
UCLA
Volume VI. 1994-95 - Biotechnology Studies

Title
Inter-Institutional Spillover Effects in the Commercialization of Bioscience

Permalink
https://escholarship.org/uc/item/4d96f3xh

Authors
Zucker, Lynne G.
Darby, Michael R.
Armstrong, Jeff

Publication Date
1994-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4d96f3xh
https://escholarship.org
http://www.cdlib.org/


lnstitute for
Social Science Research

ISSR

Working Papers

in the

Social Sciences

1994-95, Vol. 6, Number 3

Inter-Institutional
Spillover Effects in the

Commercialization of
Bioscience

by

Lynne G. Zucker
Michael R. Darby

Jeff Armstrong

August 1994

Copyright 1994 by Lynne G. Zucker, Michael R. Darby, and Jeff Armstrong

University of California
Los Angeles



ISSR Working Paper Vol. 6, No. 3
August 1994

Inter-Institutional Spillover Effects in the Commercialization of Bioscience

ABSTRACT

We examine the effects of university-based star scientists on three measures of performance for
California biotechnology enterprises: the number of products in development, the number of products
on the market, and changes in employment. The “star” concept which Zucker, Darby, and Brewer (1994)
demonstrated was important for birth of US. biotechnology enterprises also predicts geographically
localized knowledge spillovers at least for products in development. However, when we break down
university stars into those who have collaborated on publications with scientists affiliated with the firm and
all other university stars, there is a strong positive effect of the linked stars on all three firm-performance
measures and little or no evidence of an effect from the other university stars.

We develop a new hypothesis of geographically localized effects of university research which is
consistent with market exchange: Geographically localized effects occur for scientific discoveries
characterized by natural excludability, those which can be learned only by working with discoverers or
others who have received the knowledge through working together in the laboratory. Natural excludability
results in intellectual capital, a transitory form of human capital, embodied in particular scientists whose
services must be employed in order to practice the discovery. Contractual and/or ownership relationships
occur between firms and the university scientists with intellectual capital and importantly determine firm
productivity and growth.
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INTER-INSTITUTIONAL SPILLOVER EFFECTS
IN THE COMMERCIALIZATION OF BIOSCIENCE

by Lynne G. Zucker, Michael R. Darby, and Jeff Armstrong*

Zvi Griliches (1992) has surveyed the importance of R&D spillovers as a major

source of endogenous growth in recent “New Growth Theory” models and the difficult

empirical search for their existence. Lynne G. Zucker, Michael R. Darby, and Marilynn B.

Brewer (1994) have recently demonstrated that “intellectual capital,” particularly where and

when “star” scientists at the leading edge of basic bioscience are active, is a principal

determinant of both the location and timing of the founding of new biotechnology

enterprises (NBEs) in the United States.’ These  results provide strong further evidence of

the empirical relevance of geographic localization of knowledge spillovers as was indicated

in Zoltan J. Acs and David B. Audretsch (1988 and 1993), Adam B. Jaffe (1989), Jaffe,

Manuel Trajtenberg, and Rebecca Henderson (1993), Audretsch and Maryann  P. Feldman

*Zucker  is Professor of Sociology and Director of the Organizational Research
Program of the Institute for Social Science Research at UCLA and Research Associate of
the National Bureau of Economic Research. Darby is Professor in the Anderson Graduate
School of Management at UCLA and Research Associate of the National Bureau of
Economic Research. Armstrong is a doctoral student in the Department of Economics at
UCLA. This research has been supported by grants from the National Science Foundation
(SES 9012925), the University of California Systemwide Biotechnology Research and
Education Program, the University of California Systemwide Pacific Rim Research Program,
the UCLA Center for American Politics and Public Policy, and the UCLA Institute of
Industrial Relations.

The authors acknowledge very useful comments from Woon Gyu Choi and Maximo
Torero. The authors thank Woon Gyu Choi who provided program code used to estimate
a modified two-stage Heckman  procedure and Keunkwan Ryu who provided helpful advice
on its implementation. They also acknowledge the efforts of a remarkably talented team
of post-doctoral fellows Zhong Deng, Julia Liebeskind, and Yusheng Peng and research
assistants Paul J. Alapat, Lynda J. Kim, Kerry Knight, Edmundo Murrugara, Amalya Oliver,
Alan Paul, Erika Rick, and Maximo Torero.
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(1993), Acs, Audretsch and Feldman (1994), and Edwin Mansfield (1994).2  This paper

uncovers important evidence on the technology by which geographically localized knowledge

spillovers operate: What might appear using standard methodology and data sets as

geographically localized external economies for enterprises located near university stars turn

out to exist only for those enterprises which are linked to particular star professors by

contract or ownership -- that is, by market exchange.

We are re-examining the current diffuse notion of university spillovers, attempting

to correctly specify models of spillovers within a small range of biotechnology-using

industries by identifying the key university-industry linkages along which flow of knowledge

is most likely to occur. In this paper, we do not address cross-industry spillovers -- where

borrowing takes place between research teams (Griliches 1992, p. S36) -- although we expect

that close attention to links across industries, perhaps along professional lines, might also

yield a market exchange interpretation.

We are developing a methodology that permits correct

exchange where it has heretofore been invisible. 3 We do so by

specification of market

linking existing publicly

available data sets together in ways that have not been done before, allowing us to construct

the links between the basic science (using data bases created by and for scientists) and

industry (using data bases created by and for firms). In so doing, we are able to construct

high validity, high specificity measures without becoming focussed on a single innovation

case study. 4 By concentrating on genetic sequences and firm-specific products and

employment, we are able to combine basic-science data with data from multiple industries

from pharmaceuticals to instrumentation, agriculture, and brewing. This variety of

industries is illustrated by such NBE products currently on the market or in development

as a hepatitis B vaccine, drugs to combat anemia in kidney dialysis patients, a diagnostic test
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for testicular cancer, nematodes for control of navel orange worm, modified vegetable oils

for improved nutrition and industrial lubrication, improved fermentation processes, and

reversible color-change ultraviolet-sensitive ink.’

The results reported here, if they are confirmed for additional industries and

locations, have great significance for the interpretation of geographically localized

knowledge spillovers: (a) First, the welfare losses normally associated with uncompensated

externalities are not present. 6 (b) Second, the question of why some apparent knowledge

spillovers -- as in biotechnology -- are geographically localized while others -- as in high-

temperature superconductivity -- are not appears to be intimately related to what Zucker,

Darby, and Brewer (1994) termed intellectual capital, in particular whether the discovery

in question is characterized by “natural excludability.” (c) University policies which limit

professors’ ability to contract freely with and to establish ownership positions in firms may

protect norms of disinterested science at the cost of limiting technology transfer and local

development in scientific areas characterized by natural excludability.

We shall return to these points below, but first we must turn to the substantive case

which suggested the basic hypothesis. The empirical work in this paper is based on an

extension for California only of the existing large scientist-article-citation-university-institute-

enterprise-economy data base presented in Zucker, Darby, and Brewer (1994). 7 The data

set was extended in five principal ways: (a) a telephone census verified existing 1989 and

added 1994 employment data for California NBEs,  (b) data on the numbers of products in

development and on the market in 1989 was collected for these NBEs from Bioscan, (c) a

second telephone survey of California star scientists was used to illuminate patterns of

linkage between NBEs and stars not affiliated with NBEs,  (d) patterns of coauthorship by

stars not affiliated with NBEs were derived from the existing data base to uncover implicit
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linkages to NBEs,  and (e) patenting activity by California stars reported in Entrez was

examined to uncover differences according to the nature of the stars ties, if any, to local

NBEs. 8 The extended data base was used to examine the determinants of success for

California NBEs with special emphasis on understanding the nature of geographically

localized knowledge spillovers. California makes an ideal site for the study because of the

early entry into both the science and industry of biotechnology, as well as the number of

distinct locales where bioscience or both the science and industry have developed.

Section I discusses and presents summary data on California biotechnology

enterprises and their underlying scientific base and relates our methodology and

measurements to the literature. Estimation methods are outlined in Section II. Section III

presents empirical results on the determinants for California biotech enterprises of

employment growth and the numbers of products in development and on the market.

Section IV analyzes the implications of these results for the concept of geographically

localized knowledge spillovers. A data appendix concludes the paper.

I. Biotechnology Science and Industry in California

Modern applications of biotechnology in the pharmaceutical, medical supply,

chemical, agricultural, food-processing, brewing, and other industries emerged in the years

following the 1973 discovery by Stanford professor Stanley

California-San Francisco

DNA (rDNA). 9 Today

engineering based upon

professor Herbert Boyer of the basic

biotechnology refers principally to

Cohen and University of

technique for recombinant

the application of genetic

taking a gene from one organism and implanting it in another

(rDNA) and production of the outcome of this process. 10 While the production part of

4



    

biotechnology can be done by many firms, the selection of promising lines and the gene

transfer itself require very special skills and talents which were quite rare at least until very

recently. Following Harold Demsetz (1988),  we argue that mastery of this specialized body

of knowledge played a central role in delineating the boundaries of biotechnology firms.

Zucker, Darby, and Brewer (1994) showed the key role of leading-edge science in the birth

of NBEs and we show here that role continued in determining the success and failure of

these enterprises.

California has continued to play a leading role in both the basic science and its

commercialization and, if it were a separate country, would rank third in both science and

industry after the rest of the United States and Japan. California boasts one third of the

U.S. universities with biotech-relevant departments receiving the highest ratings in the 1982

National Academy of Sciences reputational survey.” California firms such as Amgen,

Chiron, and Genentech are world leaders in biotechnology. These firms, along with other

California NBEs, are among early entrants into commercial biotechnology, providing a

sufficiently long track record for meaningful analysis of their patterns of performance and

growth. Therefore, California is a suitable while still manageable subject for a study that

develops techniques for identifying spillovers more precisely by identifying linkages with

NBEs of star scientists affiliated with universities. 12 Further, as we will discuss in more

detail below, the pattern of our results for California at the aggregate level matches the

pattern of results found for spillovers in Jaffe’s nationwide study (1989).

I.A. Describing California New Biotechnology Enterprises

In the May 1994 telephone census described in the Data Appendix (Table A.1 is a
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variables list), we obtained usable data on 1989 and 1994 employment levels for 110

California New Biotechnology Enterprises (NBEs).  As expected from Zucker, Darby, and

Brewer (1994), 109 of these (99.1 percent) were located in those four of the state’s eight

functional economic areas as defined by the Bureau of Economic Analysis (BEA areas or

simply BEAs) where star scientists also worked. Over forty percent of the NBEs are in the

San Francisco Bay BEA and another third in the San Diego BEA. 13

Table 1 shows a breakdown of the NBEs by their age in 1989. Nearly a third of the

NBEs are 9-10 years old (entered in 1980 or 1981),  implying that a large number of the

enterprises got their start around the time of the Genentech initial public offering in

October 1980, a date considered a financial watershed in biotechnology commercialization

(John Elkington 1985, pp. 59-60).  This is also close to the peak in U.S. foundings of NBEs.

We distinguish between firms founded specifically to exploit the new bioscience technologies

(new biotechnology firms or NBFs) and subunits (including subsidiaries) of preexisting firms

established to exploit these technologies (new biotechnology subunits or NBSs).  Age is

measured from date of founding for NBFs and date of entry into biotech for other NBEs.

NBEs in principle also include organizations for which insufficient data exist to establish

whether NBF or NBS and, as in our sample, problematic organizations such as a joint

venture between a NBF and a NBS. In our 110-NBE sample, there are 87 NBFs and 22

NBSs, which is only slightly higher a ratio of NBFs than the national average.

Since many NBEs  are working on pharmaceuticals which typically require about ten

years of development and testing prior to FDA approval, revenues and especially profits are

generally nonexistent early in those firm’s development and cannot provide a reliable

indicator of success. Market value of the enterprise would do better, but less than half of

the NBEs are publicly traded. As a result, for performance measures we focus on
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employment growth from 1989 to 1994 (DELEMP) and the numbers of products in

development and on the market in 1989 (PRODDVLP and PRODMKT) as measures of

enterprise success. Associated categorical variables are DGROW (-1, 0, or 1 as the NBE’s

employment decreased, stayed the same, or increased 1989-1994) and DDEVMKT (1 if the

NBE has any specific products with specific applications in development or on the market,

0 otherwise). Table 2 presents means and standard deviations of these measures and

FIRMAGE  for the full sample as well as broken down by BEA area and DGROW.

Note that the San Diego BEA, with the youngest average enterprise age, has the

largest value of DGROW indicating the highest ratio of increasing to decreasing

employment NBEs.  The Other BEAs, with the oldest average age, actually have 4 more

NBEs with shrinking than with increasing employment. However, this may represent a

shake-out phenomenon as older NBEs either succeed and grow substantially or begin to

shrink since the mean DELEMP of 246.8 employees for the Other BEAs is substantially

larger than in either the San Diego or San Francisco Bay BEAs. As will be discussed

below, the relatively high ratios of products on the market to products in development for

the San Diego BEA and for both types of non-growing enterprises is a negative indicator

suggesting emphasis on diagnostics, reagents and instruments rather than applying rDNA

to create human therapeutics. Human therapeutics take much longer to market but also

are the segment where blockbuster products arise with potential yields in the hundreds of

millions and billions of dollars per year.

I.B. California Star Scientists and Their Ties to Enterprises

As indicated by the organizational location given on their publications, 55 star
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scientists worked in California NBEs and universities during 1976-1989. 14 Of these, 10

gave a NBE as their location during this period; we term these stars “affiliated” with the

NBE given.” It might appear that the other stars are pure academic scientists, devoid of

commercial concerns and ties, but that conclusion in a number of cases would be

misleading. Two previous substantial case studies done by one of the authors and her

project team colleagues (Julia Liebeskind, Amalya Oliver, Zucker, and Brewer 1993) and

our telephone survey of California star scientists indicate that academic stars may

simultaneously be linked to specific NBEs in a number of different ways. There appear to

be a number of patterns beyond exclusive direct employment, often as CEO or other

principal, and ownership in an enterprise. Given the distinguished achievement of these

scientists a number of them also maintain university positions although sometimes as adjunct

professors. Scientists who choose to remain principally academics have a variety of financial

ties to enterprises, including full or part ownership, employment, exclusive and nonexclusive

consulting contracts, and membership on scientific advisory boards. These ties generally

establish ownership rights and the star’s compensation for the fruits of the collaboration.

While most academics at major U.S. research universities are aware of colleagues

who have become millionaires or billionaires as a result of starting a firm while retaining

an university appointment, the picture of explicit contractual linkage to enterprises is at

sharp variance with the picture familiar to economists of how geographically localized

spillovers work. The standard economic notion is that by being near the universities where

cutting-edge research is being done, employees of local enterprises will hear of important

discoveries first and thus be able to utilize them before others are aware of their existence,

much less their value. In this paradigm, the information in the discovery is a public good

freely available to those who incur the costs of seeking it out in the groves of academe.  It
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is further assumed that scientific discoveries have only fleeting value unless formal

intellectual-property-rights mechanisms effectively prevent use of the information by

unlicensed parties; i.e., absent patents, trade secrets, or actual secrecy, the value of a

discovery erodes quickly as the information diffuses.

Zucker,  Darby, and Brewer (1994) have a different view: Scientific discoveries vary

in the degree to which others can be excluded from making use of them. Inherent in the

discovery itself is the degree of natural excludability: if the techniques for replication are

not widely known prior to the discovery, then any scientist wishing to build on the new

knowledge must first acquire hands-on experience. 16 If he or she cannot gain access to a

research team or laboratory setting with that know-how, then working in that area may be

very difficult if not impossible. Natural excludability then is a transitory source of

“intellectual capital” yielding supranormal labor income for scientists who embody the

breakthrough knowledge. Scientists earn such returns until the discovery has sufficiently

diffused to eliminate the quasi-rents in excess of the normal returns on the cost of acquiring

the knowledge as a routine part of a scientist’s human capital.

As information diffuses after a discovery, the associated intellectual capital of a

person who embodies the information declines both because the supranormal returns

decline as there are more scientists using the information competitively and because there

is less time remaining until the information is part of routine science and thus no longer

capable of earning supranormal returns. The value of intellectual capital created by a new

discovery increases as the discovery involves techniques that must be learned first-hand

through collaboration or apprenticeship; that is, to the extent that they possess the “natural

excludability” necessary for relatively long-lasting supranormal returns. 17

The breakthrough discoveries involved in modern biotechnology have fundamentally
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changed how bioresearch is done. Once a new life form has been created and its use

identified and sufficiently demonstrated, then those specific inventions are alienable from

their creator through intellectual property mechanisms. However, the new techniques used

in their creation have exhibited both high natural excludability and immense commercial

value. Therefore, it is not surprising that Zucker, Darby, and Brewer (1994) found that

where and when stars were actively publishing were important determinants of where and

when enterprises built to use their special knowledge would be formed.

Since star scientists could simultaneously provide immense value to both great

research universities and NBEs, many chose to do both. One way to identify those scientists

wearing two hats is to examine the coauthorship pattern of stars unaffiliated with NBEs.

A star is “linked” to a NBE if the star publishes an article with one or more scientists in the

NBE while he or she is located at a university in the same BEA as the NBE. We

hypothesize that such locally linked stars are the main channel by which university star

scientists have influenced the success of NBEs.

They do so in two primary ways. First, linked star scientists provide access to and

information about discoveries with potential commercial value made in their own and other

university-based labs. Zucker, Brewer, Darby, and Yusheng Peng (1994) have shown that

organizational boundaries serve as informational envelopes within which valuable

information characterized by natural excludability is much more likely to be diffused than

to those outside the organization. So, by being in both the university and the NBE, the

linked star is able to convey knowledge of processes and techniques which would otherwise

not be available to the NBE.

Second, the linked university stars are able to maintain both links because of the very

high quality of their input. Central to understanding how these dual affiliations work is the
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case study finding that bioscientists act as individual actors, as opposed to acting as agents

of their primary ties, whether to the university or the firm (Zucker,  Brewer, Oliver, and

Liebeskind 1993). These bioscientists can exercise their expertise independently primarily

because they are recognized as having excellent “scientific taste” in the selection of research

problems and using exceptional care and expertise in executing that research.” By

exercising their “scientific taste” these linked stars judge the likely payoff of different lines

of bioscience research and advise the NBE concerning their relative merit. We expect that

the scientific advisory boards play a similar role, and plan to investigate them in later

research. Linked stars, while they generally have a significant financial interest in the NBE,

also often have the advantage_ of being part of a broad external “network for evaluation,”

providing the basis for high quality input in product development decisions (Zucker

1991). 19

As described in the Data Appendix, we examined every article through 1989

reporting a gene-sequence discovery written by a star located in a California university or

NBE. We classified for each star whether he or she was affiliated with a NBE on that

article or, if not, whether any scientists from a NBE in the local BEA were coauthors on

the article. Accordingly, for each article the star was classified as affiliated  with or linked

to a specific NBE or untied to any NBE.200 For the empirical work reported in Section III,

we use counts of these classified articles, but a simpler count of individual stars is reported

in the upper panel of Table 3.

Working with BEA-level  data, we have a total of 64 stars who ever published in

California. After eliminating double-counting of stars who moved across BEAs within

California, this corresponds to the 55 individual stars who ever published with a California

NBE or university through 1989. Of these, 10 were ever affiliated with one or more NBEs,
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and another 8 were linked to one or more NBEs in the same BEA where they were

publishing. A few of the remaining 37 stars have been affiliated with NBEs outside of

California or published with NBEs outside of their California BEA, but those are not

relevant for our current study of geographically localized knowledge spillovers.

The lower panel of Table 3 presents summary data on the patents granted for genetic

sequence discoveries through 1993 listing one of the 55 star scientists who published in a

California NBE and/or university during 1976-1989. As we discussed above, while natural

excludability leads to the embodiment of certain knowledge and techniques in individuals,

there is also a role for formal intellectual property rights. When the knowledge is

implemented to create alienable, potentially commercially valuable discoveries, patents offer

an important mechanism for appropriating returns. Thus, the patenting of discoveries by

stars is an indication of expected commercial value of their discoveries.

The data presented in Table’3 show that those stars affiliated with NBEs are very

different in their patenting activity compared to university stars: half have patented

discoveries versus only 15.6 percent of the university stars. Among the university stars, a

quarter of those linked to specific NBEs in the same BEA have patented discoveries

compared to 13.5 percent of those not tied to such NBEs. Although the numbers are small,

the standard x2(2) test rejects the hypothesis of independence.

In Table 4, the means for our three performance measures are tabulated according

to whether the NBE has stars affiliated with it or not and according to whether the NBE

has stars linked to it or not. There is a clear pattern of NBEs with affiliated or linked stars

having more products in development and on the market and having more employment

growth, although only the latter differences are robustly significant. 21 With this motivation

that the star concept may prove useful in analyzing performance of NBEs, we turn to
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relating the methods used here to other work in the literature.

I.C. Relation to Other Empirical Work

In describing the general features of our data base, we have implicitly raised

questions concerning prior models and related empirical measures of innovative inputs, the

knowledge generation process, and outputs of that process. Innovative inputs have generally

been treated as measured by the resources invested in them, most often R&D expenditures.

The underlying assumption that equal investment in R&D produces equal innovative returns

is easily falsifiable and recently patents have been seen as a better measure of inputs than

output of the innovative process. 22 We know that most scientists have very low

productivity, with most of the scientific output typically produced by the top 1 or 2 percent

of all scientists working in a specific area (Harriet Zuckerman 1967, Diana Crane 1972, Paul

D. Allison, J. Scott Long, and Tad K. Krauze 1982). Thus, we are concerned with

identifying and locating the most productive, star scientists (all of whom were located in

universities initially), their explicit linkages to firms, and actual measures of their

productivity in the firm linkage. The latter is measured here by the number of articles

reporting genetic-sequence discoveries that are published either with the firm listed explicitly

as the star’s affiliation or which include firm scientists as coauthors.

Just as we are concerned with more precise specification of innovative inputs, we are

also concerned with improving the precision of innovative outputs at the firm level and,

particularly, of introducing specific economic outcomes as measures of innovative

performance. The best recent papers in the literature have refined the measure of patents

as an outcome with appropriate weighting or screening and introduced the number of
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product innovations.

Unfortunately, the latter measure is defined rather broadly on the basis of lists of

product, process, service, and management innovations reported in trade journals related

to manufacturing industries (K.L. Edwards and T.J. Gordon 1984). Moreover, Acs and

Audretsch (1988, p. 681) report that these innovations are primarily (86.7 percent) modest

improvements that update existing products -- conceptually far removed from our idea of

significant outputs from the innovative process. Further, the innovations data set in use

only includes products on the market (Acs and Audretsch 1988 and 1993), again removed

from the innovation process and yet not measuring the impact of the process on the

economic success of the firm. -

In contrast, we separately measure three different aspects of the economic impact

of inventive activity: the number of products in development (generally close to the

inventive activity), the number of products on the market (indicating successful

development), and net growth in employment (indicating successful development and

marketing of products). Each can be seen as a successive step in moving from the initial

invention to the impact on economic performance of the firm. Although we use only cross-

sectional data in the work reported here, we plan to exploit available information to develop

time series on the first two measures for 1987-1994, as well as less complete data on

employment changes at the firm level over the same period.

II. Estimation Methods

Because of the nature of the processes which we will be estimating, we use two

approaches to estimation: (a) poisson regressions are used for products in development and

14



on the market and (b) a modified Type II Tobit  procedure following Takeshi  Arnemiya

(1985) is used for change in employment. Each is outlined briefly below.

II.A. Products in Development and on the Market

While a significant number of NBEs list no products in development or on the

market as shown in Table 2, we count one or more such products for most NBEs. In the

results reported in Section III, we estimate poisson regressions on each of these count

variables using the LIMDEP package. 23 As discussed in Jerry Hausman, Bronwyn H. Hall,

and Grihches (1984), the poisson process is the most appropriate statistical model for count

data such as we are dealing with here. The poisson regression fits the logarithm of the

poisson parameter as the sum of the coefficients times the variable values for the firm.

While the magnitude of the coefficients are not easily interpretable, positive coefficients

indicate a higher expected value of the dependent variable.

II.B. Employment Changes

We saw in Table 2 that 52.7 percent of the NBEs increased employment during 1989-

1994, 12.7 percent had unchanged employment, and 34.5 percent decreased employment.

The employment gains were typically much larger than the employment losses; so total

employment of the 110 NBEs in the sample increased by over 11,000 people. Obviously,

one eighth of the mass at zero is inconsistent with the data generating process assumed in

OLS and other standard estimation methods. The Heckman (1976) two-step procedure is

appropriate to deal with such an apparently non-linear data generating process.24
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We hypothesize that the NBE’s employment decision can be captured by a two-step

process: In the first-stage the firm decides whether to expand, contract, or stay the same.

This first-stage decision is latent, and a NBE’s propensity to alter its size is observed only

after some critical threshold level is exceeded where the need to change size exceeds fixed

adjustment costs. In the second stage, the NBE also attempts to achieve a desired level of

employees, a latent variable, which is observed for NBEs that do in fact alter their size.

The latent variable S* represents the propensity of NBEs to alter their size. For

each observation, S* is specified as follows:

(1) S** = x&k! + u,

where x1 is a vector of characteristics affecting the NBE’s decision to alter its size. We do

not observe S* but rather its sign:

(2) S = -1 if S* < pl

0 if p, 5 S* < pU

+l if S*L CL,

where pI and CL,, are the lower and upper bound thresholds outside of which a NBE

implements a decision to alter its size.

Let D* represent the unobserved desired change in total employees as a function of

a vector of characteristics:

(3) D** = XJ? + uz

D* is observed only for NBEs where S is plus or minus one, that is, D = D* if S* > p, or

s* < lq.

Given this structure, it is appropriate to employ a two-stage estimation procedure

which, first, predicts whether employment will increase, remain the same, or decrease and,

second, estimates the size of the change for those NBEs that actually do change. The
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second-stage estimation can be interpreted in terms of correcting for selectivity biases which

would otherwise occur in the coefficients and variance-covariance matrix estimated in OLS

for those NBEs with nonzero DELEMP.

The selectivity-corrected specification is straightforward: The conditional expectation

functions assuming that u1 and u2 are distributed bivariate normal, BVN(O,O,l,a,*~)  are:

(4a) E(DELEMP   S=-1) =

=

=

E(DELEMP   S* < p,)

x2’P + P2W1   ut < -x,‘a + p,)

x;p + p2c-(#++-  I+)/( l-@(X,‘~-  cl,)>

for the sample of NBEs that contract and where E(O) is the expectations operator, C$

Q? the standard-normal density and distribution functions. For NBEs that expand,

conditional expectation function is:

(4b) E(DELEMP   S= + 1) = E(DELEMP   S*zp,)

= x2’p + pa,E(u,  Iul > -x,‘cu  + CL,)

= x*‘P + p~*(-~(x1’cy-cL,)/~(x1’(y-~“)}

and

the

Note that x1 need not be constrained to equal x2. This offers important flexibility since the

star-scientist variables enter significantly into x2 but not into x1. Let J.( 0) equal the term in

curled brackets on the bottom line of each conditional expectation function (4a) and (4b)

and let y=pu2 its coefficient. This A(*) is known as the Inverse-Mills

p not equal to plus or minus one, this model is a modified version

procedure described by Amemiya (1985).

Ratio (or IMR). For

of the Type II Tobit

To implement the modified Heckman  (1976) procedure, first-staged ordered probit

estimates of (Y and pU (with pl normalized to 0) are used to construct estimated values of

A( 0) for each NBE satisfying either S =-1 or S= + 1. As Ryu (1993) has shown, the standard

Type II Tobit  two-stage estimation procedure produces a biased and inconsistent variance-
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covariance matrix due to a heteroscedastic and correlated error structure. Following Ryu

(1993), Choi (1993) derives an unbiased and consistent variance-covariance matrix for the

modified Type II Tobit used here which we use to obtain exact standard errors in the results

below.”

III. Empirical Results

In this section we report results on three different measures of NBE performance:

the number of products the NBE has in development as of 1990, the number of products

it has on the market at that time, and the net change in its employment over the five years

following 1989. None of these measures are by any means perfect substitutes for changes

in value of the enterprise as measures of success. However, many biotechnology firms are

small start-up ventures which are not yet publicly traded and other NBEs are subunits of

much larger enterprises not primarily involved in biotechnology. Thus, the sample size

would be unacceptably reduced from the 76 NBEs for which we have data if we restricted

ourselves to those for which enterprise value was also available.26  Nonetheless, these three

indicators are interesting in and of themselves from organizational, economic, and policy

perspectives and are likely to reflect spillover effects if they exist.

As indicated above, in these estimates we use a set of variables built by counting the

number of articles reporting genetic sequence discoveries and written by each star located

in California universities or NBEs,  according to whether for each article the star was

affiliated with, linked to, or not tied to each of the 110 NBEs in the data set. We

constructed an analogous set of measures (also described in the Data Appendix) in which

individual stars were counted as affiliated, linked, or untied without regard to article
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weighting. Since the results for the latter construct were essentially the same as those

reported, we do not include them here.27

1II.A.  Products in Development

The number of products the NBE has in development as of 1990 (PRODDVLP) is

taken from the NBE’s listing in Bioscan (see the Data Appendix for details). Generally,

these products are in various stages of clinical trials or field testing, although in some cases

the listed products may be at earlier stages of development or have received F.D.A. market

approval but not yet be marketed. Among the three indicators examined, this measure

appears to be most closely related to success in application of the new biotechnologies and

least affected either by use of other technologies or by differences in business strategy (e.g.,

in-house production and/or marketing vs. joint agreements with established pharmaceutical

firms).

We first examine the results of a poisson regression in the spirit of Jaffe (1989).

Model a in Table 5 explains products in development by the number of gene-sequence-

discovery articles written by stars in local universities not affiliated with any NBE

(WSUNABEA), by whether or not the NBE is a NBF (as opposed to a biotech subunit of

a pre-existing firm), by the NBE’s age, and by whether or not the NBE utilizes the rDNA

technology. Model b broadens model a by also including the number of gene-sequence-

discovery articles written by stars affiliated with the NBE (WSAFFIL). Consider first model

a: As expected, the NBE’s age and its use of the rDNA technology both contribute

significantlyandpositively to the number of products in development. Interestingly, the new

dedicated biotech firms are significantly more likely to be developing new products than
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incumbent firms. Finally, we see that the stars concept which was used by Zucker, Darby,

and Brewer (1994) to identify the scientists around which NBFs and NBSs would be built

also appears to work here to uncover important, positive, significant geographically localized

spillover effects of local universities on the success of enterprise R&D efforts in the manner

of Jaffe (1989) and Acs, Audretsch, and Feldman (1994). These results all persist in model

b, although the addition to the poisson regression of the significantly positive number of

stars affiliated with the NBE generally reduces both the magnitude and t-statistics for the

other explanatory variables.

Models c and d are identical to models a and b, respectively, except that the number

of articles written by university stars is broken down into those written in collaboration with

scientists from the NBE (WSLINKLO) and the remaining (WSUNTILO). The explanatory

power of the regressions are substantially and significantly improved by relaxing the implicit

constraint that research done in the university has the same effect on enterprise R&D

productivity whether or not it is done in collaboration with the enterprise’s scientists. In

fact, the coefficient on articles written by local university stars not in collaboration with the

NBE loses its significance and nearly vanishes in magnitude. What had appeared to be an

undifferentiated geographically localized knowledge spillover seems to have resulted from

a specification error: If we did not have the data set required to identify which university

stars were linked to which enterprises, then this study would have confirmed the previous

findings. Instead we find that no such indiscriminate spillovers are apparent in

biotechnology.

It is interesting

neither WSAFFIL nor

that when WSLINKLO is admitted to the regression separately,

RTECH retain their significance. We believe that this should not

be taken to mean that having affiliated stars or using the rDNA technology are irrelevant.
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For example, enterprises with affiliated stars are most likely to attract university stars to

collaborate with them.28 The enterprises with links to university stars are able to most

effectively acquire and use the results of ongoing university research; linked stars become

the conduits for the information and for evaluation of different lines of research related to

potential product development.

1II.B. Products on the Market

The number of products the NBE has on the market as of 1990 (PRODMKT) also

is taken from the NBE’s  listing in Bioscan (see the Data Appendix for details). Although

some of these products result from the application of the new biotechnologies, by and large,

given the typical decade-long FDA approval process for human therapeutics, the products

on the market are largely reagents and instruments used in applying the technology rather

than the result of the new biotechnologies themselves.

These differences between products on the market and products in development

rationalize the differences between the results reported in Tables 6 and 5. In Table 6, the

coefficients on DNBF and RTECH are both negative and significant which we believe

reflects the fact that NBEs which are engaged primarily in applying the new technologies

are likely to have fewer products than their suppliers. Nonetheless, FIRMAGE  (measured

from the date of entry into biotech) and WSAFFIL or, when it is entered, WSLINKLO have

a positive effect on the number of products on the market. As to the latter effects, the

positive coefficients reflect the fact that the most successful NBEs using the new

biotechnologies are the ones most likely to have products which reached the market.
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III.C. Changes in Employment

Table 7 reports the results from the first-stage ordered probit estimation. These

estimates are useful primarily as a basis for correction for selectivity bias in the equations

reported in Table 8 but do uncover an interesting pattern of industry dynamics. The

coefficient estimates indicate that an enterprise is more likely to increase employment and

less likely to decrease employment if it uses rDNA technology to produce human

therapeutics and if it is younger. We will see below, however, that FIRMAGE  is positive

in determining the size of the NBE’s employment increase. What we have identified in the

first-stage estimates appears to be a sorting phenomenon in which as the enterprise matures,

it either begins to grow more rapidly or else to shrink according to whether or not its

strategy is proving successful. This increasing probability of decline or failure is in contrast

to the findings for U.S. manufacturing plants generally reported by Timothy Dunne, Mark

J. Roberts, and Larry Samuelson (1989) perhaps because it is so difficult to tell whether

or not a young biotech enterprise is or is not achieving success.

Table 8 reports selectivity-corrected second-stage OLS estimates for change in the

number of employees analogous to those reported for products in Tables 5 and 6. The

variance-covariance matrix has been corrected for the non-spherical error structure inherent

in the Type II Tobit procedure as explained in Section I1.B above.29  For models a and b

in which linked stars do not enter separately neither university stars nor affiliated stars enter

the regression significantly. In models c and d, with university stars broken down into

linked and other university stars, the linked stars are seen to have a significant positive

effect as with the other performance variables. Once again, neither the other university

stars nor the affiliated stars enter significantly.

22



Of the other variables, the only robustly significant effects are a positive coefficient

on the use of the rDNA technology and another on the Inverse-Mills Ratio which signifies

the importance of the selectivity bias correction.

III.D. Summary of Empirical Results

For all measures of firm performance, linked university stars have a significant

positive effect while other local university stars and stars affiliated with the firm do not

when all three variables enter the equation. For the variable most directly related to

innovative activity, the number of products in development, there appears to be a significant

classic geographically localized spillover effect from the number of local university stars.

However, this disappears when university stars are broken down into those which have

direct links to the specific firm and all others. While affiliated stars then do not have a

measurable direct effect on firm performance, it should be noted that firms with affiliated

stars are more likely to have linked stars. Further, the significant correlation between the

linked- and affiliated-stars variables makes it difficult to separately identify their effects.

Thus for the biotechnology industry, we have provided strong evidence that apparent

geographically localized knowledge spillovers in fact represent specific market exchange.

While we await other researchers’ results for additional industries and technologies, we

hypothesize that apparent local spillovers generally may confound strong effects from

university scientists directly involved with local firms and weak or nonexistent effects from

all other university scientists.
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IV. Conclusions

Paul M. Romer (1990) shows that knowledge spillovers have substantial

macroeconomic implication for growth and international trade. These implications result

because investments in R&D produce an output (characterized by Romer as a set of

instructions) which is both nonrivalrous and at least partially excludable.30  Our empirical

results suggest that what have been termed geographically localized knowledge spillovers

do not seem to fit this definition of spillovers, at least in the case of biotechnology. In

particular, because discoveries in this area are characterized by natural excludability and

embodied in human capital and because transmitting the discovery to others requires the

active participation of those with the knowledge, the technology cannot be characterized as

a nonrivalrous set of instructions.31 Thus to the extent that our results generalize to other

cases of apparent geographically localized knowledge spillovers, the inefficiencies derived

in Romer’s analysis are not present.

The standard notion of geographically localized knowledge spillovers is based on the

idea that university scientists are pursuing disinterested basic research, the results of which

can be most quickly put to commercial use by those enterprises located nearby who can

most readily learn novel results from social ties between employees and university scientists

or by attending informal seminars at the university.

Our picture of how the process in fact has worked in biotechnology is quite different.

We find that all the parties involved (government and other funding agencies, universities,

professors, and enterprises) are connected by contractual and/or ownership ties in

competitive markets. The government grants patent rights to universities (with a proviso

for minimum royalty rates for discovering scientists) and rights of exploitation to scientists
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who embody any intellectual capital resulting from their work. As a result, the prices paid

by government funding agencies are reduced both directly due to any expected patent

royalties to universities and indirectly because competitive university salaries are lower,

other things equal, in areas where faculty expect the possibility of receiving substantial

outside income or wealth as a result of skills developed doing research at the university.

Since these discoveries are characterized by natural excludability, the discovering scientists

do not give away to enterprises the fruits of their intellectual capital but instead enter into

contractual arrangements with existing firms or start their own firm in order to extract the

supranormal returns available to those fortunate and talented enough to acquire that

capital. In this way, we see that what appeared to others as a case of knowledge spillovers

with resulting inefficiencies is in fact a standard case of market exchange of rivalrous and

excludable goods. We believe that this geographically localized impact, like intellectual

capital itself, is a transitory phenomenon during the important initial period of industry

development resulting from a major, commercially valuable scientific breakthrough

characterized by natural excludability.

The empirical results in this paper are restricted to evidence on geographically

localized knowledge spillovers in the California biotechnology industry. The reorientation

in interpretation, we believe, is more generally applicable to any cases where natural

excludability is important. Further, we hypothesize that it is precisely these cases where

geographically localized effects of university research on industry are to be found. Without

natural excludability, the output of research more closely corresponds to Romer’s set of

instructions which can be utilized anywhere (and everywhere in the absence of intellectual

property rights). As with the example of high-temperature superconductors, location of

discoveries and of production are disjoint since the labor of the discoverers is not required
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in production.

Intellectual capital, when linked to the firm through market exchange mechanisms

including ownership, significantly accelerates firm productivity and growth. A simple story,

but one with profound implications for understanding the channels through which

commercializable scientific discoveries alter the economy.
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Data Append ix

A detailed description of the basic data sets developed for the Project on “Intellectual

Capital, Technology Transfer, and the Organization of Leading-Edge Industries: The Case

of Biotechnology” (Lynne G. Zucker, Marilynn B. Brewer, and Michael R. Darby, Principal

Investigators) is presented in Zucker, Darby, and Brewer (1994). These data will be

archived upon completion of the project in the Data Archives at the UCLA Institute for

Social Science Research. The project has been housed at and supported in part by ISSR.

The summary definitions of the variables used in this paper are provided in Table

A.l. A description of the construction of variables new in this paper follows. Table A.2

provides summary statistics for the variables.

A.l. Measures of NBE Performance

Our basic source for employment growth from 1989 to the winter or spring of 1994

is a telephone census conducted in May 1994. We attempted to conduct telephone

interviews for all 182 California NBEs in the Zucker, Darby, and Brewer (1994) data base.

We initially sought information on employment levels in 1984, 1989, and 1994. Attempting

to obtain 1984 information generally resulted in refusals to participate. However, we

obtained almost complete coverage of NBEs which we could locate by limiting our questions

to confirmation of the employment levels for 1989 (EMP89) already in the data base (which

indicated to respondents that we were independently knowledgeable about their business)

and obtaining either end of 1993/beginning  of 1994 or current (May 1994) employment

levels. From the 182 initial cases, we obtained 110 useable observations for EMP94 as
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detailed in Table A.3 (upper part).

We next attempted to add information on how many products each of these 110

NBEs had in development (PRODDVLP) or on the market (PRODMKT) in 1990 by

referring to issues of Bioscan for that year. In a few cases missing NBEs were listed in 1989

or 1991 issues in which case those numbers were accepted. However, as detailed in the

remainder of Table A.3, for 32 smaller NBEs no listing was found which reduces the sample

size to 78 NBEs where either of these two variables or their categorical transform

DDEVMKT is used. In the analyses we include as a control variable whether the NBE

reported using the recombinant DNA technology (indicated by RTECH = 1) which is most

closely related to the star measure. Missing values on that variable (i.e., no report on

technologies used) further reduces the sample size from 78 to 76 NBEs  with complete data.

In order to present a more current picture of the firms’ products, Tables A.4 and A.5

give a 1994 (not 1990) l-in-10 sample of products in development and l-in-20 sample of

products on the market which may be useful for those readers not familiar with the range

of products and industries to which biotechnology has been applied and informative to the

rest.

A.2. Defining Stars and Their NBE Affiliation or Linkage

Zucker, Darby, and Brewer (1994) demonstrate the key role played in determining

where and when NBEs are founded by intellectual capital, in particular by where and when

leading frontier scientists (“stars”) are actively publishing. We first shall review how they

defined stars and then develop the special measures used in this paper.

Given the fundamental role of rDNA in modern biotechnology, a very important

measure of research success in the basic science is the discovery of nucleotide sequences
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that determine the characteristics of proteins and other molecules. In the earlier stages of

the project, GenBank was used to identify all articles reporting genetic sequence discoveries

up to 1990. 32 Worldwide 337 leading researchers (the “stars”) were identified on the basis

of the number of genetic sequence discoveries and articles reporting them up to 1990 for

which they were an author. These 337 stars were listed as authors on 4,315 distinct articles

in major journals. These articles were hand collected and used to identify and locate

institutional affiliations at the time of publication for each of our stars and their coauthors

who were either other stars or “collaborators” (7,718 scientists worldwide). This hand

coding was necessary because available machine-readable data bases give only the location

of the first author who, given the authorship conventions of the field, is rarely a star

scientist.

In our extension of the Zucker,  Darby, Brewer (1994) data set, we developed

ways of measuring the local stars from the point of view of our 110 sample NBEs:

tW0

by

counting individual local stars and by counting the number of articles written by local stars.

For the individual measures, a star is said to be "affiliated" with a NBE if that NBE is ever

listed by the star as an affiliation during 1976-1989. A star is said to be “linked” to a NBE

if, while listing a university in the same BEA as the NBE, he or she has ever coauthored

with a scientist (star or collaborator) who listed the NBE as his or her affiliation on that

article.33 Thus, linked stars are those at universities who have specific ties to particular

nearby NBEs as identified by their publishing activities with the NBE.

The star scientist variables calculated for this paper are those with the initial letters

ST listed in Table A.l. Each variable is observed for the cross section of 110 California

NBEs for which EMP94 was obtained (see above). Each NBE is geocoded as being located

in one of the eight California functional economic areas (BEA areas) as defined by the U.S.
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Bureau of Economic Analysis.

For each of the BEAs, we produce counts of the total number of stars who have

published while working in a local university or NBE broken down into those who were at

any time affiliated with any NBE in the BEA (STAFFBEA) and the remaining stars

(STUNABEA) hw o worked in the BEA only in universities.34  Either of these variables will

have the same value for all NBEs located in a given BEA.

Three NBE-specific star variables were then created: a count of the number of stars

who have worked with the specific NBE (STAFFIL), the number of stars in the BEA not

counted in STAFFIL who are linked to the NBE (STLINKLO), and finally the number of

BEA stars who are neither affiliated with any NBE nor linked to this NBE (STUNTILO).

Thus, total university-based stars (STUNABEA) is the sum of STLINKLO and STUNTILO

while STAFFIL is the count of the subset of the STAFFBEA stars who are affiliated with

the specific NBE.

Counting individual stars in this way as all in one category or another may give a

misleading picture of the degree of involvement with a NBE; so alternative article-weighted-

star variables (beginning with WS in Table A.l) were calculated with each star allocated to

affiliated, linked, or untied categories on an article-by-article basis.

The two article-weighted star variables that are the same for each NBE in a given

BEA are: the summed number of articles written by stars listing universities located in the

BEA (WSUNABEA) and the summed number of articles written by stars listing any NBE

in the BEA at the time of writing (WSAFFBEA).

Finally, three NBE-specific article-weighted star variables were then created:

WSAFFIL, WSLINKLO, and WSUNTILO, corresponding to the individual star variables

discussed above.
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FOOTNOTES

1. NBEs include both new biotechnology firms formed to exploit the new technologies and
divisions, subsidiaries, or other units of incumbent firms which enter the biotechnology field.

2. Nancy S. Dorfman (1988), Bryan D. Jones and Arnold Vedlitz (1988), Raymond W.
Smilor, George Kozmetsky, and David V. Gibson (1988), Neil Bania, Randall Eberts, and
Michael Fogarty  (1993), and James D. Adams and Jaffe (1994) also indicate geographic
localization of knowledge spillovers.

3. We are, of course, tempted to call this a cloud chamber for Adam Smith’s “invisible
hand,” but could not stoop so low.

4. See Griliches (1992, pp. S31-S33) on the pitfalls along the path of narrowly focussed
research.

5. See Tables A.4 and A.5 in the Data Appendix for more examples.

6. It should not be entirely surprising that where the holders of the valuable knowledge are
few in number, contracts can be negotiated which eliminate the effects of potential
externalities; see Ronald H. Coase (1960). Coase (1974) also observed that economists are
overly prone to assume externalities, as in lighthouses, where market contracts can in fact
exist. Steven N.S. Cheung (1987, p. 456) notes that Coase objected to the term The Coase
Theorem since “what he did was to specify the conditions under which the traditional
theorem of exchange becomes operative.” This paper aims to show that those conditions
may also apply in the case of what has been considered to be geographically localized
spillovers.

7. This work was funded by a grant to Zucker and Darby for “Linking California
Universities and Scientists to the Biotechnology Industry” from the University of California
Systemwide Biotechnology Research and Education Program.

8. For Entrez, see U.S. Department of Health and Human Services (1994).

9. Cohen, Chang, Boyer, and Helling (1973).

10. The other basic technology is cell fusion (also termed monoclonal  antibodies, MABs,
or hybridomas) in which lymphocytes are fused with myeloma cells to create rapidly
proliferating antibody-producing cells.

11. The survey is reported in Lyle V. Jones, Gardner Lindzey, and Porter E. Coggeshall
(1982). The eighteen U.S. universities with top-rated biotech relevant departments included
California Institute of Technology, Stanford, and the University of California campuses at
Berkeley, Los Angeles, San Diego, and San Francisco.

12. In California, a relatively small number of star scientists list affiliations with a third
category of organizations: research institutes and hospitals. Since these organizations are
not generally considered in studies of geographically localized knowledge spillovers and
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there are no significant linkages between their stars and NBEs,  we focus in this paper
exclusively on stars who are located at some time in at least one California university or
NBE.

13. Most, but not all, of the remainder are located in the Los Angeles BEA. The
Sacramento (Davis) BEA is the fourth area with star scientists.

14. This method of locating scientists in organizations was developed and validated at an
earlier stage of this project (Zucker,  Brewer, Oliver, and Liebeskind 1993).

15. One of these 10 stars was affiliated sequentially with two NBEs over the period; the
other nine stars were each affiliated with only one NBE.

16. Indeed natural excludability has created some problems for making the “enabling
disclosure” that is required for a valid U.S. patent application. In order to obtain the
seventeen-year monopoly granted by a patent the applicant must make a disclosure that will
enable the public to practice the innovation once the patent expires. After some litigation
and legislation, patents are now obtainable by biotech inventors who disclose their invention
by placing a culture in a recognized public depositary. (See Rebecca S. Eisenberg 1987 for
a discussion of this history.) Disclosure by deposit eliminates the inherent difficulty in
disclosing the art used to obtain the invention so that it can be readily replicated.

17. In the limit, where the discovery can be easily incorporated into the human capital of
any competent scientist, the discoverer(s) cannot earn any personal returns -- as opposed
to returns to intellectual property such as patents or trade secrets. In the case of
biotechnology, it may be empirically difficult to separate intellectual capital from the
conceptually distinct value of cell cultures created and controlled by a scientist who used
his or her nonpublic information to create the cell culture.

Besides natural excludability, the value of intellectual capital depends on the novelty
and value of the discovery. For example, many discoveries have little or no value--whether
monetary or nonmonetary. They are viewed as a dead-ends, of interest only within a few
collaborations. The techniques and research program crawl along, diffusing slowly if at all.

18. Dual affiliations of bioscientists are a specific instance of a very general phenomenon
in which individuals with exceptional quality of performance and productivity compared to
others with similar’kinds of skills come to have more than one simultaneous organizational
affiliation (Zucker 1991). For example, top ranked physicians tend to have multiple
affiliations with hospitals and top producers and directors are much more likely to have
multiple contracts with independent film companies while others have none (R. R. Faulkner
and A. B. Anderson 1987, Tables 2-4).

19. For similar internal firm use of external evaluative information, see Robert Eccles and
Dwight Crane (1988, pp. 152-154) on the use of customer surveys to determine salary
increases, bonuses, and promotion in investment banking.

20. The linked and untied distinction for our university stars may suggest James D.
Thompson’s (1967) distinction between boundary-spanning and core personnel. However,
this analogy could prove misleading since nearly all the university stars have extensive
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contacts with organizations other than their own university and those stars who are actively
involved in collaborations with firms typically do so for their own gain and not as part of
their role in the university.

21. In Table 4, we tested for equality of variance between the two groups. Where the
hypothesis of equality was rejected at the 5 percent level, we report the t-test on the means
for unequal variances. Otherwise, the t-test for equal variances is reported.

22. See Griliches (1990) for a review of the use of patent statistics as economic indicators.

23. See Greene (1992, pp. 539-549) for a discussion of this procedure.

24. Modeling this process as a one-step decision by using OLS or FGLS does not alter the
qualitative findings nor significance of key variables though it does substantially reduce the
model’s overall goodness-of-fit. We implemented a specification test proposed by Ryu
(1993) and found that our two-step procedure was a suitable specification.

25. Choi’s substantive problem was the choice by the central bank to change the discount
rate and, if so, by how much. We are indebted to Choi for providing his LIMDEP code to
implement his procedure.

26. From an organizational sociology perspective, products in development is the preferred
measure because it is conceptually most closely related to the R&D function of intellectual
capital. The extent to which scientific entrepreneurs are able to transfer intellectual capital
value to the firm and the accuracy with which that capital is priced in the financial markets
is the subject of future research.

27. These results will be made available upon request to any of the authors at least through
1999.

28. WSLINKLO is positively and significantly correlated with WSAFFIL, and neither of
these variables are significantly correlated with WSUNTILO.

29. Recall that these regressions are run only for the subset of NBEs for which employment
changeswere reported. We also tried percentage changes in employment with no significant
differences in the qualitative results. We believe the level changes are easier to interpret
and conform more closely to a Type II Tobit  model and so report them here.

30. Nonrivalry implies that use by one person or enterprise does not reduce the amount
available for use by others. Excludability, which refers to the ability of the owner of a good
to prevent others from using it, can derive from technology, law, or both.

31. See Romer’s (1990, pp. S74-S75) careful discussion of the key distinction between his
technology and human capital.

32. See Zucker,  Brewer, Oliver, and Liebeskind (1993). The rDNA technology devolved
from high to routine science in the late 1980s; so 1990 was a good year to end the literature
base for identifying scientists possessing intellectual capital.
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33. The distinction between affiliated and linked may be more form than substance: In
some cases stars always list their university affiliation even though they are known to us to
be simultaneously employed by or a principal in an enterprise.

34. They may also have worked in the BEA in the organizational category not considered
for this paper: research institutes and hospitals. In addition, some stars moved across
BEA boundaries and thus were counted multiple times in the extended data set (see Table
3 and the related discussion in Section 1.B above).
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Table 1
Distribution of New Biotechnology Enterprises by Age in 1989

NBE Age Number of Percent of
NBEs Total

1 2 1.8

2 4 3.6

3 13 11.8

4 10 9.1

5 3 2.7

6 11 10.0

7 11 10.0

8 4 3.6

9 27 24.5

10 11 10.0

11 4 3.6

12 5 4.5

13 2 1.8

14 3 2.7

Total (all ages) 110 100.0
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Table 2
Means and Standard Deviations of New Biotechnology Enterprise Characteristics

by BEA Area and Enterprise Employment Growth

Variable BEA area
N Mean St.Dev.

Employment Growth
N Mean St.Dev.

San Francisco BEA Employmen t Decreased
DGROW 48 0.12 0.91 38 -1.00 0.00
DELEMP 48 46.21 269.70 38 -47.13 69.61
DDEVMKT 33 0.76 0.44 27 0.77 0.42
PRODDVLP 33 2.73 5.62 27 1.30 2.32
PRODMKT 33 3.76 4.34 27 3.15 5.03
FIRMAGE 48 7.44 3.21 38 8.18 2.56

San Diego BEA Employment Unchanged
DGROW 37 0.49 0.83 14 0.00 0.00
DELEMP 37 71.22 128.26 14 0.00 0.00
DDEVMKT 29 0.79 0.41 9 0.89 0.33
PRODDVLP 29 1.03 1.61 9 0.78 1.30
PRODMKT 29 5.10 7.12 9 5.22 5.67
FIRMAGE 37 6.24 3.22 14 9.29 3.10

Other California BEAs Emplovmen t Increased
DGROW 25 -0.16 0.94 58 1.00 0.00
DELEMP 25 246.80 866.68 58 220.93 603.93
DDEVMKT 16 0.69 0.48 42 0.71 0.46
PRODDVLP 16 2.06 4.02 42 2.64 5.35
PRODMKT 16 1.94 2.26 42 4.07 5.54
FIRMAGE 25 8.64 2.56 58 6.26 3.21

Full Sample
DGROW 110 0.18 0.92
DELEMP 110 100.21 456.82
DDEVMKT 78 0.76 0.43
PRODDVLP 78 1.96 4.22
PRODMKT 78 3.88 5.35
FIRMAGE 110 7.31 3.18
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Table 3
California Star Scientists

64 BEA-level  Count of Stars Ever-Publishing Listing California Universities or NBEs

9 Multiple-counting of Stars Due to Moving across BEA Boundaries

55 Distinct Star Scientists Who Have Ever Published Listing California Universities or
NBEs

10 Distinct Stars Ever Affiliated with California NBEs

8 Distinct Stars Ever Linked to One of More Local California NBEs

37 Distinct University-based Stars Never Affiliated with or Linked to a Local California
NBE

Type of Star Number of Stars

Ever NBE Affiliated

Local NBE Linked

Untied (Never Linked
or Affiliated)

Total Distinct Stars

10

8

37

55

Stars with No Stars with
Gene-Sequence Patents Gene-Sequence Patents
No. Percent No. Percent

5 50.0% 5 50.0%

6 75 .O% 2 25.0%

32 86.4%, 5 13.5%

43 78.2% 12 21.8%

Test for independence in a 3x2 contingency table: x’(2) = 6.20**

Significance levels: * < 0.10, ** <. 0.05, *** <. 0.01
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Table 4
Distribution of New Biotechnology Enterprises by Star Affiliation or Star Linkage

Means, F-Statistics, and t-statistics

PRODDVLP PRODMKT DELEMP

NBEs with Affiliated Stars

NBEs without Affiliated Stars

F-statistic (d.f.) for variances

t-statistic (d.f.)  for means

NBEs with Linked Stars

NBEs without Linked Stars

F-statistic (d.f.) for variances

t-statistic (d.f.) for means

13.25 11.25

1.35 3.49

13.03***
(3973)

2.41*
(3)

7.44***
(3,73)

1.25
(3)

10.80 4.80

1.36 3.82

13.86***
(4,72)

1.54
(4,72)

2.07
(4)

0.39
(76)

502.80

81.04

2.58*
(4,104)

2.05**
(108)

506.80

80.85

2.50*
(4,104)

2.07**
(108)

Significance levels: * < 0.10, ** < 0.05, *** < 0.01
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Variables

Constant

WSUNABEA

WSUNTILO

WSLINKLO

WSAFFIL

DNBF

FIRMAGE

RTECH

Log-likelihood

Table 5
Estimates for Products in Development

Poisson Regressions, Dependent Variable: PRODDVLP

mod. a

-3.3850***
(0.4740)

0.0017***
(0.0006)

1.6232***
(0.3642)

0.2088***
(0.0278)

0.9038***
(0.1769)

-196.06

Coefficients (standard errors)
mod. b mod. c mod. d

-2.4341*** -1.9838*** -1.9324***
(0.525 1) (0.4728) (0.5275)

0.0013**  -
(0.0006)

0.0001 0.0001
(0.0007) (0.0007)

0.3222***  0.3197***
(0.0411) (0.0428)

0.0083***  - 0.0006
(0.0024) (0.0026)

1.4363*** 1.3504*** 1.3417***
(0.3682) (0.3664) (0.3686)

0.1395*** 0.1256*** 0.1209***
(0.0338) (0.0294) (0.0365)

0.6082*** 0.2974 0.2845
(0.1977) (0.2000) (0.2088)

-190.48 -169.48 - 169.46

Significance levels: * <  0.10, ** < 0.05, *** < 0.01
Note: WSUNABEA = WSUNTILO + WSLINIUO
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Variables
mod. a

Coefficients (standard errors)
mod. b mod. c mod. d

constant 1.3210***
(0.2135)

1.4630*** 1.4615*** 1.4953***
(0.2206) (0.2178) (0.2228)

WSUNABEA -0.0004
(0.0004)

-0.0005
(0.0004) -

WSUNTILO -0.0006 -0.0006
(0.0004) (0.0004)

WSLINKLO 0.1378*** 0.1143*
(0.0504) (0.0640)

WSAFFIL 0.0062**  - 0.0024
(0.0028) (0.0035)

DNBF -0.3456***
(0.1330)

-0.3714***  -0.3398** -0.3512***
(0.1338) (0.1330) (0.1342)

FIRMAGE 0.0803***
(0.0206)

0.0678*** 0.0673*** 0.0643***
(0.0215) (0.0213) (0.0218)

RTECH -0.4990***
(0.1211)

-0.5595***  -0.5778***  -0.5880***
(0.1256) (0.1263) (0.1275)

Log-likelihood -299.64 -297.57 -296.42 -296.20

Table 6
Estimates for Products on the Market

Poisson Regressions, Dependent Variable: PRODMKT

Significance levels: * <. 0.10, ** < 0.05, *** < 0.01
Note: WSUNABEA = WSUNTILO + WSLINKLO

44



Table 7
Estimates for Change in Employment

First-Stage Ordered Probit  Maximum Likelihood Estimates
Dependent Variable: DGROW

Variables Coefficients Std. Errors

Constant 0.7253 0.5547

DHUMDI 0.4925 0.3207

DHUMTHxRTECH  0.7792** 0.3 100

DNBF 0.1589 0.3796

FIRMAGE -0.1222** 0.0554

Mu(upper)” 0.3613*** 0.1144

Chi-squared (4) = 15.748***

Significance levels: * < 0.10, ** < 0.05, *** < 0.01
Note: a. Mu(lower) is arbitrarily set at 0.
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Variables

constant

WSUNABEA

WSUNTILO

WSLINKLO

WSAFFIL

DNBF

FIRMAGE

RTECH

IMR

Adjusted R2

Table 8
Estimates for Change in Employment

Second-Stage Heckman  Estimates
with Consistent Variance-Covariance Matrix

Dependent Variable: DELEMP for nonzero observations

Coefficients (standard errors)
mod. a

-65.175
(248.06)

-0.5295
(0.4318)

-214.52
(170.29)

46.135**
(22.283)

324.63**
(132.83)

190.64**
(75.484)

0.1275

mod. b

-29.876
(259.78)

-0.5548
(0.4349)

1.7767
(4.0227)

-221.10
(170.41)

42.854*
(23.426)

313.05**
(134.97)

185.32**
(76.332)

0.1156

mod. c

89.417
(250.37)

-0.7164
(0.4282)

130.74**
(63.875)

-235.18
(164.25)

32.604
(22.448)

259.67*
(132.02)

162.17**
(74.530)

0.1659

mod. d

5 1.022
(252.53)

-0.7130
(0.4256)

172.17**
(78.157)

-4.3847
(4.7782)

-225.45
(163.82)

36.439
(22.719)

267.78**
(131.56)

166.33**
(74.189)

0.1623

Significance levels: * < 0.10, ** < 0.05, *** ( 0.01
Note: WSUNABEA -WSUNTILO + WSLINKLO
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Table A.1
Variables List

All observations are taken from the Zucker, Darby, and Brewer (1994) data base and
defined for the 110 usable California-NBE observations in the 1994 telephone census except
as noted.

DDEVMKT Categorical variable: 1 if max(PRODDVLP,PRODMKT) > 0; 0 otherwise

DELEMP The change in the NBE’s employment from 1989 to 1993: EMP94 -EMP89

DGROW Categorical variable: -1, 0, or 1 as DELEMP <, =, > 0

DHUMDI Categorical variable: 1 if the NBE is involved in human diagnostics; 0

otherwise”

DHUMTH Categorical variable: 1 if the NBE is involved in human therapeutics; 0

otherwise

DNBF Categorical variable: 1 if the NBE is a NBF; 0 otherwise

EMP89 Employment levels in 1989 from the Zucker, Darby, and Brewer (1994) data

b a s e

EMP94 Employment levels in winter-spring 1994 from the telephone census

FIRMAGE Age of NBE in 1989; 1990 - date of founding

IMR Inverse-Mills Ratio as defined in Section 1I.B

N Number of observations for a variable or regression after excluding missing
observations

PRODDVLP Number of products in development by NBE

PRODMKT Number of products on the market by N B E

RTECH Categorical variable: 1 if the NBE uses the rDNA technology; 0 otherwise

STAFFIL Affiliated stars: number of stars affiliated with the NBE at any time 1976-

1 9 8 9

STAFFBEA Sum of affiliated stars: number of stars affiliated with any NBE in the NBE’s
BEA at any time 1976-1989’

STLINKLO Linked local stars: number of stars who (a) are linked to the NBE by
coauthorship with a scientist affiliated with the NBE, (b) are located in a
university in the NBE’s BEA area when such a coauthored article was
published, and (c) were not affiliated with the NBE at any time 1976-1989
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STUNABEA Unaffiliated local stars: number of stars who are located in a university in the
NBE’s BEA area but were not affiliated with any NBE in the BEA area at
any time 1976-1989”

STUNTILO Untied local stars: STUNABEA - STLINKLO

WSAFFIL Article-weighted affiliated stars: sum over all stars of the number of articles
written by each star while affiliated with the NBE at any time 1976-1989

WSAFFBEA Article-weighted sum of affiliated stars: sum over all stars of the number of
articles written by each star while affiliated with any NBE in the NBE’s BEA
at any time 1976-1989

WSLINKLO Article-weighted linked local stars: sum over all stars of the number of
articles written by each star during 1976-1989 which (a) lists the star at a
university located in the NBE’s BEA, and (b) is coauthored with one or more
other scientists who is (are) listed as affiliated with the NBE

WSUNABEA Article-weighted unaffiliated local stars: sum over all stars of the number of
articles written by each star during 1976-1989 which (a) does not list the star
as affiliated with any NBE and (b) does list the star as affiliated with a
university located in the NBE’s BEA

WSUNTILO Article-weighted untied local stars: WSUNABEA - WSLINKLO

Notes: a.
b.

C.

d.

e.

Source: Bioscarn, 1990 1989  or 1991 in a few cases] (N = 78, 32 missing observations)
The telephone census described above confirmed these numbers closely in every case where they
could be obtained; with two exceptions (see note a to Table A-3),  the original data base numbers
were retained to maintain time consistency.
Excludes those observations in the Zucker. Darby, and Brewer (1994) data base which have no
technologies reported unless the NBE has licensed the Cohen-Boyer patent. (N = 103,7 missing
observations)
In addition to any earlier articles, each of the stars affiliated with a NBE was so identified in at
least one article published in 1988 or 1989.
By definition, this variable will have the same value for each NBE located in a given BEA.
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Table A.2
Sample Statistics for Variables

Variable N Mean Std. Dev.

DDEVMKT 78 0.7564 0.4320

DELEMP 110 100.21 456.82

DGROW 110 0.1818 0.9205

D H U M D I  7 8  0.5769 0.4972

D H U M T H  7 8  0.5897 0.495 1

DNBF 110 0.7909 0.4085

EMP89 110 120.67 276.47

EMP94 110 220.88 661.36

FIRMAGE  110 7.3091 3.1789

PRODDVLP 78 1.9615 4.2194

PRODMKT 78 3.8846 5.3500

RTECH 103 0.5437 0.5005

STAFFIL 110 0.0909 0.4798

STAFFBEA 110 4.1636 3.4708

STLINKLO 110 0.0636 0.3112

STUNABEA 110 18.700 9.5289

STUNTILO 110 18.636 9.4643

WSAFFIL  1 1 0  1.5818 13.375

WSAFFBEA 110 75.727 85.100

WSLINKLO 110 0.1545 0.8587

WSUNABEA 110 204.02 153.72

WSUNTILO  110 203.86 153.54

Minimum Maximum

0 1

-383 3766

-1 1

0 1

0 1

0 1

1 1800

0 5400

1 14

0 22

0 29

0 1

0 4

0 8

0 2

0 29

0 29

0 139

0 172

0 7

0 376

0 376
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Table A.3
Coverage for 1994 Employment, 1989 Products in Development or on Market,

and Use of Recombinant DNA (rDNA) Technology

1994 Telephone Census of California NBE Employment

182

data)

43

25

4

110

Initial cases (Cal. NBEs,  22 with EMP89 = 0, in Zucker, Darby, and Brewer 1994

Disconnected or wrong numbers, no new number found

NBEs located from which no response obtained (unable to contact respondent,
respondent not in on repeated attempts)

NBEs located but explicitly refusing to respond to the survey

Usable observations for NBEs (Of which 100 NBEs responded to the survey and 10
NBEs were not located whose death was documented in the Zucker, Darby, and
Brewer (1994) data base (1994 employment level set to O)a

1989 Products in Development or on Market

110 Usable observations for NBEs from 1994 Telephone Census

3 2  NBEs which were not listed in Bioscan for 1990, 1989, or 1991

78 NBEs for which products in development of on the market circa 1989 obtained

NBEs Using or Not Using rDNA Technology

110 Usable observations for NBEs from 1994 Telephone Census

  7 NBEs with data on use of rDNA missing in Zucker, Darby, and Brewer 1994b

103 NBEs for which use of rDNA is known

Notes: a. Two of the EMP89 = 0 NBEs were contacted but refused cooperation beyond saying that their
employment was unchanged from 1989. For these apparently very small NBEs we set EMP89 =
EMP94 = 1.

b. Five of the 110 NBEs from the telephone census have missing data both for products in
development and on the market and for use of rDNA technology. Thus 76 NBEs have complete
data including EMP89, PRODDVLP, PRODMKT, and RTECH.
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Table A.4
Products in Development by California NBEs

Description status

ZanaflexTM  AN-021A (tizanidine) to treat spasticity submitted NDA ( 12/93)
associated with multiple sclerosis or spinal cord injury

In vitro production of entomophagous nematodes for not reported
control of navel orange worm

Insect-specific viruses for lepidopterous insects not reported

Excimer laser in Phase I clinicals

DNA probe in preclinicals

Nerve growth factor in Phase I clinicals (‘92)

NuLysinTM  human lysozyme in development

IDEC-In2B8  indium-coagulated pan-B imaging agent in Phase I/II clinicals

DoxilTM  StealthTM liposome doxorubicin for anticancer in Phase III clinicals for Kaposi’s
therapy, including Kaposi’s sarcoma and AIDS sarcoma in US and Europe, in Phase
patients II clinicals for nonsmall-cell lung

cancer

Therapeutics for psychiatric orders in research phase

Modified oils-improved nutrition edible oils,
industrial lubricants

in field trials (fall 1991)

Stem cell factor in Phase II clinicals

Silicon oil for opthalmics filed PLA

UPAR (human therapeutic) in development

Liposomal daunorubicin (DaunoXomeTM) for Kaposi’s in Phase III clinicals, filed NDA
sarcoma (2/93), granted orphan drug status

(5/93)

ImagenTMBP--IV CT contrast agent for blood in Phase I  cl inicals (10/91),
interrupted clinicals (9/92)
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Assays for plasma amylin

Arbutamine with GenESATM  system for diagnosis of
coronary artery disease

G-202 for treatment of psoriasis

RenatolW UP-394 to treat lupus (SLE)

AlbunexTM ultrasound contrast imaging agent

Pest-resistant cotton hybrid based on Bt biotoxins

Decor-in for kidney and lung diseases, and dermal
scarring

Cervical cancer immunotherapeutic

in preclinicals

filed regulatory submission in US
and Europe (12/93), plan to file in
Canada (1994)

in preclinicals, files US IND
(11/92)

in development, to file IND (1994)

completed clinicals  in US, Japan,
& Europe ,  submitted PMA
application to the FDA (9/90) &
filed NDA in Japan (through
Shionogi) (10/91), & in the UK
(through Hafslund Nycomed AS)
(1992)

in development

in preclinicals

in research phase

Note: Products in development were drawn as a l-in-10 sample of products listed in the
February 1994 issue of Bioscan for listed firms in our sample.
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Table A.5
Products on the Market by California NBEs

Fermentors

CycleTest  Plus DNA kit

Cancer diagnostic imaging therapeutics

GenotropinTM (second-generation hGH)

ENA Auto ID extractable nuclear antigen test system

CEDIATM immunoassay for Digitoxin

ThresholdT Total DNA assay kit for quantification of DNA in protein solutions

Kits for staining antigens in cells, tissues, or on western blots

IL-Z proleu kin

8-MOPTM  (methoxsalen) for cutaneous T cell lymphoma treatment

Endo-PackTM-PA tissue culture I

Specialty diagnostic and pharmaceutical intermediates

First nonisotopic IgE test using MAbs -- Tandem-ETM  IgE

Hepatitis B surface antigen

QTestTM  liposome-based pregnancy diagnostic

ConceiveTM one-step ovulation predictor for OTC ovulation market

ImmunoZapTM bacteriophage lambda expression vector

VacSYN/FeLVTM  vaccine for feline leukemia virus

KephraTM reversible color-change ultraviolet-sensitive ink

Note: Products on the market were drawn as a l-in-20 sample of products listed in the
February 1994 issue of Bioscan for listed firms in our sample.
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