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Abstract: The ideal transformation optics cloaking is accompanied
by shielding: external observations do not provide any indication of the
presence of a cloaked object, nor is any information about the fields outside
detectable inside the cloaked region. In this paper, a transformation is
proposed to cloak three-dimensional objects for electromagnetic waves
in sensor mode, i.e., cloaking accompanied by degraded shielding. The
proposed transformation tackles the difficulty caused by the fact that the
lowest multipole in three-dimensional electromagnetic radiation is dipole
rather than monopole. The loss of the surface impedance of the sensor plays
an important role in determining the cloaking modes: ideal cloaking, sensor
cloaking and resonance.

© 2011 Optical Society of America

OCIS codes:(260.2710) Inhomogeneous optical media; (260.2110) Electromagnetic theory;
(160.1190) Anisotropic optical materials; (290.3200) Inverse scattering.
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1. Introduction

Transformation optics has been a popular research topic in the past few years due to its exciting
property of designing cloaks which can completely hide objects from electromagnetic detec-
tion. The fundamental idea is the invariance of Maxwell’s equations under a space-deforming
transformation if the material properties are altered accordingly [1–9]. However, the ideal
cloaking is accompanied by shielding: There is a decoupling of the fields inside and outside of
the cloaked region, so that external observations do not provide any indication of the presence
of a cloaked object, nor is any information about the fields outside detectable inside the cloaked
region. In many real-world applications, however, there are needs for effectively cloaking sen-
sors and detectors so that their presence may be less disturbing to the surrounding environment.
For example, in a receiving antenna array, we aim at reducing the coupling among antenna el-
ements so that an element is able to receive electromagnetic signal without disturbing the field
received by other elements. When the near-field scanning optical microscope (NSOM) operates
in collection mode, the tip should be very close to the scattering objects, which inevitably yields
undesired multiple scattering between tip and scatterer and thus degrades the accuracy of the
measured field.

In the past few years, there have been attempts to design sensors that are able to perceive
electromagnetic radiation and at the same time have negligible disturbance to the surrounding
environment, which is referred to as ‘cloaking sensors’ or ‘cloak in sensor mode’. The first
paper in this direction is [10], where a plasmonic coating allows electromagnetic wave to reach
the sensor and at the same time the scattering due to the sensor is canceled out by that of the
cloak. The idea has been applied to cloak a NSOM tip for the purpose of near field imaging [11],
which is of great industrial and scientific significance. However, there are also some limitations
of the method. For example, it can only cloak sensors smaller or comparable to wavelength
and the shape and material of the cloak depend on the geometrical and physical properties
of the sensor. Another approach to cloak a sensor is transformation optics. In [12], a sensor
that is cladded with a sphere with surface impedance is placed inside the cloak. This method
works for sensors of arbitrary size and shape as long as the sensors are able to measure the
field at the boundary of the cladding sphere. As mentioned in [12], this transformation optics
approach is able to achieve in cloaking a sensor for acoustic waves and two-dimensional (2D)
electromagnetic waves. However, a further calculation shows that the transformation optics
approach proposed in [12] cannot cloak a sensor for three-dimensional (3D) electromagnetic
waves. This is mainly due to the fact that the lowest multipole in 3D electromagnetic radiation is
dipole rather than monopole. The asymptotic behavior, for small arguments, of Riccati-Bessel
functions of order one and above leads to vanishing electromagnetic fields inside the cloak, i.e.,
the shielding effect is still hand in hand with the cloaking effect. Another transformation optics
approach is presented in [13,14], where both a cloak layer and an anti-cloak layer play the role
to achieve cloaking sensor effect. Whereas this approach can cloak sensors of arbitrary size and
works for both 2D and 3D electromagnetic waves, the sensor is modeled as a dielectric sphere
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and the papers do not discuss whether the method works for a generic sensor, i.e., whether both
thecloak layer and anti-cloak layer depend on the shape and material of the sensor. In addition,
the cloaking device consists of five layers, eight unknowns for each order of multipole, and two
small parameters to be adjusted, which makes it tedious to derive analytical solutions.

In this paper, we propose a novel transformation optics method to cloak a sensor, which can
be of arbitrary size, shape, and material, for 3D electromagnetic waves. The cloaking device
consists in three layers, five unknowns for each order of multipole, and one small parameter to
be adjusted. Analytical results can be obtained for each of five unknowns even without resource
to small parameter approximation. Compared with [12], the proposed transformation, from
the physical space to the virtual space, circumvents the difficulty caused by the fact that the
lowest multipole in 3D electromagnetic radiation is dipole rather than monopole. The loss of
the surface impedance of the sensor plays an important role in determining the cloaking modes:
ideal cloaking, sensor cloaking and resonance. Numerical simulations validate the proposed
transformation model.

2. Configuration of the cloak and the sensor

As shown in Fig. 1. The sensor is placed inside a sphere of radiusR0, with surface impedance
boundary condition−Eθ /Hφ = Eφ /Hθ = α0 (see [15] and references therein). The sensor is
able to measure the tangential electric fields at the surface of the sphere.The cloak layer is within
an annulus with inner and outer radiiR1 andR2, respectively. All three spheres mentioned above
are concentric, with the center being the origin of the coordinate system in the physical space.
The space between spheres of radiiR0 andR1, as well as the space outside of the sphere of
radiusR2, are free space. The permittivity and permeability of the cloak layer are obtained using

 (a) (b)

Fig. 1. The geometry of the sensor and the transformation function. (a) A sensor of arbitrary
shapeis placed inside a sphere with radiusR0 and surface impedanceα0, and it is able to
measure the tangential electric field on the spherical surface. The cloak layer is in between
spheres of radiiR1 + δ andR2, whereδ is an small positive number and is not shown in
the figure due to its small magnitude. Other regions are free space. (b) The transformation
r′ = f (r) from the physical space to the virtual space.
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the invariance of Maxwell’s equations under transformation of the spatial coordinate systems.
Considera coordinate transformation between the virtual space (curved free space) with the
physical space. The former has spatial coordinatesr′,θ ′,φ ′, permittivity ε0, and permeability
µ0, whereas the latter has spatial coordinatesr,θ ,φ , and parametersε,µ. The transformation is
only in the radial direction, i.e.,

r′ = f (r), θ ′ = θ , φ ′ = φ . (1)

The associated permittivity and permeability tensors are given by

ε = εr(r)r̂r̂ + εt(r)θ̂ θ̂ + εt(r)φ̂ φ̂ (2)

µ = µr(r)r̂r̂ + µt(r)θ̂ θ̂ + µt(r)φ̂ φ̂ , (3)

where

εr = ε0
f 2(r)

r2 f ′(r)
, εt = ε0 f ′(r) (4)

µr = µ0
f 2(r)

r2 f ′(r)
, µt = µ0 f ′(r). (5)

It is well known that the transform that satisfies bothf (R1) = 0 and f (R2) = R2 yields perfect
invisibility. To avoid singularities, we let the boundary of the inner cloaking material be at
R1+δ , whereδ is a small positive number. The incident wave is generated by a time-harmonic
[exp(− iωt)] source that is located outside of the sphere of radiusR2. To achieve cloaking a
sensor, we aim at obtaining a negligible scattered field outside of the sphere of radiusR2 and at
the same time perceivable electromagnetic field at the surface of the cladding sphere.

3. Analytical results for electromagnetic fields

Electromagnetic fields can be decomposed into two independent modes, TE and TM modes
(transverse to radial direction in spherical coordinate system), which are dual to each other. For
the TM mode, theB field can be expressed as

B = ∇×
(

r̂ f ′ΦM
)

, (6)

where the scalar potentialΦM satisfies

1
f 2sinθ

[

∂
∂θ

(

sinθ
∂ΦM

∂θ

)

+
1

sinθ
∂ 2ΦM

∂φ2

]

+
∂ 2ΦM

∂ f 2 + k2
0ΦM = 0, (7)

wherek2
0 = ω2ε0µ0. Separation of variables yields

ΦM =
N

∑
n=1

n

∑
m=−n

AnmB̂n(k0 f )Y m
n (θ ,φ), (8)

whereN is the highest order multipole used in the numerical simulations,B̂n(z) = zbn(z) is the
Riccati-Bessel function, andY m

n are spherical harmonics. Now the magnetic fieldH and the
electric fieldE can be expressed as

H = µ−1
0

1
r sinθ

∂ΦM

∂φ
θ̂ −µ−1

0
1
r

∂ΦM

∂θ
φ̂ (9)

E =
µ−1

0 ε−1
0

−iω

[

f ′
(

∂ 2ΦM

∂ f 2 + k2
0ΦM

)

r̂ +
1
r

∂ 2ΦM

∂ f ∂θ
θ̂ +

1
r sinθ

∂ 2ΦM

∂ f ∂φ
φ̂
]

. (10)
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The potentialΦM in the three regions is written as

Φext
M (r,θ ,φ) = ∑

n
∑
m

[

KnmĴn(k0r)+AnmĤ(1)
n (k0r)

]

Y m
n (θ ,φ), for r > R2 (11)

Φclo
M (r,θ ,φ) = ∑

n
∑
m

[

BnmĴn(k0 f )+CnmĤ(1)
n (k0 f )

]

Y m
n (θ ,φ), for R1 +δ < r < R2(12)

Φint
M (r,θ ,φ) = ∑

n
∑
m

[

DnmĴn(k0r)+EnmĤ(1)
n (k0r)

]

Y m
n (θ ,φ), for R0 < r < R1 +δ .(13)

Since the source is given,Knm is uniquely determined. For each multipole of ordern, we will
solve for five unknowsAnm, Bnm, Cnm, Dnm, andEnm. Eqs. (9) and (10) indicate that the continu-
ities of tangential components ofH andE across the boundariesr = R1 +δ andr = R2 amount
to the continuities ofΦM and ∂ΦM

∂ (k0 f ) , respectively. The impedance boundary condition reduces

to ∂ΦM
∂ (k0 f ) −αΦM = 0, whereα is proportional toα0. Thus, we have the following boundary

conditions

BnmĴn(k0R2)+CnmĤ(1)
n (k0R2) = KnmĴn(k0R2)+AnmĤ(1)

n (k0R2) (14)

BnmĴ′n(k0R2)+CnmĤ(1)′
n (k0R2) = KnmĴ′n(k0R2)+AnmĤ(1)′

n (k0R2) (15)

BnmĴn(k0 f (R1 +δ ))+CnmĤ(1)
n (k0 f (R1 +δ )) = DnmĴn(k0(R1 +δ ))+EnmĤ(1)

n (k0(R1 +δ ))(16)

BnmĴ′n(k0 f (R1 +δ ))+CnmĤ(1)′
n (k0 f (R1 +δ )) = DnmĴ′n(k0(R1 +δ ))+EnmĤ(1)′

n (k0(R1 +δ ))(17)

DnmĴ′n(k0R0)+EnmĤ(1)′
n (k0R0) = α

[

DnmĴn(k0R0)+EnmĤ(1)
n (k0R0)

]

. (18)

It is easy to see that Eqs. (14) and (15) yieldBnm = Knm andAnm = Cnm. There are two cases
for Eq. (18).

3.1. Case 1

WhenĴ′n(k0R0)−α Ĵn(k0R0) 6= 0, we have

Dnm = −
Ĥ(1)′

n (k0R0)−αĤ(1)
n (k0R0)

Ĵ′n(k0R0)−α Ĵn(k0R0)
Enm ≡ g(α)Enm (19)

Now we solve for two unknownsAnm andEnm from two linear equations,

KnmĴn(k0 f (R1 +δ ))+AnmĤ(1)
n (k0 f (R1 +δ )) = Enm

[

g(α)Ĵn(k0(R1 +δ ))+ Ĥ(1)
n (k0(R1 +δ ))

]

(20)

KnmĴ′n(k0 f (R1 +δ ))+AnmĤ(1)′
n (k0 f (R1 +δ )) = Enm

[

g(α)Ĵ′n(k0(R1 +δ ))+ Ĥ(1)′
n (k0(R1 +δ ))

]

(21)

We obtain:

Enm/Knm = i/Fn, (22)

Anm/Knm = Gn/Fn, (23)

where

Fn =
[

gĴn(k0(R1 +δ ))+ Ĥ(1)
n (k0(R1 +δ ))

]

Ĥ(1)′
n (k0 f (R1 +δ ))

−
[

gĴ′n(k0(R1 +δ ))+ Ĥ(1)′
n (k0(R1 +δ ))

]

Ĥ(1)
n (k0 f (R1 +δ )) (24)

Gn = −
[

gĴn(k0(R1 +δ ))+ Ĥ(1)
n (k0(R1 +δ ))

]

Ĵ′n(k0 f (R1 +δ ))

+
[

gĴ′n(k0(R1 +δ ))+ Ĥ(1)′
n (k0(R1 +δ ))

]

Ĵn(k0 f (R1 +δ )) (25)
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and the Wronskian̂JnĤ(1)′
n − Ĵ′nĤ(1)

n = i is used.
It is worth highlighting that we have obtained analytical result forEnm without using any

approximation. From here onwards, we will use the fact thatδ is a small parameter to simplify
the obtained analytical result. For an infinitesimal parameterz, we have the asymptoticŝJn(z)≈

pnzn+1 and Ĥ(1)
n (z) ≈ qnz−n [16]. Using Taylor’s expansion and the fact thatf (R1) = 0, we

obtain

Fn ≈

{

gĴn(k0R1)+ Ĥ(1)
n (k0R1)+ k0δ

[

gĴ′n(k0R1)+ Ĥ(1)′
n (k0R1)

]

+
(k0δ )2

2

[

gĴ′′n (k0R1)+ Ĥ(1)′′
n (k0R1)

]

}

×(−nqn) [k0 f (R1 +δ )]−(n+1)

−
{

gĴ′n(k0R1)+ Ĥ(1)′
n (k0R1)+ k0δ

[

gĴ′′n (k0R1)+ Ĥ(1)′′
n (k0R1)

]

+O(δ 2)
}

qn [k0 f (R1 +δ )]−n

= qn [k0 f (R1 +δ )]−(n+1) (A1 +A2 +A3 +A4 +A5 +A6), (26)

where

A1 = −n
[

gĴn(k0R1)+ Ĥ(1)
n (k0R1)

]

, (27)

A2 = −nk0δ
[

gĴ′n(k0R1)+ Ĥ(1)′
n (k0R1)

]

, (28)

A3 = −k0 f (R1 +δ )
[

gĴ′n(k0R1)+ Ĥ(1)′
n (k0R1)

]

, (29)

A4 = −k0 f (R1 +δ )k0δ
[

gĴ′′n (k0R1)+ Ĥ(1)′′
n (k0R1)

]

, (30)

A5 = −n
(k0δ )2

2

[

gĴ′′n (k0R1)+ Ĥ(1)′′
n (k0R1)

]

, (31)

A6 = O(δ 2) f (R1 +δ ), (32)

where the Landau big-o notationO(·) denotes terms of the same order, i.e., neglecting constant
multipliers and higher-order terms. Depending on whether or not the leading term inFn is zero,
we discuss the two following two cases.

3.1.1. Case 1.1

WhengĴn(k0R1)+ Ĥ1
n (k0R1) 6= 0,

Enm

Knm
= iq−1

n [k0 f (R1 +δ )]n+1 A−1
1 . (33)

To further quantify the asymptotic behavior ofEnm, we can express the transform function
f (R1 +δ ) as, considering the fact thatf (R1) = 0 andδ is small,

f (R1 +δ ) = βδ s +o(δ s), (34)

for someβ ands, wheres > 0. Note that the Landau little-o notationo(·) denotes higher order
terms, i.e., those approaching to zero at faster rates. Thus,

Enm

Knm
= O(δ (n+1)s). (35)

From Eq. (23), a straightforward calculation gives thatAnm = O(δ (2n+1)s). Sincen ≥ 1, we see
bothEnm andAnm approach zero asδ approaches zero, indicating that cloaking effect is coupled
with shielding effect, i.e., there is no sensor effect.
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3.1.2. Case 1.2

When gĴn(k0R1) + Ĥ(1)
n (k0R1) = 0, the WronskianĴnĤ(1)′

n − Ĵ′nĤ(1)
n = i implies that

gĴ′n(k0R1)+ Ĥ(1)′
n (k0R1) 6= 0. It is also important to stress that the differentiation of the Wron-

skian with respect tok0R1 yields gĴ′′n (k0R1) + Ĥ(1)′′
n (k0R1) = 0. Subsequently, we see from

Eq. (28) to Eq. (31) that,A2 6= 0, A3 6= 0, andA4 = A5 = 0. Due to the presence of a nonzero
A3, Fn contains a term of orderO(δ−ns), which is infinite and eventually leads to zero value of
Enm asδ goes to zero. In this case, there is no sensing effect. To achieve a non-vanishingEnm,
we have to eliminateA3 and the only way is to useA2 to cancel it.

The conditionA2 +A3 = o(δ s) can be satisfied when−nδ −βδ s = 0, i.e.,

s = 1, β = −n. (36)

The condition thatgĴn(k0R1)+ Ĥ(1)
n (k0R1) = 0 and Eq. (36) can be satisfied by different order

multipoles. It is important to note that once the aforementioned two conditions are satisfied for
a particular order, sayn0, they cannot be simultaneously satisfied by others orders. Forn = n0,
we easily obtain thatEnm = O(δ n0−2) andAnm = O(δ 2n0−1); For n 6= n0, we obtain from Case
1.1 thatEnm = O(δ n+1) andAnm = O(δ 2n+1). The behaviors of cloaking and shielding effect
are different for various order of multipoles.

• Case ofn0 = 1: E1m = O(δ−1) approaches infinity andA1m = O(δ 1) approaches zero,
which means the resonance mode. It is worth mentioning that the interior resonance
does not destroy the cloaking effect, which is different from the conclusion of [12]. This
difference is possibly due to the fact that [12] uses the Cauchy data, i.e., the mapping
from the total field to its normal derivative, whereas this paper studies the mapping from
the incidence field to the scattered one.

• Case ofn0 = 2: E2m = O(δ 0) is in the same order as the incidence wave andA2m = O(δ 3)
approaches zero, which means sensor mode.

• Case ofn0 ≥ 3: BothEnm andAnm approach zero, which means ideal cloaking mode, i.e.,
cloaking effect and shielding effect are hand in hand.

From the condition ofgĴn(k0R1)+ Ĥ(1)
n (k0R1) = 0 and the definition ofg(α) in Eq. (19), we

easily obtain the value ofα that leads to the resonance mode (forn0 = 1) and the sensor mode
(for n0 = 2),

α =
Ĵ′n0

(k0R0)− Ŷ ′
n0

(k0R0)Ĵn0(k0R1)/Ŷn0(k0R1)

Ĵn0(k0R0)− Ŷn0(k0R0)Ĵn0(k0R1)/Ŷn0(k0R1)
. (37)

3.2. Case 2

WhenĴ′n(k0R0)−α Ĵn(k0R0) = 0, we find thatEnm = 0 andα = Ĵ′n(k0R0)/Ĵn(k0R0). We carry

out an analysis similar to that of Section 3.1, simply replacing
[

gĴn(k0R1)+ Ĥ(1)
n (k0R1)

]

Enm

by Ĵn(k0R1)Dnm. Thus, the necessary conditions for an electromagnetic wave to penetrate the
inner boundary of the cloak arêJn(k0R1) = 0 and f (R1 + δ ) = −nδ + o(δ ) for a particular
n0. The resonance mode (forn0 = 1) and the sensor mode (forn0 = 2) are the same as those
discussed in Section 3.1.

3.3. Removal of singularity

As shown in Section 3.1 and Section 3.2, one of the conditions for achieving the sensor mode
is f (R1 + δ ) = −nδ + o(δ ). We note that the condition of zero scattering outside of the cloak
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requires thatf (R2) = R2. Thus, if r′ = f (r) is a continuous function, inevitably there is a
particular value ofr, sayRb, for whichr′ = 0. Consequently, from Eq. (12) we conclude that a

singularity appears in the cloak layer since the argument forH(1)
n (·) is zero. To remove such a

singularity, we let the functionf to be discontinuous atr = Rb, but at the same time, we keep the
continuity of the permittivity and permeability. With this purpose, we see from Eqs. (4) and (5)
that a functionf (r) that simultaneously satisfiesf (R+

b ) = − f (R−
b ) > 0 and f ′(R+

b ) = f ′(R−
b )

can achieve both the continuity of permittivity and permeability and the removal of singularity.
One example of suchf is depicted in Fig. 1.

It is interesting to discuss the meaning of the functionr′ = f (r) for the caser′ < 0. In de-
riving the permittivity and permeability in the physical space (Eqs. (4) and (5)), the key step
is to usex′/x = y′/y = z′/z = r′/r [3, 17]. Whenr′ < 0, a point in the physical space and the
corresponding point in the virtual space are on the opposite side of the origin. The invisibility
conditionsf (R1) = 0 and f (R2) = R2 indicate that as we move from the inner boundary of the
cloak to the outer one in the physical space, the corresponding point in the virtual space moves
from the original tor′ = R2. However, since the virtual space is free space, there is no scattering
at all. Consequently, it does not matter in which way we move from the original tor′ = R2 in
the virtual space. The linear transform that is presented in [1,17] indicates a uniform speed dis-
placement. The concentrator transform that is presented in [3] indicates a displacement all the
way outside of the outer boundary of the cloak, followed by a backward displacement to come
back to the outer boundary. Here, in this paper, our transform function shows a displacement to-
ward the opposite direction, followed a directional change and then a all-the-way displacement
towards the outer boundary of the cloak.

4. Numerical simulations

Following the criteria that were presented in Section 3, we proposed a particular transformation,
as depicted in Fig. 1(b), to test the performance of the cloaking device. We choose the following
parameters:R0 = 0.5λ , R1 = 1.5λ , R2 = 3.0λ , Ra = 2.0λ , Rb = 2.33λ , Rc = 2.66λ , andh =
0.15λ . The transform function in the range ofR1 +δ ≤ r ≤ R2 is given by

f (r) =



















−n0r +n0R1 for R1 +δ ≤ r < Ra
−h−n0(−Ra+R1)

Rb−Ra
(r−Ra)+n0(−Ra +R1) for Ra ≤ r < Rb

−h−n0(−Ra+R1)
Rb−Ra

(r−Rb)+h for Rb < r ≤ Rc
R2−n0(Ra−R1)

R2−Rc
(r−Rc)+n0(Ra −R1) for Rc < r ≤ R2.

(38)

We observe that the values ofε andµ are both negative and finite in the regionR1 + δ ≤
r < Ra, and the radial components approach zero at the boundaryr = R1 +δ . In other regions,
bothε andµ are positive and finite. It is important to stress that although four transformations
are used in the region ofR1 +δ ≤ r ≤ R2, the potential, and consequently the electromagnetic
field, is expressed in a single formula, Eq. (12). The surface impedanceα is calculated through
Eq. (37).

We consider anx-polarized plane wave with a unit amplitudeEinc = x̂eik0z is incident upon the
cloaking device along thez direction. Since the given incidence wave contains only the|m|= 1
term, from here onwards, we drop off them in the subscript for simplicity. For example, the
coefficientKnm is written asKn. It is well known thatKn is proportional toin(2n+1)/[n(n+1)]
for both TE and TM components of the incident plane wave [3]. We aim at examining the
cloaking effect and penetrating effect of the cloaking device as the parameterδ approaches
zero. The cloaking effect is quantified by|An/Kn|. The lower the value of|An/Kn|, the better the
cloaking effect. Since Eq. (19) shows thatEn/Dn is independent ofδ , we can use only|Dn/Kn|
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Fig. 2. Forn0 = 1, the cloaking and penetrating effects for different orders of multiples in
the limit of δ approaching zero. (a) The cloaking effect. (b) Penetrating effect.
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Fig. 3. Forn0 = 1 and δ = 10−3, the effect of surface impedance loss on the cloaking
and penetrating effects. (a) The cloaking effect. (b) Penetrating effect, where the horizontal
dotted line denotes the sensor mode.

to quantify the penetrating effect. The lower the value of|Dn/Kn|, the poorer the penetrating
ability. The case of|Dn/Kn| ≫ 1 corresponds to the resonance effect.

First, we letn0 = 1. The quantities of|An/Kn| and|Dn/Kn| for different values of the small
parameterδ and order numbern are shown in Fig. 2. We see from Fig. 2(a) that the cloaking
effect applies to all orders, includingn = n0 = 1. In addition, the slopes of the curves, which are
in the logarithmic scale, agree with the theory presented in Section 3. That is to say, whenever
δ is decreased by a factor 10, the values of|An/Kn| decreases by a factor of 10, 105, and 107 for
n = 1, n = 2, andn = 3, respectively. We see from Fig. 2(b) that the resonance effect applies to
the ordern = n0 = 1 and the shielding effect applies ton = 2 andn = 3. In addition, the slopes
of the curves agree with the theory, i.e., wheneverδ is decreased by a factor 10, the values of
|Dn/Kn| increase by a factor of 10 forn = n0 = 1 and decreases by a factor of 103 and 104 for
n = 2 andn = 3, respectively. To summarize, forn0 = 1, the wave component corresponding
to n = n0 yields resonance effect without external scattering, whereas the wave component
corresponding ton 6= n0 simultaneously yields cloaking and shielding effect.

#151762 - $15.00 USD Received 27 Jul 2011; revised 7 Sep 2011; accepted 9 Sep 2011; published 3 Oct 2011
(C) 2011 OSA 10 October 2011 / Vol. 19,  No. 21 / OPTICS EXPRESS  20526



x(λ)

z(
λ

)

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

x(λ)

z(
λ

)

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

x(λ)

z(
λ

)

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−60

−40

−20

0

20

40

60

80

(a) (b)

(c)

Fig. 4. Forn0 = 1, thex component of the electric field in thexz plane for the loss tangent of
(a) 10−2, (b) 10−4, and (c) 10−7, corresponding to the ideal cloaking, sensor, and resonance
mode, respectively.

Since the sensor surface will result in some energy loss, we are interested in analyzing how
this loss affects the cloaking and penetrating. To this purpose, we calculate|An/Kn| and|Dn/Kn|
in the case when the real surface impedanceα is replaced by a complex oneα(1+ iLt), where
Lt denotes loss tangent. Fig. 3 depicts the values of|An/Kn| and|Dn/Kn| for δ = 10−3 for the
range of loss tangent from 10−10 to 10−1. Fig. 3(a) and (b) show that the loss enhances the
cloaking effect and at the same time decreases the penetrating effect for the ordern = n0 = 1,
but it barely affects the cloaking or penetrating effect for other orders. We see from Fig. 3(b) that
for n = n0 = 1, as the loss decreases, the penetrating ability changes from the shielding mode
(i.e., ideal cloaking mode) to the sensor mode and then to the resonance mode. It is interesting
to see that a moderate loss, such as loss tangent of 10−4, is able to enhance the cloaking effect
and at the same time to shift the resonance mode to the sensor mode. In Fig. 4, we plot thex
component of the electric field in thexz plane for the loss tangent of 10−2, 10−4, and 10−7,
corresponding to the shielding (i.e., ideal cloaking), sensor, and resonance mode, respectively.

#151762 - $15.00 USD Received 27 Jul 2011; revised 7 Sep 2011; accepted 9 Sep 2011; published 3 Oct 2011
(C) 2011 OSA 10 October 2011 / Vol. 19,  No. 21 / OPTICS EXPRESS  20527



x(λ)

z(
λ)

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

Fig. 5. Thex componentof the electric field in thexz plane for the case when only the
sensor exists, without the presence of the outer cloaking layer.
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Fig. 6. Forn0 = 2, the cloaking and penetrating effects for different orders of multiples in
the limit of δ approaching zero. (a) The cloaking effect. (b) Penetrating effect.

In comparison,when only the sensor exists, without the presence of the outer cloaking layer, the
distribution of the electric field is plotted in Fig. 5, where we see that the distorted field pattern
indicates the presence of a scatterer.

Next, forn0 = 2, we also analyze the cloaking and penetrating effects. We see from Fig. 6(a)
that the cloaking effect applies to all orders, includingn = n0 = 2 and the slopes of the curves
agree with the theories, i.e., wheneverδ is decreased by a factor 10, the values of|An/Kn|
decreases by a factor of 103, 103, and 107 for n = 1, n = 2, andn = 3, respectively. We see from
Fig. 6(b) that the sensor mode applies to the ordern = n0 = 2 and the shielding effect applies to
n = 1 andn = 3. The slopes of the curves agree with the theory, i.e., wheneverδ is decreased
by a factor 10, the values of|Dn/Kn| keeps the same order forn = n0 = 2 and decreases by a
factor of 102 and 104 for n = 1 andn = 3, respectively. To summarize, forn0 = 2, the wave
component corresponding ton = n0 yields sensor effect without external scattering, whereas
the wave component corresponding ton 6= n0 simultaneously yields cloaking and shielding
effects. Fig. 7 depicts the values of|An/Kn| and |Dn/Kn| for δ = 10−3 for presence of loss
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Fig. 7. Forn0 = 2 and δ = 10−3, the effect of surface impedance loss on the cloaking
and penetrating effects. (a) The cloaking effect. (b) Penetrating effect, where the horizontal
dotted line denotes the sensor mode.
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Fig. 8. Forn0 = 2, thex component of the electric field in thexz plane for the loss tangent of
(a) 10−4 and (b) 10−7, corresponding to the ideal cloaking and sensor mode, respectively.

in the surface impedance. We observe that the loss enhances the cloaking effect and in the
meanwhile decrease the penetrating effect for the ordern = n0 = 2, but it barely affects the
cloaking or penetrating effect for other orders. We see from Fig. 7(b) that forn = n0 = 2, as
the loss decreases, the penetrating ability changes from the shielding mode to the sensor mode.
In Fig. 8, we plot thex component of the electric field in thexz plane for the loss tangent of
10−4 and 10−7, corresponding to the shielding and the sensor mode, respectively. In practice,
for n = n0 = 2, the sensor mode can easily be destroyed by the loss. For example, in Fig. 8 a
loss tangent of 10−4 is able to shift the sensor mode to the shielding mode.

5. Conclusion

The ideal transformation optics cloaking is accompanied by shielding: external observations do
not provide any indication of the presence of a cloaked object, nor is any information about the
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fields outside detectable inside the cloaked region. In this paper, we proposed a transformation
thatcloaks three-dimensional objects for electromagnetic waves in sensor mode, i.e., cloaking
accompanied by degraded shielding. The proposed transformation tackles the difficulty caused
by the fact that the lowest multipole in three-dimensional electromagnetic radiation is dipole
rather than monopole. It is worth emphasizing that we have obtained the analytical solution to
the electromagnetic fields in each region of the whole space. We find that for the dipole term
(n=1), we are able to achieve resonance mode without external scattering. For the quadrupole
term (n=2), we are able to achieve sensor mode without external scattering. However, the loss
that is presented on the surface of the sensor degrades the penetrating effect so that a moderate
loss is able to shift the resonance mode to the sensor mode forn = 1 and to shift the sensor mode
to the ideal cloaking mode forn = 2. Thus, in real world applications, where loss is present on
the surface of sensor, it is more desirable to achieve the sensor mode using the dipole term.
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