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Abstract 

People’s desire to be patient or impatient can fluctuate from 
moment to moment, yet little is known about the effects of 
variability in time preference on intertemporal choice 
behavior. We examine this issue through the lens of an 
exponential discounting model with noisy discount factors. We 
show that such a model can generate decreasing patience over 
time, accounting for behavioral patterns typically attributed to 
hyperbolic discounting, while also making reasonable 
predictions regarding violations of intertemporal dominance. 
Additionally, two experiments reveal that many participants do 
display noise in their discount factors, and that a noisy discount 
factor model outperforms hyperbolic models in terms of 
quantitative fit. Ultimately the majority of participants are best 
described by some type of exponential discounting model 
(with or without noisy discount factors). These results indicate 
that it may not be necessary to assume alternate forms of non-
exponential discounting, as long as the discount factors in an 
exponential model are permitted to vary at random. These 
results also highlight the importance of allowing for different 
sources of noise in choice modeling. 

Keywords: decision making; intertemporal choice; noise; 
variability; computational modeling 

Introduction 
Random noise plays a central theoretical role in 

psychological research on high-level cognition. The 
assumption of noise not only explains variability in 
individuals’ responses across multiple identical trials; When 
allowed to interact with attention, memory, and valuation, 
unsystematic noise is also capable of generating a systematic 
effect on behavior. In recent years, this type of unsystematic 
noise has been shown to account for error and response time 
patterns in perceptual and lexical choice, biases in probability 
judgment and social judgment, paradoxes in risky decision 
making, and the appearance of inconsistent or intransitive 
preferences (Bhatia & Loomes, 2017; Brown & Heathcote, 
2008; Costello & Watts, 2014; Denrell, 2015; Erev, Wallsten 
& Budescu, 1994; Hilbert, 2012; Howes et al., 2016; Ratcliff 
& Rouder, 1998; Regenwetter, Dana & Davis-Stober, 2011; 
Tsetsos et al., 2016). In many of these cases unsystematic 
noise is enough, by itself, to provide a full account of 
observed behavioral patterns, making additional --more 

                                                             
1 In a choice set consisting of many different payoffs with different time 
delays, the payoff with the highest discounted utility, according to Equation 
1, is the one that is chosen. When each option offers multiple payoffs (each 
with a different time delay), the payoffs are individually discounted based 
on their time delay, and aggregated into a single utility measure. Note that it 

complex-- psychological assumptions about explicit biases in 
the judgment or decision process unnecessary.  

In this paper we provide a formal characterization and 
analysis of the role of noise in intertemporal choice, that is, 
choice between payoffs occurring at different points in time. 
Our approach is motivated by the recent theoretical claims of 
Bhatia and Loomes (2017), who suggest that there are two 
key sources of noise in the preferential choice process. The 
first involves noise in response generation, with decision 
makers occasionally making mistakes in translating their 
preferences into choices. The second involves noise in the 
preferences themselves, with the parameters that characterize 
these preferences fluctuating from trial to trial.  Bhatia and 
Loomes (2017) apply both sources of noise within a 
“rational” expected utility theory framework in a set of risky 
choice tasks, and show that the resulting model can predict 
(seemingly irrational) violations of EUT, such as choice 
patterns commonly seen to support Prospect Theory accounts 
of risk taking.  

In intertemporal choice, it is exponential discounting that 
is considered to be the rational or normative model. In this 
paper, we propose an exponential discounting model that 
allows for trial-to-trial variability in discount factors, as well 
as random mistakes in generating responses, and then 
examine the properties of this model with both simulations 
and experiments. Our analysis tests the descriptive 
boundaries of the exponential discounting model and 
evaluates when it is and is not necessary to deviate from this 
rational theory to describe irrational patterns in intertemporal 
choice data. By performing these tests, we hope to obtain a 
deeper understanding of the effects of noise in intertemporal 
choice, complementing the rich existing theoretical literature 
on variability in cognition and behavior.  

Intertemporal Discounting 
The simplest intertemporal choice task requires a decision 
maker to evaluate an option X offering a payoff x with a time 
delay of t. Discounting models of intertemporal choice 
assume that these evaluations involve the calculation of a 
discounted utility, which weighs the payoff based on the 
magnitude of the time delay. Thus, for a discount function 
d(·), the utility of X is given by: 1  

is sometimes assumed that payoffs are transformed non-linearly according 
to a value function, prior to being discounted. However, for expositional 
clarity, we will avoid this assumption for the purposes of this paper. Our 
results should not vary with more complex assumptions regarding payoff 
valuation. 
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  𝑈(𝑋) 	= 	𝑑(𝑡) ∙ 𝑥       (1) 
Exponential discounting, initially introduced by Samuelson 
(1937), involves a particularly parsimonious discount 
function. For a discount factor δ, it assumes that the 
discounted weight on the payoff value is simply given by: 

 

       𝑑 𝑡 = 	 𝛿,    (2) 
 

where 0 ≤ δ ≤ 1. Smaller values of δ correspond to increased 
discounting and lead to smaller weights on later payoffs 
relative to sooner payoffs. δ = 1 corresponds to a complete 
absence of discounting of delayed payoffs. This one 
parameter discount function is the most commonly used 
discounting function in economics, as well in various 
applications in psychology, such as reinforcement learning. 

Exponential discounting is, however, limited from a 
descriptive perspective. Notably it is unable to account for 
observed patterns of decreasing impatience for intertemporal 
choices. Consider, for example, a choice between an option 
XP offering $5 immediately and option YP offering $10 in one 
month (proximal choice), as well as between option XR 
offering $5 in one month and option YR offering $10 in two 
months (remote choice). As both the payoffs and the 
difference in time delays are the same for the proximal and 
remote choice, exponential discounting, with a fixed discount 
factor δ, predicts that participants should either select the 
sooner payoff in both choices or the later payoff in both 
choices. However, some studies suggest that participants 
typically select the sooner payoff in the proximal choice, but 
the later payoff in the remote choice (Green, Fristoe, & 
Myerson, 1994; Kirby & Herrnstein, 1995; Thaler, 1981; see 
Frederick, Loewenstein, & O’Donoghue, 2002 for a review). 
In response to such violations, researchers have suggested 
that the shape of the discounting function is not exponential 
but hyperbolic (e.g., Laibson, 1997; Loewenstein & Prelec, 
1992; Mazur, 1987; see Table 1 for a representative list of 
hyperbolic models). 

Noise in Intertemporal Choice 
One critical issue with the above models is their inability 

to account for stochasticity inherent in human behavior. In 
order to use discounting models to describe stochastic choice 
data, discounting models need to be recast in probabilistic 
terms. Exponential discounting is generally modelled 
alongside some assumption of response noise, typically in the 
form of a logistic choice rule that transforms discounted 
utilities into choice probabilities (McFadden, 1973). Here, for 
options X and Y offering payoffs x and y with time delays t 
and s respectively, the probability of selecting X over Y is 
given by:  
 

								Pr[𝑋	chosen] 	= 	 7
78	9:;	{=> ? , ∙@	=	?(A)∙B }

               (3) 

where θ ≥ 0 is a parameter that determines the extent of noise 
in the choice process. Smaller values of θ correspond to 
noisier choices, with θ = 0 generating completely random 
choice (i.e. X and Y equally likely to be chosen, regardless of 
underlying payoffs and time delays).  

   There is also, however, another source of randomness in 
choice: preference noise. The parameters of utility-based 
models often provide a formal representation of decision 
makers’ preferences. These preferences may not be constant 
over the time course of an experiment; that is, they may 
themselves fluctuate in a noisy manner (Becker, DeGroot & 
Marschak, 1963; Loomes & Sugden, 1995; Regenwetter & 
Marley, 2001). Within an exponential discounting model, this 
type of variability would correspond a distribution of 
discount factors described by a probability density function 
f(δ). δ varies from trial to trial, according to f, causing the 
discount function and thus the option utilities to vary from 
trial to trial. In a given trial, the option with the higher utility 
contingent on the sampled δ would be chosen. In a choice 
between option X offering payoff x with delay t, and option Y 
offering payoff y with delay s, the probability of choosing X 
is given by: 

Pr 𝑋	chosen = 	 𝑔 𝑋, 𝑌 𝛿 	𝑓 𝛿 	𝑑𝛿 

 

               𝑔 𝑋, 𝑌 𝛿 = 	
1							𝑖𝑓	𝛿,𝑥 > 	 𝛿A𝑦
0.5				𝑖𝑓	𝛿,𝑥 = 	 𝛿A𝑦
0							𝑖𝑓	𝛿,𝑥 < 	 𝛿A𝑦

      (4) 

 

In such a formulation, E[δ] is the expected discount factor, 
and can be seen as characterizing the decision makers’ 
underlying time preference. Although this underlying time 
preference is stable, trial-to-trial variability in δ could alters 
decision makers’ utilities when they are exposed to the same 
decision problems repeatedly, thus leading to occasional 
mistakes in choice.  

Although both response and preference noise do generate 
stochastic behavior, they are unable, by themselves, to 
account for violations of exponential discounting, such as 
decreasing impatience. This is because both types of noise, 
when applied individually, generate modal choice predictions 
that are in the direction of the prediction of the corresponding 
noiseless exponential model.  

Of course both preference and response noise can influence 
intertemporal choice simultaneously. In this setting we would 
have both variability in discount factors for generating 
utilities, as well as variability in translating utilities into 
choice. Choice probabilities with such a model can be 
obtained by integrating Pr[X chosen] as defined in Equation 
3, over the range of feasible values of δ, weighted by their 
respective probabilities. Thus, in a choice between option X 
offering payoff x with delay t, and option Y offering payoff y 
with delay s, the probability of choosing X when both types 
of noise are present would be given by: 

 

Pr 𝑋	chosen = 	 𝑔 𝑋, 𝑌 𝛿 	𝑓 𝛿 	𝑑𝛿 

 
                 𝑔 𝑋, 𝑌 𝛿 = 7

78	9:;	{=> PQ∙@	=	PR∙B }
	      (5) 

 

These choice probabilities can deviate from the predictions 
of the corresponding deterministic exponential model (with 
discount factor of E[δ]). The reason for this is that the utility 
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difference between X and Y, δt·x – δs·y is non-linear in δ. This 
means that variability in δ distorts the expected differences in 
utility between the two options, so that the expectation of the 
utility difference between X and Y, E[U(X) – U(Y)], is not the 
same as the utility difference of these options, U(X) – U(Y) 
for E[δ]. When preference noise is applied by itself (as in 
Equation 4), this distortion does not alter modal choice, as the 
choice rule is based only on whether δt·x > δs·y or δt·x < δs·y, 
and not on the magnitude of δt·x – δs·y. However, when these 
utility differences are combined with response noise (as in 
Equation 5) the distorted expected utility differences leads to 
distorted choice probabilities. Note that this can happen even 
if the distribution δ is symmetric around E[δ]. 

Properties 
The exponential discounting model, with both response and 
preference noise, can account for violations of exponential 
discounting, such as decreasing impatience. As an illustration 
of this, consider again the proximal and remote choices in the 
decreasing impatience example above. If we only allowed for 
the response noise, and set θ = 1 in Equation 3, we would 
obtain Pr[XP chosen] < 0.5 in the proximal choice and Pr[XR 
chosen] < 0.5 in the remote choice for all values of δ < 0.5, 
and Pr[XP chosen] > 0.5 in the proximal choice and Pr[XR 
chosen] > 0.5 in the remote choice for all values of δ > 0.5. 
This is shown in Figure 1a.  
 

 
Figure 1: The probability of X chosen as a function of 
(mean) discount factor in proximal and remote choices. (a) 
Only response noise (θ = 1) is assumed. (b) Both response 
(θ = 1) and preference noise (η = 0.25) are assumed.  
 

Now consider adding preference noise to this formulation, 
with δ ~ Uniform[δ* - 0.25, δ* + 0.25]. Note that E[δ] = δ*. In 
this setting, we find that Pr[XP chosen] < 0.5 in the proximal 
choice and Pr[XR chosen] < 0.5 in the remote choice for δ* < 
0.457, and Pr[XP chosen] > 0.5 in the proximal choice and 
Pr[XR chosen] > 0.5 in the remote choice for δ* > 0.50. For δ* 

in the range (0.457,0.500) we obtain both Pr[XP chosen] < 0.5 
and Pr[XR chosen] > 0.5, consistent with the finding of 
decreasing impatience. Note that this asymmetry emerges 
despite preference noise being unsystematic (i.e. δ distributed 
symmetrically around δ*). This is shown in Figure 1b. 
A combination of response and preference noise is also 
necessary for making reasonable predictions for 
intertemporal dominance. Consider, for example, a choice 
between an option X offering $10 immediately and option 
YND offering $15 in one month (non-dominance choice), as 

well as another choice between option X, and option YD 
offering $7.50 immediately (dominance choice). For a 
decision maker with δ = 0.5 we have U(X) - U(YND) = U(X) - 
U(YD) = 2.50. As the difference in utilities is the same 
between X and YND

 and between X and YD¸ an exponential 
choice model with only response noise (as in Equation 3) 
would predict the same choice probability of X in both cases. 
In other words, the decision maker would be equally likely to 
make a mistake and select the less desirable option in the non-
dominance choice as in the dominance choice.  

In reality decision makers can detect dominance. Although 
they do occasionally choose dominated options, the 
likelihood of doing so is much lower than that typically 
predicted by models equipped with only response noise (e.g., 
Busemeyer & Townsend, 1993; Loomes & Sugden, 1998). 

In order to provide an adequate account of intertemporal 
dominance, we once again need both response and preference 
noise. For example, if we allow for θ = 1, as well as δ ~ 
Uniform[δ* - 0.25, δ* + 0.25], with δ* = 0.5, we obtain Pr[X 
chosen] = 80.0% in the non-dominance choice, but Pr[X 

chosen] = 92.4% in the dominance choice. Thus even though 
the difference in utilities between X and YND

 and between X 
and YD is the same under E[δ] = δ*, the probability of choosing 
X is higher when it dominates its competitor.  

The intuition for the above choice patterns is 
straightforward: Response noise generates mistakes based on 
the utility differences between options, implying that 
dominance is violated too frequently when response noise is 
applied by itself. Preference noise, in contrast, never violates 
dominance. When a given δ is applied to the two options in a 
dominance trial, the utility for the dominating option is 
always greater than that for the dominated option, leading to 
a choice probability of 0% for the dominated option. The 
combination of response and preference noise results in an 
averaging of these two extreme predictions. Thus, in a model 
with both response and preference noise, it is possible to 
choose a dominated option, but the probability of this is 
smaller than the probability of choosing an equally desirable 
non-dominated option. 

Experiments 
We ran two experiments to further test the explanatory score 
of the exponential model with both response and preference 
noise.  

Methods and Materials  
A total of 89 undergraduate students from a university in 
United States participated in our two experiments: 44 
participants (31 female; aged 20.26 ± 1.25) in Experiment 1 
and 45 participants (25 female; aged 19.84 ± 1.49) in 
Experiment 2.  

Experiment 1 involved hypothetical binary choices 
between an option X offering a payoff of x after a time delay 
t, and an option Y offering a payoff of y after a time delay s = 
t + k. We set x = $100 in all trials and chose t from the set 
{today, 3 months, 6 months, 9 months} and k from the set {3 
months, 6 months, 9 months}. y was determined by applying 
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annual interest rate from the set {-50%, 50%, 100%, 500%, 
1000%} to the corresponding time delays. This generated a 
total of 60 unique choice pairs. Note that the use of a negative 
interest rate implied that 12 of these choice pairs involved a 
dominated option (offering a smaller reward with a larger 
time delay than its competitor).  

As shown below, Experiment 1 involved fairly high choice 
probabilities for the delayed option Y. Although this should 
not alter our key conclusions, we wished to replicate our tests 
with stimuli generating roughly equivalent choice 
probabilities for X and Y. Thus we ran a second experiment, 
with stimuli generated using the methods above, but with 
annual interest rates in the set {-25%, 25%, 75%, 125%, 
175%}. By using smaller interest rates we obtained smaller 
values of y for corresponding values of t and k, leading to 
higher choice proportions for X.  

We excluded data from five participants in Experiment 1 
and three participants in Experiment 2 because they 
constantly chose either X or Y in all the non-dominance 
choices. This left 39 participants in Experiment 1 and 42 
participants in Experiment 2 for our analysis.  

Model Fitting  
The main goal of the two experiments was to test whether the 
exponential discounting model with both response and 
preference noise is able to provide a good quantitative 
account of choice data. For this purpose, we fit the core 
exponential discounting model embedded in a logistic choice 
rule for response noise, with a variable discount factor δ ~ 
Uniform[δ* - η, δ* + η] (Equation 5), with δ* - η ≥ 0 and δ* + 
η ≤ 1. We refer to this model as the noisy exponential model 
for the remainder of this paper. 
 
Table 1: Alternate hyperbolic discounting functions. 
 

Function Name Function Form Domain 
Mazur-1 hyperbolic 𝑑 𝑡 = 1 + 𝛼𝑡 =7 α > 0 
Mazur-2 hyperbolic 𝑑 𝑡 = 1 + 𝛼𝑡U =7 α, τ > 0  
LP hyperbolic 𝑑 𝑡 = 1 + 𝛼𝑡 =V W α, β > 0 

Quasi-hyperbolic 𝑑 𝑡 =
					1, when	𝑡 = 0
𝛽𝛿,, when	𝑡 > 0 0 ≤ β ≤ 1 

0 ≤ δ ≤ 1 
 

 
We also wished to contrast the predictions of the noisy 

exponential model with the various hyperbolic models 
proposed in prior work. We considered the one parameter 
hyperbolic discounting model proposed by Mazur (1987), 
which we refer to as Mazur-1 hyperbolic, as well as the two 
parameter hyperbolic model proposed by Mazur (1987), 
which we refer to as Mazur-2 hyperbolic. We also considered 
the two-parameter generalized hyperbolic discounting model 
proposed by Lowenstein and Prelec 1992), which we refer to 
as the LP hyperbolic. Finally, we considered the quasi-
hyperbolic model proposed by Laibson (1997). All these 
hyperbolic discounting models are presented in Table 1. We 
also tested the predictive power of the baseline exponential 
model (Equation 2). All hyperbolic discounting models and 
the baseline exponential discounting model were embedded 

within the logistic choice function (Equation 4) to allow for 
response noise.  

Results 

Summary of Choice Data Among the non-dominance 
choices, we found that option Y was chosen 66.9% of the time 
in Experiment 1, and 48.6 % of the time in Experiment 2. The 
frequency of choosing the dominated options was 
comparable across the two experiments: Participants in 
Experiment 1 and Experiment 2 chose the dominated option 
(option Y offering both the smaller and the more delayed 
reward) 3.9% of the time and 4.7% of the time respectively.  

We also tested for decreasing impatience in the two 
experiments. In the non-dominance trials of Experiment 1, 
participants chose option Y (offering the payoff with the 
larger delay) 65.9% when t = 0 months, 66.0% when t = 3 
months, 67.7% when t = 6 months, and 67.8% when t = 9 
months. Formally, the probability of choosing Y in the non-
dominance trials increased with t in a mixed-effect logistic 
regression model with random intercepts for participants 
intervals between options and the implied interest rates in the 
trial (β = 0.028, z = 2.397, p = .017). A similar test applied 
individually to each participant found that the effect of t on 
the choice probability of Y was positive and significant (p < 
0.05) for six participants, positive and non-significant (p > 
0.05) for 13 participants, negative and significant for one 
participant, and negative and non-significant for 19 
participants. These results provide some evidence of 
decreasing impatience on the aggregate level, but also 
suggest substantial heterogeneity in this choice pattern across 
participants, with roughly half the sample showing 
significant or non-significant decreasing impatience, and the 
other half showing significant or non-significant increasing 
impatience. 

We obtained more ambiguous results in Experiment 2. In 
this experiment we observed a choice frequency for option Y 
of 47.6% when t = 0 months, 49.0% when t = 3 months, and 
48.9% when t = 6 months, and 49.1% when t = 9 months. 
Although this choice frequency is increasing in t, it did not 
reach statistical significance in a mixed-effect model (β = 
0.015, z = 1.447, p = 0.148). On the individual level, the effect 
of t on the choice probability of Y was positive and significant 
for three participants, positive and non-significant for 21 
participants, negative and significant for one participant, and 
negative and non-significant for 17 participants. This time, a 
little bit more than half sample showed significant or non-
significant decreasing impatience, and the other half showed 
significant or non-significant increasing impatience. 

Overall, the findings of Experiments 1 and 2 suggest that 
decreasing impatience is not as robust as is widely held, but 
is consistent with some recent experiments with similar 
inconclusive effects for decreasing impatience (e.g., Kable & 
Glimcher, 2010; Read, 2001). 

Best-fit Parameters. Of key interest to the tests in this paper 
is the preference noise η in the noisy exponential model. 
Figure 2 shows the individual-level and group-level estimates 
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of η, as well as the estimates of δ* from the noisy exponential 
model. As the baseline exponential model is nested in the 
noisy exponential model and η is the additional specification, 
we can evaluate the statistical significance of η using the 
likelihood ratio test. The variable being evaluated here is the 
ratio between the maximum likelihood values of the two 
models. This ratio has a chi-square distribution with a degree 
of freedom of 1. The likelihood ratio test reveals that the 
noisy exponential model has a significantly higher likelihood 
than the baseline exponential model (implying that restricting 
η = 0 results in significantly worse fits) on the group level 
(χ2(1) > 3.84, p < .05) as well as for 46% participants for 
Experiment 1, and for 42.9% of participants for Experiment 
2.  
 

 
Figure 2: Distributions of individual-level (black dots) and 
group-level (blue triangles) estimates of η and δ* from the 
noisy exponential model. (a) Estimates of Experiment 1.(b) 
Estimates of Experiment 2.  
 

We can also perform a similar set of tests for the quasi-
hyperbolic model and the LP hyperbolic model, both of 
which embed the baseline exponential discounting model. 
However, on an individual level only 17.9% of participants 
in Experiment 1 and 19.0% of participants in Experiment 2 
are better fit by the quasi-hyperbolic model than the 
exponential model. These proportions are 15.4% and 38.1% 
for LP hyperbolic model in Experiments 1 and 2 respectively.  

Model Comparisons The likelihood ratio tests shown above 
suggest that the noisy exponential model does better than the 
quasi-hyperbolic and LP hyperbolic models, as it provides a 
greater improvement over the baseline exponential model 
both on the group and on the individual level. However this 
test cannot be used to directly compare the noisy exponential 

model with the quasi-hyperbolic and LP hyperbolic models, 
as these models are not nested within each other. To perform 
such a test, we thus need to use the Bayes Information 
Criterion, calculated as BIC = -2 ln(L) + k × ln(n), where L is 
the maximum likelihood value, k is the number of free 
parameters and n is the number of data points. Lower values 
of BIC indicate better fits, controlling for model flexibility 
(quantified by the total number of free parameters). Table 2 
shows the BIC values for the models fit to the group-level 
data in Experiments 1 and 2. Group-level fits impose the 
same parameters to all participants, not allowing for 
individual differences. It also shows aggregate BIC values for 
individual-level fits. As can be seen in Table 2, the best 
performing model according to the group-level BIC and the 
aggregate individual-level BIC, for both experiments, is the 
noisy exponential model. We can also examine the proportion 
of participants best fit by each of the models when all models 
are compared simultaneously. Here we find that the best 
performing model is the baseline exponential model, which 
has the lowest BIC values for 41.0% and 46.5% of 
participants in Experiments 1 and 2. This is followed by the 
noisy exponential model, which provides the lowest BIC 
values for 30.8% and 23.3% of participants in the two 
experiments. Thus, around 70% of the participants in our two 
experiments are best fit by either the baseline exponential or 
the noisy exponential model, according to BIC.  

Summary and Discussion 
This paper has examined the role of noise in intertemporal 
decision making through the lens of the exponential 
discounting model. We propose a modification to this model 
that allows for time preference to vary from moment to 
moment. Formally, this involves distribution over the 
discount factors that quantify time preference. We have 
shown how this noisy exponential model can be used to 
predict seemingly irrational patterns of behavior, such as 
decreasing impatience. A noisy exponential model also 
provides a better account of violations of intertemporal 
dominance. 

Empirically, we have tested the quantitative properties of 
our proposed model and the model fitting exercise has 
revealed a number of novel insights regarding the effect of 
noise in intertemporal discounting. Firstly, an examination of 
best fitting parameters has shown that the level of noise in

 
Table 2: Summary of model fit in Experiments 1 and 2. 

 
Model Name Group-level BIC  Aggregate Individual-

level BIC  Percentage of Best Fits 

 Exp 1 Exp 2  Exp 1 Exp 2  Exp 1 Exp 2 
Mazur-1 hyperbolic 9423 11633  6425 7357  17.9% 20.9% 
Mazur-2 hyperbolic 9410 11560  6118 6772  2.6% 2.3% 
LP hyperbolic 9408 11546  6043 6690  5.1% 0.0% 
Quasi-hyperbolic 9413 11547  6068 6706  2.6% 7.0% 
Exponential 9414 11556  5973 6610  41.0% 46.5% 
Noisy exponential 8996 11382  5867 6587  30.8% 23.3%  
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discount factors, on the group level, is significantly greater 
than zero. This is also the case on the individual level for 
more than 40% of our participants, across the two 
experiments (we observe positive noise for most the 
remaining participants, but this does not reach statistical 
significance). We also find that the noisy exponential model 
outperforms the four hyperbolic models considered in this 
paper, in terms of quantitative fit. This emerges on both on 
the individual and the group level, for both the experiments. 
Conversely, on the individual level, hyperbolic discounting 
models do not provide better fits even relative to the baseline 
exponential model, although the data provide some evidence 
for decreasing impatience. This suggests that hyperbolic 
discounting models either over predict decreasing impatience 
or, if flexible enough to reduce to exponential discounting, 
the premium in model fits does not overcome the penalty of 
model complexity in model selection. 

The results of this paper indicate that a rational model of 
intertemporal decision making that permits (unsystematic) 
variability in the degree of time preference has tremendous 
explanatory power. By doing so, it complements a rich 
existing literature in psychology on the descriptive role of 
random noise in cognition and behavior. Noise is not just 
useful only for accommodating observed variability in 
peoples’ behavior. Rather, it occupies a central theoretical 
position of our understanding of this behavior.  
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