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ESTIMATION OF POWER-ENERGY PLOTS 
FOR SECONDARY BATTERIES 
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and 

Albert R. Landgrebe 

Office of Energy Storage and Distribution 
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Washington, D.C. 20585 

Energy storage devices are being developed for a wide range of 
consumer, military and industrial applications. These devices exhi­
bit a number of attractive features, including flexibility in the 
choice of primary fuel, minimal environmental impact, and rapid 
deployment. Recent R&D has focused on secondary batteries, primary 
batteries, fuel cells, capacitors, flywheels, thermal energy storage, 
magnetic energy storage and chemical energy storage. These technolo­
gies have been evaluated on the basis of their performance, cost and 
durability characteristics, and the selection of a particular tech­
nology depends strongly on the requirements of the specific applica­
tion. Secondary batteries are considered to be leading candidates 
for a number of energy storage applications, including electric vehi­
cles, stationary electric energy storage (utilities, industry, remote 
stand-alone), portable consumer and military devices, and aerospace 
technology. 

A plot of a galvanic cell's specific power (W/kg) versus its 
delivered specific energy (Wh/kg) offers a convenient means to assess 
the cell's performance. Such plots are particularly valuable when 
the intended application requires that the cell exhibit both high 
power and energy. These plots were first used in the 1960's (1) to 
compare the potential of various secondary batteries to provide elec­
tric vehicles with acceptable acceleration and range, and they are 
now routinely used to characterize advanced batteries under develop­
ment by DOE for such applications (2-8). These plots, which are com­
monly referred to as Ragone plots, can be generated in a straightfor­
ward manner by measuring the discharge capacity of a cell as a func­
tion of the discharge power level, provided that the cell and neces­
sary electrical control and measurement equipment are available. 
However, in many cases the galvanic cell of interest has not yet been 
developed to point where realistic testing can be performed, so it is 
necessary to estimate the cell's power-energy characteristics. 
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Estimating Power-Energy Plots 

A very simple method to estimate a galvanic cell's power-energy 
plot follows: 

1. Determine the cell's voltage-capacity behavior. 

A typical cell's voltage-capacity behavior during constant­
current discharge is sketched in Fig. 1. The cell's delivered 
energy is the area under the curve in such a plot, and it is seen 
that both the cell's voltage and delivered energy tend to 
decrease with increasing discharge current. This behavior is the 
result of a number of contributing factors, including ohmic, 
kinetic, mass-transfer, material-utilization, thermal, chemical, 
and physical effects, and it can change dramatically during a 
single discharge and/or as the cell ages. A greatly simplified 
cell voltage-capacity plot is shown in Fig. 2. The dashed lines 
at V - V and Q - Q represent typical cell behavior at very low 
dischargg currents~ where the maximum average cell voltage and 
capacity are expected. In the absence of any experimental data, 
V can be estimated from tabulated electromotive force data,* and 
Q0 can be estimated by assuming that there is 100% Faradaic util­
i~ation of active material. The presence of parasitic reactions 
(e.g., gas evolution) will lower Q , and it should be noted that 
complete active-material utilizati8n is rarely attained. 

2. Determine the cell's voltage-current behavior. 

The slope of a plot of 
the cell's effective 
able, a rough estimate 
tivity and the cell 
drop in the electrolyte 
impedance behavior. 

cell voltage vs current is the negative of 
resistance R. If such data are not avail­
can be made using the electrolyte conduc-

geometry to calculate the ohmic potential 
phase, which often dominates the cell's 

3. Generate a power-energy plot. 

Based on the idealized voltage-capacity behavior illustrated by 
the dashed lines in Fig. 2, and making the assumption that the 
cell's behavior is pseudo-ohmic, the cell's voltage and power are 
given by: 

v v 
~Q 

IR (1) 

* If these are not available, one can divide the change in Gibbs 
free energy (products-reactants) by [-nF]. 



and 

P - IV - I (V - IR) 
0 
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(2) . 

Assuming that the cell capacity decreases linearly with increasing 
current, and that the maximum cell current corresponds to a pseudo­
ohmic potential drop equal to V , the cell energy is given by: 

0 

E - VQ - (V - IR) Q (1 - IR) 
0 0 v (3)' 

0 

or 

E _ (l _ IR) 2 
VOQO Vo (4). 

By eliminating the cell current I, a power-energy relationship is 
obtained: 

(5). 

The final estimated power-energy plots require that the cell's 
power and energy be divided by the cell mass, which includes the 
active material, current collectors, inert electrolyte, cell con­
tainer, bus bars, insulation and any other necessary peripheral 
equipment. A useful rule-of-thumb for estimating the attainable 
specific energy for rechargeable cells at the 4-5 hour discharge rate 
is: 

20-25% of theoretical for cells with solid electrodes 
15-18% of theoretical for cells with one gas electrode 

and one solid electrode 
14-17% of theoretical for cells with one liquid 

electrode and one solid electrode. 

For primary cells, it is possible to achieve up to about 40% of the 
theoretical specific energy at low discharge rates (10-20 hours). 

The form of Eq. 5 shows that the ratio v2;R is an important 
0 parameter for estimating peak specific power of a galvanic cell, as 

well as the shape of its power-energy plot. Gibbard (9), Corrigan 
(10), and Attia and Rowlette (11) used this parameter (or a similar 
expression) to characterize the power performance of secondary bat­
teries. 
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Comparison to Experimental Data 

Power-energy plots have been determined for a number of advanced 
batteries. In particular, high-performance rechargeable batteries, 
under development for electric vehicle applications, have been exten­
sively characterized. Argonne National Laboratory has published much 
of this data, and recent attention has been focused on the secondary 
batteries listed in Table 1. 

Table 1. Secondary Battery Characteristics 

Characteristics 

Battery Couple Theoretical v 
0 

Specific Energy 
volts 

'Wh/kg 

Pb/Pbo
2 

175 2.10 

Fe/NiOOH 267 1. 35 

Zn/NiOOH 326 1. 74 

Zn/Br
2 

430 1. 85 

Na/S 758 2.08 

Power-energy data for the electrochemical couples listed in Table 1 
were collected. The nominal battery (or module) voltage was used for 
the value of V , which may not correspond to the value V shown in 
Fig. 2, or thg value listed in Table 1. The reported ba~tery mass m 
was used to convert battery power P and battery energy E into 
specific power p - P/m and specific energy e - E/m, respectively. 

Figure 3 shows plots of battery specific power p vs specific 
energy e for different rechargeable batteries. The solid curves 
represent the power-energy performance predicted by Eq. 5 using Q 
and R as adjustable parameters, and the points are experimental datg 
from the corresponding references listed in Table 2. Equation 5 
appears to successfully correlate the experimental power-energy plots 
for the four rechargeable batteries shown in Fig. 3. The derived 
(i.e., those used to generate the solid curves in Fig. 3) values of 
effective battery resistance R and maximum capacity Q are listed in 

0 
Table 2, along with the reported values of battery resistance and 
nominal capacity. There is reasonable agreement between the derived 
and nominal values; the nominal capacities are less than the derived 
maximum capacities, and the derived (pseudo)resistances are generally 
greater than the measured resistances, as expected. 

I.J~ ' 
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Table 2. Derived and Experimental Parameters for Power-Energy Plots 

Battery 
Ref. Qo (Ah) R (roO) 

Developer m (kg) 
Couple nom. der. expt. der. 

Pb/Pb02 Johnson 2,6,12 57.9 183 200 4.0±0.5 10 
Controls 
(EV-2300) 

Pb/Pb02* Johnson 2,6,12 74.8 249 285 4.0±0.5 12 
. Cqntrols 

(EV-3000) 

Fe/NiOOH* Eagle 2,4,6 36.8 280 300 3.6±0.2 2 
Picher 

Zn/NiOOH* General 2 17.9 144 152 - 2 
Motors 

Zn/NiOOH Gould 2,5,13 27.0 225 230 0.7±0.2 3 

Zn/Br2* Exxon 7 547.3 123 135 - 300 

Na/S* Chloride 8 0.12 - 10 -
Silent 
Power 

Na/S Ford Aero- 2,3 0.98 55 65 9.0±3.0 
space and 
Comrnunica-
tions 

* The data and curves shown in Figs. 3 and 4 correspond to the bat­
teries marked with an asterisk. 

The derived power-energy plot for the Exxon Zn/Br2 battery is 
compared to experimental data in Fig. 4. The fit is less satisfac­
tory than those shown in Fig. 3, which may reflect the possibility 
that the assumptions used to derive Eq. 5 may not hold, over a wide 
range of power and energy levels, for this flow battery. For exam­
ple, the Br2 electrode exhibits greater kinetic polarization (i.e., a 
non-ohmic effect) at high current densities than do the other elec­
trodes used in these secondary batteries. 

34 

8 
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Conclusions 

The simple method presented here offers a fast and convenient 
method for estimating power-energy plots for galvanic cells. Com­
parisons between various electrochemical couples can be made, dif­
ferent cell designs can be evaluated, and parameters such as sus­
tained peak power can be estimated. 
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Figure 1. 
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Typical cell voltage-capacity behavior for different cell 
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Power-energy plot for various secondary batteries. 

Eq. (5), parameters as listed in Table 2 

Experimental data from references listed in Table 2 
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Power-energy plot for a Zn/Br2 battery. 
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