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Abstract

We estimate the parameters of pricing kernels that depend on both aggregate wealth and
state variables that describe the investment opportunity set, using FTSE 100 and S&P 500
index option returns as the returns to be priced. The coefficients of the state variables are
highly significant and remarkably consistent across specifications of the pricing kernel, and
across the two markets. The results provide further strong evidence, which is consistent with
Merton’s (1973a) Intertemporal Capital Asset Pricing Model, that state variables in addition to
market risk are priced.



1 Introduction

Understanding investor attitudes to risk and how these affect the pricing of assets has been a central

theme of research in finance for more than forty years. The seminal work of Sharpe (1964), Lintner

(1965), Mossin (1966) and, later, Breeden (1979) expresses risk premia on assets in terms of the

covariances of the asset returns with aggregate payoffs, such as the return on the market portfolio

(CAPM) or the growth rate of aggregate consumption (CCAPM), while Merton’s (1973) intertem-

poral capital asset pricing model (ICAPM) expresses risk premia in terms of covariances, not only

with the market portfolio, but also with state variables that describe the investment opportunity

set. Most empirical work on the fundamental determinants of asset prices has concentrated on

the equity and bond markets, and there is now extensive evidence that neither the simple CAPM

nor extant implementations of the CCAPM are adequate for pricing equity portfolios that are

constructed on criteria such as size and book-to-market ratio or industry. Brennan, Wang and

Xia (2004) (hereafter BWX), Campbell and Vuolteenaho (2004), Vassalou (2003), and Lustig and

Nieuwerburgh (2005), all find that covariances with non-wealth-related state variables improve the

ability of asset pricing models to account for the relative returns on portfolios of common stocks.

In recent years, as the empirical limitations of the simple Black-Scholes (1973) model have

become apparent, researchers have begun to pay more attention to the determinants of option prices

and returns. Since asset pricing kernels succinctly summarize investors’ time and risk preferences,

several studies have focused on estimating the pricing kernels for options. For example, Ait-Sahalia

and Lo (2000), Jackwerth (2000), Liu et. al. (2004), and Rosenberg and Engle (2002) estimate the

pricing kernel by comparing index option prices with the distribution of returns on the underlying

market indices. These studies rely on a projection of the pricing kernel onto equity return states

so that the estimated pricing kernel is a function only of the equity return.1 Other studies have

estimated a pricing kernel for (index) options that includes additional variables, the most popular

variables being measures of volatility and jump risks: Buraschi and Jackwerth (1999), Chernov

et. al. (2003), Coval and Shumway (2001), Driessen and Maenhout (2003), and Pan (2002) have

all found that volatility is a priced risk. For example, Coval and Shumway (2001) conclude that

“something besides market risk is important for pricing the risks associated with option contracts,”

and suggest that stochastic volatility may be an important factor for asset pricing.

1The estimates of these univariate pricing kernel functions typically vary over time reflecting time variation in the
underlying pricing kernel state variables.
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Despite the increasing evidence that state variables other than aggregate wealth are important

for pricing both equity and option returns, and despite the fact that these securities are traded in

integrated capital markets, the relevance for options of pricing kernels that have been found useful

in pricing equity returns has yet to be examined.2 The objective of the current study is to fill this

gap by studying the behavior of option returns in light of a simple pricing kernel which is motivated

by the ICAPM and which has proven useful in pricing US bonds and stocks.

Because there is considerable debate among researchers over the state variables that enter into

the pricing kernel, we start with the simple ICAPM pricing kernel that is developed by BWX to

price bonds and stocks. In this parsimonious setting, time variation in the instantaneous investment

opportunity set is fully described by the dynamics of the real interest rate, r, and the maximum

Sharpe ratio, η, and their current values are sufficient statistics for all future investment opportu-

nities. As a result, these are the only state variables that are priced. BWX show that this simple

ICAPM outperforms the Fama-French (1995) three-factor model in pricing size and book-to-market

sorted portfolios of common stocks and that both r and η risks are associated with significant risk

premia. Therefore, the real interest rate and the maximum Sharpe ratio are natural variables to

include in the pricing kernel, in addition to aggregate wealth.

We also include a measure of implied volatility, σ, as a state variable in the pricing kernel. This

is motivated by empirical findings from option returns that volatility is a priced risk, as well as

by recent theoretical models. For example, Mayfield (2004) has constructed a general equilibrium

regime switching model in which volatility is priced because it is associated (negatively) with the

favorableness of investment opportunities as measured by the Sharpe ratio, Brandt and Kang (2004)

present evidence that stock market volatility is negatively associated with the favorableness of

short run investment opportunities as measured by the (equity-market) Sharpe ratio, and Tauchen

(2005) generates a two-factor structure for volatility along with time-varying risk premiums on

consumption and volatility risk.

Most prior studies that extract a pricing kernel from the observed prices of index options rely

on a parameterization of the stochastic process for the underlying index. For example, Rosen-

berg and Engel (2002) assume that the index follows a GARCH process, and both Pan (2002)

and Santa-Clara and Yan (2004) assume that it follows a mixed jump-diffusion process. While

a parametric assumption of the underlying asset dynamics lends power to the estimation, it also

2Vanden (2004) constructs an asset pricing model with wealth constraints in which option returns enter the pricing
kernel for stocks.
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raises the possibility of mis-specification. In this paper, we estimate the pricing kernel by applying

the Generalized Method of Moment (GMM) to option returns, which avoids the need to rely on

any specific option pricing model or specific assumptions about the stochastic processes for the

underlying asset returns. Both Buraschi and Jackwerth (1999) and Coval and Shumway (2001)

have previously applied GMM to option returns.

We estimate separate pricing kernels for the UK and US.3 The empirical proxies that we use

for the arguments of the pricing kernel are as follows. The return on aggregate wealth is taken

as the return on a broad index of market returns: FTSE 250 for the UK and the CRSP value

weighted index for the US. We estimate the time series of r and η, together with the expected rate

of inflation, π, from panel data on zero-coupon government bond yields within an essentially affine

pricing model framework. The estimate of our final state variable is a measure of return volatility

implied by option prices. Our primary options data are monthly returns on 11 put and call option

portfolios on the FTSE 100 index for the period April 1992 to March 2002, and on 10 put and call

portfolios on the S&P 500 index for the period January 1992 to April 2002. The portfolios consist

of options that have between 1 and 2 months to maturity and between 2 and 3 months to maturity

at the time of portfolio formation and are formed on the basis of option type, time to maturity,

and moneyness.

When the pricing kernel is constrained to be a power function of the return on aggregate wealth,

the estimated coefficient of relative risk aversion for the UK (FTSE 100 options) is found to be

negative. However, the estimated coefficient of relative risk aversion becomes positive (but not

statistically significant), when the pricing kernel specification is augmented by the state variables

r, η, and σ. For the US (S&P 500 options), the estimated coefficient of relative risk aversion is 2.7

when no state variables are included, and 4.8 when all the state variables are included. Only the

coefficient of the innovation in the real interest rate is significant in the UK, while the coefficients of

all three state variables are significant in the US. The signs of the coefficients on the state variables

are the same for the US and UK.

It is possible that the significance of the state variables is induced by the restriction on the

functional form of the dependency of the kernel on the return on aggregate wealth. Therefore,

the kernel is next written as the product of a polynomial in the return on aggregate wealth and

an exponential affine function of the state variables. When r and η are the only state variables,

3Brennan and Xia (2005) discuss the theoretical relation between the pricing kernels for different currencies and
present empirical evidence for several currencies.
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the coefficients of both variables are significant for both US and UK;4 moreover, the signs of the

coefficients are the same for the two countries, and are consistent with the estimates of the risk

premia for these variables obtained by BWX (2005, Table II) using returns on size and book-to-

market sorted portfolios of US common stocks. They are also consistent with the correlations

between these variables and the pricing kernels that are estimated using the government bond yield

data.

When an estimate of the implied volatility, σ, is added to the pricing kernel specification, its

coefficient is significant and positive for both countries: the sign of the coefficient is consistent with

prior studies by Coval and Shumway (2001) and Bakshi and Kapadia (2003) that have reported

a negative volatility risk premium. Introducing the implied volatility makes the coefficient of η

insignificant for the UK but makes no material difference for the US. As a robustness check, the

expected rate of inflation is introduced into the specification. This variable is insignificant for the

US and has no material effect on the other coefficients. However, the variable enters strongly and

significantly for the UK, and including π makes the coefficients of r, η, and σ significant. While

the signs of the coefficients of r and σ continue to be the same for the UK and US, the coefficient

of η is now positive for the UK which is inconsistent with both the US results and the sign of the

correlation between η and the pricing kernel estimated using the bond yield data.

While the coefficients of the state variables in the pricing kernel are not restricted by theory,

for the US we find striking consistency between: first, the signs of the coefficients of the state

variables in the pricing kernel estimated using the option returns in this paper; second, the signs of

the correlations of the state variables with the pricing kernel estimated using the bond yield data;

and third, the risk premia for the state variables estimated using equity returns by BWX. The

results for the UK are less clear cut. When expected inflation π is excluded in the pricing kernel,

there is complete consistency between: first, the signs of the coefficients estimated from the option

returns; second, the signs of the correlations of the state variables with the pricing kernel estimated

from bond yields; and third, the signs of the corresponding US estimates.5 However, the sign of η

changes when π is included in the pricing kernel.

The over-identifying restrictions of the estimation are easily rejected, but the general consistency

in the estimated coefficients of the pricing kernel, not only across markets and countries, but also

4The finding of a significant risk premium associated with r contrasts with Pan (2002) who explicitly assumes
that interest rate risk is unpriced.

5This form of pricing kernel has not been estimated using UK equity returns.
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across different model specifications, attests to the importance of including these state variables in

the pricing kernel for risky securities.

The paper is organized as follows. Section 2 discusses option pricing in terms of the pricing

kernel. Section 3 describes the data and Section 4 discusses the estimation of the real interest rate,

the maximum Sharpe ratio, and the expected rate of inflation state variables from data on bond

yields. The main empirical results are presented in Section 5 and Section 6 concludes.

2 Option Prices and the Pricing Kernel

It is well known that the hypothesis of no arbitrage is equivalent to the existence of a pricing kernel,

M , such that for any security return, R̃t+1:6

E

[
Mt+1

Mt
(1 + R̃t+1))|It

]
= 1 (1)

where R̃t+1 is the rate of return from t to t + 1, and It denotes the information available at time t.

In general, the pricing kernel is a function of a vector of state variables, X .

When pricing contingent claims on an underlying asset S, it is often convenient to project

the pricing kernel M onto the space of the underlying asset returns. Cochrane (2001) shows that

the projected pricing kernel, M∗, has the same pricing implications for payoffs that depend on

St+1 as does the original pricing kernel M . In a Black-Scholes economy in which the (continuously

compounded) interest rate r is a constant, and the price of the underlying asset S follows a geometric

Brownian Motion:

dS

S
= µdt + σSdzS (2)

the (projected) pricing kernel for all contingent claims on S can be written as the product of a

power function of S and a function of time t as shown in Bick (1987):

M∗
t+1 = S−γ

t+1 exp−r(t+1). (3)

Rubinstein (1976) and Brennan (1979) show that a pricing kernel of the form (3) yields Black-

Scholes pricing in a discrete time setting if security returns are lognormal. If the Black-Scholes

assumptions are not satisfied, a projection of the true pricing kernel onto the asset return space is

still feasible, but the projection may take a general and unknown functional form.

6Campbell et al. (1997) and Cochrane (2001) discuss the role of the pricing kernel in asset pricing.
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In studying the prices of options on a market index, it is common to estimate only the projection

of the pricing kernel onto the space of the underlying index returns. For example, Ait-Sahalia and

Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002) use equity index option prices to

estimate the projections of pricing kernels onto S&P 500 returns. Since the pricing kernel projection

is a univariate function of the index returns, it does not allow for an explicit examination of other

state variables that may enter the pricing kernel.

In this paper, we estimate a pricing kernel M which is motivated by the Intertemporal Capital

Asset Pricing Model of Merton (1973a) and contains variables that capture the time variation in

investment opportunities. BWX and Nielsen and Vassalou (2002) have argued in a diffusion setting

that, if the interest rate, r, and the maximal Sharpe ratio, η, follow a joint Markov process, then

they are sufficient statistics for investment opportunities and are therefore, along with the wealth

of the representative agent, natural candidates as arguments of the pricing kernel in an ICAPM

setting. BWX report that both state variables, r and η, command significant risk premia and play

important roles in the pricing of cross-sectional size and book-to-market sorted equity portfolio

returns. Note that, if the state variables, X ≡ (r, η), are not independent of the aggregate wealth,

there is no reason to expect the projection of the pricing kernel onto the aggregate wealth to retain

the power function form even if the representative agent’s utility of consumption is iso-elastic.

Motivated by the BWX model, we shall first assume that the pricing kernel can be written as the

product of, a function of time, f(t), a power function of aggregate wealth, W , and an exponential

affine function of the proposed state variables, r and η:

Mt+1(Wt+1, rt+1, ηt+1) ≡ f(t + 1)W−γ
t+1 expc+c2rt+1+c3ηt+1 . (4)

The exponential function ensures that the pricing kernel can never be negative. We shall later

consider additional potential state variables within this exponential affine framework, and consider

alternatives to the iso-elastic function of wealth.

Defining the stochastic discount factor, mt+1, by mt+1 ≡ Mt+1

Mt
, equation (4) implies that mt+1

may be written in the form:

mt+1 = c0(1 + RW,t+1)−γ expc2∆rt+1+c3∆ηt+1 , (5)

where cj (j = 0, 2, 3) are constants to be estimated together with the risk aversion parameter γ,

1 + RW,t+1 ≡ Wt+1

Wt
is the gross return on the aggregate wealth, ∆ is the first difference operator so
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that ∆rt+1 ≡ rt+1 − rt and ∆ηt+1 ≡ ηt+1 − ηt. The definition of mt+1 together with equation (1)

implies that, for any security i, the following moment condition holds:

E
[
c0(1 + RW,t+1)−γ expc2∆rt+1+c3∆ηt+1(1 + R̃i,t+1))|It

]
= 1. (6)

If zt is an instrumental variable in the current information set It, then the above Euler equation

implies the unconditional moment condition:

E
[
c0(1 + RW,t+1)−γ expc2∆rt+1+c3∆ηt+1(1 + R̃i,t+1))zt

]
= E (zt) , ∀zt ∈ It. (7)

We shall estimate the parameters of the pricing kernel, c0, γ, c2, and c3, via GMM using moment

conditions (6)-(7) where the set of asset returns, Ri, consists of returns on index option portfolios,

the return on aggregate wealth, and Treasury Bill rates.

The BWX model assumes that both the real interest rate and the Sharpe ratio follow univariate

Ornstein-Uhlenbeck processes. This is obviously a strong assumption, and Brandt and Kang (2004)

present evidence which suggests that the Sharpe ratio (of the equity market) follows a two-factor

process with the second factor being the market volatility, σ. Under this specification of the

dynamics of the Sharpe ratio, the level of market volatility, σ, also becomes a state variable that

is required to fully describe the investment opportunity set.7 Therefore, we shall include σ in the

set of state variables, X , which define the pricing kernel. However, for analytical tractability we

shall treat σ as constant when we estimate the time series of the other two state variables, r and

η, from panel data on Treasury Bond yields.

3 Data

The primary data are the prices of European puts and calls on the FTSE 100 index traded on the

London International Financial Futures and Options Exchange (LIFFE) and the prices of European

puts and calls on the S&P 500 index traded on the Chicago Board Options Exchange (CBOE). We

collect prices on the second (or the closest to the second) trading day of each month from April

1992 to March 2002 for the UK and from January 1992 to April 2002 for the US,8 on options that

have maturities of less than three months. For each option that has a price on the second trading

7Note that σ is not necessary to describe the instantaneous myopic investment opportunity set which is fully
captured by (r, η), but it may be necessary to capture the dynamics of the myopic investment opportunity set.

8We thank Jens Jackwerth for kindly providing us the US option data from 1992 to 1995. The data from 1996 to
2002 are collected from OptionMetrics.

7



day of the current month and on the second trading day of the following month, a return for the

month is calculated from the proportional price change between these dates. Put and call options

are assigned to portfolios on the basis of their time to maturity and moneyness. The ‘1-month’

portfolios contain options that have between 1 and 2 months to expiration at the beginning of the

month, and the ‘2-month’ portfolios contain options with between 2 and 3 months to expiration

at the beginning of the month. For each maturity, 7 portfolios of calls and of puts are formed

according to moneyness. Portfolio 1 consists of options for which the ratio of the index level on the

portfolio formation date to the strike price of the option is less than 0.85; for portfolio 2 the ratio

is between 0.85 and 0.90; for portfolio 3, 0.90 to 0.95, portfolio 4, 0.95 to 1.0, portfolio 5, 1.0 to

1.05, portfolio 6, 1.05 to 1.10, and for portfolio 7 is greater than 1.10. Summary statistics on the

portfolios are presented in Table 1.

The deep out-of-the-money call portfolios (low numbered portfolios) have negative average

returns; the average return on 1-month calls that are between 5 and 10% out of the money is minus

29% per month for the UK and minus 3% per month for the US, which contrasts with a return of

1.48% per week reported by Coval and Shumway (2001) for similar (American) contracts on the

SPX index for the period 1990-1995; the corresponding figures for 2-month calls are minus 15% per

month and minus 7% per month. The returns to the deep out of the money call portfolios are highly

skewed. The in-the-money call portfolios have slightly positive average returns and virtually no

skewness. The same convention was followed in constructing the portfolios of puts so that portfolio

1 contains the deep out of the money options, and portfolio 7 the deep in the money options. As

with the calls, the deep out of the money puts have strongly negative returns: the portfolio of

1-month puts that is between 10 and 15% out of the money loses an average of 29% per month for

the UK and 64% per month for the US.

Not all of the moneyness buckets contain traded options each month. For example, there are 98

out of 120 months for the UK in which there is no 1-month call option that is more than 10% out of

the money. Our main analysis will be conducted using the portfolios for which there are essentially

no missing observations. For the UK we use 11 portfolios that have no missing observations, which

include two 1-month call portfolios, two 1-month put portfolios, three 2-month call portfolios, and

four 2-month put portfolios. For the US we use 10 portfolios that have no more than 2 (out of 123)

missing observations, which include three 1-month call portfolios, three 1-month put portfolios, two

2-month call portfolios, and two 2-month put portfolios.
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We shall use as our measure of market volatility, σ, an estimate of the implied volatility of

option prices. For the UK this is obtained by first calculating the average implied volatility for

each of the one month option portfolios and then averaging these values. For the US the implied

volatility is taken as the VIX index.9 The nominal interest rate, Rf , for the UK is the 3-month

Treasury Bill rate reported by the Bank of England, and for the US is the 30-day Treasury Bill

rates obtained from CRSP. The return on aggregate wealth for the UK is taken as the return on the

FTSE 250 index which is a value weighted index of UK equities. Note that this is a broader index

than the FTSE 100 on which the options are written. We choose the FTSE 250 as the market index

because it is a better proxy for the return on aggregate wealth which is the theoretical variable in

the pricing kernel. For the US the return on aggregate wealth is taken as the CRSP value weighted

index return.

The data that are used for estimating the state variables r, π, and η for the UK are zero coupon

bond yields for the second trading day of each month from January 1985 to May 2002 for maturities

of 1, 2, 3, 5, 7, 10 and 15 years reported by the Bank of England. For the US, zero coupon bond

yields are estimated from the prices of US Treasury Bonds using a cubic spline.10. Inflation rates

were calculated from Consumer Price Index data reported by DataStream.

4 State Variables

In a diffusion setting, the process for the stochastic discount factor, m, can be written as:

dm

m
= −rdt − ηdzm (8)

where r is the real interest rate, and the diffusion coefficient, η, can be shown to be equal to the

maximum Sharpe ratio in the economy, or the slope of the capital market line. Following BWX we

assume that r and η follow Ornstein-Uhlenbeck processes:

dr = κr(r − r)dt + σrdzr, (9)

dη = κη(η − η)dt + σηdzη. (10)

9VIX is the CBOE volatility index and measures market expectations of volatility over the next 30 days as conveyed
by stock index option prices. VIX estimates expected volatility from the prices of S&P 500 index options.

10Further details are available in Brennan and Xia (2005)

9



In order to estimate r and η from the panel data on nominal bond yields, we assume that the

realized inflation follows

dP

P
= πdt + σP dzP , (11)

where the expected rate of inflation, π, also follows an Ornstein-Uhlenbeck process:

dπ

π
= κπ(π̄ − π)dt + σπdzπ . (12)

Under these assumptions, BWX show that the nominal yield on a zero-coupon (default-free)

bond of maturity τ is a linear function of the state variables, r, π, and η:

− lnN

τ
= −Â(τ)

τ
+

B(τ)
τ

r +
C(τ)

τ
π +

D̂(τ)
τ

η, (13)

where the coefficients, Â(τ), B(τ), C(τ) and D̂(τ) are functions of the parameters of the joint

stochastic process for the pricing kernel (9), (10), and (12), realized inflation (11), and the expected

rate of inflation (12).

In principle, it is possible to estimate the parameters of the system (9), (10), and (12) by Max-

imum Likelihood using equation (13) and yields on three bonds of different maturities. However,

the choice of bonds to use in the estimation is arbitrary, and there is no guarantee that the esti-

mates will be consistent with the yields of other bonds. Therefore, to minimize the consequences

of possible model mis-specification and measurement errors in the fitted bond yield data, we allow

for errors in the pricing of individual bonds and use a Kalman filter to estimate the time series of

the unobservable state variables r, π and η, and their dynamics, from data on bond yields.

In summary, there are three transition equations for the unobserved state variables, r, π, and

η, that are the discrete time versions of equations (9), (10), and (12). There are n + 1 observation

equations. The first n of them are based on the yields (13) at time t, yτj,t, on bonds with maturities

τj (j = 1, · · · , n), by the addition of measurement errors, ετj :

yτj,t ≡ − ln N(t, t + τj)
τj

= −Â(t, τj)
τj

+
B(τj)

τj
rt +

C(τj)
τj

πt +
D̂(τ)

τ
ηt + ετj(t). (14)

The last observation equation is based on the realized inflation rate at time t:

∆P

P
= π∆t + εP (t).

This final observation equation is used to identify r and π which enter the bond yield equation (14)
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symmetrically.

The measurement errors, ετj (t), are assumed to be serially and cross-sectionally uncorrelated,

and to be uncorrelated with the innovations in the transition equations. To reduce the number

of parameters to be estimated, the variance of the yield measurement errors was assumed to be

of the form, σ2(ετj) = σ2
b , where σb is a single parameter to be estimated. This is equivalent to

the assumption that the measurement error variance of the log price of the bonds is proportional

to the bond maturity. In addition, it is assumed that the errors in the observation equations

are uncorrelated with the innovations of the state variables, i.e., ρir = 0, ρiπ = 0 and ρiη = 0

(i = ε1, · · · , εn, and εP ).

The long run means of the state variables were set exogenously to facilitate identification and

estimation. More specifically, π̄ was set equal to the sample mean of the CPI inflation rate, 3.8%

for the UK and 3.0% for the US; r̄ was set equal to the difference between the sample mean of the

one-month Treasury bill rate and the CPI inflation rate, which is 4.6% for the UK and 2.6% for the

US. η̄ was set equal to 1.2 times the sample mean of the equity market Sharpe ratio, which is 0.58

for the UK and 0.62 for the US. η̄ was set 20% higher than the realized equity market Sharpe ratio

to allow for the fact that the equity market is only one component of the investment opportunity

set. Note that for any asset i, only the product ρimη is identified in the estimation - therefore errors

in the predetermined values of η̄ will be offset by errors in the estimated correlations. Finally, σεP

was set to the sample standard deviation of realized CPI inflation rates and ρmP was set to zero

to reduce the number of parameters to be estimated.

Table 2 reports the estimated coefficients of the pricing kernel process. In both countries

expected inflation is close to a random walk. The mean reversion for η is stronger in the US and

the mean reversion for r is stronger in the UK. The estimated value of ρrm is negative for both

countries. Since ρrm is defined by ρrmdt = dzmdzr this implies a negative risk premium for assets

whose returns load positively on innovations in r, and therefore a positive risk premium for long

term bonds whose prices move inversely with the interest rate. In contrast, the estimated value of

ρηm is positive for both countries. Figure 1 plots the time series estimates of r, π, η, and σ for the

two countries. The estimated time series of r, π and η are much more volatile for the UK than they

are for the US though they have substantial co-movement. The UK real rate drops precipitously

following Britain’s ejection from the European Exchange Rate Mechanism in October 1992, then

rises in parallel with the US rate until the first quarter of 1995 when both rates reach a local
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maximum. After a short decline, rates in both countries rise strongly until mid-2000, and then fall

back. From 1997 on the UK rate is significantly above the US rate, reaching a maximum of over

7% in 2000. The expected rate of inflation for the US hovers in a narrow range of 2-4% throughout

the sample period. In contrast, the UK rate is in the range of 4-6% until 1997 when it starts to

decline rapidly, and from 1998 to the end of the sample it is close to zero. The estimated maximum

Sharpe ratio fluctuates within a much narrower range for the US than it does for the UK. While

they start at the same level, the UK ratio rises sharply until mid-1995 and then declines to reach

a minimum at the peak of the bull market in 1999 when it is negative.11 It recovers to around

0.7 by the end of the sample period. In contrast, the US ratio declines irregularly from the start

of the sample period to reach a minimum in 1999 when it is close to the UK level; the minimum

is touched again in 2001 and the two ratios converge towards the end of the sample period. The

volatility measures for the two countries track each other much more closely, fluctuating in a range

of 10-20% until the end of 1997, then rising sharply to reach a maximum of around 40% after the

Asian crisis of October 1998, before settling down in the mid 20% range apart from a spike in the

two volatility measures in October 2001 following the World Trade Center attacks.

5 Empirical Results

Buraschi and Jackwerth (2001), Bakshi and Kapadia (2003), Chernov and Ghysels (2000), Coval

and Shumway (2001), and Pan (2002) among others have found evidence of a negative volatility risk

premium, which would account for the negative returns associated with hedged positions that are

long volatility such as puts, calls and straddles. Such a risk premium implies either that volatility

is a priced state variable itself, or that innovations in volatility are correlated with innovations in

other state variables that are priced.12 To explore this latter possibility, we examine the dynamics of

implied volatility, σ. In models of stochastic volatility such as Heston (1993), it is common to allow

the (instantaneous) volatility to follow an AR(1) (or Ornstein-Uhlenbeck) process whose innovation

is correlated with the return on the security or portfolio whose volatility is being modeled. Although

σ is an implied volatility, it is natural to model this variable as an AR(1) process also. We allow

the innovation in σ to be correlated with a polynomial (cubic) function of returns on aggregate

11Strictly speaking, the absolute value of η is the maximum Sharpe ratio. The negative values of η indicate negative
risk premia in bond markets.

12Mayfield (2004) and Tauchen (2005) have constructed models in which volatility is a priced state variable. Pan
(2002) shows that a reduced form model that allows for a volatility risk premium performs poorly relative to a model
that allows for jump risk premia.
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wealth and with the changes in the state variables estimated from bond yields, r, π, and η, so that,

allowing for GARCH effects in the equation, the system to be estimated is of the form:

∆σt = a1(a2 − σt−1) + a3RW,t + a4R
2
W,t + a5R

3
W,t + a6∆rt + a7∆ηt + a8∆πt + ut, (15)

σ2(ut) = c1 + c2u
2
t−1 + c3σ

2(ut−1). (16)

The results of estimating various versions of equation (15) are presented in Table 3. We see

that σ reverts toward a long run mean of around 0.16 to 0.22, depending on the specification, and

for most specifications the mean reversion intensity is of the order of 0.20, which implies a half life

for innovations of around 4 months. For the UK, only c2, the coefficient of the ARCH term in the

volatility equation, is significant in models in which the change in volatility is allowed to depend

on higher powers of the market return, while for the US, only c3, the coefficient of the GARCH

term, is highly significant in all models. Therefore, there is significant but short run persistence in

the volatility of the innovations in the UK, but more persistent innovation volatility in the US.13

The negative coefficient on RW is consistent with Black’s (1976) volatility ‘leverage’ effect which

has been widely noted.14 Notable also is the fact that changes in volatility are strongly associated

with the squared return on aggregate wealth, and even with the cubed return in the UK where the

linear term becomes insignificant in the presence of the cubed return. There is no evidence that

changes in implied volatility are related to changes in the theoretically motivated state variables

r, and η, or in expected inflation π. Thus the negative volatility risk premium must derive either

from the association of volatility with higher powers of the return on aggregate wealth,15 from the

association with other state variables that we have not identified, or because volatility is itself a

priced state variable. We shall see below what evidence there is for a risk premium associated with

the unspanned element of implied volatility.

Table 4 reports summary statistics for the variables that we shall consider as possible arguments

of the pricing kernel. Note that the correlations of changes in the state variables with the return on

aggregate wealth are quite significant. A regression of the aggregate wealth return on changes in

r, π, η, σ yields a value of R2 of around 29% for the UK and 27.5% for the US. Therefore, if the true

13Pan (2002) and Chernov et al. (2003) among others have documented the stochastic volatility of the volatility
process.

14For a summary of the evidence see Bekaert and Wu (2000).
15Note that hedge portfolios that have been used to identify the volatility risk premium hedge only against the

direct effect of market returns on option prices and not the indirect effect arising from the association between market
returns and volatility.
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pricing kernel is of the form (4), then it is unlikely that the projection of the stochastic discount

factor onto the space of aggregate wealth returns will yield a simple iso-elastic function. This may

account for the non-monotonicity (absence of local risk aversion) as well as the time variation in the

pricing kernel projections estimated by Rosenberg and Engle (2002) and Jackwerth (2000) among

others. We shall examine this issue below.

Table 5 reports GMM estimates of the coefficients of the generalized iso-elastic pricing kernel.

These are estimated from the system of (empirical) moment conditions:

1
T

T∑

t=1

[
c0 (1 + RW,t)

c1 expc2∆rt+c3∆ηt+c4∆σt(1 + R̃i,t)) − 1
]
zt−1 = 0 (17)

where c1 ≡ −γ is the negative of the coefficient of relative risk aversion, Ri,t is the return on each

of the test assets (portfolios), and zt−1 is the instrumental variable. The test assets are the option

portfolios, aggregate wealth, and the Treasury Bill. The instruments are (1, Rf , r, π, η, σ). Separate

estimations are reported for all the options portfolios together, for the 1 and 2 month option

maturity portfolios separately, and then for the call and put option portfolios separately.16 For

each sample we estimate three models. In the first, the pricing kernel is assumed to be an iso-elastic

function of the aggregate wealth return only; this corresponds to the pricing kernel projections of

Rosenberg and Engle (2002), Jackwerth (2000) and others for the S&P 500, and of Liu et. al.

(2004) for the FTSE index. The second model introduces the ICAPM state variables r and η, and

the third model includes, in addition, the implied volatility. The t−ratios and J−statistics reported

in the estimations should be treated with some caution because of the extreme non-normality of the

return data and the limited sample size. In the discussion that follows we shall take this caution as

given.17 The robustness of the results can be assessed by considering the results for the different

subsamples.

Consider first the estimates for the UK reported in Panel A. For the first model of pricing

kernel which excludes any state variables, the estimate of c1 = −γ is positive (around 0.3) and

highly significant (t-ratio of 10.5) when all the option portfolios are included in the test assets, and

the point estimates are also positive for all of the subsamples except the calls-only subsample. The

positive estimates of c1 imply a negative risk aversion parameter γ, and are therefore inconsistent

16The estimation was carried out in Eviews v5 updating the weighting matrix once.
17Ferson and Foerster (1994) discuss small sample biases in GMM estimates of an asset pricing model. Lynch and

Wachter (2004) introduce GMM-based estimation methods that uses all available data for each moment condition,
but their methods do not lend themselves to our context where the missing observations occur at random points in
each series.
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with risk aversion if the FTSE 250 index is taken as a proxy for aggregate wealth and if there are

no variables other than the aggregate wealth return in the pricing kernel. In contrast, all of the

estimates of c1 reported in Panel B for the US are negative and imply coefficients of relative risk

aversion ranging from 0.7 to 3.0.

Consider next the effect of introducing the state variables r and η into the pricing kernel. Now

the estimate of c1 for the UK is negative in every case, although the estimated t-statistics are not

large. The estimates of the risk aversion parameter γ = −c1 range from 1.6 to 4.4, depending

on the particular sample of option portfolios used in the estimation. The corresponding estimates

for the US range from 2.1 to 6.0.18 The estimated coefficient of ∆r is positive in every case and

usually highly significant for both the US and the UK; this is consistent both with the signs of the

estimated correlations ρrm estimated from the bond yield data and reported in Table 2, and with

the negative risk premium for interest rate risk found by BWX (2004, Table 2) for size and book-to-

market sorted US stock portfolios. The sign of the parameter implies that there is a negative risk

premium associated with being long ‘r’ risk, or a positive risk premium for securities such as bonds

whose returns load negatively on the interest rate. The coefficient of ∆η is negative and highly

significant in almost all the US estimations; this is again consistent with the sign of the estimate of

ρηm for the US in Table 2, as well as with the BWX findings. However the estimated coefficients

of ∆η for the UK, while generally negative and therefore consistent with the sign of ρηm estimated

from UK government bond yields, are not significant.

When the implied volatility is added to the pricing kernel, its coefficient is positive in all the

samples but one (US puts where it is statistically insignificant), and it does not change our quali-

tative remarks about the other coefficients. The coefficient is significant in all the US estimations

that include both call and put portfolios, but is not significant in any of the estimations for the

UK. The positive coefficient on ∆σ implies a negative risk premium associated with a long position

in volatility, which is consistent with the findings of Bakshi and Kapadia (2003) and Coval and

Shumway (2001) who find that returns on market neutral straddles and other positions that are

long volatility are negative.

18Mayfield (2004) reports estimates of the coefficient of relative risk aversion for the US of around unity in a model
with changing volatility. The coefficient of risk aversion estimated in Coval and Shumway (2001) ranges from -6.68
to 6.0 depending on which US S&P 500 option straddle is used in the estimation. Both Aı̈t-Sahalia and Lo (2000)
and Rosenberg and Engle (2002) use the US S&P 500 index options to estimate empirical pricing kernels and the
estimated risk aversion coefficient has an average value of 12.7 in Aı̈t-Sahalia and Lo (2000) and of 7.36 in Rosenberg
and Engle (2002).
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In summary, we have found that if no state variables are included in the pricing kernel the

estimated iso-elastic kernel for the UK is inconsistent with risk aversion, but this inconsistency is

eliminated by the inclusion of the state variables. All the US estimates are consistent with risk

aversion. We have found that interest rate risk, the ‘η’ risk, and the volatility risk are priced

consistently in the two countries. In all of the estimations reported in Table 5, the J−statistic for

the over-identifying restrictions rejects the null hypothesis. Despite this, we can conclude that if

the pricing kernel is constrained to be of the iso-elastic form in the aggregate wealth return, then

there is strong evidence that there are additional state variables in the pricing kernel in addition

to aggregate wealth. The evidence is strongest for the interest rate, and is also strong for the

implied volatility. However, it is possible that these variables attain their significant role because

of the constraint that we have imposed on the functional dependence of the pricing kernel on the

aggregate wealth return. Therefore, we shall examine the effect of allowing more general functional

forms for the return related element of the pricing kernel.

Bansal and Viswanathan (1993) argue that high-dimension non-linear pricing kernels are nec-

essary to price the non-linear payoffs of derivative assets, and use a neural networks approach to

approximate the unknown pricing kernel. Chapman (1997) and Rosenberg and Engel (2002) use

orthogonal polynomials to approximate a nonlinear pricing kernel. We follow the latter and allow

the return dependent element of the pricing kernel to be approximated by a sum of orthogonal

polynomials in the aggregate wealth return. Then the pricing kernel is written as the product of a

sum of orthogonal polynomials in the aggregate wealth return and an exponential affine function

of the state variables:

m = ℘n(RW ) expc2∆r+c3∆η+c4∆σ (18)

where

℘n(RW ) = θ0C0 (1 + RW ) +
n∑

k=1

θkCk(1 + RW )

is an n−term generalized Chebyshev polynomial19 expansion in the gross return on aggregate

wealth, (1+RW ), and Ck(1+RW ) stands for the kth order Chebyshev polynomial. The Chebyshev

polynomial is defined over the domain [-1,1] with terms Ck(x) = cos(k cos−1(x)). In the generalized

19There are several families of orthogonal polynomials. Chapman (1997) estimates the pricing kernel as a function of
aggregate consumption using a four-term Legendre polynomial expansion, and Rosenberg and Engel (2002) estimate
the empirical pricing kernel as a function of the S&P 500 index return using a three-term generalized Chebyshev
polynomial expansion.
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Chebyshev polynomial, the gross return 1 + RW , which is defined over the interval [a, b], is first

transformed into x via x = 2(1+RW )−a−b
b−a before Ck(x) can be calculated. Following Rosenberg and

Engel (2002), we set the return domain for the Chebyshev polynomial to be [0.9, 1.1], and gross

returns below (above) 0.9 (1.1) are set to 0.9 (1.1). We consider approximations with n = 3, 4, 5

terms of the gross return on aggregate wealth, 1 + RW . While we do not restrict the pricing kernel

to be strictly positive in our estimation, the estimated pricing kernels all turn out to be positive in

the range of gross returns [0.94, 1.06].

Table 6 reports the estimated coefficients of the state variables for three different specifications

of the state variables, as well as for three different degrees of the orthogonal polynomial in the ag-

gregate wealth return. Columns (i) and (ii) of the table report the results when r and η are the only

state variables. The coefficient estimates are fairly insensitive to the degree of the approximating

polynomial, and for the US the coefficients are very close to those reported for the iso-elastic kernel

in Table 5. For both countries the coefficients of ∆r (∆η) are positive (negative) and significant,

which is consistent with the signs of ρrm (ρηm) as discussed above. When the implied volatility

is introduced into the kernel, its coefficient is positive and significant for both countries, which is

also consistent with the results reported above for the iso-elastic kernel. However, for the UK the

inclusion of implied volatility makes the coefficient of η insignificant and even changes its sign when

the degree of the approximating polynomial is 5. Columns (vi)-(x) of the table show the effect of

introducing the expected rate of inflation into the pricing kernel as a robustness check. First, for

the US the coefficient of ∆π is always insignificant and the other coefficient estimates are essen-

tially unchanged; this is consistent with the insignificant value for ρπm reported in Table 2: there

is no evidence that inflation risk is priced in the US. For the UK, however, the coefficient of ∆π is

positive and highly significant. This implies that there is a negative risk premium associated with

a long position in expected inflation: since the returns on long term nominal bonds have a negative

loading on changes in expected inflation, the coefficient implies that they will earn a positive risk

premium for this inflation exposure. The difference between the risk premia for inflation exposure

in the US and UK can perhaps be accounted for by the greater variability of expected inflation in

the UK - as seen in Figure 1b and Table 4, its standard deviation is more than four times as great

as that in the US. Moreover, with the introduction of expected inflation, the coefficients of ∆r,

∆η and ∆σ for the UK all become positive and significant. However, as noted above, the positive

coefficient on ∆η for the UK is inconsistent with the sign of ρηm.
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Figure 2 plots the aggregate wealth-related component of the pricing kernel, φ(RW ) ≡ ℘n(RW ),

for n = 3 for the UK; this component of the kernel is the value that the kernel attains when changes

in the state variables are set to zero. Five estimates of φ(RW ) are shown. The first, φ1(RW ), is

calculated from the parameters estimated from the model with r, η, and σ as state variables, using

returns on the 11 option portfolios with complete data. The second, φ2(RW ), is calculated from

the parameters estimated from the same model but using data on all 28 option portfolios, including

those with large numbers of missing observations. We report the estimated kernel derived from all 28

portfolios because the larger number of strike prices helps to identify the return related component

of the pricing kernel. The third and fourth estimates, φ3(RW ) and φ4(RW ), are calculated from

parameters estimated using the same two data sets but a model of the pricing kernel that excludes

the state variables: it can thus be regarded as a projection of the kernel onto the space of aggregate

wealth returns. The fifth estimate is φ5(RW ) ≡ (1 + RW )−γ with γ = 1.17, which is the return

related component of the generalized iso-elastic pricing kernel when the state variables (r, π, η) are

included. Note that the estimates of the pricing kernels are least precise in the tails where there

are relatively few return observations: only 10% of the return observations are below minus 4%

and only 10% of the observations are above 6.5%. When the state variables are not included, the

wealth related component of the generalized polynomial kernel takes on an inverted ‘U’ shape for

both the large and the small data sample, which is clearly inconsistent with risk aversion. When

the state variables are included, the kernel estimated from the small sample takes on a rotated ‘S’

shape which is downward sloping for returns between minus 4% and plus 3.5%, but is increasing

at the extremities. When all 28 option portfolios are used in the estimation, the kernel is closer to

being monotonically decreasing but still has an increasing region below minus 3.5%. We suspect

that this portion of the curve is not well identified because of the paucity of return observations in

this region.

Figure 3 plots the corresponding kernel estimates for the US. These tend to be much more

monotonic than the UK estimates. The kernel estimates when no state variables are included are

virtually identical whether derived using the 10 option portfolios with ‘complete’ data or using all

28 option portfolios: the estimates are increasing only slightly for returns below minus 4%. When

the state variables are included, the wealth related element of the kernel estimated using the 28

portfolios is virtually coincident with the estimate without state variables, while the estimate of

the wealth related element of the kernel estimated using the 10 portfolios with ‘complete’ data is
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monotonically decreasing which is consistent with universal risk aversion.

6 Conclusion

In this paper we have used returns on portfolios of FTSE 100 and S&P 500 index options to

estimate pricing kernels that depend, not only on the aggregate wealth return, but also on up to

four state variables, the real interest rate, r, the maximum Sharpe ratio, η, the implied volatility

of option prices, σ, and the expected rate of inflation, π. The first two state variables are derived

from the BWX (2004) version of the ICAPM and are estimated from data on government bond

yields following Brennan and Xia (2005). The implied volatility is included as a state variable

because previous studies have found evidence that hedged option portfolios that are formed to

have a positive loading on volatility have negative excess returns, and because of evidence that

it is necessary to include this variable to capture the dynamics of the maximum Sharpe ratio, η.

Preliminary regressions show that innovations in implied volatility are strongly related to the first,

second, and third (for the UK) moments of the aggregate wealth return, but are not significantly

related to innovations in the state variables. This raises the possibility that the risk premium that

has been found to be associated with volatility is due to the association of this variable with the

return on aggregate wealth. This is investigated by including the implied volatility in the pricing

kernel along with a flexible functional form of the aggregate wealth return.

We estimate the pricing kernels by GMM using the returns on 11 (10) portfolios of UK (US)

index options formed according to type, moneyness, and time to expiration. We express the pricing

kernel as the product of a function of the aggregate wealth return and an exponential affine function

of the changes in the state variables. In the first estimations the pricing kernel is constrained to

depend on a power function of the aggregate wealth return. When no state variables are included in

the kernel, the estimated power is positive and highly significant for the UK, which is inconsistent

with risk aversion. However, when the changes in the state variables are included in the kernel, the

estimate of the power becomes negative, although usually it is not significant. The state variable

r appears significantly in the pricing kernel, but neither the maximum Sharpe ratio, η, nor the

implied volatility, σ, are significant. For the US, the estimated coefficient of relative risk aversion

is 3.2 when no state variables are included and 4.9 when r, η, and σ are included. The coefficients

of all three state variables are significant and their signs are consistent with previous findings of

a negative volatility premium, with the estimated correlations between the pricing kernel and r
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and η estimated from bond yields, and with the risk premia estimated using portfolios of common

stocks by BWX (2004).

It is possible that the significance of the state variables is due to the constrained functional

form of the dependence of the kernel on the aggregate wealth return. Therefore we repeat the

estimations by substituting a polynomial expression in the wealth relative for the power function.

The coefficients on the state variables for the US are essentially unaffected by the functional form

of the dependence of the kernel on the aggregate wealth return, and the coefficients of ∆r, ∆η,

and ∆σ are consistent and significant across specifications. For the UK, the coefficients of ∆r

and ∆σ are also consistent and significant across specifications. While the coefficient on ∆η in

the US is negative and significant in all specifications and is unaffected by the addition of ∆π,

whose coefficient is not significant in the US, the ∆η coefficient in the UK is not significant in the

presence of ∆σ and becomes significantly positive when the specification includes ∆π which enters

the pricing kernel highly significantly in the UK. Finally, the signs of the coefficients of the state

variables in the pricing kernel are generally consistent across countries, consistent with the signs of

their correlations with the pricing kernel estimated from bond yields, and consistent with the BWX

risk premium estimates. The exception is η for the UK when π is included as a state variable.

The results in the paper provide further evidence that the failure of traditional asset pricing

models is at least in part due to the failure to include in the pricing kernel non-wealth-related

variables that are important to investors because they describe future investment opportunities.

This of course is the insight underlying Merton’s (1973) classic analysis. However, the rejection

of the over-identifying restrictions implied by the model suggests that there are other variables

than those we have considered that are important to investors. Longstaff (1995) suggests that

transactions costs and liquidity effects are also important for the pricing of index options, and

Santa-Clara and Saretto (2005) point to the importance of margin requirements as obstacles to the

achievement of equilibrium in options markets.
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Table 1 Summary Statistics of Returns for Option Portfolios

Moneyness is defined by (I − K)/K for call and (K − I)/K for puts where I is the level of the index on the portfolio formation date and K is the option exercise

price. Returns are calculated as the proportional monthly price change on an equally weighted portfolio of options of the given maturity and moneyness characteristics. The

1-month portfolios consist of options whose time to maturity at the beginning of the month is between 1 and 2 months; the 2-month portfolios consist of options with ma-

turities of between 2 and 3 months. The sample period is from 1992.04 to 2002.03 for FTSE index option returns and from 1992.01 to 2002.04 for S&P 500 index option returns.

A. UK FTSE 100 Index Option Portfolios B. US S&P 500 Index Option Portfolios
Portfolio 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Out of Money In Money Out of Money In Money
Moneyness (%) ≤ −15 (−15,−10] (−10,−5] (−5, 0] (0, 5] (5, 10] > 10 ≤ −15 (−15,−10] (−10,−5] (−5, 0] (0, 5] (5, 10] > 10

1 Month Calls 1 Month Calls
Average -0.18 -0.31 -0.29 -0.15 -0.02 0.02 0.04 -0.24 -0.26 -0.03 -0.02 0.02 0.03 0.03
Std. Dev. 0.61 0.67 1.06 1.00 0.68 0.47 0.27 0.51 1.50 1.72 1.10 0.66 0.44 0.24
Skewness 2.24 2.11 2.91 1.39 0.56 0.11 0.14 1.09 5.36 3.21 1.41 0.37 -0.03 0.01
Missing Obs. 98 71 10 0 0 1 1 88 71 24 2 1 1 5
Number of Options 110 192 480 595 557 497 2290 217 162 309 636 617 460 1091

1 Month Puts 1 Month Puts
Average -0.17 -0.29 -0.26 -0.26 -0.15 -0.06 -0.03 -0.65 -0.64 -0.57 -0.38 -0.18 -0.06 -0.03
Std. Dev. 1.96 1.48 2.25 1.26 0.77 0.52 0.31 0.36 0.53 0.67 0.81 0.73 0.51 0.29
Skewness 5.88 4.26 7.10 3.85 1.53 0.78 0.07 1.83 3.03 2.92 2.11 1.25 0.49 -0.06
Missing Obs. 25 6 2 0 0 3 32 35 16 1 1 2 19 57
Number of Options 931 529 567 574 569 543 1494 667 305 471 618 640 335 397

2 Months Calls 2 Months Calls
Average -0.07 -0.26 -0.15 -0.05 0.01 0.02 0.04 -0.18 -0.11 -0.07 0.03 0.03 0.03 0.03
Std. Dev. 1.60 1.10 1.01 0.77 0.55 0.40 0.26 0.36 1.46 1.03 0.79 0.53 0.38 0.22
Skewness 3.83 2.89 2.04 1.18 0.56 0.19 0.06 1.99 3.46 1.72 0.84 0.33 0.04 -0.21
Missing Obs. 94 43 1 0 0 0 2 92 70 23 2 2 8 7
Number of Options 160 348 573 573 524 465 2151 193 152 307 554 504 360 844

2 Months Puts 2 Months Puts
Average -0.07 -0.16 0.18 0.16 -0.11 -0.06 -0.03 -0.39 -0.37 -0.32 -0.23 -0.14 -0.04 -0.01
Std. Dev. 2.43 1.55 1.26 0.88 0.61 0.44 0.29 0.57 0.56 0.61 0.62 0.56 0.45 0.31
Skewness 7.12 5.19 4.65 3.10 1.48 0.85 0.29 1.74 1.78 1.90 1.54 1.16 0.62 0.40
Missing Obs. 24 3 0 0 0 0 31 13 23 6 1 2 32 63
Number of Options 1346 529 542 536 545 516 1397 600 240 370 524 543 286 355
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Table 2 Term Structure Model Parameter Estimates

This table reports estimates of the parameters of the stochastic process of the investment opportunity set, equations

(9) to (12), obtained from a Kalman filter applied to inflation rates and bond yields. The state variables are r, the real interest

rate, π, the expected rate of inflation, and η, the volatility of the pricing kernel or the Sharpe ratio of the economy. In the

table, m denotes the pricing kernel and P is the price level. Asymptotic t-ratios are in parentheses.

A. The United Kingdom

σb σr σπ ση κr κπ κη

Estimate 0.44% 0.63% 0.92% 0.207 0.143 0.000 0.104
t-ratio (49.74) (10.35) (12.94) (2.45) (4.68) (0.76) (1.89)

ρrπ ρrη ρrm ρπη ρπm ρηm

Estimate -0.104 -0.234 -0.714 -0.191 0.178 0.833
t-ratio (0.75) (1.14) (3.49) (0.78) (1.93) (4.38)

r̄ π̄ η̄ σP ρPm ML
Pre-set Value 4.56% 3.78% 0.58 1.63% 0.00 8,522.2

B. The United States

σb σr σπ ση κr κπ κη

Estimate 0.48% 2.77% 0.81% 0.193 0.290 0.002 0.292
t-ratio (52.82) (10.92) (5.15) (1.88) (1.97) (0.70) (3.84)

ρrπ ρrη ρrm ρπη ρπm ρηm

Estimate 0.027 -0.413 -0.801 -0.199 -0.276 0.919
t-ratio (0.11) (0.54) (6.22) (0.69) (1.66) (2.57)

r̄ π̄ η̄ σP ρPm ML
Pre-set Value 2.62% 3.00% 0.62 0.77% 0.00 9,334.6
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Table 3 The Behavior of At-the-Money Option Implied Volatility

This table reports the results from regressions of innovations of at-the-money option implied volatility on the polynomials of the market return, and the innova-
tions in the instantaneous real interest rate r, the maximum Sharpe ratio η, and the expected inflation π:

∆σt = a1(a2 − σt−1) + a3RW,t + a4R2
W,t + a5R3

W,t + a6∆rt + a7∆ηt + a8∆πt + ut

σ2(ut) = c1 + c2u2
t−1 + c3σ2(ut−1).

The Bollerslev-Wooldrige robust t−ratios are reported in the parenthesis.

United Kingdom United States
A. Linear Model

a1 a2 a3 a4 a5 a6 a7 a8 R2(%) a1 a2 a3 a4 a5 a6 a7 a8 R2(%)
0.11 0.22 -0.29 -0.75 -0.05 23.9 0.13 0.21 -0.36 -0.23 -0.12 31.3

(3.05) (8.86) (6.58) (1.20) (1.10) (2.16) (.7.87) (4.84) (0.28) (1.18)
c1 c2 c3 c1 c2 c3

0.00002 -0.05 1.05 0.0002 0.25 0.53
(9.29) (0.99) (20.90) (1.77) (1.77) (2.34)

B. Quadratic Model

a1 a2 a3 a4 a5 a6 a7 a8 R2(%) a1 a2 a3 a4 a5 a6 a7 a8 R2(%)
0.16 0.20 -0.40 4.19 0.80 -0.08 32.9 0.21 0.16 -0.40 4.93 -0.10 -0.08 38.7

(3.58) (8.99) (4.75) (2.85) (0.89) (1.34) (2.91) (11.80) (5.44) (3.87) (0.12) (0.71)
c1 c2 c3 c1 c2 c3

0.0006 0.35 0.12 0.00008 0.10 0.81
(2.55) (2.13) (0.57) (1.32) (1.18) (6.23)

C. Cubic Model

a1 a2 a3 a4 a5 a6 a7 a8 R2(%) a1 a2 a3 a4 a5 a6 a7 a8 R2(%)
0.16 0.17 -0.06 5.29 -49.52 0.80 -0.08 38.3 0.22 0.16 -0.46 5.31 12.67 -0.21 -0.08 39.6

(3.42) (8.52) (0.61) (4.13) (3.79) (0.96) (1.38) (2.98) (12.73) (4.75) (4.33) (1.16) (0.23) (0.71)
c1 c2 c3 c1 c2 c3

0.0004 0.51 0.18 0.00007 0.07 0.85
(3.47) (1.95) (1.12) (1.31) (0.98) (7.73)

D. Cubic Model with Expected Inflation

a1 a2 a3 a4 a5 a6 a7 a8 R2(%) a1 a2 a3 a4 a5 a6 a7 a8 R2(%)
0.16 0.17 -0.11 5.13 -44.47 -0.03 -0.06 -1.83 38.0 0.22 0.16 -0.46 5.33 12.63 -0.25 -0.08 0.27 39.6

(3.80) (8.19) (1.08) (4.08) (3.46) (0.03) (1.19) (1.62) (2.97) (12.75) (4.75) (4.26) (1.16) (0.28) (0.72) (0.13)
c1 c2 c3 c1 c2 c3

0.0004 0.52 0.18 0.00007 0.07 0.85
(3.17) (2.09) (1.13) (1.30) (0.98) (7.72)
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Table 4 Summary Statistics of Pricing Kernel Arguments and Instruments

Panel A reports the mean, the standard deviation, and the skewness of the risk free rate, the market return, the level

and the innovations of the state variables r, π, η, and σ. Panel B reports the contemporaneous correlations between the

market return and the innovations in r, π, η and σ. All variables are annualized.

Panel A: Mean, Standard Deviation, and Skewness

r ∆r η ∆η σ ∆σ π ∆π Rf RW

1. United Kingdom

Mean 0.034 -0.000 0.728 -0.002 0.217 0.022 0.027 -0.000 0.062 0.125

Stdev 0.024 0.003 0.882 0.069 0.072 0.035 0.023 0.003 0.013 0.148

Skew -0.045 -2.051 0.120 0.416 1.054 0.800 -0.172 0.102 1.313 -0.109

2. United States

Mean 0.023 -0.000 -0.063 -0.001 0.193 0.000 0.028 -0.000 0.052 0.117

Stdev 0.014 0.003 0.338 0.030 0.060 0.036 0.005 0.001 0.005 0.146

Skew 0.397 -0.338 -0.105 0.955 0.699 -0.196 -0.204 0.230 0.280 -0.818

Panel B: Contemporaneous Correlations

1. United Kingdom 2. United States
∆r ∆η ∆σ ∆π RW ∆r ∆η ∆σ ∆π RW

∆r 1.0 ∆r 1.0

∆η -0.08 1.0 ∆η -0.24 1.0

∆σ 0.22 -0.08 1.0 ∆σ -0.05 -0.08 1.0

∆π -0.45 0.18 -0.02 1.0 ∆π 0.23 0.13 -0.04 1.0

RW -0.17 -0.09 -0.44 -0.14 1.0 RW 0.09 -0.16 -0.49 -0.02 1.0
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Table 5 GMM Estimates of Iso-Elastic Pricing Kernels

The table reports GMM estimates of iso-elastic pricing kernels for monthly returns on option portfolios, the market
index returns, and the Treasury bill rate. The general pricing kernel equation is of the form:

m = c0(1 + RW )c1ec2∆r+c3∆η+c4∆σ

where RW is the return on aggregate wealth proxied by the FTSE 250 index return in the UK and the CRSP value weighted

market returns in the US; ∆r is the change in the estimated real interest rate; ∆η is the change in the estimated maximal

Sharpe ratio; and ∆σ is the change in the estimated at-the-money volatility of the index options. Instruments are the unit

vector, the Treasury Bill rate, the estimated real interest rate, the estimated expected rate of inflation, the estimated Sharpe

ratio, and the estimated at the money option volatility. In Panel A, the test assets are portfolios of options on the FTSE

100 index, the FTSE All Share Index, and the 3-month Treasury Bill. In Panel B, the test assets are portfolios of options on

the S&P 500 index, the CRSP value weighted market Index, and the US 30-day Treasury bill. The option portfolios contain

options with maturities of between 1 and 2 months, and between 2 and 3 months and with different moneyness. The sample

period is 1992.04 to 2002.03 for Panel A and 1992.01 to 2002.04 for Panel B.

No. Option co c1 c2 c3 c4 GMM Portfolios
Maturity&Type J−statistic Observations

Panel A. UK FTSE 100 Option Portfolios

1 1 and 2 months Calls and Puts 1.005 0.276 0.92 13
(2235.82) (10.49) 1,560

2 1 and 2 months Calls and Puts 0.910 -2.265 189.805 -0.141 0.92 13
(38.36) (1.53) (4.89) (0.28) 1,560

3 1 and 2 months Calls and Puts 0.886 -1.171 204.052 -0.065 1.520 0.92 13
(32.71) (0.51) (5.18) (0.13) (0.89) 1,560

4 2 months Calls and Puts 0.998 0.360 0.74 9
(3342.14) (20.37) 1080

5 2 months Calls and Puts 0.848 -3.718 230.689 -0.492 0.69 9
(20.20) (2.04) (4.93) (0.95) 1080

6 2 months Calls and Puts 0.824 -1.097 240.379 -0.254 2.634 0.68 9
(17.82) (0.41) (5.04) (0.46) (1.33) 1,080

7 1 month Calls and Puts 1.002 0.081 0.45 6
(712.76) (1.02) 720

8 1 month Calls and Puts 0.836 -4.367 247.413 -0.876 0.42 6
(12.67) (2.07) (4.17) (1.50) 720

9 1 month Calls and Puts 0.760 0.243 276.007 -0.258 5.121 0.41 6
(10.15) (0.08) (4.19) (0.34) (1.85) 720

10 1 and 2 months Calls 1.058 -3.610 0.59 7
(301.70) (20.90) 840

11 1 and 2 months Calls 1.020 -1.589 21.090 0.278 0.55 7
(122.86) (2.71) (2.16) (1.30) 840

12 1 and 2 months Calls 0.986 -0.584 33.477 0.286 1.570 0.56 7
(59.66) (0.35) (2.34) (0.94) (1.18) 840

13 1 and 2 months Puts 1.043 5.445 0.67 8
(137.17) (16.72) 960

14 1 and 2 months Puts 0.828 -3.523 246.116 -1.256 0.78 8
(15.54) (1.73) (4.38) (1.44) 960

15 1 and 2 months Puts 0.075 -12.514 1024.38 1.271 5.896 0.99 8
(4.15) (3.70) (10.22) (1.05) (1.79) 960
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Table 5 (continued)

No. Option co c1 c2 c3 c4 GMM Portfolios
Maturity&Type J−statistic Observations

Panel B. US S&P 500 Option Portfolios

1 1 and 2 months Calls and Puts 1.064 -2.688 0.96 12
(585.00) (15.73) 1,473

2 1 and 2 months Calls and Puts 0.793 -5.994 112.137 -23.734 0.90 12
(11.98) (3.03) (3.29) (4.06) 1,473

3 1 and 2 months Calls and Puts 0.670 -4.758 131.648 -29.034 3.342 0.92 12
(9.63) (2.20) (3.38) (4.52) (1.89) 1,473

4 2 months Calls and Puts 1.022 -1.675 0.61 6
(344.05) (7.10) 737

5 2 months Calls and Puts 0.792 -2.752 77.156 -23.123 0.42 6
(9.91) (1.14) (1.79) (3.37) 737

6 2 months Calls and Puts 0.688 -0.055 105.850 -24.584 6.655 0.38 6
(7.68) (0.02) (2.07) (3.13) (2.24) 737

7 1 month Calls and Puts 1.067 -2.984 0.91 8
(425.79) (13.73) 984

8 1 month Calls and Puts 0.781 -5.661 109.509 -25.528 0.80 8
(9.49) (2.39) (2.84) (3.82) 984

9 1 month Calls and Puts 0.636 -2.928 150.856 -29.760 5.790 0.79 8
(7.04) (1.01) (3.36) (4.12) (2.05) 984

10 1 and 2 months Calls 1.014 -2.527 0.53 7
(1458.51) (38.88) 860

11 1 and 2 months Calls 0.851 -2.134 36.060 -16.326 0.33 7
(12.21) (0.90) (0.77) (2.33) 860

12 1 and 2 months Calls 0.808 -0.663 54.284 -16.754 3.025 0.33 7
(11.06) (0.26) (1.10) (2.27) (1.17) 860

13 1 and 2 months Puts 1.133 -0.666 0.93 7
(173.03) (1.22) 861

14 1 and 2 months Puts 1.080 -2.870 83.709 1.828 0.85 7
(45.12) (1.96) (3.73) (0.82) 861

15 1 and 2 months Puts 1.085 -3.103 84.130 1.797 -0.618 0.85 7
(44.14) (2.02) (3.78) (0.78) (0.55) 861
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Table 6 GMM Estimates of Polynomial Pricing Kernels

The table reports GMM estimates of polynomial pricing kernels for monthly returns on option portfolios, the market
index returns, and the Treasury bill rate. The general pricing kernel equation is of the form:

m = ℘n(RW )ec2∆r+c3∆η+c4∆σ+c5∆π

where ℘n(RW ) is a Chebyshev polynomial of order n in the aggregate wealth return RW proxied by the FTSE 250 index

return in the UK and the CRSP value weighted market returns in the US; ∆r is the change in the estimated real interest

rate; ∆η is the change in the estimated maximal Sharpe ratio; ∆σ is the change in the estimated at-the-money volatility of

the index options; and ∆π is the change in the expected rate of inflation. Instruments are the unit vector, the Treasury Bill

rate, the estimated real interest rate, the estimated expected rate of inflation, the estimated Sharpe ratio, and the estimated

at the money option volatility. In Panel A, the test assets are portfolios of options on the FTSE 100 index, the FTSE All

Share Index, and the 3-month Treasury Bill. In Panel B, the test assets are portfolios of options on the S&P 500 index, the

CRSP value weighted market Index, and the US 30-day Treasury bill. The option portfolios contain options with maturities of

between 1 and 2 months, and between 2 and 3 months and with different moneyness. The sample period is 1992.04 to 2002.03

for Panel A and 1992.01 to 2002.04 for Panel B.

I II III

m = ℘n(RW )ec2∆r+c3∆η m = ℘n(RW )ec2∆r+c3∆η+c4∆σ m = ℘n(RW )ec2∆r+c3∆η+c4∆σ+c5∆π

n c2 c3 c2 c3 c4 c2 c3 c4 c5 Portfolios/
Observations

(i) (ii) (iii) (iv) (v) (vi) (vii) (ix) (x)

Panel A. UK FTSE 100 Option Portfolios

3 251.83 -1.25 395.97 -0.63 6.43 1161.71 3.91 11.46 357.63 13
(5.91) (2.20) (8.66) (0.98) (3.30) (15.80) (4.87) (4.47) (6.95) 1560

4 274.36 -1.55 395.71 -0.69 6.17 965.19 3.05 9.97 296.61 13
(6.45) (2.70) (8.65) (1.05) (2.32) (15.24) (3.74) (4.26) (6.52) 1560

5 268.06 -1.69 888.86 2.88 8.46 913.44 3.07 9.91 239.63 13
(6.28) (2.86) (15.87) (3.42) (3.14) (14.86) (3.76) (3.28) (5.41) 1560

Panel B. US S&P 500 Option Portfolios

3 75.48 -20.48 127.76 -59.28 7.16 135.96 -58.80 7.17 60.03 12
(2.34) (3.72) (2.84) (6.49) (2.80) (2.86) (6.58) (2.45) (0.58) 1473

4 82.71 -110.25 149.97 -42.54 9.73 144.13 -40.98 9.30 -4.35 12
(1.97) (9.52) (3.23) (5.36) (3.66) (2.87) (5.15) (3.03) (0.04) 1473

5 42.53 -36.47 156.54 -43.68 10.99 146.59 -41.78 9.87 18.21 12
(1.12) (5.05) (3.34) (5.38) (3.84) (2.89) (5.16) (3.06) (0.17) 1473
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Figure 1
Time Series of Estimated r, π, η, and σ for UK and US

The figure plots the time series of the real interest rate r, the expected inflation π, the maximum Sharpe ratio η, and the
at-the-money option implied volatility σ in UK for the sample period of 1992.04 to 2002.03 and in US for the sample period of
1992.01 to 2002.04. For the UK, the time series of r, π, and η are estimated from the zero-coupon nominal UK government

bond yield, and σ is estimated from 1-month FTSE 100 option prices. For the US, r, π, and η are estimated from the
zero-coupon nominal US government bond yields, and σ is estimated from the 30-day S&P 500 index option prices.
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Figure 2
Return Related Element of Estimated Iso-Elastic and Polynomial Pricing Kernels in UK

The figure plots the market return related component of the pricing kernel, φ(RW ) ≡ ℘n(RW ), for n = 3, which is obtained
by setting the state variable innovations to zero. Five φ(RW ) are plotted: 1) φ1(RW ) is calculated from parameters which are

estimated from the model with the three state variables (r, η, σ) using 11 option portfolios; 2) φ2(RW ) is calculated from
parameters which are estimated from the model with the three state variables (r, η, σ) using 28 option portfolios; 3) φ3(RW )
is calculated from parameters which are estimated from the model without any state variables using 11 option portfolios; 4)

φ4(RW ) is calculated from parameters which are estimated from the model without any state variables using 28 option
portfolios, and 5) φ5(RW ) ≡ (1 + RW )−γ is the market return related component of the iso-elastic pricing kernel for γ = 1.17,
which is estimated from the model (17) with the three state variables (r, η, σ) using 11 option portfolios and reported in line 3

of Panel A in Table 5 for the UK data.
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Figure 3
Return Related Element of Estimated Iso-Elastic and Polynomial Pricing Kernels in US

The figure plots the market return related component of the pricing kernel, φ(RW ) ≡ ℘n(RW ), for n = 3, which is obtained
by setting the state variable innovations to zero. Five φ(RW ) are plotted: 1) φ1(RW ) is calculated from parameters which are

estimated from the model with the three state variables (r, η, σ) using 10 option portfolios; 2) φ2(RW ) is calculated from
parameters which are estimated from the model with the three state variables (r, η, σ) using 28 option portfolios; 3) φ3(RW )
is calculated from parameters which are estimated from the model without any state variables using 10 option portfolios; 4)

φ4(RW ) is calculated from parameters which are estimated from the model without any state variables using 28 option
portfolios, and 5) φ5(RW ) ≡ (1 + RW )−γ is the market return related component of the iso-elastic pricing kernel for γ = 4.88,
which is estimated from the model (17) with the three state variables (r, η, σ) using 10 option portfolios and reported in line 3

of Panel B in Table 5 for the US data.
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