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ESTIMATION OF THE UPPER
CUTOFF PARAMETER FOR THE
TAPERED PARETO DISTRIBUTION

Y. Y. KAGAN! AnD
F. SCHOENBERG,? University of California

Abstract

The tapered (or generalized) Pareto distribution, also called the modified
Gutenberg—Richter law, has been used to model the sizes of earthquakes. Unfor-
tunately, maximum likelihood estimates of the cutoff parameter are substantially
biased. Alternative estimates for the cutoff parameter are presented, and their
properties discussed.

Keywords: Parameter estimation; tapered Pareto distribution; Gutenberg—Richter
relation; maximum likelihood estimation; method of moments; earthquakes
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1. Introduction

In this paper, we investigate the problem of estimating the parameters used in models
for the sizes of earthquakes. Such models are important for the investigation and
quantification of seismic hazard, i.e. the risk of an earthquake exceeding a given size
within a given time period in the future, which is a subject of concern not only in
seismology but also in civil engineering, urban planning, and insurance.

Our work was chiefly inspired by David Vere-Jones, who has been one of the principal
architects of the general area of statistical seismology, in which the subject of our paper
lies. In addition to his numerous significant advances on closely related themes, Vere-
Jones has been a main proponent of the use of the tapered Pareto law in modeling
earthquake sizes.

This paper is addressed to both statisticians and seismologists, and in what fol-
lows we provide more explanatory material than is customary. General properties of
the earthquake process and its stochastic modelling, as well as some principles of sta-
tistical analysis, have been discussed by Kagan [11] and Kagan and Vere-Jones [14].
Earthquake occurrences are most commonly modeled as point processes; Daley and
Vere-Jones [2] provide a thorough introduction to such models.

Extensive global catalogs of seismic moment tensor solutions with thousands of
events have become available since 1977 (see [5], [6] and [24], and references therein).
These catalogs are thought to be of significantly superior quality (in terms of precision,
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reliability, completeness, and accuracy) compared to instrumental earthquake catalogs
available since the end of the 19th century. An example is the Harvard catalog [5],
which presently contains information on 16706 earthquakes for the period 1977/1/1-
1999/12/31. Many of these earthquakes occur at shallow depths (less than 70 km),
and represent a major hazard to humans.

Modern earthquake catalogs such as the Harvard dataset contain the following in-
formation about moderate and large earthquakes: origin times; locations; sizes; and
orientations of earthquake focal mechanisms ([11], [16]). An earthquake’s location
may be specified either via hypocentral coordinates (the spatial location where the
earthquake rupture begins) or via earthquake centroid coordinates (the location of the
center of gravity for the seismic moment release). Historically, earthquake sizes were
recorded in terms of empirical magnitude, a measure which was first proposed in the
1930s by Charles Richter for characterizing earthquakes in California. Presently, an
earthquake’s size is typically measured in terms of either scalar seismic moment, M,
or on a logarithmic scale via moment magnitude, m. Seismic moment is measured in
Newton-meters (Nm) or in dyne cm (1Nm = 107 dynecm) ([5]) and may be converted
into moment magnitude via the function ¢:

mﬁd’(M):%lOgloM—G, (1)

with M expressed in units of Nm.

The distribution of earthquake sizes has been the subject of considerable research;
see Kagan [11], Vere-Jones [29] and especially Utsu [26] for a thorough review. Earth-
quake magnitudes have traditionally been modelled via the Gutenberg-Richter (G-R)
law, an exponential law in terms of earthquake magnitudes which transforms into a
Pareto distribution in terms of scalar seismic moments.

Due to limitations on the sensitivity of seismographic networks, small earthquakes
are generally missing from earthquake catalogs. Hence one typically fits a Pareto dis-
tribution that is truncated on the left at some positive value a, called the completeness
threshold. For instance, the Harvard catalog is thought to be incomplete below the
moment threshold of about 10177 Nm, corresponding to a magnitude of approximately
5.8 [12]. The Harvard catalog, when restricted to shallow earthquakes above this mag-
nitude, contains 3765 events, and we shall refer only to this portion of the catalog in
the remainder.

Additionally, the upper tail of the Pareto distribution has been modified in various
ways, based on physical and statistical principles. Considerations of finiteness of seismic
moment flux or of deformational energy suggest that the upper tail of the seismic
moment distribution decays to zero more rapidly than that of the Pareto ([15], [25],
[32]); this agrees with empirical observations that the G-R law appears to overpredict
the frequencies of large seismic moments (see Figure 1). A simplistic modification
proposed by several researchers is to use a Pareto distribution that is truncated at
some upper threshold 8 (e.g. [10], [26]).

Kagan [10] has argued that a sharp upper threshold does not agree with the known
behavior of dissipative physical dynamic systems and fundamental seismological scaling
principles. Furthermore, the fact that observations of seismic moments are recorded
with error contradicts the notion of a fixed point 8 such that earthquakes with moment
0+ ¢ are observed with very different frequencies compared to those with moment 8 — ¢
(see [10]).
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FIGURE 1: Earthquake cumulative number versus log seismic moment for the global
shallow earthquakes in the 1977/1/1-1999/12/31 Harvard catalog. The curves show the
numbers of events with seismic moment > M. Four approximations to the empirical
distribution, for which the parameters 8 and 6 are fitted by the maximum likelihood
estimator (MLE), are shown: (i) the original G-R law without upper cutoff (the classical

Pareto distribution) (------ ); (ii) the two-sided truncated Pareto distribution (—-—-— );
(i) the left-truncated Gamma distribution with negative shape parameter (— — — -);
and (iv) the tapered Pareto distribution (———).

As an alternative, a Pareto distribution which tapers to zero via an exponential func-
tion, instead of sudden truncation, has been proposed by Vere-Jones et al. [30]. The
tapered Pareto distribution, sometimes called the modified G-R law by seismologists
[1] is characterized by its gradual rather than steep decrease in frequency at the upper
cutoff moment, and provides better agreement with both fundamental seismological
principles and earthquake catalogs ([7], [10]).

For example, Figure 1 shows the fit of various distributions to the Harvard catalog.
One sees that the tapered Pareto distribution fits the data much better than either
the simple Pareto distribution or the Pareto distribution truncated on the right at
a maximum seismic moment. There is little perceptible difference between the four
theoretical curves and the empirical distribution for seismic moments in the range
5 x 101" Nm to 10'® Nm (not shown).

Several alternative models for the earthquake size distribution have been proposed.
One example is the left-truncated Gamma distribution with negative shape parameter
([11], [13], [17]), which is similar to the tapered Pareto law: the former involves applying
an exponential taper to the Pareto density function, while the latter involves applying
an exponential taper to the survivor function. In addition, different parametric forms
for the tapered upper moment of the Pareto distribution have been proposed ([18],
[25], [26]). The tapered Pareto distribution of Vere-Jones et al. [30]is preferred largely
because of its simplicity and paucity of free parameters; available data from catalogs
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of seismic moments do not seem to warrant more than two or three degrees of freedom
(see Table 2 of [26]).

Note also that the arguments used to motivate the modified G-R law may suggest
tapering rather than truncation at the lower end of the distribution as well, as discussed
e.g. in [19] and [30]. Such modifications appear to be of limited seismological concern,
however, and will not be treated here. Instead, our focus is on estimation of the one-
sided tapered Pareto distribution described by Vere-Jones et al. [30] and Jackson and
Kagan [7].

2. The tapered Pareto distribution

2.1. Characterization

The Pareto distribution and its variants have been used in numerous applications.
See chapter 20 of [9] for a review, including a survey of historical developments and
properties of the Pareto distribution and its various estimates.

The tapered Pareto (or modified G-R) law has cumulative distribution function

Fz)=1— (%)ﬂexp (“;“’) (a<z< o), (2)

and density

o= (2+3) (&) e (55)  (es<e<oo) 3)

where a is the observational completeness threshold, § is a shape parameter governing
the power-law decrease in frequency with seismic moment, and 6 is an upper cutoff
parameter governing the location of the exponential taper to zero in the frequency of
large events. The distribution is a special case of what has been called a generalized
Pareto distribution; see e.g. equation (20.152) of [9]. In fact, the distribution appears
to have been first proposed by Vilfredo Pareto himself in 1897 ([20], pp. 305-306, Egs. 2
and 5).

Typically the lower threshold moment @ in (1) is presumed known, and only the
parameters 6 and/or 8 must be estimated. [Note that the notation here differs slightly
from the usual seismological notation (cf. [7], [12]), which uses the notation M; and
either Mmax or M, in place of @ and 6, respectively, and the symbol m, to denote ¢(6),
the magnitude of the upper cutoff, where ¢ is defined in (1). Estimable parameters are
denoted here by Greek letters, in agreement with statistical convention.]

The characteristic function associated with F' defined in (2) is

e () (21) 3

(0) = Blexp ()] = [

a

= exp(a/6)Ba’ ngi 1 /a°° =P~ Lexp[(Bit — 1)z /0] dz + %
a(l — 0it)1? exp(as
— _Bitexp(a/0) [%] T(=B, a(1 — 8it)/6) + %, (4)
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where I'(y, 2) = fzoo e 't¥~1 d¢ denotes the incomplete gamma function; T'(-, -) satisfies
the relation

T(y+1,2) =yT(y,2) + 2% 7 (0<z<o00, y#0,-1,...). (5)

2.2. Moments

The moments of F may be obtained directly from (3). For instance, the first moment
¢ = E(X) is given by

w= [T (8) (&) e (252) @t [ 2 (5) (2) e (52) @2

= Bd” exp(a/G)/ 2P exp(—z/6) dz + o° exp(a/G)/G/ 2! =P exp(—xz/8)dz. (6)
By a simple change of variable one obtains
/ 2P exp(—z/6)dz = 6'~PT(1 — B, a/6), (7

and integration by parts yields

(oo}

/00 pl=8 exp(—z/0)dz = fa'—# exp(—a/0) +6(1 — B) / z=Ff exp(—z/6) dz

a

= 6a'~P exp(—a/8) + 6(1 — B)8*~PT(1 — B,a/6). (8)
Substituting (7) and (8) into (6) yields, after some cancellation,
p=a+ aP8' =P exp(a/6)T(1 — B,a/6). (9)
Continuing in this fashion one readily obtains
E(X?) = a® + 2aP6?7P exp(a/6)T(2 — B,a/6), (10)
and a general formula for the moments of higher order,
E(X*) = a* + kaP8* P exp(a/8)T(k — B,a/h). (11)

2.3. Simulation

Vere-Jones et al. [30] note that the product form of the distribution (2) admits an
interpretation in terms of competing risks, namely, the survivor function S(z) = 1 —
F(z) is the product of the survivor functions of a Pareto random variable and an
exponential random variable. This observation shows that a very simple method for
simulating from F is to take the minimum of independently simulated Pareto and
exponential random variables (see [30] for details).
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3. Estimation of § and 3

The parameters of the tapered Pareto distribution are most commonly fitted by maxi-
mum likelihood. When independent, identically distributed (i.i.d.) observations z4, ...,
&p, come from the distribution (2), the log-likelihood function takes the form

n

- 1 - 1
log L(B,6) = Zlog (mﬁ + 5) —|—,3nloga—,3210g z; + %L — 521:1 (12)
i=1 ' i=1

=1

Setting the derivative of log L with respect to the parameters § and 3 to zero yields
the relations

giL_— (13)
ni:l 'Bg—i_mz -° ¢
and
n 1 n
Ggm:;bgmi—nloga, (14)

where Z is the sample mean (21 + ... + #,)/n. Approximate simultaneous solutions
to these equations may be obtained via a numerical fitting routine such as Newton—
Raphson optimization (see [30]).

It is convenient to write

1 1 z;
= — A:— 1 — B:__- ]-5
=3, 3 g X, s-a (15)

Then, as noted in section A4 of [30], the maximum likelihood estimates ,é and 7 satisfy
BA+4B =1, (16)

so, writing v; = z;/a,
n

1 1
— —— =1. (17)
n; 1—#(B — Av)
The solution # to this last equation must satisfy 0 < 4 < 1/(B — Amin;{v;}), and
consequently, assuming that the maximum likelihood estimates satisfy

7>0, B>0, (18)

a Newton—Raphson iteration starting from #jo = 1/B converges to .

It is generally important to discriminate between the case where two parameters are
estimated and the case where only one is estimated, since in the one-parameter case
only one of the equations based on the derivative of the log-likelihood is justified. An
exception is the case where either § or 1 is known to be zero. When 8 = 0, for instance,
the distribution (2) reduces to a purely exponential form, and the maximum likelihood
estimate 7 = l/é = 1/B, in agreement with (16). Similarly, when 7 is known to be 0,
the distribution (2) is a pure Pareto, and 8= 1/A, as is consistent with (16).
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FIGURE 2: Log-likelihood map for the distribution of scalar seismic moments: The
Harvard catalogue time span is January 1, 1977 to December 31, 1999; the completeness
threshold a is 10'77 Nm; the number of shallow events is 3765. Approximation by the
tapered Pareto distribution. The solid contour line denotes a 95% confidence bound
based on asymptotic theory [32].

In practice, the problem of estimating § is nowhere near as difficult as that of
estimating 6. To illustrate this, Figure 2 shows a contour plot of log L(#) as a function
of 8 and 8, using the data from the Harvard catalog. The likelihood function has been
normalized so that its maximum is 3.0. The log-likelihood, as a function of G, appears
nearly symmetric around a well-defined maximum, and approximate 95%-confidence
intervals can be constructed in a straight-forward manner, based on the convergence of
the negative reciprocal of elements of the diagonal of the Hessian of the log-likelihood
function to x? (chi-squared) random variables (see e.g. [31], Chapter 13.8). By contrast,
the log-likelihood as a function of § decays very slowly from its maximum and is
highly non-symmetric. An approximate 95%-confidence interval, based on asymptotic
relations, corresponds to the contour labeled 0.0. Although the interval is bounded in
Figure 2, for smaller subcatalogs this is not the case. Even for relatively large datasets
of the size of the full Harvard catalog, simulations show that confidence intervals based
on asymptotic theory have inappropriate coverages.

The source of this problem is the fact that estimation of 4 is essentially dominated by
only the largest events. Hence in the Harvard catalog of 3765 shallow earthquakes, it is
just a small number of them that heavily influence the determination of the upper cutoff
parameter 6 [21]: indeed, only 12 of these earthquakes have seismic moment in excess
of 102! Nm (8.0 in magnitude), the value corresponding to the maximum likelihood
estimator (MLE) of 8 (see Figures 1 and 2). Since it is these events which dominate the
estimation of 6, the relevance of asymptotic results for maximum likelihood estimates,
such as asymptotic normality, consistency, and unbiasedness, is questionable in the
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absence of numerous events above the upper cutoff itself.

In addition to being easily estimable, there is some evidence that the parameter 8
may be constant globally, or at least for certain classes of shallow earthquakes, and
hence need not be estimated simultaneously with € using individual local earthquake
catalogs. Indeed, Kagan [12] has shown that there is no statistically significant variation
in 3 for all subduction and continental seismic regions; estimated values of 8 for all such
earthquakes range from 0.60 to 0.70. Further, recent analysis of oceanic earthquakes
[1] suggests that the distributions of these events have B-values similar to subduction
and continental earthquakes. By contrast, whereas m, = ¢(6) is typically about 8.0
for subduction and continental regions (see Figure 2), estimates of ¢(6) vary from 5.8
to 7.2 for oceanic earthquakes [1].

Further, there exists theoretical justification for the global value of 3: Vere-Jones
([27], [28]) derived the value 8 = 0.5 for a critical branching process which was proposed
as a general model for the earthquake size distribution (see also further discussion by
Kagan [11] and Kagan and Vere-Jones [14]). If the process is slightly subcritical, the
resulting distribution is similar to the tapered Pareto distribution (2). Observational
estimates of 3 are slightly higher than the theoretical value mentioned above; the cause
of this discrepancy is not yet clear ([11], [12]).

Thus, given a particular earthquake catalog, one may wish to assume a global value
of B and concentrate exclusively on the estimation of §. Since seismologists usually
use the G-R distribution with b-value corresponding to § = %,
our considerations below; the results do not significantly change if a slightly different
value for B is assumed, e.g. 3 in the range 0.60 to 0.63 as suggested in [12]. How our
results below are affected by variations in 3 is discussed further at the end of Section
5. However the focus of the remainder of this paper is on estimation of 8 alone.

we use this value in

4. Estimation of 6 only

We now consider the case where one wishes to estimate only the cutoff parameter 6,
the other parameters a and 3 being known.

4.1. Maximum likelihood estimates

In the case where only 6 is being estimated, the log-likelihood function (12) is a function
of only one variable. Thus one need merely obtain a solution to the single nonlinear
equation (13). An approximate solution may be obtained from any of a variety of
standard numerical procedures.

The maximum likelihood estimator § is justified primarily because of its desirable
asymptotic properties. For small samples, however, maximum likelihood estimates of
the cutoff parameter 8 can be heavily biased, and conventional formulae for standard
errors and quantiles based on asymptotic relations may be highly misleading. As
mentioned in Section 2, even for relatively large catalogs such as the Harvard dataset,
asymptotic properties are less relevant than small-sample properties when it comes to
estimating 6, since the determination of 6 depends essentially on the very few largest
events.

Consider 1.i.d. observations z1,...,Z, from any distribution truncated from above
at an unknown value 6. Pisarenko and others ([21], [22]) derived an expression for
the bias in the MLE of the truncation point for a general class of truncated random
variables. The origin of the bias in the maximum likelihood estimator 6 comes from
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the fact that the likelihood function L(6) is at its peak when § = max{z;}. Hence the

estimator @ is never greater than the true value of 8, for any realizations z1, ..., z,, so
inflation of this estimator is unilaterally sensible.
In the case where z1, ..., 2, are uniformly distributed random variables on [0, 8], for

instance, it is well known that the maximum likelihood estimator § = max{z;} is biased
by a factor of (n — 1)/n (see e.g. p. 289 of [9]). In the case where z; are distributed
according to a truncated Pareto law, the bias in the MLE of 8 is much greater than in
the uniform case, the relative infrequency of large values contributing to the expected
discrepancy between max{z;} and 6.

The case is essentially similar for estimating 8 in the tapered Pareto distribution (2)
using a small sample. Unfortunately, due to the lack of an expression in closed form
for the maximum likelihood estimator for 6, no simple formula for its bias is available.
However, the bias may be approximated via simulation; see Section 5 below.

Note that relation (16) suggests the estimator 6 given by

B

0= =51 (19)

Since it is based on likelihood equations, one may expect the behavior of § to be similar
to that of the MLE 4. However, since 8 is not being estimated, equation (14), which
is obtained by setting the partial derivative of the log-likelihood function with respect
to B to zero, is meaningless. In practice the denominator in (19) tends to be very
nearly zero, so the estimator  is extremely unstable; this is confirmed by simulations
as described briefly in Section 5 below.

4.2. Estimation of § based on moments

As an alternative to the maximum likelihood estimator é, an estimator of 8 based on
the first two moments of X may be constructed.
Using (5), one may rewrite (10) as

E(Xz) =a?+2a0+ 2(1 - ,B)aﬂez_ﬂ exp(a/0)T(1 — 3,a/6). (20)

Combining (9) and (20) yields

E(X?) = a® + 2a8 + 20(1 — B)( — @), (21)
and rearranging terms gives
E(X?) — a?
= (22)
2[af + (1 - B)u
Given i.i.d. observations 1,...,#,, one may substitute the uncentered first and

second sample moments Z = Y., z;/n and > ., zZ/n in equation (22), leading to
the estimator ) )
g — Yzi/n—a
2[aB + (1 - B)z]
The simplicity and closed analytic form of the equation for 8 facilitates the derivation

of properties of the estimator, including small-sample properties. For the MLE é, by
contrast, estimates of small-sample bias and rates of convergence are unavailable.

(23)
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Theorem 1. Suppose z1,...,z, are independently sampled from the distribution (2),
with @ > 0. Then the method of moments estimator 6 is asymptotically unbiased and
consistent; its mean is given by

(B —1)[2a® + 3a%68 + (o2 + u?)(66 — 368 — 2u))

BE) =6+ Anlaf + (1 B)ul?

+0(n7%). (24)

Proof. The moments of § may readily be approximated using the technique of Iin-
earization (or more appropriately polynomialization), described e.g. in [3], [4] and [23].

Let gn(u) = % (ZZ z2/n— az) /laB + (1 — B)u], and let y, = & — u. Then we may
write

0= gn(t+Yn) = gn(B) + yngh (1) +¥2g0 () /20 + - -

_ Yain-a K _wmB-1) \
= SfaB + (1 B)H] 2= (o) (25)

provided the Taylor series converges. Note the convergence property

Yn (IB - 1)
Indeed, for any positive €, &, Pr{|y,| > €} < 0?/(ne?) < § for n > o?/(6e?) by
Chebyshev’s inequality, since y, has mean 0 and variance o /n.

In order to show convergence of the mean of 6 via the expected value of the Taylor
expansion (25), it is not enough to show that the Taylor series converges on a set with
probability going to one; one must also ensure that the expected value decreases to
zero on the set S where the Taylor series fails to converge. But this fact is ensured

by noting that the expected value of 6 is bounded even on S: the denominator in (23)
must be no smaller than 2a since each z; > a; hence E(; S) < P(S) x 1[E(X?)+a?/a,
which converges to zero with n — oo since P(S) — 0.

Since 4 is expressed in (25) as a polynomial function of the first two sample moments,
computation of the approximate moments of 6 is straightforward. For instance, the
expected value of 6 is given by

[ Sel/na? ] [(Se/n-a)E-m)B-1] s
B0 =5 |p (gl B i) o)
=0+ 3(8-1)[aB+(1-B)u] " [E (f:zw?/n) - ME(Xz)] +0(n7%), (27)

since the expectation of the higher-order terms in (25) are of the order of n=2.
Note that

E (1: Y a2 /n) — B(X?)/n + pE(X?) — uE(X?)/n, (28)
and that, using (5) and (11),
E(X3) =a®+ (36/2) [(2 - B)E(X?) + Ba?]. (29)

Combining (27), (28) and (29) yields (24). Hence 6 is asymptotically unbiased. A
calculation similar to (27) shows that the variance of 8 is of the order of 1/n, which
together with the asymptotic unbiasedness of § implies that 6 is consistent. |
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FIGURE 3: log L versus n = 1/0, for a simulated dataset consisting of n = 100 indepen-
dent draws from equation (2), witha =1, 8 = %, 6 = 1000.

Relation (24) suggests adjusting the estimator 6 by subtracting its bias. Note how-
ever that the approximate bias in 6 depends on the quantities p, o2, and 6, which
are generally unknown. One may plug in estimates of these quantities to obtain an
adjusted moment estimator

< (8-1)[2a%+ 3a%08 + (?2 + £%)(66 — 366 — 22)] (31)

S infaf + (1 — B)a’

Although the estimator 6, may be very nearly unbiased, the adjustment factor can
introduce substantial variance in some cases. These features are discussed further in
Section 5.

4.3. Average likelihood estimation of 6

A third estimator, 5, may be obtained by computing the mean of 8 with respect to the
likelihood measure dL(#), namely,

5. JOL(9) dt9‘ (32)
J L(9)d6

This Average Likelihood Estimator (ALE) is equivalent to the posterior mean of 8
obtained in Bayesian estimation, starting with a non-informative prior on 8. (Note
that some authors call this estimator the mean likelihood estimator, abbreviated mele;
see e.g. equation 4.4.15 of Jenkins and Watts [8].)

Unfortunately, in many cases the integral in the numerator of (31) does not converge.
When the sample size n is relatively small, the likelihood function L decays very slowly
as § — oo, as seen in Figure 2. In such cases, one may choose to modify the ALE g in
some fashion. For instance, instead of a non-informative prior, one may adopt a prior
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TABLE 1: Simulated estimates of 6

0 0 Oa 0;

n bias sd rmse bias sd rmse bias sd rmse bias sd rmse

25 -335 1257 1301 -612 674 910 -30 2139 2139 -763 371 848
50 -140 1330 1337 -459 752 881 128 2081 2085 —-642 429 772
100 -6 1240 1240 -311 765 826 167 1738 1746 —-489 470 678
250 48 914 915 -160 675 694 108 1117 1122 -270 487 557
500 36 638 639 —-88 555 562 58 740 742 -139 456 477
1000 20 435 435 -47 428 431 27 496 497 -65 378 384
2500 9 267 267 -19 287 311 11 304 304 -25 261 262
5000 4 187 187 -10 207 207 5 213 213 -12 187 187

that gives very little weight to large values of §. However, clearly in this framework
the resulting estimate will depend heavily on the choice of prior.

Alternatively, one may set n = 8~ ! and estimate 7 using the ALE #. One may then
wish to employ the inverse ALE estimate g; := 1/% as an estimator of 6.

Figure 3 shows the log-likelihood as a function of 7, for a simulated dataset. While
the log-likelihood decays very slowly as a function of 8 in Figure 2, one sees from
Figure 3 that the log-likelihood decays very rapidly with n and hence the integrals in
(31) generally converge when estimating 7.

In practice, computation of ¢ and §; is nontrivial. Typically, the integrals in (31)
must be evaluated numerically, with each computation requiring an evaluation of the
likelihood L, which itself requires a pass through the n observations. Further, in the
numerical evaluation of the integrals one must experiment with various upper limits and
step-sizes in order to ensure convergence and accuracy, respectively, of the numerical
integration.

5. Comparison of estimators

The estimators described previously are compared, first on a linear scale (i.e. estimates
of § are compared to 6) and subsequently on a logarithmic scale, where estimates of 8
are converted to units of magnitude via the function ¢ defined in (1), and compared

to ¢(6).
5.1. Comparison on linear scale

The method of moments estimator § has several attractive features. First, it is ex-
tremely easy to compute: no iteration is required, nor use of numerical approximation
routines. Second, as noted in Section 4.2, expressions for the approximate small-sample
moments of 6 can be obtained. Third, the variance of 6 appears in many instances to
be a bit smaller than that of . One may expect the adjusted method of moments
estimator, éa, to have considerably smaller bias than é; however, 6, has larger variance
due to the high variance of the adjustment factor. In fact, when the sample size is
small (i.e. only a few hundred earthquakes, and hence only a handful of large events,
are observed), the bias in the unadjusted estimators é, é, and §; is very substantial, and
use of the adjustment factor may be sensible despite the resulting increase in variance.

The above results regarding the relative performance of estimators may be demon-
strated experimentally via simulation. For instance, Table 1 summarizes the perfor-
mance of various estimators of 8 for the case where a = 1, 8 = %, 6 = 1000. Each row
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of Table 1 shows the result of thousands of simulated catalogs; for each such catalog,
an estimate of # is obtained from n independent draws from the distribution (2), as
described in Section 2.3. The bias (expressed as the estimated value minus the true
value), the standard deviation (sd) and the root-mean-squared error (rmse) of the es-
timates are reported in Table 1. Whereas as a general principle of estimation there
tends to be a tradeoff between bias and variance, the rmse, which can be computed
as the square root of the sum of the squared bias and the variance, provides a useful
measure indicating the typical size of an estimator’s error (see e.g. [9], p. 128). With
the exception of éi, for each estimator and each row of Table 1, the total number
of simulated events (i.e. n times the number of simulated catalogs) is approximately
2.5 x 108, Because of the computational burden in computing éi, for this estimator the
total number of simulated events in each row is 5 x 107,

The entries in Table 1 show that the bias in the unadjusted estimators é, é, and §;
is very large when the sample size is small, and diminishes quite rapidly as the sample
size increases. For the maximum likelihood estimator é, somewhat surprisingly, the
bias becomes positive for samples of size 250 before beginning to approach zero. The
adjusted moment estimator 6, is very nearly unbiased but has such large variance
that its root-mean-squared error is larger than that of the other estimators. Note
however that the observed bias in 6, may not reasonably be attributed to chance
variation. Indeed, since only the first two terms in the Taylor expansion (25) were used
in constructing the adjustment factor in éa, and since the unknown @ appears in the
adjustment factor and is estimated using the biased estimator é, it is to be expected
that the bias in éa is nonzero.

Though the bias in the ALE for small samples is very large, the root-mean-squared
error is in each case smaller for the ALE than for the other estimators. Note also
that in almost every case the rmse is smaller for the unadjusted method of moments
estimator than for the MLE. However, the differences between the estimators appear
to dissipate quickly as n increases. For very large sample sizes of many thousands
of events, all the estimators considered here perform well. Even for n = 1000, the
difference between & and 6; is hardly substantial and may arguably be insufficient to
Jjustify the large increase in computational burden.

Note that the MLE 6 in Table 1 is obtained by finding an approximate numerical
solution to the single equation (13), treating 3 as known. One may alternatively inves-
tigate the maximum likelihood estimate of § based on the estimation of two parameters,
i.e. the simultaneous solution to equations (13) and (14) or the inverse of the estimate
7 in (17). The estimate based on the two-parameter case has uniformly substantially
higher rmse than the one-parameter estimate 6. In addition, the estimate 8 defined via
(19) has substantially higher bias and variance compared to 6 for each set of simula-
tions; its rmse is typically a factor of two or more greater than that of 6. As mentioned
previously, the source of this problem seems to be the fact that the denominator in
(19) is typically very nearly zero. In fact, in many cases the denominator (and hence
the resulting estimate) is negative. This problem appears to be particularly severe for
relatively small values of the ratio a/6. In cases where the two terms ,BA and 7B in the
left-hand-side of (16) are of roughly equal size, the estimate 6 may perform reasonably
well, but in the typical seismological case where 7 is usually very small, the estimator
6 is prohibitively unstable.
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A word should be said about the choice of parameters in the simulations of Table 1.
The results of the different estimators relative to one another were qualitatively sim-
ilar when different choices of these parameters were used. In addition, the bias and
variance of estimates of 8 appear to depend critically on the number of events in the
sample greater than 8, which in turn depends on the ratio p = a/8, and this fact can
be used so as to shed light on the bias and variance in estimators of 8 for catalogs of
values of p different than 1/1000. For instance, the global earthquake size distribution,
shown in Figures 1 and 2, is dominated by shallow earthquakes in subduction and
continental areas ([12], [16]), and parameter estimates suggest that the ratio p = a/4
is approximately 1/2000 for these earthquakes in the Harvard catalog (see Figure 2).
Catalogs of oceanic earthquakes tend to have much smaller empirical values of the
ratio [1]. Fortunately our simulation results can be easily applied to these earthquakes
and other earthquake catalogs, in the following manner. Suppose one obtains n’ in-
dependent observations from a distribution with cutoff parameter 8 and completeness
threshold o', and let p' = a'/6’. Then the appropriate value of n signifying which row
in Table 1 corresponds to catalogs with a similar number of large events, and hence
similar values of bias (relative to §) and variance, satisfies:

n=n'(p'/p)’ exp(p' - p). (33)

For example, an earthquake catalog with n’ = 794 events taken from the Harvard
data with p’ = 1/2000 has approximately the same number of events exceeding 6 as a
simulated catalog of n = 500 events from a distribution with p = 1/1000, and hence
is approximately equivalent in terms of statistical properties of estimates of . Hence,
one need merely multiply the entries of the fifth row of Table 1 by p/p' to obtain
approximations of the bias, sd, and rmse of the various estimators as applied to this
sample subset of the Harvard catalog. This similarity is confirmed by our simulations.

5.2. Comparison on logarithmic scale.

It is important to assess estimates of 8 on a logarithmic scale, for three reasons. First,
the moment magnitude of an earthquake, expressed as the logarithm of the seismic
moment via (1), is a quantity of great significance in seismology. Second, seismic
moment data are obtained by an inversion process applied to seismographic recordings;
the errors in the recordings and the inversion process appear to be approximately
multiplicative [6]. Thus on a logarithmic scale, the errors in the seismic moment are
approximately additive. Third, although the exact distributions of the estimators of
0 have not yet been obtained, simulations indicate that the estimators é, é, and 6;
are very nearly log-normally distributed: for example, Figure 4 shows how close to
Gaussian are the histograms of the logarithm of these estimates for the simulations
summarized in Table 1. It follows that distributions of estimators of 6, expressed in
terms of magnitudes rather than moments, are well-summarized by their means and
standard deviations.

Table 2 presents the results of estimating m. = ¢(6), with ¢ defined as in (1), via
the logarithms of the four estimators in Table 1. That is, for each of the simulations
in Table 1, estimates é, é, éa, and §; are obtained as before, converted to magnitude
scale via the conversion (1), and compared to ¢(8).
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FIGURE 4: Histograms of ¢(é) and $(8) (solid lines) for simulations each consisting of
n = 100 independent draws from (2), witha=1,8 = %, # = 1000. The total number of
simulated catalogs is 107. The Gaussian curves (dashed lines) are fitted to have the same
mean and standard deviation as the simulated data. The proximity of the histograms of
¢(§a) and ¢(§,) (not shown to avoid excessive overlap) to Gaussian curves was similar.

For @ (left-most curves), the mean and sd of m. are 1.753 and 0.293, respectively. For
#, the mean and sd of m. are 1.832 and 0.320, respectively.

The results of Table 2 are somewhat different from those of Table 1. On the loga-
rithmic scale, the root-mean-squared errors are very comparable for all four estimators
regardless of sample size, and in contrast to the seismic moment scale of Table 1, the
MLE 6 typically has the smallest root-mean-squared error of the four. Unlike on the
seismic moment scale, the bias on the magnitude scale is negative for every estimator
even for larger samples. Another important difference is that on the magnitude scale,
the adjusted method of moments estimator 6, offers little improvement in terms of bias
compared to é, and indeed in many cases actually has a bit greater bias than the MLE.
Since the adjustment factor is based on the bias of 6 in terms of seismic moment rather
than magnitude, it is not surprising that the adjustment factor provides relatively little
improvement in bias on the magnitude scale. On the other hand, it should be noted
that as with the seismic moment scale, adjustment of the method of moments estimator
on the logarithmic scale does result in smaller bias and greater variance for each sample
size, when compared to the unadjusted method of moments estimator 6. Further, as
in Table 1, the differences between the estimators in Table 2 diminish rapidly as the
sample size is increased. The results in Table 2 can be used directly for catalogs with
different values of the ratio p’ if the catalog size n is adjusted according to (32).

Additional simulations were performed to evaluate the influence of variations in 3
on estimates of §. In these simulations we created synthetic catalogs using varying
[B-values, but in the estimation of 8, 3 was assumed to be % We found that a decrease
in the true value of B generally caused an increase in the average of the estimate
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TABLE 2: Simulated estimates of # on magnitude scale

$(9) ¢(9) ¢(0a) $(6:)

n bias sd rmse bias sd rmse bias sd rmse bias sd rmse

25 -.463 .471 .660 -.568 .430 .712 -.423 .511 .663 -.657 .383 .760
50 —-.291 .398 .493 -.386 .362 .529 —-.262 .428 .502 —-.462 .321 .563
100 -.168 .320 .361 -.247 .293 .383 -.151 .340 .372 -.302 .260 .399
250 -.072 .225 .236 -.126 .211 .246 —-.068 .236 .246 -.151 .191 .243
500 -.037 .165 .169 -.072 .161 .176 -.037 .174 .178 -.081 .150 .170
1000 -.019 .119 .121 -.040 .121 .127 -.021 .127 .129 -.042 .114 .121
2500 -.007 .076 .076 -.017 .081 .083 -.009 .083 .083 -.017 .075 .077
5000 —-.004 .053 .053 —-.008 .059 .060 —-.005 .059 .059 -.009 .054 .055

¢>(é), with the amount of change depending on n and p. Conversely, an increase in 8
resulted in decreased average values of ¢(é) For example, for n = 100 and p = ﬁ, a
3% decrease in the true value of 8 caused ¢(é) to increase by about 0.03 on average,
thus decreasing the bias in ¢(é) from —0.247 to —0.215. Meanwhile, a 3% increase (3
caused ¢(é) to increase by about 0.03 on average, thus increasing the bias in ¢(é) from
—0.247 to —0.279. For n = 1000, 3% variations in 3 resulted in corresponding changes
of 0.02 in the bias of ¢(é) The effects on ¢(é) of variations in 3 were very similar to
those on ¢(é) The fact that the use of an improper value of 8 has an impact on the
bias in the estimation of 8 underscores the importance of accuracy in the determination
of 3. Fortunately, as discussed in Section 3, (3 typically appears to fall within a narrow
range and may readily be estimated quite accurately. Since the bias in estimates of
#(6) induced by assuming an incorrect value of 3 appears to be comparable to the size
of the error in G, this bias is not overwhelming when compared to typical variations in
estimates of ¢(6).

6. Summary

In estimating the upper cutoff parameter 8 of the tapered Pareto distribution, the
MLE 6 has substantial bias for small samples. The integrated likelihood required in
the computation of the ALE 5, in addition to being quite cumbersome computationally,
typically diverges. The inverse ALE g; is certainly preferable to 5, though it is similarly
difficult to compute and offers little improvement in performance when compared to é,
particularly when performance is evaluated on a logarithmic scale.

The method of moments estimator 8 yields similar root-mean-squared error to the
MLE and ALE, on both logarithmic and seismic moment scales, and differences in
performance may be offset by the fact that the estimator 6is vastly simpler and faster to
compute than the MLE and ALE. Though the adjusted method of moments estimator
6, may appear to be preferable to the unadjusted estimators for small and moderate
sample sizes due to its reduction in bias, it has increased root-mean-squared error due to
the high variance of the adjustment factor. Here even samples of 1000 earthquakes may
be considered relatively small, since estimation of 6 is dominated by only the largest
few observations. For very large sample sizes of hundreds of thousands of events, all the
estimators considered here perform adequately. The choice between § and 8, appears
to depend largely upon whether one is more interested in obtaining an estimate of
low bias or of low variance; the adjusted estimator 6, appears to offer substantially
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decreased bias at the expense of much additional variation.
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