motor theory of speech
perception” in which auditory perception for conspecific vocalizations utilizes representa-
tions in the vocal motor system (Massaro & Chen, 2008; Schulze et al., 2012; Williams &
Nottebohm, 1985). This category of idea is often proposed in studies on song learning, in
which the anterior forebrain pathway (AFP) (Figure 3.1A) has been suggested as the site of
“tutor song memory access” (Roberts & Mooney, 2013) through a comparison of incoming
auditory feedback to a stored auditory memory of a tutor template. Song-selective “mirror”
neurons found throughout the AFP could be used in a comparator circuit in which incoming
songs are compared to the bird’s own song as a basis for discrimination (Doupe & Konishi,
1991; Mooney, 2014). The pre-motor nucleus HVC is the only known source of auditory in-
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Figure 3.1: Zebra finch auditory system; task diagram; lesion histology. (A)
Schematic diagram of the zebra finch auditory and vocal motor pathways. Navy: ascending
auditory pathways; Red: vocal motor pathway; Orange: anterior forebrain pathway (AFP).
(B) Task diagram for behavioral conditioning. Subjects initiate trials and hear a 6 s stimulus
playback of a rewarded (Re) or non-rewarded (NoRe) vocalizer. At the end of the playback,
subjects will either receive a food reward or nothing. The subject can peck again during
the playback (“interrupt”) to terminate the trial and begin a new trial, but will receive no
reward or reward information. (C) Nissl stained images of NCM lesion in successive sagittal
slices from the left hemisphere of one subject. Red dotted line shows approximate extent
of lesion. Above each image is the lateral distance from midline of the section. Cb: Cere-
bellum (relative position, tissue not in image), NCM: caudomedial nidopallium, CM: caudal
mesopallium.

put into the avian song system and receives auditory inputs from Av and/or NIf, which are
closely connected with auditory regions CM (caudal mesopallium) and Field L, respectively
(Roberts & Mooney, 2013). Furthermore, IEG expression patterns imply functional rela-
tionships between HVC and secondary auditory regions NCM and CM (Lynch et al., 2013).
There is evidence that the function of auditory information in HVC is not limited to song
imitation learning, a behavior that is typically restricted to males in most songbird species;
for example, lesions to HVC have been shown to alter females courtship behavior and mate
preference in response to male songs (Brenowitz, 1991; Del Negro et al., 1998; Perkes et al.,
2019). Furthermore, lesions to HVC may alter the ability for both males and females to
learn reward associations to conspecific songs, while not affecting song recognition (Gentner
et al., 2000). The role of HVC is not limited to song; while HVC is not necessary for innate
DC production, lesions have shown that it is necessary for production of the learned acoustic
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features heard in male DCs (Simpson & Vicario, 1990). HVC has also been shown to exhibit
motor and auditory responses during antiphonal social interactions that use innate calls such
as the stack call (Ma et al., 2020). Thus, HVC and the greater vocal motor system could
have a role in perception and recognition of the calls of conspecific calls.

In this study, we trained male and female zebra finches in an operant task used to test
individual vocal recognition for several vocalizers based on songs and DCs (Chapter 2).
Subjects were tested on their recognition of up to 16 vocalizers by song and 12 vocalizers by
DC at a time. We then assessed if bilateral neurotoxic lesions to NCM or HVC affected each
subject’s ability to recall previously learned vocalizers and to learn a new set of vocalizers.
By analyzing task performance during the initial exposures to vocalizers before and after
lesion, we distinguished between the recall of previously learned vocalizers and the learning
or re-learning of those vocalizers. We found that lesions to NCM impair the zebra finches’
ability to recall previously learned vocalizers but not necessarily their ability to (re)learn
and discriminate between those calls. In contrast, lesions of HVC do not seem to have any
effect on recognition memory nor the learning of vocalizers in the operant task, evidence
that auditory memory for individual recognition and vocal motor pathways are dissociated.

3.3 Results

Operant conditioning for conspecific vocal recognition

We trained adult zebra finches (N=21) to recognize the calls and songs of several con-
specifics for food reward in a modified go/no-go paradigm as described in Chapter 2 (Figure
3.1B). In short, subjects were presented with songs or DCs from a set of rewarded vocalizers
(Re) and a set of non-rewarded vocalizers (NoRe). During the playback of a stimulus, the
trial could be interrupted with a key peck that immediately starts the next trial. When
motivated, birds maximize the rate of food reward output by interrupting vocalizations rec-
ognized as NoRe and waiting for vocalizations recognized as Re to finish. The relative odds
of interrupting NoRe trials to Re trials, quantified by an odds ratio (OR), is used as a score of
the subject’s performance on this memory task (Equation 3.1). An OR significantly greater
than 1 indicates successful task performance, while a score of 1 indicates performance at
chance level.

Subjects were trained to recognize 12 conspecific vocalizers by DCs and 16 conspecific
vocalizers by songs during a pre-lesion learning phase (Figure 3.2A). These two stimulus
sets were referred to as DC S1 and Song S1, respectively. Each stimulus was learned over
the course of a week in a “ladder” training procedure by gradually increasing the number of
vocalizers tested each day: from 1 Re and 1 NoRe on the first day (labeled 1v1), to the full
set on days 4 and 5 (labeled 6v6-d2 for DCs and 8v8-d2 for songs) (Figures 3.2B&C, see
Materials and Methods for details). All subjects demonstrated scores significantly greater
than 1 when evaluated on all trials presented during the 6v6-d2/8v8-d2 days (Figure 3.4).

We divided subjects into three experimental groups: bilateral neurotoxic NCM lesions
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Figure 3.2: Daily progression of memory ladder with lesions. (A) Schematic of the
three phases of the experiment in an example subject. First, the subject is trained on a set of
songs followed by a set of DCs (pre-lesion learning of set 1). It then undergoes surgery during
which NCM or HVC is lesioned (or saline/dye injected in controls) and up to one week of
recovery. Next, it is tested on recall of the previously learned DCs, then songs (post-lesion
recall of set 1). Finally, it is trained and tested on a new set of songs and DCs that were
not introduced before lesion (post-lesion learning of set 2). The alternating pattern between
song and DC sets was swapped on half of the subjects. (B and C) Example traces showing
the probability of interruption per vocalizer during the three phases of the experiment in
two subjects: in (B), a subject with a focal NCM lesion, and in (C), a subject with an
HVC lesion. Each line shows the subject’s probability of interrupting a single rewarded
vocalizer, calculated in a sliding window (blue: rewarded stimuli, 12 trial bin width; red:
non-rewarded stimuli, 20 trial bin width). Each day is separated by a thin vertical line. Color
of the horizontal lines above the plots indicate the call type being tested (songs, orange; DCs,
green). Annotations below the plot show the number of vocalizers tested each day. When
the set size increases beyond 4v4, additional stimuli are introduced gradually: first with
6v6-d1 for DC or 8v8-d1 for song, during which new stimuli are presented three times more
frequently than previously learned stimuli, followed by 6v6-d2 for DC and 8v8-d2 for song,
during which there was no adjustment to presentation frequency.



CHAPTER 3. LESIONS 27

Set # Call type # Vocalizers Description
S1 Song 16 Songs first learned before lesion,

re-tested after lesion
S1 DC 12 DCs first learned before lesion, re-

tested after lesion
S2 Song 16 Songs first learned after lesion
S2 DC 12 DCs first learned after lesion

Table 3.1: Description of the stimulus sets used in the memory ladder.

(N=10, 5 male, 5 female), bilateral HVC lesions (N=7, 5 male, 2 female), and bilateral sham
lesion controls (N=4, 3 male, 1 female). The extent and volume of lesions were validated
with histology and the completeness of HVC lesions in male subjects was also validated by
observing degraded song quality post-lesion. After lesion and recovery, subjects in all groups
were retested on the vocalizers of S1 to test the retention of previously learned auditory
memories, then finally trained and tested on two new sets of vocalizers (one with 16 songs,
one with 12 DCs) collectively referred to as Set 2 (S2). The four stimulus sets used are
summarized in Table 3.1, and the timeline of the experiment for an individual subject is
summarized in Figure 3.2A.

Recall of learned vocalizers are affected by lesions to NCM but
not HVC

To determine if lesions to HVC or NCM affected stored auditory memories of conspecific
vocalizers, we compared task performance on the same set of vocalizations before and after
lesion. Subjects were first trained and tested on S1 in the pre-lesion learning phase. Following
lesion and up to one week of recovery, subjects were re-tested on S1 in the post-lesion recall
phase.

All birds were able to learn S1 vocalizers well by the end of the initial training ladder.
To quantify how quickly vocalizers were learned, we analyzed task performance as a function
of informative trials seen. Here, an “informative trial” is defined as a non-interrupted trial
(see Materials and Methods). The OR as a function of informative trials describes how birds
improved at the task as they gained information about vocalizer-reward associations. When
first exposed to the novel vocalizer stimuli of S1, healthy birds took about four informative
trials to start interrupting Re from NoRe vocalizers at distinguishable rates (Figure 3.3A).
We compared this initial rate of learning to task performance in sessions late in learning:
the start of 6v6-d2/8v8-d2. At the start of these sessions, subjects have had at least one
prior session with all vocalizers in S1. We confirmed that NoRe trials were more likely to be
interrupted than Re trials before even the first informative trial [t(20) = 5.97; p < 10−5; one-
sided Student’s paired t test], demonstrating immediate recognition of previously learned
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Figure 3.3: Subjects with NCM lesions show deficits in recall of vocalizations
learned before lesion, but can re-learn. (A) Learning curves showing the probability
of interrupting non-rewarded vocalizers (red) and rewarded vocalizers (blue) as a function of
the number of informative trials seen of a given vocalizer (see Materials and Methods). Left:
first 10 informative trials relative to the start of the S1 ladder before lesion. Right: first 10
informative trials relative to the start of the 4th day of the ladder, after which a subject
would have had at least 1 day of experience with each vocalizer in S1. Shaded region in all
figures indicate 2 SEM. The first bin where the Odds Ratio is significantly greater than 1 is
labeled with an asterisk. (B) The same data from (A), translated into an odds ratio in each
informative trial bin (see Materials and Methods). (C) Learning curves showing probability
of interruption over the first 10 informative trials after lesion to vocalizers in S1 for the three
groups: Control, HVC lesion, and NCM lesion. Probabilities in each bin are averaged over
subjects and vocalizers. (D) As in B, the curves from (C) translated into an odds ratio for
each informative trial bin. (E) Smoothed histograms showing the decrease in performance
during the initial re-exposure to S1 vocalizers after lesion. ORpostlesion−early: OR measured
before the third informative trial of each S1 vocalizer after lesion. ORprelesion−learned: OR
measured before the third informative trial of each S1 vocalizer starting from the fourth day
of the ladder before lesion (i.e. 8v8-d2 or 6v6-d2 in Figure 3.2). Each dot represents the ratio
ORpostlesion−early/ORprelesion−learned for one subject and vocalization type (i.e. song or DC).
Diamonds show the mean for each group and error bars show 2 SE. Smoothed histogram
was estimated using kernel density estimation in the log-space with a gaussian kernel and
bandwidth of 0.5. Asterisk indicates distribution with mean significantly less than 1 after
one-sample t test.
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vocalizations and reward associations (Figure 3.3A). Qualitative inspection of interruption
rates per-vocalizer over sessions and days (for example, Figures 3.2B&C) shows that inter-
ruption rates to Re and NoRe vocalizers separate quickly, often within a single session, and
are stable by the end of the ladder on days 6v6-d2/8v8-d2.

The early informative trials thus allow us to probe the recognition memory of a sub-
ject. A subject who recognizes a vocalization (and its associated reward) responds correctly
starting from before the first informative trials of a session. We then compared this to the
behavior of subjects immediately after lesions to NCM or HVC. OR for previously learned
S1 vocalizations was measured as a function of informative trials after lesion in three groups:
NCM, HVC, and controls. As the bird is exposed to more and more informative trials, it may
have the ability to form new auditory memories in addition to recalling those acquired before
lesion. Thus, we compared performance prior to the first informative trial (pure recall) and
over the first 10 informative trial bins (recall with opportunity to re-learn).

Subjects with NCM lesions did not interrupt NoRe and Re vocalizers at different rates
prior to the first informative trial [t(9) = 0.68; p = 0.26; one-sided Student’s paired t test].
However, they managed to do so by the second informative trial [t(9) = 2.71; p = 0.012
(significant with false discovery correction)] (Fig. 3.3C). In contrast, subjects with HVC
lesions did successfully distinguish NoRe and Re vocalizers before a single informative trial
[t(6) = 4.05; p = 0.003], demonstrating that HVC lesions had little to no effect on the ability
to store and recall the learned auditory memories needed for the task. The control subjects,
who underwent surgery and the same recovery period as the NCM and HVC groups, also
required one informative trial before the OR was statistically significant [k = 0, t(3) = 1.19;
p = 0.160; k = 1, t(3) = 2.80; p = 0.034].

We then compared the learning curves out to k = 10 informative trial bins. We found
that the NCM group’s OR curve (Figure 3.3D) was significantly lower than both the HVC
group’s [t(9) = −4.84; p = 7 × 10−4; paired t test over 10 informative trial bins] and the
control group’s [t(9) = −6.92; p = 4 × 10−5]. There was no clear difference between the
curves of the HVC and control groups [t(9) = −1.01; p = 0.333]. In the NCM group,
task performance gradually recovered over several trials albeit slower than in the other two
groups. This suggests that learning or re-learning was still possible despite lesion of NCM.
Qualitatively, the post-lesion “learning” curve of the NCM group for S1 vocalizers resembles
the initial learning curve on naive stimuli before lesion (Figure 3.3B, left), while the HVC and
control group’s curves resembles the performance curve for well-learned vocalizers in healthy
individuals (Figure 3.3B, right), with perhaps a small deficit at the start of the post-lesion
session.

The effect of lesion can be summarized with a scalar value δ =
ORpostlesion,early

ORprelesion,learned
, where

ORprelesion,learned is the OR prior to (and including) the third informative trial during 6v6-
d2/8v8-d2 before lesion, while ORpostlesion,early is the OR measured prior to (and including)
the third informative trial immediately after lesion (see Materials and Methods, Equation
3.6). We tested whether each group individually performed worse after lesion with δ < 1; only
the NCM group demonstrated worse performance after lesion [t(19) = −4.91; p = 5× 10−5;
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one-sample t test], while HVC (p = 0.140) and controls (p = 0.611) did not. The value of
δ was also significantly different across at least two of the three groups [F (2, 39) = 5.16;
p = 0.010; one-way ANOVA], which was found to be primarily driven by the difference
between the control and NCM groups (p = 0.017; 95% CI, -4.43 to -0.37; Tukey’s HSD post-
hoc test), while the HVC group was indistinguishable from controls in the same window
(p = 0.635; 95% CI, -2.94 to 1.36) (Figure 3.3E). Combined, these observations show that
after NCM lesion, birds were unable to fully utilize the auditory memories they had formed
before lesion, while HVC lesions had little to no effect on the birds’ ability to recall those
same associations.

Birds with lesions to NCM and HVC can form new auditory
memories

After lesion, birds in all groups steadily increase in performance as they see more in-
formative examples (Figure 3.3A-D). Over two full sessions of 6v6-d2/8v8-d2 after lesion,
every bird in the HVC and control groups, and all but one in the NCM group, scored above
chance level (Figure 3.4). Scores slightly fell compared to before lesion in the NCM group
[song: t(9) = 2.18, p = 0.001; DC: t(9) = 4.32, p = 0.029; one-sided Student’s paired t
tests], while they did not in controls [song: t(3) = −0.56, p = 0.691; DC: t(3) = 3.17,
p = 0.975]. The HVC group had mixed results, with a slight decrease in performance after
lesion on song [t(6) = 2.06; p = 0.043] but not DC [t(6) = 1.61; p = 0.079]. These data are
consistent with an interpretation that lesions to NCM had a destructive effect on previously
learned auditory memories, but leave intact circuits and computations needed for learning
or re-learning reward contingencies given renewed exposure and reinforcement. The drop in
performance after lesion could also reflect a reduced capacity for auditory memory in the
birds even though they are still capable of learning.

The post-lesion improvement on previously learned S1 stimuli could reflect a gradual
recovery of existing memories without needing to acquire new ones. Could birds learn com-
pletely new, unfamiliar vocalizers after lesion? To answer this, we trained and tested lesioned
subjects on a second stimulus set, S2, using the same training procedure and timeline as used
for S1. We constructed OR learning curves for initial exposure to S2 in the same way that
we did for S1 (Figure 3.5B). The learning curves for S1 and S2 can be compared by (1) how
quickly OR increases above chance level, and (2) by magnitude of OR (the relative height
of the curves). Before lesion, subjects distinguished Re and NoRe vocalizers in S1 by the
4th informative trial on average (Figure 3.5A). This was about the same as we observed for
S2 after lesion across all groups (Figure 3.5C), suggesting that birds did not learn the new
sets any faster or slower than expected. However, we found that for the same number of
informative trials (out to k = 20), birds in the NCM group performed slightly worse than
the HVC group [t(19) = −5.05; p = 6 × 10−5; paired t test over 20 informative trial bins]
and controls [t(19) = −4.69; p = 1.4× 10−4] (Figure 3.5D). There was no difference between
the HVC group and controls [t(19) = 1.01; p = 0.325]. Thus, it appears that lesions to NCM



CHAPTER 3. LESIONS 31

DCSong

Figure 3.4: Re-test of previously learned stimuli (S1) after lesion. The effect of lesion
on OR for songs (left) and distance calls (right) on the same set. OR was calculated on all
trials during 6v6-d2/8v8-d2 with all ladder stimuli being played at equal rates. Individual
lines show the change in OR for each subject, and diamonds show the mean OR pre- and
post-lesion for the group. Significance was tested using a one-sided paired t test. Error bars
show 2 standard errors of the sample differences from the paired t tests.

did not prevent the birds from learning to recognize new vocalizers, but the lesions may have
had an effect on the speed at which they could be learned, or the total number that could
be learned.

The learning curves for S2 suggest that learning may be slower or that the auditory
memory capabilities are reduced in birds with NCM lesions. We next compared OR scores
measured over the entire 6v6-d2/8v8-d2 sessions of S2 to see if the deficits persisted late in
learning. When compared directly to the corresponding scores on S1 before lesion (Figure
3.6), control subjects had no clear change [song: t(3) = 0.63, p = 0.286, DC: t(3) = 0.25,
p = 0.410; one-sided Student’s paired t tests], while NCM subjects did worse on S2 than
S1 overall [song: t(9) = 1.89, p = 0.045, DC: t(9) = 4.66, p = 0.001]. The HVC group did
not do any worse on the new set of songs [t(6) = −0.85; p = 0.572] but did get significantly
worse on DCs [t(6) = 5.42; p = 0.001]. While this could be indicative of an effect of lesion,
the drop in scores could also be more simply explained if S2 distance calls were a more
difficult task than the S1 distance calls (e.g. harder to tell apart acoustically). Despite the
possibility that DC in S2 were more difficult, all subjects ultimately performed above chance
level on the new set. Thus, fully intact HVC and NCM are not required for zebra finches
to learn to recognize and discriminate between a new set of rewarded and non-rewarded
vocalizers. However, there appears to be some deficit in auditory memory in NCM lesionsed
subjects that prevents them from matching the same levels of performance in healthy birds
and controls.

Finally, we considered if any lesion-induced difficulty in operating the task may explain
the performance deficits we observed in NCM lesioned birds. Such difficulties included deaf-
ening, motor deficits that prevent the bird from operating the task apparatus, or cognitive
deficits in which the bird no longer understands the task structure. We expected that such
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Figure 3.5: Learning curves for a new set of vocalizers learned after lesion. (A)
The probability of interrupting non-rewarded (red) and rewarded (blue) vocalizers in the
first 20 informative trial bins of Set 1, occurring before lesion (note that the x-axis scale has
changed relative to Figure 3.3 to show the steady state of the behavior). The value in the
kth bin is the probability of interruption prior to the (k+1)th non-interrupted (informative)
trial. Shaded region in all sub-figures show 2 SEM. (B) The probability of interrupting non-
rewarded and rewarded vocalizers in the first 20 informative trial bins of Set 1, occurring
after lesion. (C) Data from informative trial bins shown in (A) converted to OR. (D) Data
from (B) converted to OR and overlaid.

deficits, unrelated to the task of storing and recognizing auditory memories for individual
vocalizers, would be apparent during the easiest sessions of the task after lesion: the days 1v1
with a single Re vocalizer and NoRe vocalizer. However, we found that the OR performance
on 1v1 did not get worse after lesion in any group (Figure 3.7).

3.4 Discussion

Here, we establish a role of NCM in the ability to store and recall stored memories of
dozens of vocalizers. We found that the ability to recall vocalizers learned before lesion was
impaired in the immediate trials after lesion, lending further support to the hypothesis that
NCM is a primary site of auditory memory storage. Animals rapidly recovered the ability to
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DCSong

Figure 3.6: Lesion effect on learning new vocalizers. The effect of the lesion on OR for
songs (left) and DCs (right) when learning a new set of vocalizers. OR was calculated on all
trials during the two test days with all ladder stimuli being played at equal rates. Individual
lines show the difference in OR for each subject, and diamonds show the mean OR pre- and
post-lesion for the group. Significance was tested using a one-sided paired t test.

DCSong

Figure 3.7: Pre and post-lesion scores on 1v1 tests. The effect of lesion on OR for
songs (left) and distance calls (right) as measured during the 1v1 days before and after lesion.
These sessions had only one rewarded vocalizer and one non-rewarded vocalizer. Significance
tests using Student’s paired t test.

recall memories as further informative trials were seen. In addition, birds with NCM lesions
were still able to learn new vocalizer-reward associations, although slower than in healthy
subjects. These results are consistent with a role for NCM in the storage and retrieval of
auditory memories for vocalizations, and suggest other brain regions (CM, for instance) are
also involved or can be recruited to solve the task of individual vocal recognition. In contrast,
lesions to the vocal premotor region HVC did not have a discernible effect on auditory
memory over the same period. This suggests that individual vocal recognition memory does
not require HVC or other downstream nuclei of the vocal motor system. While this does
not rule out a role for HVC in auditory perception, we could not discern any effect of HVC
lesions on either the recall or formation of auditory memories for conspecific vocalizations.
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Auditory memory for conspecific vocalizations in NCM

We tested zebra finches in an individual vocal recognition task, in which the DC and
song of several individuals were learned and associated with reward in a multi-day song
ladder training procedure. We found that subjects with NCM lesions could not recognize
previously learned vocalizers as quickly, and that their maximum performance was decreased
even though they were still capable of learning. Some trivial explanations for the observed
deficits in task performance were ruled out. Trivial causes, such as deafening or inability
to understand or operate the task apparatus, were ruled out by observing that the lesioned
birds performed well in “easy” sessions when they only needed to compare the vocalizations
of two individuals (Figure 3.7). We can also rule out a drop in motivation levels, as trials
were self-initiated by the subjects and that lesioned subjects continued to work for a similar
number of fed trials per session.

What aspect of the auditory memory behavior is affected by NCM lesion? One possibility
is that one of NCM’s primary roles is to recognize vocalizations as being known or unknown.
Previous studies have shown the existence of changes in the activity levels in NCM based on
past stimulus exposures. For example, NCM responses show stimulus-specific habituation to
repeated presentations of conspecific calls and songs (Chew et al., 1996) and lower response
strengths to learned vocalizations (Thompson & Gentner, 2010). Furthermore, the coding
in NCM is modulated by the familiarity and behavioral salience of auditory stimuli (Chew
et al., 1996; Pinaud & Terleph, 2008; Theilman et al., 2021). In such a model, NCM could
be responsible for storing known acoustic signals for communications in order to recognize
that an incoming auditory signal comes from a known source, while activating networks in
other brain regions responsible for the semantic of behavioral representations. These other
brain regions could include the interconnected auditory region CM whose activity is also
modulated by task-relevant stimuli (Meliza & Margoliash, 2012; Pinaud & Terleph, 2008),
more abstract representations for goal-directed action in NCL (nidopallium caudolateral)
(Rinnert & Nieder, 2021), and social and reproductive behaviors associated with HVC and
nearby regions (Maguire et al., 2013). The transformation from recognition of acoustic signals
of a communication sound to its semantic representation could ultimately be distributed
widely across the brain, as has been observed in the cortical representation of human speech
(Huth et al., 2016).

Another possibility is that neurons in NCM over-represents the acoustic features that dis-
tinguish known vocalization sources, or contains neurons with selective or invariant responses
to learned auditory objects In song learning, it has been observed that NCM is necessary
for pitch restoration in the songs of adult males taught to shift their pitch through negative
reinforcement (Canopoli et al., 2014) and that pharmacological blockade of signaling path-
ways in high-level auditory areas including NCM prevent song imitation quality in juvenile
males (London & Clayton, 2008). In addition, single neurons in NCM have been found to
be sparse, with sharper tuning for specific sound stimuli (Kozlov & Gentner, 2016; Perks &
Gentner, 2015). The increased sparsity may be a consequence of complex, multi-component
spectro-temporal receptive fields sensitive to specific sound combinations (Kaardal et al.,



CHAPTER 3. LESIONS 35

2017; Kozlov & Gentner, 2014). These neurons may represent vocalizations as patterns in
a distributed code, with populations of neurons selective for small numbers of individuals
based specific acoustic features or combinations of features. In such a model, incomplete
lesions may still allow the network to recover previously learned associations, but perhaps
with lower fidelity or capacity. The task design using large vocalizer sets of 12-16 individuals
was critical in revealing deficits in memory and recognition that smaller sets did not (e.g.
Figure 3.7). Thus, using a large number of vocalizers as stimuli in tests of individual vocal
recognition is important, to require the animals to engage with the task and make it difficult
to solve with trivial strategies. In this experiment, the size of the stimulus set may tax the ca-
pacity of the system, or decrease the separation between acoustic and neural representations
of distinct vocalization sounds. However, it is currently unknown how categorical boundaries
are formed in higher-order auditory areas for the calls of different individuals. Repeating
these memory and lesion experiments using synthetic stimulus sets that artificially distort
or blur the acoustic boundaries between the calls of known individuals may shed light on
the nature of the acoustic features of stored memories in NCM.

Implications for HVC

HVC is the critical interface between the auditory and song systems (Margoliash, 1997;
Roberts & Mooney, 2013). It gates the auditory information needed to give rise to song
selective neurons found throughout the vocal production pathway and the anterior forebrain
pathway for song learning (Roberts & Mooney, 2013; Vicario & Yohay, 1993). We used
lesions to HVC as a proxy to test the necessity of the vocal motor pathways on auditory
memory for individual vocal recognition. In contrast to NCM, we saw little to no effect on
task performance when HVC was lesioned. Thus, we believe that a motor representation
of conspecific communication sounds is not necessary for basic perception, categorization,
memory, or recognition functions for those sounds. However, this does not rule out the
possibility that motor pathways could modulate or otherwise participate in these processes,
or be engaged in specific behavioral contexts. For example, altered courtship behavior and
mate preference caused by lesions to HVC in females (Brenowitz, 1991; Del Negro et al.,
1998; Perkes et al., 2019) could be explained by changes to behavioral and sexual preferences,
rather than a change in perception or ability to distinguish individuals. It is also possible
that HVC will only be engaged in auditory perception in more naturalistic scenarios than the
artificial setting in our memory ladder experiments, or when vocal responses are necessary
such as in antiphonal calling (D’Amelio, Klumb, et al., 2017; Ma et al., 2020) and song
dueling behaviors (Alcami et al., 2021).

Relation to other auditory areas involved in learning and memory

NCM is also interconnected with CM (caudal mesopallium), another secondary auditory
region known to have signals correlated with task-relevance and learned sounds (Jeanne et
al., 2011; Meliza et al., 2010). This area is subdivided into a lateral portion (CLM) which
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receives direct projections from Field L, and a medial portion (CMM) which receives indirect
projections via CLM. Neural populations in these areas show changes in response properties
and network properties in response to learned auditory stimuli (Gentner, 2004; Jeanne et
al., 2011; Meliza et al., 2010; Theilman et al., 2021). Furthermore, lesions in CM in some
songbird species may be responsible for specificity of female song preferences, a behavioral
function that is typically associated with HVC (MacDougall-Shackleton et al., 1998). In our
current study, we do not address CM and instead focus our attention on NCM and HVC.
However, CM also merits careful consideration as another potential site for auditory memory
for conspecific vocalizers or as part of a memory network with NCM through the reciprocal
connection between the two regions.

Potential limitations of interpretation

The task structure used in these lab experiments has some limitations that prevent overly
broad interpretations of the results. Individual vocal recognition among conspecifics in na-
ture is an innate behavior that occurs as a natural consequence of a bird’s social interactions
and relationships. Our operant task, using a learning “ladder” to progressively train zebra
finches on large and larger sets of vocalizers, is meant to mimic this behavior but lacks the
social elements and richness of behavioral response. First, while we limited our stimuli to
song and DC, zebra finches have a larger repertoire of call types than tested here (Zann,
1996), several of which may carry individually distinctive features (Elie & Theunissen, 2016).
Second, while vocalizations in our task were tied to a binary response (go/no-go) for food
reward, the space of behavioral responses to the calls of conspecifics in natural scenarios
is richer and may vary based on existing social relationships and context. For example,
in the territorial song sparrow, playbacks of known neighbors and unknown intruders elicit
different levels of aggression (Kroodsma, 1976), and zebra finches modulate their antiphonal
response rates based on their relationship with the other individual (D’Amelio, Trost, et al.,
2017). Finally, intensive operant conditioning on sound stimuli using playbacks may influ-
ence perception, the underlying neural code, and even use different neural pathways (Bennur
et al., 2013). Live social interaction has been shown to influence the quality of song learning
in birds (Chen et al., 2016; Eales, 1989; Yanagihara & Yazaki-Sugiyama, 2019), and social
reinforcement in the form of video playback of other birds can be sufficient motivation for
learning in an operant task (Macedo-Lima & Remage-Healey, 2020). Thus, we must consider
the possibility that individual vocal recognition in natural settings with social consequences
may engage different pathways and areas of the brain than those tested in our experiment.

The method of chronic neurotoxic lesions also has some intrinsic limitations. These
lesions were performed by injecting a neurotoxic agent at a specific location in the brain and
allowing it to diffuse into a local volume which is not necessarily confined to the target site.
NCM presents a particular challenge because of its size and lack of well defined anatomical
boundaries (Stripling et al., 2001). In separate subjects, we used ibotenic acid and NMA as
lesioning agents as we modified our injection procedure to maximize the lesioned volume of
NCM (Table 3.3). We attempted to make our lesions quite large but cannot rule out the
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possibility (or likelihood) that some parts of NCM remained intact, or that off-target brain
regions were partially lesioned. Adjacent regions such as primary auditory regions of Field
L, the hippocampus, CM, and NCL (nidopallium caudolateral) may have been affected by
these off-target lesions. In contrast, HVC is a smaller brain region and more well defined
anatomically (Foster & Bottjer, 1998; Nottebohm et al., 1976) making validation of these
lesions easier. Furthermore, the degradation of song and distance call in male zebra finches
after HVC lesions is a well known effect (Nottebohm et al., 1976; Simpson & Vicario, 1990)
and was used to validate HVC lesions.

Auditory memory and recognition is a complex process, and the chronic, irreversible
lesions used in this study also cannot be used to make conclusions about some aspects of
the strategies employed by the animals to solve the task. In our analysis, we used the task
performance in the first informative trials after lesion to show that the NCM lesioned group
could not respond correctly without at least one reward example post-lesion. This analysis
is limited by how few trials there are available to analyze in this window—due to the small
sample sizes, the analysis required averaging over all vocalizers and subjects in a group and
the effect of lesion in a single subject for one vocalizer could not be measured. As subjects
see more examples, the effect on previously learned memories and the acquisition of ”new”
memories become intertwined. During this time, other brain regions (e.g. other areas of the
auditory system) could compensate or solve the task using different features of the stimuli.
Adult neurogenesis has also been observed in NCM of the zebra finch (Pytte et al., 2010)
which may also facilitate recovery of memory function in the weeks after surgery, though
the effect and role of new neurons in these areas are not well understood. In the future,
acute, reversible manipulations (e.g. using electrical stimulation or optogenetics) during
specific phases of the learning ladder or during individual trials could be used to better
distinguish the role of NCM on learning, storage, and retrieval of auditory memories and
reward associations. Particularly interesting targets for manipulation are the dopaminergic
innervations of NCM that have been found to correlate with learning of auditory stimuli
(Chen et al., 2016; Macedo-Lima et al., 2021). Identifying and manipulating a reward signal
projecting to NCM, if it exists, could help to disambiguate between memory for individual
recognition, and memory for reward associations.

Familiarity versus recognition

Finally, while we interpret performance in the operant task as indicative of the individual
vocal recognition capacity of the zebra finch, we also should consider if task performance
could be tied to stimulus familiarity rather than individual recognition. This is particularly
relevant to NCM, where previously identified neural correlates of memory are often related to
repeated presentations of a stimulus, observed through decreased expression of IEGs (Bolhuis
et al., 2001) and habituation (Chew et al., 1995). Given lower baseline activation levels in
response to familiar stimuli, it is easy to imagine a simple circuit that uses familiarity as
a reward cue without requiring the animal to interpret the stimulus sounds as belonging
to a single individual. Indeed, our task design leaves open this possibility: we present
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NoRe stimuli four times more frequently than Re stimuli in order to limit daily reward
output and maintain subject motivation levels, as was done in (Elie & Theunissen, 2018)
and the experiments of Chapter 2. A side effect of this, however, is that a subject could take
advantage of this by using familiarity to a stimulus as a proxy for “non-rewardedness”.

A related factor in our task structure is that incorrect responses to NoRe and Re stimuli
provide asymmetric feedback to the animal: incorrect responses to NoRe (no interrupt) are
promptly punished by the lack of food reward, while incorrect responses to Re (interrupt) do
not give the subjects any new information, as the next trial begins immediately (Figure 3.1B).
A consequence of this asymmetry is that the optimal solution to a forgotten or unknown
stimulus should be to not interrupt (in order to gain information about the novel stimulus),
which is identical to the correct response to a rewarded stimulus. We did not test whether
birds actually adopt this “optimal” strategy on novel, oddball stimulus presentations. If
they do, it leaves open the possibility that subjects may only need to recognize non-rewarded
stimuli in order to prompt an interrupt response, while defaulting to non-interruption on all
other stimuli, recognized or not.

Taken together, the task design of the present study (1) leaves open the possibility that
a subject only needs to recognize and interrupt half the vocalizers in the set, and (2) leaves
open the possibility that familiarity, and not vocal recognition, is the driver behind successful
task behavior. It is some consolation, however, that recognition that a vocalization is familiar
can be considered a prerequisite to recognition of an individual vocalizer itself. In any case,
this ambiguity can be addressed in future studies by presenting all vocalizers with equal
frequency, or by mixing the presentation frequency of rewarded and non-rewarded stimuli,
while using probabilistic reward output to control motivation levels.

3.5 Materials and Methods

Operant conditioning

Animals

All animal procedures were approved by the Animal Care and Use Committee of the
University of California, Berkeley (AUP-2016-09-9157) and were in accordance with the Na-
tional Institutes of Health guidelines regarding the care and use of animals for experimental
procedures.

Domestic zebra finches (Taeniopygia guttata) used in behavioral and lesion experiments
were raised in our breeding colony. For these experiments, 13 adult male and 8 adult female
zebra finches were chosen and divided into the following experimental groups: 10 NCM, 7
HVC, and 4 control. Subjects were housed in a colony room (usually 10 to 30 individuals
in a large flight cage). During the course of the experiment (approximately 2 months, see
“Ladder training procedure”) a subject was housed separately from the main colony, either
in an individual cage or in a shared cage with an opposite sex individual also part of the
experiment.
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Recordings of song and DC stimuli originated from multiple labs and originally described
in (Yu et al., 2020). Song vocalization recordings were from 32 male zebra finches from the
Theunissen Lab at UC Berkeley, the Perkel laboratory at the University of Washington, and
the Leblois laboratory, Bordeaux (France) Neurocampus. DC vocalizations came from 24
zebra finches (12 male and 12 female), all from our colony at UC Berkeley. Vocalizations used
as stimuli were recorded as part of previous experiments in the laboratory, and the vocalizers
were unfamiliar to the subjects in the present study. The 12 male DCs were produced by a
subset of the males also used in the song stimulus set—however, reward associations were
randomized (7 switched, 5 same). Previous work has shown that it is unlikely that zebra
finches can generalize vocalizer identity from one call type to another (Elie & Theunissen,
2018), so for the purposes of this study the DC and song stimuli recorded from the same
bird are treated as separate individual vocalizers.

Testing apparatus and software

The behavioral task and apparatus are identical to those described in Chaper 2. Briefly,
subjects were placed in an operant chamber set up with a speaker, food hopper, water bowl,
and orange backlit pecking key (Med Associates). The system is operated using a custom
fork of the Python-based Pyoperant software1, originally developed2 by J. Kiggins and M.
Thielk in T. Gentner’s laboratory at University of California San Diego.

Subjects were tasked with discriminating between a set of rewarded and non-rewarded
individuals based on the playback of their vocalizations. Subjects initiate trials by pecking
on the backlit key and a 6 second stimulus playback begins (Figure 3.1B). After 6 s, stimulus
playback ends and either nothing happens (NoRe trial), or a reward is given by raising the
food hopper for 12 s (Re trial). Alternatively, a subject may peck the key at any time during
the 6 s playback period to terminate the trial and begin a new trial with a random stimulus.
In this case, no food reward will be given regardless of if the initial trial was rewarded or
non-rewarded. To maximize the rate at which reward is received in a session, subjects learn
to skip stimuli that are recognized as non-rewarded to avoid the full waiting period and
move on to the next trial. By design, 20% of trials are rewarded while 80% of trials are not
rewarded.

Subjects are food restricted with access to water but limited seed in between test sessions
to maintain motivation. Subjects were weighed before and after every test session, and seed
consumed in a daily session was measured and supplemented at the end of day so that the
birds maintain their weight within 10% of their starting weight. Daily handling of subjects
did not seem to affect the birds’ motivation or ability to do the task once they became
comfortable with the experiment chamber. Once trained, birds are able to get all of their
daily food allowance during the testing period.

The birds learn to use the apparatus during a shaping session that lasts approximately 1
week. During the shaping session, the bird first learns to associate pecking of the key with

1https://github.com/theunissenlab/pyoperant
2https://github.com/gentnerlab/pyoperant
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sounds and food reward and then learn to interrupt non-rewarded sounds. The initial shaping
task involves the discrimination of two clearly distinct song stimuli. We have also performed
control experiments, clearly showing that apparatus is not providing any extraneous clues
that the birds could use to distinguish rewarded from non-rewarded trials (Elie & Theunissen,
2018).

Stimulus preparation

For each individual vocalizer used as a stimulus in the task, we prepared 10 unique
stimulus files composed of calls or song motif from that individual. In this paper, we use the
term vocalizer to refer to the collection of 10 unique stimulus files of calls or song motifs from
the same individual. We use this term to contrast with rendition, which refers to a single
stimulus file out of the 10. These multiple renditions were used so that specific extraneous
acoustic features of a particular stimulus file not encoding vocalizer identity (e.g. length,
intensity, and background noise) could not be used as a reward cue. In Chapter 2, we showed
that birds generalized their behavior over the 10 renditions from the same individual (Figure
2.4A&B), and so our analyses of task performance in this study are done at the vocalizer
level.

Song stimuli were constructed by combining 3 example songs from one individual, while
DC stimuli were constructed by combining 6 example DCs. Each song example consisted
of a single song motif. Most introductory notes were removed to avoid great variability in
stimulus duration. A DC example consisted of a single call, or in some cases a pair of calls if
the vocalizer did not normally produce single, isolated distance calls. These examples were
arranged with pseudorandom intervals such that the duration of the file would be exactly
6 seconds long. Amplitudes of the audio files were then normalized within stimuli of the
same type, i.e. songs or DCs. Example spectrograms of stimulus playback files are shown in
Figure 2.6.

Initial training and post-lesion tests

The full stimulus sets in these experiments included playbacks of the songs of 16 different
vocalizers or the distance calls of 12 different vocalizers. Our “ladder” training procedure
is designed to gradually introduce more vocalizers to a subject each day so that they are
not overwhelmed by the full stimulus set right away. The five day procedure is described in
Table 3.2. Each day consists of one continuous session of approximately 8 hours. Days 1-3
introduce at least 1 new Re and 1 new NoRe vocalizer each day, while Days 4 and 5, referred
to collectively as 6v6-d2/8v8-d2 throughout the main text, do not introduce new vocalizers
and are used for measuring overall performance.

The four stimulus sets, two sets of songs and two sets of DCs, are described in Table 3.1.
In each set, half of the vocalizers were assigned to be Re and the other half assigned to be
NoRe. The designation of Re or NoRe was flipped for half of the subjects (i.e. a vocalizer
that was rewarded for one subject may be non-rewarded for another subject). Two of the
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stimulus sets (Song S1 and DC S1) were taught to all subjects using the ladder training
procedure. After lesion or sham lesion, subjects were re-tested on the stimulus sets of S1,
and then trained on two new stimulus sets (Song S2 and DC S2) using the same ladder
training procedure as the initial learning of S1 (Figure 3.2). The sets S2 did not feature any
overlapping stimuli from the sets S1.

Lesions

Surgery

Following the behavioral tests of S1, subjects received either bilateral NCM lesions
(n = 10), bilateral HVC lesions (n = 7), or sham lesions (controls, n = 4). Birds were
food deprived for one hour prior to anesthesia and orally administered 0.5 mg/kg Meloxi-
cam as analgesic. Birds were induced at 4% isoflurane and head-fixed into a stereotaxic
apparatus (Kopf Instruments) on a stabilizing air table (Kinetic Systems). Anesthesia was
maintained at 1% isoflurane. A subcutaneous injection of one drop of lidocaine (about 100 µl
of 2% solution) was administered as local anesthetic. Head feathers were removed, the scalp
sterilized with sterile alcohol wipes and povidone-iodine swabs, an incision was made along
the midline, and the skin retracted. A craniotomy was then opened over each hemisphere
around the desired injection coordinates. The mid-sagittal sinus (Y-sinus) was identified as
the stereotaxic zero coordinate.

Bilateral excitotoxic lesions were made using 2% N -methyl-DL-aspartic acid (NMA) so-
lution (6 NCM birds), or 0.7% ibotenic acid (IBO) (4 NCM birds, 7 HVC birds) (see Table
3.3 for protocols used). Stereotaxic coordinates for NCM and HVC were taken from existing
literature and adjusted based on our own histological verification of lesioning outcomes. Each
injection at one coordinate (medial/lateral, rostral/caudal) was performed at either one or
two depths. For each site, a glass micropipette with tip diameter 25-50 microns was lowered
using a hydraulic micro-manipulator. The pipette was lowered to the deepest injection lo-
cation and solution was injected at about 2 nl/s using the Nanoject II system (Drummond
Scientific Company). Before retraction to the next site or out of the brain, the pipette was
left in place for 5 minutes to minimize backflow. For control subjects, the method of sham
lesion varied. In two control subjects, dye was injected using the same coordinates used for
the NCM group. A third control was originally in the NCM group but the lesion was found
to be exceptionally small, most likely due to a clogged pipette during surgery. A fourth
control was originally in the HVC group and targeted with ibotenic acid, but the lesion was
found to be off target in both hemispheres; singing behavior and song quality were also not
affected post-operation, further confirming the off-target lesion and validity as a control. At
the conclusion of surgery, craniotomies were covered with Kwik-Cast, the skin surface sealed
with Vetbond tissue adhesive, and bacitracin ophthalmic ointment was applied to prevent
infection.

Subjects were then returned to their home cages with ad-lib feed. Recovery time varied
by subject and ranged from 2 full days to 7 full days (mean=4.8 days). After recovery,
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Day DCs Songs Description
1 1v1 1v1 1 rewarded (Re) vocalizer, 1 non-rewarded (NoRe) vo-

calizer
2 4v4 4v4 3 Re vocalizers added (4 total) and 3 NoRe vocalizers

added (4 total)
3 6v6-d1 8v8-d1 DCs: 2 Re vocalizers added (6 total) and 2 NoRe vo-

calizers added (6 total). Songs: 4 Re added (8 total)
and 4 NoRe added (8 total). Newly added Re vocalizers
are played 4 times more frequently Re vocalizers from
day 2. Newly added NoRe vocalizers are played 4 times
more frequently than NoRe vocalizers from day 2.

4 6v6-d2 8v8-d2 No new vocalizers added. All Re vocalizers played at
the same frequency. All NoRe vocalizers played at the
same frequency.

5 6v6-d2 8v8-d2 Repeat of Day 4

Table 3.2: Description of 1 week ladder training procedure referenced in the main text and
illustrated in Figure 3.2.

Target N (L [mm], R [mm]) Depths [mm] Injection
NCM 2 (0.4, 0.3) 1.5, 2.0 230nl 2% NMA

(0.4, 0.8) 2.25 230nl 2% NMA
NCM 3 (0.5, 0.4) 1.5, 2.0 230nl 2% NMA

(0.5, 0.8) 2.0 230nl 2% NMA
NCM 1 (0.5, 0.5) 1.5, 2.0 300nl 2% NMA

(0.7, 0.8) 1.8 300nl 2% NMA
NCM 4 (0.5, 0.5) 1.0, 1.5 147nl 0.7% IBO

(1.0, 0.5) 1.8 200nl 0.7% IBO
HVC 4 (2.2, -0.2) 0.4 200nl 0.7% IBO

(2.2, 0.1) 1.8 200nl 0.7% IBO
HVC 3 (2.2, -0.1) 0.5 147nl 0.7% IBO

(2.2, 0.1) 0.5 147nl 0.7% IBO
(2.4, 0.1) 0.5 147nl 0.7% IBO

Table 3.3: Protocols for NCM and HVC lesions. All protocols were applied bilaterally as
described in the main text. Coordinates are in mm relative to the Y-sinus (0.0, 0.0). N:
Number of subjects the protocol was applied to; L: Lateral distance from zero; R: Offset
in rostral/caudal axis (positive numbers rostral); D: Depth from surface of brain; NMA:
N -methyl-DL-aspartic acid; IBO: Ibotenic acid.
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Trials T0 T1 T2

111 1 1 1
11001 1 1 3
10101 1 2 2
001011 3 2 1

Table 3.4: Examples of informative trial counts. 0 indicates an interruption, and 1 indicates a
non-interruption, i.e. informative trial. Tk is the number of trials between the kth informative
trial (exclusive) and the (k + 1)th informative trial (inclusive).

subjects continued with the operant task as described in Figure 3.2 being re-tested on the
stimulus set S1.

Statistical analyses

Definition of informative trials

To describe how a subject’s behavior in the task changed as they gained experience with
the stimuli, we defined an informative trial to describe a trial in which a subject had an
opportunity to learn the reward contingency of a stimulus. Because of the task structure’s
asymmetric treatment of interrupts and non-interrupts (Figure 3.1B), subjects could only
learn if a stimulus was rewarded or not if they refrained from interrupting the 6 second
playback. Thus, we define an informative trial as a non-interrupted trial.

We used this definition to analyze task performance as a function of number of informative
trials seen of a given vocalizer. The presentations of a vocalizer v can be divided into
bins indexed by k, where k is the number of informative trials preceding a given trial. To
formalize this, we define the integer value T sv

k as the empirical number of trials between the
kth (exclusive) and (k + 1)th (inclusive) non-interrupted trial of a vocalizer v by subject s.
Examples of how Tk is evaluated are shown in Table 3.4, and illustrated in Figure 2.5.

We allow this definition of informative trials to cross over multiple sessions, given our
ladder structure in which subjects are tested on the same vocalizers over multiple days
(Figure 3.2). To compare learning during different time periods (e.g. late in learning before
lesion to first trials after lesion as in Figure 3.3A&B), we can use the same definition of
informative trials but begin counting k from the start of the relevant period.

Task performance measured by Odds Ratio

As in Chapter 2, we quantify task performance of a single subject using the odds ratio
(OR) of interrupting non-rewarded (NoRe) vocalizers to rewarded (Re) vocalizers.

OR =
p(int|NoRe)

1− p(int|NoRe)

1− p(int|Re)

p(int|Re)
(3.1)
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To measure overall task performance on a given session or set of sessions, we estimate OR
and 95% CIs using the Fisher’s exact test. With a contingency matrix given by Table 2.1
generated from the behavioral data, Fisher’s exact test estimates the odds ratio as OR = ad

bc

and evaluates significance by calculating the probability of obtaining an OR as extreme
(equal or greater) by calculating the distribution OR over all possible contingency matrices
with the same marginals as the observed data. Zero values in any cell would cause the OR
to be undefined or unbounded. To address this, we use the Haldane-Anscombe correction
by adding 0.5 to all cells before performing Fisher’s exact test.

Calculation of learning curves

The learning curves in Figures 3.3 and 3.5 show the average probabilities of interrupting
NoRe and Re vocalizers, and the associated OR, as a function of informative trials seen.
These quantities represent averages over subjects and vocalizers. Here, we compute these
curves given trial data from a set of subjects S responding to a stimulus set of vocalizers
VRe∪VNoRe, where VRe is the set of rewarded vocalizers and VNoRe is the set of non-rewarded
vocalizers. For all analyses, distance call and song datasets were treated separately.

For each informative trial bin k, we estimate the probability that subject s ∈ S interrupts
a vocalizer v ∈ V as a function of the size of the informative trial bin T sv

k :

ps(int|v, k) =
T sv
k − 1

T sv
k

(3.2)

To get a subject’s probability of interrupting a Re or NoRe vocalizer, we average over all
vocalizers with the same reward contingency using Equation 3.3.

ps(int|V, k) =
1

|V |

V∑
v

ps(int|v, k) (3.3)

where V ∈ {VRe, VNoRe} indicates reward contingency. This quantity may equal 0 if the
subject s did not interrupt any vocalizer between informative trials k and k+1 and T sv

k = 1
for all v ∈ V . The most likely situation in which this would occur is when a subject is
performing with perfect accuracy and does not interrupt vocalizers in VRe at all. This would
cause numerical issues when computing odds and odds ratios (e.g. Equation 3.1). To address
this exception, we replace ps(int|V, k) with p′s(int|V, k), equal to 1

2
the average probability of

interruption across all other subjects:

p′s(int|V, k) =
1

2

1

|S| − 1

S∑
s′ ̸=s

ps′(int|V, k) if {T sv
k = 1 ∀ v ∈ V } else ps(int|V, k) (3.4)

We note that there is one more exception where p′s can be 0: if ps(int|V, k) = 0 for
all subjects. In this case, we would approximate the probability of interruption as 1

2|S||V | .
Luckily this case did not occur during our analysis.
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The learning curve logOR(k) (i.e. Figure 3.3B and Figure 3.5) is estimated by averaging
the log odds ratio over subjects for each informative trial bin k:

logOR(k) =
1

|S|

S∑
s

[
log

p′s(int|VNoRe, k)

1− p′s(int|VNoRe, k)
− log

p′s(int|VRe, k)

1− p′s(int|VRe, k)

]
(3.5)

The quantity in brackets is the difference between the log odds of a subject interrupting
a NoRe vocalizer log(Oddss,NoRe) and the log odds of a subject interrupting a Re vocalizer
log(Oddss,Re). Each bin k is tested for significance using a paired t test over |S| subjects
comparing log(Oddss,NoRe) and log(Oddss,Re). To determine the first significant bin, inter-
preted as the fewest number of informative trials before NoRe vocalizers are interrupted more
frequently than Re vocalizers, we applied this significance test to each informative trial bin
k. The first significant bin is determined to be the smallest k for which the test is significant
after applying the Bonferroni correction for multiple comparisons. All subsequent bins are
assumed to be significant.

Analysis of initial lesion effects

In Figure 3.3E we compare the overall task performance before and after lesion using
a quantity δ, representing the difference in performance before and after lesion. The goal
was to compare a time period before lesion during which the stimulus set was well learned,
to a period immediately after lesion before a subject could have had a chance to re-learn
the stimulus reward associations. We previously have shown that learning can be significant
within 3 informative trials upon initial exposure to a vocalizer; thus for this analysis we
chose to restrict the analysis to trials prior to and including the 3rd informative trials after
lesion per vocalizer. For clarity, this time period is labeled postlesion,early. The odds ratio
computed in this window is analogous to Equation 3.5 but computed for a range of bins
k < 3:

logORs,k<3 = log
p′s(int|VNoRe, k < 3)

1− p′s(int|VNoRe, k < 3)
− log

p′s(int|VRe, k < 3)

1− p′s(int|VRe, k < 3)
(3.6)

where the probability of a subject interrupting a vocalizer is expanded to the set of trials
where the number of informative trials seen is less than 3, or k < 3:

ps(int|v, k < 3) =
T sv
k<3 − 3

T sv
k<3

where T sv
k<3 =

2∑
k=0

T sv
k (3.7)

Values of Equation 3.6 evaluated on postlesion,early trials were then compared to a cor-
responding time period before lesion, which we labeled prelesion-learned. The trials for
prelesion,learned were taken starting from the first 6v6-d2/8v8-d2 days of the ladder. These
days were selected because they were the first days pre-lesion when all vocalizers had been
presented for at least one day previously. The change in performance for a subject is mea-
sured by δ:
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logδ = logORpostlesion−early − logORprelesion−learned (3.8)
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Chapter 4

Neural encoding of learned
communication calls in the
anesthetized zebra finch

4.1 Abstract

Zebra finches are social animals who interact using vocal communication and can recog-
nize other individuals by their calls. This requires the mapping of an incoming sound to a
memory of a known individual. Secondary auditory regions in the avian brain, analogous to
human association cortex, are involved in the memory of learned sounds. Previous studies
have shown how prior experience with sounds can change tuning and response properties
throughout the auditory system. In this study, we analyzed single unit spiking activity in
cortical-like areas of the zebra finch auditory system and found evidence that the information
coding capacity of single neurons in response to conspecific vocalizations was modulated by
the bird’s prior experience with those calls. In birds who had been trained to recognize the
calls and song of several conspecific individuals in an operant task, the spiking reliability of
neurons in response to task-relevant stimuli was greater than in response to non-task stim-
uli. We also found that, among non-task vocalizations, the information values were greater
in response to familiar individuals than unfamiliar individuals. However, no explicit repre-
sentations in the form of vocalizer selective units were identified. Instead, it appears that
information about vocalizer identity is distributed across many neurons, and that prior ex-
perience modulates the reliability of spike timing and thus information capacity for encoding
learned stimuli.

4.2 Introduction

Vocal communication requires the mapping of an incoming acoustic signal to meaningful
categories, e.g. the familiarity of the vocalizer, identity of the vocalizer, or the meaning of
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a sound as in human speech. In the brain, hierarchical circuits can facilitate this process
by transforming the low level acoustical features of a sound (Elliott & Theunissen, 2009;
Theunissen et al., 2000) into abstract, invariant representations in higher order areas (Russ
et al., 2008). To facilitate learning and memory of these information bearing sounds, the
circuits may be shaped by the experience of the animal. In songbird vocal communication,
a particularly important skill is the ability to categorize a sound according to the identity
of the vocalizer; the brain must use the information in an incoming sound to recognize each
vocalizer’s calls as distinct auditory object categories. Many previous studies have shown
the ability of songbirds to discriminate between the sounds of other individuals (D’Amelio,
Klumb, et al., 2017; Elie & Theunissen, 2018; Honarmand et al., 2015; Miller, 1979b), and in
the preceding chapters we demonstrated the zebra finch’s large memory capacity for individ-
ual vocal recognition and the involvement of brain regions analogous to secondary auditory
cortex in that task. In this chapter, we investigate how that information is represented in
neural activity of auditory regions in the zebra finch brain, and how the neural encoding
changes when these vocalizations are learned and remembered.

Neurons selective for specific sounds may underlie auditory object recognition, analogous
to findings in the primate visual system in which neurons selective for small numbers of
objects (Ito et al., 1995) or faces (Freiwald & Tsao, 2010) may be used to represent individ-
ual identity. Electrophysiological experiments in songbirds have shown response selectivity
that correlates with learning and memory for auditory objects in several areas of the avian
forebrain. The song is a particularly salient and well studied example of a specific auditory
memory. In song imitation learning, juvenile male zebra finches form a long lasting auditory
memory for the song of a tutor. Neurons in several brain regions have shown selective tuning
for the tutor song in the song learning pathway known as the anterior forebrain pathway
(AFP) (Doupe & Konishi, 1991; Doupe & Solis, 1997), the premotor nuclei HVC (Nick &
Konishi, 2005; Volman, 1993) and RA (Doupe & Konishi, 1991), and secondary auditory
area NCM (Yanagihara & Yazaki-Sugiyama, 2016). The appearance of tutor song selective
neurons in NCM (Yanagihara & Yazaki-Sugiyama, 2016) has been shown to arise as a con-
sequence of sensory experience and correlate with the quality of sensorimotor learning later
in life. Song may be a special case of an auditory memory, given that it is a sexually dimor-
phic behavior (in most songbird species, only males sing) and these brain circuits may be
specialized for song learning and production. However, selectivity for other learned sounds
have been observed in multiple species (Gentner & Margoliash, 2003; Meliza & Margoliash,
2012; Wang et al., 2020) and for other natural call categories (Elie & Theunissen, 2015).
For example, in starlings neurons are more likely to exhibit high selectivity to behaviorally
relevant (i.e. learned in an operant task) than unfamiliar (i.e. novel) song motifs (Gentner
& Margoliash, 2003; Meliza & Margoliash, 2012).

Selectivity for one or a few stimuli cannot tell the whole story of individual recognition.
In particular, it fails to capture the time varying structure of the neural response which can
carry information about the type of a call or the identity of a vocalizer (Elie & Theunissen,
2019). The heterogeneity of response patterns in the auditory regions of the songbird also
makes interpretation after averaging single neuron responses over the population difficult.
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One complementary approach is to understand how auditory regions as a whole are mod-
ulated by learned versus unfamiliar stimuli. For example, differences in noise correlation
structure between task-relevant and non-task stimuli have been observed in the caudolateral
mesopallium (CLM) that can enhance the representation of behaviorally important signals
(Jeanne et al., 2013). Another way that we may grapple with the heterogeneity of re-
sponse patterns is by looking at sub-populations of neurons within an area that may play
different computational roles. For example, inhibitory interneurons in NCM are thought to
shape auditory learning and memorization (Pinaud & Terleph, 2008; Thompson et al., 2013;
Yanagihara & Yazaki-Sugiyama, 2016), and may be acted on by several different neuromod-
ulators such as estradiol (Vahaba & Remage-Healey, 2018) and dopamine (Macedo-Lima
et al., 2021) to drive plasticity. These sub-populations may be distinguishable using their
extracellularly recorded spike waveform shapes.

In the current chapter, we investigate the hypothesis that neural representations of con-
specific vocalizations are modulated by a birds’ previous experience with the stimulus. We
measured stimulus response properties of neurons across primary and secondary auditory
regions of zebra finches who had undergone operant training in the vocal recognition tasks
described in the previous chapters. We found that at the population level, task-relevant
vocalizers were not over-represented in the neural response, neither in single unit selectivity
measures nor when ensemble decoding was applied. However, we did find evidence that
the information capacity of the neural code, measured by the coherence, was greatest when
responding to task relevant stimuli.

Data for these analyses were collected from electrophysiological recordings in the anes-
thetized zebra finch. To identify single neurons in our dataset, we developed a custom,
semi-automated spike-sorting procedure in order to handle electrode “drift”, a common is-
sue in electrophysiological recordings (Bar-Hillel et al., 2006; Dhawale et al., 2017) when a
single neuron’s waveform changes shape over time during the course of a recording. The Ma-
terials and Methods section of this chapter includes a description the data pipeline software
and methods used for sorting non-stationary spike shapes, which was originally developed
for chronic and acute recordings where spike waveform drift is a persistent issue.

4.3 Results

Neuron classification by spike shape

We obtained recordings of single unit spiking activity in primary and secondary auditory
regions of anesthetized zebra finch in response to playback stimuli of conspecific vocalizations
and synthetic noise sounds. The zebra finches were previously trained in an operant task
(Chapter 2) designed to test their memory for the song and distance call (DC) of several
conspecifics. Vocalization stimuli were organized by their task relevance (task-relevant if
learned in the operant task, non-task if not), the subject’s familiarity with the source vo-
calizer, and the stimulus reward class (Figure 4.1, see Table 4.4 in Materials and Methods).



CHAPTER 4. NEURAL ENCODING OF COMMUNICATION CALLS 50

Re NoRe

Task
Relevant

Non-task

Unfamiliar

Conditioning

Familiar

Reward-type

Familiarity

Non-task

Song DCCall-type

Figure 4.1: The familiarity hierarchy of vocalization playback stimuli. Task Rele-
vant : Stimuli learned in the operant task of Chapter 2. These are further subdivided into
Re (Rewarded) and NoRe (Non-rewarded). Non-task : Stimuli that were not used in the
operant task. These include Familiar vocalizations that subjects were naturally exposed to
in the colony room, recorded from birds either housed in the same cage as the subject or in
an adjacent cage, while Unfamiliar vocalizations were never exposed to the subject prior to
the recordings.

Each song or distance call stimulus contained three renditions.
We first categorized units by their signal quality, brain region and spike shape. Neurons

were categorized as belonging to CM, NCM, or Field L (encompassing sub-regions L1, L2a,
L2b, and L3), and by their spike shape as narrow-spiking (NS) or broad-spiking (BS). These
classifications are thought to represent distinct cell types and functional roles: narrow-spiking
units have been hypothesized to correspond to fast-spiking interneurons, while BS may repre-
sent excitatory projection neurons analogous to mammalian pyramidal cells (Mitchell et al.,
2007), though these classifications have not been validated in the auditory system of the bird
(Krentzel et al., 2018). Using the gap-statistic method to determine the optimal number of
clusters (Tibshirani et al., 2001), we identified three clusters of neurons by spike shape (Fig-
ure 4.2A&B. One cluster of units, with peak-to-peak duration < 0.4 ms, corresponded well
to previously reported narrow spiking (NS) units (Schneider & Woolley, 2013; Yanagihara
& Yazaki-Sugiyama, 2016), but our method found no clear subdivision of this cluster into
NS1 and NS2 clusters as reported by (Macedo-Lima et al., 2021) (Figure 4.2C). The two
remaining clusters could be classified as broad-spiking (BS) neurons and corresponded well
to the BS1 and BS2 clusters reported in (Macedo-Lima et al., 2021). In our analysis, we use
these classifications of NS, BS1, and BS2. The distribution of these neuron types sampled
in our dataset are shown in Table 4.1.

We next characterized the spiking properties of the neurons classified as NS, BS1, and
BS2. We computed spontaneous firing rates in silent periods before stimulus onset, and found
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Figure 4.2: Classification of units into broad and narrow spiking subtypes. (A) Left :
Distribution of spike times along the first and third principal components (PC1 and PC3),
with colors indicating cluster from fitting a Gaussian Mixture model with 3 components.
Color labels are applied to the same clusters in (B-E). Right : Gap statistic for Gaussian
Mixture models for different cluster sizes, and the optimal value of 3 clusters shown in
red. (B) Individual waveforms and mean waveform (dotted lines) for each of the identified
clusters. (C) Distribution of unit peak-to-peak duration (measured from the negative peak
at t = 0 to the time of the positive peak) against peak-to-peak ratio (the absolute value of the
ratio between the magnitude of the peak at t = 0 and the magnitude of the positive peak).
(D) Spontaneous firing rate FRspon for the three types of units in Field L, NCM, and CM,
computed as the average firing rate in 500 ms before stimulus onset. Box and whisker plot
shows the median value and 1st and 3rd quartiles; whiskers extend 1.5× the inter-quartile
range beyond the first and third quartiles. Significance bars show Wilcoxon signed-rank test,
all tests labeled with asterisks were significant with p < 0.002. (E) Average response strength
of the three neuron types in the three brain regions, measured as the difference between the
mean stimulus-evoked firing rate FRstim and the spontaneous rate FRspon. Significance
bars show Wilcoxon signed-rank test, all tests labeled with asterisks were significant with
p < 0.006.
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Region NS BS1 BS2 Total Units
L 113 140 76 329

NCM 39 54 43 136
CM 34 41 58 133
Other 38 56 91 185

Table 4.1: Classification of units from each auditory brain region sampled. L:
Field L complex including L1, L2a, L2b, L3; NCM: Caudalomedial nidopallium; CM: Cau-
dal mesopallium; Other: Undetermined or uncertain locations, including nidopallium and
hippocampus, that were not clearly located in one of the other three regions. These were
not used in further analyses, but most had clear auditory responses.

that NS and BS1 had similar spontaneous firing rates (µNS = 4.2± 0.6 Hz, µBS1 = 3.8± 0.4
Hz), while BS2 units had much lower spontaneous rates (µBS2 = 1.4±0.2 Hz) (Figure 4.2D).
This relationship was consistent across both Field L, CM and NCM. NS units were also the
most strongly modulated by auditory stimuli, shown by the difference between the stimulus-
evoked firing rates FRstim and the spontaneous rates FRspon (Figure 4.2E). In contrast, BS1
units showed smaller degrees of stimulus-evoked firing rate modulation despite having similar
baseline rates as NS units. BS2 units had the weakest auditory responses of the three groups
when measured by the mean firing rate.

Auditory neurons were not selective for task-relevant vocalizers

Heterogeneous responses were found across the sampled population of neurons. Several
neurons exhibited strong temporal alignment across repeated stimulus presentations (for
example, Figure 4.3A). In some cases, the strongest auditory evoked response was an “offset”
response, with peak firing rate occurring after each rendition (for example, Figure 4.3C).
These diverse response patterns across different neurons and stimuli may together capture
the information needed to discriminate between the vocalizations of different individuals.
We wanted to test if the past experience with a stimulus in an operant memory task affected
the information represented here.

We first asked if there were object selective units in our dataset that specifically encode
the song or DC of one or a few individuals. We quantified the selectivity of neurons for
individual vocalizer in our stimulus set using a measure defined in (Vinje & Gallant, 2000),
which we refer to as the selectivity index SI (Equation 4.2). This value ranges from 0 for a
broadly tuned neuron that responds equally to all stimuli, to 1 for a sharply tuned neuron
that only responds to a single stimulus. The mean firing rate FRmean between rendition onset
and 100 ms after offset was used as the definition of response strength1. To validate this

1100 ms after offset was included to capture offset responses of neurons with peak firing rates after the
end of a stimulus; example in Figure 4.3C.
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Figure 4.3: Raster plots of spiking responses in four units. Spiking responses of
four units (A-D) to one rendition of each song and DC stimulus. Each black dot represents
one spike; each row represents one stimulus presentation. Red curves above rasters show
estimated PSTH computed with a Gaussian KDE. Shaded region indicates when the stimulus
was on. (A) BS1L unit with SIsong = 0.37 and SIDC = 0.67. (B) BS1L unit with SIsong =
0.28 and SIDC = 0.31. (C) BS1L unit with SIsong = 0.03 and SIDC = 0.04. (D) NSNCM unit
with SIsong = 0.13 and SIDC = 0.24. Units (A-D) were all recorded from the same subject;
(A) and (B) were recorded simultaneously on one electrode.
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Region NS BS1 BS2 Total
L 4 7 9 20

NCM 3 0 3 6
CM 0 1 4 5
Total 7 8 16 31

Table 4.2: Distribution of selective units. Representative selective units were identified
by taking the top five selective units within songs and DCs in four firing rate bins (0.5-1 Hz,
1-2 Hz, 2-4 Hz, 4-10 Hz). Firing rate was computed as mean stimulus evoked firing rate over
all stimulus playbacks. Neurons needed at least 8 trials per playback file. Nine units met
this criteria for both song and DC, resulting in 31 units total. These units are highlighted in
Figure 4.4A&D and their response strengths to DC and song stimuli are mapped in Figure
4.4B&E.

metric, we estimated a null selectivity index SI0 for each neuron by simulating a Poisson
neuron with the same average firing rate but fixed to be uniform over all stimuli. The
distribution of SI0 over the population resulted in higher estimates of selectivity than from
real spike times for both songs (p < 0.001, Wilcoxon signed rank test) and distance calls
(p < 0.001, Wilcoxon signed rank test) (Figure 4.4B). Furthermore, S0 has a clear inverse
relationship with firing rate; this is likely due to the fact that the marginal impact of noise
or variability will have a large impact when firing rates are low (see Equation 4.2). Thus,
we must be careful when interpreting units with high SI but low firing rates, as even an
unbiased, random Poisson unit with a low firing rate will produce high estimates of SI.

To compare the selectivity of neurons across regions, we looked separately within NS,
BS1, and BS2 classes, which had very different spontaneous and stimulus evoked firing rates
(Figure 4.4C&F). We found that any differences between neuron types and brain regions
closely followed the null relationship: higher firing rate NS and BS1 units had distributions
shifted to lower selectivity, while lower firing rate BS2 units had distributions shifted to
higher selectivity.

Finding no clear evidence for over-representation of vocalizer selective units in the popu-
lation, we next asked if the selective units that we did find (e.g. Figure 4.3A) were influenced
by task-relevance of the stimulus in the subject’s past experience. The categories of task-
relevant and non-task were defined by whether or not the subject had been exposed to the
stimulus during the operant memory task of Chapter 2. We imagined two ways that task
relevance could potentially affect selectivity: (1) of the selective units in the dataset, more
units would be selective for task-relevant stimuli than non-task stimuli, and (2) selectiv-
ity measured over task-relevant stimuli would be greater than selectivity measured within
non-task stimuli.

To test (1), we selected the units with the highest selectivity and organized them by the
vocalization that elicited the strongest response. We then tested if these were more likely
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Figure 4.4: Selectivity for vocalizer identity. (A) Relationship between FRstim, the
mean firing rate over all playbacks, and selectivity index SI over vocalizers by DC. Pink
dots represent individual neurons. Grey dots show corresponding null estimates SI0, the
selectivity of simulated neurons with Poisson spike times and a uniform firing rate over all
stimuli. Thirty-one selective units are circled (criteria described in main text and in caption
of Table 4.2). (B) Heat-map of response strengths for the thirty-one selective units circled
in (A). Each row represents one neuron and each column represents one stimulus vocalizer.
Columns are organized by task-relevance and familiarity as in Figure 4.1. In half the subjects,
the reward contingencies were flipped; thus the heat-map is divided vertically to separate
the task-relevant stimuli by reward contingency. Response strengths were normalized to
the max response. Dotted lines show diagonal on which the maximum selectivity would
be expected to lie if each vocalizer was equally likely to be a neuron’s preferred stimulus.
(C) Probability density (smoothed histogram) of SI for DC, organized by cell type and
brain region. Shaded region denotes the distribution of SI0. Solid line is the distribution
of SI evaluated only within task-relevant stimuli, and dashed line is the distribution of SI
evaluated only within non-task stimuli. Task-relevant distributions did not differ from non-
task distributions (Wilcoxon rank-sum test with Bonferroni correction for 9 hypotheses).
(D-F) Same as (A-C) but for song vocalizers.



CHAPTER 4. NEURAL ENCODING OF COMMUNICATION CALLS 56

to have their preferred stimulus belong to the task-relevant category or non-task category.
We analyzed the responses to song and DC separately because of their differing SI statistics
(Figure 4.4A&D). In order to avoid oversampling from spurious SI values for low firing rate
units, we limited ourselves to the top 5 selective units across brain region and firing rate bins
(0.5-1Hz, 1-2 Hz, 2-4 Hz, 4-10 Hz) for each call type, resulting in thirty-one selective units2.
The response strengths of these units over the set of song stimuli and DC stimuli are shown
in Figure 4.4B and 4.4E. A qualitative assessment of these data suggest that selectivity for
vocalizer is distributed across the different levels of familiarity, from the task-relevant to the
completely unfamiliar. There was an over-representation of one of the task-relevant songs
(5th column in Figure 4.4E), with a large proportion of selective units maximally responsive
to that song. This was most likely not due to the reward contingency but to the acoustics of
the song, as in 2 out of the 4 subjects the reward contingency for this song motif was flipped
yet still drove similarly strong responses in our sample.

We then compared the distribution of SI over task-relevant and non-task stimuli. We
used repeated resampling to match the number of renditions in the two groups because
SI in Equation 4.2 is sensitive to the number of stimuli tested, and there were more task-
relevant stimuli in the dataset. We found no overall shift in the distribution of SI (Figure
4.4C&F) between the two groups (none significant using Wilcoxon rank-sum with Bonferroni
correction over nine hypotheses). Thus, we found no evidence for modulation of selectivity
based on previous task relevance or familiarity.

Ensembles in Field L and NCM have similar information about
vocalizer identity

Selectivity for object identity is just one way that information about an auditory object
may be represented in neural spiking patterns. In practice, the selectivity of real neurons can
be described as a continuum between object selective cells (sparse representations) and non-
selective cells (dense, distributed representations). To measure the information available to
the network about individual vocalizer identity that might be distributed over the population,
we looked at how single units and ensembles could be used to decode task relevant variables
and vocalizer identities.

We applied a simple procedure to reduce the dimensionality of the neural response prior
to decoding. We calculated each neuron’s time-varying response to a vocalization rendition
with a 500 dimensional vector representing the kernel density estimate (KDE) of spike times
in the first 500 ms after stimulus onset (1 ms bins and σ = 10 ms. This smoothed repre-
sentation represents spike trains with similar spike timing as similar vectors, with tolerance
defined by the width of the kernel. The neural responses were then projected into the the
top 10 principal components (PCs) of the neural response, explaining just over 70% of the
variance. The first 2 PCs are interpretable as two primary modes of response types, with
PC1 resembling a sustained response after a short latency from stimulus onset and PC2

2one of these units is the one shown in Figure 4.3A
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representing an onset response followed by a sustained inversion or return to baseline. The
remaining PCs appear to roughly correspond to a Fourier decomposition of the neural re-
sponse in the 500 ms window. Visual inspection of the highest frequency PC suggests that
the highest temporal resolution in this representation is on the order of 100 ms.

To quantify the information encoded at the ensemble level for task-relevant and non-
task stimuli, we used these reduced representations of single unit responses to decode at the
ensemble level. We sampled 1000 ensembles at several ensemble sizes from 1 to 40 neurons
in Field L, NCM, and CM. Each ensemble was constructed from within one brain region (L,
NCM, or CM), but using units across sites and subjects; as such, ensembles were not recorded
simultaneously and thus noise correlations or other measures of joint activity were not be
considered for analysis. An ensemble response vector was constructed by concatenating the
reduced response vectors from the individual units in the ensemble, and the top 10 PCs for
this ensemble response were used as input to the decoder. The ensemble neural response
(Figure 4.5A) was then used to train a Gaussian Naive Bayes (GNB) classifier to predict the
vocalizer identity of each rendition each vocalizer represented by three renditions and up to
ten trials per rendition (see Materials and Methods). Decoders were trained separately for
song and distance call stimuli.

Additionally, each classifier was separately trained and tested within either task-relevant
stimuli or non-task stimuli. The classifiers were scored by their percent correct classification
(PCC), the percentage of true vocalizer labels in a held out test set matching the predicted
labels of the GNB classifier. The classifier was also scored by the mutual information between
stimulus label and neural response from the confusion matrix generated from the posterior
probability distribution over the dataset.

We found that mutual information and decoding accuracy steadily increased from single
neurons up to 40 unit ensembles without maxing out (Figure 4.5B-D), showing that in this
representation, discriminating vocalizer identity requires the joint activity of several units.
Decoding accuracy was also approximately equal in both Field L and NCM while much lower
in CM, despite stronger similarities in firing rates and SI distributions between Field L and
CM than NCM (Figures 4.2 and 4.4). Furthermore, there was no difference in classifier
performance when trained and tested within the task-relevant and non-task relevant groups.
Thus, the information content of the ensemble neural response was not affected by previous
experience.

Estimation of information in single unit spiking patterns with
coherence

The decoding analyses used a reduced representation of the neural response which im-
posed strong assumptions about the information bearing features of the neural response.
Information was discarded by (1) restricting analysis to the first 500 ms from stimulus on-
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Figure 4.5: Performance of ensemble decoders for vocalizer identity. (A) First
10 principal components of the time-varying neural response across all units. (B) Average
decoder performance (PCC: percent correct classification) over 1000 ensembles sampled from
each brain region. Decoders were trained and tested on classifying the stimulus vocalizer
identity. Colors indicate the brain region from which units in ensembles were sampled from.
Solid curves show decoding within the task relevant stimuli, dashed curves show decoding
performance within the non-task relevant stimuli. Shaded region show 2 SEM. (C) The same
as C but for decoding within DC stimuli. (D) Average decoder mutual information between
response and vocalizer label within song stimuli as a function of ensemble size. (E) Average
decoder mutual information between response and vocalizer label within DC stimuli as a
function of ensemble size.

set3, (2) representing each trial with a Gaussian KDE of bandwidth 10 ms, (3) decomposition
using PCA to temporal resolution on the order of 100 ms, and (4) PCA at the ensemble level.
These assumptions potentially reduce the maximum performance of the classifiers because
of the amount of information that is discarded in these dimensionality reduction steps.

We estimated the upper bound, or capacity, of the information in the neural response
using the coherence, a measure of the reliability in the neural response from trial to trial.
Less reliability in the neural response across trials can limit the capacity of a neuron to
encode information about a stimulus. The neural response’s signal-to-noise ratio (SNR) can
be estimated by modeling the activity of the neuron on a single trial as the combination
of a “true” signal (a time-varying mean firing rate) with random noise. The magnitude-
squared coherence |γ2(ω)| between a single trial and the “true” signal is a measure of the
response SNR as a function of frequency (Hsu et al., 2004). Integrating the coherence over

3Offset responses as in Figure 4.3C and sparse responses as in Figure 4.3B are two clear examples where
restricting analysis to an onset window loses information.
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all frequencies gives an estimate of the information capacity of the neural response in bits.
One advantage of this approach is that it uses the raw spike times and does not require an
a priori assumption about the spiking timing reliability.

Of course, the “true” time-varying mean rate cannot be known in practice, but can be
estimated as the mean response over repeated trials. An unbiased estimate of the coherence
of each neuron’s spiking response with its “true” time-varying mean rate response was made
using the method described in (Hsu et al., 2004), using only a small number of trials per
stimulus. The information was then estimated by integrating over frequency bins where the
lower bound on the coherence estimate was non-zero (see Materials and Methods). This
resulted in a sampling bias toward higher firing rate units; reliable but sparse responses from
units like the one in Figure 4.3B tend to have low or zero information when measured this
way due to large confidence intervals around the estimated coherence (Figure 4.9).

Stimuli were divided into task-relevant and non-task DC and song renditions, and the
information of each unit was evaluated in response to all stimuli within these groups (Figure
4.6A&B). We restricted our analysis to units with non-zero information values for both
categories (Table 4.3). We found that units across all regions had higher information values
in response to task-relevant stimuli than non-task stimuli for both song and DC (p < 0.001
for both, Wilcoxon signed-rank test). Most units that had non-zero information to one or
both categories of stimuli were NSL and BS1L units. There was generally not enough data in
the other brain region and neuron type groups to test this effect. However, it is interesting
that Field L, the primary thalamo-recipient auditory region analogous to primary auditory
cortex, also exhibited modulation in spiking reliability based on task relevance, which is a
higher order feature. This modulation may be a result of network-wide plasticity, especially
considering that the recordings were performed in anesthetized animals.

We next considered if the shift in to higher information in response to task relevant
stimuli was a consequence of specific operant training, or general familiarity. We performed
two comparisons to test these potential explanations. First, we compared the coherence
in response to familiar and unfamiliar vocalizers that were not included in the operant
task (Figure 4.6C&D). We found that on average, the coherence of the neural response to
familiar vocalizers was higher than to unfamiliar vocalizers, suggesting that spiking reliability
in the population was partially modulated by general prior exposure and not just operant
conditioning.

Second, we tested whether the reward contingency (Re or NoRe) of a task-relevant stim-
ulus affected the information of the neural code. There was no difference in the coherence
between Re and NoRe responses to song (p = 0.11, Wilcoxon signed-rank test). Coherence
in responses to Re DC was slightly higher than to NoRe DC (p = 0.01), but the effect
was relatively small (Figure 4.6E&F). This evidence indicates that specific reward histories
have a minimal influence on modulation in spiking timing information. Furthermore, it in-
creases our confidence that the differences observed between the task-relevant and non-task
categories is not an artifact of a single stimulus in the task-relevant group.
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Figure 4.6: Coherence estimates for units responding to task-relevant and non-
task stimuli. (A and B) The information (in bits/s) in response to task-relevant stimuli
(x-axis) and non-task stimuli (y-axis). Top row shows data for DC, bottom row for song.
Information was estimated by integrating the coherence over all frequencies where the lower
bound of the coherence estimate was non-zero. Histogram shows the distribution of the
ratio x/y on a log scale, i.e. a projection of the scatter data, re-scaled for visibility. Single
asterisk indicates x > y with p < 0.05 (Wilcoxon signed-rank test). Double asterisk indicates
p < 0.001 (Wilcoxon signed-rank test). (C and D) Same as in (A, B) but comparison of
information measured within familiar (non-task) stimuli and unfamiliar stimuli. (E and F)
Same as in (A-D), but for Re and NoRe stimulus groups.
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Song L NCM CM
NS 61/81 (75%) 15/26 (58%) 9/23 (40%)
BS1 63/104 (61%) 21/32 (66%) 11/27 (41%)
BS2 13/49 (27%) 11/27 (41%) 4/30 (13%)

DC L NCM CM
NS 52/81 (64%) 12/26 (46%) 8/23 (35%)
BS1 44/104 (42%) 12/32 (38%) 5/27 (19%)
BS2 7/49 (14%) 3/27 (11%) 3/30 (10%)

Table 4.3: Neurons with non-zero information values for both task-relevant and
non-task playbacks. Each cell shows the number of neurons with significant information
values for both categories, out of the total number of units in that subgroup. Only neurons
with non-zero information to both categories and at least 8 trials per stimulus on average
were used in the analysis of Figure 4.6.

4.4 Discussion

In the preceding chapters, we showed that the zebra finch is capable of distinguishing
between several individuals using only the acoustical features in the song and distance call. In
this study, we did not find explicit representations of learned vocalizer identities at the single
unit or ensemble level. Instead, we found evidence that the response reliability of auditory
neurons in the zebra finch is modulated by a subject’s past experience with the stimulus. The
information capacity of each neuron was estimated by the spiking reliability over multiple
stimulus repetitions; we found information capacities that were (1) higher in response to
task-relevant vocalizations than non-task vocalizations, and (2) higher to vocalizations of
socially familiar birds than unfamiliar birds. These results suggest that both passive and
active learning of conspecific vocalizations changes the encoding of those sounds in auditory
circuits, capable of conveying more information about those sounds. Most of the neurons
used in this analysis were sampled from Field L, suggesting that this experience dependent
effect were not restricted to higher order areas like CM and NCM.

Selectivity for higher-order objects or object categories is a hallmark of sensory processing
associated with object recognition (Russ et al., 2008). As such, we first looked for explicit
representations of vocalizer identity in the form of “object selective” neurons for behaviorally
relevant stimuli. We found auditory neurons with selective response for a small number of
individual vocalizers (e.g. Figures 4.3A&B, 4.4B&E), but no evidence that these selective
units were reflect an over-representation of behaviorally relevant vocalization categories at
the population level.

On its own, selectivity can be an ambiguous or even misleading measure. For example, we
simulated units with uniform firing rates over all stimuli and found that the selectivity index
(Equation 4.2) is highly dependent on the window over which the firing rate is estimated
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and the magnitude of the neuron’s firing rate. In particular, the selectivity of low firing
rate neurons will be overestimated, as random noise will have a greater marginal effect.
Selective units in sensory systems are typically characterized by low firing rates to most
stimuli (Willmore & Tolhurst, 2001); this makes them hard to distinguish from random low
firing units with spurious high estimates of SI, and also relatively hard to trigger and detect
in the first place (given a finite stimulus set).

As another example, take the sparsely firing unit shown in Figure 4.3B. From the
stimulus-locked firing pattern, one may expect that it to have high selectivity, which ap-
pears inconsistent with the estimated selectivity index of SI = 0.28. This is because the
selective response to its preferred stimulus (the fourth rewarded song motif) does not come
from the raw number of spikes (firing rate), but the from its reliable spiking pattern in re-
sponse to its preferred stimulus, both across trials and precision in time. This suggests that
the selectivity index may be more informative when paired with other statistics that describe
the temporal aspects of the neural response as well. This observation was a primary moti-
vation to quantifying the reliability of the neural response using the coherence (Hsu et al.,
2004), and may also be addressed by decoder-based selectivity indexes that can take into
account the time-varying neural response (Elie & Theunissen, 2015).

Selectivity is an intuitive way to think about information encoding as it is an explicit
representation of object identity (Calvo Tapia et al., 2020). A more general method to mea-
sure the information a neural code carries about a stimulus is the mutual information (Borst
& Theunissen, 1999). We used a decoding approach to estimate the mutual information
between ensemble responses and vocalizer identity to see if the encoded information differed
between task-relevant and non-task vocalizations. The mutual information quantity mea-
sured this way can be thought of as a lower-bound on the information present in the neural
code. We first found that decoder performance and mutual information steadily increased
with ensemble sizes, out the largest ensembles tested (40 neurons). This suggests that the in-
formation needed to distinguish vocalizer identity is fairly distributed across the population.
Ensembles sampled from Field L and NCM were better suited for distinguishing individual
vocalizers than ensembles from CM. This result is slightly unexpected, as the neural response
of CM units are known to be modulated by task relevance (Gentner & Margoliash, 2003;
Jeanne et al., 2013; Jeanne et al., 2011; Theilman et al., 2021). Considering also that firing
rates and selectivity distributions of Field L and CM were comparable (Figure 4.4C&F),
and the neural population sampled was similar in CM and NCM (Table 4.1), further work
will be needed to determine what qualities of the ensemble response distinguishes CM from
L and NCM, and why it appears to carry less information about vocalizer identity. Using
this decoding approach, we also found no clear differences in the encoding of task-relevant
and non-task stimuli, although there was a possibility that task-relevant DC was easier to
decode in CM (Figure 4.5E).

The decoding approach models the variability in responses within and across stimulus
categories to estimate a lower bound on the information the neural response carries about
a stimulus. While variability across stimulus categories increases the information capacity
of the neural response, variability within the same category across trials limits how much
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information a neuron can convey about the stimulus category. We estimated the reliability
of the neural response using the coherence between a neuron’s individual spike trains to its
time-varying mean response (Hsu et al., 2004). In contrast to the selectivity and decoding
approaches, the coherence makes no assumptions about how or what information is encoded,
only that the information bearing feature of the response is the time-varying mean rate. We
hypothesized that a subject’s past experience in a vocal recognition task would affect the
information capacity of neurons in the auditory system, specifically in NCM and CM, the
secondary auditory areas involved in learning and memory of behaviorally relevant sounds
(Gentner, 2004; Macedo-Lima & Remage-Healey, 2020; Meliza & Margoliash, 2012; Pinaud
& Terleph, 2008; Thompson & Gentner, 2010). We found that the information capacities of
neurons across the population were indeed modulated by past experience: the neural response
was more reliable (i.e. had higher information capacity) in response to familiar stimuli and in
particular the set of task-relevant vocalizations previously learned in an operant task (Figure
4.6A&B).

This finding is similar to the finding reported in (Jeanne et al., 2011), which reported that
the mutual information between neuron firing rates in CLM and song motif identity were
higher for task-relevant motifs. They also reported higher information values in response
to rewarded stimuli than non-rewarded stimuli; we saw some weak evidence for this in the
information values for rewarded versus non-rewarded distance calls (Figure 4.6C). However,
our results differ in a few key ways. First, our analysis was performed on units sampled
across the auditory regions of Field L, NCM, and CM which had non-zero estimates for the
information capacity. The latter restriction may bias the sample towards higher firing rate
units, and as such most of the units in this analysis ultimately were Field L neurons (Table
4.3). Second, the information estimated in (Jeanne et al., 2011) was computed as the mutual
information between stimulus identity (i.e. song motif) and mean firing rate of the response.
That analysis quantifies the variability across stimulus categories and was thus more directly
analogous to the decoding analysis described above than the coherence based analysis.

As mentioned above, coherence as a measure of temporal spiking reliability across trials
may be a useful complement to the traditional measure of selectivity to better capture our
intuition of what constitutes a strong neural response. We must be careful, however, not to
mistake our intuition for what a neural representation looks like to the real thing. In all the
analyses presented in this chapter, we assume that the information bearing qualities of the
neural response are time-locked to sensory stimulus. However, this may not be the case when
complex natural behaviors such as individual vocal recognition are involved. At higher levels
of cognition the relevant processes may shift from alignment to external physical stimuli to
internal processes related to perceptual decision making or attention. Thus, the analytical
approaches described above that represent the neural response as aligned to stimulus onset
may be intrinsically biased toward stimulus-locked, lower-level responses. One solution will
be to use data-driven and unsupervised methods of identifying structure in the joint neural
activity of the population (e.g. Jeanne et al., 2013; Theilman et al., 2021).

One of the technical challenges addressed in this project was the spike sorting of non-
stationary waveforms. The issue of waveform “drift” is well documented in extracellular
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electrophysiological recordings (Bar-Hillel et al., 2006; Dhawale et al., 2017; Rey et al.,
2015). The approach described in this chapter was designed for recordings in the awake,
behaving zebra finch, in which the stability of the electrophysiological signal can be highly
variable and contaminated with noise from motion artifacts. The processing pipeline, com-
bining automated hierarchical clustering over time, cluster linking in a directed graph, and
manual curation, was fairly successful at identifying well-isolated, individual units which
often changed shape over a recording session or came in and out due to noise contamination.
One successful example is the well isolated neuron of Figure 4.7G, which was tracked and
distinguished from background noise for as long as possible in the recording session despite
a relatively low amplitude and slow drift over the hour-long session. Two other examples
are the neurons whose rasters are shown in Figure 4.3A&B. These two units were in fact
recorded on the same contact and had similar spike shapes (both BS1), while one had an
exceptionally low firing rate but was still able to be isolated. Anecdotally, these examples
and others increased our confidence in the single unit quality and cluster isolation of single
units used in our analysis.

Despite the original goal of a automated clustering algorithm with minimal human in-
tervention, the manual curation step of the process ultimately wound up being quite time
consuming for the 32-channel probes used in this project, requiring on average about a day
of expert manual curation per site. The time cost suggests that the current implementation
of this data processing workflow will not scale to the higher channel counts and high-density
arrays that will become commonplace in the near future (Chung et al., 2019; Jun, Steinmetz,
et al., 2017); however, the algorithm used here may still be useful as the basis for future
implementations will rely less and less on manual curation.

One of the primary factors that limits the scope of the current project is the fact that the
recordings were made in the anesthetized animal. Although the anesthetized preparation has
its advantages, understanding the neural code behind a high level behavior such as individual
vocal recognition will require the analysis of neural activity in the awake, behaving animal.
There is evidence that anesthesia can modulate or gate sensory responses; e.g. reduced audi-
tory selectivity in motor nuclei to the bird’s own song under anesthesia (Nealen & Schmidt,
2006; Vicario & Yohay, 1993), or reduced selectivity in song selective BS neurons in NCM
during sleep versus wakefulness (Yanagihara & Yazaki-Sugiyama, 2016). Thus, we cannot
rule out that our reported results here would be different in the awake behaving animal.
However, these results can serve as a useful baseline comparison in future experiments using
awake animals.

4.5 Materials and Methods

Behavioral testing and electrophysiology

All animal procedures were approved by the Animal Care and Use Committee of the
University of California, Berkeley (AUP-2016-09-9157) and were in accordance with the Na-
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tional Institutes of Health guidelines regarding the care and use of animals for experimental
procedures.

We performed extracellular recordings in auditory regions of four adult zebra finches
(2 male, 2 female). These zebra finches were previously trained in a memory task (fully
described in Chapter 2) for individual vocal recognition of songs and DCs of up to 54 con-
specifics4. The neural recordings were performed either within the first week after the initial
tests (N=2) or one month after the initial tests and immediately after a week of re-testing
on the full stimulus set (N=2). The latter pair experienced a month delay without exposure
to the stimuli, but the retention of learned memories for vocalizations in the stimulus sets
were verified (Figure 2.4).

Subjects were anesthetized with intramuscular injection of urethane solution and head-
fixed. One 32-channel multi-electrode tungsten array (MicroProbes) was mounted to a
stereotaxis (Kopf Instruments) and lowered with a hydraulic micromanipulator into the right
hemisphere. The signal was amplified and digitized on a digitizer chip purchased from Intan
Technologies. Starting from 100 microns below the surface of the brain, a set of stimulus
playback was played lasting approximately 70 minutes. After a set of playbacks, the drive
was lowered 50 to 100 microns and the process repeated. The cross sectional area of each
array (1mm x 2mm) spanned a large amount of the avian auditory system, the electrode
trajectories intersected primary auditory areas L1, L2a, L2b, L3, as well as the secondary
auditory areas of NCM, and CM (Figure 3.1). The designation of anatomical region for each
unit depended on the depth of recording and histological verification in Nissl stained sagittal
slices. Designations within the Field L complex (L1, L2a, L2b, L3) were considered to be the
same region L. Neurons that lay outside of one of the specific auditory regions analyzed were
labeled as nidopallium (Ni) and excluded. However, precise anatomical boundaries between
NCM and Field L subregions are often unclear (Vates et al., 1996) and as such the designa-
tions used in this report may be considered approximations. Neural data was recorded using
the Intan RHD 2000 Interface software and sampled at 30kHz.

Stimulus playbacks

During recordings, we played a stimulus set composed of conspecific vocalizations and
synthetic sounds, summarized in Table 4.4. The conspecific vocalizations included distance
calls and song from a subset of the rewarded (Re) and non-rewarded (NoRe) vocalizers used
in the operant memory tests, collectively referred to here as task-relevant stimuli. Also
included in the stimulus set were DC and song of birds who were housed with or next to
the recorded subject (familiar), or call and song of birds who the subject had never been
previously exposed to (unfamiliar). These vocalizations were not part of the operant memory
tests and are collectively referred to as non-task. These vocalization stimuli were prepared
by pseudo-randomly combining three renditions of song motifs or distance calls from the

4The behavioral performance of the four subjects used here correspond to the subjects S1, S2, S3, S4 in
Figure 2.2
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Relation Reward? Call Type # Stimuli Dur. Description
Familiar NoRe Song 6m 6.0 Non-rewarded songs
Familiar Re Song 6m 6.0 Rewarded songs
Familiar NoRe DC 3m, 3f 3.0 Non-rewarded DCs
Familiar Re DC 3m, 3f 3.0 Rewarded DCs
Familiar - Song 4m 6.0 Song of males housed

with or adjacent to
subject for at least
one month prior to
recordings†

Familiar - DC 3m, 3f 3.0 DC of birds housed with
or adjacent to subject for
at least one month prior
to recordings††

Unfamiliar - Song 4m 6.0 Song of males never be-
fore exposed to subject

Unfamiliar - DC 2m, 2f 3.0 DC of birds never before
exposed to subject

Unfamiliar - Ripple 10 2.0 Modulation limited noise
(ml-noise)

Table 4.4: Playback stimuli used in anesthetized recordings. Each stimulus file
was played 10 times per site. Song and DC stimuli included 3 renditions per stimulus file
separated by silent intervals. # Stimuli : m indicates male vocalizer, f indicates female
vocalizer. Dur.: Stimulus duration in seconds. †For male subjects, one familiar song was the
bird’s own song. ††In all subjects, one familiar DC was the bird’s own DC.

same vocalizer into 6-second long vocalization sequences for songs as in (Elie & Theunissen,
2016; Yu et al., 2020), or 3-second long vocalization sequences for DCs. Finally, a set of
10, 2 second long periods of modulation-limited noise, or “ripples”, were included. These
synthetic stimuli are white noise limited to low-frequencies of spectro-temporal modulations
to match the statistics of natural sounds (Elliott & Theunissen, 2009) and have acoustic
features that are known to drive primary auditory neurons. Each stimulus was repeated 10
times in a session, arranged pseudo-randomly such that the (k+1)th repetition of a stimulus
file would not occur until the kth repetition of all stimuli. Because the stimulus set lasted
for over 60 minutes and, a single neuron may not be present for all 10 repetitions (see “Spike
sorting of non-stationary data”).
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Spike sorting of non-stationary data

The process of isolating the spikes from single neuron sources in extracellular electrode
recordings is known as spike sorting(Rey et al., 2015, review). A challenge in spike sorting
is that the signal of one neuron’s action potentials on a single channel voltage trace may
be contaminated by system noise, motion artifacts, and spikes from other nearby neurons.
This problem is addressed by making the assumption that a single neuron’s spikes appear
in the voltage trace with a typical spike waveform shape which can then be used to identify
its spikes from noise and other neurons.

In practice, however, this waveform may not be constant and can drift over time. This
issue is exacerbated when there are large effects of motion and in long-term recordings.
Open-source spike sorting solutions have been developed with some success (Chung et al.,
2017; Jun, Mitelut, et al., 2017; Lee et al., 2017; Pachitariu et al., 2016), but tend to be
optimized for higher density recordings and struggle with non-stationary data as described
above. They also still require careful parameter tuning and manual curation, which can lead
to large discrepancies in neuron identification across algorithms.

We developed a custom, open-source Semi aUtomated Spike Sorting procedure SUSS5,
which incorporates ideas from several existing approaches and was particularly inspired by
the hierarchical sorting algorithm proposed in (Dhawale et al., 2017). SUSS combines an
automated algorithm to group similar spike waveforms in shape and time into clusters, and
a manual curation step to join those clusters over time. The general approach taken by the
automated algorithm was to break up the dataset into many small, unimodal clusters of
spikes localized in time, and then to link temporally adjacent clusters based on unimodality
of their combined spike waveform distributions. The manual curation step following this
procedure requires the researcher to manipulate and group these spike clusters rather than
grouping individual spikes. Parameters for splitting up and joining clusters were hand-tuned
to be specialized for the qualities of our zebra finch datasets, which were collected with
multi-electrode tungsten arrays in both awake and anesthetized zebra finches.

Data preprocessing

Electrode signals were high-pass filtered with cutoff frequency at 300 Hz and the common
mean across all channels subtracted from each channel. Potential spike events from the
filtered voltage trace of one electrode were detected using a threshold of 4 std in 5 minute
windows. The events detected this way were aligned to the peak value and cropped into
snippets of size 36 samples (1.2 ms), with the peak aligned to the center sample. This
produces X, a (N,M) matrix for each channel representing N detected events and M = 36
samples per spike snippet. Extreme outliers were removed from X using unsupervised outlier
detection (Breunig et al., 2000) on the first 2 PCs. This step only filtered out the most
heinous instances of noise contamination, so false positives were unlikely. The dimensionality

5https://github.com/theunissenlab/suss-sorter
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Figure 4.7: Semi-automated spike sorting. (A-C) Automated spike clustering schematic
(see main text for details). (D) 7 clusters were identified after manual curation. (E) Manually
identified clusters drift in shape over time. Large dots indicate cluster centroids that a user
manipulates and joins during manual curation. (F-H) Top: Individual waveforms and mean
for each cluster. Bottom: ISI (∆t) histogram. Red shaded region indicates ∆t < 1ms.
Percentage in top left shows % ISI violations where ∆t < 1ms. Firing rate in top right
calculated as 1

mean(∆t|∆t<10s)
. (F) A multiunit cluster rejected for > 1% ISI violations. (G)

A single unit included in analysis. (H) 5 clusters rejected because they were not present for
enough of the recording.
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of X was reduced to D = 3 dimensions using the non-linear embedding UMAP (McInnes
et al., 2018), producing an embedded data matrix XUMAP of shape (N,D).

Automated spike clustering algorithm

The core algorithm is described below:

1. The first step creates a set of clusters in short time windows. Data is first chunked
into windows of Nw = 2000 spikes, {W0, · · · ,Wi, · · · ,Wnwindows

}, where nwindows =
floor( N

Nw
) (Figure 4.7A). The data in the ith window, WUMAP

i , is clustered using a
Bayesian Gaussian mixture model (GMM) with 6 components (Figure 4.7B). This
results in a label vector Yi ∈ {1, . . . , 6}Nw . Although we are using a GMM, the data
under the UMAP projection WUMAP

i will not generally be Gaussian. However, the
purpose of this step is not to model the data distribution but simply to break up
the data into several small clusters. As such, the GMM could be replaced with your
favorite clustering algorithm.

2. The data in each cluster Wi[Yi = k] is further subdivided using the ISO-SPLIT
algorithm (Magland & Barnett, 2015). The data is projected into one dimension using
the first principal component of the waveform. ISO-SPLIT splits up multi-modal
clusters in favor of two or more unimodal distributions. This results in an updated set
of labels in each window Yi with typically somewhere between 6 and 12 cluster labels
per window.

3. A directed graphG is formed by first defining each spike cluster as a nodeNi,k consisting
of spikes Wi[Yi = k]. Each pair of nodes in adjacent bins (Ni,k, Ni+1,k′) is then
compared for similarity (Figure 4.7C). To do this, spikes Wi[Yi = k] and Wi+1[Yi+1 =
k′] are projected into 1-D using Linear Discriminant Analysis (LDA) and a two-sample
Kolmogorov-Smirnov test is applied. If the K-S statistic is less than a predetermined
threshold (chosen to be 0.5), we determine that the nodes are similar and an edge is
added to G joining (Ni,k, Ni+1,k′).

4. The construction of G in Step 3 results in a directed graph, where a node in window i
may have 0, 1, or 2+ incoming nodes. For a node Ni,k with 2 or more incoming nodes,
the labels Yi[Yi = k] are split up even further, by reassigning labels using an LDA
classifier fit to spikes of the incoming nodes’ waveforms and labeled by the incoming
node labels. The goal of this step is to split up clusters that have an ambiguous ancestor
in a previous window and to try and create continuous paths of similar clusters over
time.

5. The graph G is regenerated, following the procedure of Step 3 but using the up-
dated labels from Step 4. This leaves us with a directed graph comprised of several
weakly-connected component subgraphs whose spike waveforms are sufficiently similar
in adjacent windows. Each cluster in a weakly-connected component with 2 or fewer
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nodes is labeled a ”leftover”, while weakly-connected components with 3 or more nodes
were each assigned a unique label.

6. The “leftover” clusters are designated as such because the algorithm did not find a
sufficient number of similar spikes in adjacent windows. This can happen if the firing
rate of the unit is slow, or if the shape of the spike changes too quickly (relative to the
Nw = 2000 spike window).

7. Leftover spikes are then passed through the algorithm a second time (Steps 1-6, Figures
4.7A-C). During this second pass, a new “time aware” UMAP embedding is fit to the
concatenation of the leftover spike waveforms and a z-scored spike timestamp T in
units of hours, [Xleftover,Tleftover]. Low firing rate spikes are typically better captured
on this pass, since the dense, high firing rate units would typically have been labeled
and set aside after the first pass. The timestamp is included in the embedding because
the spike windows of Nw may span longer timescales than recorded units can typically
maintain a stable shape.

8. Finally, the result of the second pass results in a final group of leftover spikes that
never found a home. At this point, windowing is no longer effective as the remaining
clusters may be distributed all over the recording. Instead we simply apply UMAP to
the top 20 PCs concatenated with T, and apply ISO-SPLIT to fill in the final set of
cluster labels.

The above steps result in a set of cluster labels Y for the spike dataset X. This data
is over-clustered: there are far more data clusters than single neurons in the dataset6. The
directed graph in Step 5 generates long paths of connected clusters through time, in which
spike shapes change smoothly from window to window and the density of spikes is high
enough for reliable detection. There are also several small standalone clusters consisting of
noise, low firing rate units, and/or units whose shapes changed quickly during the recording.
To make manual manipulation of these clusters easier, each long cluster was then broken in
into several chunks with a maximum size of 2000 spikes. These smaller chunks form the basic
units that the researcher manipulates in the manual curation step (see Manual curation of
clusters, Figure 4.7E), and larger cluster chains are provided to the researcher as the default
suggested grouping. This provided some granularity in time to strike a balance between
flexibility for the researcher performing the manual curation without having too much fine
grained control over individual data-points.

Manual curation of clusters

Spike clusters were manually curated using a custom GUI written in Python that allows
for the joining, splitting, and deletion of clusters. Manual operations in this program were

6I designed the program in this way because I reasoned that, if manual curation was going to be a
necessary step anyway, that it would be easier to manually join together over-clustered nodes than to split
under-clustered nodes apart.



CHAPTER 4. NEURAL ENCODING OF COMMUNICATION CALLS 71

done on clusters identified in the automated procedure rather than directly on individual
spike events. Clusters were joined and merged by visually observing the waveform shapes
of clusters as a function of time in the dataset, primarily using a rotating projection of the
top 2 PCs (y-axis) as a function of time (x-axis) (Figures 4.7D and 4.7E). By selecting one
or more clusters, the researcher could visualize the distribution of spike shapes for one or
more clusters and decide whether they should be joined by looking at the unimodality of
the spike shape distributions, inter-spike intervals, and spike histogram aligned to stimulus
onsets. The output at this stage may result in a patchy distribution of units in which a chain
of clusters might abruptly stop due to changes in noise level or spike shape. To address this,
we estimated a smoothed firing rate over time for each unit using a Gaussian window with
bandwidth of 10 seconds, and applied a threshold of 1

2
the mean firing rate. Epochs during

which the smoothed rate was below the threshold were excluded under the assumption that
the unit was lost or that the baseline noise level was too high for the unit to be detected.
While this may artificially exclude data during which the neuron is simply quiescent, there
is no way for us to verify the persistence of a cell in these conditions.

Single unit criteria

The output of the semi-automated spike sorting results in a collection of several clusters of
putative units. To isolate single units, we filtered the proposed units to those with large spike
shapes relative to the baseline noise (SNR > 5.0) and less than 1% of adjacent spikes having
an inter-spike interval of less than 1 ms. SNR was defined as the peak-to-peak amplitude
of the mean spike shape (measured in µV ) divided by the average standard deviation of the
spike shapes in the cluster measured at each time point.

An example spike sorted session and the result of manual curation is shown in Figure
4.7. During this 1 hour session, the stimulus set described in Table 4.4 was being played
and 7 different clusters can be found on the single electrode after the manual curation step
(Figure 4.7D-H). When projected into a 2 PCs the units are not separable, but the presence
of multiple units becomes more apparent when viewed as a function of time. With our
algorithm, we successfully isolated the relatively small spikes of the unit shown in Figure
4.7G from the multiunit background activity in Figure 4.7F. Unfortunately, of the 7 clusters
identified, only this unit passed the criteria for analysis. The cluster in Figure 4.7F had
SNR > 5 and had over 1% of inter-spike intervals violate the refractory period of ∆t < 1ms,
and so was considered to be multi-unit. On the other hand clusters in Figure 4.7H were well
isolated with high SNR and low percentage of ∆t < 1ms, but were not present for a long
enough period of time in the recording (Figure 4.7E) to have a sufficient number of trials
per stimulus for analysis (chosen to be at least 6 out of 10 trials per stimulus on average).

The single unit criteria applied here forced us to exclude many units from our analyses,
such as those in Figure 4.7H. However, there are examples of successes as well; see Figure
4.3A&B for an example of two units recorded on the same electrode, with both units classified
as BS1.
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Classification of units

Units were classified by their spike shapes, following the broad spiking (BS) and narrow
spiking (NS) classifications that have previously been observed in NCM and brain regions
(Macedo-Lima et al., 2021; Meliza & Margoliash, 2012; Schneider & Woolley, 2013; Yanagi-
hara & Yazaki-Sugiyama, 2016). Historically these classifications have been identified from
the spike waveforms’ peak-to-peak duration and peak-to-peak amplitude ratio, where the
peaks represent the large, negative peak of the spike shape during depolarization and shal-
low, positive peak during hyperpolarization (Figure 4.2B).

To perform this classification, 2 ms (60 samples) spike snippets were aligned to the peak
and waveforms were cut to include 0.5 ms before the peak. Each neuron was then represented
by its mean spike waveform computed across all of the spike snippets assigned to it during
spike sorting and normalized to the amplitude of its negative peak. Finally, we took the top 5
PCs of this distribution (98% variance explained) and applied Gaussian mixture models with
a variable number of clusters. The optimal number of clusters was determined by computing
the gap-statistic (Tibshirani et al., 2001) over cluster counts (Figure 4.2A), and resulting
optimal cluster assignments were related to known classes or subclasses of narrow-spiking or
broad-spiking units..

Analysis of firing rates

The response of each unit was characterized by its spiking responses aligned to stimulus
rendition onsets. Each stimulus playback included 3 renditions of a song or DC from the
same vocalizer. For each unit, a baseline spontaneous firing rate was estimated by averaging
the spike rates in silent time windows before rendition onset. These time windows were
taken to be as long as 500 ms, though necessarily shortened in cases when the silent period
between two renditions was less than 500 ms.

Stimulus-evoked firing rates were computed by estimating the firing rate in the window
from the start of a rendition to 100 ms after the end of a rendition. This short window after
stimulus offset was included to capture “offset” responses of neurons such as those illustrated
in Figure 4.3C where the neuron’s peak firing rate occurs after the conclusion of sound. The
mean stimulus-evoked firing rate FRmean to a set of stimuli is computed by taking the number
of spikes evoked to each rendition divided by the duration of the rendition, and averaged
over all relevant trials depending on the analysis (e.g. all trials of familiar vs unfamiliar
stimuli).

To capture temporal dynamics of the neural response for decoding, we also represented
the neural response as time-varying firing rate. This was measured as a peri-stimulus time
histogram (PSTH) aligned to the onset of each rendition. The PSTH was computed as a
kernel-density estimate of the distribution of spike times relative to stimulus onset. For a
neuron’s N spike arrival times relative to stimulus onset τi for i = 1..N , the KDE estimate
at time t relative to stimulus onset is given by Equation 4.1.
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ρKDE(t) =
N∑
i=1

1

σ
√
2π

exp

(
−(t− τi)

2

2σ2

)
(4.1)

The KDE can be estimated on a single trial to form a smoothed spike train, or over a
series of stimulus repetitions to estimate the time-varying mean firing rate as in Figure 4.3.

Stimulus selectivity

We estimated the selectivity index SI of single units for one or more individual vocalizers
in the dataset using a measure of sparsity defined in (Vinje & Gallant, 2000):

SI =

1− (
∑ Rs

n
)2∑ R2

s
n

1− 1
n

(4.2)

Where Rs is the measured response strength (i.e. FRmean) to a stimulus s and averaged
over n stimuli. Values near SI = 1 are selective to a single stimulus, while values near
SI = 0 are fully dense and respond to all stimuli equally. Random variance in the estimation
of Rs will produce spurious estimates of the SI. For example, single spikes will have a
large effect on SI computed for low firing rate units. We observed this inverse relationship
between stimulus-evoked firing rates in our dataset (Figure 4.4B). To account for the natural
relationship between firing rate and selectivity, we computed a null selectivity index SI0 to
pair with each estimate of SI. The null estimate was computed by taking the average firing
rate of the unit over all stimuli λ and then simulating a Poisson process of a spiking unit
with a fixed firing rate λ over the same set of trials and trial durations.

The selectivity of units for task-relevant stimuli and non-task stimuli (colored lines in
Figure 4.4C) were computed separately for songs and distance calls. Our stimulus set in-
cluded more stimulus presentations for the non-task compared to the task stimuli; SI for the
non-task stimuli was estimated by random sampling so that n = 12 for every estimate of SI.

Coherence and information capacity

The magnitude-squared coherence, |γ2(ω)|, is a statistical measure that quantifies the
degree of linear relationship between two signals as a function of frequency ω. When applied
to a neuron’s spiking activity, it quantifies the reliability of a neuron’s response to repeated
presentations of a stimulus, and thus its capacity to convey information about a stimulus
(Hsu et al., 2004). Below, we describe the method in (Hsu et al., 2004) we used to compute
unbiased estimates of the coherence between a neuron’s single trial spike trains and its “true”
response, the time varying mean rate. This method allows us to estimate the coherence in the
10 or fewer trials present for each stimulus in our dataset, and to estimate a lower and upper
bound on the coherence. Source code of the implementation used in Python is online7. The

7https://github.com/theunissenlab/soundsig/soundsig/coherence.py.
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1s

A B

Figure 4.8: Illustration of coherence calculation for a single unit. Shown is a raster
plot for 8 repeated presentations of two stimuli (not shown). Trials are randomly assigned to
signal A (blue) or B (orange) and binned into 1 ms bins, illustrated by the smoothed PSTH
above the raster. The width of bins is exaggerated in figure for illustration purposes. The
cross spectral density and coherence is estimated in overlapping segments over all stimuli.

coherence between signals x and y is given by Equation 4.3, where Cxy is the cross spectral
density of x and y and Cxx and Cyy are the auto-spectral densities of x and y.

γ2
xy(ω) =

|Cxy|2

CxxCyy

=
⟨x∗(ω)y(ω)⟩⟨x(ω)y∗(ω)⟩
⟨x∗(ω)x(ω)⟩⟨y∗(ω)y(ω)⟩

(4.3)

The neural response Ri(ω) on a single trial is modeled as the sum of the deterministic
response of the unit A(ω) and independent noise Ni(ω). The goal is to estimate the coherence
γ2
AR between a single trial response R and the true response A; the problem is that in real

experimental data, A is not known. Our best estimate of A is the PSTH, RM = 1
M

M∑
i

Ri.

Because all trials are included in the estimate of RM , each trial is correlated with RM and
thus the coherence estimate from this dataset γ2

ARM
would be overestimated. The method

in (Hsu et al., 2004) derives the following unbiased estimate of γ2
AR:

1

γ2
AR

− 1 =
M

2

−1 +

√
1

γ2
M
2

 (4.4)

Here the value γ2
M
2

is the coherence between two PSTHs computed by averaging two non-

overlapping subsets of M
2
trials from the M total trials.

The practical algorithm for computing γ2
AR from our data is described here:

1. We take the spiking responses of a unit to a set of stimuli. We limit our analysis to
stimuli for which there are at least 8 trials. For each rendition the neural response plus
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200 ms of padding before and after the rendition were included to capture the onset
and offset signal.

2. Trials are randomly assigned to group α or group β. The spikes in each group are
binned at 1 ms resolution (Figure 4.8 shows an example with bin width exaggerated
for illustration). This forms two time-series αM

2
and βM

2
.

3. In order to estimate the time-averaged cross spectrum C, the signal is broken up into
Ns overlapping segments of size 1024 bins with overlap of 512 bins. The signals are then
tapered using 5 tapering windows of the discrete prolate spheroidal sequences (DPSS).
These tapered windows reduce edge effects of spectral estimation during segmentation.

4. The cross spectral density Cαβ and auto-spectral densities Cαα and Cββ are estimated
for each taper in each segment using the Fast Fourier Transform (FFT).

5. The coherency (Equation 4.5), coherence, and error bounds on the coherence are es-
timated using a jackknife procedure (Thomson & Chave, 1991), averaging C over all
segments.

γαβ(ω) =
⟨Cαβ⟩√

⟨Cαα⟩⟨Cββ⟩
(4.5)

6. The procedure from Step 1 is repeated over multiple shuffled assignments of trials to
A and B.

Given the unbiased estimate of a single unit’s coherence, we can summarize it using the
normal mutual information. In the discrete case, we compute it using Equation 4.6, where
∆ω is the size of a frequency bin in the discrete FFT, here 1 kHz, and kmax is the index of
the first frequency bin where the lower bound of the estimate of γARM

is zero.

I = −
kmax∑
k=0

log2(1− γ2
AR(ωk))∆ω (4.6)

This information measure quantifies the noise power level and information capacity of the
neuron. We use this quantity to compare the information coding capacity of the neuron under
different conditions, e.g. for comparing the neuron’s information capacity when task-relevant
versus non-task, or for familiar versus unfamiliar stimuli.

Single unit and ensemble decoding

We used a Gaussian Naive Bayes (GNB) decoder to quantify the information in single
unit or ensemble responses regarding reward history, task relevance, and call type. The input
to the decoder was a dimensionality reduced representation of the neural responses of single
units or ensembles.
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DC Song DC Song

Figure 4.9: Coherence functions of four units for task-relevant and non-task stim-
uli. The coherence curves as a function of frequency for task-relevant stimuli, non-task
stimuli, and modulation limited noise stimuli. Shaded regions show 95% CI of jackknife
estimate for |γ|2. (A-D) correspond to the units show in Figure 4.3.

As described in the Results, spikes in the first 500 ms after stimulus onset were smoothed
with a Gaussian kernel (Equation 4.1) of width σ = 10 ms and sampled in 1 ms bins. Thus,
each trial can be described by a vector of length 500 representing the estimated PSTH on a
single trial. The dimensionality of this representation was reduced by projecting each trial
into the top 10 PCs, fit to all trials for all units, resulting in each trial of a single unit
(SU) being represented by a vector of PC coefficients XSU = [P1, .., P10]. The top 10 PCs
explained over 70% of the variance in the dataset.

To decode within an ensembles of units, we represented the ensemble response as the
concatenation of all single unit response vectors. For an ensemble of size K, we sampled
units from the relevant pool of units, typically one brain region out of Field L, NCM, or
CM. Units in the ensemble were sampled from any subject and recording site, and trials
were aligned together randomly. In other words, these ensembles were “virtual” in the sense
that units were not recorded simultaneously. To represent an ensemble response, we first
concatenated the single unit response vectors (in the 10-dimensional PCs space) to form a
length 10×K joint vector, then reduced to the top 10 PCs fit to only the ensemble responses:
Xensemble = PCA([XSU

1 , ..,XSU
K ]). The number of PCs was chosen somewhat arbitrarily; on

average, 30 PCs explained 58% of the variance for ensembles of K = 40 units (max=71%)
and 87% of the variance for ensembles of K = 8 (max=99%), while 10 PCs explained 56%
for K = 8 (max=90%) and 31% for K = 40 (max=46%). Yet, we found that the decoder
did not perform better for more PCs, suggesting that the relevant information was likely
already lost in the initial dimensionality reduction at the single unit level.

The Gaussian Naive Bayes algorithm assumes that the responseX is normally distributed,
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conditioned on the data label l (here the vocalizer identity). Each distribution has an
independent mean µl and variance σ2

l , where the components of the distribution along each
dimension of X can have independent means and variances.

p(X|l) ∼ N(µl, σ
2
l ) (4.7)

The posterior probability over vocalizers given a response vector is

p(l|X) ∝ p(l)p(X|l) (4.8)

When appropriate, a uniform prior over label classes p(l) = 1
|L| was applied, where L is the

set of vocalizers in the data. The posterior probability can be maximized to get a predicted
label l, or accumulated over all trials to form a joint probability distribution over response
X and vocalizer label l, which we treat as a confusion matrix.

During each fitting procedure, 40% of trials were held out as a test set used for evaluation
of decoder accuracy. The remaining 60% of trials were used to fit the model coefficients µl

and σl. We compute the accuracy of the decoder using percent correct classification (PCC),
which is computed by choosing the predicted label l that maximizes p(l|X) on each trial
and determining the probability that it equals the true label. This fraction collapses the
information in the likelihood distribution into a single label. To provide a more nuanced
estimate of the information content in the neural response given by this decoding method,
we calculate the mutual information using the joint distribution between the actual and
predicted labels, p(l, l′). This mutual information, MI(l; l′) is given by Equation 4.9:

MI =
L×L∑
(l,l′)

p(l, l′) · log2
(

p(l, l′)

p(l)p(l′)

)
(4.9)
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Chapter 5

Conclusion

In these experiments, we make progress toward linking the vocal recognition behavior of
the songbird to its neurological basis. In Chapter 2, we quantified the memory capacity of
zebra finches by testing how many individuals a bird could recognize by communication calls
alone. To do so, we designed an operant task which allowed us to reliably assess birds on
recognition over a large set of vocalizers. We found that the memory capacity was large—
subjects recognized forty unique conspecific individuals by song and distance call without
signs of plateauing. This finding is roughly consistent with the natural group sizes of the
zebra finch. In the wild, zebra finch mating pairs are the primary social unit (McCowan et
al., 2015) but individuals are typically found foraging or traveling in small groups of up to 20
(McCowan et al., 2015); breeding colonies can consist of over 100 individuals (Zann, 1996).
While previous work has shown that zebra finches are capable of recognizing their mate’s
vocalizations (Miller, 1979a; Vignal et al., 2008), our findings show that the zebra finch
memory capacity for vocalization sounds is large enough for them to recognize individuals
within their typical group sizes and likely more. Future work will be needed to test the
upper limits of this capacity, especially under naturalistic conditions when birds can rely on
additional social and visual cues.

In nature, zebra finches communicate with a repertoire of at least 12 ethogram-based call
types (Zann, 1996), several of which carry information about the vocalizer identity (Elie &
Theunissen, 2016). In contrast, much of the neuroscientific study of songbirds has typically
focused on song. Restricting our attention to song may limit our understanding of individual
recognition, especially considering that in most species only male birds sing and that song
may be most relevant to territorial or mating related behaviors rather than more general
social dynamics. In the projects described here, we included the distance call, a loud contact
call produced by all members of the species and used while birds are out of visual contact.
While it has been previously shown that zebra finches can use the distance call for individual
recognition (D’Amelio, Klumb, et al., 2017; Elie & Theunissen, 2018; Vignal et al., 2004), we
demonstrate the impressive capacity of the zebra finch for remembering reward associations
for distance calls as well as song. Further work on vocal communication should include even
more call types that are frequently used in social interactions, such as the stack call which is
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a soft contact call elicited more frequently than both the song and distance call during close
range communication (D’Amelio, Trost, et al., 2017; Ter Maat et al., 2014).

The behavioral task of Chapter 2 formed the basis of our subsequent neurophysiological
experiments. We found that bilateral ablation of NCM caused deficits in memory storage and
retrieval when subjects were tested on the large set of vocalizers, confirming its causal role in
individual vocal recognition. These results are consistent with previous studies which showed
evidence for the involvement of NCM in auditory memory behaviors (Gobes & Bolhuis, 2007;
London & Clayton, 2008; Thompson & Gentner, 2010). However, lesion to NCM did not
completely eliminate the ability for birds to accomplish the task, suggesting that additional
brain regions may be used or recruited. Successful performance in this task may engage
several areas of cognition, e.g., attention, perception, auditory memory, reward association,
memory retrieval—which of these components are affected by chronic NCM lesion remains
unclear. To better distinguish these possibilities, future studies can use acute manipulations
of pathways involving NCM during specific phases of the task to shed light on the functional
role of NCM in recognition and auditory memory; for example, through electrical stimulation,
optogenetic, or pharmacological manipulations (e.g. Macedo-Lima et al., 2021).

Our analysis of single neuron response properties in NCM, CM, and Field L in the anes-
thetized zebra finch also revealed experience dependent changes in the encoding of vocal
sounds. We found that the information capacity in response to familiar vocalizers, in partic-
ular task-relevant vocalizers, was greater across the sampled population of primarily Field L
neurons. These results were consistent with (Jeanne et al., 2011), which described an increase
in neural information for learned song motif identity in CLM and CM in starlings. Com-
bined, these results suggest that the plasticity that shapes auditory circuits during learning
alters spiking reliability across the entire auditory system. One particularly promising direc-
tion for future research will be to understand the connection between association learning
and dopaminergic innervation of interneurons in secondary auditory regions (Macedo-Lima
et al., 2021). More work will be needed to determine what specific aspects of the neural re-
sponse are modulated by familiarity and the underlying mechanisms that cause the reliable
responses.

We also looked for explicit representations for vocalizer identity in the form of object
selective neurons. In the auditory areas we sampled, we did not find any greater selectivity
to learned vocalizers than we would expect by chance. However, our intuitive understand-
ing of neural selectivity (i.e., lifetime sparsity, Willmore & Tolhurst, 2001) was not always
consistent with the selectivity index measured using mean stimulus-evoked firing rates. This
was particularly true in neurons with phasic, time-locked responses, and neurons with very
low firing rates. Future work should be done to better understand how variability in the
neural response with a limited number of trials affects the selectivity index to avoid spurious
estimates of selectivity. A complementary method for identifying representations of vocalizer
identity would be through invariance; in the primate visual system, object selective neurons
exhibit invariant responses in response to the same underlying stimulus (e.g. a face) over
naturalistic transformations (Freiwald & Tsao, 2010; Ito et al., 1995). For vocal communica-
tion sounds, a neuron encoding individual identity could be identified by invariant responses
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to all calls of one individual in the presence of background noise, overlapping calls, and even
across other call types. It remains to be seen whether such neurons exist in the zebra finch
auditory system, or at all.

Understanding both the behavior and neurological basis of individual vocal recognition
in the songbird will require a mix of artificial and naturalistic experiments. The operant
go/no-go responses used in our tasks in Chapters 2 and 3 was useful for testing birds on
a large number of stimuli, but may not be an accurate representation of how a bird would
process a conspecific vocalization in a natural setting. Future experiments not concerned
with maximizing the memory capacity of these birds may consider measuring natural re-
sponse behaviors to recognized or unrecognized sounds instead, e.g., approach/avoidance,
aggression, antiphonal calling. Also, while we tested individual recognition by using the
actual calls and song of many different vocalizers, future studies may consider using artifi-
cially generated calls (e.g., Sainburg et al., 2020) that interpolate between the calls of two
behaviorally distinct individuals; in doing so, one could identify where birds draw categor-
ical boundaries between different individuals in acoustic space, and then search for neural
correlates of that boundary. Most importantly, electrophysiological recordings in the awake,
behaving animal will be crucial in understanding how learned auditory stimuli are encoded.
While the results of Chapter 4 show evidence of plasticity in the encoding of behaviorally
relevant vocalizations, only in an awake, behaving animal will we be able to demonstrate
how those circuits are used to map the acoustic vocal sounds into meaning and behavior.

The ability to recognize others—mates, parents, offspring, friends, rivals—forms the core
of social behavior. In many species, including humans, this is accomplished through vocal
communication. Through neuroethological studies like these, we are beginning to under-
stand how different species utilize individual vocal recognition to form and maintain social
relationships, and the neural computations required for transforming a sound into meaning.
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