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Cognitive slowing is a prevalent symptomobserved inGulfWar Illness (GWI). The present study assessed the ex-
tent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant
brain regions was predictive of GWI-related cognitive slowing. GWI patients (n= 54) and healthy veteran con-
trols (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task;
DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the
DSST relative to controls. Bilateral DLPFC connectivitywith task-relevant nodeswas altered inGWI patients com-
pared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted
GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest
that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Approximately one-third of the 700,000 troops deployed to the1991
Persian Gulf War developed chronic physical and psychological symp-
toms known as Gulf War Illness (GWI). To date, it is the most prevalent
health condition affecting Gulf War veterans (Research Advisory
Committee on GulfWar Veterans’ Illnesses, 2008). GWI is characterized
by diverse symptomology, affecting digestive (e.g., abdominal pain,
chronic diarrhea), integumentary (e.g., idiopathic skin rashes), respira-
tory (e.g., chronic cough, dyspnea) and nervous systems (e.g., chronic
headaches, cognitive impairment, neuropathic pain). Few studies have
assessed the neural correlates of the cognitive symptoms experienced
by GWI sufferers (Odegard et al., 2013; Tillman et al., 2010, 2012,
2013). However, recent work suggests that cognitive deficits in GWI
might arise from executive dysfunction caused by aberrant functioning
of prefrontal neural systems (Hubbard et al., 2014).

Executive processes depend upon dorsolateral prefrontal cortex
(DLPFC; e.g., Curtis and D'Esposito, 2003; D'Esposito et al., 1995;
Goldman-Rakic et al., 1996; Hubbard et al., 2014, 2016; Rypma, 2006;
Rypma et al., 1999, 2002; Rypma and D'Esposito, 1999; Rypma and
Prabhakaran, 2009). This area directs sensory and motor information
rain Sciences, Center for Brain
oad, Richardson, TX 75080, USA.
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and receives and integrates input from an array of specialized cortical
structures (Curtis and D'Esposito, 2003; Goldman-Rakic et al., 1984,
1996; Hubbard et al., 2016; Niki et al., 1972; Petrides and Pandya,
1984, 1999; Rypma et al., 2006; Rypma and Prabhakaran, 2009). Indeed,
blood-oxygen-level dependent (BOLD) activity changes in DLPFC are
known to accompany executive cognitive deficits in GWI (Hubbard et
al., 2014).

Prior research has established that connectivity between DLPFC and
parietal regions, as well as other task-relevant regions, is predictive of
individual differences in fundamental abilities (Jung and Haier, 2007),
including cognitive slowing in healthy (Biswal et al., 2010; Rypma et
al., 2006; Rypma and Prabhakaran, 2009) and clinical populations
(Hubbard et al., 2016). One study, for instance, found that slower per-
formers showed increased DLPFC connectivity, and that significant var-
iance in performance on the DSST could be explained by the degree of
DLPFC connectivity (Rypma et al., 2006). These results suggested that
slower performers required greater DLPFC connectivity for executive
control and monitoring processes. However, it remains unknown
whether functional connectivity changes in DLPFC exist in GWI, and
whether such changes might predict cognitive slowing in GWI.

In the present study, we assessed cognitive slowing and functional
connectivity in GWI. Specifically, we used functional magnetic reso-
nance imaging (fMRI) to assess the extent to which connectivity with
DLPFC was altered during processing speed task performance in GWI
relative to healthy-control veterans. We further assessed whether
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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GWI-related changes in DLPFC functional connectivity could predict
cognitive slowing in these patients.
2. Materials and Methods

2.1. Participants

Ninety-seven participants were selected by a three-stage sampling
procedure from a nationally representative sample of Gulf War-era US
military veterans, stratified by age, education, gender and wartimemil-
itary rank (Haley et al., 2013). Sixty-six veterans (GWI patients)met the
standardized factor case definition of the disease (Haley et al., 1997b;
Iannacchione et al., 2011), approximately equally representing the
three syndrome variants defined by factor analysis: variant 1, impaired
cognition; variant 2, confusion-ataxia; and variant 3, central neuropath-
ic pain. All three variants were included to capture the full spectrum of
the disorder (Haley et al., 1997; Iannacchione et al., 2011). All of the
cases met the more inclusive CDC case definition (Fukuda et al., 1998),
all but 2met the Kansas case definitionwithout comorbidity exclusions,
and approximately half met the original Kansas case definition with
comorbidities excluded (Steele, 2000). Thirty-one veterans (healthy
controls) met none of the three case definitions. Complete task-perfor-
mance and functional imaging data were available for 54 GWI patients
and 29 healthy controls (N = 83); their characteristics are given in
Table 1. No participants had a diagnosable neurological condition,
such as motor neuron disease, cerebrovascular disease, Parkinson’s dis-
ease, Guillain-Barré syndrome, or traumatic brain injury.

All procedures were approved by institutional review boards
from both the University of Texas at Dallas and the University of Texas
Southwestern Medical Center. Participants provided informed consent
prior to undergoing any procedure. All procedures were monitored
by trained, certified MR technicians who screened participants for
Table 1
Characteristics of the participants included in the analysis.

Characteristic
Controlsa

(N=29)
GWI casesa

(N=54)

Age, mean (SD) 50.4 (7.8) 50.0 (8.0)
Sex

Male 23 (79) 43 (80)
Female 6 (21) 11 (20)

Handedness
Right 28 (97) 51 (94)
Left 1 ( 3) 3 ( 6)

Education survey response, mean (SD) 5.4 (1.6) 5.2 (1.8)
Deployment to Kuwaiti Theater of Operations

Deployed 15 (52) 55 (100)
Non-deployed 14 (48) 0 ( 0)

Wartime rank
Officer 4 (14) 4 ( 7)
Enlisted 25 (86) 50 (93)

Syndrome variants of the Factor Case Definition
Variant 1 (cognitive impairment) -- 18 (33)
Variant 2 (confusion/ataxia) -- 22 (40)
Variant 3 (neuropathic pain) -- 15 (27)

Met CDC criteria for multisymptom illness
Yes 0 ( 0) 54 (100)
No 29 (100) 0 ( 0)

Met Kansas criteria for multisymptom illness
Yes 0 ( 0) 30 (56)
No 29 (100) 24 (44)

Met Kansas criteria with no co-morbidity exclusions
Yes 0 ( 0) 52 (96)
No 29 (100) 2 ( 4)

a GWI patients met the Factor Case Definition of Gulf War illness, and controls did not
meet it. Cells contain N (column %) unless otherwise specified in the row heading.
contraindications to MR imaging. Upon completion, all participants
were compensated monetarily for their participation.

2.2. Behavioral measurement

Participants completed three runs of an fMRI-adapted digit-symbol
substitution task (DSST; Rypma et al., 2006). Each run lasted approxi-
mately 5minutes and consisted of 75 trials. For each trial, a key contain-
ing 9 digit–symbol pairs was displayed in the upper half of the viewing
screen. In the lower half, a single digit–symbol probe appeared simulta-
neously (Fig. 1). Participants were instructed to, as quickly and accu-
rately as possible, press a right-thumb button if the probe-pair
matched a pair in the key, and to press a left-thumb button if the
probe-pair did not match one in the key. The probe-pair matched a
pair in the key 50% of the time. Digit-symbol pairings in the key changed
from trial to trial. Accuracy was calculated as the proportion of correct
responses. Reaction time (RT) was calculated as the average time in
ms it took a participant to respond correctly to a trial and was used to
assess cognitive slowing.

2.3. Image acquisition and preprocessing

Imaging data were acquired using a Siemens 3 Tesla magnet with a
12-channel head coil. High-resolution anatomical, magnetization-pre-
pared rapid acquisition of gradient echo (MPRAGE; Brant-Zawadzki et
al., 1992) scans were acquired using the following parameters: T1-
weighted type, 1 × 1 × 1 mm³ voxel, 160 slices/ volume, sagittal
plane, 3.31 ms echo time, 12° flip angle, 256 × 256 matrix, left-to-
right acquisition, 281 s scan duration. Functional scans during the
DSST were acquired using the following parameters: BOLD, gradient-
echo signal, 2.97 × 2.97 × 3.5 mm³ voxel, 44 slices/volume, 159
volumes/run, transverse plane, 20 ms echo time, 2000 ms repetition
time, 90° flip angle, 64 × 64 matrix, foot-to-head acquisition, 318 s per
scan.

Analysis of Functional Neuroimages (AFNI; Cox, 1996) was used to
process functional neuroimaging data. Data were de-spiked using
AFNI’s 3dDespike program that applies a scaling factor to values larger
than 2.5 standard deviations above the mean (spikes) such that they
then fall between 2.5 and 4 standard deviations above the mean. This
scaling was done to reduce undue effects of outlier signal measure-
ments (Jo et al., 2013). Head motion was corrected by registering func-
tional volumes to the first volume of the first run of the functional task
using a six-parameter rigid-body transformation. The MPRAGE volume
was aligned to the functional data. The MPRAGE was then transformed
to Colin space (Holmes et al., 1998; Van Essen, 2002), where the trans-
formation matrix was applied to warp the functional data into Colin
space. Functional volumes within grey matter were then smoothed
using a Gaussian kernel (full width at half maximum; FWHM = 3
mm). Signal contributions from white matter and participant motion
were labeled as nuisance covariates and removed from further process-
ing using regression analysis (Jo et al., 2013). A high-pass filter
(0.015625 Hz) was applied to the data and linear and quadratic trends
were removed. Volumes for each participant were visually inspected
to ensure pre-processing programs operated as intended. Anatomical
Fig. 1. A sample stimulus array from a single trial of the DSST.



Fig. 2. Baron & Kenny’s protocol to identify an intervening variable. X is the independent
variable, Y is the dependent variable, M is the intervening variable, α is the effect of X
on Y, β is the effect of X on M, τ is the effect of M on Y, and α' is the effect of X on Y
controlling for M.
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ROImaskswere algorithmically delineated via AFNI’s Talairach daemon
(Cox, 1996) for each participant using Brodmann Area (BA) definitions
for grey matter in left and right superior DLPFC corresponding to BA 9
(see Hutchison et al., 2014).

2.4. Image Analyses

2.4.1. DLPFC ΔBOLD
Previous research has shown attenuated BOLD activity in DLPFC for

GWI patients compared to healthy controls (Hubbard et al., 2014). The
magnitude of linear dependence, as assessed using Pearson correlations,
is contingent upon variability (e.g., Alexander et al., 1984). Thus, when
comparing two groups on measures of linear dependence, increases in
BOLD time-series variability for one group compared to another could
bias group differences in connectivity (Hubbard et al., 2016). Thus,
prior to assessing group differences in connectivity within DLPFC, we
ensured that GWI patients and healthy controls did not significantly dif-
fer in DLPFC variability.We thus computedΔBOLD, that is, the standard-
ized fluctuation of BOLD signal from the mean, within left and right
DLPFC for GWI patients compared to healthy controls.

2.4.2. DLPFC connectivity
Using left and right BA 9 as seed regions, we performed voxelwise

Pearson product-moment correlations between average BOLD signal
time-series data in the seed regions and data in all other grey matter
voxels. These correlations indicated how similarly time-series data in
the seed region and in any other voxel in the brain varied together
through time. Voxels with higher correlation coefficients are considered
to be more connected than those with lower coefficients (Biswal et al.,
1995, 2010; Friston, 2011; Hubbard et al., 2016). To normalize
data distributions, a Fisher z-transformation (Fisher, 1915) was applied
to each Pearson correlation, yielding a z-connectivity score with left
and right DLPFC, per voxel. Between-group connectivity differences
were assessed using independent samples t-tests. Cluster-extent-
based thresholding was used to correct for familywise error rate
(FWER b .05). The AFNI program 3dClustSim estimated the probability
of finding a noise-only cluster featuring faces-touching, contiguous
voxels (k), on our specified grid space, with a smoothing kernel of
3 mm, and a p-value of .05 for each voxel within a cluster. At k ≥ 17,
the probability of a noise-only cluster was p b .05.

2.4.3. Definition of DLPFC hyper- and hypoconnectivity
We hypothesized that GWI-related hyperconnectivity with DLPFC

was related to group differences in cognitive slowing. To test this hy-
pothesis, from each participant we extracted the average connectivity
z-score from all voxels in regionswhere GWI patients were significantly
more connected with left and right DLPFC than healthy controls. We
also extracted the average connectivity z-score in regions where GWI
patients were significantly less connected with left and right DLPFC
than healthy controls. This approach yielded two summary z-scores
for each participant. One z-score represented the average connectivity
with left and right DLPFC in regions where GWI patients showed signif-
icantly increased connectivity compared to healthy controls (i.e., the
hyperconnectivity coefficient). The other z-score represented the aver-
age connectivity with left and right DLPFC in regions where GWI pa-
tients showed significantly reduced connectivity compared to healthy
controls (i.e., the hypoconnectivity coefficient). We then assessed
whether hyper- and hypoconnectivity coefficients could predict DSST
RT.

2.5. Statistical Analysis

All within-group distributions were examined for outliers. Any ob-
servation greater than two standard deviations above or below the
mean was removed from that distribution, as reflected by the degrees
of freedom in any statistical analysis we performed. Additionally, we
used multivariate ordinary least squares regression models in accor-
dancewith Baron and Kenny’s protocol (Baron and Kenny, 1986). Brief-
ly, this method has four criteria for identifying an intervening variable
(Fig. 2). First, the effect of X on Y (i.e., the direct effect) must be signifi-
cant (path α in Fig. 2). Second, the effect of X on M must be significant
(path β in Fig. 2). Third, the effect of M on Y (path τ in Fig. 2) controlling
for X must be significant (path α' in Fig. 2). Fourth, the effect of X on Y
controlling for M must be non-significant or less than the effect of
path α.

3. Results

3.1. DSST Performance

GWI patients and healthy controls did not significantly differ in DSST
accuracy (MGWI= 95.73 % [SEM=0.41 %] vs.Mhealthy= 97.03 % [.56 %];
t[79]= -1.87, p= .066). Because accuracy on theDSSTwas high (N95%)
and did not differ between groups, all trials were used in neuroimaging
analyses. GWI patients (MGWI= 2223.60 ms [44.11]) were significantly
slower to respond in the DSST compared to healthy controls (Mhealthy=
1981.39 ms [61.26]; t[80] = 3.21, p = .002).

3.2. DLPFC ΔBOLD

GWI patients (MGWI = 2.51 [.06]) did not significantly differ
from healthy controls (Mhealthy = 2.53 [.08]) in left DLPFC ΔBOLD
(t[77] = -.186, p = .853). Similarly, no significant group differences
were found between GWI patients (MGWI = 2.48 [.05]) and healthy
controls (Mhealthy = 2.47 [.07]) in right DLPFC ΔBOLD (t[78] = .115,
p = .909). Fig. 3 depicts maps of BOLD signal during task across the
entire brain for patients and controls.

3.3. DLPFC connectivity

Results of the connectivity analysis showed that GWI patients had
both hyper- and hypoconnectivity with left and right DLPFC during
DSST performance compared to healthy controls (Table 2; Fig. 4).

3.4. Relationship between DLPFC connectivity and DSST RT

DLPFC hyperconnectivity coefficients significantly predicted DSST
RT (β = 2143.02, r = .296, t[77] = 2.72, p = .008). DLPFC
hypoconnectivity coefficients did not significantly predict DSST RT
(β = -1022.02, r = -.155, t[78] = -1.39, p = .169). Finding that (1)



Fig. 3. Group-average activation maps depicting BOLD signal during task (as measured
across all trials) for patients (above) and controls (below). Maps depict the top 10% of
voxels for the whole brain, with a cluster threshold of k = 10. Circled in magenta are
clusters located in DLPFC.

Table 2
Anatomical regions showing hyper- or hypoconnectivity with left or right BA 9.

Anatomical Region (BA) x y z Voxel count t-value

Left BA 9
Right Declive - 24 - 69 - 20 77 -3.101
Right Medial Frontal Gyrus (10) - 03 - 45 - 09 52 3.692
Right Culmen - 21 + 48 - 20 47 -3.716
Right Cerebellar Tonsil - 15 + 51 - 41 39 -3.150
Right Tuber - 30 + 77 - 27 35 -3.853
Right Cerebellar Tonsil - 45 + 51 - 34 34 -2.841
Left Insula (13) + 39 + 30 + 19 32 3.327
Left Parahippocampal Gyrus (27) + 15 + 33 - 02 32 -4.505
Left Inferior Parietal Lobule (40) + 57 + 42 + 29 31 3.300
Right Culmen - 09 + 48 - 16 31 -3.474
Left Tuber + 36 + 80 - 30 29 -3.471
Right Inferior Semi-Lunar Lobule - 33 + 66 - 37 27 -3.291
Right Inferior Frontal Gyrus (47) - 30 - 30 - 06 23 3.125
Left Superior Temporal Gyrus (38) + 36 + 06 - 16 19 4.190
Right Fusiform Gyrus (37) - 45 + 45 - 13 18 -4.273
Right Middle Temporal Gyrus (21) - 57 + 06 - 06 17 2.755
Left Insula (47) + 33 - 12 + 01 17 3.595

Right BA 9
Left Parahippocampal Gyrus (30) + 15 + 36 - 02 384 -4.621
Right Cerebellar Tonsil - 09 + 39 - 44 224 -3.748
Left Pyramis + 09 + 80 - 27 221 -4.230
Right Superior Temporal Gyrus (42) - 65 + 18 + 08 53 4.003
Right Tuber - 30 + 77 - 27 44 -3.152
Right Middle Frontal Gyrus (9) - 42 - 30 + 33 39 3.965
Left Fusiform Gyrus (37) + 36 + 63 - 09 36 -3.426
Right Postcentral Gyrus (3) - 51 + 15 + 40 34 3.037
Right Superior Temporal Gyrus (22) - 57 - 12 - 06 30 3.713
Left Inferior Semi-Lunar Lobule + 21 + 63 - 44 30 -3.174
Right Inferior Frontal Gyrus (13) - 36 - 21 + 08 28 3.484
Left Medial Frontal Gyrus (10) + 00 - 50 - 09 26 3.645
Right Middle Frontal Gyrus (6) - 30 - 06 + 54 23 2.626
Left Inferior Frontal Gyrus (13) + 33 - 09 - 16 22 3.590
Right Middle Frontal Gyrus (45) - 45 - 24 + 22 22 3.124
Left Precentral Gyrus (3) + 27 + 21 + 50 22 3.125
Left Cerebellar Tonsil + 12 + 51 - 37 22 -3.753
Right Fusiform Gyrus (37) - 48 + 45 - 13 21 -3.629
Left Middle Temporal Gyrus (39) + 48 + 51 + 05 21 -2.866
Right Middle Frontal Gyrus (46) - 54 - 30 + 19 19 2.669
Left Middle Temporal Gyrus (37) + 48 + 57 - 09 19 -3.537
Left Declive (19) + 21 + 60 - 13 18 -2.685
Right Inferior Parietal Lobule (40) - 45 + 36 + 50 17 3.208

x, y and z are the Talaraich coordinates of the peak voxel in each cluster. T-values are inde-
pendent-samples t-score of the peak voxel of each cluster. Significance was assessed at
p= .01, k ≥ 6, familywise error rate b .05. Positive t-values indicate hyperconnectivity, and
negative t-values indicate hypoconnectivity.
Anatomical regions are the Brodmann areas nearest the peak voxel (with 5 mm).
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GWI patients had significantly longer RT than healthy controls, (2) GWI
patients had significantly greater DLPFC hyperconnectivity than con-
trols, and (3) the DLPFC hyperconnectivity coefficient significantly pre-
dicted DSST RT, we sought to test whether the relationship between the
DLPFC hyperconnectivity coefficient and group differences in DSST RT
suggested the presence of an intervening variable between the group
variable and DSST RT (e.g., Baron and Kenny, 1986). To test this, we uti-
lizedmultiple regression predicting DSST RT frompatients’ group status
and the hyperconnectivity coefficient. The overallmodelwas significant
(F[2, 76] = 5.73, p = .005, R² adj = .13). Examination of the individual
factors showed that when controlling for DLPFC hyperconnectivity,
patients’ group status was no longer a significant predictor of DSST RT
(β = -95.08, t[76] = -1.94, p = .056).

3.5. Parietal Connectivity and DSST RT

Thefinding that DLPFC hyperconnectivitywas a significant interven-
ing variable in the group-performance relationship suggests a central
role for DLPFC in GWI-related cognitive slowing. Because activation-
performance relationships have been observed in parietal cortex in pre-
viouswork (e.g., Rypmaet al., 2006; Rypma and Prabhakaran, 2009), we
performed similar analyses using left and right BA 7 (corresponding to
superior parietal lobule and precuneus) as seed regions to assess the
specificity of the DLPFC results. We performed the same steps as
above for DLPFC (cluster thresholding was identical to DLPFC). The
only difference between our parietal cortex connectivity analyses and
those we performed for DLPFC was that in the parietal analyses, we ex-
cluded voxelswithin DLPFC because DLPFC-parietal connectivity had al-
ready been determined in the DLPFC seed analysis.

Consistent with DLPFC analyses, GWI patients had both hyper- and
hypoconnectivity with left and right BA 7 during DSST performance
compared to healthy controls (Fig. 4; see also SupplementaryMaterial).
Inconsistent with DLPFC analyses, neither BA 7 hyperconnectivity coef-
ficients (β = 272.43, r = .03, t[78] = .27, p = .786), nor
hypoconnectivity coefficients (β = 267.75, r = .04, t[79] = .38, p =
.707), significantly predicted DSST RT. Due to the absence of this rela-
tionship, there was no need to test whether parietal connectivity was
an intervening variable in the relationship between group and DSST
RT (Baron and Kenny, 1986).

4. Discussion

In this study, we compared processing speed and functional connec-
tivity during DSST performance for GWI patients and healthy veteran
controls. We assessedwhether GWI-related changes in DLPFC function-
al connectivity were related to GWI patients’ reductions in processing
speed compared to controls. There were three principle results. First,
RT of GWI patients during DSST performance was slower than that of
controls, while accuracy did not differ between groups. Second, GWI pa-
tients showed both hyper- and hypoconnectivity between DLPFC and
other regions throughout the brain compared to controls. Third,
hyperconnectivity with DLPFC in these other regions predicted group
differences in DSST RT. Hypoconnectivity was not predictive of these
RT group differences. No such results were observed for connectivity
with parietal cortex. Our results suggest that cognitive slowing in GWI
results from inefficient connectivity within executive networks.

One possible explanation for these findings is a pathologically al-
tered central cholinergic system. Epidemiologic studies have linked
GWI to environmental exposure to chemicals that inhibit acetylcholin-
esterase (AChE), including organophosphate pesticides, pyridostigmine
bromide, and sarin nerve gas (Chao et al., 2010, 2014; Golomb, 2008;
Haley and Kurt, 1997; Haley et al., 2009, 2013; Haley and Tuite, 2013;
Heaton et al., 2007; Henderson et al., 2002; Li et al., 2011; Tuite and
Haley, 2013). AChE is an enzyme necessary for degradation of the neu-
rotransmitter acetylcholine. When AChE is inactivated, the resulting
buildup of excess acetylcholine causes sustained excess stimulation,



Fig. 4. Differences in connectivity on between veterans with Gulf War illness (N=54) and matched controls (N=29) on the DSST while undergoing fMRI. Results of seed-based
connectivity analyses, using left and right BA 9 as seed regions. Voxels depict group differences in connectivity with the seed region in GWI patients relative to controls during DSST
performance. Voxels appearing yellow and orange indicate hyperconnectivity; voxels appearing cyan and blue indicate hypoconnectivity.
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preventing neurons from returning to resting equilibrium and leading
to excitotoxic damage. Other populations with documented poisoning
by sarin nerve gas (Yokoyama et al., 1998) or organophosphate pesti-
cides (Ecobichon, 1994) have chronic symptoms and neuropsychologi-
cal abnormalities similar to those reported in GWI.

Executive cognitive function depends on the central cholinergic
system, which modulates both processing speed and functional con-
nectivity (Baddeley et al., 1986, 1991; Bartus, 2000; Hasselmo and
Sarter, 2011; Ragozzino et al., 2012; Ricciardi et al., 2013; Rusted,
1988; Rusted and Warburton, 1988; see Hubbard et al., 2014). Fur-
ther, it is known that alterations to the cholinergic system can lead
to changes in both functional connectivity and cognitive functioning
(Ricciardi et al., 2013). Ricciardi et al. (2013), for instance, assessed
the effects of acute cholinergic augmentation on behavioral perfor-
mance and functional connectivity. Participants performed a selec-
tive attention task during fMRI scanning immediately following
administration of intravenous physostigmine (an acetylcholine en-
hancer) or saline placebo. Results showed that participants who re-
ceived physostigmine were faster (i.e., showed decreased RT) than
those who received a placebo, and showed reduced connectivity in
prefrontal regions during the task relative to the placebo group.
These results suggest that enhancement of the cholinergic system in-
creases the efficiency of cognitive and neural processes. Recent stud-
ies have identified increased functional connectivity in early-
moderate Alzheimer’s disease (Jiang et al., 2016; Kurth et al., 2015;
Serra et al., 2016; Sui et al., 2015), also characterized by central cho-
linergic function loss (Mufson et al., 2008) and slowed DSST RT
(Lafont et al., 2010; Rapp and Reischies, 2005). Similarly, GWI pa-
tients are known to have abnormal cholinergic function (Haley et
al., 2009, 2013; Li et al., 2011) that could affect those DLPFC functions
that control executive processes necessary for problem solving, rea-
soning, planning, and working memory (e.g., Braver, 2012; Chao et
al., 2014; Fuster, 1995; Hubbard et al., 2014, 2016; Prabhakaran et
al., 2001; 2011; Rypma and Prabhakaran, 2009; Shokri-Kojori et al.,
2012).

An important question concerns the role that hyperconnectivity
plays in GWI-related cognitive slowing. Under the assumption that
damage to the central cholinergic system reduces neural signaling
strength, possibly due to reduced ACh release at synapses (Golomb,
1999, 2008) or mitochondrial-related energetic impairments (Koslik
et al., 2014; Kannurpatti et al., 2015;White et al., 2016), additional neu-
ral cell assemblies might be recruited to maintain function. In the pres-
ent results, these additional neural cell assemblies might be manifested
as hyperconnectivity with DLPFC. Such added circuitry would be ex-
pected to slow RT (e.g., Rypma et al., 2006; Rypma and Prabhakaran,
2009) as we observed here.
An alternative explanation might follow compensation-based
models wherein recruitment of additional cognitive resources serves
to minimize age- and disease-related performance deficits (Cabeza,
2002; Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Cappell,
2008). Such compensation mechanisms are hypothesized to optimize
performance through broader recruitment of available neural and cog-
nitive resources. However, compensation-based models would have
predicted greater connectivity associatedwith faster DSST performance,
which we did not observe. Additional research is needed to understand
relationships between BOLD signal, functional connectivity, and perfor-
mance, particularly if they are to inform development of GWI treatment
strategies.

Efficiency explanations conceptualize brain and behavior changes in
terms of departures from ideal system function. Models of cognitive ef-
ficiency (e.g., Cerella, 1991; Hutchison et al., 2013a,b; Neubauer and
Fink, 2009; Salthouse, 1996; Verhaeghen et al., 2002; Vernon, 1983)
have suggested that optimal performance results from simultaneously
maximizing the speed of cognitive processes and minimizing expendi-
ture of cognitive resources. In this view, cognitive performance depends
upon information transmission across a network of processing nodes
wherein information relay across fewer nodes allows more direct pro-
cessing paths and thus faster information processing. Inefficiency re-
sults from increases in the number of connections required to traverse
nodes and leads to increases in neural activity and slowing of informa-
tion processing (cf. Hebb, 1949; McClelland et al., 1986; Rypma and
D'Esposito, 1999).

5. Conclusion

This study was the first to assess functional connectivity and pro-
cessing speed in GWI patients. The slowing of reaction time and
hyperconnectivity with DLPFC we observed in GWI patients suggest
that their cognitive slowing is due to reductions in neural efficiency. Be-
cause DLPFC is central to executive cognitive functions, cognitive im-
pairment experienced by GWI sufferers may be due to alterations to
DLPFC connectivity evoked by ACh deficits. These findings thus support
the conclusion that one of the most troublesome symptoms of GWI,
cognitive slowing, is due to abnormal DLPFC functioning. That the
study was performed in a sample of cases and controls drawn from a
representative sample of Gulf War-era veterans strengthens the
importance of this finding to the broader Gulf War veteran population.
More generally, this finding establishes that GWI-related cognitive
slowing is due to a pathological process, representing objective brain
impairment.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.08.022.
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