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ABSTRACT OF THE THESIS 

Co-Registered 3D Laser Speckle Endoscope 

By 

Alexander Jabbari 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2016 

Professor Bruce Tromberg Irvine, Chair 

 

The problem addressed in this thesis is the need for incorporating multiple functionalities 

into one minimally invasive surgical probe.  A novel endoscope probe was designed with 

two 1mm cube cameras and an optical fiber inside a 3D printed casing, 7mm in diameter.  

This probe combined stereoscopic imaging, in order to obtain quantitative 3D 

measurements, and laser speckle contrast imaging, for quantitative flow analysis.   3D 

surface mapping was validated by comparing computed coordinates against their known 

real-world values.  Laser speckle contrast imaging was validated through an in-vivo and ex-

vivo study comparing the new micro-camera to an existing lab-grade sensor.  Both sub-

systems yielded results that indicate accuracy and sensitivity equivalent to existing devices.  

The combination of the two functionalities allows for highly accurate spatially resolved 3D 

surfaces.  These surfaces are combined with a co-registered laser speckle contrast image 

for later analysis.   Presented are the results from all validation studies and finalized dual 

functionality probe. 
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INTRODUCTION 

            Medical imaging has become one of the most prevalent methods of preventing and 

diagnosing diseases in the body.  The most common imaging modalities used in current 

medical practices include Magnetic Resonance Imaging (MRI), X-Rays, Positron Emission 

Tomography (PET), and computed Tomography (CT). These methods utilize powerful 

techniques to achieve high-resolution structural and functional images of the human body 

that aid in locating and diagnosing a myriad of medical conditions. Despite their utility, 

some of these imaging modalities use ionizing radiation, radioactive isotopes, or other 

techniques that can be harmful or too invasive to allow for frequent use on an individual 

patient.  This limitation in repeat imaging on a patient with long-term medical conditions 

can cause doctors to miss critical changes in their patient’s health[1].  Due to the nature of 

the aforementioned imaging techniques, other methods have been investigated and 

implemented over the past several decades that minimize the invasiveness of the imaging 

procedure and remove the harmful side effects present in the common existing modalities.  

One such imaging technique is diffusive optical imaging.  This technique uses near-

infrared spectroscopy (NIRS) to provide quantitative information on the concentrations of 

specific molecules in tissue[2].  By using low power lasers and detecting signals from tissue 

either in transmission or reflection geometries, clinical diagnoses can be made without 

causing a patient to ingest potentially harmful chemicals or be subject to ionizing 

radiation.  Recently, several advancements, such as optimal wavelength selection and 

optimal source detector separation have been made to increase the accuracy and speed of 

the current diffuse optical imaging methods (DOI)[3,4].  These advances in technology have 

allowed clinicians to track and observe changes that might have been previously 
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overlooked in the past using these new imaging techniques.  For example some of these 

longitudinal studies are used in cases of tracking breast cancer tumors or cerebral 

activation[5,6].  At the same time, reductions in size of the core components for these 

modalities have enabled smaller, less costly devices that limit the invasiveness of many 

internal procedures[7].  

Laser Speckle Contrast Imaging (LSCI) is one such diffuse optical imaging technique 

that has undergone significant recent technological advances. LSCI is a wide-field imaging 

technique that provides structural information and blood flow analysis of superficial 

vasculature in living tissue[8].  This emerging method utilizes the scattering of coherent 

light to analyze the interference patterns created when light reaches each pixel at slightly 

different times due to the difference in travel distance.  These images, referred to as speckle 

patterns, can be evaluated to give information pertaining to the motion of the scattered 

particles.  Lately, LSCI’s predominant use has been in neurovascular imaging applications 

in animals and humans.  Although these applications have required invasive procedures to 

access the subject’s vasculature for imaging purposes, the foundation exists for examining 

blood flow in small localized regions.  Generally, a small region of interest (ROI) of the 

vasculature is sampled to gain information regarding the tissue’s overall blood flow.  This 

prior work has shown compelling results in analyzing blood flow[9] so far as it has enabled 

.  However, these applications have also drawn attention to the limited penetration depth of 

the technology, which typically is about 1mm, depending on optical properties of the 

tissue[10].  While this prevents LSCI from achieving full-body scans and deep tissue images 

like MRI, this limitation can be circumvented through the miniaturization of current 

technology and delivered endoscopically for minimally invasive procedures.   
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One of the main minimally invasive surgical (MIS) devices used around the world is 

the endoscope.  Over the years endoscopes have evolved from rigid tubes inserted through 

the mouth to flexible fiber bundles capable of acquiring videos images of different internal 

regions of the body.  Endoscopes were previously only capable of enabling visualization of 

gastrointestinal tracks, stomach, or nasal cavities, but the miniaturization of technology has 

allowed for drastic improvements in endoscope functionality, incorporating both 

visualization and tissue manipulation.  Working channels that held tools for performing 

biopsies on lesions and polyps became a standard medical practice.  Eventually additional 

functional tools, including advance surgical tools were included to surpass diagnostic 

usages and move toward treatment purposes.  But even between treatment and diagnosis, 

endoscopes generally are limited in their ability to yield more than just two-dimensional 

visual information.  There is a compelling need in endoscopic procedures for surgeons to 

have interactive three-dimensional quantitative measurements.  Today, optical endoscopy 

is a standard tool in hospitals but is limited due its access to only  two-dimensional 

imaging, despite fact that common pathologic structures such as…… have three-

dimensional structure this is likely relevant to diagnosis.  Generally endoscopic procedures 

focus on imaging the colon, intestines, and stomach.  Surgeons usually look for small 

abnormalities that differ from surrounding tissue in order to make diagnosis.  They 

estimate the size and severity based on the images shown to them and their own skill and 

experience.  Exact measurements (and access to three-dimensional information) can only 

be made either through exploratory surgery or a biopsy.  

Stereoscopic imaging is a method to achieve a three-dimensional image by 

presenting two offset images to the right and left eye[11].  Depending on either active or 
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passive methods, a 3D scene can be formed from these two vantage points.  A passive 

stereoscopic image pair uses two superimposed images where depth is displayed with the 

use of polarizing filters[12].  This method usually requires a unique type of glasses needed 

to observe the apparent depth.  Active stereoscopic imaging is achieved by alternating the 

right and left images at sufficiently high frequency to give the appearance that the two 

images have fused together into one composite 3D scene[10].  Yet almost all passive and 

active methods provide an end result that has the appearance of three-dimensions, but 

without any dimensional values.  

Technological advances in computer vision have allowed for quantitative 

information to be gained from stereo images in a fast and reliable manner.  Epiploar 

geometry, the geometric relations between a 3D scene and 2D images, is implemented to 

extract real-space coordinates from a stereo image pair[9].  Here, knowing simple camera 

relations and properties, it is possible to recreate full 3D scenes from two images.  When 

these 3D scenes are constructed from a pair of stereo images and real world coordinates 

are calculated, it is referred to as triangulation.  Triangulation computes coordinates in real 

space, found in two images, relative to one of the cameras using the cameras intrinsic and 

extrinsic properties. 

            The primary focus of the work presented in this thesis was to combine both 3D 

stereo triangulation and LSCI into an endoscopic probe head. Pairing 3D stereo 

triangulation and LSCI into one device provides the possibility to overcome two major 

limitations.   By creating a system that can accurately give 3D dimensionality and analyze 

flow dynamics during MIS allows for greater information to be gained while not being 

constrained by skill or experience of the surgeon.  Furthermore, including a method for 
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evaluating blood flow inside the body grants the additional information not normally 

achieved through common DOI.  Combining these two modalities can greatly increase the 

effectiveness of endoscopic procedures by way of tracking areas of interest at more 

frequent intervals than established methods.    

This thesis describes the validation of two different imaging modalities needed to 

create a prototype which can effectively yield accurate three-dimensional measurements as 

well as blood flow analytics.  In Chapter, a validation study is performed to characterize the 

accuracy of a stereoscopic imaging system using a newly develop sensor, the NanEye.  

Chapter 2 discusses two different LSCI studies aimed at establishing the sensitivity of the 

NanEye.  Chapter 3 displays the full functionally of the probe after both imaging techniques 

have been incorporated into one endoscopic probe head.  Finally, Chapter 4 concludes the 

results and the importance of this advancement while discussing the limitations and 

additional future work needed. 
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Chapter 1: Stereoscopic 3D Imaging 

 

 Over the last 50 years multiple methods for discovering 3 dimensional  (3D) 

information of an image or scene have been described in the literature; laser triangulation, 

time of flight, phase structured fringe pattern light, and stereo vision to name a few [13].  

These methods can generally be classified as either active or passive.  Active methods 

require a controlled modulation of the intensity from the light source to obtain the 3D data 

points.  Oppositely, passive methods rely on ambient or stable light.  Active and passive 

techniques have tradeoffs between speed, accuracy, and computational power required.  

Stereo vision is one of the fastest and least computationally demanding methods of those 

that have been described, but it requires several steps that impose their own limitations.  

Detecting matched points in a pair of stereo images and a form of triangulation are the two 

most important steps in order to gain quantitative 3D data using stereo vision.  There are 

dozens of different feature detection algorithms, each one different depending on the type 

of element being searched for[14].  Scale-Invariant Feature Transform (SIFT) and Speeded 

Up Robust Features (SURF) are two robust matching algorithms used to correctly identify 

localized features between images[15,16].  Matched features between two images can then 

be triangulated to create individual 3D points or an entire scene.  One of the primary focal 

points of this work was the use of stereo vision with micro-scale cameras to generate 3D 

surfaces comparable with current 3D endoscopic devices. 

Normally minimally invasive endoscopic procedures provide a monocular view.  But 

over the years significant work has been made to achieve 3D endoscopic viewing.  Early 

attempts at attaining 3D images used a dual lens system with complementary multi-
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bandpass filters to create stereo image pairs and view the overlapping images[17]. Systems 

such as this one require an intricate apparatus just to acquire the data needed to create 3D 

images.  Still, results from this method only yield a 3D view of the scene and quantitative 

analysis cannot be performed. Even combining other well known medical imaging 

conventions such as optical coherence tomography (OCT) and implementing an optical 

frequency domain imaging (OFDI) system requires a complex series of optical components 

and remain computationally demanding[18].  Other improvements in MIS and 3D imaging 

were to use structured light to generate spatially high resolution 3D images.  The use of 

structured light did result in quantitative measurements and a resolution of 100µm when 

resolving 3D features[19].  This results in one of the most accurate 3D systems but does 

come at the cost of high computational power and sensitivity to movement fluctuations.  All 

of the aforementioned work shows significant improvements in the combination of MIS 

and 3D imaging but either requires numerous components or a high level of computational 

power.  The device that I describe is not limited but these constraints. 

1.1 Stereo Vision 

  Similar to the way human eyes process and understand three dimensional scenes, 

stereo vision uses two cameras to obtain offset images of the same scene.  Just as in human 

eyes, the two images are displayed as a right and a left side. The disparity between these 

images can be analyzed to obtain quantifiable measurements and relative depth from the 

scene imaged[20].   

 Over time this technique has been used in a multitude of applications in both the 

electronic world as well as in the biomedical world[21,22,23].  The principles of using two 
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offset images to display 3D scenes was the basis of 3D displays on devices ranging from 

movies and display monitors for gaming devices[24]. NVIDIA has implemented a stereo 

vision component to many of their graphics cards.  This display alternates a right and left 

image between 60 and 120 Hz to give the give the appearance of depth on screen.  Usually 

though, these displays need some form of polarized glasses in order to achieve the desired 

results.  In 2011 Nintendo released a handheld game console, Nintendo 3DS that 

implemented an autostereoscopic display.  This device had the ability to display 3D images 

or videos without the use of glasses or other accessories.  In the case of the Nintendo 3DS, 

this was one of the first commercially available handheld 3D display device.  As sensors 

continued to reduce in size, and computing speed increased; applications of stereo vision 

began to enter the medical device world.  Today there are several 3D endoscopes based on 

stereo vision[25].  The results from these devices range from displaying a surface map with 

little dimensional information all the way to full 3D scene reconstructions with accurate 

dimensional information. 

 Compared to other 3D imaging methods, stereo vision can be executed at variable 

speeds with minimal data acquisition time.  Compared to time of flight or structure from 

motion, stereo vision requires a minimum of two vantage points from the scene. Since this 

can be accomplished with two cameras working simultaneously, stereo vision does not 

require large storage space.  The downside of this method is without a point matching and 

triangulation algorithm, the displayed 3D scene only gives the appearance of depth and 

rarely can dimensional analysis be performed. 
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 For the purposes of this work, two AWAIBA NanEye 2D CMOS sensors (Awaiba 

GmbH) were placed in parallel with one another at a separation of 4.0 millimeters.  The 

NanEye has a resolution of 250 pixels (W) by 250 pixels (L) and takes single images or 

video ranging from 43 to 60 frames per second (fps).  Normally, for stereo vision to be 

effective the two images must to be co-registered or rectified with one another.  This 

ensures that both images lie on the same plane and is important for triangulation of points 

later on.  To circumvent the need for rectification the cameras were placed on the same 

axial plane as each other.  Due to the NanEye’s large field of view (FOV), 120 degrees, a 4.0 

millimeter separation was sufficient to maintain significant overlap in the two images, 

thereby maximizing the number of possible feature matches between images.  Figure 1.1 

shows an example of a stereo image pair taken with the two NanEye cameras.  The target 

object is a spherical object with a diameter of 40mm.  It was placed inside a 3D printed 

cylinder, radius of 50mm.  No illumination was used to capture the images in Figure 1.1, 

and the object was placed at the maximum length of the camera’s working distance, 35mm.  

With no illumination and at the edge of the devices working distance, the images appear 

blurry, yet they do provide enough distinct features for image matching to be performed on 

them.   
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Figure 1.1: Stereo Image Pair.   Two images offset by 4.0mm.   

1.2 Feature Matching 

 Feature detection or feature matching is the concept of computing abstractions from 

image information, usually in localized areas, and correctly identifying the same 

information in a different image[26].  Usually the identifiers matched between images are, 

edges, corners, or ridges of some object.  Over the years many detection algorithms have 

been developed, such as Canny, Sobel, FAST, or MSER to name a few.  However, these are 

simply feature detection and not true matching algorithms.  Scale-Invariant Feature 

Transform (SIFT) and Speeded Up Robust Features (SURF), are two well known algorithms 

that not only detect features in two corresponding images but also match the features 

between two images.   

 SIFT creates a database of feature descriptors in a training image.  This database is 

used to identify the same features inside a test image, even if the test image is populated 

with significantly more objects.  A key part that distinguishes SIFT from other feature 

recognition algorithms is that descriptors should be recognizable under changes to the 
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image such as, scaling, noise, illumination, and even translations.  There are four main 

stages for determining and matching features using the SIFT algorithm; scale-space 

extrema, keypoint localization, orientation assignment, and keypoint descriptor[27].   

The first stage, scale-space extrema detection, scans the entire image using a 

difference-of-Gaussian filter to find potential keypoints.  To determine these keypoints, a 

training image is convolved with a variable-scale Gaussian blur.  Equation (1) is the basis of 

the Difference of Gaussian implementation, which results in a data set of the strongest 

possible keypoints.   

                                       (1) 

                                  (2) 

              
 

     
            

    (3) 

Equation (2) specifies that either right or left image can be used as the training 

image; where * is the convolution operator in the x and y region,          is the Gaussian 

blur and        is the training image.  The resultant          is the aforementioned 

database populated with likely keypoints for future matching. 

  Next, keypoint localization fits a model to determine location and scale of every 

possible keypoint.  By looking at nearby locations, scales, and ratio of curvatures; keypoints 

sensitive to noise can be eliminated as possible future matches.  Subsequently, the 

orientation assignment stage maximizes the likelihood of matching and recognition by 

assigning a consistent orientation vector to each keypoint.  The consistency of the 

orientation allows for an increased change of a match.  Features that maintain similar 

orientation vectors, between two images, usually indicate invariance to rotation or 
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translation, thus a higher probability of a mach.  Lastly, the keypoint descriptor measures 

the local image gradients in order to allow the maximum allowable tolerance when 

matching with a test image[13]. A final thresholding filter is used to eliminate matches 

outside of the limits.  SURF relies on the same principles as SIFT but is considered a more 

robust and faster version.  One major difference between the two is SURF’s use of square 

filters to approximate Gaussian smoothing, which reduces on computational time[8].  

Depending on the robustness of the thresholding parameter initiated before using either 

algorithm, SURF can be as much as three times faster than SIFT when matching between 

images[28]. 

SIFT and SURF have distinct advantages over other feature detection algorithms.  

While SIFT is more computationally demanding than SURF, both are robust enough to not 

solely rely on edge or corner detection.  These algorithms also find keypoints based on 

illumination and curvature that other detection or matching algorithms will not take into 

consideration.  The threshold filter set for keypoint acceptance allows for even more robust 

usage when dealing with limited resolution.  Since the NanEye only has a resolution of 250 

pixels (W) by 250 pixels (L), SIFT and SURF are able to determine matches that other 

algorithms are unable to identify.  In Figure 1.2, the stereo pair is displayed and each 

matched point corresponds to a line drawn between the two images.  The combination of 

SIFT and SURF was able to match over 100 distinct features in a limited area.   
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Figure 1.2: Total SIFT and SURF matches found on an objects surface. 

As with any feature matching algorithm, not every pair of matches is necessarily 

accurate.  There are two distinct types of incorrect matches which must be identified and 

removed; false positives or mismatched features.  Additionally, because SURF is based on 

the original principles of SIFT, there will be repeating results that must be eliminated.  A 

false positive match occurs when SIFT and SURF recognize two features that are similar to 

one another yet are not true matches.  This usually results from an illumination disparity or 

contour shade in the image.  The resulting incorrect coordinates can be up to 5 or 6 pixels 

off from the correct image coordinate.  These errors are much more difficult to detect due 

to seemingly correct matches both from eye test and from relative position on the image.  

These errors are not detected until the 3D reconstruction stage where the triangulated 3D 

coordinates are physically impossible to have occurred.   

The second type of error that occurs is a complete false match.  This occurs when 

two features have enough mathematical similarity to fall within the tolerance level but in 

reality are displaying two distinct features.  Features that are very similar to one another 

but lie on opposite sides of the images can be misidentified as matches.  Usually this occurs 
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when looking at highly patterned surfaces which contain a high degree of symmetrical 

designs. 

To correct for false matches a simple test was run on all the matches.  Since the 

cameras are placed on the same axial plane as one another, matches must lie along the 

same horizontal line.  The horizontal coordinate of the matched feature on the right image 

was compared to the horizontal coordinate in its counterpart on the left.  If the coordinate’s 

difference was outside of an acceptable threshold, they were removed as false matches.  

Figure 1.2 shows that among all 100 matches, some are indicating two features that cannot 

be a match.  One example is the match indicated by the red line at the bottom of Figure 1.2.  

That match corresponds to two different areas on opposite sides of the object and thus 

cannot be a true match.  Upon removing all the mismatched features and double matches a 

smaller number of matches exist, but are more likely to be true matches.  Figure 1.3 shows 

the results after running a horizontal test check and removing all doubles, where there are 

now over 40 distinct matches. 
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Figure 1.3: Remaining SIFT and SURF matches after false positives, incorrect matches, and double matches are 
removed 

1.3 Triangulation 

 Mapping coordinates from real space onto an image and from and image to real 

space generally involves linear algebra and geometry.  A simple example of mapping 3D 

coordinates onto one of the image planes is given by the equation below. 

                (4) 

Here, m is the matrix of the x-y coordinates on the image, C is the camera projection 

matrix and M is the x-y-z coordinates in real space.  Equation (4) shows the mathematical 

equation needed to map real world coordinates to image coordinates.  Triangulation is the 

reverse of this problem and far more complex.  Triangulation is based on epipolar 

geometry; where a pair of stereo images is used to triangulate a common point between 

each image in the 3D world[29].  Figure 1.4 diagrams the basis of this geometric 
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relationship.  A line from each point, OL-P and OR-P, in the two images intersects 

somewhere in real space, P.   

 

Figure 1.4: Epipolar Geometry Diagram.  The basis for triangulation.  This diagram outlines the fundamental 
geometric properties that for the basis of triangulation. 

 Here, two images view the same scene with optical centers at OL and OR.  Point P is 

imaged onto the left and right images appearing as pL and pR, respectively.  A ray can be 

drawn from OL-P as well as from OR-P, where the intersection of these rays is point P in real 

space.  In order to solve for point P in terms of real world coordinates a triangulation 

equation was determined[30]. 

                          (5) 

Equation (5), states that given images coordinates,        from two images as well 

as the two camera matrices,      , than it is possible to triangulate the image point P in 

real space.  Depending on the computational method used,  , can vary in its 

implementation.  For the purposes of this work   represents a method using single value 

decomposition (SVD) to determine the unitary matrix for the inverse of the two system 

problem based on Equation (4). 
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 In order to maximize the accuracy of the triangulation results, lens distortion had to 

be eliminated from the images.  For the case of the NanEye, barrel distortion is the most 

significant type of aberrations that occur.  Barrel distortion is an effect that causes images 

to seem inflated, specifically in the center and radiating outward.  This type or distortion 

usually comes from wide angle lenses and is due a mismatch in size between lens and 

sensor size.  To adjust for this distortion, the correct coordinates are computed by a 

translation to the optical center and then normalizing by the focal length, in pixels.  A 

custom algorithm was written to correct the distortion once and save the camera 

parameters for automatic correction in the future.  Figure 1.5 presents the results, where 

the image on the left is the uncorrected image of a checkerboard and the image on the right 

is the corrected one.  It is important to observe that the checkerboard on the left appears to 

be curved while the one of the right does not. 

 

Figure 1.5: Comparison or two images, left displays the raw image without any sort of aberration correction.  The 
one on the right shows the same image after the lens distortion correction. 

While distortions in lenses as well as incorrect point matches can cause errors, 

because triangulation requires only elementary matrix manipulation (linear algebra) it is 
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still one of the fastest and most effective ways to gain 3D information from a pair of stereo 

images.   

1.4 Results 

 When all three methods are combined; stereo vision, feature matching, and 

triangulation, every matched point between the two images can be given as 3D coordinates 

relative to one of the cameras.  A mount for both cameras to remain locked in place was 3D 

printed, with a diameter of 7.0mm with a camera separation of 4.0mm, as seen in Figure 

1.6.  The NanEye was connected to a propriety evaluation board which in turn connected to 

a computer via USB cable.  The image capture software was a propriety user interface from 

AWAIBA, which allowed capturing of simultaneous frames.  Processing and all subsequent 

results were carried out on a Toshiba Qosmio X775 laptop (2.2GHz, 8.0 GB RAM) which ran 

Matlab 2013b (Mathworks). 

 

Figure 1.6: Views of the probe after completion.  Two NanEye cameras placed 4.0mm apart with a optical fiber 
which runs along the center track. 
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In order to compare this device with established endoscopes, the results from the 

validation had to be on roughly the same order as other 3D endoscopic devices.  One such 

device implementing a structured light approach was characterized as having a 3D 

resolution of 100µm[11].  While the approach of using structured light yields high 

resolution, it does involve a significant amount of processing and hardware.  The goal here 

was to reach the same level of accuracy while using a much less complicated system.  

 The first characterization that was preformed was of the resolution of the NanEye 

cameras.  Figure 1.7 displays the results from the USAF Resolution target that was used 

determine the resolution of the camera both in Line-Pairs and Microns.  By determining the 

resolution it was possible to approximate the resolution for triangulation results.  The 1951 

USAF Resolution Test Chart was developed to determine the resolution of optical imaging, 

consisting of two groups with three vertical and horizontal bars descending in size.  As the 

group number increases, while the bars decrease in size, the resolution is said to become 

higher.   Using a 1951 USAF Resolution Test Chart, multiple images were taken using the 

NanEye over a range of distances.  In order to validate the results, custom made a spatial 

domain algorithm was implemented to differentiate from individual line pairs.  This 

algorithm looked for the discrepancies between the white background and the black bars.  

If there was no interference from the black bars between each line pair than it was said the 

group was resolvable.  The analysis was performed on both the distorted and undistorted 

images to determine the severity of the lens distortion.   
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Figure 1.7: US Air Force Resolution Test chart, along with two plots of the resolution.  The top graph displays the 
resolution in terms of Line Pairs while the bottom graph displays the resolution in microns 

 These results showed the NanEye have a maximum resolution of 140.31 microns at 

a distance of 3.0 millimeters away and a minimum resolution 353.55 microns at a distance 

of 24.0 millimeters away.  These results indicate that the NanEye would be able to 

distinguish features on the order of several hundred microns within these distances.  

Distinguishing features at this resolution indicates that the triangulation results should be 

roughly on the same magnitude.  It should also be noted that the resolution may have been 

higher at closer distances, if the USAF Resolution Test Chart had a more groups for higher 

resolution test.  However, the established resolution was sufficient for the applications 

addressed in this work, thereby not making it a necessity to use a different target.  Tables 

1.1 & 1.2 depict the results of the resolution test for both the distorted and undistorted 

images. 
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Distance Away Resolution 
Distorted (Lp/mm) 

Resolution 
Distorted (µm) 

Distance Away Resolution 
Distorted(Lp/mm) 

Resolution 
Distorted(µm) 

24 1.41 353.55 13 2.24 222.72 
23 1.41 353.55 12 2.24 222.72 
22 1.59 314.98 11 2.52 198.43 
21 1.59 314.98 10 2.52 198.43 
20 1.59 314.98 9 2.83 176.78 
19 1.59 314.98 8 2.83 176.78 
18 1.78 280.62 7 3.17 157.49 
17 1.78 280.62 6 3.17 157.49 
16 1.78 280.62 5 3.56 140.31 
15 1.78 280.62 4 3.56 140.31 
14 1.78 280.62 3 3.56 140.31 

Table 1.1: The results the NanEye resolution at each tested difference with the distorted images.  

 

Distance Away Resolution 
Undistorted 

(Lp/mm) 

Resolution 
Undistorted (µm) 

Distance Away Resolution 
Undistorted 

(Lp/mm) 

Resolution 
Undistorted(µm) 

24 1.59 314.98 13 2.52 198.43 
23 1.59 314.98 12 2.83 176.78 
22 1.59 314.98 11 2.83 176.78 
21 1.59 314.98 10 3.17 157.49 
20 1.78 280.62 9 3.17 157.49 
19 1.78 280.62 8 3.17 157.49 
18 1.78 280.62 7 3.56 140.31 
17 1.78 280.62 6 3.56 140.31 
16 1.78 280.62 5 3.56 140.31 
15 2.52 198.43 4 3.56 140.31 
14 2.52 198.43 3 3.56 140.31 

Table 1.2: The results the NanEye resolution at each tested difference with the undistorted images.  

 Next, the accuracy of the triangulated coordinates were characterized.  In order to 

accomplish this, several tests were performed with an object at fixed distances away from 

the cameras.  A region of interest (ROI) was selected on the object and the computed depth 

coordinates were compared to the known measured distances.  Additionally, large 

distinguishable features were measured on the object and their length was then computed 

from the computed 3D coordinates.  Figure 1.8 shows an example of a sample image 

acquired, indicating a segment that was calculated and then measured.  These comparisons 

were used to validate the accuracy of the depth as well as the XY-axis, respectively.  Table 

1.3 shows the results and error calculations for the accuracy tests carried out using the 

device.    
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Figure 1.8: Example of object used to determine both the depth and the distance between two points.  The 
calculated distance is displayed by a red line in the image.  A flat object with letters and symbols were used to 
generate matched points between the stereo pair.  All matched features were used to compute the depth of the 
flat object relative to the cameras.  Two triangulated coordinates, at the beginning and ending of the line, 
highlighted in red, were used as spatial coordinates to determine the length of the line. 

Distance away 
from probe 

Z-axis calculated 
(mm) 

Z-axis actual 
(mm) 

Z-axis 
 % Error 

XY-axis 
Calculated Length 

(mm) 

XY-axis 
Measured length 

(mm) 

XY-axis 
Length % error 

10mm 12.10 12.0 0.8 6.42 6.33 1.4 

15mm 15.25 15.0 1.6 7.05 7.57 6.9 

25mm 24.50 25.0 2.0 10.55 11.43 10.7 

Table 1.3: Results from the dimensional validation 

 From Table 1.3 the errors and accuracy of the 3D coordinates are established.  

Depending on the distance from probe to object, the Z-axis accuracy could be as little as 

100µm.  This result held true for the XY-axis results, where, at the same distance the 

calculated length of the features was 90µm.  Comparing these results against other 

methods for computing quantifiable 3D measurements using an endoscope, it is clear that 

this stereoscopic system can yield 3D measurements on the same magnitude as those 

techniques.   

Finally, utilizing the 3D coordinates gained from imaging a person’s knuckle and 

placing the probe 20mm away, a surface plot was created with an overlay of the ROI.  A 

knuckle was used as a test object due to the high number of feature that could be discerned 
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and matched given its physical structure.  Without a protocol to insert this into a live, 

human subject, using a body part outside the body was deemed prudent to be able to 

determine how well the cameras could image live tissue.  In order to create a continuous 

surface plot, data points between matched features were extrapolated using a three point 

averaging approach.  The surface plot in Figure 1.9 displays a cross section of the knuckle 

as well as the depth.  In this case the ROI selected was a 15mm by 15mm section of their 

knuckle.  The calculated length and width of the ROI turned out to be 13.7 (L) by 13.39 (W), 

which is an percent error of 8.6 % and 10.7% respectively.  While the NanEye posses 

significantly reduced resolution compared to more conventional devices, the accuracy at 

quantifying dimensions and depth were comparable to these devices.  With simple off the 

shelf sensors and basic computer vision algorithms, it is possible to achieve a device that 

has equal or better 3D resolution than more established devices such as the 3D endoscope 

using structured light or a dual aperture system. 

 

Figure 1.9: Surface plot with the ROI overlaid on top.  The image on the left is the view from the front while the 
image on the right is at an angle to display the depth reconstruction of the knuckle. 
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Chapter 2: Laser Speckle Contrast Validation 

 

Over the last 20 years laser speckle contrast imaging (LSCI) has emerged as a very 

useful tool for full-field imaging of blood flow.  Recently, LSCI has received significant 

attention due to its use in in-vivo studies of the brain.  During this period, many different 

approaches and devices have been used to increase the use of LSCI.  The work described in 

the following chapter details the validation of the NanEye cameras for use in LSCI.   

2.1 Theory 

 Laser speckle imaging (LSI) is the process of analyzing the random interference 

pattern created when coherent light scatters off of a turbid medium.  Speckles are created 

when coherent light is scattered off of a medium and a random interference pattern is seen.  

Due to coherent light scattering on the medium at different positions, a sensor will detect 

the difference in distance traveled as constructive or destructive interference.  The 

combination of this interference is called a “speckle pattern”[31]. 

 A speckle pattern will vary depending on the type of medium coherent light scatters 

off of.  If coherent light scatters against a static medium, than the intensity differences seen 

by the sensor will change slowly.  Oppositely, if the medium is dynamic, than the 

interference pattern will be constantly changing and the subsequent intensities from the 

interference pattern will fluctuate[32].  In areas with higher dynamic flow rates, the 

intensity fluctuations happen faster as opposed to lower flow rates where the intensity 

fluctuations are slower.  These intensity fluctuations result in the appearance of blurring in 

the speckle pattern.  The degree of blurring can be analyzed and the resulting image is 
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known as a speckle contrast image.  In order to create this speckle contrast image, the raw 

speckle image can be processed in one of two way; spatially or temporally[23].  

         
  

   
      (5) 

 In equation (5),    is the resulting spatial contrast value,    is the spatial standard 

deviation of pixel intensity, and     is the mean intensity of the pixels.  Alternatively, the 

temporally processed contrast value results in    and   , where   denotes the temporal 

contrast and standard deviation of the pixels.  The size of individual speckles is dependent 

on several variables as seen in Equation 6, where   is the wavelength of light,   is the 

magnification of the lens, and     is the f-number of the system.  In order to effectively 

sample the speckle pattern the minimum speckle diameter,        , should be at least twice 

the size of the sensor’s pixels.  This requirement is known as the Nyquist sampling 

criteria[33]. 

                           (6) 

2.2 Background 

The need for minimally invasive blood flow measurements has grown over the past 

few decades.  LSCI has provided an outlet for this need.  A large amount of research has 

been spent developing ways to use LSCI in live subjects both in humans and animals.   

One of the earliest uses of LSCI was the monitoring of skin profusion, due to its 

abundance and superficial depth[23].  This application does come with inherent obstacles.  

Skin perfusion is difficult to monitor because most of the blood vessels exist under a layer 

of tissue.  This complication generally means that measuring a single vessel is almost 
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impossible to quantify but it does allow for measuring of overall skin perfusion on the 

capillary level.  While this obstacle places a limitation on the application of skin profusion, 

recent work has been done to determine the effectiveness of laser therapy on skin 

treatments[34].  Another area of research on both humans and animals was the use of LSCI 

to measure blood flow in the retina[35].  Instead of computing normal speckle contrast, a 

new measure called normalized blur (NB) was developed based on the existing principles 

of time integrated speckle intensity.  The main reason why this area of research was 

furthered was due to the accessibility of the eye as well as how relevant retinal blood flow 

is to ophthalmological diseases.  Unfortunately, most of the work done around retinal blood 

flow was not performed on humans because of the limited spatial resolution for the sensor.  

Most applications of in-vivo LCI have been used to measure the blood flow in an animal 

cortex, specifically rats and mice.  Due to the high resolution of modern cameras, highly 

resolvable spatial maps of blood flow can be created over very small regions of the brain.  

These maps, allow for the analysis of relative blood flow while remaining minimally 

invasive.  Usually, a portion of the skull or a layer of skin is removed to access an area of 

interest.  This application has been used for monitoring functional brain activation, cortical 

spreading depression, or pathology of strokes[23].  Not only has work been done on 

different physiological sites of the body but there has been significant work done with 

using off the shelf components as well.  With the amount of low cost and high resolution 

web-cameras available, these devices have been introduced into the clinical world of 

LSCI[36].  This is the first step toward creating a low cost LSCI system that could eventually 

become portable.  The goal to create portable low cost devices for LSCI would be to image 

areas of the body that were previously inaccessible.   
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2.3 Obstacles overcome 

Two major limitations in conventional LSCI, which the NanEye potentially can solve, 

are the dependence on high resolution sensors or the lab grade setup required to achieve 

results. The higher the resolution, the larger the spatial window for processing is.  Also, 

more pixels generally means there are more values that can be averaged in a smaller ROI.  

This can lead to more stable results if the regions of interest have small dimensions.  

Convention cameras used in LSCI, off-the-shelf or not, are too large to image inside the 

body while maintaining a minimally invasive approach.  In order to reach these less 

accessible areas, smaller cameras must be implemented.  The downside to a smaller 

camera is the obvious loss in resolution and the potential loss in magnification or f/#.  

Smaller magnification or f/# will result in a decrease of speckle diameter seen from 

Equation 6.  One of the main focal points of this work was to overcome the side-effects of 

using smaller cameras, at the same time establishing the NanEye cameras as a valid means 

to measure speckle contrast data.  In order to achieve this, certain obstacles of the NanEye 

had to be overcome; vignetting, reduced resolution, and reduced f/#. 

There are four types of vignetting which will result in the decrease of brightness in 

an image, beginning at the edges and corner; mechanical, optical natural and pixel.  

Mechanical and optical vignetting occurs due to a blockage of the light rays entering the 

aperture.  This blockage can occur from a physical dimension of the external camera 

housing, as is the case with mechanical.  In optical vignetting, the blockage stems from a 

mismatch of multiple optical elements leading to a reduced lens opening for off-axis light.  

Natural vignetting occurs from a falloff due to the “cosine forth” law of illumination.  This 
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falloff in intensity is related to the angle that the light rays contact the sensor and the 

fourth power of cosine.  Pixel vignetting is specific only to digital images, where angle 

dependence light is received and processed at different intensities.   

The NanEye is affected primarily by mechanical vignetting, due to its high field of 

view, 120 degrees, and its 1mm x 1mm casing.  This combination, high field of view and 

small casing dimensions, causes the exterior of the image, corners and edges, to appear 

darker as seen in Figure 2.1.  Comparing a single raw frame of data between the NanEye 

and Chameleon, the Chameleon does not suffer from the same radial decrease in intensity 

the same way the NanEye does.  This uneven intensity distribution can cause significant 

problems when processing the raw speckle data. The concern with the vignetting is the loss 

of information around the edges and the corners of the image.  Since the NanEye already 

has low resolution, 62.5K, additional loss of usable image, could be detrimental to the 

results or future work. 
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Figure 2.1: A comparison between the NanEye (on the left) and the Chameleon (on the right).  The effects of 
vignetting are displayed.  The NanEye which suffers from vignetting, has non-uniform intensity, specifically 
around the edges.  The Chameleon, which does not suffer from vignetting has a uniform intensity throughout the 
image 

 Another major obstacle to overcome was low f-number of the lens in the NanEye 

camera.  These devices come pre-packaged with the sensor and optics and once the device 

is fabricated the optics cannot be changed.  The largest f-number for any of the NanEye 

variations was 2.8.  As seen from Equation 6, the diameter of speckles has a direct 

relationship to f/#.  In order to achieve optimal sampling criteria, the minimum speckle 

sizes should be at least two times the size of pixel size.  This is to ensure that multiple 

pixels are able to image one speckle.   

2.4 Results 

 As previously mentioned, little to no work has been done using cameras with 

limited resolution in the LSCI world.  This is mainly due to the numerous obstacles needed 

to overcome this as well as the lack of immediate need for cameras small enough to be 

placed inside the body.  In order to establish that the NanEye cameras are viable devices to 
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be used in LSCI a validation study was performed.  This study had two parts to it; an ex-vivo 

flow phantom study and an in-vivo hyperemic response study.  In both cases results were 

compared to an existing lab-grade Point Grey Chameleon USB 2.0 CCD, attached with a 

LMH-10X lens (Computar).  For the flow phantom study, contrast values from the NanEye 

and Chameleon were compared against one another and a statistical analysis was 

performed to determine if there was any significant difference between the results.  

Alternately, a sensitivity measurement was taken for the hyperemic response study and the 

resulting values were compared against one another.  The results from these comparison 

studies properly characterize the NanEye for its application in LSCI. 

 For the flow phantom study a 1% solution of Intralipid (Fresenius Kabi) was 

pumped through a flow phantom using a syringe pump (Harvard Apparatus) at variable 

speeds.  These speeds ranged from 1.0 mm/sec 7.0 mm/sec by increments of 0.5 mm/sec, 

with two extreme cases of .05 mm/sec and 15.0 mm/sec.  The flow phantom was circular 

with a diameter of 87mm and a capillary tube embedded at the surface level with a 

diameter of 0.68mm.  The laser, an 808nm 150mW laser (Oxdax), was stationed at a fixed 

height, 220 mm away from the phantom.  In order to overcome the smaller f/# of the 

NanEye and achieve the Nyquist criteria, the Ondax 808nm laser was chosen to increase 

the minimum speckle diameter given by Equation 6.   Both the AWAIBA NanEye and the 

Point Grey Chameleon were placed at a fixed distances above the phantom.  Since the 

NanEye has substantially lower resolution and shorter working distance it was placed 

substantially closer to the phantom, 30mm, as opposed to the Chameleon which was placed 

about 250mm above the phantom, as seen in Figure 2.2. 
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Figure 2.2: Diagram of the flow phantom experiment.  Both the NanEye and Chameleon simultaneously acquire 
data while intralipid is pumped through the tube. 

During each flow rate, the pump was given enough time to reach equilibrium before 

data was acquired.  For both cameras 5 seconds of video was taken, resulting in 225 frames 

for the NanEye and 75 frames for the Chameleon.  Each video was broken down into its 

individual frames and stored for processing later on.  To compute the speckle contrast, 25 

frames from the NanEye and Chameleon were taken and spatially processed.  A 3 x 3 

sliding window was used to minimize the loss in spatial resolution on these frames.  All 25 

spatially processed contrast images were subsequently averaged together in order to gain a 

higher signal to noise ratio[37].  The resulting contrast images were converted to gray scale 

to better differentiate between flow sections and static phantom section, shown in Figure 

2.3. 



32 

 

 

Figure 2.3: A side by side comparison, between the NanEye and Chameleon, of the changes in speckle contrast 
images as the flow rate is increased10 

 Figure 2.3 depicts, in descending order, an increase in flow rate for both the NanEye 

and the Chameleon.  The left column displays the NanEye contrast images while the right 

column is the Chameleon contrast images.  In both columns, as flow is increased from 1.0 

mm/sec to 15.0 mm/sec the tube running through the center gets darker.  This darkening 

is a decrease in the speckle contrast and is the expected result from an increase in flow 

rate. 

 In order to quantify the dynamic range of the NanEye over the flow rate, a ROI was 

selected at the center of the tube.  For the case of the NanEye the ROI was chosen away 

from the dark spot seen in Figure 2.3 at the center, which is specular reflection and not true 
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contrast data.  The ROI for the NanEye was a 10 x 10 block of pixels and a 30 x 30 block for 

the Chameleon.  The larger ROI for the Chameleon was chosen to maintain a similar ratio of 

ROI to image as in the NanEye.  The contrast values inside the ROI were averaged together 

and plotted, shown here in Figure 2.4. 

 

Figure 2.4: Plots of the speckle contrast taken from center ROI where the vignetting effects the NanEye the least 

 Both the NanEye and the Chameleon appear to display the same exponential decay 

in speckle contrast while the flow rate is increased.  Figure 2.4 shows the difference in 

dynamic range between the NanEye and the Chameleon.  While the NanEye has a higher 

variation in contrast compared to the Chameleon, this is likely caused by the higher 

resolution of the Chameleon and the larger ROI selected.  The Chameleon does have a 

higher dynamic ranging, beginning at 0.42 and dropping off to 0.12, over the same span 

that the NanEye drops from 0.17 to 0.059.  A direct comparison of these two distributions 

cannot be done in their present state.  In order to accomplish this, both sets of data were 

normalized against the maximum and plotted together.  Figure 2.5 indicates that the 

relative changes in dynamic ranges between the two cameras were nominal. 
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Figure 2.5: Speckle contrast for both the NanEye and the Chameleon when both data sets are normalized against 
the max. 

 Due to the issue of vignetting discussed earlier, a wider sampling of ROIs was 

needed.  To properly determine the effect the vignetting had on the speckle contrast, 

multiple ROIs were chosen along the tube.  The new ROIs were processed with the same 

technique as before and plotted to see the effect of the vignetting on the contrast.  Figure 

2.6 shows the new ROIs selected, the plots of the raw contrast points as a function of flow 

rates, and all the normalized ROI data. 
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Figure 2.6: Display of all the ROIs taken along to tube.  Second row is the raw speckle contrast values for each ROI 
and the final row is all normalized sets plotted on the same axis. 

 From the second row in Figure 2.6, the side effects of the vignetting are clearly 

apparent in the raw data.  Unlike the Chameleon, whose multiple ROI data points have little 

variation along the tube, the NanEye ROIs are more dispersed.  Even in the plot of the 

normalized data, the Chameleon data points lay almost on top of one another while the 

NanEye still remains dispersed.  In order to quantify this difference and determine whether 

this dispersal creates a significant issue in the data, a Wilcoxon rank sum test was 
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performed on the normalized data sets between each ROI for the NanEye and the 

Chameleon.  Table 2.1 shows the results of this statistical analysis. 

 Chameleon 
ROI 1 

Chameleon 
ROI 2 

Chameleon 
ROI 3 

Chameleon 
ROI 4 

Chameleon 
ROI 5 

Chameleon 
ROI 6 

Chameleon 
ROI 7 

NanEye ROI 1 0.694 0.820 0.852 0.950 0.917 0.694 0.633 

NanEye ROI 2 0.983 0.787 0.756 0.663 0.663 0.351 0.395 

NanEye ROI 3 0.395 0.309 0.351 0.254 0.272 0.141 0.101 

NanEye ROI 4 0.820 0.604 0.604 0.520 0.548 0.178 0.152 

NanEye ROI 5 0.309 0.221 0.254 0.165 0.165 0.078 0.093 

NanEye ROI 6 0.983 0.787 0.787 0.694 0.663 0.395 0.372 

NanEye ROI 7 0.372 0.494 0.520 0.520 0.787 0.983 0.852 

Table 2.1: Results from the Wilcoxon Rank sum Statistical analysis for every ROI. 

 The entries for Table 2.1 are the resulting p-value from the rank sum statistical 

analysis.  Each ROI in the NanEye was tested against each of the Chameleon ROIs.  The 

diagonal entries, highlighted above, correspond to an ROI tested against its mirror on the 

opposing image.  With an average p-value of .7620, for every permutation, there is no 

statistical significant difference among ROI selection.  Although vignetting does cause some 

deviation in the data, it is not significant enough to alter the underlying distribution and 

outcome of the contrast data.   

 Finally, hyperemic response study was performed to determine if the NanEye had 

comparable sensitivity during in-vivo measurements.  This occlusion follows the work of 

Yang et. al.[38] and performed a 390 second occlusion; 30 seconds of baseline, 240 seconds 

of full arm occlusion, followed by 120 seconds of release.  During this time, both the 

NanEye and the Chameleon were positioned to image the fingers of the patient.  A 15 frame 

sliding temporal algorithm was used to process both sets of data.  Figure 2.7, shows the 

plots of the contrast versus time during the entire experiment.  In order to determine 

sensitivity, a calculation was made following the work done by Dunn et al [39].  Here 

sensitivity is determined as the as K/K, where K is the change in maximum contrast and 
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K is a baseline measurement.  Figure 2.7, displays the results from the three patients the 

study was performed on. 

 

Figure 2.7: Results from the hyperemic response study.  The top row displays the three patients data for the 
NanEye while the bottom row displays the same for the Chameleon. 

 The NanEye yielded sensitivities between .64, .98, and 1.04  for all three subjects.  While the 

Chameleon yielded a range from .61, 1.06, and 1.18 for the same three subjects respectively.  While 

the sensitivity measurements vary from patient to patient, it was determined that the 

sensitivity between the NanEye and the Chameleon was within acceptable limits.  A 

standard two sample T-Test was performed on the results and yielded a p-value of 0.56. 

The results from the hyperemic response study and the flow analysis can be concluded to 

say the NanEye camera has enough sensitivity to detect physiological changes in speckle 

contrast similar to standard lab-grade cameras. 
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Chapter 3: Co-Registered 3D Speckle Surface Map 

 

The primary goal of this project was to create an endoscopic probe that provided 

multiple imaging functionalities in a single device and met standards set by current 

technologies.  By combining 3D triangulated measurements with blood flow analysis in one 

probe, the number of devices traditionally used to gather such data was reduced.  The 

secondary goal was to maintain a high level of accuracy and sensitivity for both 

functionalities.  While the sensors used in this probe were smaller and had a lower resolution, the 

prototype still managed to achieve a similar accuracy and sensitivity as existing systems. This is a 

step forward in endoscopic functionality.  

 The NanEye camera has rather small dimensions. It is only 1.0mm by 1.0mm 

allowing for the placement of two cameras inside the probe.  Given the diameter of the 

probe, 7.0mm, there was sufficient tolerance for proper separation needed to obtain 3D 

data.  Additionally, an optical fiber was placed between the NanEye cameras to deliver 

illumination for both the imaging techniques.   By keeping the overall diameter at 7.0mm, 

the probe maintains current dimensional standards as other 3D endoscopic devices.  As 

discussed previously, the use of stereoscopic imaging is computationally less demanding 

than other 3D imaging modalities.  This demand is further lessened due to the low 

resolution the NanEye possesses.  Lower resolution also means less time needed to search 

for matches, triangulate coordinates, and reconstruct 3D surface plots. 

This project also presents one of the first cases where sensors of this scale, 

specifically the NanEye cameras, were validated to be used for LSCI.  This expands the 
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areas in which flow can be analyzed using LSCI.  With sensors this compact, it is now 

feasible to insert them inside the body to access regions of flow that were previously 

inaccessible to conventional LSCI setups. 

 The combination of both these functionalities in one device allows for flow analysis 

to be paired with 3D surface plots.  Specifically, this would allow for flow to be tracked 

inside the body down long cavities.  This would result in combining a determined distance 

to regions of interest pertaining to areas of flow.  It would also provide the ability to 

quantify extent of blood flow throughout the internal cavities of the body with dimensional 

analysis.  This could be of use to surgeons as a method to minimize the tissue excised 

during a biopsy or to evaluate the extent of an abnormal growth surrounded by areas of 

blood flow. 

 One of the primary challenges in creating a co-registered 3D speckle surface plot is 

the low resolution of the NanEye cameras.  This challenge must be overcome for both the 

3D surface plots as well as the LSCI. To create 3D surface plots, the probe needs to be 

deployed well within the working distance of the cameras.  This working distance is 

between 5.0mm and 35.0mm for the optimal resolution.  By operating within the working 

distance, the images acquired will maintain the best resolution.  The better the resolution it 

is more probable that there will be a higher number of matched features.  The greater the 

number of matched features means there is less extrapolation needed to generate a surface 

map of the ROI.  At these distances, sufficient features can be matched to accurately plot a 

3D surface of the ROI.   
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 Ultimately, a prototype endoscope probe was created that had the functionality to 

perform 3D measurements as well as provide relative flow information.  This probe was 

7.0mm in diameter and 20.0mm in length.  A co-registered laser speckle 3D surface map 

was generated using the same tube from the flow experiments where a pair of stereo 

images was taken before the flow data was collected.  As before, the tube was probe was 

placed 15.0mm above the tube and 25 spatially processed contrast images were averaged 

together to generate the laser speckle contrast image.  A ROI of 2.0 mm by 1.75mm was 

selected to generate matched features over the tube and the phantom.  The resulting 7 

matches, occurring both on the tube and on the phantom were used to extrapolate a 3D 

surface for the rest of the ROI.  Finally, the laser speckle contrast image was overlaid on top 

of the surface plot to generate the combined image seen in Figure 3.1 

 

Figure 3.1:  Final co-registered 3D laser speckle image.  An ROI of the flow phantom was reconstructed as a 
surface plot and had the same ROI from the speckle contrast image overlaid on top of it 
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 From Figure 3.1, the ROI includes both the tube and the phantom.  Half of the tube is 

elevated 0.5mm above the rest of the phantom.  When the distance between the tube and 

the phantom was computed it yielded a value of .48mm which results in an error of 2.0%.  

The computed dimensions of the ROI were 1.93mm by 1.62mm, which is an error of 3.5% 

and 7.4% respectively for the x-y axis.  The depth measurement of the tube was computed 

to be 15.56mm away from the probe with the phantom being 15.01mm away from the 

probe.  Finally, the contrast in the tube averages out to have a contrast of 0.101 which falls 

in line with previous results at the same flow speed.  Figure 3.1 displays a region of the flow 

phantom that has been accurately mapped to a speckle contrast image.  The calculated 

dimensions of the surface map have similar accuracy to other 3D endoscopic probes such 

as ones with a structured light approach.  To compute the entire co-registered 3D speckle 

image took 4.56 sec of processing power after all data was acquired.  This time could 

fluctuate depending on the size of the ROI, number of features matched, and number of 

extrapolated points needed to generate the full surface map.  Additionally, depending on 

the number of matched features, the overall error of the surface plot may vary as well.  

Regions that have little to no matched features may be incorrectly assigned coordinates 

that are not exact.  This can be overcome by localizing ROIs over areas with many distinct 

features.   To summarize the results given in Figure 3.1, the co-registered 3D speckle 

endoscopic probe yielded comparable results to other 3D endoscopic technologies with 

minimal error.   
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Chapter 5: Conclusion and Summary 

 

 As previously mentioned, the goal of this work was to create a new endoscopic 

probe that would combine 3D measurements with flow analysis into one co-registered 

quantitative format.  In order to achieve this there were two functionalities that had to be 

validated; the 3D triangulation and the laser speckle contrast imaging.   

First, the 3D triangulation was validated.  Here the combined usage of stereo 

viewing and feature matching was implemented to triangulate matched features in terms of 

real space coordinates.  By establishing the resolution of the NanEye cameras it was 

possible to gauge the level of accuracy when triangulating features.  It was determined that 

the NanEye cameras had a resolution of 140µm while operating in the specified working 

range of the cameras.  This was later validated by the 3D triangulated study where depth 

(Z-axis) and length (XY-axis) were computed and compared against the measured depths 

and lengths of known objects.  The triangulation results confirmed the expected accuracy 

based upon the resolution test described in Chapter 2.  Comparing these results to existing 

3D endoscopic imaging modalities demonstrates that the pairing of stereoscopic imaging 

yielded comparable measurements.  

Next, the NanEye cameras were validated to determine if they possessed sensitivity 

comparable to that of a lab grade device, by measuring laser speckle contrast values.  In 

order to accomplish this, the NanEye was compared to a Point Grey Chameleon in two 

experiments; an ex-vivo flow experiment and an in-vivo occlusion study.  Starting with an 

ex-vivo flow study it was determined that the relative flow rates measured by the NanEye 
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resulted in no statistically significant difference to flow rates that were determined by the 

Chameleon camera.  Furthermore, the in-vivo occlusion study found that both the NanEye 

and the Chameleon yielded similar sensitivity measurements for a given patient.  By 

performing both an ex-vivo and an in-vivo study it was shown that the NanEye does possess 

the sensitivity to measure flow changes on a physiological level.  After both validation 

studies were conducted, the co-registered 3D speckle endoscope was confirmed to provide 

3D reconstructed surfaces measurements on the order of 100µm.  The prototype 

endoscope also displayed a similar sensitivity, an average of 8.8% difference, compared to 

the results from the Chameleon.  These results are comparable with the with previously 

established technologies such as 3D endoscopes using dual aperture or structured light or 

other lab-grade LSCI cameras.  In the end, combining these two functionalities yielded a 

new prototype that increases the information gained during minimally invasive 

procedures.  This prototype provides for both a 3D perspective as well as accurate flow 

information during endoscopic procedures.  By creating a fast and effective method of 

measuring objects or flow inside the body a new method for tracking a patient’s condition 

can now be implemented.   

5.1 Limitations 

 The accuracy of this prototype is still based on feature matching, which can lead to 

triangulation errors as discussed previously.  The triangulated coordinates will remain 

accurate so long as the coordinates from the matched features are precise.  This limitation 

means that an object requires definable spatial features that can be matched by SIFT and 
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SURF.  Without precise feature matching the triangulated 3D coordinates will not yield 

accurate results.   

The probe is also limited by the working distance of the NanEye cameras.  Due to the 

narrow working distance operational window, any distance exceeding 35mm will cause a 

decrease in resolution.  This will then result in an increase in false matches between the 

image pair resulting in incorrect triangulated coordinates.   

The dynamic range of the NanEye, 0.121, is substantially lower than that of the 

Chameleon, 0.310.  The NanEye allows for less discrete differentiation between contrasts at 

different flow rates.  This is a result of the optical design of the NanEye device.   

Finally, the NanEye cameras must be operated with proprietary capture software.  

This software has significant errors during the capturing of data including frame rate 

inconsistency, corrupted video formats, and non-uniform timing between two devices.  

These problems were overcome by employing an older version of the NanEye software and 

by addressing a variety of minor, yet time consuming technical difficulties.  A more 

streamlined and user accessible version of the software would greatly improve the quality 

as well as the data acquisition time for future use. 

5.2 Future work 

 While this work provides an important step forward in creating a viable new 

endoscopic device, there are still some areas to improve upon.  Currently, two different 

sources are used for illumination, one to capture the stereo image pair, and another to 

capture laser speckle data.  One way to streamline the process would be to have a single 
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PCB board with two distinct sources that can be automatically toggled through a user 

interface.  This would replace the need to manually change the fiber from one source to the 

other when collecting data.  

There is an existing need for the inclusion of additional imaging or surgical 

functionalities.  Incorporating a working channel into the device would create sufficient 

space for the addition of tools for biopsies or tissue ablation.  These are standard tools that 

are used in endoscopic procedures and thus could benefit from greater efficacy when 

combined with the co-registered 3D laser speckle surface image.  Surgeons could more 

accurately biopsy or excise polyps and lesions with a better understanding of the blood 

flow surrounding the area of interest.   

Finally, additional cameras could be placed with different overlapping vantage 

points to create surround 3D imaging.  The high field of view of the NanEye would enable 

multiple vantage points to be stitched together to create a surround image view, while 

using a minimal number of sensors.  The increased visual scene could allow surgeons to 

view regions that would require extra time to examine thereby reducing procedure time.  If 

even only a few of these challenges were overcome it has the potential to alter the way 

surgeons track, diagnose, and evaluate patients in the future. 
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