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Abstract
While	frailty	is	a	prominent	risk	factor	in	an	aging	population,	the	underlying	biology	
of frailty is incompletely described. Here, we integrate 979 circulating proteins across 
a wide range of physiologies with 12 measures of frailty in a prospective discovery co-
hort	of	809	individuals	with	severe	aortic	stenosis	(AS)	undergoing	transcatheter	aortic	
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1  |  INTRODUC TION

With improvements in cardiac intervention and prevention during 
the past three decades, individuals who would have previously 
succumbed	 to	 acute,	 non-	communicable	 diseases	 (cardiovascular	
disease	 [CVD],	 oncologic)	 now	 survive	 to	 an	older	 age	with	mul-
tiple advanced chronic conditions (Ijaz et al., 2022).	This	changing	
clinical	 landscape	 challenges	 the	 routine	 application	 of	 high-	risk	
therapy	 in	 higher	 risk	 individuals	 specifically	 in	 age-	related	 con-
ditions,	 like	 CVD	 (Jha	 et	 al.,	 2017; Leon et al., 2010; Smith 
et al., 2011; Reardon et al., 2017;	Waksman	 et	 al.,	2018),	 where	
an interplay between cardiac and	 non-	cardiac	 physiology	 impact	
outcomes. In this context, understanding how frailty— an impaired 
ability to maintain homeostasis during physiologic stress (Clegg 
et al., 2013)—	modifies	 treatment	 response	 is	 critical.	Despite	 as-
sociations of several frailty measures with clinical outcomes (Clegg 
et al., 2013;	Guralnik	et	al.,	1994, 1995; Ijaz et al., 2022),	there	re-
mains significant heterogeneity in how frailty is assessed among 
older adults, including those with CVD (Rohrmann, 2020),	with	con-
cerns around how best to reproducibly define and quantify frailty 
across centers and conditions as major limitations to widespread 
adoption	(Rockwood	&	Howlett,	2018).	While	efforts	to	define	mo-
lecular	correlates	of	chronological	aging	abound	(Ahadi	et	al.,	2020; 
Basisty et al., 2020; Emilsson et al., 2018; Lehallier et al., 2019, 
2020; Sebastiani et al., 2021;	Tanaka	et	al.,	2018),	their	application	
in	tissues	accessible	clinically	(e.g.,	blood)	has	largely	been	limited	
to an epidemiologic context (Landino et al., 2021; Liu et al., 2022; 
Sathyan et al., 2020;	Tanaka	et	al.,	2020),	without	a	clear	ability	to	
define	the	impact	of	circulating	biochemistry	on	downstream,	post-	
therapy	outcome	(Ferrucci	&	Fabbri,	2018; Ramonfaur et al., 2022).	
Given the potential for early identification of “accelerated” aging 
and molecular intervention (Sinha et al., 2014),	 identifying	 path-
ways of human frailty related to poorer tolerance of intervention 
may prioritize adjunctive avenues of therapy and investigation to 
enhance resilience in this growing population.

Here, we hypothesized that biological pathways of frailty— 
revealed through integrating 12 measures of frailty with comprehen-
sive	proteomic	profiling—	would	identify	older	individuals	at	high	risk	
of mortality despite intervention. We studied 809 individuals with 
symptomatic,	 severe	 aortic	 stenosis	 (AS)	 undergoing	 transcatheter	
valve	implantation	(TAVI)—	an	age-	related	cardiovascular	condition	in	
which frailty has had prognostic implication (Kiani et al., 2020).	We	
quantified 979 circulating proteins alongside 12 measures of frailty en-
compassing	body	composition,	cognition,	nutrition,	patient-	centered	
assessment	 of	 well-	being,	 functional	 measures,	 and	 biochemistry.	
We developed, validated, and characterized proteomic signatures of 
three	composite	axes	of	 frailty	against	post-	TAVI	mortality,	and	ex-
plored the generalizability of our findings and their age dependence 
across	multiple	studies	(35,559	community-	dwelling	adults	from	Ice-
land	(Ferkingstad	et	al.,	2021);	human	studies	across	the	life-	course	
(Lehallier et al., 2019);	 and	1894	 community-	dwelling	 individuals	 in	
the	Framingham	Heart	Study	[FHS]).	Ultimately,	we	sought	to	define	a	
proteomic architecture of frailty in structural heart disease and char-
acterize	its	broad	relevance	to	multi-	organ	phenotypes,	function,	and	
outcome	to	inform	future	studies	of	risk	and	therapy.

2  |  RESULTS

2.1  |  Study populations

To derive proteomic correlates of frailty in advanced heart disease, we 
studied	809	 individuals	with	 severe	AS	 from	a	multicenter	prospec-
tive cohort study (Perry et al., 2022; Stein et al., 2022)	where	frailty	
measures	were	systematically	collected,	split	 into	two	samples:	 (1)	a	
derivation sample (N = 233)	that	had	complete	data	on	12	measures	of	
frailty	and	(2)	a	validation	sample	(N = 576)	comprised	of	the	remainder	
of	our	multicenter	AS	cohort	that	did	not	have	complete	data	on	the	12	
frailty measures (Table 1).	Both	samples	had	follow-	up	for	vital	status.	
Overall,	the	AS	cohort	had	a	median	age	83 years	(range	46–	100 years,	
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valve implantation. Our aim was to characterize the proteomic architecture of frailty in 
a	highly	susceptible	population	and	study	its	relation	to	clinical	outcome	and	systems-	
wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic 
signatures	(specifically	of	physical	function)	were	related	to	post-	intervention	outcome	
in	AS,	 specifying	pathways	of	 innate	 immunity,	cell	growth/senescence,	 fibrosis/me-
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TA B L E  1 Baseline	characteristics	of	the	aortic	stenosis	cohort.

Characteristic Overall (N = 809) Derivation (N = 233) Validation (N = 576) p- value

Age 83	(77,	88) 84	(78,	87) 83	(76,	88) 0.3

Female 352	(44%) 106	(45%) 246	(43%) 0.5

Race

White 781	(97%) 226	(97%) 555	(96%) 0.1

Black 18	(2.2%) 3	(1.3%) 15	(2.6%)

Asian 8	(1.0%) 2	(0.9%) 6	(1.0%)

Other 2	(0.2%) 2	(0.9%) 0	(0%)

Body	mass	index	(kg/m2) 27.6	(24.3,	31.9) 26.8	(23.7,	30.1) 28.1	(24.6,	32.5) 0.004

History	of	smoking 421	(52%);	0.5% 130	(56%);	0.9% 291	(51%);	0.3% 0.2

Coronary artery disease 565	(70%) 157	(67%) 408	(71%) 0.3

Diabetes mellitus 315	(39%);	0.1% 66	(28%) 249	(43%);	0.2% <0.001

Katz	Index	of	Independence	in	ADLs

1 5	(0.7%);	6.3% 1	(0.4%) 4	(0.8%);	8.9% 0.3

2 13	(1.7%);	6.3% 2	(0.9%) 11	(2.1%);	8.9%

3 9	(1.2%);	6.3% 1	(0.4%) 8	(1.5%);	8.9%

4 34	(4.5%);	6.3% 6	(2.6%) 28	(5.3%);	8.9%

5 121	(16%);	6.3% 36	(15%) 85	(16%);	8.9%

6 576	(76%);	6.3% 187	(80%) 389	(74%);	8.9%

KCCQ-	12	summary	score 47	(30,	66);	6.1% 53	(36,	70) 43	(27,	61);	8.5% <0.001

EQ-	VAS	score 60	(40,	75);	6.7% 60	(50,	80) 50	(40,	75);	9.4% <0.001

PHQ-	2

0 357	(47%);	5.2% 116	(50%);	0% 241	(45%);	7.3% 0.8

1 124	(16%);	5.2% 38	(16%);	0% 86	(16%);	7.3%

2 138	(18%);	5.2% 40	(17%);	0% 98	(18%);	7.3%

3 65	(8.5%);	5.2% 18	(7.7%);	0% 47	(8.8%);	7.3%

4 42	(5.5%);	5.2% 10	(4.3%);	0% 32	(6.0%);	7.3%

5 16	(2.1%);	5.2% 6	(2.6%);	0% 10	(1.9%);	7.3%

6 25	(3.3%);	5.2% 5	(2.1%);	0% 20	(3.7%);	7.3%

Nutrition	(MNA-	SF) 12	(10,	13);	8.0% 12	(10,	13) 11	(10,	12);	11% 0.08

Mini-	Cog	total	score

0 20	(2.7%);	6.9% 8	(3.4%) 12	(2.3%);	9.7% >0.9

1 87	(12%);	6.9% 27	(12%) 60	(12%);	9.7%

2 133	(18%);	6.9% 43	(18%) 90	(17%);	9.7%

3 157	(21%);	6.9% 45	(19%) 112	(22%);	9.7%

4 172	(23%);	6.9% 53	(23%) 119	(23%);	9.7%

5 184	(24%);	6.9% 57	(24%) 127	(24%);	9.7%

Average	gait	speed	(m/s) 0.68	(0.49,	0.86);	8.4% 0.68	(0.54,	0.86) 0.67	(0.48,	0.87);	12% 0.6

Average	handgrip	strength	(kg) 20	(14,	27);	9.9% 18	(13,	26) 20	(14,	27);	14% 0.4

Psoas muscle area index (cm/m2) 6.74	(5.62,	8.04);	54% 6.60	(5.63,	7.89) 7.03	(5.62,	8.29);	76% 0.3

Visceral fat area index (cm/m2) 69	(43,	96);	63% 67	(43,	91) 70	(43,	104);	88% 0.6

Albumin	(g/dL) 3.80	(3.40,	4.10);	0.6% 3.70	(3.40,	4.00) 3.80	(3.40,	4.20);	0.9% 0.05

Hemoglobin	(mg/dL) 12.30	(11.00,	13.50);	0.6% 12.60	(11.30,	13.80) 12.20	(10.90,	13.30);	0.9% 0.004

eGFR 58	(45,	75);	0.6% 63	(48,	77);	0.9% 56	(43,	73);	0.5% 0.03

Note:	Continuous	variables	are	reported	as	median	(25th	percentile,	75th	percentile);	%	missing	(if	any).	Categorical	variables	are	reported	as	N	(%);	
%	missing	(if	any).	P	values	are	from	Wilcoxon	rank	sum	test	for	continuous	variables	and	chi-	squared	test	for	categorical	variables	where	expected	
cell	counts	were >5. Fisher's exact test was used for all other categorical variables.
Abbreviations:	ADLs,	Activities	of	Daily	Living;	KCCQ-	12,	Kansas	City	Cardiomyopathy	Questionnaire	summary	score;	EQ-	VAS,	EuroQol	Visual	
Analog	Scale;	PHQ-	2,	Patient	Health	Questionnaire-	2;	MNA-	SF,	Mini	Nutritional	Assessment	Short	Form;	eGFR,	estimated	glomerular	filtration	rate.
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44%	women),	with	a	high	prevalence	of	coronary	artery	disease	(70%)	
and	diabetes	(nearly	40%).	The	derivation	and	validation	samples	were	
largely	comparable,	with	some	imbalance	in	diabetes	prevalence	(43%	
in	 validation	 vs.	 28%	 in	 derivation),	 body	 mass	 index,	 and	 in	 some	
measures	of	self-	reported	health	status	(e.g.,	KCCQ-	12	and	EQ-	VAS).

In general, our replication cohorts had broad age distribution 
(Icelandic studies, N = 35,559,	mean	age	55 ± 17 years;	57%	women;	
Eiriksdottir	et	al.,	2021;	Ferkingstad	et	al.,	2021);	multicenter	study	of	
171 individuals across four centers in the United States and Europe, 
age	range	21–	107 years;	51%	women	(Lehallier	et	al.,	2019);	FHS	co-
hort, N = 1894	age	55 ± 10,	54%	women,	Table S2 (Liu et al., 2022).	
The FHS cohort had lower prevalent cardiometabolic morbidity in 
FHS	relative	to	our	AS	cohort,	consistent	with	its	younger	mean	age	
and	being	a	community-	based	population.	As	we	conducted	original	
analyses in FHS, the study population is reported in Table S2. For 
detailed cohort characteristics of the other replication cohorts, the 
reader	is	directed	to	the	parent	publications	(Eiriksdottir	et	al.,	2021; 
Ferkingstad	et	al.,	2021; Lehallier et al., 2019).

2.2  |  Multidimensional frailty measures are 
classified into three broad phenotypic groups

Distribution of frailty measures in our derivation sample is in Table 1 
with correlations in Figure S1. Given the physiologic and statistical 
relatedness across frailty measures, we used principal component 
analysis	 (PCA)	 to	 identify	composite	axes	of	 frailty	 (Figure 2).	The	
top	 three	 principal	 components	 (PCs)	 explained	≈49%	of	 variance	
in the frailty phenome studied (loadings for each of the three PCs 
in Figure 2a).	The	 first	PC	 (“axis”)	was	weighted	predominantly	on	
patient-	reported	metrics	 of	well-	being,	 including	 PHQ-	2,	 EQ-	VAS,	
KCCQ-	12,	 and	 MNA-	SF	 (hereafter	 called	 “patient-	reported	 out-
comes”).	The	second	axis	was	weighted	highly	on	body	composition	
(visceral	fat	area	index,	psoas	muscle	area	index)	with	lesser	weights	
for grip strength and cognitive scores (hereafter labeled “body 
composition”).	The	 third	axis	was	weighted	on	objective	measures	
of	physical	function	(Katz	ADL	score,	gait	speed,	grip	strength)	and	
biochemical	measures	included	in	frailty	(hemoglobin,	albumin),	and	
was termed “physical function.” Frailty axes demonstrated a similar 
heterogeneity across age as previously reported for individual frailty 
metrics (Rohrmann, 2020; Figure 2b),	with	only	a	modest	correlation	
between each component with age (maximum Spearman |ρ| = 0.20).	
In	addition,	consistent	with	known	phenotypic	dimorphism	by	sex,	
we observed higher body composition and physical functional 
scores for men relative to women (Figure S3).

2.3  |  Proteomic correlates of frailty identify 
older adults at high risk for mortality after cardiac 
intervention

To identify proteomic signatures of frailty, we next used linear re-
gression	methods	(both	ordinary	and	LASSO)	across	the	proteome	as	

independent variables with each individual frailty measure or each 
composite	frailty	axis	(from	the	PCA	above)	as	the	dependent	vari-
able	in	separate	models	(results	in	the	Data	File	S1).	Hemoglobin	and	
albumin were related to the greatest number of proteins, followed 
by	gait	speed,	nutrition,	and	KCCQ-	12.	LASSO	regressions	for	each	
of the three frailty axes selected 191 unique proteins, with fewer 
proteins	 selected	 in	 models	 for	 patient-	reported	 outcomes	 than	
for	 body	 composition	 or	 physical	 function.	 LASSO-	based	 protein	
signatures of each frailty axis (protein “score” for that phenotypic 
axis, see Section 4)	had	variable	model	fits,	with	model	fits	generally	
poorest	for	patient-	reported	outcomes	(fit	for	hold-	out	folds	during	
LASSO	optimization	shown	 in	Figure S4a; fit across entire deriva-
tion sample shown in Figure S4b).	To	validate	these	protein	scores	
of frailty, we imputed missing frailty data in the validation sample 
(using multivariate imputation by chained equations, see Section 4)	
to correlate frailty axes with the protein scores. This demonstrated 
similar relations as the derivation sample: a poor relation in models 
for	 patient-	reported	 outcomes	 (Spearman	 ρ = 0.17),	moderate	 cor-
relations for body composition (Spearman ρ = 0.40),	 and	 physical	
function (Spearman ρ = 0.41).	Given	 the	need	 for	complete	data	 in	
PCA,	the	use	of	imputation	for	data	missingness	was	restricted	only	
to test replication of association of protein scores to the composite 
axes of frailty. We did not observe effect modification by sex on 
the relationship between individual proteins and frailty axes after 
FDR	adjustment	(Benjamini–	Hochberg)	for	multiple	testing	of	inter-
action terms. Each protein score was related to the frailty measures 
most heavily loaded in the parent frailty axis from which it was de-
rived (Figure S5).	Accordingly,	each	protein	score	exhibited	a	similar	
age and sex relation as the parent frailty axes (maximum Spearman 
|ρ| = 0.29	for	age	across	all	protein	scores).

We next assessed the relation of each protein score and frailty 
axis	 from	 which	 it	 was	 derived	 with	 all-	cause	 mortality.	 Across	
a	 median	 3.2 years	 of	 follow-	up	 (in	 derivation	 sample;	 25th-	75th	
percentile	 1.3–	3.6 years),	 each	 of	 the	 three	 frailty	 axes	 had	 point	
estimates	 for	 post-	TAVI	mortality	 in	 a	 protective	 range,	with	 only	
physical	function	significantly	related	to	mortality	after	clinical	risk	
adjustment (Figure 3).	 Protein	 scores	 of	 frailty	 exhibited	 similar	
estimates for mortality in both derivation and validation samples, 
generally	 robust	 to	multivariable	adjustment	at	a	median	2.9 years	
follow-	up	(25th-	75th	percentile	1.2–	3.9 years).	Of	note,	in	sensitivity	
analyses, associations with mortality were robust to adjustment for 
simpler	biomarkers	canonically	associated	with	cardiovascular	mor-
tality	(NT-	proBNP,	hemoglobin,	albumin	(Ibrahim	&	Januzzi	Jr.,	2018; 
Table S3).

2.4  |  The proteome implicates both 
known and novel pathways of human frailty

We used proteins associated with the 12 frailty measures in linear 
models	 for	pathway	analysis,	 respectively	 (at	a	5%	FDR).	The	pro-
teins identified implicated broad pathways of innate and adaptive 
immunity	 (e.g.,	 cytokine	 signaling	 and	TNF),	 canonical	 cell	 growth	
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and	signaling	pathways	(e.g.,	PI3K-	Akt	signaling),	and	organ	fibrosis	
and metabolism (e.g., extracellular matrix remodeling and turnover, 
glycosylation; Figure S6).	 In	 addition	 to	proteins	with	 known	 rela-
tion	to	body	composition	(e.g.,	leptin	and	insulin-	like	growth	factor	
binding	proteins),	several	novel	proteins	with	roles	in	adipose	tissue	
metabolism and inflammation were identified (in association with 
frailty	axes),	including	PLIN1	(higher	expression	related	to	increased	
adipocyte	 size,	 altered	 lipid	 handling,	 and	 improved	 whole-	body	
glucose tolerance Kern et al., 2004),	 INHBC	 (involved	 in	 activin	C	
signaling	in	adipocytes	via	ALK7,	implicated	in	human	obesity;	Carls-
son et al., 2009; Goebel et al., 2022),	MEP1B	 (metalloproteinase;	
murine deletion results in weight gain with limited human data; Png 
et al., 2023),	ADGRG1	(implicated	in	islet	function	and	reduced	islet	
expression in diabetes and hyperglycemic stress (Duner et al., 2016),	
and	RET	(implicated	in	anorectic	responses	downstream	of	GDF-	15;	
Li et al., 2017).	 Similarly,	 the	physical	 function	proteome	 (proteins	
associated	 with	 “physical	 function”	 frailty	 axis)	 included	 proteins	
previously widely implicated in inflammation, muscle function, and 
cachexia,	including	GDF-	15	(Crunkhorn,	2020; Siddiqui et al., 2022),	
MSTN (Schafer et al., 2016),	IL6	(Strassmann	et	al.,	1992),	and	FABP4	
(Kim et al., 2013; Lee et al., 2017),	as	well	as	a	host	of	proteins	not	
widely reported in frailty biology, with roles in innate inflamma-
tion	(IL-	17A	Ying	et	al.,	2022),	IL-	10	Deans	et	al.,	2009, TLR3 Graber 
et al., 2018),	myogenesis	 or	muscle	 regeneration	 (ITGA11	Grassot	
et al., 2014,	 EFNA1	 Alonso-	Martin	 et	 al.,	 2016, LRRN1 McKellar 
et al., 2021),	cachexia	 (ASGR1	Narasimhan	et	al.,	2020),	 lysosomal	
metabolism (dynamic with muscle atrophy; cathepsin CTSL; Wu 
et al., 2011),	 organ	 fibrosis	 (MZB1	 Schiller	 et	 al.,	2017),	 oxidative	
stress	 (LGALS9	 Nunoue	 et	 al.,	 2021),	 neurogenesis	 (SDC1	 Mou-
thon et al., 2020),	and	metabolism	(ANGPTL4	Gusarova	et	al.,	2018, 
PLIN1).

2.5  |  Chronological age does not fully account for 
broad variability in the frailty proteome

Given	relevance	of	implicated	pathways	across	the	life-	course	(e.g.,	
immunity,	cell	growth,	and	metabolism),	we	next	sought	to	quantify	
the extent to which proteins related to frailty axes were explained by 
age.	In	the	AS	cohort,	age	only	accounted	for	a	small	fraction	of	the	
total variability in protein scores (Figure 4a),	with	sex,	and	BMI	ac-
counting	for	more	of	the	variability,	and	protein	scores	were	weakly	
related to age (Figure 4b).	To	test	whether	this	observation	was	pre-
sent in a broader age range, we examined 50 circulating proteins that 
overlapped with proteins associated with any frailty axis (from single 
protein	linear	regression)	in	171	individuals	across	four	cohorts	(age	
21–	107 years;	Lehallier	et	al.,	2019; Figure 4c),	resolving	three	pre-
dominant	patterns	with	age:	(1)	proteins	exhibiting	higher	(GDF-	15,	
IGFBP2, REN, consistent with prior studies; Liu et al., 2021; van den 
Beld et al., 2019)	or	 (2)	 lower	 (CA6,	MSTN,	RET)	circulating	 levels	
at	older	age;	and	(3)	proteins	that	did	not	exhibit	a	clear	monotonic	
association	with	age	(LEP,	LTBR,	IL4R,	EPO;	characteristic	raw	data	
plots in Figure S7).	These	life-	course	patterns	may	largely	have	been	

established	by	the	time	advanced	heart	disease	(AS)	requiring	inter-
vention	had	developed	(purple	line	demonstrating	age	range	of	AS	
cohort, Figure 4c),	accounting	for	the	low	variation	explained	by	age	
in	our	AS	sample.

2.6  |  The frailty proteome and clinical risk

Given	 the	 physiologic	 relevance	 of	 frailty-	implicated	 pathways	
across multiple organs in advanced CVD, we next studied relations 
of	the	frailty	proteome	to	health	status	and	disease-	free	longevity.	
In	 proteins	 associated	with	 any	 frailty	 axis	 in	 our	 AS	 studies	 that	
were	measured	in	a	large	Icelandic	cohort	(70	proteins;	Ferkingstad	
et al., 2021),	we	found	(1)	a	limited	effect	of	age	on	protein	concentra-
tion	and	(2)	associations	between	proteins	and	multi-	organ	morbid-
ity generally in a directionally plausible manner (Figure 5a).	Of	note,	
queried	 proteins	were	 strongly	 related	 to	metabolic-	inflammatory	
phenotypes not directly cardiac (glycemic control, body composi-
tion,	inflammatory	markers,	malignancy).

We next studied the relation of our composite proteomic frailty 
axes	 scores	 in	 the	1894	FHS	participants	 to	 frailty	measures,	 and	
cause-	specific	mortality.	Recalibration	efforts	 (described	 in	Statis-
tical	methods)	were	 excellent	 (Spearman	ρ	 range	0.89–	0.92),	with	
resulting	scores	in	FHS	demonstrating	similar	sex-	based	differences	
and limited association with age (Pearson |r|	0.06–	0.11;	Figure S8).	
Proteins used to recalibrate the scores from our discovery cohort 
(Olink)	to	the	FHS	(SomaScan)	demonstrated	a	moderate	correlation	
(median Spearman ρ = 0.58	[25%–	75%:	0.21–	0.71]),	where	available,	
in published data (Katz et al., 2022).	Protein	scores	for	body	com-
position	and	physical	function	(at	FHS	Exam	5)	exhibited	generally	
concordant relation to visceral and subcutaneous fat or measures of 
physical	function/frailty,	respectively,	at	a	median	6.9 years	later	(for	
frailty	measures),	though	with	mitigation	of	effect	size	after	age-		and	
sex-	adjustment	 for	 several	measures,	 consistent	with	 the	 broader	
age range in FHS (Table S4).

We	 next	 examined	 the	 relation	 of	 protein	 scores	 with	 cause-	
specific mortality in FHS (Table 2).	 At	 a	 median	 26 years	 after	
proteomics	 (25th–	75th	 percentile	 19–	27 years,	 755	 deaths,	 211	
CVD-	related),	 a	 higher	 physical	 function	 protein	 score	 was	 asso-
ciated	 with	 lower	 all-	cause	mortality	 in	 FHS	 (Figure 5b; Table 2).	
Given	 the	 strong	 association	 between	 all-	cause	mortality	 and	 the	
proteomics of physical function, we next sought to examine whether 
that	 mortality	 association	 would	 be	 driven	 by	 non-	cardiovascular	
(versus	cardiovascular)	causes.	We	carried	 that	score	 forward	 into	
competing	risk	models	for	CVD	versus	non-	CVD	mortality	 in	FHS,	
where we found that the proteomics of physical function were asso-
ciated	with	non-	CVD	mortality	in	FHS	(Figure 5b; Table 2).

3  |  DISCUSSION

Here, we quantify 979 circulating proteins in 809 older individu-
als	 with	 severe	 AS	 to	 identify	 a	 proteomic	 “fingerprint”	 of	 frailty	
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defined	 across	 12	 measures	 (Afilalo	 et	 al.,	 2017)	 spanning	 physi-
cal	 function,	 cognition,	 nutrition,	 biochemistry,	 self-	reported	well-	
being, and body composition. We determined proteomic correlates 
of frailty measures, specifying canonical pathways of organ function 
(e.g.,	inflammation,	cell	growth	and	senescence,	cachexia)	as	well	a	
host	 of	mediators	 of	 tissue-	specific	 biology	 not	 previously	widely	
reported in human frailty (e.g., myogenesis, adipose tissue inflam-
mation,	 and	 lysosomal	metabolism).	 Protein	 scores	 of	 three	major	
frailty axes defined by integrating 12 frailty measures and proteins 
were strongly related to mortality after cardiac intervention, inde-
pendent	 of	 clinical	 risk.	 Despite	 reported	 statistically	 significant	
age association in epidemiologic cohorts with a broader range of 
age	 (Ferkingstad	 et	 al.,	2021),	 BMI	 and	 sex	 accounted	 for	 signifi-
cantly greater variability in protein scores of frailty axes than age 
in	 older	 patients	with	AS	 (Figure 4a).	Across	 eight	 decades	 of	 life	
(≈20–	100 years),	we	observed	heterogeneous	patterns	of	abundance	
of	frailty-	related	proteins	across	age	(Figure 4c),	with	patterns	well-	
established	by	advanced	age.	Across	a	large	number	of	individuals,	
frailty-	related	proteins	were	associated	with	a	broad	array	of	non-	
cardiac comorbidities and outcomes, including directionally consist-
ent	associations	with	mortality	in	long-	term	follow-	up	in	thousands	
of	community-	dwelling	 individuals	 (Figure 5).	 In	FHS,	we	observed	
a significant association between the protein score corresponding 
to	physical	function	with	all-	cause	and	non-	CVD	mortality	over	two	
decades. Collectively, these findings extend the growing aging liter-
ature toward the cardiovascular space and emphasize the potential 
for proteomic studies in the context of advanced CVD to identify 
functional,	prognostic	pathways	of	risk	for	interrogation	in	advanced	
heart disease.

Separating “biological” from “chronological” aging using 
molecular information has been the subject of a large body of 
work	 in	 aging	 research	 (Ahadi	 et	 al.,	2020; Basisty et al., 2020; 
Emilsson et al., 2018; Lehallier et al., 2019, 2020; Sebastiani 
et al., 2021;	Tanaka	et	al.,	2018).	Approaches	 that	generate	mo-
lecular	 “clocks”	 using	 epigenetic	 (Horvath,	2013),	 transcriptional	
(Peters et al., 2015;	 Shavlakadze	 et	 al.,	 2019),	 genomic	 (Singh	

et al., 2019),	 proteomic	 (Tanaka	 et	 al.,	 2018),	 and	 metabolomic	
(Cheng et al., 2015)	 information	have	been	advanced	 to	 identify	
relevant pathways of and individuals with “accelerated” aging ul-
timately	connected	to	longevity,	including	some	reports	of	cause-	
specific	mortality	 (Eiriksdottir	 et	 al.,	2021).	While	 these	 studies	
have	 illuminated	mechanisms	 and	 biomarkers	 of	 aging,	 most	 do	
not study individuals with CVD at older ages, where varying de-
grees	of	multi-	organ	frailty	(beyond	chronologic	aging	itself)	may	
play a critical role (Collard et al., 2012).	 Given	 the	 prognostic	
relevance and reversibility of frailty (Chang et al., 2004; Gural-
nik	 et	 al.,	 1994, 1995; Pandey et al., 2023; Perera et al., 2006; 
Puthoff, 2008; Volpato et al., 2008),	 clinical	 studies	 and	 care	 in	
advanced heart disease have recently prioritized frailty to opti-
mize	outcome	after	cardiac	intervention	(Afilalo	et	al.,	2017; Den-
feld et al., 2017; Flint et al., 2012;	Murali-	Krishnan	 et	 al.,	2015; 
Patel et al., 2018).	Nevertheless,	varied	definitions	across	studies,	
difficulties in standardizing measures (e.g., grip strength Cooper 
et al., 2021),	and	lack	of	specificity	of	common	metrics	(e.g.,	grip	
strength,	walk	speed,	and	albumin)	for	specific	biology	challenges	
clinical application and mechanistic discovery outside of con-
trolled,	non-	clinical	cohort	studies	(Kameda	et	al.,	2020; Landino 
et al., 2021; Lehallier et al., 2019; Liu et al., 2022; Pan et al., 2021; 
Rizza et al., 2014;	Santos-	Lozano	et	al.,	2020; Sathyan et al., 2020; 
Walston et al., 2002).	With	an	aging	population	at	high-	risk	for	ad-
vanced	heart	disease	eligible	for	high-	risk	intervention	(e.g.,	des-
tination left ventricular assist device Flint et al., 2012),	objective	
measures that personalize variations in clinical status and biology 
across individuals are critical.

Our study directly addresses these limitations by employing 
molecular discovery in a common clinical situation where frailty is 
routinely	considered	and	prognostic	(AS)	(Kiani	et	al.,	2020).	Unlike	
prior	cohort-	based	reports	(Liu	et	al.,	2022; Sathyan et al., 2020; 
Walston et al., 2002),	our	cohort	had	a	dramatically	higher	rate	of	
CVD	and	diabetes	(≈70%	and	≈40%	overall,	respectively),	consis-
tent	with	CVD	estimates	in	this	age	range	seen	clinically	(Yazdan-
yar	&	Newman,	2009).	In	this	context,	the	use	of	common	frailty	

TA B L E  2 Protein	scores	of	frailty	are	associated	with	all-	cause	mortality	and	non-	cardiovascular	mortality.	Cox	regression	models	for	all-	
cause	mortality	and	Fine-	Gray	competing	risk	models	for	CVD	and	non-	CVD	mortality.

Variable

Model Aa Model Bb

HR (95% CI) p value HR (95% CI) p value

All-	cause	mortality	(N = 1894;	deaths = 755)

Protein	score	(PC3) 0.82	(0.76,	0.88) 1.23e-	07 0.85	(0.78,	0.92) 3.47e-	05

Protein	score	(PC2) 1.04	(0.96,	1.13) 0.36 0.98	(0.90,	1.08) 0.71

Protein	score	(PC1) 0.88	(0.81,	0.95) 9.68e-	04 0.91	(0.84,	0.99) 0.02

Fine-	Gray	competing	risk	model	(N = 1890;	CVD	deaths = 211;	non-	CVD	deaths = 544)

Protein	score	(PC3)—	CVD	death 0.95	(0.82,1.1) 0.52 1.07	(0.91,1.25) 0.41

Protein	score	(PC3)—	Non-	CVD	death 0.83	(0.75,	0.91) 5.4e-	05 0.83	(0.75,	0.91) 1.2e-	04

aAdjusted	for	sex	and	age.
bAdjusted	for	sex,	age,	BMI,	smoking	status,	diabetes,	anti-	hypertensive	medication	treatment,	total	cholesterol/HDL	cholesterol,	systolic	blood	
pressure, and prevalent CVD.
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measures	 extending	 prognostic	 multi-	organ	 structure–	function	
(the	“Essential	Frailty	Toolset”;	Afilalo	et	al.,	2017)	to	guide	discov-
ery is a fundamental strength to move beyond clinical gestalt in 
frailty assessment (Ijaz et al., 2022).	Furthermore,	the	inability	of	
age to capture a large variation in the frailty proteome at the time 
of	TAVI	(relative	to	comorbidity)	in	our	older	population	highlights	
importance of discovery in a clinical CVD context. Despite statis-
tical	age	associations	in	up	to	80%	of	the	quantified	proteome	in	a	
large age range in epidemiology, the reported effect sizes are small 
(Ferkingstad	 et	 al.,	2021).	We	 observed	 similarly	weak	 relations	
with age when examining proteins related to frailty in our analy-
sis (Figure 5a),	suggesting	that	mechanisms	beyond	chronological	
age	are	likely	 involved	in	the	biology	of	frailty.	 In	an	older	popu-
lation undergoing clinical cardiac intervention, it is possible that 
an	age-	related	alteration	 in	 the	proteome	may	already	be	preva-
lent/established,	with	 inter-	individual	differences	determined	by	
comorbidity (Figure 4).	 This	 notion	 broadly	 underscores	 the	 po-
tential	importance	of	patient-	level	heterogeneity	and	human	mo-
lecular studies to prioritize targets for therapeutic or mechanistic 
discovery	in	frailty.	Indeed,	“anti-	aging”	pharmacology	directed	at	
metabolism may impact the proteome decades earlier to “prepare” 
organs	for	intervention	(metformin	and	GDF-	15;	Coll	et	al.,	2020);	
SGLT2	inhibition	and	PLIN1	(Yang	et	al.,	2021),	RNA	therapeutics	
(Fitzgerald et al., 2017; Solomon et al., 2019).

Biologically, our results implicated broad pathways relevant to 
both	 cardiac	 and	non-	cardiac	 physiology	 in	 aging	 around	 a	 theme	
of host inflammatory response, cell growth and senescence, and 
cachexia. Several proteins related to body composition and muscle 
function	specified	known	pathways	(leptin	signaling,	IGFBPs,	GDF-	
15,	IL6,	MSTN),	concordant	with	prior	human	observations	and	ca-
nonical mechanisms of human frailty. For example, our results are 
broadly	consistent	with	a	reported	fall	in	myostatin	(MSTN)	with	age,	
a	relation	to	greater	lean	mass	and	grip	strength	(in	men)	(Bergen	III	
et al., 2015),	 and	a	decreased	muscle	oxidative	capacity	and	 force	
generation	in	MSTN-	null	mice	(Amthor	et	al.,	2007).	Moreover,	our	
integrative approach facilitated discovery of an array of molecules 
with novel, emerging roles across a broad tissue biology relevant to 
aging, including adipose tissue metabolism and inflammation (e.g., 
PLIN1, Kern et al., 2004),	 activin	 signaling	 (Carlsson	 et	 al.,	 2009; 
Goebel et al., 2022),	and	PTX3	(Kocyigit	et	al.,	2014),	islet	cell	func-
tion	 (ADGRG1	Duner	et	al.,	2016),	muscle	cell	physiology	 (ITGA11	
Grassot et al., 2014),	 EFNA1	 (Alonso-	Martin	 et	 al.,	 2016),	 LRRN1	
(McKellar et al., 2021),	lysosomal	metabolism	(CTSL	Wu	et	al.,	2011),	
extracellular	matrix	handling	and	fibrosis	(SDC1	Yang	&	Friedl,	2016),	
among others that specify frailty mechanisms not necessarily spe-
cific to the heart. These broad mechanistic implications are consis-
tent with our phenotype and outcome associations across thousands 
of	 individuals	 in	 Iceland	 and	 FHS	 for	 a	 broad	 array	 of	metabolic-	
inflammatory conditions (Figure 5a)	 and	 non-	cardiovascular	 death	
(Figure 5b)	that	are	neither	fully	nor	directly	reversible	with	cardiac-	
only	intervention.	These	results	are	consistent	with	all-	cause	mortal-
ity in a subset of the Icelandic population across a broader age range 
(≈22,000	 individuals,	 ≈20–	100 years	 old),	 where	 several	 proteins	

related to lower physical function in our study (both canonical, e.g., 
GDF-	15,	and	more	novel,	e.g.,	MZB1,	ASGR1)	were	associated	with	
increased	mortality	(Eiriksdottir	et	al.,	2021).

From a clinical perspective, these results are compelling given 
recent reports suggesting potentially greater benefit to physical 
rehabilitation interventions in individuals with advanced heart dis-
ease who display greater frailty (Pandey et al., 2023).	The	novelty	
of this approach is the application of broad molecular characteriza-
tion to frailty at the point of its clinical utility for CVD, addressing 
heterogeneity in how frailty is assessed in clinical practice (Cooper 
et al., 2021).	Certainly,	direct	clinical	application	of	proteomics	as	an	
actionable	biomarker	requires	demonstration	of	its	reversibility	with	
intervention and advancing from a broad “omic” space with relative 
quantification (as done in nearly all molecular studies of aging and 
frailty)	to	a	more	precise,	select	panel	with	absolute quantification. 
Importantly, for some therapies where earlier application in patients 
with	more	advanced	multimorbidity	is	currently	standard	(e.g.,	TAVI),	
proteomics	 cannot	 be	 viewed	 as	 a	 “gatekeeper”	 to	 intervention,	
but as a barometer for rapid stratification of individuals in need of 
more aggressive pharmacologic or rehabilitative therapy (in addition 
to	TAVI)	 to	 limit	 poor	outcome	 (Kitzman	et	 al.,	2021).	 Indeed,	our	
results	 suggest	high	 residual	 risk	post-	TAVI	captured	by	 the	 frailty	
proteome— a unique opportunity to intervene more aggressively 
after acute CVD has been addressed. By analogy, application of 
these results to interventions with high morbidity and resource uti-
lization	(e.g.,	ventricular	assist	and	transplant)	may	offer	additional	
pre-	intervention	opportunities	 to	target	 individuals	at	high	risk	 for	
adjunctive intervention. While not clinically available, some proteins 
identified in our analysis have published pharmacologic modifiers 
(He et al., 2021; Vandeghinste et al., 2018).	While	our	results	suggest	
both	cardiac	and	non-	cardiac	implications	of	the	frailty	proteome	in	
large	populations	(FHS),	utilization	of	these	or	similar	signatures	to	
parse	cardiac	from	non-	cardiac	morbidity	after	“correction”	of	car-
diac	output	deficits	(e.g.,	with	ventricular	assist)	is	a	striking	potential	
for	future	work.	Finally,	as	our	proteomic	platforms	broaden,	these	
clinical opportunities may be met by potential molecular targets for 
intervention to improve frailty, similar to what has been attempted in 
other	spaces	in	heart	disease	(e.g.,	RNA-	based	therapies	Fitzgerald	
et al., 2017; Solomon et al., 2019).

Several	 limitations	of	our	study	merit	comment.	Our	AS	sam-
ple	 included	 several	 non-	continuous,	 non-	normal	 exposures	 and	
some differences in covariates between discovery and validation 
subsamples (Table 1),	 potentially	 biasing	 discovery.	 In	 particular,	
the validation sample is biased to include individuals with greater 
BMI and diabetes due to CT based measures of adiposity being 
unavailable in participants at the extremes of waist circumference. 
In	 addition,	while	PCA-	based	 frailty	 axes	were	 internally	 consis-
tent with our clinical experience and were related to outcome, a 
larger	sample	size	will	 likely	be	needed	to	examine	potential	 sex	
differences in how the proteome relates to the frailty phenome. 
We	recognize	 that	matching	 frailty-	related	proteins	 from	our	AS	
cohort	 to	 other	 studies	 with	 aptamer-	based	 proteomics	 offers	
unique challenges, including differences in specificity profile (Katz 
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et al., 2022).	 While	 increased	 variance	 due	 to	 SomaScan-	Olink	
platform differences may lead to null association (due to poor 
concordance for some proteins; Katz et al., 2022),	we	observed	a	
consistent association with outcomes and phenotypes as well as a 
reasonable degree of correlation (median Spearman r = 0.58)	be-
tween the two proteomic platforms on previously published data 
(Katz et al., 2022),	where	available,	with	a	caveat	that	some	pro-
teins	were	negatively	 correlated.	While	 the	 cross-	sectional	 rela-
tion of protein scores with frailty measures in FHS may be limited 
by	survival	bias	 (proteins	measured	≈7 years	prior	to	frailty	mea-
sures),	the	longitudinal	Cox	regression	results	replicated,	suggest-
ing these protein scores capture meaningful clinical outcomes. 
Lack	of	 racial	diversity	across	 samples	 included	here	 is	a	 signifi-
cant limitation and reflects the limited diversity in transcatheter 
registries	(Alkhouli	et	al.,	2019).	The	use	of	molecular	features	in	
blood testing may facilitate broader implementation of objective 
measures of frailty to address racial disparities (Usher et al., 2021).	
Ultimately, broader studies across race, frailty, and disease states 
with	an	eventual	aim	of	absolute	quantification	of	risk	will	be	es-
sential to personalize frailty assessment rapidly with prognostic 
and potential mechanistic implications.

In conclusion, we offer a paradigm to move past chronologi-
cal	age	to	biological	markers	of	frailty	that	are	related	to,	but	not	
dependent on, age. The circulating human proteome captures 
variability	 in	frailty	traits	weakly	related	to	age,	exhibiting	broad	
relations	 with	 metabolic-	inflammatory	 phenotypes,	 outcomes,	
and mechanisms not specific to the heart. Sex and BMI accounted 
for a larger proportion of variability in the frailty proteome rela-
tive to age itself, with studies across a wider age range suggesting 
that	proteins	relevant	to	post-	cardiac	intervention	outcomes	may	
already	be	established	by	older	age.	Across	younger	populations	
at	lower	risk,	proteomic	signatures	of	frailty	were	associated	with	
mortality,	including	cardiovascular	and	non-	cardiovascular	mortal-
ity. These results underscore the importance of human proteomic 
studies	to	guide	discovery	of	functional	biomarkers	and	potentially	
pharmacologically reversible pathways to optimize early interven-
tion	and	post-	intervention	clinical	risk	in	advanced	cardiovascular	
disease. Future studies should prioritize investigating the modifi-
ability of the frailty proteome and its correlation with mortality to 
establish	proteomics	as	a	potential	cross-	sectional	and	modifiable	
longitudinal measure of frailty.

4  |  METHODS

An	 overview	 of	 study	 design	 and	 statistical	 methods	 is	 shown	 in	 
Figure 1 and Figure S1.

4.1  |  Study population

The discovery cohort comes from a multicenter, prospec-
tive	 cohort	 study	 of	 participants	 with	 symptomatic,	 severe	 AS	

undergoing	 TAVI	 (Perry	 et	 al.,	 2022; Stein et al., 2022).	 A	 key	
strength of this cohort is the systematic, prospective assessment 
of	 frailty	 (defined	 below).	 Severe	 AS	 was	 defined	 according	 to	
American	 Society	 of	 Echocardiography	 guidelines	 (peak	 velocity	
≥4 m/s,	mean	 gradient	 ≥40 mm	Hg,	 or	 indexed	 aortic	 valve	 area	
<0.6 cm2/m2; Baumgartner et al., 2017).	All	participants	in	the	co-
hort	underwent	TAVI.	Participants	were	enrolled	from	10	centers	
across	the	United	States	between	May	2014	and	February	2017,	
with	a	final	assessment	of	all-	cause	mortality	between	March	and	
June	2020.	We	excluded	114	of	923	participants	 for	not	having	
protein data. Participants without missing data on the 12 frailty 
measures	(“complete	cases”)	were	included	in	the	derivation	sam-
ple, and participants with missing frailty data were evaluated for 
validation and prospective association. Coronary artery disease 
was	defined	as	atherosclerosis	 in	≥1	coronary	artery,	prior	myo-
cardial infarction, or prior revascularization. Diabetes was defined 
by a participant having been diagnosed or treated for diabetes by 
a healthcare provider.

To contextualize and validate findings, we sought to replicate our 
findings using published data from multiple human cohorts. To ex-
amine	age-	related	changes	in	the	frailty	proteome,	we	analyzed	data	
from	(1)	171	individuals	across	the	lifespan	(age	21–	107 years)	with	
previously	 reported	 plasma	 proteomics	 (aptamer-	based	 assay,	 So-
maScan,	Somalogic)	from	several	U.S.	and	European	cohort	studies	
of	aging	and	age-	related	disease	 (VASeattle,	PRIN06,	PRIN09,	and	
GEHA;	Jha	et	al.,	2017);	(2)	reported	cross-	sectional	associations	of	a	
plasma	proteome	(aptamer-	based,	SomaScan)	with	373	phenotypes	
from two Icelandic cohorts (Iceland Cancer Project and deCODE 
genetics)	comprised	of	35,559	community-	dwelling	adults	with	and	
without	cancer	 (Ferkingstad	et	al.,	2021);	 (3)	participants	from	the	
FHS Offspring cohort with prospective frailty phenotypes and car-
diovascular	and	non-	cardiovascular	outcomes	over	median	26 year	
follow-	up	with	aptamer-	based	plasma	proteomics	(SomaScan)	(Ngo	
et al., 2016).	 Cardiovascular	 disease	 in	 FHS	 was	 defined	 as	 prior	
myocardial infarction, coronary death, angina pectoris, coronary in-
sufficiency,	heart	failure,	stroke	or	transient	ischemic	attack,	or	in-
termittent	claudication	(D'Agostino	Sr.	et	al.,	2008).	The	Institutional	
Review Board at each institution approved each study.

4.2  |  Proteomic profiling

4.2.1  |  Discovery	cohort	(AS/TAVI)

Venous	blood	was	collected	in	AS	samples	prior	to	TAVI,	processed	
within	30 minutes,	and	stored	at	−80°C.	Plasma	proteins	were	quan-
tified	using	the	Olink	Explore	1536	panel	(Olink,	Uppsala,	Sweden)	in	
three	batches	(Assarsson	et	al.,	2014).	Proteins	related	to	frailty	axes	
in the discovery cohort were matched to proteins in the replication 
cohorts using UniProt identifier.

We excluded 258 proteins from the Oncology panel across all 
batches due to a technical issue in the first batch that limited accu-
racy of these proteins. We used median normalization approaches to 
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F I G U R E  1 Graphical	abstract	and	study	diagram.
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perform batch correction (with batch 3 as the referent, given most 
samples	were	run	in	this	batch).	We	excluded	154	proteins	if	>25%	
of reported values were below the reported level of detection and 
excluded	145	proteins	with	 a	 coefficient	of	 variation	 greater	 than	
40%,	yielding	979	proteins	available	 for	analysis.	Protein	 levels	 (in	
normalized protein expression units, log2	scale)	were	mean-	centered	
and standardized to unit variance for modeling.

4.2.2  |  Replication	cohorts

Aptamer-	based	 proteomics	 (SomaScan)	 was	 used	 in	 all	 replica-
tion	 studies	 (Ferkingstad	et	 al.,	2021; Lehallier et al., 2019; Nayor 
et al., 2020).	 Published	 data	 were	 used	 for	 Icelandic	 participants	
(Ferkingstad	et	 al.,	2021)	 and	 the	U.S.	 and	European	cohort	 stud-
ies	 of	 aging	 and	 age-	related	 disease	 (VASeattle,	 PRIN06,	 PRIN09,	
and	 GEHA;	 Lehallier	 et	 al.,	 2019).	 For	 FHS,	 proteomics	 was	 per-
formed in two batches as described (Nayor et al., 2020).	FHS	inves-
tigators accounted for batch effects as previously described (Nayor 
et al., 2020),	via	log-	transforming	and	standardizing	proteins	in	each	
batch	 separately,	 pooling	 batches,	 and	 subsequently	 rank	 normal-
izing	 the	entire	FHS	 sample.	Plate-	adjusted	 standardized	 residuals	
were subsequently used for regression to address batch effects 
comprehensively.

4.3  |  Frailty assessment

The	 discovery	 (AS)	 cohort	 prospectively	 assessed	 measures	 of	
frailty in all participants. Since there is not one universally accepted 
definition of frailty, for this analysis we selected elements of the 

Fried	frailty	phenotype	combined	with	variables	included	in	the	Afi-
alo	toolset	that	was	developed	specifically	for	the	TAVI	population	
then	conducted	a	PCA	to	define	axes	(or	dimensions)	of	frailty.	We	
did not include categorical measures of frailty (such as exhaustion 
or	unintentional	weight	loss	from	the	Fried	frailty	phenotype)	due	
to their heavy weightings in the discovery cohort (e.g., almost all 
participants	reporting	no	unintentional	weight	loss)	and	incompat-
ibility	with	PCA.	We	 included	12	 separate	measures	of	 frailty	 in-
cluding	questionnaire-	based	assessments,	functional	assessments,	
and biochemical and radiographic measures (Table S1).	Three	global	
assessments of frailty and quality of life were assessed via ques-
tionnaire,	and	included	Katz	Index	of	Independence	in	Activities	of	
Daily	Living	(ADL)	score	(Katz	et	al.,	1970),	EuroQol	Visual	Analogue	
Scale	(EQ-	VAS;	Nancy	Devlin	&	Janssen,	2020),	and	the	Kansas	City	
Cardiomyopathy	Questionnaire	 summary	 score	 (KCCQ-	12;	Green	
et al., 2000).	 Physical	 frailty	 was	 assessed	 by	 average	 handgrip	
strength	(by	dynamometer),	average	gait	speed	(5-	meter	walk	time),	
visceral fat area indexed to height2, and psoas muscle area indexed 
to height2. For participants who were unable to perform the gait 
speed	test,	a	value	of	0	was	imputed.	Pre-	TAVI	computed	tomogra-
phy	(CT)	scans	were	used	to	measure	psoas	muscle	area	index	and	
visceral	fat	area	index	using	OsiriX	software	(Rosset	et	al.,	2004).	Bi-
lateral psoas muscle area and visceral fat area were measured man-
ually	on	a	single	3 mm	slice	at	the	L4	level	in	the	transverse	plane.	
Cognitive	(Mini-	Cog	total	score;	Borson	et	al.,	2003),	psychosocial	
(Patient	 Health	 Questionnaire-	2	 [PHQ-	2]	 Kroenke	 et	 al.,	 2003),	
and	nutritional	measures	(Mini	Nutritional	Assessment-	Short	Form	
[MNA-	SF])	were	 included	 as	 additional	metrics	 of	 frailty	 (Ruben-
stein et al., 2001).	 Finally,	 we	 included	 hemoglobin	 and	 albumin	
given their inclusion in the Essential Frailty Toolset and association 
with	post-	TAVI	outcomes	(Afilalo	et	al.,	2017).

F I G U R E  2 PCA	of	12	frailty	measures	identifies	3	composite	axes	of	frailty.	(a)	Loadings	of	the	three	composite	axes	of	frailty	using	PCA	
with	varimax	rotation.	(b)	Heatmap	of	study	participants	in	the	derivation	sample	(columns)	demonstrates	heterogeneity	in	PC	scores	and	
individual measures of frailty.
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4.4  |  Statistical analysis

4.4.1  |  Summarizing	12	frailty	measures	in	
composite phenotype measures

We observed correlations among measures of frailty (Figure S1),	
prompting an approach to generate composite axes of frailty using 

PCA.	We	 conducted	 PCA	 (with	 varimax	 rotation;	 using	 psych in 
R; Revelle, 2022)	 on	 participants	 with	 complete	 data	 on	 all	 12	
measures of frailty (“derivation” sample, N = 233).	Frailty	measures	
were	mean-	centered	and	standardized	(mean = 0,	variance = 1)	for	
PCA.	 Principal	 components	 were	 selected	 by	 examination	 of	 a	
scree	plot	 (generating	3	PCs	 summarizing	12	 component	 frailty)	
and labeled based on loadings for that PC. Each PC score was used 

F I G U R E  3 Protein-	based	scores	are	independently	related	to	all-	cause	mortality.	Forest	plots	of	Cox	regression	for	all-	cause	mortality	
using	phenotype	and	protein-	based	scores	in	derivation	(a)	and	validation	(b)	samples.	Hazard	ratio	is	expressed	per	1	standard	deviation	
increase	in	score.	Full	adjustment	includes	age,	sex,	body	mass	index,	smoking	history,	diabetes,	coronary	artery	disease,	and	eGFR.
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individually as a summary measure of its composite axis in down-
stream models.

4.4.2  |  Identifying	proteomic	correlates	of	frailty

To identify proteins related to frailty within the derivation sample, 
we used linear regression with individual proteins as independent 
variables and each of the 12 measures of frailty as dependent vari-
ables,	with	adjustments	for	age	and	sex.	A	false	discovery	rate	(FDR;	
Benjamini–	Hochberg	 method)	 was	 used	 to	 control	 type	 1	 error.	
This regression approach was repeated with frailty axes scores 
(from	PCA)	as	dependent	variables.	Proteins	associated	with	the	12	
measures of frailty (FDR <0.05)	were	selected	and	mapped	to	both	
KEGG pathways and the Reactome database (clusterProfiler in R; 
Wu et al., 2021)	respectively.	Given	our	proteomic	coverage	did	not	
cover all circulating proteins (N = 979),	we	used	statistical	tests	only	
to select pathways for visualization (p values were generated by hy-
pergeometric	tests	and	adjusted	by	Benjamini–	Hochberg	method).	
Proteins associated with any of the three frailty axes (generated by 
PCA)	with	an	FDR	<0.10 were examined in external datasets.

To construct parsimonious models for frailty, we next used 
LASSO	regression	 (caret in R Kuhn, 2008)	with	 frailty	axes	 scores	
as	dependent	variables	and	all	 proteins	 (standardized	 to	mean = 0,	
variance = 1)	 as	 penalized	 independent	 variables.	 LASSO	 models	
were	developed	 in	the	subset	of	participants	 in	the	discovery	 (AS)	
cohort	included	in	the	PCA	(derivation	sample	as	mentioned	above).	
Cross-	validation	 (10	 folds,	 with	 5	 repeats)	 was	 used	 to	 optimize	
model	hyperparameters	(e.g.,	 lambda).	Resulting	models	were	then	
used	to	create	protein	scores	for	each	of	the	frailty	PCs,	by	taking	
the sum of the product of each regression coefficient and protein 
level	 for	 each	 individual.	 These	 protein	 scores	 represent	 a	 blood-	
based proteomic “fingerprint” of frailty for downstream analyses. To 
understand the proportion of variance explained by age and morbid-
ity	for	each	score,	we	performed	type	I	ANOVA	in	models	for	each	
proteomic and phenotype score as a function of age, sex, body mass 
index	(BMI),	diabetes,	smoking	history,	and	renal	function	(estimated	
glomerular	 filtration	 rate	 [eGFR]	 by	 the	 CKD-	EPI	 equation;	Miller	
et al., 2022).

To validate these proteins scores of frailty, we imputed missing 
phenotype	data	in	the	576	validation	sample	participants	(individu-
als	with	AS	without	complete	cases	for	12	measures	of	frailty),	using	

multivariate	imputation	by	chained	equations	(R	package	mice; van 
Buuren	&	Groothuis-	Oudshoorn,	2011).	We	applied	the	PCA	model	
from the derivation sample in the validation sample (with imputed 
data)	and	correlated	the	resulting	composite	PC-	based	phenotypes	
with	the	protein	scores	 from	LASSO.	While	we	recognize	that	 the	
CT measures may not be fully missing at random (potentially limit-
ing	imputation	accuracy),	given	that	this	cohort	was	a	highly	unique	
set	with	severe	cardiac	disease	(AS),	proteomics,	and	follow-	up,	we	
conducted this analysis to test the generalizability of our result in 
the derivation sample. The imputed data were not used in any other 
part of the analysis.

4.4.3  |  Association	of	frailty	with	mortality	in	
symptomatic,	severe	AS

We entered frailty axes scores or their proteomic surrogates (by 
LASSO)	 as	 independent	 variables	 in	 Cox	 regression	 for	 all-	cause	
mortality.	 Of	 note,	 our	 AS	 sample	 did	 not	 have	 cause-	specific	
mortality data reported. These regressions were performed in our 
derivation sample (N = 233),	as	well	as	a	validation	sample	(N = 576).	
Models	were	adjusted	for	age,	sex,	BMI,	smoking	history,	diabetes,	
coronary artery disease, and eGFR. In a sensitivity analysis, we fur-
ther	adjusted	for	hemoglobin,	albumin,	and	NT-	proBNP	to	address	
potential confounding.

4.4.4  |  Studies	in	replication	cohorts

We utilized several published studies (see Section 4.1)	 to	 further	
characterize relations of age and morbidity with circulating proteins 
corresponding	to	the	“frailty	proteome”	identified	in	the	AS	cohort.	
All	proteins	associated	with	any	frailty	axis	with	an	FDR	<0.10 (re-
laxed	 to	allow	maximal	discovery	across	 the	derivation	AS	sample	
and	the	replication	cohorts)	were	selected	and	mapped	to	their	pub-
lished	data	by	UniProt	identifiers.	In	a	cross-	sectional	study	of	171	in-
dividuals	across	the	lifespan	(age	21–	107 years;	Lehallier	et	al.,	2019),	
we used LOESS models to describe the relation between protein 
level	 and	age,	with	visualization	of	 age-	related	predicted	 trajecto-
ries	from	these	models.	We	leveraged	a	study	of	35,559	community-	
dwelling	adults	in	Iceland	(Ferkingstad	et	al.,	2021)	to	examine	the	
relation between proteins (those significantly associated with any 

F I G U R E  4 Proteomics	of	frailty	are	weakly	related	to	age	and	appear	to	manifest	decades	prior	to	advanced	age.	(a)	Stacked	bar	plot	
of	the	proportion	variance	explained	in	phenotype	(frailty	axes	scores)	and	protein	scores	by	age,	sex,	BMI,	eGFR,	diabetes,	and	smoking	
history	(residuals	not	shown).	Models	for	explanatory	variance	for	phenotype	scores	are	from	the	AS	derivation	sample	with	complete	
data on the 12 frailty measures (N = 233);	models	for	protein	scores	pool	all	809	participants	(AS	derivation	and	AS	validation	samples).	(b)	
Scatterplots	demonstrate	relation	between	phenotype	or	protein	scores	with	age,	with	correlation	(Spearman).	(c)	Age-	related	changes	in	
plasma proteins modeled by loess (based on Z-	scores	of	protein	levels)	from	171	individuals	(age	range:	21–	107 years;	Lehallier	et	al.,	2019).	
Proteins were selected based on association (FDR <0.10)	with	one	of	the	frailty	axes	in	the	AS	cohort	and	availability	in	the	N = 171	sample.	
Of	note,	no	proteins	were	associated	with	patient-	reported	outcomes	(PC1)	in	linear	models	(see	File	S1),	so	this	is	not	shown	in	the	heat	bar	
at	the	top	of	the	heatmap.	The	25th–	75th	percentile	of	age	in	the	AS	cohort	is	shown	in	purple	beside	the	age	heat	bar,	suggesting	any	age-	
related	changes	in	the	proteome	may	already	be	established	by	the	time	of	AS	intervention.	*Proteins/genes	with	FDR	<0.10 in linear models 
of	frailty	axes	in	the	human	AS	cohort.
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frailty	axis	also	present	in	the	Iceland	dataset,	matched	by	UniProt)	
with	(1)	age	(from	reported	linear	regression	for	protein	as	a	function	
of	age	and	sex)	and	(2)	a	subset	of	44	reported	phenotypes	selected	

from a total 373 phenotypes based on relevance to aging across mul-
tiple systems (linear/logistic regression for phenotype as a function 
of	protein,	age,	and	sex).
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4.4.5 | Framingham	Heart	Study

We examined the association of protein scores with frailty meas-
ures	 and	 long-	term	 CVD	 and	 non-	CVD	 outcomes	 in	 the	 FHS	
Offspring	 cohort.	We	used	 recursive	 feature	elimination	on	367	
proteins	common	to	FHS	and	the	AS	cohort	(determined	by	match-
ing	 on	UniProt	 identifier)	 in	 linear	models	 (in	 caret Kuhn, 2008, 

with	a	5%	tolerance)	to	recalibrate	scores	developed	using	Olink	
data	 in	our	discovery	sample	 (AS)	for	FHS	(given	the	differences	
in	proteomic	coverage).	Recalibration	fit	using	this	approach	was	
good (Spearman ρ	range = 0.89–	0.92	across	the	3	scores).	The	re-
fitted models were then applied to FHS by summing the product 
of each regression coefficient (from recursive feature elimina-
tion)	 and	 protein	 level	 for	 each	 individual.	We	 used	 logistic	 and	

F I G U R E  5 The	frailty	proteome,	systemic	multimorbidity,	and	cause-	specific	mortality.	(a)	Heatmap	of	proteins	associated	with	any	
frailty axis (FDR <0.10)	also	measured	in	>35,000	Icelanders	(Icelandic	Cancer	Project	and	deCODE).	Fill	values	are	from	age	and	sex	linear	
adjusted models for each phenotype/outcome. The annotation bar presents the protein's relation with age in Icelanders and the protein's 
relation	with	frailty	axes.	Phenotype	names	are	as	provided	by	the	parent	study	investigators	(Ferkingstad	et	al.,	2021).	(b)	Cumulative	
incidence	curves	for	all-	cause	mortality,	cardiovascular	mortality,	and	non-	cardiovascular	mortality	stratified	by	tertiles	of	protein	score	
of	physical	function	in	FHS.	These	are	for	visualization	of	the	survival	association	(unadjusted).	The	adjusted	hazard	ratio	for	a	continuous	
marker	(from	Cox	regression)	is	reported.
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linear	 regression	 to	 relate	 protein	 scores	 (from	 FHS	 Exam	 5)	 to	
frailty	measures	collected	at	FHS	Exam	7	(≈7 years	later),	including	
Rosow–	Breslau	questions	(ability	to	do	heavy	work,	ability	to	walk	
a	half	mile),	Katz	ADLs,	grip	 strength	 (Jamar	dynamometer),	gait	
speed	(4-	meter	walk	at	usual	pace),	and	time	to	complete	five	chair	
stands (Liu et al., 2016).	In	addition,	we	included	relations	with	vis-
ceral and subcutaneous adiposity as a measure of body composi-
tion (Fox et al., 2010).	We	used	Cox	regression	to	relate	each	of	the	
3	protein	scores	with	all-	cause	mortality	with	adjustments	for	sex	
and age in minimally adjusted models, with further adjustments 
for	 BMI,	 smoking	 status,	 diabetes,	 anti-	hypertensive	medication	
treatment, total and HDL cholesterol, systolic blood pressure, and 
prevalent	CVD.	We	then	used	a	competing	risk	model	(Fine–	Gray)	
to	evaluate	for	CVD	versus	non-	CVD	mortality	for	protein	scores	
that	 were	 associated	 with	 all-	cause	 mortality	 in	 standard	 Cox	
models	(D'Agostino	et	al.,	2008;	Fine	&	Gray,	1999).

R	(versions	4.2.1	and	4.2.2)	was	used	for	analyses.	A	two-	tailed	
p	value	less	than	0.05	(with	type	1	error	control	as	specified	above)	
was considered statistically significant.
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