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Abstract
A primary problem for a child learning her first language
is that her ungrammatical utterances are rarely explicitly
corrected. It has been argued that this dearth of negative
evidence regarding the child’s grammatical hypotheses
makes it impossible for the child to induce the grammar of
the language without substantial innate knowledge of
some universal principles common to all natural
grammars. However, recent connectionist models of
language acquisition have employed a learning technique
that circumvents the negative evidence problem.
Moreover, this learning strategy is not limited to strictly
connectionist architectures. What we call Incremental
Distributed Prediction Feedback refers to when the learner
simply listens to utterances in its environment and makes
internal predictions on-line as to what elements of the
grammar are more or less likely to immediately follow the
current input. Once that subsequent input is received,
those prediction contingencies (essentially, transitional
probabilities) are slightly adjusted accordingly.
Simulations with artificial grammars demonstrate that this
learning strategy is faster and more realistic than
depending on infrequent negative feedback to
ungrammatical output. Incremental Distributed Prediction
Feedback allows the learner to produce its own negative
evidence from positive examples of the language by
comparing incrementally predicted input with actual input.

Introduction

Recently, connectionist models have begun to use time as a
critical factor. Rather than receiving an explicit training
signal for associating arbitrary inputs with arbitrary outputs,
irrespective of any temporal relationship, the model is
exposed to sequences of inputs and incrementally attempts
to predict what the subsequent input will be. Without an
explicit teacher, the model compares its predicted
subsequent input with the actual subsequent input, and uses
the difference as an error signal. Some models of this type
use recurrent connections to compute a prediction based on
a “Gestalt” of several timesteps (e.g., Elman, 1990; Juliano
& Tanenhaus, 1995; St. John & McClelland, 1990), but this
is not a necessary condition in order to use this learning
strategy. Standard feed-forward networks can also learn by
predicting the subsequent input based on the current input
(Schiitze, 1994). In fact, this learning strategy need not be
restricted to connectionist architectures at all. The work we
present in this paper is a test case in which we compare this
learning strategy with one that requires explicit corrective
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feedback in terms of their ability to induce a simple
grammar matrix (for an example, see Figure 1).

The learning model consists of a reproduction of the
matrix with initially equal values in all cells (i.e., identical
connection weights for all possible sequential pairings).
Starting off with this tabula rasa assumes no initial
predisposition toward particular kinds of connectivity (i.e.,
no innate constraints devoted to likely patterns). The first
learning strategy we simulate is derived from a standard
assumption that explicitly correcting the child’s
ungrammatical utterances would be an optimal method
of grammar induction. Such corrections are known as
‘negative evidence’. The corresponding idealized model,
implemented in simulations 1A and 2A, is called Explicit
Negative Evidence Feedback (ENEF), in which the learner
randomly produces sequential pairings that it thinks are
grammatical (initially, any pairing) and occasionally
receives corrective feedback from a teacher when the
pairing is in fact ungrammatical.

t+1
ab cdef
al0|1]0]|1f0]0O
bl1]10[l0]0|0O]1
clofo|ojo|1]oO
t
dlof{o]1]1[0]0O
e|1f1]o]o|O]f1
flofrj1fojofo

Figure 1. Elements of the language are cross-indexed with
one another, and some sequential pairings (from t to t+1) are
deemed grammatical (1) while others are considered
ungrammatical (0). For example, along the top row, a can
be followed by b or by d, but not by a, ¢, e orf. (This kind
of local transition system is equivalent to a finite automaton
language or a Markov chain with equal probabilities from a
given state to the possible next states. It follows that results
of modeling the learning of such a grammar may not
generalize to that of natural grammars which are
considerably more complex.)
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We compare this learning strategy, within the same
model architecture, to one based on the learning method
employed by the connectionist models that were discussed
above. Simulations 1B and 2B implement Incremental
Distributed Prediction Feedback (IDPF), in which the
learner listens to grammatical pairings in its environment
and makes on-line predictions (i.€., multiple bets of varying
magnitude) about what elements at time t+1 are more or less
likely to follow the current element. The bet that wins is
rewarded, thus increasing the strength of that prediction in
future instances. All other pairings from that initial element
are punished, with a corresponding decrease in their
prediction strength.

Both learning strategies will eventually get the learner
to some arbitrary criterion of accuracy (say, 95%) in its
internalization of the grammar. The case for the child
learning her first language, however, is special because the
scarcity and variability of corrective feedback regarding the
child’s utterances suggests that relying on negative evidence
alone would simply take far longer than children generally
require to learn their first language (Marcus, 1993). The
purpose of our simulations is to compare how many
utterances must typically be produced by ENEF to reach
95% accuracy in its encoding of the grammar with how
many utterances must typically be heard by IDPF to reach
95% accuracy in its encoding of the grammar.

Negative Evidence

In principle, negative evidence serves to correct children's
misconstrued linguistic rules and to drive change in the
developing grammar. The critical role of negative evidence
was demonstrated in a classic paper by Gold (1967), who
proved that natural languages cannot be learned in a finite
period of time from a finite set of positive examples alone
(grammatical sentences from the language). Given that
children do, however, learn language with all due speed,
there are two possible means to circumvent this learnability
problem: 1) to receive corrections (negative evidence), or 2)
to restrict the hypothesis search space through innate
constraints. Within the learnability framework, then, a
language acquisition device unencumbered by innate
constraints requires negative evidence in response to its
ungrammatical output. Without negative evidence, such a
device could not converge upon the target grammar -- this
fact is a primary feature of the "poverty of the stimulus"
argument for innate linguistic structure (Chomsky, 1972;
Pinker, 1984).

For these reasons, the question of the existence of
negative evidence has received much debate. While early
studies indicated that parents tend to correct the truth-value
of children's utterances rather than grammatical errors
(Brown & Hanlon, 1970), more recent research has found
that some parents respond differentially to children's errors,
for example by repeating ungrammatical sentences more
often thar grammatical sentences (e.g., Bohannon,
MacWhinney & Snow, 1990; Bohannon & Stanowicz,
1988; Hirsh-Pasek, Treiman, & Schneiderman, 1984).
However, such effects are generally small, and are not seen
consistently either across subjects or across studies (Gordon,
1990; Marcus, 1993; Morgan & Travis, 1989). Moreover,
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even when negative evidence is available, it is not
necessarily used by children (e.g., McNeill, 1970, Chapter
7). To date, both the availability and effectiveness of
explicit negative evidence remains controversial.

There exists a different learning method, however, that
employs a type of feedback which has not been widely
considered in discussions of the logical problem of language
acquisition. In principle, a child could recover from an
overly general hypothesis -- such superset cases are exactly
where Gold's proof required negative evidence -- by
observing that the predictions generated by the hypothesis
are not borne out in the speech she hears. For example, a
child might learn that all dative verbs do not alternate ('
donated the book to him/*I donated him the book', as
opposed to 'l gave the book to him/I gave him the book') by
observing that 'donate’ never occurs in a double-object
frame. Of course, this powerful mechanism must be
constrained, as there are an infinite number of sentences
which the child will never hear. This might be
accomplished by embedding such a mechanism in a
prediction framework: as the child listens to others speak,
she predicts that certain elements will follow one another.
When the predictions are incorrect, such as a prediction that
'donate’ will be followed by the indirect object (based on an
overly general rule resulting from the observation that give-
type verbs can be followed by the indirect object), the
hypothesized sequential pairing which gave rise to the
incorrect prediction is decremented. Thus, the child learns
by listening to utterances rather than by producing them, and
generates her own negative evidence (or error signal) by
comparing her predicted inputs with the actual input.

Simulation 1A:
Explicit Negative Evidence Feedback

We begin with ENEF because it is based on a commonly
held view of language acquisition, in which the learner
entertains discrete hypotheses about which grammar
relations are allowed and which are disallowed. Within this
perspective, a method by which the learner rules out
hypotheses (that is, those hypotheses not already ruled out
by innate constraints) is by producing a hypothetically
grammatical utterance and receiving corrective feedback
indicating that it is ungrammatical. We wanted to make the
implementation of ENEF unrealistically strong in order to
determine the near limit in how fast it can induce a grammar
with 95% accuracy. Therefore, it is given a generous
amount (compared to what children typically receive) of
noise-free explicit negative evidence, and the model requires
only one instance of corrective feedback in order to rule out
any particular hypothesized sequential pairing.

These first simulations are based on 6X6 grammars,
similar to the one in Figure 1. The model starts out
assuming that every sequential pairing between every
element of the grammar is allowed (1's in all 36 cells). The
model randomly produces a sequential pairing that it
hypothesizes is grammatical. If this output is, in fact,
ungrammatical according to the target grammar, there is a
20% chance that the model will receive corrective feedback,
turning the strength of that sequential pairing from one to



A. a b c def B. a b ¢cdef
a(0j0]1]1[1]0 a (0[1]0[0]0]O
b 0|1]|0[0]0]1 b 10]0[1[0[0O[O0
¢c(0]J]0O]O[I]1]0 c|0[0]0O]1[0]O
d{1[1]0]0]1]0 d|0]0]O|O|1]0
e |1[{1]1[0]O0f]1 e [0]0[0]0|O}]1
flofrf{rf{rfofo fl1]lolojojofo
Figure 2. The richest and the sparsest grammars on which the model was trained, respectively.

The grammar in panel A has 19 ungrammatical pairings and the one in panel B has 30.

zero, thus discretely ruling out that specific hypothesis. If
the output happens to be grammatical, no leamning takes
place. This process is repeated until the model's
internalization of the grammar is at least 95% accurate. In a
6X6 grammar, this means the model must learn all but one
of the zeroes in the target grammar. The number of
utterances required to achieve this criterion of accuracy is
referred to as the "learning time". (It is important to note
that the last few zeroes take the longest to leamn because, by
that time, there is a slim chance that the model's random
output of hypothesized sequential pairings will come upon
an ungrammatical one. And this slim chance is multiplied
by the .2 probability of negative evidence!)

The model was trained on twelve different grammars
(see Figure 2). 100 simulations were conducted per
grammar in order to compute a reliable average leaming
time. With the richest grammar, one containing many
grammatical sequential pairings (Figure 2A), learning was
slowest. The average learning time for this grammar was
315 timesteps (or produced utterances). In contrast, the
absolute sparsest grammar (Figure 2B) took an average of
only 242 timesteps. The remaining grammars of
intermediate densities had average learning times between
those extremes, gradually decreasing as densily decreased,

As mentioned above, the probability of ruling out an
hypothesized sequential pairing on any one timestep is equal
to the probability of receiving negative evidence when an
ungrammatical pairing is produced multiplied by the
probability of producing an ungrammatical pairing. Thus, at
the onset of learning the grammar in Figure 2B, there is a
relatively high probability of ruling out an hypothesis that is
ungrammatical: P(c) = .2(30/36), where P(c) is the
probability of a correction, and 30/36 is the ratio of
ungrammatical pairings over the total number of pairings. [f
a correction does not take place (either because the utterance
happened to be grammatical, or the teacher failed to provide
negative evidence), then the probability of a correction
increases on the next timestep, according to probability
summation over time (Watson, 1979), Using probability
summation over time!, the ENEF's mean learning time for
the twelve grammars is approximated; r2=90. See also the
open and filled triangles of Figure 4.
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Simulation 1B: Incremental Distributed
Prediction Feedback

IDPF learns in a much more realistic fashion than ENEF. It
requires no explicit negative evidence regarding produced
utterances. Instead, it [isrens to random utterances
comprised of a randomly generated element followed by a
randomly selected grammatical subsequent element.
Incrementally, it makes distributed predictions about what
elements should follow the initial input element. It typically
requires about 10-20 exposures to an utterance in order to
reduce the prediction strength of alternative ungrammatical
pairings from that first element to less than .05.

In the next set of simulations, we trained the [DPF
model on the same twelve grammars. IDPF is probabilistic,
in that it starts out with prediction strengths that sum to 1
across any given row of the matrix (like a typical Markov
chain). Beginning with a blank slate, the leamer has .167

(1) cumP(C) = 111104
s v

where 1) is the probability of receiving negative evidence (should
the leaner produce an ungrammatical utterance), Q is the number
of ungrammatical pairings still hypothesized by the learner to be
grammatical, y is the fotal number of sequential pairings still
hypothesized by the learner to be grammatical, and T is the
timestep or utterance number. The cumulative probability of a
correction increases as T increases. When the cumulative
probability of a correction exceeds .632 (that is, 1-1/e), the signal
has, on average, occurred (cf. Watson, 1979). Thus, we iterated
this equation, decrementing () and y by 1 each time cumP(C)
exceeded .632 (as that meant there was one less ungrammatical
pairing left to learn, and one less pairing hypothesized by the
learner), and starting again at t=1. This was repeated until
Q=1,which meant that all but one incorrect hypothesis had been
ruled out; >95% accuracy. The sum of the €2-1 values of t
corresponds to how many timesteps probability summation over
time predicts the ENEF model will require to learn the grammar.
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Figure 3. IDPF's 95% accurate probabilistic representation
of the grammar in Figure 1. (achieved in 107 timesteps.)

prediction strength in every cell of the 6X6 matrix. And
reaching 95% accuracy in internalizing the grammar means
that the summed error in each row averages .05. Figure 3
shows the learner's prediction strengths after reaching 95%
accuracy on the grammar shown in Figure 1.

The model modifies its prediction strengths by
comparing its weighted predictions of the input at time t+1
with the actual (discrete) input at time t+1. The one
weighted prediction that was correct is increased by 15% of
the difference between 1 and its current value, and the five
predictions that were incorrect are decreased by 15% of their
current values. This learning procedure is a version of the
generalized delta rule (Rumelhart, Hinton & Williams,
1986), or "back-propagation”, with a .15 learning rate.2

As before, 100 training simulations were run on each
grammar. The IDPF learner reached criterion accuracy well
before ENEF on all twelve grammars. [In fact, in order to
achieve performance equivalent to IDPF's, ENEF requires
an extremely unrealistic 45-65% explicit negative evidence.]
An important observation here is that ENEF learns cell-by-
cell, that is, it has a chance at each utterance of learning
completely about one particular sequential pairing. In
contrast, IDPF (because its predictions are distributed
across the entire matrix row) learns gradually row-by-row,
thus every utterance is a learning experience with respect to
all of the elements that could follow the element at time t.

Learning time results for IDPF are shown in Figure 4,
combined with the results of ENEF. A lower limit on the
learning time for IDPF is easily computed by determining
the minimum number of exposures to an initial element
required to bring the sum of that row's ungrammatical cells
to less than or equal to .05.3 By adding to this lower limit
the number of rows in the matrix minus 1, we can closely
approximate IDPF's mean learning time (learning time =
(Z 1) + N-1); r2=.98. See the open and filled circles in
Figure 4.

2 I fact, the IDPF model is equivalent to a perceptron (with no
hidden units) using the delta rule, but with the "desired output”
signal being provided by the subsequent input, rather than by an
explicit teacher.
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Sim 2A: ENEF with 10X10 Grammars

To test how well these models scale up to larger grammars,
this next set of simulations trained ENEF on a larger size of
the same type of grammar (see Figure 5). As before, 100
simulations were run on each grammar to compute mean
learning times. ENEF learned in the same fashion described
in Simulation 1A, but this time all but five ungrammatical
sequential pairings needed to be learned; in a 10X10
grammar, this was sufficient to produce 95% accuracy.

For the richest grammar tested (Figure 5A), ENEF was
slowest, producing an average of 777 pairings in order to
achieve 95% accuracy. As the grammar became sparser,
ENEF learned faster, with the sparsest grammar (Figure SB)
being learned in 679 timesteps. As in Simulation 1A,
probability summation over time approximated the mean

learning times for the twelve grammars; r<=.945 (Figure 6).

Sim 2B: IDPF with 10X10 Grammars

IDPF was trained on the same twelve grammars, in the same
fashion as in Simulation 1B. The 95% accurate
internalization of the 10X10 grammar, at the end of
learning, was analogous to the 6X6 version shown in Figure
3. IDPF scaled up to this larger grammar much more
gracefully than did ENEF. IDPF learned the richest
grammar in an average of 159 timesteps, and the sparsest
grammar in 181 timesteps. As before, Equation (2) (in
footnote 3) closely approximated the mean learning times

for the twelve grammars; r2=99 (see Figure 6).

General Discussion

A common assumption in the field of language acquisition
is that if innate constraints did not encode certain
grammatical relationships, then the standard negative
evidence model, with its extremely slow learning, is all the
learner could resort to. The results of these simulations
suggest that an alternative, and cognitively plausible,
method of leaming (IDPF) is a great deal faster than the
standard model. IDPF's distributed prediction of temporal
associations is analogous in mechanism to the priming of
semantic or syntactic associations. However, it remains an
empirical question whether children learning their first
language actually use this kind of passive incremental
prediction of temporal associations between inputs.

Q
@  —Jua-n

where Q) is the number of ungrammatical cells in row r, N is the

<.05

number of elements in the language, T is the timestep, and M is the
learning rate [playing a similar role here as did the negative
evidence term in Equation 1 for probability summation over time

in ENEEF (see footnote 1)]. By solving for 7 for each row of the
matrix, and summing those N values of T, we get a lower limit of
learning time for IDPF (lower limit = Zt;).
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Figure 4. Results of Simulations 1A and 1B. ENEF learns sparse grammars faster than dense ones, and is
approximated by probability summation over time. IDPF learns much faster than ENEF, with a modest increase in
leaming time as a function of the ratio of ungrammatical cells to total cells in the grammar.

abcdefghiij abcdefghij
A. a|1|1{1]1]O0|1]1]0[0]1 B. ajlof1]o]l1]jo]ofo]1]o]O
b [olofofol1Tof1]1T0]1 b [1]o]ofolololofol1]o
c [1]0[(0[1]0]10]0]1]0]0 c |0fj1|0]0|1]0O]|OJOJO]O
d|o]o]t]o]jof1i]o]1]1]1 d {ofo]o]1]o]o]ojofofo
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fUlOOlOlOOO f0001001000
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Figure 5. Simulations 2A and 2B: The richest and sparsest grammars on which the model was trained, respectively.

The grammar in panel A has 54 ungrammatical pairings and the one in panel B has 76.

With Incremental Distributed Prediction Feedback, the
learner can take advantage of the conspicuous absence of
certain grammatical relationships in the input. Moreover, if
the input contains graded statistical biases for some
sequential elements over others, IDPF's probabilistic
encoding will cause it to reflect those graded preferences,
just as adult comprehenders do (e.g., Juliano & Tanenhaus,
1993; Saffran, Newport & Aslin, submitted). The standard
negative evidence model cannot produce such graded
preferences, as its coding is discrete,

It is certainly possible that evolution has caused our
DNA to encode certain constraints devoted to language
learning (Batali, 1994; Pinker & Bloom, 1990). However,
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our results cast some doubt on whether the apparent lack of
negative evidence can be used as a valid motivation for such
a claim. In fact, what IDPF provides is a mechanism by
which the child can produce her own negative evidence by
comparing predicted (or primed) input with actual input.

Certainly, these simulations are a simplified test case,
and do not apply to natural grammars, which contain
multiple-contingency relationships of far greater complexity
than pairwise sequences. Future work on this issue will
require comparing the two learning styles ("overt testing"
vs., "passive predicting”) in their ability to learn more
complex, natural grammars.
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