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EPIGRAPH

Our situation is not comparable to anything in the past. It is impossible, therefore, to

apply methods and measures which at an earlier age might have been sufficient. We must

revolutionize our thinking, revolutionize our actions, and must have the courage to

revolutionize relations among nations of the world. Clichés of yesterday will no longer

do today, and will, no doubt, be hopelessly out of date tomorrow.

—Albert Einstein, in “A Message to Intellectuals” (1948)

It is in the admission of ignorance and the admission of uncertainty that there is a hope

for the continuous motion of human beings in some direction that doesn’t get confined,

permanently blocked, as it has so many times before in various periods in the history of

man.

—Richard P. Feynman, in “The Uncertainty of Values”, second guest lecture presented in

April 1963 at the University of Washington, Seattle

I think people get it upside down when they say the unambiguous is the reality and the

ambiguous is merely uncertainty about what is really unambiguous. Let’s turn it around

the other way: the ambiguous is the reality and the unambiguous is merely a special

case of it, where we finally manage to pin down some very special aspect.

—David J. Bohm, in “How Mathematicians Think” (2007) by William Byers
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Nonintrusive approaches for multiscale/multiphysics problems with random noise
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A plethora of computational techniques have been developed for computing quan-

tities of interest in multiscale and multiphysics problems combining processes occurring

on a broad spatiotemporal range. However, a dearth exists in systematic studies of the

impact of random fluctuations on the predictive ability and numerical properties of these

algorithms. We consider two nonintrusive approaches for multiphysics problems with

random noise: domain decomposition and stochastic collocation. A mass-conserving

domain decomposition achieving tight Newton- or Picard-based coupling between linear

diffusion equations, one having a Gaussian white-noise source term, reveals that New-

ton’s iteration scales linearly with noise amplitude, while Picard’s iteration may scale
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superlinearly. For a given solution error, fully-converged (“implicit”) coupling is more

efficient than single-iteration (“explicit”) coupling at low noise strength; at high noise am-

plitudes, this remains true provided that the time interval between two subsequent implicit

coupling communications is sufficiently long. A similar strategy using Jacobian-free

Newton-Krylov iteration to solve a highly nonlinear, multiscale diffusion problem forced

by a truncated Gaussian boundary noise shows that ensuring path-wise continuity of the

state variable and its flux, as opposed to continuity in the mean, accurately propagates

random fluctuations and correctly captures system dynamics. Implicit coupling is more

efficient than explicit coupling at all coefficients of variation considered, and domain

decomposition with path-wise implicit coupling resolves temporally correlated boundary

fluctuations when the correlation time exceeds some multiple of an appropriately defined

characteristic diffusion time. Application of stochastic collocation to estimate the energy

deposition into a brain tumor via X-ray irradiation with parametric uncertainty reveals

that the uncertain parameters’ coefficients of variation may be amplified by the problem’s

nonlinearity to the extent that the predictive uncertainty in the energy deposition almost

equals the prediction itself. Algorithm refinement for the Ginzburg-Landau equation

(GLE) demonstrates the need for adding a coarse-scale random source term to correctly

propagate fine-scale Ising fluctuations throughout the computational domain. A moment-

based approach with Gaussian closure enabling direct computation of the state variable’s

statistical moments is shown to be an accurate, and potentially more efficient, alterna-

tive to numerical time integration of the system state. A statistically learned stochastic

GLE exhibits optimal predictive capacity at a complexity that may differ from that of

standard models in the literature. This approach enables data-driven computation of the

coarse-scale noise term’s amplitude.
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Chapter 1

Introduction

“Multiscale” and “multiphysics” are terms coined to describe systems consisting

of respectively one or multiple physical, chemical and/or biological processes evolving

on a broad spatiotemporal spectrum. The development of algorithms to simulate such

problems started in earnest in the 1980s, and was driven, in large part, by the field of

fluid-structure interactions (FSI) and research into modeling flows spanning a wide range

of Knudsen numbers (Kn).

In FSI, the terms “monolithic” and “component partitioning” refer, respectively, to

an intrusive approach requiring the development of novel algorithms, and a nonintrusive

strategy involving the use of legacy solvers. Monolithic [20] methods combine the various

processes into a single discrete operator; while this yields a “tight” coupling between

the components, it typically necessitates the development of new codes and requires the

use of a single time step. This prevents the use of readily available solvers previously

developed for the individual components, and does not take into account the various

time scales on which the different processes occur. Both shortcomings are addressed

by component partitioning [44], also called domain decomposition (DD), which divides

the computational domain into subregions where the processes occur and solves them

1
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separately using legacy algorithms, each with its own time step and/or spatial grid cell

size (see, e.g., Fig. 1.1). While a tight coupling comes naturally to monolithic approaches,

DD also allows for a “loose” coupling which may desynchronize components by one

time step of a fraction of a time step [75]. A loose coupling makes a DD method prone

to instabilities and increased solution error, and is preferably transformed into a tight

coupling by casting it in iterative form [43, 42, 75]. However, the accompanying increase

in computational cost results in a trade-off between efficiency and accuracy.Y. BAZILEVS ET AL.

Figure 9. FSI simulation of a HAWT undergoing a yawing motion. Snapshots of the isosurfaces of Q (a
scalar measure of the vorticity, see [61] for details) colored by air speed illustrating the air flow complexity.
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Figure 10. FSI simulation of a HAWT undergoing a yawing motion. Time history of the angular speed.

aerodynamic torque is consistent with the earlier simulations for this wind turbine operating under
similar wind speed and rotor speed conditions (see, e.g., [8, 14, 15, 23, 44, 45, 62, 68]).

3.4. FSI simulation of a VAWT

To illustrate that the proposed structural mechanics modeling and mesh moving techniques also
work well for VAWTs, we briefly present an FSI simulation of a 1.2-kW VAWT, which is a three-
bladed, medium-solidity Darrieus turbine designed by Windspire Energy [40]. For more information
about the VAWT model, the reader is referred to a companion paper [66], where the focus is on
VAWT simulation, validation using field test data and turbine self-starting issues.

The total height of the VAWT tower is 9.0 m, and the rotor height is 6.0 m. The rotor uses the
DU06W200 airfoil profile with the chord length of 0.127 m and is of the Giromill type with straight
vertical blade sections attached to the main shaft with horizontal struts (see Figure 1). The rotor and
struts are made of aluminum, and the tower is made of steel. Quadratic NURBS are employed for
both the beam and shell discretizations. The total number of beam elements is 116, and the total
number of shell elements is 7029.

The aerodynamics mesh has about 8-M elements, which are linear triangular prisms in the blade
boundary layers, and linear tetrahedra elsewhere. The boundary layer mesh is constructed using 18

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme

Figure 1.1: Fluid-structure interaction simulation of a wind turbine [15].

In parallel with the modeling efforts in FSI, Wadsworth et al. [119] developed

the first coupling of Direct Simulation Monte Carlo [19], a fine-scale atomistic method,

to its coarse-scale counterpart represented by a partial differential equation (PDE). This

work was motivated by the need for efficient models of variable-Kn flows, such as those

encountered around hypersonic re-entry vehicles (Fig. 1.2), and led to the concept of

algorithm refinement (AR) hybrids [48]. These locally refine a coarse-scale algorithm

to a fine-scale counterpart using a criterion based on a key system parameter: when the

latter reaches a critical value, the coarse-scale method breaks down and refinement is
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triggered. In the re-entry problem, this parameter is Kn = λ/L with λ the molecular mean

free path and L the characteristic length scale of the problem. In regions where Kn� 1,

collisional equilibrium is achieved and a continuum description such as Navier-Stokes is

valid (which is almost everywhere in the computational domain at intermediate altitudes);

however, for Kn� 1, the flow is rarefied (in the wake behind the vehicle, around shocks

and in boundary layers) and an atomistic method such as Direct Simulation Monte

Carlo must be used. Compared to a fine-scale approach over the entire computational

domain, AR hybrids may yield tremendous savings in computational cost by only using

an otherwise prohibitively expensive method where absolutely required by physical

constraints.

70�

Hybrid Particle-Continuum Numerical Methods for Aerospace Applications 
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Figure 1.2: Hypersonic flow over an atmospheric re-entry vehicle [1].

DD algorithms with deterministic continuum components have been developed

and analyzed extensively. Giles et al. [50] found that an otherwise unstable loose coupling

in one-dimensional (1D) FSI simulations may be made stable by enforcing Neumann
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boundary conditions for the structural calculation and Dirichlet boundary conditions

for the fluid solver. Farhat et al. [43, 42] and Leyland et al. [75] demonstrated that

standard staggered schemes for FSI simulations need to be modified by several iteratively

made corrector steps to ensure conservation of energy. More recently, Errera et al. [41]

investigated the stability of a coupling algorithm based on mixed interface conditions

for conjugate heat transfer simulations, while Sheehan et al. [102] showed that using a

finite number of iterations in a coupled linear diffusion problem may lead to conditional

or unconditional stability in a nonintuitive way when using a backward Euler solver in

the subdomains.

When random noise is introduced into such problems as a source term, a boundary

or initial condition, an uncertain input parameter, or any combination of the above, con-

clusions about stability, accuracy and efficiency previously derived for fully-deterministic

DD algorithms may no longer hold. In particular, the fidelity of DD simulations involving

stochastic components depends on the ability of a coupling algorithm to transmit these

fluctuations into adjacent subdomains, including those where a deterministic model is

used. A systematic analysis of the numerical properties of DD algorithms with noise,

and development of coupling techniques to accurately transport the random fluctuations

across interfaces between subdomains, is still largely lacking. In Chapter 2, we contribute

to this line of research by developing a mass-conserving, tightly coupled DD algorithm

and applying it to the testbed problem of 1D or 2D coupled linear diffusion equations,

one of which has a Gaussian space-time white-noise source term. Employing either

Picard’s or Newton’s iteration [68], we investigate the efficiency of a fully-converged

(“implicit”) coupling as a function of noise strength, and compare its computational cost

for a given solution error with that of single-iteration Picard’s coupling for different noise

strengths and time intervals between two subsequent inter-solver communications. We

also analyze the stability of the DD algorithm with implicit coupling, and compare the
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resulting stability conditions with those for the corresponding deterministic system in

which the fluctuations have been averaged out.

When the system becomes nonlinear, the presence of noise renders the state

variable’s ensemble mean different from the solution to its deterministic counterpart, and

accurate propagation of fluctuations is important even if one is only interested in modeling

the mean behavior of the system. In Chapter 3, we develop a mass-conserving DD strategy

to analyze, in 1D, the highly nonlinear testbed problem of hydrogen diffusion through

a dense membrane composed of Pd and Ta layers [36, 21, 89], driven by a truncated

Gaussian boundary noise. The diffusion through Pd is characterized by a diffusion

coefficient [103, 4] that nonlinearly depends on the hydrogen concentration, while

the diffusion through Ta is linear [4]. Tight coupling between the subdomain solvers

is achieved through Jacobian-free Newton-Krylov iteration [70] with a Generalized

Minimum Residual iterative linear solver [68], which only requires computation of

Jacobian-vector products rather than the Jacobian itself. We analyze the accuracy of both

path-wise and moment-wise (mean) exchange of concentration and flux information at

interfaces between adjacent subdomains through comparison with a single full-domain

(“global”) algorithm, compare the efficiency of implicit with explicit coupling for various

noise strengths, and perform a stability analysis of the DD algorithm with path-wise

implicit coupling. We mainly consider perfectly correlated noise, but also explore the

method’s ability to handle fluctuations with a finite correlation time.

In Chapter 4, we increase the system’s nonlinearity by considering the problem of

X-ray irradiation of a brain tumor, which we model using a 2D multimaterial, equilibrium

radiation-diffusion PDE [85, 99]. Here the diffusion coefficient is not only a function

of the state variable (radiation energy density) as in Chapter 3, but also of its spatial

gradient due to the use of a flux limiter [72]. The problem has up to three uncertain input

parameters: the horizontal and vertical location of the center of an inclusion representing
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the region over which an iodinated contrast agent, aimed at enhancing the energy deposi-

tion in the tumor, has spread out after being injected; and the effective atomic number

within this area. We analyze how the mean and variance of the energy deposition in the

tumor depend on the mean and/or variance of these input parameters, which we represent

as uniformly distributed random variables. A robust, nonintrusive method traditionally

used for this purpose is Monte Carlo simulation (MCS), which enables computation

of statistical moments of a quantity of interest through a finite number of realizations

of the time evolution of the state variable. However, the extremely slow rate of MCS

often makes it prohibitively expensive. An alternative, equally nonintrusive, method

is stochastic collocation (SC) [125, 77], which through a judicious choice of sampling

points (“nodes”) and their weights via a quadrature rule aims to achieve the same esti-

mation error as MCS with fewer system realizations. We compare the computational

efficiency of MCS and SC for a stochastic dimension of one, two or three.

Chapter 5 focuses on the propagation of fine-scale noise generated in atomistic-

continuum AR hybrids for nonlinear systems whose macroscale dynamics is driven

by microscopic fluctuations. In their traditional form, such hybrids couple the atom-

istic solver to a deterministic continuum counterpart (usually a PDE solver) [119, 48].

While the fine-scale algorithm inherently represents the microscale fluctuations, the

deterministic coarse-scale method does not account for them. As Alexander et al. [5] first

demonstrated for a linear diffusion PDE coupled to a random walk algorithm, this reduces

the variance inside the atomistic region near the atomistic/continuum interface. Adding a

random source term of the appropriate magnitude to the coarse-scale solver enabled the

hybrid to correctly propagate the fine-scale fluctuations throughout the computational

domain. Subsequent work by Bell et al. [16] and Williams et al. [121] extended this

methodology to weakly nonlinear test cases based on the viscous Burgers’ and Navier-

Stokes equation, respectively. In systems such as those undergoing phase transitions or
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instability-driven pattern formation (see, e.g., Fig. 1.3), the effect of microscale fluctua-

tions may be amplified by the nonlinearities, drastically affecting the system’s macroscale

behavior. We formulate a 1D testbed AR hybrid coupling a stochastic or deterministic

Ginzburg-Landau equation (GLE) [58, 24, 118, 96], containing a cubic source term, to a

nearest-neighbor Ising [60] model with Glauber [52] (spin-flip) dynamics. We also derive

a system of (deterministic) moment equations from the stochastic GLE using a Gaussian

closure, i.e., assuming that the fluctuations of the state variable (magnetization) are

Gaussian. This approach offers a direct way of calculating moments of the magnetization,

such as mean and variance, rather than relying on its numerical time integration.

FIGURE 2. Number of species A particles per unit volume, ρYA/mA, for a Turing instability in a planar geometry: (Left, Case
FF) Fluctuating hydrodynamics with fluctuating chemistry; (Right, Case DD) Deterministic hydrodynamics with deterministic
chemistry.

NUMERICAL EXAMPLE: TURING PATTERNS

We demonstrate the fluctuating hydrodynamic reaction-diffusion formulation from the preceding section by applying
it to the study of pattern formation resulting from the Turing instability [43]. Specifically, we investigate this instability
using the Schlogl model [44], which has four species (A, B, C, D) and five reactions, summarized below:

A
k1→C, 2A+B

k2→ 3A, B
k3→ D, D

k4→ B, D at the rate of ΩD→ C. (20)

Species D is taken as a reservoir species whose mass fraction is held fixed by setting the rate of the fifth reaction step
so that YD is unaltered by chemistry.

The system admits homogeneous steady states (A0,B0,C0,D0), (A+,B+,C+,D+) and (A−,B−,C−,D−). (See [7, 8]
for more details). Typically, a small region at the state ‘+’, when exposed to a surrounding large region at state ‘0’,
gives rise to an evolving chemical wave front. In the wake of the front, Turing instability ensues, giving rise to labyrinth
patterns.

In [7] it is demonstrated that internal fluctuations accelerate the formation of the Turing patterns, in a reaction-
diffusion system without cross-diffusion. More recently, [8] carried out DSMC simulations of the same problem, albeit
in one-dimension. Here we investigate the model using numerical simulations of the full hydrodynamic equations with
chemistry, as described in the previous section; the numerics follow the general formulation described in [17] and the
details, including comparisons with DSMC simulations, will be presented elsewhere [35].

The classical Schlogl front is generally simulated in a planar domain, as in [7, 8]; here we consider both pla-
nar and cylindrical geometries. The parameter values are summarized as follows. Particles of species (A,B,C,D)

700
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  137.110.103.24 On: Tue, 30 Aug 2016 00:49:33

Figure 1.3: Turing-instability driven labyrinth pattern formation, modeled using fluctua-
ting hydrodynamics with fluctuating chemistry (left), and deterministic hydrodynamics
with deterministic chemistry (right) [11].

Accurate representation of the fine-scale model in an atomistic-continuum AR

hybrid by a stochastic coarse-scale description requires the amplitude of the latter’s

random source term to match the strength of the fluctuations generated by the fine-
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scale representation. As we demonstrate in Chapter 5, this may involve multiplying the

noise amplitude with a “fudge factor” to correct possible mismatches stemming from

approximations made in deriving the stochastic continuum model from its atomistic

counterpart. To avoid such ad hoc procedures, statistical learning may be used to build

coarse-scale models beyond those available in the literature. In Chapter 6, we employ

cross-validation and regularization to build a 2D stochastic GLE from data simulated

using the Ising model with Glauber dynamics (“training data”). We analyze the learned

model’s ability to predict Ising data independent of the training set (“test data”) as a

function of its complexity for different amounts of training data, using two error metrics.



Chapter 2

Conservative tightly-coupled

simulations of stochastic multiscale

systems

2.1 Abstract

Multiphysics problems often involve components whose macroscopic dynamics

is driven by microscopic random fluctuations. The fidelity of simulations of such systems

depends on their ability to propagate these random fluctuations throughout a computa-

tional domain, including subdomains represented by deterministic solvers. When the

constituent processes take place in nonoverlapping subdomains, system behavior can

be modeled via a domain-decomposition approach that couples separate components

at the interfaces between these subdomains. Its coupling algorithm has to maintain a

stable and efficient numerical time integration even at high noise strength. We propose

a conservative domain-decomposition algorithm in which tight coupling is achieved by

employing either Picard’s or Newton’s iterative method. Coupled diffusion equations,

9
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one of which has a Gaussian white-noise source term, provide a computational testbed

for analysis of these two coupling strategies. Fully-converged (“implicit”) coupling with

Newton’s method typically outperforms its Picard counterpart, especially at high noise

levels. This is because the number of Newton iterations scales linearly with the amplitude

of the Gaussian noise, while the number of Picard iterations can scale superlinearly. At

large time intervals between two subsequent inter-solver communications, the solution

error for single-iteration (“explicit”) Picard’s coupling can be several orders of magnitude

higher than that for implicit coupling. Increasing the explicit coupling’s communication

frequency reduces this difference, but the resulting increase in computational cost can

make it less efficient than implicit coupling at similar levels of solution error, depending

on the communication frequency of the latter and the noise strength. This trend carries

over into higher dimensions, although at high noise strength explicit coupling may be the

only computationally viable option.

2.2 Introduction

Many, if not most, problems of practical importance deal with complex systems

that involve multiple physical (as well as chemical and biological) processes, which occur

on a wide range of spatial and/or temporal scales. These processes can either spatially

coexist or occur in adjacent regions of space. We focus on the latter class of multiphysics

phenomena, in which different processes take place in separate spatial domains and

affect each other at the interfaces between these domains. Conjugate heat transfer across

a fluid-solid interface [95] is an illustrative example of such phenomena. It is central

to applications as diverse as satellite cold gas propulsion systems [78] and spacecraft

re-entry into Earth’s atmosphere [64].

Following the terminology established in the field of fluid-structure interactions
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(FSI), one can subdivide solution strategies for interfacially coupled multiphysics systems

into two modeling frameworks: “monolithic” [20] and “component partitioning” [44].

The former combines all the different physics components and their interactions into a

single discrete operator, which is then advanced in time. This “tight coupling” ensures

temporal synchronization of all the state variables and hence possesses excellent robust-

ness, accuracy and stability properties. However, it is computationally demanding and

“intrusive”, i.e., requires development of new codes. The second framework, which is also

known as domain decomposition (DD), advances solutions of each physics component

independently from the others, using additional solvers to exchange information at the

interfaces through a coupling algorithm. It is “nonintrusive”, i.e., allows for a “black-box”

implementation of the physics components which can be done with existing (“legacy”)

codes. This operational expediency comes at a cost of reduced accuracy and stability

when the physics components involved are “loosely coupled”, leading to desynchroniza-

tion of the state variables in the different components by one time step or a fraction of

a time step [75]. Iterative coupling techniques can be used to achieve a tight coupling,

which eliminates this time shift [43, 42, 75].

Despite the widespread use of DD approaches, there is a dearth of systematic

studies of their numerical properties. Most studies deal with the coupling of determin-

istic components, which are typically represented by deterministic partial differential

equations (PDEs). Representative examples include an analysis of the stability of an

interfacial coupling in one-dimensional fluid-structure thermal diffusion [50], an analysis

of predictor-corrector staggered schemes for simulating FSI [75], an investigation of the

stability of a coupling algorithm based on mixed interface conditions for conjugate heat

transfer simulations [41], and a demonstration of the effects of a non-converged iterative

coupling on the stability of a coupled linear diffusion problem [102]. These and other

similar studies have led to nontrivial conclusions, which are likely to be problem-specific
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and demonstrate the algorithmic complexity of coupling nonlinear solvers. For example,

an otherwise unstable loose coupling used in FSI simulations can be made stable by

enforcing Neumann boundary conditions for the structural calculation and Dirichlet

boundary conditions for the fluid solver [50]; and standard staggered schemes for FSI

simulations need to be modified by several iteratively made corrector steps to ensure

conservation of energy [43, 42, 75].

When random fluctuations are generated by one of the constituent solvers, con-

clusions drawn from numerical studies of fully-deterministic systems may need to be

modified. Currently, a systematic analysis of how random noise or stochasticity of one

of the constituent solvers affects the numerical performance of both the other (possibly

deterministic) solvers and an algorithm used to couple them is largely missing. Such

studies are needed to gain confidence in the ever-growing number of multiphysics and

hybrid simulations that combine deterministic and stochastic solvers [119, 45, 32, 61].

The analysis presented below contributes to this area of research by studying the effects of

random noise on numerical properties (coupling convergence, stability and accuracy) of

a domain-decomposition algorithm which tightly couples a deterministic and stochastic

subdomain solver. A complementary challenge, the need for adding a random source

term to a (deterministic) PDE solver coupled to a stochastic solver whose microscopic

fluctuations drive the macroscopic system dynamics (e.g., in highly nonlinear problems

involving phase transitions), has been addressed in [5, 16, 121, 113].

In Section 2.3 we formulate a computational testbed problem, one-dimensional

diffusion in a composite material one segment of which contains a Gaussian white-noise

forcing. Section 2.4 contains a description of our DD approach to solving this problem,

which tightly couples the deterministic (explicit Euler) and stochastic (Euler-Maruyama)

diffusion solvers using Newton’s or Picard’s iteration. Section 2.5 presents a stability

analysis of our algorithm using fully-converged Picard’s iteration. In Section 2.6 we
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conduct a series of numerical experiments to explore the performance of our algorithm.

These findings are summarized in Section 2.7.

2.3 Problem Formulation

Consider a one-dimensional linear diffusion equation,

∂ρ
∂t

=
∂
∂x

[
D

∂ρ
∂x

]
+ f , x ∈Ω≡ (−L/2,L/2), t > 0, (2.1a)

which describes the evolution of concentration ρ(x, t) in space, x, and time, t. The

diffusion coefficient D(x) is piecewise constant,

D(x) =


D1 for x ∈Ω1 ≡ (−L/2,0)

D2� D1 for x ∈Ω2 ≡ [0,L/2),
(2.1b)

and the source term f (x, t) is defined as

f (x, t) =


0 for x ∈Ω1

ξ(x, t) for x ∈Ω2,

(2.1c)

where ξ(x, t) is a zero-mean Gaussian space-time white noise with covariance

E[ξ(x, t)ξ(y,τ)] = σ2
ξδ(x− y)δ(t− τ), x,y ∈Ω2; t,τ > 0 (2.1d)

and variance σ2
ξ. Here δ(·) denotes the Dirac delta function. Equation (2.1) is subject to

Dirichlet boundary conditions

ρ(x =−L/2, t) = ρL, ρ(x = L/2, t) = ρR, (2.2)
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and an initial condition

ρ(x,0) = ρM


(ρL/ρM)−2x/L for x ∈Ω1

(ρR/ρM)2x/L for x ∈Ω2.

(2.3)

The simulation domain’s length, L; the concentration on the left, ρL, and right, ρR,

boundaries; the initial concentration at x = 0, ρM; and the noise variance, σ2
ξ, are given

constants.

Numerical solution of this boundary-value problem (BVP) is nontrivial. First,

the presence of stochastic noise ξ(x, t) in the right half of the simulation domain, Ω2,

formally renders a solution ρ(x, t) random over the whole domain Ω. Second, the vastly

different diffusion coefficients D1 and D2 imply the co-existence of two disparate time

scales t1 and t2 (t1� t2). Therefore, advancing the stochastic BVP (2.1)–(2.3) in time

over the whole domain Ω requires the use of a time step whose size is determined by the

smallest diffusion time-scale, t2.

Domain decomposition provides a natural alternative to solving the stochastic

BVP (2.1)–(2.3) directly. It decomposes the computational domain Ω into subdomains

Ω1 and Ω2. A different BVP is defined on each of these subdomains, such that

∂ρ1

∂t
= D1

∂2ρ1

∂x2 , ρ1(−L/2, t) = ρL, ρ1(x,0) = ρM

(
ρL

ρM

)−2x/L

, x ∈Ω1 (2.4)

and

∂ρ2

∂t
= D2

∂2ρ2

∂x2 +ξ, ρ2(L/2, t) = ρR, ρ2(x,0) = ρM

(
ρR

ρM

)2x/L

, x ∈Ω2. (2.5)

These two BVPs are coupled by enforcing the continuity of the state variable, ρ, and its
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flux at the interface x = 0 separating the subdomains Ω1 and Ω2,

ρ1(0, t) = ρ2(0, t), D1
∂ρ1

∂x
(0, t) = D2

∂ρ2

∂x
(0, t). (2.6)

This relatively simple computational testbed contains a number of salient features

of multiphysics simulations. First, it combines deterministic and stochastic solvers used

to integrate BVPs (2.4) and (2.5), respectively. Second, its constitutive solvers operate

at different temporal scales defined by the diffusion coefficients D1 and D2. (A more

complicated example of two-dimensional diffusion is presented in Section 2.6.4.)

2.4 Numerical Implementation of Domain Decomposi-

tion

Our quantity of interest is temporal snapshots of the ensemble-averaged concentra-

tion profile, 〈ρ(x, t)〉, in Ω = (−L/2,L/2) over a time interval (0,T ], where T is defined

by the diffusion time scale of the slowest diffusion process and is set to T = L2/(8D1).

This choice of T allows 〈ρ(x, t)〉 to approach its steady-state limit for all x ∈Ω.

2.4.1 Spatial discretization of the computational domain

To simplify the presentation, and without any loss of generality, we discretize the

computational domain Ω using a uniform mesh of cell size ∆x = L/N, where N is the

total number of grid cells. The solvers used to integrate BVPs (2.4) and (2.5) employ

a staggered grid approach, in which diffusive fluxes, Fi(x, t) = −Di∂ρi/∂x, in the ith

subdomain (i = 1,2) are calculated at the midpoint between two subsequent concentration

nodes (see Fig. 2.1). In particular, both ρ− = ρ1(0, t) and ρ+ = ρ2(0, t) are defined at

the interfacial node x = 0, while the corresponding interfacial fluxes F− = F1(0, t) and
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F+ = F2(0, t) are defined at x =−∆x/2 and x = ∆x/2, respectively.

x = 0 L/2−L/2 ∆x

ρL ρRρ−, ρ+
F− F+

concentration nodes flux nodes

Figure 2.1: Domain Ω = (−L/2,L/2) decomposed into subdomains Ω1 = (−L/2,0)
and Ω2 = [0,L/2). Concentration ρ is computed at the nodes denoted by solid circles,
and flux F is evaluated at the midpoint between two subsequent concentration nodes
(open circles).

2.4.2 Numerical solvers for BVPs (2.4) and (2.5)

Approximation of the Laplacian with a second-order central finite difference

scheme transforms (2.4) and (2.5) into systems of ordinary differential equations (ODEs)

dρρρ1
dt

= f1(ρρρ1),
dρρρ2
dt

= f2(ρρρ2)+ξξξ. (2.7a)

Here ρρρi = (ρi,1, . . . ,ρi,N/2−1)
> are the one-dimensional arrays of size N/2− 1 of the

nodal values of the state variables ρi(x, t) for i = 1,2; components fi,p of the one-

dimensional arrays fi(ρρρi) of size N/2−1 are defined by

fi,p = Di
ρi,p+1 +ρi,p−1−2ρi,p

∆x2 , p = 1, . . . ,N/2−1, i = 1,2; (2.7b)

where ρ1,0 = ρL, ρ1,N/2 = ρ−, ρ2,0 = ρ+ and ρ2,N/2 = ρR; and components ξp (p =

1, . . . ,N/2− 1) of the one-dimensional array ξξξ = (ξ1, . . . ,ξN/2−1)
> are obtained by

spatial discretization of the space-time white noise ξ(x, t), and satisfy

E[ξp(t)] = 0, E[ξp(t)ξq(τ)] = σ2
ξ

δpq

∆x
δ(t− τ), (2.7c)
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where δpq is the Kronecker delta function.

A deterministic solver used to advance ρρρ1 in time employs an explicit Euler (EE)

method with time step ∆t1. A stochastic solver used to advance ρρρ2 in time employs the

Euler-Maruyama (EM) method [69, 79] with time step ∆t2. The latter advances the pth

component of the random array ρρρ2 from tn = n∆t2 to tn+1 = (n+1)∆t2 according to

ρn+1
2,p = ρn

2,p +
D2∆t2
∆x2 (ρn

2,p+1 +ρn
2,p−1−2ρn

2,p)+σξ

√
∆t2
∆x

ηn
p, (2.8)

where ηn
p are identically distributed standard Gaussian variables such that ηn

p and ηm
q are

mutually independent for all p 6= q and/or n 6= m.

Given a value of the interfacial (x = 0) concentration ρ−(t) = ρ+(t) at a certain

time t, these two solvers can operate independently from each other, yielding a determinis-

tic solution ρρρ1 and a stochastic solution ρρρ2. These solutions will not satisfy the continuity

conditions (2.6) and, hence, do not yield a solution of the original BVP (2.1). Construc-

tion of such a solution requires occasional communications between the deterministic

and stochastic solvers via a coupling algorithm.

2.4.3 Interfacial coupling algorithm

Exchange of information between the two solvers can, at most, occur on the scale

of the largest time step. Let ∆tcom denote the time interval between any two successive

communications between the deterministic and stochastic solvers. It is given in terms of

the multiples of the inner-solver time steps ∆t1 and ∆t2, such that ∆tcom = n1∆t1 = n2∆t2.

In other words, the deterministic and stochastic solvers are advanced by n1 and n2

“micro” steps ∆t1 and ∆t2, respectively, before the inter-solver communication occurs

and concentration and flux information is exchanged between them. This procedure is

repeated until convergence when the coupling is iterative (“implicit”), or occurs only
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once when it is noniterative (“explicit”). Either way, it advances the system state by

one “macro” step ∆tcom. In the former case, we consider successive communications

during the iterations of a certain macro-step as one “overall” communication, and define

“subsequent” inter-solver communications as the information exchanges associated with

subsequent macro-steps.

In the coupling algorithm described below, we use ∆tcom-averaged interfacial

concentrations and fluxes. The time-averaged concentrations, ρ̄ρρ1 and ρ̄ρρ2, are computed as

arithmetic means of ρρρ1 and ρρρ2 over their respective n1 and n2 micro-steps. The interfacial

values of these ∆tcom-averaged concentrations are ρ̄− and ρ̄+. Likewise, we denote by

F̄− and F̄+ the ∆tcom-averaged values of the interfacial fluxes F− and F+, respectively.

Reliance on the ∆tcom-averaged interfacial concentrations and fluxes, rather than on their

counterparts computed at the last micro-step of each solver, facilitates construction of a

mass-conservative coupling algorithm (see A).

To tightly couple BVPs (2.4) and (2.5), we enforce (2.6) at each inter-solver

communication by means of an iterative (or “implicit”) coupling algorithm based on either

Picard’s or Newton’s method (B). In the context of the interfacial conditions (2.6), these

root-finding algorithms are deployed to solve a system of coupled nonlinear algebraic

equations, ρ̄− = ρ̄+ and F̄− = F̄+, at each inter-solver communication. Using notation

ρ̄n
1,N/2 = ρ̄−, ρ̄n

2,0 = ρ̄+, F̄ n
1,N/2−1/2 = F̄−, F̄ n

2,1/2 = F̄+, (2.9)

for the macro-step from tn to tn+1 = tn +∆tcom, this system is written as

ρ̄n
1,N/2 = ρ̄n

2,0, F̄ n
1,N/2−1/2 = F̄ n

2,1/2. (2.10)
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Picard’s method recasts (2.10) into a fixed-point iteration problem

ρ̄n,k+1
1,N/2 = [ρ̄n

2,0(F̄
n

2,1/2)]
k, F̄ n,k+1

2,1/2 = [F̄ n
1,N/2−1/2(ρ̄

n
1,N/2)]

k (2.11a)

where k is the iteration number, and

[ρ̄n
2,0(F̄

n
2,1/2)]

k ≡ ρ̄n,k
2,1 +

∆x
D2

F̄ n,k
2,1/2, ρ̄n,k

2,0 = [ρ̄n
2,0]

k, etc., (2.11b)

[F̄ n
1,N/2−1/2(ρ̄

n
1,N/2)]

k ≡ −D1
ρ̄ n,k

1,N/2− ρ̄ n,k
1,N/2−1

∆x
. (2.11c)

The iterations continue until

max
{∣∣∣ρ̄n,k

1,N/2− ρ̄n,k
2,0

∣∣∣ , ∣∣∣F̄ n,k
1,N/2−1/2− F̄ n,k

2,1/2

∣∣∣}≤ ε, (2.12)

where ε is the prescribed tolerance.

Newton’s method replaces (2.10) with an iterative system


ρ̄n,k+1

1,N/2

F̄ n,k+1
2,1/2

=


ρ̄n,k

1,N/2

F̄ n,k
2,1/2

−J−1(ρ̄n,k
1,N/2, F̄

n,k
2,1/2)


g1

g2

 (2.13a)

where J is the Jacobian,

J =


∂g1/∂ρ̄n,k

1,N/2 ∂g1/∂F̄ n,k
2,1/2

∂g2/∂ρ̄n,k
1,N/2 ∂g2/∂F̄ n,k

2,1/2

 , (2.13b)
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and

g1 = ρ̄n,k
1,N/2− ρ̄ n,k

2,1 −
∆x
D2

F̄ n,k
2,1/2, g2 =−D1

ρ̄ n,k
1,N/2− ρ̄ n,k

1,N/2−1

∆x
− F̄ n,k

2,1/2. (2.13c)

Explicit expressions for the components of the Jacobian J are derived in C. The iterations

continue until max{|g1|, |g2|} ≤ ε.

2.4.4 Domain-decomposition algorithm

Let ρρρn,l,k
1 ≡ ρρρ1(tn + l∆t1) and ρρρn,m,k

2 = ρρρ2(tn +m∆t2) denote arrays of the nodal

concentrations at inner-solver times tn + l∆t1 and tn +m∆t2 during the kth iteration of the

macro-step from tn to tn+1 = tn +∆tcom. As before, ρ̄n,k
1,N/2 and F̄ n,k

2,1/2 denote the ∆tcom-

averaged interfacial concentration and flux during the kth iteration of that macro-step.

The solution is advanced from tn to tn+1 as follows.

1. Initialization step. Set ρ̄n,0
1,N/2 = ρ1,N/2(tn) and F̄ n,0

2,1/2 = F2,1/2(tn).

2. Evolve the state vector ρρρn,0,k
1 of size N/2−1 to ρρρn,n1,k

1 over n1 micro-steps, using

ρL and ρ̄n,k
1,N/2 as the boundary conditions at x =−L/2 and x = 0, respectively.

3. Evolve the state vector ρρρn,0,k
2 of size N/2−1 to ρρρn,n2,k

2 over n2 micro-steps, using

ρ̄n,k
1,N/2 and ρR as the boundary conditions at x = 0 and x = L/2, respectively.

4. Use either Picard’s or Newton’s coupling to calculate new iterates of the interfacial

concentration, ρ̄n,k+1
1,N/2 , and flux, F̄ n,k+1

2,1/2 .

5. Repeat steps 2 through 4 until the given tolerance ε is achieved.

6. Advance the solution by one macro-step by setting

ρ1,N/2(tn+1) = ρ̄n,K
1,N/2 and F2,1/2(tn+1) = F̄ n,K

2,1/2,
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where K =K(n) indicates the number of iterations at convergence. By construction,

ρ2,0(tn+1) = ρ1,N/2(tn+1) and F1,N/2−1/2(tn+1) = F2,1/2(tn+1).

It is worthwhile noting that the above iterative algorithms can be readily modified

by using ρ̄n,k
2,0 and F̄ n,k

1,N/2−1/2 as iterates.

2.5 Stability of DD Algorithm with Picard’s Coupling

One micro-step of the deterministic (l = 0, . . . ,n1 − 1) and stochastic (m =

0, . . . ,n2−1) solvers, during the macro-step from tn to tn+1, is carried out, respectively,

by the explicit Euler and Euler-Maruyama (2.8) methods,

ρρρn,l+1,k
1 = (I+A1)ρρρn,l,k

1 +T1ρρρn,k
1,b, ρρρn,k

1,b ≡ (ρL,0, . . .0, ρ̄n,k
1,N/2)

> (2.14a)

and

ρρρn,m+1,k
2 =(I+A2)ρρρn,m,k

2 +T2ρρρn,k
2,b + γηηηn,m,k, ρρρn,k

2,b≡(ρ̄n,k
1,N/2,0, . . . ,0,ρR)

>. (2.14b)

Here ρρρn,k
1,b and ρρρn,k

2,b are the vectors of size N/2−1 supplying the boundary conditions for

the two solvers; I is the (N/2−1)× (N/2−1) identity matrix; the square matrices Ai

and Ti (i = 1,2) of size N/2−1 are defined by

Ai =
Di∆ti
∆x2 Trid(1,−2,1), Ti =

Di∆ti
∆x2 I, i = 1,2 (2.14c)

with Trid(1,−2,1) denoting a square tridiagonal matrix of size N/2−1, whose diagonal

elements are−2 and sub- and super-diagonal elements are 1; γ≡ σξ
√

∆t2/∆x; and ηηηn,m,k

is the vector of size N/2−1, whose components are independent identically distributed
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standard Gaussian variables. After n1 micro-steps, the deterministic solver (2.14a) yields

ρρρn,n1,k
1 = BLρρρn,0

1 +CLρρρn,k
1,b, (2.15a)

where ρρρn,0
1 ≡ ρρρ1(t = tn) and

BL = (I+A1)
n1, CL =

n1−1

∑
l=0

(I+A1)
l T1. (2.15b)

After n2 micro-steps, the stochastic solver (2.14b) gives

ρρρn,n2,k
2 = BRρρρn,0

2 +CRρρρn,k
2,b + γ

n2−1

∑
m=0

(I+A2)
n2−1−m ηηηn,m,k, (2.16a)

where ρρρn,0
2 ≡ ρρρ2(t = tn) and

BR = (I+A2)
n2, CR =

n2−1

∑
m=0

(I+A2)
m T2. (2.16b)

Let us define vectors of size N

xn,k=(ρρρn,n1,k
1 , ρ̄n,k

1,N/2, F̄
n,k

2,1/2,ρρρ
n,n2,k
2 )>, xn=(ρρρn,0

1 , ρ̄n,0
1,N/2, F̄

n,0
2,1/2,ρρρ

n,0
2 )>. (2.17)

We show in C that xn,k satisfies a recursive relation

xn,k+1 = Mxn,k +Pxn +dn,k,k+1 + e, (2.18a)
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where M and P are N×N matrices,

M =



0(N/2−1)×(N/2−1) r(N/2−1)×1 s(N/2−1)×1 0(N/2−1)×(N/2−1)

01×(N/2−1) u v 01×(N/2−1)

01×(N/2−1) w 0 01×(N/2−1)

0(N/2−1)×(N/2−1) y(N/2−1)×1 z(N/2−1)×1 0(N/2−1)×(N/2−1)


(2.18b)

and

P =



BL 0(N/2−1)×1 0(N/2−1)×1 S(N/2−1)×(N/2−1)

01×(N/2−1) 0 0 u1×(N/2−1)

v1×(N/2−1) 0 0 01×(N/2−1)

0(N/2−1)×(N/2−1) 0(N/2−1)×1 0(N/2−1)×1 W(N/2−1)×(N/2−1)


, (2.18c)

dn,k,k+1 is a vector of size N that depends on the noise, and e is a constant vector of size

N independent of n and k. The definitions of dn,k,k+1 and e are provided in C. The size of

sub-matrices of M and P is denoted by their subscripts, and their respective components

are defined in C. At convergence, (2.18) becomes

xn+1 = (I−M)−1Pxn +(I−M)−1dn,K +(I−M)−1e, (2.19)

where dn,K is the value of dn,k,k+1 obtained when the iterations for the macro-step from

tn to tn+1 have converged. Taking the ensemble average of (2.19) yields

〈xn+1〉= (I−M)−1P〈xn〉+(I−M)−1e, (2.20)

where we have used the fact that dn,K is a zero-mean quantity (see C).

Relation (2.18) reveals that the iterations for a given macro-step (i.e., from time
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tn to time tn+1 for any n) converge if the spectral radius of M, ρ[M], is less than one.

Relation (2.20) demonstrates that the overall time advancement is numerically stable

in ensemble mean if ρ[(I−M)−1P] < 1. Both results are identical to those obtained

when simulating BVP (2.1)–(2.3) with f (x, t) ≡ 0, and hence are independent of the

presence of random noise in the stochastic solver. Therefore, if the fully-deterministic DD

algorithm is stable for a certain combination of values for D1, D2, ∆x, ∆t1, ∆t2, n1 and n2

(and hence ∆tcom = n1∆t1), then the corresponding deterministic-stochastic DD algorithm

is also stable. This result is in line with the fact that stability of the Euler-Maruyama

algorithm for a linear stochastic differential equation with additive noise follows from

the stability of its deterministic counterpart, the explicit Euler method [87].

2.6 Simulation Results and Discussion

In the simulations reported below, the one-dimensional domain of length L = 20.0

is discretized into N = 20 intervals of length ∆x= 1.0. Constant concentrations ρL = 15.0

and ρR = 5.0 are prescribed on the left (x = −L/2) and right (x = L/2) boundaries,

respectively, and ρM = 10.0. The diffusion coefficients in the right and left halves of the

computational domain are set to D2 = 10.0 and either D1 = 1.0 or D1 = 0.1, respectively.

Unless noted otherwise, the convergence tolerance for Newton and Picard iterations is

ε = 10−3. These and other values of all the physical quantities are reported in consistent

units.

The presence of random noise in the stochastic solver renders a solution of

BVP (2.1)–(2.3) random as well. Hence the solution is given in terms of a probability

density function of the system state ρ(x, t) or its ensemble moments, such as ensemble

mean 〈ρ(x, t)〉 and variance σ2
ρ(x, t). These statistical moments are approximated by

their sample counterparts computed from a finite number of independent samples. This
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number has to be sufficiently large for the difference between the ensemble and sample

moments not to exceed a specified tolerance.

At each discrete time td , to compute (2.8) we generate independent zero-mean

Gaussian variables ζp = σξ
√

∆t2/∆x ηp (p = 1, . . . ,N/2− 1) with ensemble variance

σ2
ξ∆t2/∆x. Hence, to obtain an estimate of the required number of samples (Nsam) for the

sample mean and variance of ρ(xp, td) to approximate 〈ρ(xp, td)〉 and σ2
ρ(xp, td), respec-

tively, within an acceptable margin of error, we use the following heuristic procedure.

1. For each p, start generating samples of ζp and calculate a running sample mean

and sample variance as the number of samples N increases.

2. When N is such that, for all p, the N-sample mean and variance of ζp do not deviate

more than a tolerance ε = 10−2 from their respective ensemble counterparts 0 and

σ2
ξ∆t2/∆x, stop and set Nsam = N.

In order to use the same value of Nsam for a given σξ across all of our numerical

experiments, and given that in each of them ∆t2/∆x < 1.0 by construction, we apply the

above procedure for ∆t2/∆x = 1.0. (Recall that the required number of samples increases

with the noise’s variance). We find that a sufficient number of samples for σξ = 0.1, 0.2,

and 0.4 (the noise strength we consider) is Nsam = 500, 1500, and 4000, respectively.

2.6.1 Temporal order of accuracy of implicitly coupled DD algo-

rithm

We first investigate the temporal order of accuracy our DD algorithm by calculat-

ing the l2-norm error El2 over the entire domain Ω between an Nsam-averaged, implicitly

coupled EE-EM solution ρ̃, obtained with our time advancement scheme, and the en-

semble average of the exact solution, 〈ρ〉, to the set of linear ODEs (2.7), resulting from

spatially discretizing (2.4)-(2.5), using ∆x = 1.0. The latter is equivalent to the exact
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solution of (2.7) with ξξξ = 0, and is approximated by an implicitly (Newton’s method

with ε = 10−3) coupled EE-EE solution ρ?, obtained with our numerical scheme, with

grid cell size ∆x = 1.0, micro-steps ∆t?i ≡ ∆t? = 10−6 and ni = 1 (i = 1,2).

To calculate ρ̃, we assume equal subdomain micro-steps, ∆t1 = ∆t2 ≡ ∆t, and

n1 = n2 = 1, and use Newton’s coupling with ε = 10−3. (Although not shown here,

similar results were obtained for Picard’s coupling.) We consider the case of D1 = 0.1

and D2 = 10.0, with σξ = 0.4 (i.e., Nsam = 4000).

Figure 2.2 shows that sequential reduction of ∆t by a factor of two results in a near-

quadratic decrease in El2 . Repeating the experiment using the corresponding implicitly

coupled EE-EE solution yields virtually identical results. These findings indicate that

the implicit coupling preserves the second-order local (i.e., first-order global) order of

accuracy of the subdomain solvers (for additive noise, the Euler-Maruyama method

converges with strong order 1), and this irrespective of the noise strength.

2.6.2 Relative performance of Newton’s and Picard’s coupling

To investigate the impact of the noise strength on the computational efficiency of

the Picard and Newton coupling algorithms, we conduct a series of numerical experiments

for the noise amplitude σξ = 0.1, 0.2 or 0.4. We fix ∆tcom = 5.0, and consider two cases:

D1 = 1.0 and D2 = 10.0 with ∆t1 = 0.5 and ∆t2 = 0.05 (which we will refer to as Test

1), and D1 = 0.1 and D2 = 10.0 with ∆t1 = 5.0 and ∆t2 = 0.05 (Test 2).

Table 2.1 exhibits the number of Newton and Picard iterations when approaching

steady state, averaged over Nsam independent runs. Doubling σξ for D2 = 10D1 nearly

doubles the number of Newton iterations necessary to enforce the continuity conditions

with tolerance ε. The same procedure applied to Picard’s coupling almost quadruples

the number of iterations. Newton’s coupling outperforms its Picard counterpart, with

the gain increasing with σξ. For D2 = 100D1, doubling σξ doubles the number of
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Figure 2.2: The l2-norm error of the sample-averaged EE-EM solution and the EE-EE
solution as a function of micro-step size ∆t for the Newton-coupled time advancement.

Table 2.1: Nsam-averaged number of iterations Niter,av for Picard’s (Tests 1.1 and 2.1) and
Newton’s coupling (Tests 1.2 and 2.2) with ∆tcom = 5.0. For Tests 1.1 and 1.2, D1 = 1.0
and D2 = 10.0; for Tests 2.1 and 2.2, D1 = 0.1 and D2 = 10.0.
Test Number of iterations, Niter,av

σξ = 0.1 σξ = 0.2 σξ = 0.4

1.1 31 114 438
1.2 13 25 49

2.1 9 20 68
2.2 12 24 48
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Newton iterations at all noise strengths, and doubles the number of Picard iterations at

lower strengths but increases them by a factor of about 3.5 at higher noise strengths.

Consequently, Picard’s coupling slightly outperforms its Newton counterpart at lower

noise amplitudes but is significantly outperformed by the latter at higher noise amplitudes.

This is shown in Figure 2.3, which illustrates the time evolution (in units of ∆tcom) of

the required number of iterations from t = 0 to t = T/5 = 100.0 (recall that 0≤ t ≤ T

with T = L2/(8D1), so that T = 500.0 for D1 = 0.1). The initial decrease in the number

of Picard iterations is absent for Newton’s method and further increases the overall

computation time for Picard’s coupling.
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Figure 2.3: Sample-averaged number of Newton and Picard iterations as a function of
time (in units of ∆tcom = 5.0) for D1 = 0.1, D2 = 10.0 and several values of the noise
strength σξ.

2.6.3 Relative performance of implicit and explicit coupling

In a typical multiphysics simulation, the computational cost of an inter-solver

communication may equal or exceed that of constitutive subdomain solvers. Reducing
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the frequency of inter-solver communications (increasing ∆tcom) or, for a given commu-

nication frequency, reducing the number of iterations by increasing the tolerance of the

iterative coupling (increasing ε), may reduce the total computational cost, but, possibly,

at the price of reduced accuracy. We investigate this efficiency/accuracy trade-off by

comparing “implicit” coupling, in which the coupling iterations converge to within the

prescribed tolerance of ε = 10−3, with “explicit” coupling consisting of a single Picard

iteration. This analysis is carried out for two communication times of the implicit cou-

pling, ∆tcom = 5.0 and ∆tcom = 50.0. We focus on the case D1 = 0.1 and D2 = 10.0 with

∆t1 = 1.0 and ∆t2 = 0.01, and consider both σξ = 0.1 and σξ = 0.4.

The quantities of interest (QoIs) in these experiments are discretized ensemble-

averaged concentration profiles 〈ρ(xi, t)〉, with xi =−L/2+ i∆x (i = 0, . . . ,N), at times

t = 100.0 and t = 500.0. These time points represent the time evolution of the average

solution from an early stage of the simulations to the end (steady-state equilibrium).

To compute the error of these QoIs, obtained with our time advancement scheme, we

compare them with their “exact” counterparts 〈ρ(xi, t)〉ex computed with implicitly

(Newton’s iteration with ε = 10−3) coupled explicit Euler solvers on a fine space-time

mesh of ∆xex = ∆x/26 = 0.015625 and ∆tex
i = ∆tex

2 = 10−5 (the linearity of BVP (2.1)–

(2.3) suggests that the ensemble mean of its solution satisfies the deterministic version

of BVP (2.1)–(2.3) in which f (x, t)≡ 0) using n1 = n2 = 1. The difference between the

exact and approximate solutions is reported in terms of a position-dependent relative

error, Eρ(xi, t) = |〈ρ(xi, t)〉−〈ρ(xi, t)〉 ex|/〈ρ(xi, t)〉 ex.

Figure 2.4 exhibits the relative errors Eρ(xi, t) for ∆tcom = 5.0 (left) and ∆tcom =

50.0 (right); these results were obtained with Newton’s coupling algorithm for σξ = 0.1.

(Although not shown here, Picard’s coupling was found to yield relative errors of the

same magnitude as Newton’s coupling.) Table 2.2 shows the Nsam-averaged computation

times to complete a time trajectory for these and the corresponding σξ = 0.4 cases. The
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time it takes to evaluate the Jacobian J in Newton’s coupling is excluded from the total,

since it is time-independent and therefore computed prior to the transient simulation. The

computation times are reported for an Intel Core i7 machine running at 4 GHz.
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Figure 2.4: Spatial variability of the relative error Eρ obtained with Newton’s and explicit
coupling for ∆tcom = 5.0 (implicit, explicit) and ∆tcom = 0.25 (explicit) on the left, and
for ∆tcom = 50.0 (implicit, explicit) and ∆tcom = 1.25 (explicit) on the right. In both
cases σξ = 0.1.

The explicit coupling yields a relative error Eρ that is several orders of magnitude

higher than that obtained with the implicit Newton coupling, especially for ∆tcom = 50.0

(Fig. 2.4). Decreasing ∆tcom (by reducing the inner-solver time steps ∆t1 and ∆t2, while

keeping n1 and n2 the same) reduces the explicit coupling’s error to the level achieved

by the implicit Newton coupling. This dramatically increases the explicit coupling’s

computation time (see Table 2.2). To gauge whether this makes the implicit coupling the

more efficient choice, we compare the computation time of the explicit coupling with

that of its implicit counterpart at the same solution error. For ∆tcom = 5.0, the implicit

coupling is more efficient at low noise strength (σξ = 0.1), but not at high noise strength

(σξ = 0.4). These results are due to the fact that the number of iterations needed for

the coupling to converge increases significantly with noise strength (see Section 2.6.2).
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Hence, at high noise strength, the cost of the (fully-converged) implicit coupling with

a lower communication frequency can outweigh that of the (single-iteration) explicit

coupling with a higher communication frequency. For ∆tcom = 50.0 however, the implicit

coupling outperforms its explicit counterpart at all noise strengths. Hence, when the

time between two subsequent inter-solver communications is sufficiently increased, the

implicit coupling can be more efficient even at high noise strength.

Table 2.2: Nsam-averaged simulation time tsim (in s) of the implicit and explicit coupling
algorithms with several communication frequencies ∆tcom.

Coupling ∆tcom Simulation time, tsim

σξ = 0.1 σξ = 0.4

implicit 5.0 3.4 13.0
explicit 0.25 5.4 5.4

implicit 50.0 1.5 4.7
explicit 1.25 10.7 10.6

2.6.4 Relative performance of implicit and explicit coupling in two

dimensions

To test the generality of the previous conclusions, we consider a two-dimensional

(2D) diffusion equation,

∂ρ
∂t

= ∇ · (D∇ρ)+ f , x = (x1,x2)
> ∈Ω2D, t > 0, (2.21a)

where Ω2D = (−L/2,L/2)× (−L/2,L/2), the diffusion coefficient D(x) is piecewise

constant,

D(x) =


D1 for x ∈Ω2D,1 = (−L/2,0)× (−L/2,L/2)

D2� D1 for x ∈Ω2D,2 = [0,L/2)× (−L/2,L/2),
(2.21b)
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and the source term f (x, t) is defined as

f (x, t) =


0 for x ∈Ω2D,1

ξ(x, t) for x ∈Ω2D,2.

(2.21c)

Here ξ(x, t) is a zero-mean space-time Gaussian white noise with variance σ2
ξ and

covariance

E[ξ(x, t)ξ(y,τ)] = σ2
ξδ(x−y)δ(t− τ), x,y ∈Ω2D,2, t,τ > 0 (2.21d)

Equation (2.21) is subject to boundary conditions

ρ(−L/2,x2, t) = g, ρ(L/2,x2, t) = ρR,
∂ρ
∂x2

(x1,±L/2, t) = 0, (2.22)

where g(x2) = ρL−2|x2|(ρL−ρM)/L, and an initial condition

ρ(x,0) = ρM


(g/ρM)−2x1/L for x ∈Ω2D,1

(ρR/ρM)2x1/L for x ∈Ω2D,2.

(2.23)

We employ a domain decomposition to solve the stochastic BVP (2.21)–(2.23).

Solutions ρ1(x, t) and ρ2(x, t) of the BVPs defined, respectively, on the subdomains

Ω2D,1 and Ω2D,2 are coupled by enforcing the continuity of the state variable and its flux

at the interface Γ = {x : x1 = 0,−L/2 < x2 < L/2} separating the two subdomains,

ρ1(0,x2, t) = ρ2(0,x2, t), D1
∂ρ1

∂x1
(0,x2, t) = D2

∂ρ2

∂x1
(0,x2, t). (2.24)

In the simulations reported below, we set L = 20.0, D1 = 0.1, D2 = 10.0, ρL =

15.0, ρM = 10.0, and ρR = 5.0. The simulation domain Ω2D is discretized in both spatial
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directions with a uniform mesh of cell size ∆x1 = ∆x2 ≡ ∆x = 1.0 (i.e., L/∆x≡ N = 20).

We use Picard’s coupling with a tolerance of ε= 10−2, take the micro time steps ∆t1 = 1.0

and ∆t2 = 0.01, and use an inter-solver communication time ∆tcom = 5.0. These and

other values of all the physical quantities are reported in consistent units.

We compute the discretized ensemble-averaged concentration 〈ρ(x1,i,x2, j, t)〉

at points x1,i = −L/2+ i∆x (i = 0, . . . ,N) and x2, j = −L/2+ j∆x ( j = 0, . . . ,N), and

times t = (1/5) · [20.02/(8 · 0.1)] = 100.0 and t = 20.02/(8 · 0.1) = 500.0. It is com-

pared to its “exact” counterpart 〈ρ(x1,i,x2, j, t)〉ex obtained with the implicitly (Picard’s

iteration with ε = 10−3) coupled explicit Euler solvers in each subdomain on a fine

space-time mesh of ∆xex
1 = ∆xex

2 ≡ ∆xex = ∆x/23 = 0.125 and ∆tex
1 = ∆tex

2 = 10−4 us-

ing n1 = n2 = 1. The difference between the exact and approximate solutions is re-

ported in terms of a position-dependent relative error, Eρ(x1,i,x2, j, t) = |〈ρ(x1,i,x2, j, t)〉−

〈ρ(x1,i,x2, j, t)〉ex|/〈ρ(x1,i,x2, j, t)〉ex, at times t = 100.0 and t = 500.0.

Figure 2.5 exhibits the relative errors Eρ(x1,i,x2, j, t) for the implicit Picard and

explicit coupling methods using a noise strength σξ = 0.1 (which, according to a 2D

analogue of the previously described noise discretization procedure, requires Nsam =

1000). At early times (t = 100.0), the error of the explicit coupling can be orders of

magnitude higher than that of the implicit coupling. Decreasing ∆tcom (by reducing

the inner-solver time steps ∆t1 and ∆t2, while keeping n1 and n2 the same) reduces the

explicit coupling’s error to the level achieved by its implicit counterpart; however, this

makes it less efficient (see Table 2.3). A similar trend is observed for σξ = 0.2, but as the

noise amplitude increases to σ = 0.4, the explicit coupling becomes significantly more

efficient than the implicit coupling. Although more work is needed to determine how

this comparison evolves as the inter-solver communication frequency for the implicit

coupling is reduced, the result for σξ = 0.4 indicates that the explicit coupling may be

the only computationally feasible option in 2D at high noise strength.
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Figure 2.5: Spatial variability of the relative error Eρ obtained with the implicit Picard
(top) and explicit (bottom) coupling methods at t = 100.0 (left) and t = 500.0 (right). In
all cases ∆tcom = 5.0 and σξ = 0.1.

Table 2.3: Nsam-averaged simulation time tsim (in s) of the implicit Picard and explicit
coupling algorithms with several communication frequencies ∆tcom. The times listed
for σξ = 0.2 and 0.4 are indicative values based on averaging over only a few time
trajectories.

Coupling ∆tcom Simulation time, tsim

σξ = 0.1 σξ = 0.2 σξ = 0.4

implicit 5.0 44.1 86.7 7479.7
explicit 0.5 237.9 242.3 233.0
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2.7 Summary and Conclusions

We constructed a tightly-coupled domain-decomposition approach using Picard’s

or Newton’s method and applied it to a multiscale, interfacially-coupled linear diffusion

problem driven by a Gaussian space-time white noise in one of the subdomains. We

conducted a series of numerical experiments to compare the efficiency of the fully-

converged (“implicit”) Picard and Newton coupling methods, and to investigate the

efficiency/accuracy trade-off between these implicit algorithms and a single-iteration

(“explicit”) Picard’s coupling. These numerical properties were explored for various

strengths of the Gaussian noise, and for different frequencies of communication between

the constituent subdomain solvers.

Our analysis leads to the following major conclusions.

1. Implicit Newton’s coupling typically outperforms its Picard counterpart, especially

at high noise strength. The number of Newton iterations scales linearly with the

noise amplitude, while its Picard counterpart can scale super-linearly.

2. Despite its higher cost per communication, the implicit coupling can outperform its

explicit counterpart because the latter requires a higher inter-solver communication

frequency to achieve a given solution error. At low noise strength, this holds

true even if the implicit coupling’s communication frequency is high. At high

noise strength however, it requires increasing the time between two subsequent

implicit coupling communications to offset the increased cost of the fully converged

iterations.

3. The implicit coupling preserves the order of accuracy of the constituent solvers,

even for strong random fluctuations.

4. The presence of noise does not alter the stability properties of the domain-decomposition
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algorithm compared to its fully-deterministic counterpart, regardless of the strength

of the fluctuations.

5. In two dimensions, we find a similar trend as in conclusion 2, although an explicit

coupling may be the only computationally viable option at high noise strength.
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Chapter 3

A tightly-coupled

domain-decomposition approach for

highly nonlinear stochastic

multiphysics systems

3.1 Abstract

Multiphysics simulations often involve nonlinear components that are driven

by internally generated or externally imposed random fluctuations. When used with a

domain-decomposition (DD) algorithm, such components have to be coupled in a way

that both accurately propagates the noise between the subdomains and lends itself to a

stable and cost-effective temporal integration. We develop a conservative DD approach

in which tight coupling is obtained by using a Jacobian-free Newton-Krylov (JfNK)

method with a generalized minimum residual iterative linear solver. This strategy is

tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at

37
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the boundary. Enforcement of path-wise continuity of the state variable and its flux, as

opposed to continuity in the mean, at interfaces between subdomains enables the DD

algorithm to correctly propagate boundary fluctuations throughout the computational

domain. Reliance on a single Newton iteration (explicit coupling), rather than on the

fully converged JfNK (implicit) coupling, may increase the solution error by an order of

magnitude. Increase in communication frequency between the DD components reduces

the explicit coupling’s error, but makes it less efficient than the implicit coupling at

comparable error levels for all noise strengths considered. Finally, the DD algorithm with

the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary

noise when the correlation time of the latter exceeds some multiple of an appropriately

defined characteristic diffusion time.

3.2 Introduction and Motivation

High-performance computing facilitates the simulation of ever more complex

phenomena comprising multiple physical, chemical and/or biological processes that

take place on a wide range of spatiotemporal scales. Many of these problems involve

constituent processes that occur in separate spatial domains and influence each other

through the interfaces between these domains. One example is conjugate heat transfer

across a fluid-solid interface [95], which manifests itself in applications as diverse as gas

turbine cooling [82] and vehicle entry and re-entry in planetary atmospheres [30].

Construction of a single discrete operator containing the different components and

their interactions yields a “tight” coupling, which guarantees temporal synchronization

of state variables across inter-component interfaces. Yet, this “monolithic” [20] approach

is intrusive (i.e., requires development of new software) and might become unfeasible

for high-dimensional systems. The alternative strategy of “component partitioning” or
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domain decomposition (DD) advances the components independently and employs a

coupling method to exchange information at the interfaces. Deployment of DDs in

high-performance computing facilitates an optimal distribution of the work load be-

tween the available processing cores (load balancing), while minimizing communication

between cores acting on adjacent subdomains (communication scheduling) [55]. The

DD approach is nonintrusive, i.e., allows for a “black-box” implementation of existing

(legacy) codes, but requires an iterative coupling to avoid desynchronization of the state

variables computed with the individual components1, which may significantly increase

its computational cost.

Studies of the numerical properties of DD algorithms have led to nontrivial con-

clusions, which might be difficult to generalize. For instance, an otherwise unstable loose

coupling used in one-dimensional simulations of fluid-solid-interactions can be made

stable by enforcing Neumann boundary conditions for the structural calculation and

Dirichlet boundary conditions for the fluid solver [50]. And the use of a small number of

iterations in a coupled linear diffusion problem leads to conditional or unconditional sta-

bility in a nonintuitive way when using a backward Euler solver in the subdomains [102].

Random fluctuations inside or on the boundary of a computational domain further affect

the accuracy and performance of DD methods [115, 31].

We focus on a highly nonlinear multiscale diffusion problem driven by a tem-

porally correlated boundary noise. A nonlinear dependence of the diffusion coefficient

on the state variable (e.g., concentration) poses a host of challenges not encountered in

linear [115, 31] and weakly nonlinear [31] problems. A computational testbed problem

described in Section 3.3—a one-dimensional nonlinear diffusion in a composite solid

forced by a truncated Gaussian noise at its left boundary—represents production of

ultra-pure hydrogen gas [36]. Section 3.4 contains a description of our DD algorithm,

1Examples of such a desynchronization due to the use of noniterative or “loosely” coupled algorithms,
and methods to iteratively correct them, can be found in [43, 42, 75].
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which uses a Jacobian-free Newton-Krylov (JfNK) method to tightly couple two explicit

Euler diffusion solvers. In Section 3.5 we analyze the stability of the time advancement

scheme in the presence of a temporally fluctuating boundary noise. In Section 3.6 we

conduct a series of computational experiments to elucidate the numerical properties of

our algorithm. A summary of our findings is reported in Section 3.7.

3.3 Problem Formulation

Consider a state variable ρ(x, t) whose dynamics is governed by a one-dimen-

sional nonlinear diffusion equation,

∂ρ
∂t

=
∂
∂x

[
D(ρ,x)

∂ρ
∂x

]
, x ∈Ω≡ (0,L), t > 0, (3.1a)

with the ρ-dependent diffusion coefficient D; this equation is defined on the simulation

domain Ω ≡ (0,L) for times t > 0. While (3.1a) describes a large number of physical

phenomena, we ground it in an application related to production of ultra-pure hydrogen

gas [36]. Thus, ρ(x, t) represents the concentration of atomic hydrogen (H) that diffuses

through a dense composite metal membrane of thickness L. The latter is placed between

streams of feed and sweep gases flowing in opposite directions in order to extract

H2 from the feed gas (for a typical configuration, see, e.g., [21] and Fig. 3.1). The

membrane consists of a tantalum (Ta) layer Ω2 sandwiched between two palladium (Pd)

layers Ω1 and Ω3 [89]. Palladium’s selective permeability to hydrogen [54] makes it

suitable for use in hydrogen-separation membranes. To increase its structural stability,

Pd has been alloyed with materials such as silver [59]. An alternative, and potentially

superior approach, is the combination of Pd with refractory (group V) metals, such

as tantalum, into layered membranes [25]. Refractory metals have even higher bulk

hydrogen permeabilities than Pd or its alloys [22], and are cheaper than Pd.
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Figure 3.1: A three-layer dense membrane configuration for hydrogen separation (not to
scale).

The diffusion coefficient of H in this composite is given by [103, 10]

D(ρ,x) =


DPd ≡ Dint

Pd

[
f1(β)+ f2(ρ)VPdρ

1−ρVPd

kBT

]
for x ∈Ω1∪Ω3

DTa ≡ Dint
Ta for x ∈Ω2

(3.1b)

with

f1 = 1−6
β−1

β
, f2 =

1
VPd

∂µe

∂ρ
− 3γ

2
coth

(
~ωα− γ ρVPd

2kBT

)
. (3.1c)

Here VPd is the Wigner-Seitz cell volume of the Pd lattice; kB is the Boltzmann constant;

T is the operating temperature of the membrane (in K); the constants γ and ωα (energy of

local vibrations of the H atoms for ρ close to 0) and variables β(ρ) and µe(ρ) (electronic

contribution to the chemical potential of the hydrogen subsystem) are defined in [103];

and Dint
Pd and Dint

Ta are the intrinsic (i.e., for ρ close to 0) diffusion coefficients2 of H in Pd

and Ta. Since the function DPd(ρ) in (3.1b) is discontinuous at ρVPd = 0.656, we replace

it with a continuous approximation obtained by using quadratic splines (Fig. 3.2).

2Following [4], we use Arrhenius expressions Dint
Pd = DPd,0 exp[−Eact

Pd /(RT )] and Dint
Ta =

DTa,0 exp[−Eact
Ta /(kBT )] with R denoting the universal gas constant, DPd,0 = 2.9 ·10−7 m2/s and DTa,0 =

4.4 · 10−8 m2/s, and diffusion activation energies Eact
Pd = 22.2 kJ/mol and Eact

Ta = 0.14 eV/atom. We set
T = 800 K, a temperature regime for which the expression DPd(ρ) in (3.1b) is valid.



42

0 0.2 0.4 0.6 0.8 1
;VPd

0

0.5

1

1.5

2

2.5

3

D
P
d
=
D

in
t

P
d

Original function

Continuous approximation

Figure 3.2: The original function DPd/Dint
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Equation (3.1) is subject to initial and Dirichlet boundary conditions

ρ(x,0) = ρL, ρ(0, t) = ρ0(t), ρ(L, t) = ρL, (3.2)

where ρL is a deterministic constant and ρ0(t) is the randomly fluctuating boundary

function. The latter is expressed as ρ0(t) = 〈ρ0〉+η(t) with 〈ρ0〉 the (constant) ensemble-

averaged value and η(t) a zero-mean truncated Gaussian noise with variance σ2
η, an

exponential auto-covariance Cη(t1− t2) = σ2
η exp(−|t1− t2|/λ) and the correlation time

λ. The boundary concentrations ρ0(t) and ρL are related to the partial pressure of H2 in

the feed and sweep gases, respectively. At the feed gas/membrane interface, H2 molecules

are adsorbed onto the membrane surface, where they dissociate into H atoms which enter

the Pd lattice; the reverse process occurs at the sweep gas/membrane interface.

The presence of the boundary noise η(t) renders a solution ρ(x, t) of the boundary-

value problem (BVP) (3.1)–(3.2) random over the entire simulation domain Ω. Its
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statistics, such as mean 〈ρ(x, t)〉 and variance σ2
ρ(x, t), can be estimated with, e.g.,

Monte Carlo (MC) simulations. Regardless of the noise, the disparate diffusion time

scales in the Pd and Ta layers require a single full-domain algorithm to use a time step

determined by the smallest diffusion time-scale (corresponding to the maximal value of

DPd) in order to accurately resolve the system’s dynamics. This can significantly increase

the computational time of each MC realization, potentially rendering MC simulations

prohibitively expensive.

A domain decomposition enables one to use different time steps in each subdo-

main Ωi (i = 1,2,3), which are in tune with the local diffusion time-scale. Let ρi(x, t)

denote a solution of (3.1a) on the ith subdomain Ωi (i = 1,2,3). These solutions are

subject to the initial condition ρi(x,0) = ρL for i = 1,2,3; additionally the external bound-

ary conditions give rise to ρ1(0, t) = ρ0(t) and ρ3(L, t) = ρL. The remaining boundary

conditions for these three BVPs come from enforcing the continuity of ρ and its flux at

the interfaces x = α1 and x = α2 separating the three subdomains (see Fig. 3.1):

ρ1(α1, t) = ρ2(α1, t), DPd
∂ρ1

∂x
(α1, t) = DTa

∂ρ2

∂x
(α1, t),

ρ2(α2, t) = ρ3(α2, t), DTa
∂ρ2

∂x
(α2, t) = DPd

∂ρ3

∂x
(α2, t). (3.3)

These interfacial conditions necessitate occasional communication between the diffusion

solvers in adjacent subdomains.
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3.4 Numerical Implementation of Domain Decomposi-

tion

3.4.1 Spatial discretization of the computational domain

We discretize the computational domain Ω using a uniform mesh of cell size ∆x =

L/N, where N is the total number of grid cells. For the sake of simplicity, and without

loss of generality, we assume that the interfaces x = α1 and x = α2 coincide with the

nodes of this uniform grid, so that each of the three subdomains Ωi is discretized with Ni

grid cells. The solvers used to integrate the three BVPs employ a staggered grid approach,

in which diffusive fluxes, Fi(x, t) =−Di∂ρi/∂x, in the ith subdomain Ωi (i = 1,2,3) are

calculated at the midpoint between two subsequent concentration nodes (Fig. 3.3). In

particular, both ρ−l ≡ ρ1(α1, t) and ρ+
l ≡ ρ2(α1, t) are defined at the interfacial node

x = α1, while the corresponding interfacial fluxes F−l ≡ F1(α1, t) and F+
l ≡ F2(α1, t)

are defined at x = α1−∆x/2 and x = α1 +∆x/2, respectively. Likewise, ρ−r ≡ ρ2(α2, t)

and ρ+
r ≡ ρ3(α2, t) are defined at x = α2, while the corresponding interfacial fluxes

F−r ≡ F2(α2, t) and F+
r = F3(α2, t) are defined at x = α2−∆x/2 and x = α2 +∆x/2,

respectively.

�x

⇢L

concentration nodes

flux nodes

Figure 3.3: Domain Ω = (0,L) decomposed into subdomains Ω1 = (0,α1), Ω2 =
[α1,α2) and Ω3 = [α2,L). Concentration ρ is computed at the nodes denoted by solid
circles, and flux F is evaluated at the midpoint between two subsequent concentration
nodes (open circles).
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3.4.2 Numerical solvers for individual BVPs

A finite-difference approximation of the spatial derivatives in (3.1a) yields a

system of ordinary differential equations for each subdomain Ωi,

dρρρi
dt

= fi(ρρρi), i = 1,2,3, (3.4a)

where ρρρi = (ρi,1, . . . ,ρi,Ni−1)
> are the one-dimensional arrays of size Ni−1 of the nodal

values of the state variables ρi(x, t); and components fi,p of the one-dimensional arrays

fi(ρρρi) of size Ni−1 are defined by

fi,p =
D+

i · (ρi,p+1−ρi,p)−D−i · (ρi,p−ρi,p−1)

∆x2 , (3.4b)

for p= 1, . . . ,Ni−1 and i= 1,2,3. Here D+
i and D−i are the values of Di≡DPd evaluated

at (ρi,p+1+ρi,p)/2 and (ρi,p+ρi,p−1)/2, respectively, for i = 1,3, and D+
2 = D−2 = D2≡

DTa; and ρ1,0 = ρ0, ρ1,N1 = ρ−l , ρ2,0 = ρ+
l , ρ2,N2 = ρ−r , ρ3,0 = ρ+

r and ρ3,N3 = ρL.

We use an explicit Euler method with time step ∆ti to advance ρρρi (i = 1,2,3)

in time. The noise enters the finite-difference scheme through advancing the p = 1

component of ρ1 from tn = n∆t1 to tn+1 = (n+1)∆t1,

ρn+1
1,1 = ρn

1,1 +
∆t1
∆x2 [D

+
1 · (ρn

1,2−ρn
1,1)−D−1 · (ρn

1,1−ρn
0)]. (3.5)

The random boundary term is represented as ρn
1,0 ≡ ρn

0 = 〈ρ0〉+ηn with ηn = η(tn).

Given values of the interfacial concentrations ρ−l (t) = ρ+
l (t) at x = α1 and

ρ−r (t) = ρ+
r (t) at x = α2, this spatiotemporal discretization allows one to compute,

independently from each other, the three (i = 1,2,3) solutions ρρρi(τ) at any time τ > t.

However, these solutions will not satisfy the continuity conditions (3.3). To enforce the

latter, the subdomain solvers must communicate with each other through a coupling
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algorithm. The continuity conditions can be enforced either for each MC realization of

the random solution (path-wise coupling) or for its statistical moments (e.g., mean) com-

puted using a finite number of MC realizations (moment-wise coupling). The path-wise

communication ensures the continuity of all the moments of concentration ρ(x, t) and

flux F(x, t) =−D∂xρ and, hence, accurately propagates the noise throughout the compu-

tational domain. The moment-wise coupling introduces an error since it does not account

for higher-order moments. Yet, it reduces the computational overhead due to inter-solver

communication and therefore warrants an investigation. In Section 3.6.1 we compare

the spatial profiles of the mean and variance of ρ(x, t) for path-wise and moment-wise

(exchanging only the mean) coupling with those obtained by solving (3.1)–(3.2) with a

single solver defined on the entire domain.

3.4.3 Coupling algorithm with path-wise communication

We define the communication time between solvers, ∆tcom, as the multiples of the

inner-solver time steps ∆ti, such that ∆tcom = ni∆ti (i = 1,2,3). In other words, starting at

t = tn the ith subdomain solver is advanced by ni “micro” steps ∆ti, before communicating

with adjacent solvers at tn +∆tcom. Depending on whether an iterative or noniterative

coupling is used, this process is repeated until convergence or carried out only once,

respectively. In either case, this procedure advances the solution by one “macro” step

∆tcom. In the iterative coupling, the set of communications during the various iterations

of a particular macro-step are referred to as one overall communication.

We show in D that exchanging the ∆tcom-averaged interfacial concentrations and

fluxes (rather than their counterparts computed at the last micro-step of each solver)

yields a mass-conservative coupling algorithm. The time-averaged concentrations, ρ̄ρρi

(i = 1,2,3), are computed as the arithmetic means of ρρρi over their respective ni micro-

steps. The interfacial values of these ∆tcom-averaged concentrations are ρ̄−l and ρ̄+
l at



47

x = α1, and ρ̄−r and ρ̄+
r at x = α2; the corresponding ∆tcom-averaged interfacial fluxes

are F̄−l and F̄ +
l at x = α1 and F̄−r and F̄ +

r at x = α2.

Enforcement of (3.3) provides a tight coupling of the solvers for the subdomains

Ωi (i = 1,2,3). We accomplish this by using an iterative (implicit) coupling algorithm

based on the JfNK method [70] with the generalized minimum residual (GMRES)

iterative linear solver [68] (see E for details). This root-finding algorithm is deployed to

solve a system of coupled nonlinear algebraic equations,

ρ̄−l = ρ̄+
l , F̄−l = F̄+

l , ρ̄−r = ρ̄+
r , F̄−r = F̄+

r , (3.6)

during inter-solver communication. Using notation

ρ̄n
1,N1

= ρ̄−l , ρ̄n
2,0 = ρ̄+

l , ρ̄n
2,N2

= ρ̄−r , ρ̄n
3,0 = ρ̄+

r ,

F̄ n
1,N1−1/2 = F̄−l , F̄ n

2,1/2 = F̄+
l , F̄ n

2,N2−1/2 = F̄−r , F̄ n
3,1/2 = F̄+

r , (3.7)

for the macro-step from tn to tn+1 = tn +∆tcom, this system is written as

ρ̄n
1,N1

= ρ̄n
2,0, F̄ n

1,N1−1/2 = F̄ n
2,1/2, ρ̄n

2,N2
= ρ̄n

3,0, F̄ n
2,N2−1/2 = F̄ n

3,1/2. (3.8)
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Newton’s method, in its pure form, recasts (3.8) into an iteration problem



ρ̄n,k+1
1,N1

F̄ n,k+1
2,1/2

ρ̄n,k+1
2,N2

F̄ n,k+1
3,1/2



=



ρ̄n,k
1,N1

F̄ n,k
2,1/2

ρ̄n,k
2,N2

F̄ n,k
3,1/2



−J−1



g1

g2

g3

g4



(3.9a)

where J(ρ̄n,k
1,N1

, F̄ n,k
2,1/2, ρ̄

n,k
2,N2

, F̄ n,k
3,1/2) is the Jacobian,

J =



∂g1/∂ρ̄n,k
1,N1

∂g1/∂F̄ n,k
2,1/2 ∂g1/∂ρ̄n,k

2,N2
∂g1/∂F̄ n,k

3,1/2

∂g2/∂ρ̄n,k
1,N1

∂g2/∂F̄ n,k
2,1/2 ∂g2/∂ρ̄n,k

2,N2
∂g2/∂F̄ n,k

3,1/2

∂g3/∂ρ̄n,k
1,N1

∂g3/∂F̄ n,k
2,1/2 ∂g3/∂ρ̄n,k

2,N2
∂g3/∂F̄ n,k

3,1/2

∂g4/∂ρ̄n,k
1,N1

∂g4/∂F̄ n,k
2,1/2 ∂g4/∂ρ̄n,k

2,N2
∂g4/∂F̄ n,k

3,1/2



, (3.9b)

and

g1 = ρ̄n,k
1,N1
− ρ̄ n,k

2,1 −
∆x
D2

F̄ n,k
2,1/2, g2 =−D̄n,k

1

ρ̄ n,k
1,N1
− ρ̄ n,k

1,N1−1

∆x
− F̄ n,k

2,1/2,

g3 = ρ̄n,k
2,N2
− ρ̄ n,k

3,1 −
∆x

D̄n,k
3

F̄ n,k
3,1/2, g4 =−D2

ρ̄ n,k
2,N2
− ρ̄ n,k

2,N2−1

∆x
− F̄ n,k

3,1/2. (3.9c)

Here D̄n,k
1 and D̄n,k

3 are the ∆tcom-averaged values of the diffusion coefficients at the

spatial positions α1−∆x/2 and α2 +∆x/2, respectively.
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In our numerical experiments, we do not explicitly compute the components of

the Jacobian J. Instead, we employ an inexact Newton’s method, JfNK with GMRES,

using a second-order finite difference expression to approximate the Jacobian-vector

product. The Newton iterations continue until max{|g1| , . . . , |g4|} ≤ ε, where ε is the

prescribed tolerance.

3.4.4 Coupling algorithm with moment-wise communication

While the path-wise continuity of the ∆tcom-averaged interfacial concentrations

and fluxes (Section 3.4.3) guarantees the continuity of all moments of ρ and F , it is

computationally intensive. To lower the computational cost, we consider an approxima-

tion involving the exchange of only the first moments (ensemble means). The modified

time-advancement algorithm comprises the following steps.

1. Evolve all Nsam solutions, simultaneously and independently, from tn to tn+1 =

tn +∆tcom. The value of Nsam is chosen according to the procedure described in

Section 3.6 (and is equal to Nsam used in the path-wise approach);

2. Compute, at each micro-step of Ωi (i = 1,2,3), the Nsam-average of the quantities

to be exchanged between the subdomain solvers;

3. Compute the ∆tcom-averages of the results obtained in step 2. The latter serve as

inputs to the coupling algorithm, which produces new iterates for the interfacial

concentration and flux (in the form of the ∆tcom-average of their Nsam-averages) at

x = α1 and x = α2.
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3.4.5 Domain-decomposition algorithm with path-wise communica-

tion

Let ρρρn,l,k
1 ≡ ρρρ1(tn + l∆t1), ρρρn,m,k

2 = ρρρ2(tn +m∆t2) and ρρρn,q,k
3 = ρρρ3(tn + q∆t3) de-

note arrays of the nodal concentrations at inner-solver times tn + l∆t1, tn +m∆t2 and

tn +q∆t3 during the kth iteration of the macro-step from tn to tn+1 = tn +∆tcom. At all

times, the arrays ρρρ1, ρρρ2 and ρρρ3 are of size N1−1, N2−1 and N3−1, respectively. As

before, ρ̄n,k
1,N1

and F̄ n,k
2,1/2 denote the ∆tcom-averaged interfacial concentration and flux at

x = α1, and ρ̄n,k
2,N2

and F̄ n,k
3,1/2 denote the ∆tcom-averaged interfacial concentration and flux

at x = α2, during the kth iteration of that macro-step. The solution is advanced from tn to

tn+1 as follows.

1. Initialization step. Set ρ̄n,0
1,N1

= ρ1,N1(tn), ρ̄n,0
2,N2

= ρ2,N2(tn), F̄ n,0
2,1/2 = F2,1/2(tn) and

F̄ n,0
3,1/2 = F3,1/2(tn).

2. Evolve ρρρn,0,k
1 to ρρρn,n1,k

1 over n1 micro-steps, using ρn,l
0 (l = 0, . . . ,n1−1) and ρ̄n,k

1,N1

as boundary conditions at x = 0 and x = α1, respectively.

3. Evolve ρρρn,0,k
2 to ρρρn,n2,k

2 over n2 micro-steps, using ρ̄n,k
1,N1

and ρ̄n,k
2,N2

as boundary

conditions at x = α1 and x = α2, respectively.

4. Evolve ρρρn,0,k
3 to ρρρn,n3,k

3 over n3 micro-steps, using ρ̄n,k
2,N2

and ρL as the boundary

conditions at x = α2 and x = L, respectively.

5. Use JfNK to calculate new iterates of the interfacial concentrations, ρ̄n,k+1
1,N1

and

ρ̄n,k+1
2,N2

, and fluxes, F̄ n,k+1
2,1/2 and F̄ n,k+1

3,1/2 .

6. Repeat steps 2 through 5 until the given tolerance ε is achieved.
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7. Advance the solution by one macro-step by setting

ρ1,N1(tn+1) = ρ̄n,K
1,N1

, ρ2,N2(tn+1) = ρ̄n,K
2,N2

,

F2,1/2(tn+1) = F̄ n,K
2,1/2, F3,1/2(tn+1) = F̄ n,K

3,1/2,

where K =K(n) indicates the number of iterations at convergence. By construction,

ρ2,0(tn+1) =ρ1,N1(tn+1), ρ3,0(tn+1) = ρ2,N2(tn+1),

F1,N1−1/2(tn+1) = F2,1/2(tn+1), F2,N2−1/2(tn+1) = F3,1/2(tn+1).

Note that one could equally use ρ̄n,k
2,0 , ρ̄n,k

3,0 , F̄ n,k
1,N1−1/2 and F̄ n,k

2,N2−1/2 as iterates.

3.4.6 Domain-decomposition algorithm with moment-wise commu-

nication

As explained in Section 3.4.4, the moment-wise approach replaces the ∆tcom-

averages of quantities with the ∆tcom-averages of their Nsam-averaged counterparts. In the

time advancement algorithm of Section 3.4.5, this involves replacing, for each realization,

the Dirichlet boundary conditions ρ̄n,k
1,N1

at x = α1 and ρ̄n,k
2,N2

at x = α2 with the ∆tcom-

average of the Nsam-averaged values of ρ1,N1 and ρ2,N2 , respectively. Thus, while each

realization is characterized by a different stochastic boundary condition at x = 0, all of

them share the same Dirichlet boundary conditions at x = α1 and x = α2 for evolving the

subdomain solutions. All other quantities are modified in a similar fashion.
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3.5 Stability of Implicitly Coupled DD Algorithm with

Path-wise Communication

To analyze the stability of the implicitly coupled DD algorithm with path-wise

communication between the subdomain solvers, we approximate our discretization

of (3.4) by treating the diffusion coefficients D1 and D3 at respective positions p1∆x

and α2 + p3∆x (pi = 1/2, . . . ,Ni−1/2) as constant over a macro-step. This effectively

linearizes the algorithm around tn for the macro-step from tn to tn+1. The most stringent

constraint on the size of the macro-step for this approximation to hold comes from the

time variation of D1 at x = ∆x/2 for small correlation times λ of the boundary noise η(t);

it results in the condition ∆tcom� λ.

Having chosen ∆tcom such that the above linearization procedure yields a rea-

sonable approximation during the macro-step from tn to tn+1, one micro-step of the left

(l = 0, . . . ,n1− 1), middle (m = 0, . . . ,n2− 1) and right (q = 0, . . . ,n3− 1) subdomain

solvers is given by

ρρρn,l+1,k
1 = (IN1−1 +A1,n)ρρρn,l,k

1 +T1,n ρρρn,k
1,b +T1,n ηηηn,l, (3.10a)

ρρρn,m+1,k
2 = (IN2−1 +A2)ρρρn,m,k

2 +T2 ρρρn,k
2,b, (3.10b)

ρρρn,q+1,k
3 =(IN3−1 +A3,n)ρρρ

n,q,k
3 +T3,n ρρρn,k

3,b, (3.10c)

where ρρρn,k
1,b≡ (〈ρ0〉,0, . . .0, ρ̄n,k

1,N1
)>, ρρρn,k

2,b≡ (ρ̄n,k
1,N1

,0, . . . ,0, ρ̄n,k
2,N2

)> and ρρρn,k
3,b≡ (ρ̄n,k

2,N2
,0, . . .0,ρL)

>

are vectors of size N1−1, N2−1 and N3−1, respectively, which supply the boundary

conditions for the three solvers, and ηηηn,l ≡ (ηn,l,0, . . . ,0)>.3 The identity matrices INi−1

(i = 1,2,3) are of size Ni−1, and the square matrices Ai,n and Ti,n of size Ni−1 (i = 1,3)

are defined in F. Finally, the square matrices A2 and T2 of size N2− 1 are given by

3In equation (3.10a), ηn,l is separated from the left boundary concentration to render ρρρn,k
1,b independent

of the micro-step, which simplifies the analysis.
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A2 = (D2∆t2/∆x2) Trid(1,−2,1) and T2 = (D2∆t2/∆x2)IN2−1, where Trid(1,−2,1) de-

notes the tridiagonal Toeplitz matrix of size N2−1 whose elements on the main diagonal

are −2 and those on the first sub- and super-diagonal are 1.

Lemma 3.5.1. Given vectors, of size N +1,

xn = (ρρρn,0
1 , ρ̄n,0

1,N1
, F̄ n,0

2,1/2,ρρρ
n,0
2 , ρ̄n,0

2,N2
, F̄ n,0

3,1/2,ρρρ
n,0
3 )>,

xn,k = (ρρρn,n1,k
1 , ρ̄n,k

1,N1
, F̄ n,k

2,1/2,ρρρ
n,n2,k
2 , ρ̄n,k

2,N2
, F̄ n,k

3,1/2,ρρρ
n,n3,k
3 )>, (3.11)

representing the solution at tn and the kth iterate of the solution at tn+1, respectively, the

ensemble-averaged solution at time tn+1, 〈xn+1〉, is given by

〈xn+1〉= 〈(IN+1−Mn)
−1Pnxn〉+ 〈(IN+1−Mn)

−1dn〉, (3.12)

where Mn(xn,ηn,0) and Pn(xn,ηn,0) are (N + 1)× (N + 1) square matrices, and the

vector dn of size N +1 depends on xn and all ηn,l with l ∈ {0,1, . . . ,n1−1}.

Taking the 1-norm of both sides of (3.12), and using the triangle inequality, yields

‖〈xn+1〉‖1 ≤ ‖〈(IN+1−Mn)
−1Pnxn〉‖1 +‖〈(IN+1−Mn)

−1dn〉‖1. (3.13)

For ‖〈(IN+1−Mn)
−1Pnxn〉‖1, the following result holds.

Lemma 3.5.2. Consider yn = (ηn,0,xn>)> and Qn = (IN+1−Mn)
−1Pn. Using Taylor’s

theorem to expand Qn(yn) about 〈yn〉 yields

‖〈(Qn(yn) xn〉‖1 ≤ ‖Qn(〈yn〉)‖1 ‖〈xn〉‖1 +Vn (3.14)

with Vn ∈ R≥0.
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Equation (3.13) and Lemma 3.5.2 yield the following necessary conditions for stability,

in ensemble mean, of the time advancement.

Lemma 3.5.3. Stability, in the mean, of the time advancement of the implicitly coupled

DD algorithm with path-wise communication requires ‖Qn(〈yn〉)‖1 and Vn in (3.14),

and ‖〈(IN+1−Mn)
−1dn〉‖1 in (3.13), to be finite for every macro-step, and ‖Qn(〈yn〉)‖1

to be smaller than one for all but a finite number of macro-steps. The condition on

Vn is satisfied if [Qn(yn)]i, j is of class C2 on a open convex set containing yn and 〈yn〉,

|∂α[Qn(yn)]i, j| with |α|= 2 is finite, the map of the noise η onto yn is monotonic, ∇ynη is

in L4, and gi, j(yn) and ‖ỹn‖2
1xn

j are in L2 for all i, j = 1, . . . ,N+1. Here ỹ are zero-mean

fluctuations in a Reynolds decomposition y = 〈y〉+ ỹ.

Lemmas 3.5.1–3.5.3, whose proofs are provided in F, have the following impli-

cation. The problem’s nonlinearity causes the ensemble mean solution 〈yn〉 to differ

from its counterpart obtained by replacing the randomly fluctuating boundary function

ρ0(t) with its ensemble mean 〈ρ0〉. Therefore, the dependence of (IN+1−Mn)
−1Pn on

〈yn〉 suggests that the stability of the DD algorithm with random boundary conditions

is different from that of the corresponding DD algorithm with the ensemble-averaged

boundary conditions.4 This illustrates the potential pitfalls of applying DD algorithms

verified for deterministic nonlinear problems to nonlinear problems whose dynamics is

driven by random fluctuations.

3.6 Simulation Results and Discussion

In the simulations reported below, we set α1 = 2L/5 and α2 = 3L/5. This

choice of relative thicknesses ensures that diffusion is nonlinear throughout most of the

4This is in contrast to the case of linear diffusion, where noise does not affect the stability of DD
algorithms [115].
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membrane (within the Pd layers) and facilitates our computational experiments. The

resulting subdomains Ωi (i = 1,2,3) are discretized with N1 = N3 ≡ 2N/5 and N2 ≡ N/5

nodes, respectively. All the quantities are reported in their dimensionless form,

x̂ =
x

LTa
, t̂ =

tDint
Pd

L2
Ta

, ρ̂ = ρVPd, (3.15)

and the dimensionless parameters are set to L̂ = 5, 〈ρ̂0〉 = 0.55 and ρ̂L = 0.1. In the

following, we omit the hats ·̂ to simplify the notation.

Realizations of the boundary noise η(t) with infinite correlation time (λ→ ∞),

i.e., of the random variable η, were drawn from a truncated Gaussian distribution with

zero mean and variance σ2
η using the MATLAB code by Burkardt based on [63]. Two

values of the coefficient of variation, CVη ≡ ση/〈ρ0〉= 0.46 and 0.23, were considered.

For the exponential correlation function with finite λ (Section 3.6.4), realizations of η(t)

were drawn from the multivariate truncated Gaussian distribution using the MATLAB

codes by Benham and Luong based on [100].

The convergence tolerance for the Newton solver was set to ε = 10−3, and

that for the Krylov solver (GMRES) in the JfNK coupling to εK = 10−6. We do not

precondition the GMRES algorithm as it usually converged after only a few iterations

without preconditioning. The simulation time horizon, T (= 20 or 40, depending on

the experiment), was chosen to allow the system to approach its steady state. The

ensemble mean 〈ρ(x, t)〉 and variance σ2
ρ(x, t) of concentration ρ(x, t) were approximated

by their sample counterparts calculated from Nsam independent samples. This number

was determined from the following conditions:

1. The difference between the prescribed ensemble average of ρ0(t) and its sample

counterpart is less than 5 ·10−3 at representative times tk = kT/5 (k = 1, . . . ,5).

2. The difference between the sample averages computed with Nsam and Nsam−10
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realizations is less than 10−3 at times tk = kT/5 (k = 1, . . . ,5).

We found these conditions to be satisfied with Nsam = 1200 for CVη = 0.23, and Nsam =

2500 for CVη = 0.46. The computations were performed on an Intel Core i7 machine

running at 4 GHz.

3.6.1 Comparison between path-wise and moment-wise coupling

We compare the relative performance of the DD algorithms with the path-wise

and moment-wise communication strategies. A single-solver (“global”) method provides

reference solutions 〈ρ(xi, t)〉ref and [σ2
ρ(xi, t)]ref with xi = i∆x (i = 0, . . . ,N) and t = jT/5

( j = 1,3,5) for T = 20.0. These solutions are computed from Nsam = 1200 or 2500

(for CVη = 0.23 or 0.46) independent runs of a single explicit Euler solver with grid

cell size ∆xref and time step ∆tref. The latter is chosen to satisfy the stability condition

∆tref < (∆xref)2/(2Dmax), where Dmax is the maximum value of the diffusion coefficient

throughout the computational domain over the entire duration of the simulation.

A position-dependent relative error Eρ is defined, for i = 1, . . . ,N−1, as

Eρ(xi, t;∆xref,∆tref,∆x,∆tcom) =
|〈ρ(xi, t)〉−〈ρ(xi, t)〉ref|

〈ρ(xi, t)〉ref (3.16)

where 〈ρ(xi, t)〉 is computed with the DD algorithm on a grid of cell size ∆x≥ ∆xref and

with inter-solver communication time ∆tcom ≥ ∆tref. For a fully-converged (implicit)

JfNK coupling, the total relative error E im
ρ is

E im
ρ (xi, t;∆xref,∆tref,∆x,∆tcom) = E im

c (xi, t)+E im
∆x (xi, t)+E im

∆tcom
(xi, t), (3.17)

where E im
c is the error solely due to the use of the implicit coupling, i.e., of DD solutions

with ∆tcom = ∆tref and ∆x = ∆xref; E im
∆x is the error due to the use of a coarser mesh with
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∆x > ∆xref; and E im
∆tcom

is the error due to the use of a ∆tcom > ∆tref. To compare the path-

wise and moment-wise implicit coupling, we focus on E im
c by using the fully-converged

JfNK coupling with one micro-step per macro-step, ∆tcom = ∆ti = ∆tref (i.e., ni = 1 for

i = 1,2,3) so that E im
∆tcom

= 0, and a mesh with ∆x = ∆xref so that E im
∆x = 0.
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Figure 3.4: Temporal snapshots of the deterministic concentration, ρ(x, t), computed
with the DD and global algorithms using ∆xref = 0.25 (left) and ∆xref = 0.0625 (right).

First, we consider the deterministic boundary condition ρ0 = 0.55, for which the

DD algorithms with path-wise and moment-wise communication are equivalent, Eρ is

defined in terms of ρ(xi, t) rather than 〈ρ(xi, t)〉, and T = 30.0 was required to approach

steady state. Figure 3.4 exhibits temporal snapshots of the concentration profiles, ρ(x, t),

computed with the DD and global methods. The discrepancy between the two methods,

i.e., E im
c , is maximal at intermediate times (t = 18) and is reduced, at all times, by refining

the mesh from ∆xref = 0.25 to ∆xref = 0.0625. This mesh refinement necessitates the

reduction of the time step, from ∆tref = 0.01 to ∆tref = 5×10−4, to satisfy the stability

condition ∆tref < (∆xref)2/(2Dmax).

Next, we consider the infinitely correlated boundary noise, i.e., the case ρ0 =

〈ρ0〉+η0 with the zero-mean truncated Gaussian variable η0. Figure 3.5 shows the
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Figure 3.5: Temporal snapshots of the mean concentration, 〈ρ(x, t)〉, computed (for
CVη = 0.23) with the path-wise DD and global algorithms using ∆xref = 0.25 (left) and
∆xref = 0.0625 (right).

mean concentration profiles, 〈ρ(x, t)〉, computed with the path-wise DD and global

algorithms, for CVη = 0.23. The impact of time t on the discrepancy between the two

solutions with ∆xref = 0.25, i.e., on E im
c is less pronounced than in the deterministic case,

indicating a “smoothing effect” of the noise. As before, the mesh refinement, i.e., smaller

∆xref, reduces E im
c . Figure 3.6 demonstrates that the mesh refinement also reduces the

discrepancy between the DD and global solutions for the concentration variance σ2
ρ(x, t).

Although not shown here, the case of CVη = 0.46 yielded similar results for both the

mean and variance.

Finally, we consider the performance of the DD algorithm with the moment-wise

communication. Figure 3.7 reveals that this approach yields an inaccurate mean solution

〈ρ(x, t)〉 even for a moderate noise strength (CVη = 0.23), and this solution becomes

unphysical at later times (t = 20) as the noise strength increases (CVη = 0.46). Although

not shown here, reducing ∆xref from 0.25 to 0.0625 does not yield any improvement.

This finding eliminates the possibility of using the moment-wise coupling for our DD

algorithm. In the remainder of this paper, we therefore exclusively use the path-wise
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Figure 3.6: Temporal snapshots of the concentration variance, σρ(x, t)2, computed (for
CVη = 0.23) with the path-wise DD and global algorithms using ∆xref = 0.25 (left) and
∆xref = 0.0625 (right).

communication.

3.6.2 Relative performance of implicit and explicit coupling

Inter-solver communications can represent a large fraction of the overall com-

putational cost of a multiphysics simulation. This cost can be mitigated by using an

incomplete (i.e., partially converged) iteration or reducing the inter-solver communication

frequency, both of which may lead to a higher solution error and might introduce insta-

bilities. To explore this efficiency/accuracy trade-off, we consider the fully-converged

(implicit) coupling with two communication frequencies, ∆tcom = 4.0 and ∆tcom = 8.0,

and in each case compare its efficiency with that of a single-iteration (explicit) coupling.

In these simulations, we set ∆x = 0.25, ∆t1 = ∆t3 = 0.01, ∆t2 = 0.05, and T = 40.0 (to

enable testing of bigger ∆tcom values, even though steady state is approached around

t = 20). Similar to (3.16) and (3.17), we define relative errors of the implicit (E im
ρ ) and
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Figure 3.7: Temporal snapshots of the mean concentration, 〈ρ(x, t)〉, for CVη = 0.23
(left) and CVη = 0.46 (right), computed with the moment-wise DD using ∆xref = 0.25.

explicit (Eex
ρ ) path-wise coupling strategies,

E im
ρ = E im

c (xi, t)+E im
∆x (xi, t)+E im

∆tcom
(xi, t), (3.18a)

Eex
ρ = Eex

c (xi, t)+Eex
∆x(xi, t)+Eex

∆tcom
(xi, t), (3.18b)

wherein the reference solutions 〈ρ(xi, t)〉ref are the “exact” profiles obtained with a single

explicit Euler solver on a fine space-time mesh of ∆xref = 0.0625 and ∆tref = 5×10−4.

Figure 3.8 shows the errors E im
ρ and Eex

ρ when the implicit coupling has commu-

nication time ∆tcom = 4.0 or 8.0, and the noise strength CVη = 0.23. Using an identical

communication time as its implicit counterpart, the explicit coupling yields a relative

error Eex
ρ that can be more than an order of magnitude higher than that of the implicit

coupling, E im
ρ . This difference in solution error can be negated by reduction of ∆tcom,

which, however, increases simulation time tsim (Table 3.1). This causes the explicit

coupling to become slower than its implicit counterpart. As Table 3.1 shows, for the

higher noise strength CVη = 0.46 we find a similar behavior. When the implicit cou-
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Figure 3.8: Spatial variability of the relative errors E im
r

and Eex
r

for Dtcom = 4.0 (implicit,
explicit) and Dtcom = 0.1 (explicit) on the left, and for Dtcom = 8.0 (implicit, explicit)
and Dtcom = 0.25 (explicit) on the right. In both cases CV

h

= 0.23.

pling has a communication time Dtcom = 8.0, it again outperforms the explicit coupling

at both coefficients of variation considered. Finally, the simulation time when using

implicit coupling is smaller than its counterpart for CV
h

= 0.23 for both Dtcom = 4.0

and Dtcom = 8.0. As shown in Figure 3.9 for Dtcom = 8.0, this can be attributed to the

fact that a higher noise strength decreases the Nsam-averaged number of iterations per

communication throughout the entire simulation, indicating again the smoothing effect

of the noise (see also Section 3.6.1).

Table 3.1: Nsam-averaged simulation time tsim (in s) with implicit and explicit coupling
for several communication frequencies Dtcom.

Coupling Dtcom Simulation time, tsim

CV
h

= 0.23 CV
h

= 0.46

implicit 4.0 4.5 3.5
explicit 0.1 11.2 10.7

implicit 8.0 7.6 6.5
explicit 0.25 8.6 8.8
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ρ and Eex

ρ for ∆tcom = 4.0 (implicit,
explicit) and ∆tcom = 0.1 (explicit) on the left, and for ∆tcom = 8.0 (implicit, explicit)
and ∆tcom = 0.25 (explicit) on the right. In both cases CVη = 0.23.

pling has a communication time ∆tcom = 8.0, it again outperforms the explicit coupling

at both coefficients of variation considered. Finally, the simulation time when using

implicit coupling is smaller than its counterpart for CVη = 0.23 for both ∆tcom = 4.0

and ∆tcom = 8.0. As shown in Figure 3.9 for ∆tcom = 8.0, this can be attributed to the

fact that a higher noise strength decreases the Nsam-averaged number of iterations per

communication throughout the entire simulation, indicating again the smoothing effect

of the noise (see also Section 3.6.1).

Table 3.1: Nsam-averaged simulation time tsim (in s) with implicit and explicit coupling
for several communication frequencies ∆tcom.

Coupling ∆tcom Simulation time, tsim

CVη = 0.23 CVη = 0.46

implicit 4.0 4.5 3.5
explicit 0.1 11.2 10.7

implicit 8.0 7.6 6.5
explicit 0.25 8.6 8.8
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Figure 3.9: Sample-averaged number of iterations as a function of time (in units of
∆tcom = 8.0) for a deterministic DD coupling and a path-wise DD coupling with several
values of CVη.

3.6.3 Temporal order of accuracy of implicitly coupled DD algo-

rithm

We express the temporal order of accuracy of our DD algorithm in terms of

the l2-norm error El2 = ‖〈ρ〉−〈ρ̃〉‖l2 over the entire simulation domain Ω. Here 〈ρ〉 is

the Nsam-average of the DD solution ρ obtained using JfNK coupling with ε = 10−3,

∆x = 0.25, ∆ti ≡ ∆t and ni = 1 (i = 1,2,3); and 〈ρ̃〉 is the ensemble average of the exact

solution to the set of nonlinear ODEs (3.4) with ∆x = 0.25, and is approximated by the

Nsam-average of the implicitly (JfNK coupling with ε = 10−3) coupled DD solution ρ̃

with spatial mesh size ∆x̃ = 0.25, micro-steps ∆t̃i = 10−5 and ñi = 1 (i = 1,2,3). We

only consider perfectly correlated noise.

Figure 3.10 demonstrates, for CVη = 0.46, that sequential reduction of ∆t by a

factor of two results in a near-quadratic decrease in El2 . A similar result was obtained for

CVη = 0.23. It follows that the implicit coupling preserves the second-order local (i.e.,
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Figure 3.10: The l2-norm error of the Nsam-averaged solution, 〈ρ(x, t)〉, as a function of
the micro-step size ∆t.

first-order global) order of accuracy of the subdomain solvers for all the boundary noise

strengths considered.

3.6.4 Effect of finite noise correlation time

To generate the temporally fluctuating truncated Gaussian boundary noise η(t)

with (dimensionless) correlation time λ, we first consider a discrete version of the auto-

covariance of the parent multivariate-Gaussian field p(t),

Cp(|ti− t j|) = σ2
p exp(−|i− j|∆t1/λ), (3.19)

where ti− t j = (i− j)∆t1 with 0 < ti, t j ≤ T . It is used to build an Nt ×Nt covariance

matrix Σp, where Nt is the total number of discrete time steps in the subdomain Ω1 over

the simulation horizon T . The latter is then transformed into Ση, an Nt×Nt covariance
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matrix of the truncated multivariate-Gaussian field η(t). Finally, this matrix is used

to generate Nsam realization arrays {η1, . . . ,ηNt} with ηi = η(ti) at discrete times ti

for i = 1, . . . ,Nt . Each of the corresponding realizations of ρ(x, t) was computed with

discretization parameters ∆x = 0.25 and ∆tcom = ∆ti = 10−2 (i = 1,2,3); the simulation

horizon was set to T = 40.0, and a value of 4000 was used for Nsam.

Figure 3.11 shows the resulting mean concentration 〈ρ(x, t)〉 computed with the

implicitly coupled DD algorithm for CVη = 0.23 and several values of λ. For λ < 8.0 the

mean concentration profile becomes unphysical, indicating that the DD algorithm is not

able to resolve boundary fluctuations with a correlation time smaller than eight times the

characteristic diffusion time-scale L2
Ta/Dint
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Figure 3.11: Effect of a finite noise correlation time on the mean concentration, 〈ρ(x, t)〉,
for CVη = 0.23.
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3.7 Summary and Conclusions

We developed a domain-decomposition (DD) algorithm with a tight coupling

based on a Jacobian-free Newton-Krylov (JfNK) method with generalized minimum

residual. The DD algorithm was applied to a multiscale nonlinear diffusion problem

driven by a truncated Gaussian noise at the boundary. For this problem, the DD com-

ponents are coupled by enforcing the continuity of state variables, concentration ρ and

flux F =−D(ρ)∂xρ, at the interfaces between the DD subdomains. This may be done

either path-wise (i.e., in each realization of the ensemble) or moment-wise (i.e., only

for the ensemble average). The former strategy is exact but computationally intensive,

while the latter is approximate but might be significantly faster. We explored the effi-

ciency/accuracy trade-off between the fully-converged (implicit) JfNK coupling and its

single-iteration (explicit) counterpart for different frequencies of communication between

the DD components and for different strengths of the boundary noise, and analyzed the

stability and order of accuracy of the implicit path-wise coupling.

Our analysis leads to the following major conclusions.

1. The DD approach with path-wise continuity provides accurate approximations

of the mean and variance of ρ(x, t) because it correctly propagates the boundary

noise across the entire computational domain. As the spatial grid size and time

step become smaller, the DD solutions for both moments converge to the reference

solutions computed with a single-solver method.

2. The DD approach with moment-wise continuity fails to propagate the boundary

noise into adjacent subdomains, resulting in erroneous solutions for both the mean

and variance of ρ(x, t).

3. The implicit coupling with path-wise continuity preserves the order of accuracy
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of the constituent solvers, even for relatively high coefficients of variation of the

boundary noise.

4. Despite a higher cost per communication, the fully-converged (implicit) JfNK

coupling strategy outperforms its explicit counterpart at similar levels of solution

error for all noise strengths considered. This is because the explicit coupling

requires a higher inter-solver communication frequency to achieve the same error.

5. When the boundary fluctuations are correlated over a finite time, our path-wise DD

approach correctly captures the time evolution of the mean concentration profile if

the correlation time is larger than eight times the characteristic diffusion time-scale.

Future extensions of the presented analysis may include the application of our

DD algorithm to higher-dimensional problems, and the development of moment-wise

DD approaches in which continuity of not just the mean, but also higher moments, is

enforced. As demonstrated in [31], enforcing continuity of mean and variance enables

DD approaches for linear and weakly nonlinear systems to accurately propagate random

fluctuations across interfaces between subdomains. Since highly nonlinear systems,

such as the one considered here, are described by highly non-Gaussian state variables,

their solutions likely require DD algorithms to enforce continuity of moments beyond

the variance in order to adequately capture noise propagation throughout the entire

computational domain.
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Chapter 4

Impact of parametric uncertainty on

estimation of the energy deposition into

an irradiated brain tumor

4.1 Abstract

We analyze the effect of parametric uncertainty on the total energy deposited

in a brain tumor through X-ray irradiation. Both the location of the region over which

a dose-enhancing, iodinated contrast agent spreads out after injection into the tumor,

and the agent’s concentration, are allowed to be uncertain. We model this problem via

a probabilistic approach in which the coordinates of the center of the contrast agent

region, as well as the effective atomic number in this area (which depends on the agent’s

concentration), are represented as mutually independent, uniformly distributed random

variables. Employing the nonintrusive stochastic collocation (SC) method, we estimate

statistical moments of the deposited energy as a function of the mean and/or variance

of the random inputs. We find that in most cases, the coefficient of variation of the

68
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uncertain parameters is amplified by the nonlinearity of the problem, yielding a larger

coefficient of variation for the energy deposition. As the stochastic dimension increases,

the magnitude of the predictive uncertainty in the energy deposition, as measured by its

standard deviation, approaches that of the prediction (mean energy deposition) itself. This

demonstrates that accurate prediction of the energy deposition requires a proper treatment

of even small parametric uncertainty. Our analysis also reveals that SC outperforms

standard Monte Carlo, with the largest difference in efficiency occurring for the case of a

single uncertain parameter.

4.2 Introduction and Motivation

In addition to surgery and chemotherapy, radiotherapy has become one of the

main treatment methods for brain tumors. It is aimed at either destroying the latter or

preventing it from developing further, and may serve as the only treatment (e.g., for

inoperable tumors) or in combination with surgery (to kill any remaining microscopic

tumor cells) [9]. X-rays are the primary type of radiation involved in radiotherapy;

their interactions with the medium in which they propagate produces energetic electrons

which, in turn, lose their energy as they are slowed down through collisions. To enhance

the energy dose absorbed by the tumor, a contrast agent based on a substance with

high atomic number Z, such as iodine, may be injected [91]. This increases the photo-

electric absorption of the X-rays (the photo-electric mass attenuation coefficient increases

strongly with Z [80]), one of the main radiation-matter interactions at photon energies

in the keV range. The photo-electric effect may also result in the emission of Auger

electrons that may equally contribute to the overall energy deposition. Within the keV

energy range, the X-rays are also likely to undergo Compton scattering and transfer their

energy to existing free electrons; however, this process has a mass attenuation coefficient
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that is nearly independent of Z [80].

To quantify the contrast agent’s concentration within the brain/tumor, temporal

and K-edge subtraction methods [39] have been employed, which inevitably introduce

measurement errors preventing the agent’s concentration upon injection into the tumor

to be known exactly. Moreover, while the agent preferentially accumulates in the tumor

interstitium due to the increased permeability of the broken blood-brain barrier, it may

diffuse into the surrounding healthy brain tissue, preventing the agent’s spatial extent

throughout the irradiation procedure to be known with certainty. Along with other

parameters whose values are not known exactly, such incomplete characterization of the

contrast agent’s presence within the brain/tumor renders predictions of the amount and

detailed distribution of the energy deposited in the tumor, obtained through numerical

simulations, uncertain.

The effect of iodine concentration on dose enhancement [107] and the uniformity

of the dose distribution within the tumor [83] has been analyzed using the Monte Carlo

N-particle (MCNP) [28, 123] method, which simulates trajectories of small photon

packets created with their energy and propagation direction statistically selected. This

allows modeling of the interaction of X-ray photons with the brain/tumor matter, and of

the transport of electrons released as a result of those interactions. While such MCNP

simulations may achieve high accuracy, this typically requires a large number of runs due

to the slow convergence of Monte Carlo (the estimation error for the mean value of the

quantity of interest decays as the inverse square root of the number of realizations [65]).

Hence, as a means to determine bounds on, e.g., the dose absorbed by the tumor given

certain bounds on the contrast agent’s concentration and spatial extent within the brain,

such methods may become prohibitively expensive.

To achieve a computationally more efficient approach to the estimation of energy

deposition in X-ray irradiated brain tumors in the presence of the above mentioned para-
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metric uncertainty, we combine a continuum-level approach involving a two-dimensional,

flux-limited radiation-diffusion equation [74, 85] with the stochastic collocation (SC)

technique [125, 77]). Similar to other nonintrusive methods such as multilevel Monte

Carlo [51] as well as intrusive alternatives such as perturbation methods [76, 111, 62, 122]

and polynomial chaos with stochastic Galerkin [120, 49, 126], SC aims to outperform

standard Monte Carlo by a “smart” selection of sampling points and their weights. It

uses a quadrature rule to approximate the weighted integrals appearing in the statistical

moments of a quantity of interest. The choice of this rule is based on the distribution

of the random parameter; e.g., Gauss-Hermite quadrature is employed for a normally

distributed parameter, while Gauss-Legendre or Clenshaw-Curtis quadrature is used

when the parameter is uniformly distributed [124, 40]. We assume that the X-rays are

monochromatic and in the keV range [3] (such X-rays may be generated, e.g., in a

synchrotron [29]), and represent the region over which the contrast agent spreads out as a

square inset in the domain. We consider the coordinates of the center of this inset, as well

as the effective atomic number in this area (which depends on the agent’s concentration),

to be uncertain. It follows that we cannot solve the radiation-diffusion equation in a

deterministic setting, but need to recast it into a probabilistic framework wherein the

uncertain parameters are treated as random variables. We apply SC to the resulting

stochastic problem and analyze the dependence of statistical moments of a quantity of

interest, the energy deposited in the tumor, on the mean and/or variance of the random

inputs. We also compare the performance of SC with standard Monte Carlo for one, two

or three random parameters.

The paper is organized as follows. In Section 4.3 we formulate the problem

including its statistical parametrization. Section 4.4 details the spatial discretization

method and time advancement algorithm used to obtain a numerical solution to the

equilibrium radiation-diffusion equation, as well as the statistical moment estimators of
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the deposited energy in the SC and standard Monte Carlo frameworks. In Section 4.5, we

present the results of our numerical experiments. Section 4.6 formulates the conclusions

of our numerical tests.

4.3 Problem Formulation

Under the conditions of local thermal equilibrium and isotropic, elastic scattering,

radiation transport may be described by the radiative transfer equation [85]

1
c

∂Iν
∂t

+ΩΩΩ ·∇Iν =−κt,νIν +κa,νIνB(Tm)+
κs,ν
4π

∫
4π

Iν dΩ′, (4.1)

where Iν is the spectral radiation intensity; IνB is the Planck function; ΩΩΩ is the unit

solid angle vector describing the direction of photon travel; κs,ν , κa,ν and κt,ν are the

spectral scattering, absorption and extinction coefficients, respectively; and Tm is the

temperature of the medium through which the radiation propagates. Assuming that the

collisional mean free path of the photons is small compared to the system (i.e., brain)

dimensions, and that the radiation field is isotropic, (4.1) may be approximated by a

diffusion equation. If we also consider the radiation field to be in thermal equilibrium

with the medium, we do not need a separate equation for the latter’s energy density.

Under these assumptions, the transport of monochromatic1 X-rays through a (human

or animal) brain in a simplified two-dimensional, square geometry may be described

through the equilibrium radiation-diffusion equation (eRDE)

∂E
∂t

= ∇ · [D(E,∇E,x)∇E], x ∈ D ≡ (0,L)× (0,L), t ∈ (0,T ], (4.2a)

1The use of monochromatic radiation (i.e., all photons have an identical energy) removes the need for
frequency-averaging of the spectral radiation energy density, i.e., a gray approximation.
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with E the radiation energy density and D the diffusion coefficient, which depends on

x = (x1,x2)
>, E, and its spatial gradient, ∇E.

The domainD, representing the brain, contains a subregion T = [L/2−w/2,L/2+

w/2]× [L/2−w/2,L/2+w/2], with w = L/5, representing the tumor (Fig. 4.1). In-

jection of an iodinated contrast agent causes the latter to spread out over a subdomain

D2 = [c1−w/2,c1 +w/2]× [c2−w/2,c2 +w/2], which may fully or partially overlap

with T depending on the values of c1 and c2 (Fig. 4.1). The medium in D2 has an

“effective”2 atomic number Z2, which lies between the atomic number of the contrast

agent, Zc (which we take to be the atomic number of iodine, 53), and the effective atomic

number of either healthy brain tissue (within D2 \T ) or tumor matter (within D2∩T ).

As healthy and tumurous brain matter have effective atomic numbers that are both small

compared to Zc, we assume they are equal and given by that of healthy brain tissue. The

latter is taken to be 5, which is an average value for grey/white human brain matter over

the keV range of photon energies [97]. It follows that Z1, the effective atomic number

within D1 =D\D2, is equal to 5.

Following [99], the diffusion coefficient D is given by

D(E,∇E,x) =
cE

{γE/DZ(Z(x),E)}+ |∇E| , (4.2b)

where γ is defined in G, c is the speed of light, and DZ = Z−3E3/4 is proportional to the

diffusion coefficient without flux-limiting. The atomic number Z satisfies

Z(x) =


Z1 for x ∈ D1

Z2 for x ∈ D2.

(4.2c)

2A composite medium may be characterized by an effective atomic number, which depends on its
composition and the energy of the X-ray photons.
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Important steps in the derivation of (4.2) from (4.1) are given in G. Equation (4.2) is

subject to the initial condition

E(x,0) = Ein(x), x ∈ D (4.3a)

and boundary conditions

E−2D(E,∇E,x)∂x1E = 4Fin, x ∈ ΓR,left, (4.3b)

E +2D(E,∇E,x)∂x1E = 4Fout, x ∈ ΓR,right, (4.3c)

∂x2E = 0, x ∈ ΓN, (4.3d)

with Fin the half-range flux in the direction of positive x1 on ΓR,left, and Fout the half-range

flux in the direction of negative x1 on ΓR,right, respectively. Here ΓR = ΓR,left∪ΓR,right

with ΓR,left = {x : x1 = 0,0 < x2 < L} and ΓR,right = {x : x1 = L,0 < x2 < L}, and

ΓN = ΓN,top∪ΓN,bottom with ΓN,top = {x : x2 = L,0 < x1 < L} and ΓN,bottom = {x : x2 =

0,0 < x1 < L}, denote the Robin and homogeneous Neumann segments of the domain

boundary ∂D, respectively.

Predictions of the behavior of complex systems such as the one considered

here are typically uncertain due to insufficient characterization of the input parameters

(parametric uncertainty) and/or errors in the model representation of the true physical

system (structural uncertainty). While the latter is introduced through use of a radiation-

diffusion equation (which has a much lower fidelity than the radiative transfer equation)

and of a simplified geometry for the brain/tumor/contrast agent configuration, we only

consider the parametric uncertainty discussed in Section 4.2. We represent the latter

in our model through uncertainty in the location of the center of D2, as well as in the

effective atomic number Z2 within D2. The latter accounts for the uncertainty in the
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Figure 4.1: Computational domain D for the radiation-diffusion problem. Here a =
(L/2,L/2)> and c = (c1,c2)

>, and D1 =D\D2.

contrast agent’s concentration, which renders the composition of the medium within

D2 uncertain. To simplify our representation, we assume that the concentration of the

contrast agent is uniform over D2 and constant over time (in reality, the agent may be

injected gradually over time during irradiation); we also ignore any spatial variations

in the composition of the brain and tumorous tissue. Finally, we treat the brain tumor’s

location T (which may be determined via X-ray-based Computed Tomography [57],

or through alternative techniques such as Magnetic Resonance Imaging [17]), and the

healthy brain/tumorous matter’s effective atomic number Z1, as known quantities.

We represent the uncertain coordinates c1 and c2 of the center of D2, and the

uncertain effective atomic number Z2, as random variables. Let (Ω,F ,P) be a complete

probability triplet with Ω the event space, F ⊆ 2Ω the σ-field of Ω, and P : F → [0,1]

the probability measure. Defining c1, c2 and Z2 on Ω, i.e., c1 : Ω→ R, c2 : Ω→ R and
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Z2 : Ω→ R recasts (4.2) into the following stochastic boundary-value problem:

∂E
∂t

= ∇ · [D(E,∇E,x,ω)∇E], x ∈ D, ω ∈Ω, t ∈ (0,T ], (4.4a)

where D = cE[ {γE/DZ(Z(x,ω),E)}+ |∇E| ]−1, and DZ = Z−3E3/4 with Z given by

Z(x,ω) =


Z1 for x ∈ D1

Z2(ω) for x ∈ D2.

(4.4b)

Initial and boundary conditions are provided by (4.3), provided that we take into account

the dependence on ω. The state variable E ≡ E(x, t,ω) : D× (0,T ]×Ω → R is a

stochastic measurable function that satisfies (4.4)–(4.3) almost surely.

To ensure D2 ⊂D, c1 and c2 need to lie in the interval [w/2,L−w/2]; to obtain

a more reasonable scenario where D2 overlaps with at least one quarter of the tumor

region T , we require c1 ∈ [L/2− cH,L/2 + cH] and c2 ∈ [L/2− cV,L/2 + cV] with

0 < cH ≤ w/2 and 0 < cV ≤ w/2. The minimum and maximum theoretical bounds on

the effective atomic number within D2 are Z1 (no contrast agent) and Zc (only contrast

agent). However, to achieve a more realistic composition of the medium within D2,

we require Z2 to lie within [Zmin,Zmax] where Zmin and Zmax are, respectively, 10 and

40. We assume that all three parameters c1, c2 and Z2 are uniformly distributed on their

respective intervals, and are mutually independent. The vector ξξξ = (c1,c2,Z2)
> is then

characterized by a joint pdf

ρ(s) =
3

∏
i=1

ρi(si), (4.5)

with support Λ= [L/2−cH,L/2+cH]× [L/2−cV,L/2+cV]× [Zmin,Zmax], where ρ1, ρ2

and ρ3 are the marginal probability density functions (PDFs) representing the univariate
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uniform distributions of c1, c2 and Z2, respectively. The size of ξξξ is called the stochastic

dimension, and we will denote it by M. According to the Doob-Dynkin lemma, we

may then substitute E(x, t,ξξξ(ω)) : D× (0,T ]×Λ→ R for E(x, t,ω). This effectively

replaces the original probability triplet (Ω,F ,P) with (Λ,B,ρ(ξξξ)dξξξ), where B is the

Borel σ-algebra formed by all the open subsets of Λ. We call E(x, t,ξξξ) the stochastic

response surface, which satisfies

∂E
∂t

= ∇ · [D(E,∇E,x,ξξξ)∇E], x ∈ D, ξξξ ∈ Λ, t ∈ (0,T ] (4.6)

subject to the initial and boundary conditions (4.3), modified to account for the depen-

dence on ξξξ.

Through some straightforward algebra, and omitting ξξξ for ease of notation, we

may recast (4.6) into

∂E†

∂t
= ∇ ·

[
cE†

{γE†/D†
Z̃(Z̃(x),E

†)}+ |∇E†|
∇E†

]
, (4.7a)

where D†
Z̃ = Z̃−3(E†)3/4 with Z̃ defined by

Z̃(x)≡ Z/Z1 =


1 for x ∈ D1

Z2/Z1 for x ∈ D2,

(4.7b)

and E†≡ Z−4
1 E. Next, using the characteristic length w= L/5 and the speed of light c, we

define a dimensionless time t̃ = tc/w. After some more algebra we find the dimensionless

equation

∂Ẽ
∂t̃

= ∇̃ ·
[

Ẽ
{Ẽ/D̃Z̃(Z̃(x̃), Ẽ)}+ |∇̃Ẽ|

∇̃Ẽ
]

(4.8a)
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with

D̃Z̃ = Z̃−3Ẽ3/4, Ẽ ≡ E†/E0, ∇̃ = w∇, x̃ = x/w. (4.8b)

Here E0 is a reference energy density satisfying γw/E3/4
0 = 1.0, allowing us to eliminate γ

in the denominator of the diffusion coefficient. In the following, all quantities are assumed

to be in their dimensionless form, but we omit the tildes ·̃ for notational convenience.

The quantity of interest (QoI) in our problem is the total energy deposition in

T over the time horizon T . The stochastic nature of E renders Eabs,tot random as well.

Hence, it may be characterized through its statistical moments, such as mean and variance.

We compute these via the method of Stochastic Collocation, as discussed in Section 4.4.3.

4.4 Numerical Algorithm

4.4.1 Spatial discretization of the computational domain

We discretize the domain D by employing a cell-centered finite volume approach

(CCFV) in which the numerical fluxes F are defined on the cell boundaries, and the value

of E for a cell approximates the average value of the radiation energy density over that

cell. We use a nonuniform mesh, finest within D2∪T , with N grid cells in each spatial

direction. This transforms (4.8) into the set of ordinary differential equations

dEi, j(t)
dt

=−
Fi+1/2, j(t)−Fi−1/2, j(t)

∆xi
−

Fi, j+1/2(t)−Fi, j−1/2(t)
∆x j

, (4.9)

where the subscripts i = 1, . . . ,N and j = 1, . . . ,N indicate the position of a cell in the

horizontal and vertical directions, respectively, and ∆xi and ∆x j are its dimensions in
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these respective directions. We approximate the numerical flux Fi+1/2, j using

Fi+1/2, j =−2Di+1/2, j Ei+1, j−Ei, j

∆xi+1 +∆xi
, (4.10)

where Di+1/2, j is defined as

Di+1/2, j =
Ei+1, j +Ei, j

{(Ei+1, j +Ei, j)/Di+1/2, j
H }+{4|Ei+1, j−Ei, j|/(∆xi+1 +∆xi)}

. (4.11)

Here Di+1/2, j
H is given by the harmonic mean

Di+1/2, j
H =

∆xi∆xi+1DZ(Zi, j;Ei, j)DZ(Zi+1, j;Ei+1, j)

∆xi+1DZ(Zi, j;Ei, j)+∆xiDZ(Zi+1, j;Ei+1, j)
(4.12)

with DZ(Zi, j;Ei, j) = Z−3
i, j E3/4

i, j . The other fluxes Fi−1/2, j, Fi, j+1/2 and Fi, j−1/2 are defined

similarly. For the numerical flux at cell boundaries coinciding with ∂D, we introduce

ghost cells (denoted with subscript 0 or N + 1 in one of the spatial dimensions) lying

just outside D with the same dimensions (and the same effective atomic number) as

the adjacent cells within D. The boundary conditions (4.3b)–(4.3d) are then discretized

according to

E0, j +E1, j

2
−2D0, j

(
E1, j−E0, j

∆x

)
−4Fin = 0, (4.13a)

EN+1, j +EN, j

2
+2DN+1, j

(
EN+1, j−EN, j

∆x

)
−4Fout = 0, (4.13b)

Ei,0 = Ei,1, Ei,N+1 = Ei,N (4.13c)



80

with i, j = 1, . . . ,N. Here D0, j and DN+1, j are given, respectively, by

D0, j =
E0, j

{E0, j/DZ(Z1, j;E0, j)}+{|E1, j−E0, j|/∆x1, j}
, (4.13d)

DN+1, j =
EN+1, j

{EN+1, j/DZ(ZN, j;EN+1, j)}+{|EN+1, j−EN, j|/∆xN, j}
. (4.13e)

The Robin boundary conditions are nonlinear equations in E0, j or EN+1, j ( j = 1, . . . ,N),

which need to be solved iteratively during each time step. Figure 4.2 illustrates the

relevant quantities involved in building the CCFV discretization of D.

Figure 4.2: Cell-centered finite volume discretization of the computational domain D.
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4.4.2 Numerical time integration

We employ a first-order implicit Euler method which recasts (4.9) into

En+1
i, j −En

i, j

∆t
=−

Fn+1
i+1/2, j−Fn+1

i−1/2, j

∆xi
−

Fn+1
i, j+1/2−Fn+1

i, j−1/2

∆x j
, (4.14)

where the superscript n indicates the discrete time tn = n∆t, with ∆t the time step. As the

right-hand-side of (4.14) involves implicitly treated nonlinear terms, we need to use an

iterative algorithm to advance the solution from tn to tn+1. We employ a Jacobian-free

Newton-Krylov (JfNK) solver [70] for this purpose, which avoids the explicit formation

of the Jacobian while still benefiting from fast Newton-like convergence.

The time advancement of the solution from tn to tn+1 consists of the following

steps.

1. Initialize the Newton iterate by setting En+1
i, j,k=0 = En

i, j for all i, j = 1, . . . ,N, where

k is the iteration number.

2. Inexactly solve the linear system J(En+1
k )δEk =−f(En+1

k ) for the Newton correc-

tion δEk using the Krylov solver GMRES with tolerance εK. Here the components

of f are given by

f j·N+i(En+1
k ) =

En+1
i, j,k −En

i, j

∆t
+

Fn+1
i+1/2, j,k−Fn+1

i−1/2, j,k

∆xi
(4.15)

+
Fn+1

i, j+1/2,k−Fn+1
i, j−1/2,k

∆x j
(4.16)

with i, j = 1, . . . ,N.

3. Perform the Newton step En+1
k+1 = En+1

k +δEk where δEk is the converged value of

the kth Newton correction.

4. Perform steps 2 and 3 until a given tolerance ε is achieved.
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5. Advance the solution to tn+1 by setting En+1 = En+1
K where K is the number of

Newton iterations at convergence.

Details on our implementation of step 2 are provided in I.

4.4.3 Monte Carlo simulation and stochastic collocation

Statistical moments of E(x, t,ξξξ), or a QoI derived from E, are its weighted

integrals over the support Λ of ξξξ with respect to the latter’s PDF defined in (4.5). For

example, the ensemble mean and variance of the energy deposition in the tumor over

time T , Eabs,tot, are defined, respectively, by

〈Eabs,tot〉=
∫

Λ
Eabs,tot(s) ρ(s) ds (4.17)

and

σ2
Eabs,tot

=
∫

Λ
E2

abs,tot(s) ρ(s) ds−〈Eabs,tot〉2. (4.18)

Monte Carlo simulation (MCS) approximates 〈Eabs,tot〉 and σ2
Eabs,tot

through

ÊMC
abs,tot =

1
Nsam

Nsam

∑
i=1

Eabs,tot(ηηηi) (4.19)

and

σ̂2,MC
Eabs,tot

=
1

Nsam

Nsam

∑
i=1

[Eabs,tot(ηηηi)]
2− [ÊMC

abs,tot]
2, (4.20)

respectively. Here {ηηηi}Nsam
i=1 is a set of Nsam realizations of ξξξ sampled from (4.5).

The MCS estimation error for the mean, EMC
est ≡ |〈Eabs,tot〉− ÊMC

abs,tot|, decays as

σEabs,tot/
√

Nsam with σEabs,tot the standard deviation of Eabs,tot. While EMC
est is independent
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of the stochastic dimension M, the rate 1/
√

Nsam is very slow. Stochastic collocation (SC)

aims to achieve faster convergence through the use of quadrature rules to approximate

the weighted integrals in (4.17) and (4.18). An M-dimensional weighted integral of an

integrable function f (s) over its support Λ

IM[ f ] =
∫

Λ
f (s) ρ(s) ds (4.21)

may be approximated by a quadrature formula QM

IM[ f ]≈QM[ f ] =
P

∑
i=1

wi f (si), (4.22)

where si and wi are the nodes and weights of the quadrature formula, respectively, and P

is the number of nodes. The respective SC estimators for 〈Eabs,tot〉 and σ2
Eabs,tot

are then

given by

ÊSC
abs,tot =

P

∑
i=1

wi Eabs,tot(si) (4.23)

and

σ̂2,SC
Eabs,tot

=
P

∑
i=1

wi [Eabs,tot(si)]
2− [ÊSC

abs,tot]
2. (4.24)

By solving (4.8) at P judiciously chosen values si of ξξξ, and using appropriate weights

wi, SC aims to achieve the same estimation error as MCS by using P < Nsam collocation

nodes.

For stochastic dimension M > 1, product or tensor grid rules may be constructed

through the tensor product of M univariate rules [92]. However, the number of nodes

in such grids increases exponentially with M, i.e., for k+1 nodes in each dimension it
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behaves like (k+1)M (the so-called “curse of dimensionality”). Instead, sparse grid rules

may be built from univariate rules using the Smolyak algorithm [104], whose number of

nodes only increases as approximately (2M)k/k!, i.e., polynomially with M.

4.5 Simulation Results and Discussion

As demonstrated in H, the dimensionless total energy deposition in the tumorous

region T during (0,T ] is given by

Eabs,tot =
∆t
3

I

∑
i=1

∑
j
∑
k

Z3
j,k(E

i+1
j,k )1/4∆x1, j∆x2,k, (4.25)

where we sum over the indices j and k corresponding to the grid cells located within T .

Since the nonuniform grid resulting from the CCFV discretization does not necessarily

align with the boundary ∂T of T , we define a uniform interpolation grid with ∆xu
1 =

∆xu
2 = L/N that exactly lines up with ∂T , and use the interpolated values of E and Z on

this new grid to calculate Eabs,tot. Employing cubic spline interpolation for E and linear

interpolation for Z was found to be optimal. The total energy deposition in T is then

redefined as

Eabs,tot =
∆t∆xu

1∆xu
2

3

I

∑
i=1

Nu
1+Nu

2

∑
j=Nu

1+1

Nu
1+Nu

2

∑
k=Nu

1+1
Z3

j,k(E
i+1
j,k )1/4, (4.26)

where Nu
1 = 2N/5 and Nu

2 = N/5 (the square region T is centered at (L/2,L/2)> and

has side w = L/5).

In order to quantify the error of the SC approximations of 〈Eabs,tot〉 and σ2
Eabs,tot

,

we define the estimation errors

ESC
est (〈Eabs,tot〉) =

∣∣∣ÊSC
abs,tot− ÊMC,ref

abs,tot

∣∣∣ (4.27)
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and

ESC
est (σ

2
Eabs,tot

) =
∣∣∣σ̂2,SC

Eabs,tot
− σ̂2,MC,ref

Eabs,tot

∣∣∣ . (4.28)

Here ÊMC,ref
abs,tot and σ̂2,MC,ref

Eabs,tot
are the “reference” MCS estimators of 〈Eabs,tot〉 and σ2

Eabs,tot
,

respectively, which serve as surrogates for these quantities as the latter cannot be calcu-

lated analytically. We found that Nref
sam = 30000 was an appropriate number of samples

for converging the reference Monte Carlo estimators in all our numerical experiments

except that for two uncertain parameters (c1 and Z2), where 35000 samples were needed.

The estimation errors for MCS, EMCS
est (〈Eabs,tot〉) and EMCS

est (σ2
Eabs,tot

), are defined simi-

larly. Figure 4.3 demonstrates, for the case where c1, c2 and Z2 are all uncertain, that

EMCS
est (〈Eabs,tot〉)∼ N−0.5

sam as expected from theory [65].

Our goal is twofold: investigate the dependence of ÊSC
abs,tot and σ̂2,SC

Eabs,tot
on the mean

and variance of the uncertain parameters, and compare the efficiency of SC and MCS by

analyzing how fast their estimation errors decay with the number of collocation nodes

and Monte Carlo samples, respectively. For the latter exercise, we set the variance of each

uncertain parameter at its maximum value established in Section 4.3, and consider SC

to outperform MCS if its relative estimation error for the mean, ESC
est (〈Eabs,tot〉)/ÊMC,ref

abs,tot ,

becomes of order 10−3 for Pconv nodes such that Pconv < Nsam,conv; here Nsam,conv is the

number of samples needed by MCS to reach the same relative error level.

We consider scenarios where either only c1 or only Z2 is uncertain (i.e., stochastic

dimension M = 1), where both c1 and Z2 are uncertain (M = 2), and where all three

input parameters c1, c2 and Z2 are uncertain (M = 3). We model all uncertain parameters

as uniformly distributed random variables over their respective ranges; an appropriate

quadrature rule for the univariate uniform distribution is Clenshaw-Curtis [124, 40],

whose nodes and weights are rescaled from the standard interval [−1,1] to the parameter



86

2 4 6 8 10
lnNsam

-10

-5

0

5
ln

E e
st
(h

E
ab

s;
to

ti
)

Computed error
Linear fit:

Figure 4.3: Estimation error of the mean energy deposition in the tumor for MCS as
a function of the number of Monte Carlo samples for M = 3 with cH = cV = 0.5 and
[Zmin,Zmax] = [2,8].
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ranges we consider. For M > 1, we employ a sparse grid approach based on the Smolyak

algorithm [104] with univariate Clenshaw-Curtis quadrature rules. This is implemented

using MATLAB codes by Burkardt based on [90].

We set Z1 = 1 and N = 20, and simulate the dynamics on a domain (0,5)× (0,5)

over a time horizon3 T = 1.0 with ∆t = 5 ·10−3 (these and all following quantities are

expressed in dimensionless values). We use Ein = 5.0, Fin = 20.0 and Fout = 0; the

latter condition corresponds to a vacuum boundary, and ignores any black-body radiation

emitted by the medium surrounding the brain near the exit point of the radiation. In the

JfNK coupling, we employ a convergence tolerance of ε = 10−3 for the Newton iteration

and εK = 10−3 for the GMRES algorithm. We compute the SC and MCS estimators of

〈Eabs,tot〉 and σ2
Eabs,tot

using (4.26) without the prefactor of 1/3; the latter can be easily

accounted for when transforming the dimensionless results back into their dimensional

counterparts. The computations were performed on an Intel Core i7 machine running at

4 GHz.

4.5.1 Case 1: Only c1 is random

We first consider the case where c2 = L/2 and Z2 = 6 are fixed, and c1 ∈

[L/2− cH,L/2+ cH] with cH = 0.1, 0.3 or w/2 = 0.5. Figure 4.4 (left) reveals that

SC outperforms MCS by at least one order of magnitude, and that Pconv = 65. Using

65 nodes, we investigate the dependence of ÊSC
abs,tot and the coefficient of variation (CV)

of Eabs,tot, CVEabs,tot , estimated by σ̂SC
Eabs,tot

/ÊSC
abs,tot, on CVc1 ≡ σc1/〈c1〉= 0.4 σc1 . As Fig-

ure 4.5 illustrates, increasing CVc1 reduces the mean value of the total energy deposition

and increases the latter’s coefficient of variation. The former result follows from the

fact that a larger variance in the x1-coordinate of the center of D2 allows this region to

3The results for numerical experiments using longer time horizons yielded similar results for the
performance comparison between SC and MCS, and for the influence of the statistical moments of the
uncertain parameters on those of the total energy deposition in the tumor.
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overlap less with the tumor region T , thereby making the dose-enhancing effect of the

contrast agent less effective and increasing the dose to the surrounding healthy brain

tissue. The energy absorption at the maximum CVc1 of 0.12 is 27% lower than that for

the deterministic case with full overlap between D2 and T , demonstrating that even a

small relative parametric uncertainty has a large impact on the mean value of the quantity

of interest. Figure 4.5 also shows that, apart from its smallest nonzero value considered,

the relative parametric uncertainty (CVc1) gets amplified (approximately doubled) by

the nonlinearity of the system, and hence yields a larger relative predictive uncertainty

(CVEabs,tot). Both results demonstrate that even a small uncertainty in only one parameter

should be accounted for when predicting the behavior of highly nonlinear systems.
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Figure 4.4: Estimation error of the mean energy deposition in the tumor for SC and MCS
as a function of the number of collocation nodes/Monte Carlo samples for M = 1 with
cH = 0.5 (left) and [Zmin,Zmax] = [2,8] (right).
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Figure 4.5: Dependence of the SC estimator for the mean and CV of the energy de-
position in the tumor on the coefficient of variation of c1 using Pconv = 65 nodes for
M = 1.

4.5.2 Case 2: Only Z2 is random

Next, we look at a scenario where c1 = c2 = L/2 are fixed and Z2 ∈ [Zmin,Zmax],

for which we consider either parameter ranges with increasing 〈Z2〉 and fixed σ2
Z2

([2,6],

[3,7] and [4,8]), or vice versa ([4.6,5.4], [4,6] and [2,8]). Figure 4.4 (right) shows that

SC outperforms MCS by several orders of magnitude, and that Pconv = 9 (to establish

this value, we also looked at the estimation error for σ2
Eabs,tot

). As Figure 4.6 illustrates,

both increasing 〈Z2〉 for fixed σ2
Z2

= 1.33 and increasing σ2
Z2

for fixed 〈Z2〉 = 5 will

enhance the mean energy absorption in T . This is because higher values of Z2 will be

sampled, and the probability of photo-electric absorption of the X-rays increases with

atomic number. For the case of fixed 〈Z2〉= 5 and increasing σ2
Z2

, the maximum relative

deviation between the estimated energy absorption and that for the case ofD2 and T fully

overlapping with Z2 = 5 is 36%, even higher than the maximum relative deviation for
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case 1. Figure 4.6 also reveals that increasing CVZ2 for fixed 〈Z2〉= 5 increases CVEabs,tot ,

that each nonzero value of CVEabs,tot is more than double that of the corresponding CVZ2 ,

and that CVEabs,tot exceeds 0.8 for the highest CVZ2 considered.
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Ê
S
C

ab
s;
to

t

0.5

0.55

0.6

0.65

0.7

0.75

C
V

E
a
b
s;
to

t

0 0.1 0.2 0.3 0.4
CVZ2

180

200

220

240

260

Ê
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Figure 4.6: Dependence of the SC estimator for the mean and CV of the energy depo-
sition in the tumor on the mean (left) and CV (right) of Z2 using Pconv = 9 nodes for
M = 1.

4.5.3 Case 3: Both c1 and Z2 are random

We now treat the case where c2 = L/2 is fixed, c1 ∈ [L/2− cH,L/2+ cH] with

cH = 0.1, 0.3 or 0.5, and Z2 ∈ [Zmin,Zmax] for which we again look at either [2,6], [3,7]

and [4,8], or [4.6,5.4], [4,6] and [2,8]. Figure 4.7 (left) indicates that SC outperforms

MCS, and that Pconv = 321. As Figures 4.8 and 4.9 illustrate, the results for this case are

mostly a combination of those obtained earlier for cases 1 and 2, except for the following:

1. For all but the smallest nonzero value of σ2
Z2

(0.05) considered, increasing σ2
c1

reduces the variance of Eabs,tot when both c1 and Z2 are uncertain. This is in

contrast to case 1, where increasing the uncertainty in c1 increased the predictive

uncertainty in Eabs,tot.

2. Figure 4.8 (right) shows that the energy absorption in the tumor deviates by, at
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most, 35% from its value with full overlap between D2 and T and with Z2 = 5.

This is higher than the maximum relative deviation in case 1 but slightly lower

than that in case 2 due to the counteracting effects of increasing σ2
c1

and increasing

σ2
Z2

on the mean energy absorption.
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Figure 4.7: Estimation error of the mean energy deposition in the tumor for SC and MCS
as a function of the number of collocation nodes/Monte Carlo samples for M = 2 with
cH = 0.5 and [Zmin,Zmax] = [2,8] (left), and M = 3 with cH = cV = 0.5 and [Zmin,Zmax] =
[2,8] (right).

4.5.4 Case 4: All three parameters c1, c2 and Z2 are random

Finally, we consider the scenario where c1 ∈ [L/2− cH,L/2+ cH] with cH = 0.1

or 0.5, c2 ∈ [L/2− cV,L/2+ cV] with cV = 0.1 or 0.5, and Z2 ∈ [Zmin,Zmax] for which

we consider either [2,6] and [4,8], or [4.6,5.4] and [2,8]. Figure 4.7 (right) reveals that

SC again outperforms MCS, albeit only slightly, and Pconv = 1073. Although not shown

here, the results for this case are mostly similar to those obtained for case 3, except for
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the following:

1. The maximum value of CVEabs,tot is now close to 1, i.e., the uncertainty in the

prediction of the quantity of interest (as measured by the standard deviation)

approximately equals the prediction (mean value) itself.

2. The maximum relative deviation of the energy absorption is now 46%, i.e., the

difference in energy deposition is almost half the value of that at full overlap

between D2 and T with Z2 = 5. Similar to case 3, the effects of increasing σ2
c1

or

σ2
c2

versus increasing σ2
Z2

will counteract each other.

4.5.5 Global sensitivity analysis

Sobol’ [105] developed a global sensitivity analysis technique that decomposes

the model output variance into summands of variances of the input parameters in in-

creasing dimensionality. It computes the contribution of each input parameter and its

interactions with other parameters to the overall model output variance. Based on the

derivation in J, first-order sensitivity indices for our problem are defined as

Sc1 = σ2
Eabs,tot,c1

/σ2
Eabs,tot

, Sc2 = σ2
Eabs,tot,c2

/σ2
Eabs,tot

, SZ2 = σ2
Eabs,tot,Z2

/σ2
Eabs,tot

, (4.29)

where σ2
Eabs,tot,c1

represents the contribution of c1 to the total variance of Eabs,tot, and

likewise for c2 and Z2. Total-order sensitivity indices are given by

ST,c1 =
1

σ2
Eabs,tot

∑
α∈Ic1

σ2
α, ST,c2 =

1
σ2

Eabs,tot

∑
α∈Ic2

σ2
α, ST,Z2 =

1
σ2

Eabs,tot

∑
α∈IZ2

σ2
α, (4.30)

where Ic1 is the set of all subsets of {c1,c2,Z2} containing c1, and likewise for Ic2

and IZ2 . To compute (4.29) and (4.30), either MCS [106], polynomial chaos [109] or

stochastic collocation [26] may be used; we employ an MCS approach implemented via a
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combination of an in-house numerical solver and the MATLAB code in [18]. Figure 4.10

shows that the first-order Sobol’ indices for c1 and c2 are approximately equal, in

line with the fact that a similar change in c1 and c2 causes a similar deviation of the

contrast-agent region D2 from the tumor region T ; the first-order index for Z2 is much

larger, indicating that variations in this parameter will have a much larger effect on the

predictive uncertainty of the total energy deposition in T than changes in c1 or c2. This

may be understood from the nonlinear (cubic) dependence of the energy deposition on

the effective atomic number, as illustrated by (4.25). Figure 4.10 also reveals a clear

difference between the total-order Sobol’ indices for c1, c2 and Z2 and their first-order

counterparts, indicating that there is a measurable impact of the interactions between the

different parameters on the total variance in Eabs,tot.

Figure 4.10: First-order (left) and total-order (right) Sobol’ indices for the case of M = 3
with cH = cV = 0.5 and [Zmin,Zmax] = [2,8].

4.6 Summary and Conclusions

We estimated the energy deposition into a brain tumor irradiated by X-rays in the

presence of parametric uncertainty using the stochastic collocation (SC) approach. We

represented the uncertain input parameters, namely the coordinates of the center of the

region containing an iodinated, dose-enhancing contrast agent, and the effective value of
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the atomic number in this area, as mutually independent, uniformly distributed random

variables. We investigated the effect of changes in their mean and/or variance on the

statistical moments of the deposited energy, and compared the computational efficiency

of SC to that of standard Monte Carlo simulation (MCS).

Our analysis leads to the following major conclusions.

1. SC outperforms MCS for all stochastic dimensions considered, with the biggest

difference for the scenario of one random input parameter.

2. In the majority of cases, the coefficient of variation of the uncertain parameters

was amplified by the nonlinearity of the problem, yielding a larger coefficient of

variation for the energy deposition. Hence, even tiny parametric uncertainties may

result in large predictive uncertainty in the quantity of interest.

3. As the stochastic dimension increases, the magnitude of the predictive uncertainty

in the energy deposition, as measured by its standard deviation, approaches that of

the prediction (mean energy deposition) itself.

4. In the presence of additional uncertain parameters, the effect of uncertainty in a

specific parameter on the predictive uncertainty in the quantity of interest may

differ from its effect when this parameter is the only uncertain input.

5. Global sensitivity analysis via the Sobol’ method reveals that predictive uncer-

tainty in the energy deposition is mainly influenced by variations in the effective

atomic number, and is also affected by interactions between the different uncertain

parameters.

The flux-limited radiation-diffusion approximation employed to model the propa-

gation of X-rays within the brain has also been applied to a wide range of other problems

including core collapse supernovae [84] and inertial confinement fusion [37]. Hence, our
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findings are relevant to the quantification of predictive uncertainty across a number of

research areas. Future extensions of the presented analysis may include considering a

three-dimensional model with a larger number of uncertain parameters, and representing

the latter by random variables with more complex probability distributions.
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Chapter 5

Noise propagation in hybrid models of

nonlinear systems: the

Ginzburg-Landau equation

5.1 Abstract

Every physical phenomenon can be described by multiple models with varying

degrees of fidelity. The computational cost of higher fidelity models (e.g., molecular

dynamics simulations) are invariably higher than that of their lower fidelity counterparts

(e.g., a continuum model based on differential equations). While the former might not be

suitable for large-scale simulations, the latter are not universally valid. Hybrid algorithms

provide a compromise between the computational efficiency of a coarse-scale model and

the representational accuracy of a fine-scale description. This is achieved by conducting

a fine-scale computation in subdomains where it is absolutely required (e.g., due to a

local breakdown of a continuum model) and coupling it with a coarse-scale computation

in the rest of a computational domain. We analyze the effects of random fluctuations

97
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generated by the fine-scale component of a nonlinear hybrid on the hybrid’s overall

accuracy and stability. Two variants of the time-dependent Ginzburg-Landau equation

(GLE) and their discrete representations provided by a nearest-neighbor Ising model

serve as a computational testbed. Our analysis shows that coupling these descriptions in

a one-dimensional simulation leads to erroneous results. Adding a random source term

to the GLE provides accurate prediction of the mean behavior of the quantity of interest

(magnetization). It also allows the two GLE variants to correctly capture the strength of

the microscale fluctuations. Our work demonstrates the importance of fine-scale noise

in hybrid simulations, and suggests the need for replacing an otherwise deterministic

coarse-scale component of the hybrid with its stochastic counterpart.

5.2 Introduction

Numerical modeling of complex nonlinear systems requires the development of

multi-algorithm computational solvers capable of handling a wide range of spatial and/or

temporal scales. While coarse-scale models are more computationally efficient than their

fine-scale counterparts, they are not universally valid. For instance, continuum-scale finite

element models of crack propagation break down near a crack’s tip [2], and macroscopic

(Darcy-scale) models of flow and transport in porous media break down for localized

phenomena with high pore-scale gradients [14, 13, 23]. Standard coarse-scale models

also fail to capture the effects of spontaneous microscale fluctuations on macroscopic

behavior, such as spontaneous formation of ordered spatial concentration patterns in an

unstirred chemical medium [56].

Fine-scale algorithms (e.g., molecular dynamics/quantum tight-binding and pore-

scale simulations in the first and second examples, respectively) can model such processes,

but their high computational cost renders them impractical for modeling large-scale
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problems. Hybrid algorithms, which are also referred to as algorithm refinement, employ

such fine-scale models only in subdomains wherein their coarse-scale counterparts break

down, potentially yielding a significant reduction in computational cost [86]. With a few

exceptions [110, 101], coupling of the fine- and coarse-scale components of a hybrid

requires multiple iterations to ensure the continuity of state variables and their fluxes

at the interface between the two components. Design and computationally efficient

implementation of such coupling procedures remains a key challenge in hybrid modeling.

Stochastic fluctuations generated by a hybrid’s fine-scale (particle-based) compo-

nent exacerbate this task [7]. Averaging out this noise (i.e., coupling averaged quantities

such as particle density and mass flux to their counterparts computed with a coarse-

scale deterministic component) is adequate for computing the mean behavior of linear

systems, but artificially reduces the fluctuation variance in the particle region near the

particle-continuum interface [5]. In weakly nonlinear systems, such as the train model of

viscous transport in gases, the averaging dampens the long-range correlations of velocity

fluctuations and “can lead to a greatly altered time-dependent behavior” [6]. A nonlinear

hybrid model consisting of asymmetric excluded random walk (the fine-scale component)

and a viscous Burgers’ equation (the coarse-scale component) revealed that the averaging

tends to suppress the drift of shock location [16]. In each case, addition of a Gaussian

white noise term to the hybrid’s deterministic (coarse-scale) component corrected these

shortcomings.

A proper treatment of noise is even more important in highly nonlinear systems,

wherein even small changes in the magnitude of microscopic fluctuations can signif-

icantly affect the macroscopic dynamics. In such systems, coupling the averages of

fine-scale quantities with their deterministic coarse-scale counterparts can lead to erro-

neous predictions of the mean system behavior. The Ginzburg-Landau theory of phase

transitions [71] provides an ideal setting to study noise propagation in hybrid models,
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since it establishes a rigorous relationship between fine-scale (a nearest-neighbor Ising

model with spin-flip dynamics) and coarse-scale (a Ginzburg-Landau partial differential

equation) representations of a highly nonlinear system. It can be used, for example, to

describe the evolution of (scalar) magnetization of a uniaxial ferromagnet to thermal

equilibrium [108, 58, 24].

In Section 5.3 we formulate a nearest-neighbor Ising (NNI) model and two

variants of the time-dependent Ginzburg-Landau equations (GLEs). A hybrid algorithm

coupling these two levels of description is discussed in Section 5.4. Simulation results

reported in Section 5.5 reveal that one has to add a random source term to the Ginzburg-

Landau component of the hybrid in order to correctly predict the mean and variance

of the magnetization for a ferromagnet evolving to thermodynamic equilibrium. This

finding facilitates the analysis of noise propagation in the NNI-GLE hybrid by allowing

one to replace its NNI component with a stochastic Ginzburg-Landau equation (sGLE). A

solution of the latter is presented in terms of moment equations (deterministic equations

describing the evolution of the mean and covariance of magnetization). The main

conclusions of our analysis are summarized in Section 5.6.

5.3 Two Modeling Scales in the Ginzburg-Landau The-

ory

Phase transitions in ferromagnetic systems can be described either microscopi-

cally with Ising models [60] or macroscopically with the Ginzburg-Landau theory [58, 24,

118]. Both levels of description are formulated below in the context of the magnetization

of a one-dimensional (1D) ferromagnet.
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5.3.1 Nearest-neighbor Ising models with spin-flip dynamics (NNIs)

Consider a ferromagnet whose atoms are arranged on a 1D lattice with sites

i = 1, . . . ,N. A microscopic representation of this system is given by an Ising model with

nearest-neighbor interactions [60]. It assumes that the spin si of the atom at site i can be

in one of the two states designated by si =±1, and interacts only with its two adjacent

spins. The N-spin configuration s = {s1, . . . ,sN} defines the ferromagnet’s state at time t;

the joint probability of finding the ferromagnet in state s at time t is denoted by P(s; t).

Let s′ denote an N-spin configuration that differs from configuration s by the value of

a single spin s j. The kinetic nearest-neighbor Ising model with spin-flip dynamics [52]

(NNI) defines the evolution of P(s; t) as a solution of the master equation

dP(s; t)
dt

= ∑
s′
[w(s′→ s)P(s′; t)−w(s→ s′)P(s; t)] (5.1)

where w(s→ s′) is the transition rate from state s to state s′, and the summation is over

all possible transitions s′. Among the plethora of suggested functional forms for the

transition rate w we consider two. The first is the Suzuki-Kubo rate

wSK(s→ s′) =
λ
2

[
1− s j tanh

(
βJ ∑

L j

sL j

)]
, (5.2a)

where λ−1 is the time scale of the spin-flip process that can depend both on the system

temperature T and the spins other than s j, β = 1/(kBT ) with kB denoting the Boltzmann

constant, J is the spatially uniform exchange coupling energy associated with the interac-

tion between neighboring spins, and L j indicates summation over the nearest neighbors

of s j.



102

The second alternative is the heat-bath rate

whb(s→ s′) = κ
[
1+ eβH(s′)−βH(s)

]−1
, (5.2b)

where κ−1 sets the time scale of the spin-flip process and can depend both on T and the

spins other than s j, andH(s) is the Hamiltonian of configuration s(t). The latter is given

by [27]

H(s) =−∑
〈i, j〉

Ji jsis j−µH
N

∑
i=1

si, (5.3)

where Ji j is the exchange coupling energy associated with the interaction between

neighboring spins; µ is the spin magnetic moment; H is the external magnetic field;

and 〈i, j〉 indicates the summation over pairs of adjacent spins, with each pair counted

only once. In our simulations, we set H = 0 and take Ji j ≡ J > 0. The latter implies

“ferromagnetic behavior”, which favors (in thermal equilibrium) neighboring parallel

spins over neighboring anti-parallel spins.

We refer to the master equation (5.1) with transition rate wSK in (5.2a) as NNIa,

and to (5.1) with transition rate whb in (5.2b) as NNIb. Both versions of NNI are

implemented via a Monte Carlo (MC) algorithm, in which one step in the Ising model

consists of repeating N times the following procedure:

1. Pick a random site j where j ∈ {1, . . . ,N};

2. Draw a number s? from a uniform distribution on [0,1];

3. Flip the spin s j if s? < w(s→ s′), otherwise leave it in its original state.

The spin lattice is initialized as follows. Each site i (i = 1, . . . ,N) is assigned P+(i, t = 0),

the singlet probability of finding the spin in the “up” state. Then a number σ? is drawn
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from a uniform distribution on [0,1]. If σ? < P+(i,0) then si = 1, otherwise si = −1.

We assume that the ferromagnet is initially in a state of uniform magnetization min, so

that P+(i,0) = (1+min)/2 for all i [96]. Magnetization is a macroscopic quantity whose

dynamics is governed by the Ginzburg-Landau equations.

5.3.2 Ginzburg-Landau equations (GLEs)

Magnetization (or “order parameter”) is defined in terms of ensemble-averaged

Ising spin states as [96]

m(x, t) =
1

Nb
∑

i∈Λb(x)
s̄i(t), (5.4)

where Λb(x) is a set of Nb spins inside the interval ∆x (a continuum grid’s spacing)

centered around point x. Magnetization m(x, t) at point x is related to the probability

P+(i, t) or P−(i, t) of finding the corresponding i-th spin in the “up” or “down” state

by [96]

P±(i, t) =
1±m(x, t)

2
. (5.5)

Ginzburg-Landau equations (GLEs) provide a mean-field approximation of the

NNI models. Specifically, the NNIa model gives rise to the GLE [96]

∂m
∂t

= Γa

(
c2J

∂2m
∂x2 −Am−Bm3

)
(5.6a)

where c is the spin lattice constant,

Γa =
λ

kBT
, A = qJ

(
T
Tc
−1
)
, B =

qJ
3

(
Tc

T

)2

, (5.6b)
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q is the number of nearest neighbors of any spin (for the 1D lattice, q= 2), and Tc = qJ/kB

is the mean-field critical temperature; while the NNIb model corresponds to the GLE [73]

∂m
∂t

= Γb

(
c2 ∂2m

∂x2 − r m
)

(5.7a)

where

Γb = κ
(

1
2
−W4

)
, r =

2κW4

Γb
, W4 =

(
1+ e4βJ

)−1
. (5.7b)

We refer to the GLE (5.6) as GLEa and to the GLE (5.7) as GLEb.

When the assumptions underpinning the GLEa and GLEb models are violated,

these coarse-scale models break down. For example, fine-scale fluctuations in the one-

dimensional NNIa model preclude a phase transition above T = 0 [71]. This is at

odds with the predictions of the GLEa model, which include the occurrence of a phase

transition at a finite critical temperature Tc = qJ/kB from an unordered state at T ≥ Tc

to a state with long-range order at T < Tc. One way of dealing with the effects of

fine-scale fluctuations is to introduce a random noise term into a coarse-scale model [58].

Introducing a random source ηa(x, t) into the GLE (5.6) yields a stochastic Ginzburg-

Landau equation (sGLE)

∂m
∂t

= Γa

(
c2J

∂2m
∂x2 −Am−Bm3

)
+ηa(x, t). (5.8a)

Here ηa(x, t) is a zero-mean Gaussian space-time white noise with an auto-covariance

function

Ca
η(x, t;y,τ)≡ ηa(x, t)ηa(y,τ) = 2cΓakBT δ(x− y)δ(t− τ). (5.8b)
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The GLEb model yields a minimum of the free energy at T = 0 and hence predicts

a phase transition at the correct temperature. Yet it fails to capture the magnitude of

the microscopic fluctuations. This failure is remedied by introducing a random source

ηb(x, t) into the GLE (5.7), which gives rise to a sGLE

∂m
∂t

= Γb

(
c2 ∂2m

∂x2 − r m
)
+ηb(x, t). (5.9a)

Here ηb(x, t) is a zero-mean Gaussian space-time white noise with an auto-covariance

function

Cb
η(x, t;y,τ) = 2Dδ(x− y)δ(t− τ), D = cκ

[
1
2
+2W4(1−W4)

]
. (5.9b)

We refer to the sGLE (5.8) as sGLEa and to the sGLE (5.9) as sGLEb.

Numerical solutions of the stochastic GLEs (5.8) and (5.9) use a second-order

central finite difference method in space, and a first-order forward Euler-Maruyama

stochastic integrator [69] in time. This discretizes (5.8) into

mn+1
j = mn

j +∆t ′aR
[mn

j+1 +mn
j−1−2mn

j

q(∆x′)2 − 1−R
R

mn
j −

R2

3
(mn

j)
3
]

+

√
2∆t ′a
∆x′

ξn
j , R≡ Tc

T
, ∆x′ ≡ ∆x

c
, ∆t ′a ≡ λ∆ta

c (5.10)

and (5.9) into

mn+1
j = mn

j +Γ′b∆t ′b

[mn
j+1 +mn

j−1−2mn
j

(∆x′)2 − r mn
j

]
+

√
2D′∆t ′b

∆x′
ξn

j ,

∆x′ ≡ ∆x
c
, ∆t ′b ≡ κ∆tb

c , D′ ≡ D/(cκ). (5.11)

Here mn
j ≡ m(x j, tn); x j = j∆x; tn = n∆ta,b

c ; ∆ta,b
c are the time steps for the GLEa and

GLEb models, respectively; and ξn
j are independent, identically distributed standard nor-
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mal random variables for each space-time point (x j, tn). The discretized equations (5.10)

and (5.11) with the noise terms set to 0 are used to solve the deterministic GLEs (5.6)

and (5.7), respectively.

5.4 Hybrid Modeling of Ginzburg-Landau Systems

Hybrid models simulate a system’s dynamics with a computationally less expen-

sive (continuum) method over the entire computational domain except in subdomains

where a more accurate and expensive (discrete, e.g., atomistic) method is deployed. Our

implementation of the following four hybrids is discussed below.

5.4.1 Computational domain

Consider a one-dimensional domain [0,L) on which the continuum GLE or sGLE

is solved everywhere except for a patch [L/4,3L/4) where the discrete NNI model is used

(see Fig. 5.1). A lattice of N0 = L/(2c) spins with uniform spacing c spans the discrete

subdomain [L/4,3L/4). The rest of the computational domain, [0,L/4) and [3L/4,L), is

discretized by a mesh of size ∆x. The latter is a multiple of the lattice spacing c, such

that ∆x = Nbc. Periodic boundary conditions are assumed for the magnetization, i.e.,

m(x = 0, t) = m(x = L, t).

GLE/sGLE NNI GLE/sGLE

L/4 3L/4sk = �1

si = +1

c �x

L0

GLE/sGLE GLE/sGLENNI

Figure 5.1: Computational domain for the NNI-GLE/sGLE hybrid.
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5.4.2 Time advancement and algorithm coupling

Time integration of the hybrid is a two-step process. First, the NNI algorithm

is advanced by N0 MC steps using the algorithm described in Section 5.3.1. Second,

either the sGLEa or sGLEb (or their deterministic counterparts) is advanced over one

continuum time step ∆ta
c or ∆tb

c in accordance with (5.10) or (5.11), respectively. These

are related to the time step in the MC algorithm ∆td by ∆ta,b
c = N0∆td .

The NNI and GLE components of the hybrid are coupled at the interfaces x = L/4

and x = 3L/4 using the following procedure.

1. Define a left neighbor of the spin at x = L/4 and a right neighbor of the spin

at x = 3L/4− c by extending the atomistic region into the GLE subdomain by

one lattice point at x = L/4− c and x = 3L/4, respectively. These “virtual” spins

are assigned “up” probability P+ = (1+m)/2, where m = m(L/4−∆x, t) and

m = m(3L/4, t) for the left and right spins, respectively.

2. Use these virtual spins in either (5.2a) or (5.2b) to decide whether the spins at

x = L/4 and x = 3L/4− c are to be flipped. This step follows the procedure

described in Section 5.3.1.

3. Define the magnetization m(x, t) at x = L/4 and x = 3L/4−∆x in order to calculate

the discretized Laplacian in either (5.10) or (5.11) for x j = L/4−∆x and x j =

3L/4, respectively. This is done by computing the average of the spins at x =

L/4, . . . ,L/4+∆x− c and the average of the spins at x = 3L/4−∆x, . . . ,3L/4− c,

respectively.

The use of a “handshake” region in step 1 is conceptually similar to that in [5], where the

particle region was extended by one cell into the continuum region.
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5.5 Simulation Results and Discussion

To analyze the accuracy of our hybrids and to investigate the importance of

including random fluctuations into the GLEs, we compute the steady-state mean and vari-

ance of the magnetization of a one-dimensional ferromagnet evolving to thermodynamic

equilibrium at temperature T . The mean m(xi) and variance σ2
m(xi) are estimated from

M independent samples according to

m(xi) =
1
M

M

∑
k=1

(
1
Ns

Nt

∑
n=Nr+1

mn
i,k

)
(5.12)

σ2
m(xi) =

1
M

M

∑
k=1

 1
Ns

Nt

∑
n=Nr+1

(mn
i,k)

2−
(

1
Ns

Nt

∑
n=Nr+1

mn
i,k

)2
 . (5.13)

Here Nt is the total number of continuum time steps ∆ta,b
c taken, Nr is the number of

steps ∆ta,b
c taken before the sampling begins, and Ns = Nt −Nr is the number of steps

∆ta,b
c at which mi is sampled. The value of Nr is chosen such that Nr∆ta,b

c exceeds the

“relaxation time” τa,b
r , which is a characteristic time needed for the system to reach

equilibrium. This ensures that the magnetization is sampled at steady-state. (While the

hybrid simulations evolve the system to its steady-state, the true thermal equilibrium is

not attained since the detailed balance condition is not satisfied exactly by the mesoscale

component.) Following [73], we obtain the relaxation times τa
r = [λ(R− 1)]−1 and

τb
r = [κ(1− tanh(2R/q))]−1 for the sGLEa and sGLEb, respectively. Inside the NNI

region, the magnetization m is computed by using the coarse-graining procedure (5.4)

with s̄i = si, i.e., we do not ensemble average the spins at each Ising step. This preserves

the fluctuations inherent to particle-based simulations [5, 6], in our case the Ising model.

The parameter values used in the simulations reported below are summarized in

Table 5.5. This choice of the parameter values results in R = 2/1.8, ∆t ′a = 0.1, ∆t ′b = 0.1

and ∆x′ = 1. These values guarantee the stability of the linear diffusion component by
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satisfying the criteria

R∆t ′a
q(∆x′)2 ≤

1
2

and
Γ′b∆t ′b
(∆x′)2 ≤

1
2

(5.14)

for the the sGLEa and sGLEb, respectively. The choice of ∆x′ = 1 in (5.4) implies the

lack of coarse-graining. The coarse-graining can be achieved by taking ∆x to be an

integral multiple of the spin lattice spacing c.

The results computed with the NNI models (the fine-scale descriptions) in the

whole computational domain are treated as the “ground truth”. The GLE and sGLE

models, as well as the NNI-GLE and NNI-sGLE hybrids, provide their approximations.

Table 5.1: Parameter values. The units of λ and κ are s−1. The units of ∆ta,b
c are s.

Parameter N T q λ κ min Nr Nt M ∆x ∆ta,b
c

Value 40 0.9Tc 2 1.0 1.0 0.5 105 106 10 c 0.1

5.5.1 NNIa-GLEa and NNIa-sGLEa hybrids

The steady-state mean and variance of the magnetization computed with the NNIa

model and the NNIa-GLEa hybrid are shown in Figure 5.2. The GLEa produces m =

0.4930 away from the NNIa patch, which is in agreement with (K.3) in K. This agreement

serves to verify our computation. Yet, the value m = 0.4930 does not represent the

correct system behavior, m(x)≡ 0, predicted with the NNIa (see the relevant discussion

in Section 5.3.2). The NNIa-GLEa hybrid also fails to capture the magnetization variance

σ2
m(x).

The NNIa-sGLEa hybrid is obtained by replacing the GLEa model with its

stochastic counterpart, the sGLEa. The steady-state mean and variance of the magnetiza-

tion computed with the NNIa-sGLEa hybrid are exhibited in Figure 5.2 alongside their
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NNIa-GLEa counterparts. The NNIa-sGLEa hybrid correctly predicts the mean magne-

tization throughout the whole computational domain (m = 0). Combined with similar

behavior observed in previous studies of other (linear and nonlinear) systems [5, 6, 16],

this points to a general feature of hybrid modeling: the noise generated in the fine-scale

(particle-based) component of a hybrid is best handled by introducing a random source

term into the hybrid’s continuum (and otherwise deterministic) component. Figure 5.2

also reveals that the NNIa-sGLEa hybrid qualitatively captures the Ising fluctuations, but

underestimates their strength. The exact match is obtained by multiplying the noise term

ηa by ζa = 1.285.

5.5.2 NNIb-GLEb and NNIb-sGLEb hybrids

The steady-state mean and variance of the magnetization computed with the NNIb

model and the NNIb-GLEb hybrid are shown in Figure 5.3. In contrast to the NNIa-GLEa

hybrid, the NNIb-GLEb hybrid yields m = 0 throughout the computational domain, in

agreement with the NNIb result. Similar to the NNIa-GLEa hybrid, the NNIb-GLEb

hybrid fails to capture the higher moments (e.g., variance) of the magnetization.

The NNIb-sGLEb hybrid is obtained by replacing the GLEb model with its

stochastic counterpart, sGLEb. The steady-state mean and variance of the magnetization

computed with the NNIb-sGLEb hybrid are plotted in Figure 5.3. The NNIb-sGLEb

predicts the correct mean magnetization and qualitatively reproduces the magnetization

variance, overestimating its magnitude by a factor of ζb = 0.92.

5.5.3 Computational efficiency of NNI-sGLE hybrids

Hybrid methods’ raison d’être is their ability to improve the computational

efficiency of a fine-scale algorithm without sacrificing its accuracy. We quantify the
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Figure 5.2: Steady-state mean (top) and variance (bottom) computed with the NNIa
model and the NNIa-GLEa and NNIa-sGLEa hybrids. The NNIa solution is treated as
the “ground truth”.
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model and the NNIb-GLEb and NNIb-sGLEb hybrids. The NNIb solution is treated as
the “ground truth”.
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Table 5.2: Computational gain factor GN = tsim,NNI/tsim,hyb with N = number of spins.

Hybrid model G40 G160 G640

NNIa-sGLEa 1.33 2.16 3.35
NNIb-sGLEb 1.17 1.86 3.50

hybrid’s gain in terms of the ratio G = tsim,NNI/tsim,hyb of the average computation time

necessary to advance the full-domain NNI algorithm by one Monte Carlo step per spin

(tsim,NNI) to the average computation time required to evolve the NNI-sGLE hybrid over

one time step (tsim,hyb). Table 5.2 summarizes the computational gain G of both the

NNIa-sGLEa and NNIb-sGLEb hybrid for the systems consisting of N = 40, 160 and

640 spins. (These results were obtained on a quad-core 2011 MacBook Pro.) While

the computational gain for the 40-spin system is negligible, it increases with N. This

suggests that an NNI-sGLE hybrid might be the only computationally viable option for

realistic systems (e.g., one gram of Fe contains about 1022 atoms).

5.5.4 Moment analysis of stochastic Ginzburg-Landau equations

The analyses of Sections 5.5.1 and 5.5.2 demonstrate that the sGLEs provide

the estimates of the magnetization’s mean and variance that are consistent with those

computed with the corresponding NNI models. Also, the computational cost of solving

the sGLEs is much smaller than that of the NNI models. These considerations lead

us to replace the NNI component of the hybrid simulations with its sGLE counterpart.

This procedure is fairly generic: one can reduce the computational cost of a hybrid

by replacing its microscale component with the corresponding stochastic coarse-scale

description, as was done in [5, 6].

In the context of the NNI-sGLE hybrids, using the sGLE instead of the NNI

component replaces the hybrid with a sGLE defined on the whole computational domain.

The strength of the noise term in this equation exhibits a jump discontinuity at the hybrid’s
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interfaces, e.g.,

Cη = 2cΓakBT δ(x− y)δ(t− τ)


ζ2

a for x ∈ [L/4,3L/4)

A2 for x ∈ [0,L/4)∪ [3L/4,L]
(5.15)

where ζ2
a is the noise multiplier first introduced in Section 5.5.1, and A2 ≥ 0 can be equal

to or different from ζ2
a. This formulation facilitates the analysis of noise propagation

by employing the tools from the theory of stochastic differential equations. First, it

allows us to derive (deterministic) moment equations satisfied by the statistical moments

(e.g., mean and covariance) of the magnetization. Second, it enables us to compute the

steady-state statistics directly, without resorting to transient simulations.

Due to the nonlinearity of the the sGLE, the derivation of the moment equations

requires a closure approximation. While other closures (e.g., the Eyink-Levermore

closure [8] or a closure by perturbation [112]) can be adopted for this purpose, in L

we employ the Gaussian approximation to derive the moment equations governing the

dynamics of the mean magnetization m(x, t), the cross-covariance Cηm (y,τ;x, t) between

m(x, t) and η(y,τ), and the auto-covariance Cm(y,τ;x, t) between m(x, t) and m(y,τ),

∂m
∂t

= Γa

{
c2J

∂2m
∂x2 −

[
(A+3Bσ2

m)m+Bm3]} (5.16)

∂Cηm

∂t
= Γa

{
c2J

∂2Cηm

∂x2 −
[
A+3B(m2 +σ2

m)
]
Cηm

}
+Cη (5.17)

∂Cm

∂t
= Γa

{
c2J

∂2Cm

∂x2 −
[
A+3B(m2 +σ2

m)
]
Cm

}
+Cηm, (5.18)

where the coefficients A and B are defined in (5.6b). Since m(x = 0, t) = m(x = L, t) and

η(x = 0, t) = η(x = L, t), their moments m, Cm and Cηm are periodic as well. L describes

the numerical scheme used to solve the steady-state versions of these equations.

For the sGLE (5.8) with the white-noise source term ηa(x, t) whose covariance
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function is given by (5.15) to act as a valid proxy for the NNIa-sGLEa hybrid, the noise

has to be statistically homogeneous, so that A2 = ζ2
a = 1.2852. Both the sGLE and the

corresponding moment equations accurately predict the mean steady-state magnetization

to be m(x)≡ 0; this stems from the homogeneity of the mean equation (5.16). Figure 5.4

demonstrates that they also accurately reproduce the variance of the steady-state magneti-

zation, σ2
m(x)≡ 1, with the relative error between the exact and the moment equations’

solution equal to 0.5%.
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Figure 5.4: The magnetization variance computed with the closure and the sGLE (5.8)
with statistically homogeneous white-noise source term ηa(x, t) whose covariance func-
tion is given by (5.15) with A2 = ζ2

a.

5.6 Summary and Conclusions

We investigated the performance of several hybrid models of phase transitions

in one-dimensional ferromagnetic systems. These hybrids couple fine-scale (the 1D
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nearest-neighbor Ising model with spin-flip dynamics, or NNI) and coarse-scale (the

1D time-dependent Ginzburg-Landau equation, or GLE) models. We considered two

versions of the NNI models, one using the Suzuki-Kubo transition rate (the NNIa model)

and one employing the heat-bath rate (the NNIb model). Both versions were coupled

with their deterministic (the GLEa and GLEb models) and stochastic (the sGLEa and

sGLEb models) coarse-scale counterparts. We used the steady-state statistics (mean and

variance) of the magnetization of a ferromagnet evolving to thermodynamic equilibrium

to analyze the effect of noise propagation in hybrid simulations.

Our analysis leads to the following major conclusions.

1. The NNIa-GLEa hybrid fails to predict the mean magnetization of a one-dimensional

ferromagnet, while the NNIb-GLEb hybrid yields the accurate predictions. This

is due to the theoretical limitations of the GLEa model in 1D. In higher spatial

dimensions, both hybrids are likely to produce accurate estimates of the mean

magnetization.

2. Both versions of the NNI-GLE hybrid fail to correctly estimate the magnetization

variance outside the region where the NNI method is deployed. In other words,

such deterministic hybrids fail to propagate the noise generated in the region with

the fine-scale simulations (the NNI models) into the regions with the coarse-scale

simulations (the GLE models).

3. Adding random fluctuations (a Gaussian white-noise source term) to the GLE

models leads to the NNI-sGLE hybrids (both the NNIa-sGLEa and NNIb-sGLEb

versions) that accurately capture the mean and variance of the magnetization. This

is a general feature of hybrid modeling: the noise generated in a hybrid’s fine-scale

component is best handled by introducing a random source term into the hybrid’s

coarse-scale (and otherwise deterministic) component.
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4. The NNI-sGLE hybrids provide a significant gain over the NNI simulations in

terms of computational time. The gain increases exponentially with the lattice size

(the number of spins) used to represent a ferromagnet in the NNI simulations.

5. Replacing the NNI component of the hybrid simulations with its sGLE counterpart

further increases the computational efficiency of the hybrid models. This procedure

is fairly generic: one can reduce the computational cost of a hybrid by replacing its

fine-scale component with the corresponding stochastic coarse-scale description.

6. The use of the (deterministic) moment equations that govern the dynamics of the

magnetization’s mean and covariance in place of the sGLE provides an additional

boost to the hybrid’s efficiency. The derivation of the moment equations requires

a closure approximation, which can reduce the hybrid’s accuracy. The Gaussian

approximation proved to be accurate in the setting considered here.

Future extensions of the presented analysis include the studies of the performance

of the NNI-GLE hybrids in higher spatial dimensions and in phenomena where temporal

dynamics is of primary importance (e.g., the identification of first-passage times). Another

topic of interest is the derivation of a master equation for NNI-sGLE hybrids, which

would account for the spatiotemporal discretization of the sGLE and the coupling of

Ising spins to magnetization field.
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Chapter 6

Physics-based statistical learning

approach to mesoscopic model selection

6.1 Abstract

In materials science and many other research areas, models are frequently inferred

without considering their generalization to unseen data. We apply statistical learning

using cross-validation to obtain an optimally predictive coarse-grained description of

a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD)

based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from

GD “training” data using a log-likelihood analysis, and its predictive ability for various

complexities of the model is tested on GD “test” data independent of the data used to

train the model on. Using two different error metrics, we perform a detailed analysis

of the error between magnetization time trajectories simulated using the learned sGLE

coarse-grained description and those obtained using the GD model. We show that both

for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomeno-

logical description using a quartic free energy does not always yield the most predictive

119
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coarse-grained model. Moreover, increasing the amount of training data can shift the

optimal model complexity to higher values. Our results are promising in that they pave

the way for the use of statistical learning as a general tool for materials modeling and

discovery.

6.2 Introduction

Due to limitations in computational resources, the behavior of complex systems

(e.g. climate, turbulent flow, materials under shock loading) often needs to be modeled us-

ing a coarse-grained description that captures the phenomenon of interest. Coarse-grained

models cannot be perfect of course, since many microscopic degrees of freedom are

absent. The Mori-Zwanzig formalism [88, 128] tells us that the relevant coarse-grained

description should contain both noise [16, 113] and memory kernels to represent the

“integrated out” fine scale dynamics. Deriving an appropriate coarse-graining analytically

is therefore extremely difficult. Statistical learning provides a tractable way of finding

a coarse-grained description that is able to predict the results of new experiments or

simulations beyond those used in the model construction, which serves as a true objective

test of the model. In fact, unlike traditional approaches, statistical learning can also serve

as a coarse-graining strategy in cases where there is no clear separation of spatial and/or

temporal scales. For example, it may be applied to problems that involve inhomogeneous

flows (e.g. multicomponent fluids, complex fluids) and those in materials science where

the coarse-grained description needs to account for inhomogeneities at a finer scale, e.g.,

microstructural defects. In such cases, techniques such as the heterogeneous multiscale

method [38] that demand a clean separation in time scales are not applicable.

In the statistical approach to coarse-graining discussed here, the goal is to search

over a certain class of coarse-grained models and find the complexity for which the
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description is “optimally predictive”. This technique is called regularization, and to

estimate the generalization error we use cross-validation. The latter involves randomly

dividing data (either from experiments or simulations) into “training” and “test” samples.

Ideally one would like both groups of data to be infinite, but in practice one only has

a limited amount of data to work with. Experimentalists can only synthesize a small

number of material samples, and in molecular dynamics simulations one is also limited

to a finite number of samples. For the purposes of the current analysis, we will assume

that the amount of training data is limited but that we can test our learned model on an

infinite amount of data independent of the training samples. An extension to cases where

both training and test data are finite will be the topic of future research.

Selecting the appropriate model regularization is of paramount importance be-

cause it can minimize both underfitting and overfitting. An underfitted model is too

simplistic and therefore fails to capture much of the useful information available in the

training data; hence, it will perform sub-optimally on data independent of the training set.

In contrast, overfitting refers to the case where an overly complex model describes the

many irrelevant details that appear in the training data by chance. An overfitted model

will therefore be also less successful in generalizing to new data from simulations or

experiments that are outside the class of the training data. The model developed in this

study avoids common issues associated with overfitting by using an effectively infinite

amount of test data independent of the samples on which it was trained, and selecting the

complexity that makes it most predictive of this test data.

As an error estimator, cross-validation has been used for a number of years. When

the amount of data is very limited though, there can be a significant difference between

the cross-validation error and the actual error [33, 34]. Moreover, a detailed error analysis

is often lacking in physics modeling applications. Our motivation is to learn mesoscale

models from microstructural data incorporating prior domain knowledge and physical
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symmetries. We will focus on the time-dependent stochastic Ginzburg-Landau equation

(sGLE) which provides a coarse-grained description of a kinetic nearest-neighbor Ising

model with Glauber dynamics (GD) and of which the dynamics are expected to be

particularly straightforward to learn. While our approach is related to that in [35], we do

not assume a prior distribution for the learned parameters and do not include a penalty

for overfitting or complexity in the Bayesian Information Criterion. Moreover, instead of

simply fitting a regular quartic free energy to a single or joint magnetization distribution

function as in [66, 67], we consider higher order terms and find the parameters that

optimally predict GD data independent of the samples on which the model was trained.

The inclusion of terms beyond fourth order in the free energy accounts for the fact that

we are in a regime of finite coarse-graining block sizes, and hence not at a fixed point in

the renormalization group theory [24, 58]. Our current approach does not account for

higher order spatial gradients, which can play an important role out of equilibrium; we

plan to include these terms in future versions of the model.

Section 6.3 describes the microscopic GD model and its mesoscale description

provided by the sGLE. Section 6.4 details our design loop used to select the optimal

complexity of the sGLE for each amount of training data considered, after which Sec. 6.5

discusses the results of the error analysis we performed in order to arrive at an optimally

predictive model. Section 6.6 summarizes our conclusions and discusses possibilities for

future work.
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6.3 The Kinetic Ising Model and its Coarse-scale De-

scription by a Stochastic Ginzburg-Landau Equa-

tion

6.3.1 Kinetic Ising model with Glauber dynamics

The Ising model with nearest-neighbor interactions [60] is a simple, yet very

rich, model in statistical mechanics for describing ferromagnetic behavior. Consider a

two-dimensional (2D) ferromagnet with atoms arranged on an N1×N2 square lattice.

The spin si, j (where i = 0, . . . ,N1−1 and j = 0, . . . ,N2−1) of each atom can be in one

of two states, si, j =±1, and can only interact with its four adjacent spins. We can add

dynamics to this system by flipping spins with a certain transition rate w, and the result is

a kinetic nearest-neighbor Ising model with spin-flip (Glauber) [52] dynamics (which

we will refer to as GD). This allows us to express the time evolution of the spin system

through a master equation given by

d
dt
P(σ; t) = ∑

σ′
[w(σ′→ σ)P(σ′; t)−w(σ→ σ′)P(σ; t)] (6.1)

where P(σ; t) is the joint probability of finding the system in spin configuration σ at time

t, and the w’s are the transition rates between two N1×N2-spin configurations differing

only in the value of one spin, si, j. For w we choose the heat bath rate, given by

wHB(σ→ σ′) = κ
(

1+ e−β[H(σ)−H(σ′)]
)−1

. (6.2)

Here H(σ) represents the Hamiltonian of the spin system with configuration σ, β =

1/(kBT ) with T the system temperature, and κ−1 sets the time scale of the spin-flip

process and can depend both on T and the spins other than si, j. We simulate this kinetic
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Ising model via a Monte Carlo (MC) algorithm with one MC step per spin; i.e., to

complete one step in our Ising run, we perform N1×N2 times the following procedure:

1. Pick a random site (i, j) where i = 0, . . . ,N1−1 and j = 0, . . . ,N2−1.

2. Draw a number r1 from a uniform distribution on [0,1].

3. Flip the spin si, j if r1 <w(σ→ σ′), or leave it in its original state if r1≥w(σ→ σ′).

In all of our work here, we initialize the lattice by selecting spins to be +1 or -1 randomly

with equal probability.

6.3.2 Ginzburg-Landau equation

By invoking a phenomenological coarse-graining approach, it is possible to

obtain a mesoscopic model of GD given by a time-dependent Ginzburg-Landau equation

(GLE) 1. The latter will describe the spatiotemporal evolution of an “order parameter”, φ,

a field variable which represents the instantaneous average of Ising spin values over some

portion of a ferromagnetic material (also called “magnetization”). At finite temperatures,

one needs to account for fluctuations, which can be added via a white noise term to obtain

an overdamped stochastic relaxation equation

∂φ(x, t)
∂t

=−M
δF [φ(x, t)]

δφ(x, t)
+η(x, t), (6.3)

with M the mobility which sets the time scale of the dynamics. Here η(x, t) is a zero-

mean Gaussian space-time white noise with an auto-covariance which, according to

the fluctuation-dissipation theorem, scales linearly with M and the system temperature.

Moreover, F [φ] is an effective free energy for the system, and may be developed as a

1A Ginzburg-Landau model for the free energy can also be used for other systems; see, e.g., [53].



125

power series in φ and its derivatives

F ∼ ∑
k even

akφk +b φ∇2φ+ . . . (6.4)

Only even powers of φ are allowed in (6.4) due to the symmetry of the Ising Hamiltonian.

In the context of late-stage domain growth, renormalization group arguments indicate

that the Ising model with Glauber dynamics is in the universality class of Model A

dynamics [58], and hence well represented at the coarse scale by having only a2 and a4

different from zero. However, since we are focusing on intermediate time and length

scales, we relax this assumption and instead consider a model class for the free energy

consisting of even-term polynomials with degree two or greater. The complexity that

we eventually select is the one for which the model is optimally predictive of GD data

independent of the samples from which it was learned.

6.4 Numerical Algorithm

Our goal is to learn the parameters of a discrete version of the stochastic Ginzburg-

Landau equation (sGLE) which evolves the magnetization φ from time tn to time tn+1

according to

φn+1,i, j = φn,i, j +α0(φn,i+1, j +φn,i−1, j +φn,i, j+1

+φn,i, j−1−4φn,i, j)+

C−1
2

∑
k=0

αk+1φ2k+1
n,i, j

+α(C+3)/2 ξn,i, j, (6.5)
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where C is the model complexity 2 and the ξn,i, j are independent, identically distributed

standard normal random variables. Here n and n+ 1 refer to times tn and tn+1, while

i = 0, . . . , N̄1− 1 and j = 0, . . . , N̄2− 1 indicate the spatial position of the spin blocks

resulting from the coarse-graining procedure, with N̄1 and N̄2 the number of blocks in both

spatial directions. Given block-averaged training data Sn,i, j with n = 0, . . . ,neq, where

neq will be specified for each of our numerical experiments in Sec. 6.5, we would like to

find the set of parameters αααopt ≡ {α0,α1, . . . ,α(C+3)/2} that maximizes the likelihood

of observing this data using the sGLE model. For notational convenience, the N̄1× N̄2

block-averaged spin configuration after n steps will be denoted by Sn; the notation Sn,i, j

will refer to its (i, j)th matrix element. The same convention will be used for φ. It turns

out αααopt is the solution to a linear system

Aαααopt = b, (6.6)

where the components of A and the elements of b involve products of Sn, its powers

and its discrete Laplacian. The dimension of this system is given by the number of

free parameters that make up the model (6.5), which is equal to (C− 1)/2+ 3. For

more details, we refer the reader to Appendix M where we have worked out the case of

C = 3. We then test our learned sGLE model against independent GD data (“test” data)

to ascertain how well learned models of different complexities perform on unseen data.

By calculating the root-mean-square (RMS) error between GD test trajectories and those

simulated using the learned sGLE, we then determine for which complexity C the latter

is optimally predictive of the GD test data.

We will consider two error metrics in our analysis, which we will refer to as the

“type 1” and “type 2” error. For the type 1 error, we calculate the sGLE grid at time

2We only consider odd complexities in our analysis.
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tn+1 through (6.5) but replace φn with the block-averaged GD test data at time tn. This

error is of the same type as the error that we want to minimize when calculating αααopt

from the GD training data, where we search for the set of parameters that maximizes the

likelihood of observing the training data at tn+1 given the sGLE model and the training

data at tn, for every n (see Appendix M). For the type 2 error, we evolve the sGLE grid in

time through (6.5) directly, i.e. we do not keep referring back to the GD test data at each

time tn.

A flowchart of the operational algorithm is shown in Fig. 6.1. At a high level, our

approach for computing one data point in the error probability density function (pdf) for

a learned sGLE model of complexity C, given a number of training samples Ntrain, can be

described as follows (see Appendix N for more details).

1. We simulate Ntest independent GD test sample trajectories. For each trajectory, we

let the Ising system evolve over nmc (specified in Sec. 6.5) steps, after which we take

another neq steps during which we record the block-averaged Ising configuration.

Each of these steps represents one MC step per spin as detailed in Sec. 6.3.1.

2. We simulate Ntrain independent GD training sample trajectories. We let the spins

evolve over nmc steps, and then record their block-averaged configuration over the

next neq steps.

3. Using the data gathered during the last neq steps of each training trajectory, we

compute the coefficients of the learned sGLE polynomial using a log-likelihood

analysis (see Appendix M).

4. With the parameters calculated in step 3, we now simulate Ntest sGLE trajectories.

Each trajectory consists of neq steps, with each step involving the advancement of

the discrete sGLE (6.5) from one discrete point in time to the next.
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Figure 6.1: Flowchart for the model complexity selection algorithm.
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5. For the kth sGLE trajectory, we calculate the RMS error εk between this trajectory

and the kth block-averaged GD test trajectory.

6. Finally, we compute the test-averaged error

ε =
1

Ntest

Ntest

∑
k=1

εk, (6.7)

which we will call the “type 1” or “type 2” test error depending on how the sGLE

trajectory has been calculated (see our above definition of these errors).

The quantity ε represents one point in the error pdf for the considered complexity C and

number of training samples Ntrain. The entire pdf is then obtained by repeating the above

procedure except for step 1 (we use the same GD test trajectories for each point in the

pdf) Nreal� 1 number of times. We will denote the sample (i.e., realization) mean and

variance of this pdf by ε̄ and s2
ε , respectively.

6.5 Error Analysis and Main Results

We now present the pdfs of the type 1 and type 2 errors, defined in Sec. 6.4, for

different complexities C = 3,5,7 or 9, given a finite number of GD training samples Ntrain.

We will use Ntest = 1000 GD test samples, which provides an accurate generalization

error 3. Moreover, we will build up the error histograms using Nreal = 5000 independent

realizations, and consider both training data in equilibrium and out of equilibrium. For

the equilibrium case, we measure the energy of the spin system and choose nmc as the

number of steps after which thermal equilibrium has been reached. Out of equilibrium,

we choose nmc such that after nmc steps domains have started to form. Learning the sGLE

model parameters from GD data for which the block size is smaller than the size of a
3In future work, we will carry out an error analysis when only a small number of test samples is

available [33, 34].
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typical domain allows the Laplacian in the sGLE to better capture gradients in the GD

data, and should hence yield a more accurate coarse-grained description. For both cases,

we determine an appropriate value for neq through trial and error, and choose values

that provide a sufficient amount of input data to our log-likelihood solver. We will use

nmc+1 = 2000 and neq+1 = 100 for the equilibrium case, and nmc+1 = neq+1 = 500

out of equilibrium (these values include the number of steps plus the starting condition at

t = 0 or after nmc steps). In all cases, we simulate the Glauber dynamics on a 256×256

spin lattice with periodic boundary conditions, and coarse grain using 16×16 blocks. We

set the parameter κ in (6.2) equal to 1. Finally, next to each error distribution, we show a

plot of the free energy constructed using the learned model parameters. These plots are

meant to serve as a check of the physical soundness of our approach in the sense that,

consistent with common knowledge, a single-well potential should be observed above

the phase transition and a double-well potential below the phase transition. However,

they do not convey any information regarding the predictiveness of our model, which

follows entirely from the error distributions.

6.5.1 Type 1 test error pdfs for training data in equilibrium

We first consider the case where we train on Ntrain = 8 GD trajectories in equi-

librium, obtained by quenching the spin lattice from infinite temperature to either

T = 1.6 J/kB (below Tc = 2.269 J/kB
4) or T = 2.8 J/kB (above Tc). As Fig. 6.2

shows, at T = 1.6 J/kB the error pdf’s sample mean ε̄ clearly decreases with complexity

C. Hence, the most predictive sGLE model is that with the highest complexity considered,

C = 9. At T = 2.8 J/kB, however, the error pdfs for all the complexities overlap almost

completely (see Fig.6.3), indicating that the regular third-order sGLE polynomial is

4Tc refers to the critical temperature for a second order phase transition following Onsager’s [93]
solution.
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Figure 6.2: Type 1 error pdfs (left) and learned Ginzburg-Landau free energy (right) for
different complexities of an sGLE learned from eight equilibrium GD training samples at
T = 1.6 J/kB (below the phase transition). The sGLE with C = 9 predicts the GD test
data best.

adequate to predict the coarse-grained Glauber dynamics.

6.5.2 Type 1 test error pdfs for training data out of equilibrium

Next, we look at the case where we train on various amounts of GD trajectories

out of equilibrium, obtained by quenching the spin lattice from infinite temperature to

T = 2.2 J/kB (just below Tc). As Figs. 6.4-6.7 show, regardless of the amount of training

data the regular φ4 form of the free energy (C = 3) is not optimally predictive of the

GD test data. The complexity for which the sGLE model best predicts the GD test

trajectories varies with the amount of training data. For small amounts of training data

(i.e. Ntrain = 1 or 2), the histograms for the different complexities largely overlap. As

the number of training samples is increased to 16, the pdfs for C = 5 and higher can be

more clearly distinguished from that for C = 3. When one further increases the amount
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Figure 6.3: Type 1 error pdfs for different complexities of an sGLE learned from eight
equilibrium GD training samples at T = 2.8 J/kB (above the phase transition). All
considered model complexities are equally predictive of the GD test data.

of training samples to 128, the pdf for C = 3 becomes fully distinct from those for higher

complexities, and the pdf for C = 5 is becoming more distinct from those for C = 7 and

C = 9. In sum, increasing the amount of GD training data causes the complexity at which

the sGLE is optimally predictive to shift toward higher values.

6.5.3 Type 2 test error pdfs for training data out of equilibrium

Finally, we repeat the simulations in Sec. 6.5.2 for the type 2 error. We find that

for this error type the regular φ4 free energy does optimally predict the GD test data,

regardless of the amount of training data. Figure 6.8 shows this for the case of one GD

training sample. We note here that it is to be expected that ε̄ is bigger for the type 2 error

than for the type 1 error, since the latter is calculated in the same way as the optimization

error for obtaining the αααopt is calculated from the GD training data, while the former is

not.
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Figure 6.4: Type 1 error pdfs for different complexities of an sGLE learned from one
out-of-equilibrium GD training sample at T = 2.2 J/kB (just below the phase transi-
tion). Complexities 5 and higher are optimally predictive of the GD test data, but the
corresponding error pdfs still largely overlap with that for C = 3.
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Figure 6.5: Type 1 error pdfs for different complexities of an sGLE learned from two
out-of-equilibrium GD training samples at T = 2.2 J/kB.
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Figure 6.6: Type 1 error pdfs for different complexities of an sGLE learned from 16
out-of-equilibrium GD training samples at T = 2.2 J/kB. The error pdfs for C = 5 and
higher are now clearly distinct from that for C = 3.

6.03 6.04 6.05 6.06 6.07 6.08 6.09

ε ×10−2

0

5000

10000

15000

20000

25000

p
(ε

)

C = 3, ε̄ = 6.07591×10−2, s2
ε = 4.33×10−10

C = 5, ε̄ = 6.06188×10−2, s2
ε = 4.51×10−10

C = 7, ε̄ = 6.05958×10−2, s2
ε = 4.69×10−10

C = 9, ε̄ = 6.05956×10−2, s2
ε = 4.63×10−10

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2

φ

−5.0

−2.5

0.0

2.5

5.0

F
(φ

)

×10−3

C = 3
C = 5
C = 7
C = 9

Figure 6.7: Type 1 error pdfs for different complexities of an sGLE learned from 128
out-of-equilibrium GD training samples at T = 2.2 J/kB. The error pdf for C = 5 and
those for C = 7 and higher are becoming more distinct, shifting the optimally predictive
model complexity to C = 7.
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Figure 6.8: Type 2 error pdfs for different complexities of an sGLE learned from one
out-of-equilibrium GD training sample at T = 2.2 J/kB. The sGLE with C = 3 is most
predictive of the GD test data.

6.6 Summary and Conclusions

By performing a detailed error analysis in the context of a statistical learning

approach using cross-validation, we derive an optimally predictive coarse-grained descrip-

tion of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics

(GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned

from microscopic GD “training” data through a log-likelihood analysis, and its capacity

to predict GD “test” data independent of the training data is analyzed for various model

complexities using two error metrics and varying amounts of training data.

Our analysis yields the following major conclusions:

1. For the type 1 error, a complexity of 3 in the sGLE force equation does not yield

an optimally predictive model for any amount of training data that we investi-

gated. Moreover, the model complexity yielding the most predictive coarse-grained
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description increases with the amount of GD training data.

2. For the type 2 error, the regular Ginzburg-Landau description using a φ4 mean-field

free energy does yield the most predictive model irrespective of the amount of GD

training data.

The principled methodology developed here for simple Model A dynamics can

be applied to more complicated problems such as Model H dynamics [58]. A partic-

ular application which might benefit from this work is the use of data generated from

experiments, e.g. ultrafast X-ray diffraction patterns of structural phase transitions in

semiconductor crystals to generate models describing crystal disordering [47]. In general,

our approach can be utilized in any application using a Ginzburg-Landau functional, e.g.

in phase field simulations of materials.

Directions for future work include studying the effects of the coarse-graining

block size (in both space and time), performing a rigorous analysis of the stability and

discretization error of our numerical scheme, and expanding the model class by including

operator terms that account for higher order spatial gradients. Moreover, it is desirable to

complement the current computational analysis with a rigorous theoretical derivation of

an expression for the error probability density function in terms of model complexity,

number of training samples and coarse-graining block size.
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Chapter 7

Conclusions

We considered two nonintrusive approaches for multiscale/multiphysics problems

in the presence of stochastic fluctuations: domain decomposition (DD) and stochas-

tic collocation (SC). Noise was introduced into the system as a random source term

(Chapters 2, 5 and 6), a random boundary condition (Chapter 3), or as uncertain input

parameters (Chapter 4). We developed and analyzed tightly-coupled DD algorithms for

two testbed problems: one- and two-dimensional coupled linear diffusion equations,

one of which was forced by a Gaussian space-time white noise, and one-dimensional

multiscale hydrogen diffusion in a multilayer Pd-Ta dense membrane, driven by a trun-

cated Gaussian noise at the domain boundary. In the former, tight coupling was achieved

through Picard’s or Newton’s iteration; in the latter, Jacobian-free Newton-Krylov with

Generalized Minimum Residual was employed. Applying SC to a two-dimensional mul-

timaterial, equilibrium radiation-diffusion equation with one, two or three uncertain input

parameters, we estimated the mean and variance of the energy, deposited in a brain tumor

through X-ray irradiation, as a function of the statistical moments of the random inputs.

We constructed an algorithm refinement (AR) hybrid for the one-dimensional real, cubic

Ginzburg-Landau equation (GLE), and analyzed its ability to propagate fine-scale noise
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throughout the entire computational domain; in addition, we investigated the viability of

a moment approach with a Gaussian closure. Finally, using statistical learning involving

a log-likelihood analysis, we derived a two-dimensional stochastic GLE, and analyzed its

ability to predict microscale data outside of the data set on which the model was trained.

In Chapters 2 and 3, we demonstrated that the presence of stochastic noise

alters the computational efficiency of an iterative (“implicit”) coupling algorithm in

a way that depends on both the noise type and the iteration technique. For a space-

time white noise inside the domain, the analysis in Chapter 2 revealed that increasing

the noise strength resulted, on average, in more iterations per communication. While

Newton’s method maintained a linear scaling with noise amplitude, Picard’s coupling

could scale nonlinearly. On the other hand, a truncated boundary noise was found to

have a “smoothing” effect and reduced the number of Newton iterations (in a Jacobian-

free Newton-Krylov coupling) per communication as its coefficient of variation was

increased. The impact of noise on the performance of the iterative coupling also affected

the latter’s relative efficiency compared to its single-iteration (“explicit”) counterpart.

For a given solution error and at low noise strength, the simulations for the space-time

white noise that used implicit coupling completed, on average, faster than those with

explicit coupling; this was true for both the longer and shorter time interval between

two subsequent implicit coupling communications that we considered. The reason is

that for explicit coupling to achieve the same solution error as its implicit counterpart,

its communication frequency needs to be increased, thereby increasing simulation time.

At high noise strength however, the larger number of iterations per communication

for the implicit coupling caused the latter to become less efficient than the explicit

coupling for sufficiently short time intervals between two subsequent implicit coupling

communications. Increasing the latter interval enabled the implicit coupling to again

outperform its explicit counterpart. For the boundary noise however, the implicit coupling
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was shown to have a higher efficiency than its explicit counterpart for all noise strengths

and communication times considered.

We also investigated the effect of noise on the stability of the above DD algorithms.

In Chapter 2, we found that for a linear multiscale problem the stability of the DD

approach with implicit coupling was not affected by the presence of noise. This is in

stark contrast to the nonlinear multiscale problem in Chapter 3, for which we showed

that the concentration dependence of the diffusion coefficient in Pd causes the stability

conditions to depend on the ensemble mean of the solution, which is different from

its counterpart solving the corresponding deterministic problem with the fluctuations

averaged out. It is therefore incorrect to base predictions about the stability of a DD

algorithm for a nonlinear problem with noise on results obtained prior to the introduction

of this noise into the system, or with the fluctuations averaged out.

For both the linear system in Chapter 2 and nonlinear system in Chapter 3, we

found that the DD algorithm with implicit coupling preserves the temporal order of

accuracy of the subdomain solvers.

The analysis in Chapter 3 revealed that exchanging sample-averaged values

of concentration and flux (moment-wise communication), rather than their values for

a particular realization of the system dynamics (path-wise communication), across

interfaces between subdomains leads to incorrect propagation of the boundary fluctuations

and erroneous spatial profiles for both the mean and variance of the state variable,

regardless of the level of spatial refinement. A coupling enforcing continuity of mean and

variance similar to the approach followed in [31] might approach the accuracy of our path-

wise coupling while being computationally less expensive. However, unlike the solution

to the weakly nonlinear problems considered in [31], the solution to highly nonlinear

problems such as the hydrogen diffusion in Chapter 3 will be highly non-Gaussian, and

higher moments of the state variable might need to be exchanged, in addition to the mean
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and variance, for a moment-wise coupling to achieve a similar solution error as path-wise

communication.

The numerical experiments in Chapter 4 demonstrated that SC outperforms

standard Monte Carlo simulation for all stochastic dimensions considered, with the

biggest difference for the scenario of one random input parameter. Increasing the

stochastic dimension enhanced the amplification of parametric uncertainty by the system’s

nonlinearity to the point where the magnitude of the predictive uncertainty in the energy

deposition approached that of its predicted (mean) value itself. This again demonstrates

the dramatic effect of random noise, even of low strength, on the behavior of nonlinear

multiphysics systems, and hence the need to incorporate an accurate model of random

fluctuations in a global algorithm development strategy.

In Chapter 5, we demonstrated, using the GLE as a testbed, that for AR hybrids

modeling nonlinear problems whose macroscale dynamics is driven by microscale noise,

the ability of the coarse-scale model to correctly capture the atomistic algorithm’s

fluctuations is of paramount importance to correctly predict both the mean and higher

moments of the quantity of interest. Our results also confirmed that significant savings in

computational cost may be achieved by applying an AR method versus a full-domain

atomistic approach, and increasingly so for bigger systems. Finally, we established

that a (deterministic) moment approach with Gaussian closure was able to provide,

somewhat surprisingly, a reasonably accurate estimate of the magnetization variance,

offering a direct way of computing such moments as opposed to employing numerical

time integration of the state variable.

In Chapter 6, we found that the optimal complexity of the learned stochastic

GLE for predicting microscale Ising data outside of the data set on which the model was

trained may differ from that of standard models available in the literature. Moreover,

this approach established a data-driven way of computing the magnitude of the model’s
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random source term, which may eliminate reliance on ad hoc “fudge factors” that plagued

both stochastic GLE models used in the AR hybrid discussed in Chapter 5. Hence,

statistical learning may prove to be a powerful tool in building atomistic-continuum AR

hybrids that accurately predict system behavior both in the fine- and coarse-scale regions.



Appendix A

Conservative versus non-conservative

coupling (Chapter 2)

To understand the need for a mass-conserving coupling algorithm, we consider

the total mass M inside the region [−∆x/2,∆x/2] (see Fig. 2.1)

M(t) =
∫ ∆x/2

−∆x/2
ρ(x, t)dx. (A.1)

Its derivative yields

dM
dt

=
∫ ∆x/2

−∆x/2

∂ρ
∂t

dx =
∫ ∆x/2

−∆x/2

∂
∂x

[
D

∂ρ
∂x

]
dx = F1,N/2−1/2−F2,1/2, (A.2)

where the flux F = −D∂ρ/∂x is given by Fick’s law. The interfacial fluxes F1,N/2−1/2

and F2,1/2 represent the amount of mass leaving the left subdomain per unit time and the

amount of mass entering the right subdomain per unit time, respectively.

Integrating (A.2) between tn and tn+1 ≡ tn +∆tcom gives

∆M
∆tcom

= F̄ n
1,N/2−1/2− F̄ n

2,1/2, (A.3)
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where ∆M denotes the change in total mass inside [−∆x/2,∆x/2] between tn and tn+1, and

F̄ n
1,N/2−1/2 and F̄ n

2,1/2 are the ∆tcom-averaged values of F1,N/2−1/2 and F2,1/2, respectively.

Looking at the system dynamics between two subsequent inter-solver communications,

any mass leaving the left subdomain should enter the right subdomain and cannot

be “trapped” inside the interface region [−∆x/2,∆x/2]. Hence, the total mass inside

[−∆x/2,∆x/2] needs to remain constant, which requires equality of the ∆tcom-averaged

interface fluxes, i.e.

F̄ n
1,N/2−1/2 = F̄ n

2,1/2. (A.4)

Hence, merely ensuring F1,N/2−1/2(t = tn+1) = F2,1/2(t = tn+1) would not allow one to

keep the global solution in a consistent state despite the use of an iterative method.



Appendix B

Picard and Newton iterations

Consider a root-finding problem f(u) = 0, where u is a vector containing the

unknowns. For Picard’s method, the latter is rewritten as a fixed-point problem u = g(u)

where g(u)≡ u−βf(u), with β > 0 a fixed-point damping parameter, typically less than

1. A fixed-point iteration proceeds according to the algorithm in Table B.1. When g(u) is

a contraction, i.e., if there exists a λ ∈ (0,1) such that

‖g(u)−g(v)‖ ≤ λ‖u−v‖ (B.1)

for all u,v in a closed set containing the fixed-point solution u∗, then the Picard iteration

is guaranteed to converge based on Banach’s fixed-point theorem [12]. However, even

with a good initial guess, Picard iterations converge slowly, namely q-linearly in the

norm [68]

‖u(k+1)−uex‖ ≤ A‖u(k)−uex‖, (B.2)

where uex is the exact solution, the q-factor A lies in (0,1), and the iteration number k is

sufficiently large.
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A faster alternative to Picard iterations is Newton’s method (see Table B.1), which

converges q-quadratically in the norm [68]

‖u(k+1)−uex‖ ≤ A‖u(k)−uex‖2, (B.3)

for A > 0 and sufficiently large k. Drawbacks of Newton’s method include only local

convergence (i.e., an initial guess for starting the iterations needs to be sufficiently good),

and the cost of computing the full Jacobian J. Although not considered in this paper, the

latter can be addressed by using a Jacobian-free Newton-Krylov method which requires

only the calculation of Jacobian-vector products and avoids having to explicitly form the

Jacobian itself [70].

Table B.1: Algorithms for the Picard (left) and Newton (right) iterations (adapted
from [94]). In the Newton method, J = ∂f/∂u is the Jacobian matrix.

Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = g(u(k))
k = k+1

end while

Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = u(k)−J−1(u(k))f(u(k))
k = k+1

end while

In the problem considered here, during the macro-step from tn to tn+1 we have

un = (ρ̄ n
1,N/2, F̄

n
2,1/2)

> and need to solve the root-finding problem f(un) = 0 with f(un)

given by

f(un) =


ρ̄n,k

1,N/2− ρ̄n,k
2,0

F̄ n,k
1,N/2−1/2− F̄ n,k

2,1/2

 . (B.4)



Appendix C

Stability matrices and Jacobian

It follows from (2.14a) and (2.14b) that the time-averaged solution over the n1

(n2) micro-steps in the left (right) subdomain for the macro-step going from tn to tn+1 is

given by

ρ̄ρρn,k
1 = B̄Lρρρn,0

1 + C̄Lρρρn,k
1,b (C.1a)

ρ̄ρρn,k
2 = B̄Rρρρn,0

2 + C̄Rρρρn,k
2,b +

γ
n2

n2

∑
m=1

m−1

∑
j=0

(I+A2)
m−1− jηηηn, j,k, (C.1b)

where

B̄L =
1
n1

n1

∑
l=1

(I+A1)
l, C̄L =

1
n1

n1

∑
l=1

l−1

∑
j=0

(I+A1)
j T1, (C.1c)

B̄R =
1
n2

n2

∑
m=1

(I+A2)
m, C̄R =

1
n2

n2

∑
m=1

m−1

∑
j=0

(I+A2)
j T2. (C.1d)

Defining Ñ = N/2 for notational convenience, for Picard’s method,

ρ̄n,k+1
1,Ñ = ρ̄n,k

2,1 +
∆x
D2

F̄ n,k
2,1/2, F̄ n,k+1

2,1/2 =−D1

∆x
(ρ̄ n,k

1,Ñ − ρ̄ n,k
1,Ñ−1), (C.2)
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this gives

ρ̄n,k+1
1,Ñ =

[
B̄Rρρρn,0

2 + C̄Rρρρn,k
2,b +

γ
n2

n2

∑
m=1

m−1

∑
j=0

(I+A2)
m−1− jηηηn, j,k

]
1

+
∆x
D2

F̄n,k
2,1/2

F̄n,k+1
2,1/2 =− D1

∆x

(
ρ̄n,k

1,Ñ−
[
B̄Lρρρ n,0

1 + C̄Lρρρ n,k
1,b

]
Ñ−1

)
. (C.3)

Rewriting (2.15a) and (2.16a) as

ρρρn,n1,k
1 = b1

n +CLρρρn,k
1,b, ρρρn,n2,k

2 = b2
n +CRρρρn,k

2,b + γ
n2−1

∑
m=0

(I+A2)
n2−1−mηηηn,m,k (C.4)

we have, in component form,

ρn,n1,k
1,p = b1

n,p +[CL]p,Ñ−1

Ñ−1

∑
q=1

[B̄R]1,q ρn,0
2,q (C.5a)

+[CL]p,Ñ−1[C̄R]1,1ρ̄n,k−1
1,Ñ +[CL]p,Ñ−1

∆x
D2

F̄n,k−1
2,1/2

+[CL]p,1ρL +[CL]p,Ñ−1[C̄R]1,Ñ−1ρR

+[CL]p,Ñ−1
γ

n2

n2

∑
m=1

m−1

∑
j=0

Ñ−1

∑
q=1

[Z jm]1,qηn, j,k−1
q

ρn,n2,k
2,p = b2

n,p +[CR]p,1
Ñ−1

∑
q=1

[B̄R]1,q ρn,0
2,q (C.5b)

+[CR]p,1[C̄R]1,1ρ̄n,k−1
1,Ñ +[CR]p,1

∆x
D2

F̄ n,k−1
2,1/2

+
(
[CR]p,Ñ−1 +[CR]p,1[C̄R]1,Ñ−1

)
ρR

+[CR]p,1
γ

n2

n2

∑
m=1

m−1

∑
j=0

Ñ−1

∑
q=1

[Z jm]1,qηn, j,k−1
q + γ

n2−1

∑
j=0

Ñ−1

∑
q=1

[Z jn2 ]p,qηn, j,k
q
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where Z jm ≡ (I+A2)
m−1− j and p = 1, . . . , Ñ−1. The terms in these two expressions

define the matrix M in (2.18b) and a vector Pxn = (ccc1,c2,c3,ccc4)
> with

c1,p =
Ñ−1

∑
q=1

[BL]p,qρn,0
1,q +[CL]p,Ñ−1

Ñ−1

∑
q=1

[B̄R]1,qρn,0
2,q, c2 =

Ñ−1

∑
q=1

[B̄R]1,qρn,0
2,q

c3 =
D1

∆x

Ñ−1

∑
q=1

[B̄L]Ñ−1,qρn,0
1,q, c4,p =

Ñ−1

∑
q=1

[BR]p,qρn,0
2,q +[CR]p,1

Ñ−1

∑
q=1

[B̄R]1,qρn,0
2,q. (C.6)

Relations (C.6) define the matrix P in (2.18c).

The nonzero sub-matrices of M and P in (2.18b) and (2.18c) are defined by

rp =[CL]p,Ñ−1[C̄R]1,1, sp =
∆x
D2

[CL]p,Ñ−1, u = [C̄R]1,1, v =
∆x
D2

,

w = − D1

∆x
(1− [C̄L]Ñ−1,Ñ−1), yp = [CR]p,1[C̄R]1,1, zp =

∆x
D2

[CR]p,1 (C.7a)

and

Sp,q =[CL]p,Ñ−1[B̄R]1,q, uq = [B̄R]1,q, vq =
D1

∆x
[B̄L]Ñ−1,q,

Wp,q =[BR]p,q +[CR]p,1[B̄R]1,q, (C.7b)
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respectively. Equations (2.18) and (C.5) also define a vector dn,k,k+1 with components

dn,k,k+1
p =

γ
n2



[CL]p,Ñ−1

n2

∑
m=1

m−1

∑
j=0

Ñ−1

∑
q=1

[Z jm]1,qηn, j,k
q p = 1, . . . , Ñ−1

n2

∑
m=1

m−1

∑
j=0

Ñ−1

∑
q=1

[Z jm]1,qηn, j,k
q p = Ñ

0 p = Ñ +1

[CR]p,1

n2

∑
m=1

m−1

∑
j=0

Ñ−1

∑
q=1

[Z jm]1,qηn, j,k
q

+n2

n2−1

∑
j=0

Ñ−1

∑
q=1

[Z jn2]p,qη n, j,k+1
q p = Ñ +2, . . . ,N,

(C.8)

and a vector e with components

ep =



[CL]p,1ρL +[CL]p,Ñ−1[C̄R]1,Ñ−1ρR p = 1, . . . , Ñ−1

[C̄R]1,Ñ−1ρR p = Ñ

D1

∆x
[C̄L]Ñ−1,1ρL p = Ñ +1(

[CR]p,Ñ−1 +[CR]p,1[C̄R]1,Ñ−1

)
ρR p = Ñ +2, . . . ,N.

(C.9)

Finally, we derive explicit expressions for elements of the Jacobian J for Newton’s

coupling. It follows from (2.13c), (C.1a), and (C.1b) that

g1 = ρ̄n,k
1,Ñ−

[
B̄Rρρρn,0

2 + C̄Rρρρn,k
2,b +

γ
n2

n2

∑
m=1

m−1

∑
j=0

(I+A2)
m−1− jηηη n, j,k

]
1

− ∆x
D2

F̄ n,k
2,1/2

g2 = −
D1

∆x

(
ρ̄n,k

1,Ñ−
[
B̄Lρρρn,0

1 + C̄Lρρρn,k
1,b

]
Ñ−1

)
− F̄n,k

2,1/2. (C.10)
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Combining this with (2.13b) leads to

J =


1− [C̄R]1,1 −∆x

D2

−D1

∆x

(
1− [C̄L]Ñ−1,Ñ−1

)
−1

 . (C.11)



Appendix D

Conservative versus non-conservative

coupling (Chapter 3)

Consider the total mass M inside [α1−∆x/2,α1 +∆x/2],

M(t) =
∫ α1+∆x/2

α1−∆x/2
ρ(x, t) dx, (D.1)

with ρ the mass concentration. The temporal derivative of (D.1) yields

dM
dt

=

α1+∆x/2∫
α1−∆x/2

∂ρ
∂t

dx =

α1+∆x/2∫
α1−∆x/2

∂
∂x

[
D

∂ρ
∂x

]
dx = F1,N1−1/2−F2,1/2. (D.2)

Here the flux F =−D(ρ)∂xρ obeys Fick’s law, and the interfacial fluxes F1,N1−1/2 and

F2,1/2 constitute the amount of mass leaving the left subdomain per unit time and the

amount of mass entering the middle subdomain per unit time, respectively.

Integrating (D.2) between tn and tn+1 = tn +∆tcom yields

∆M
∆tcom

= F̄ n
1,N1−1/2− F̄ n

2,1/2, (D.3)
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where ∆M is the change in total mass inside [α1−∆x/2,α1 +∆x/2] between tn and

tn+1, and F̄ n
1,N1−1/2 and F̄ n

2,1/2 are the ∆tcom-averaged values of F1,N1−1/2 and F2,1/2,

respectively. Since any mass leaving the left subdomain should be transported into the

middle subdomain and cannot be trapped inside the interface region [α1−∆x/2,α1 +

∆x/2], the total mass inside this region must remain constant. This means that the

∆tcom-averaged interface fluxes are equal,

F̄ n
1,N1−1/2 = F̄ n

2,1/2. (D.4)

Identical reasoning applies to the interface x=α2. Therefore, only enforcing F1,N1−1/2(tn+1)=

F2,1/2(tn+1) and F2,N2−1/2(tn+1) = F3,1/2(tn+1) cannot yield a consistent solution over

the entire domain, regardless of whether or not the coupling is iterative.



Appendix E

Jacobian-free Newton-Krylov

algorithm for Chapter 3

The root-finding problem f(u) = 000, where u is an n-dimensional vector containing

the unknowns, can be solved iteratively using Newton’s method (see Table E.1) which

converges q-quadratically in the norm [68]

‖uk+1−uex‖ ≤ A‖uk−uex‖2, (E.1)

where uex is the exact solution, the q-factor A> 0, and the iteration number k is sufficiently

large. Newton’s method converges faster than, e.g., fixed-point iteration, but it is only

locally convergent (i.e., requires a “good” initial guess) and requires computing the full

Jacobian J.

Table E.1: Algorithm for pure Newton’s coupling (adapted from [94]).
Require: Initial guess u(0)

k = 0
while not converged do

u(k+1) = u(k)−J−1(u(k))f(u(k))
k = k+1

end while
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The former issue can be addressed through globalization strategies, while the

latter can be overcome by using inexact Newton algorithms such as JfNK methods [70].

A JfNK algorithm solves a linear system J(uk)δuk =−f(uk) at the kth Newton iteration

inexactly using an iterative Krylov scheme such as the Generalized Minimal RESidual

(GMRES) or BiConjugate Gradient STABilized (BiCGSTAB) method. The Krylov solver

only requires the action of the Jacobian in the form of a matrix-vector product J(uk)v,

which may be approximated by a first-order accurate finite difference expression [70]

J(uk)v≈
f(uk + εv)− f(uk)

ε
, (E.2)

or second-order accurate approximation [70]

J(uk)v≈
f(uk + εv)− f(uk− εv)

2ε
. (E.3)

Here ε is a small perturbation parameter, which has to be neither too large (resulting in

a poor approximation of the derivative) nor too small (leading to a big floating-point

roundoff error). We define it as

ε =


1

n‖v‖2

n

∑
i=1

√
ε(1+ |ui|) if ‖v‖2 > ε

1
n

n

∑
i=1

√
ε(1+ |ui|) if ‖v‖2 ≤ ε,

(E.4)

where n is the size of uk (n = 4 in our case) and ε = 2.2204 ·10−16 (machine roundoff

for 64-bit double precision). In our simulations we use formula (E.3).

JfNK methods provide Newton-like convergence without the cost of forming or

storing the true Jacobian. Yet, their error stems from both the inexact convergence of

the iterative linear solves and, more importantly, from approximating the action of the

Jacobian. The latter error is directly related to the selection of a value for ε. In addition,
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unless the condition number of J is small or its eigenvalues are clustered together,

preconditioning is needed to converge the Krylov solver with reasonable effort. This

causes the matrix-free appeal of (E.2) or (E.3) to yield, to some extent, to the construction

and use of a preconditioning matrix Pk (hence, we use the term “Jacobian-free” and

not “matrix-free”). Right preconditioning, which does not change the norm of the linear

residual, is often used in a Newton-Krylov method. The Newton equation with right

preconditioning is

(J(uk)P−1
k )(Pk δuk) =−f(uk), (E.5)

where Pk is the preconditioning matrix, which should be easy to evaluate, while retaining

as much of the properties of the Jacobian as possible. In practice, only the matrix elements

that are needed for the action of P−1
k are formed, which can be done in a variety of ways.

Using right preconditioning, the kth Newton iteration is realized via a two-step process:

1. Solve (J(uk)P−1
k )w =−f(uk) for w.

2. Solve δuk = P−1
k w for δuk.

To execute step 1, right-preconditioned versions of (E.2) and (E.3) are defined as

J(uk)P−1
k w≈ f(uk + εP−1

k w)− f(uk)

ε
(E.6)

and

J(uk)P−1
k w≈ f(uk + εP−1

k w)− f(uk− εP−1
k w)

2ε
, (E.7)

respectively. Next, Pky = w is solved (inexactly) for y, the matrix-free product J(uk)y≈

[f(uk + εy)− f(uk)]/ε or J(uk)y ≈ [f(uk + εy)− f(uk− εy)]/(2ε) is computed, and the
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Krylov iteration commences. In our simulations, the Krylov solver converged sufficiently

fast without the use of a preconditioner, and hence we decided against using such a

matrix.

In the problem under consideration, during the macro-step from tn to tn+1 we

have u≡ un = (ρ̄n
1,N1

, F̄ n
2,1/2, ρ̄

n
2,N2

, F̄ n
3,1/2)

>, and employ JfNK to solve the root-finding

problem f(un) = 0 with f(un) given by

f(un) =



ρ̄n
1,N1
− ρ̄n

2,0

F̄ n
1,N1−1/2− F̄ n

2,1/2

ρ̄n
2,N2
− ρ̄n

3,0

F̄ n
2,N2−1/2− F̄ n

3,1/2



. (E.8)



Appendix F

Proofs of the stability lemmas

F.0.1 Proof of Lemma 3.5.1

After n1 micro-steps, the left subdomain solver (3.10a) yields

ρρρn,n1,k
1 = BLρρρn,0

1 +CLρρρn,k
1,b +

n1−1

∑
l=0

(IN1−1 +A1,n)
n1−1−l T1,nηηηn,l, (F.1)

where ρρρn,0
1 ≡ ρρρ1(t = tn), BL = (IN1−1 +A1,n)

n1 and CL = ∑n1−1
l=0 (IN1−1 +A1,n)

l T1,n.

After n2 micro-steps, the middle subdomain solver (3.10b) gives

ρρρn,n2,k
2 = BMρρρn,0

2 +CMρρρn,k
2,b, (F.2)

where ρρρn,0
2 ≡ ρρρ2(t = tn), BM = (IN2−1 +A2)

n2 and CM = ∑n2−1
m=0 (IN2−1 +A2)

m T2. After

n3 micro-steps, the right subdomain solver (3.10c) gives

ρρρn,n3,k
3 = BRρρρn,0

3 +CRρρρn,k
3,b, (F.3)

where ρρρn,0
3 ≡ ρρρ3(t = tn), BR = (IN3−1 +A3,n)

n3 and CR = ∑n3−1
q=0 (IN3−1 +A3,n)

q T3,n.

The time-averaged solutions over the n1, n2 and n3 micro-steps in the left, middle and

158



159

right subdomains are given by

ρ̄ρρn,k
1 = B̄Lρρρn,0

1 + C̄Lρρρn,k
1,b +

1
n1

n1

∑
l=1

l−1

∑
j=0

(IN1−1 +A1,n)
l−1− jT1,n ηηηn, j, (F.4a)

ρ̄ρρn,k
2 = B̄Mρρρn,0

2 + C̄Mρρρn,k
2,b, ρ̄ρρn,k

3 = B̄Rρρρn,0
3 + C̄Rρρρn,k

3,b, (F.4b)

where

B̄L =
1
n1

n1

∑
l=1

(IN1−1 +A1,n)
l, C̄L =

1
n1

n1

∑
l=1

l−1

∑
j=0

(IN1−1 +A1,n)
j T1,n, (F.5)

B̄M =
1
n2

n2

∑
m=1

(IN2−1 +A2)
m, C̄M =

1
n2

n2

∑
m=1

m−1

∑
j=0

(IN2−1 +A2)
j T2, (F.6)

B̄R =
1
n3

n3

∑
q=1

(IN3−1 +A3,n)
q, C̄R =

1
n3

n3

∑
q=1

q−1

∑
j=0

(IN3−1 +A3,n)
j T3,n. (F.7)

The definitions of Ai,n and Ti,n (i = 1,3) are given by

Ai,n =
∆ti
∆x2 Zi,n, Ti,n =

∆ti
∆x2Wi,n, i = 1,3, (F.8a)
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with

[Zi,n]r,s =



−Di(ρn,0
i,r+1;ρn,0

i,r )−Di(ρn,0
i,r ;ρn,0

i,r−1) for s = r = 1, . . . ,Ni−1

Di(ρn,0
i,r ;ρn,0

i,r−1) for s = r−1 = 1, . . . ,Ni−2

Di(ρn,0
i,r+1;ρn,0

i,r ) for s = r+1 = 2, . . . ,Ni−1

0 otherwise,

(F.8b)

[Wi,n]r,s =



1 for s = r = 2, . . . ,Ni−2

Di(ρn,0
i,r ;ρn,0

i,r−1) s = r = 1

Di(ρn,0
i,r+1;ρn,0

i,r ) s = r = Ni−1,

0 otherwise,

(F.8c)

where Di(a;b) stands for Di evaluated at (a+b)/2 (for i = 1 or 3), ρn,0
1,0 = ρn

0, ρn,0
1,N1

=

ρ(α1, tn), ρn,0
3,0 = ρ(α2, tn) and ρn,0

3,N3
= ρL. Combining (F.1)–(F.8), the expressions for A2

and T2 in Section 2.5, and Newton’s iteration1 (3.9), leads to a recurrence relation

xn,k+1 = Mn(ηn,0,xn) xn,k +Pn(ηn,0,xn) xn +dn(ηn,l,xn), (F.9)

where dn is a vector of size N +1 and l ∈ {0,1, . . . ,n1−1}. Taking (F.9) to convergence,

and ensemble-averaging the result, yields

〈xn+1〉= 〈(IN+1−Mn)
−1Pnxn〉+ 〈(IN+1−Mn)

−1dn〉. (F.10)

1Since the problem is linearized around tn for the macro-step from tn to tn+1, we consider the pure
Newton method.
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F.0.2 Proof of Lemma 3.5.2

We employ the Reynolds decomposition yn = 〈yn〉+ ỹn, where ỹn is the zero-

mean fluctuation of yn about the mean 〈yn〉, and use Taylor’s theorem to expand (IN+1−

Mn)
−1Pn around 〈yn〉. Let Qn ≡ (IN+1−Mn)

−1Pn. The ith component of Qn(yn) xn is

given by

[Qn(yn) xn]i =
N+1

∑
j=1

[Qn(yn)]i, j xn
j , (F.11)

with i = 1, . . . ,N +1. Taking the ensemble average of (F.11) and expanding [Qn(yn)]i, j

using Taylor’s theorem yields

〈[Qn(yn) xn]i〉=
N+1

∑
j=1

{
[Qn(〈yn〉)]i, j〈xn

j〉+ 〈(ỹn)>∇[Qn(〈yn〉)]i, j xn
j〉+ 〈R1 xn

j〉
}

(F.12)

where R1(ỹn) is the remainder in Taylor’s formula. Taking the modulus of (F.12) and

using the triangle inequality leads to

∣∣〈[Qn(yn) xn]i〉
∣∣≤∣∣∣∣∣N+1

∑
j=1
{[Qn(〈yn〉)]i, j 〈xn

j〉
∣∣∣∣∣+Vn,i , i = 1, . . . ,N +1, (F.13)

where Vn,i is given by

Vn,i =
N+1

∑
j=1

{
|〈(ỹn)>∇[Qn(〈yn〉)]i, j xn

j〉|+ |〈R1(ỹn) xn
j〉|
}
. (F.14)

Summing both sides of (F.13) over all values of i, we find that

‖〈(Qn(yn) xn〉‖1 ≤ ‖Qn(〈yn〉)〈xn〉‖1 +Vn (F.15)



162

with Vn ≡∑N+1
i=1 Vn,i and ‖·‖1 the l1-norm. Using the inequality ‖Av‖1 ≤ ‖A‖1‖v‖1, with

A≡Qn(〈yn〉) and v≡ 〈xn〉, yields (3.14).

F.0.3 Proof of Lemma 3.5.3

A finite bound on ‖〈(Qn(yn) xn〉‖1 requires the existence of a finite Vn. To find

the conditions under which this is guaranteed, we proceed as follows.

Fact 1. If f : S→ R and g : S→ R are two real-valued functions, then

∣∣∣∣∫S
f gdµ

∣∣∣∣≤ ∫
S
| f g|dµ = ‖ f g‖1 ≤ ‖ f‖2‖g‖2. (F.16)

with respect to a measure µ.

The left inequality follows from the monotonicity of integral, while the second

one constitutes a specific case of Hölder’s inequality.

Fact 2. For any random variable X with a probability density function (PDF) fX(x), if

Y = g(X) with PDF fY (y) and g is monotonic then

fY (y) =
∣∣∣∣dx
dy

∣∣∣∣ fX(x(y)). (F.17)

Let fyn denote the PDF of yn and gi, j(yn) ≡ (ỹn)>∇[Qn(〈yn〉)]i, j xn
j . Then, for

each i, j = 1, . . . ,N +1, |〈gi, j(yn)〉| is bounded if

∫
S

f 2
yn(s)ds < ∞,

∫
S
|gi, j(s)|2ds < ∞. (F.18)

where S is the support of fyn . Let h1 denote a function, which maps the random boundary

noise η onto yn. Then the monotonicity of h1 (which is expected to be the case) implies,
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according to Fact 2,

fyn(s) = ‖∇sv‖2 fη[v(s)]. (F.19)

Hence,

∫
S

f 2
yn(s)ds =

∫
S
‖∇sv‖2

2 f 2
η [v(s)] ds. (F.20)

According to Fact 1, f (yn) is in L2 if

∫
S
‖∇sv‖4

2ds < ∞,
∫

S
f 4
η [v(s)] ds < ∞. (F.21)

Since fη is in L4, then provided that ∇ynη is in L4, the PDF fyn is in L2 and the first

inequality in (F.18) holds. The second inequality in (F.18) is satisfied if gi, j(yn) is in L2.

Lemma. If f : Rn→ R is of class Ck+1 on an open convex set S and |∂α f (x)| ≤W for

x ∈ S with |α| = k+ 1, then a bound for the remainder Ra,k of Taylor’s theorem for f

about a≡ x−h ∈ S is given by

|Ra,k(h)| ≤
W

(k+1)!
‖h‖k+1

1 , (F.22)

where α is the multi-index (α1, . . . ,αn) with |α|=α1+· · ·+αn, and ∂α f (x)≡ ∂|α| f/(∂xα1
1 . . .∂xαn

n ).

Proof. It follows from either the Lagrange or integral form of Ra,k(h) that

|Ra,k(h)| ≤W ∑
|α|=k+1

|hα|
α!

, (F.23)

where hα ≡ hα1
1 . . .hαn

n . According to the multinomial theorem, ∑|α|=k+1 |hα| /α! =

‖h‖k+1
1 /(k+1)!.
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If [Qn(yn)]i, j is of class C2 on a open convex set containing yn and 〈yn〉, and

|∂α[Qn(yn)]i, j| ≤W with |α|= 2, then the above Lemma yields

|R1(ỹn)| ≤ W
2
‖ỹn‖2

1, (F.24)

and |〈R1(ỹn) xn
j〉| in (F.14) is bounded if ‖ỹn‖2

1xn
j is in L2 and ∇ynη is in L4.



Appendix G

Derivation of a flux-limited,

equilibrium radiation-diffusion

equation from the radiative transfer

and material temperature equations

Treating photons as particles, and ignoring interactions between the photons

themselves, transport of radiation at the fundamental level may be described by the

Boltzmann equation [98]

1
c

∂ f
∂t

+ΩΩΩ ·∇ f = C( f ), (G.1)

where f (x, t,ΩΩΩ,ν) is the photon phase space density; ΩΩΩ is the unit solid angle vector

indicating the direction of photon travel; C is the collision operator; ν is the photon

frequency (each photon has energy hν with h the Planck constant); and c is the speed of
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light. Multiplying (G.1) by hν and expanding C yields the radiative transfer equation [85]

1
c

∂Iν
∂t

+ΩΩΩ ·∇Iν +κt,νIν = Jν +
κs,ν
4π

∫
4π

Iν(ΩΩΩ′) pν(ΩΩΩ′→ΩΩΩ) dΩ′. (G.2)

Here Iν(x, t,ΩΩΩ,ν) is the spectral radiation intensity, defined as the radiation energy per

unit area, per unit time, per unit solid angle about the photon propagation direction, and

per unit interval of photon frequency; κt,ν(x)≡ κs,ν(x)+κa,ν(x) is the spectral extinction

coefficient, consisting of the spectral scattering coefficient κs,ν and spectral absorption

coefficient κa,ν; Jν is the radiation emitted by a unit volume of the medium per unit

time, per unit solid angle about the photon propagation direction, and per unit interval of

photon frequency; and pν(ΩΩΩ′→ΩΩΩ) is the scattering indicatrix normalized such that

1
4π

∫
4π

pν(ΩΩΩ′→ΩΩΩ) dΩ = 1. (G.3)

Equation (G.2) essentially conveys that as a beam of radiation travels through a medium,

it loses energy through absorption of radiation by the medium, gains energy through

emission of radiation by the medium, and redistributes energy through scattering. Under

the assumptions of local thermal equilibrium and isotropic, elastic scattering, (G.2) may

be approximated by [85]

1
c

∂Iν
∂t

+ΩΩΩ ·∇Iν =−κt,νIν +κa,νIνB(Tm)+
κs,ν
4π

∫
4π

Iν dΩ′, (G.4)

where IνB is the Planck function and Tm is the temperature of the medium through which

the radiation propagates. Equation (G.4) may be simplified by calculating moments of

the spectral radiation intensity. The zeroth moment (spectral radiation energy density Eν)
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and first moment (spectral radiation energy flux Fν) are given by [85]

Eν(x, t,ν) =
∫

4π
Iν(x, t,ΩΩΩ,ν) dΩ, Fν(x, t,ν) =

∫
4π

ΩΩΩ Iν(x, t,ΩΩΩ,ν) dΩ. (G.5)

Integrating (G.4) over solid angle yields

1
c

∂Eν
∂t

+∇ ·Fν = κa,ν(4πIνB(Tm)−Eν). (G.6)

Since each moment of Iν involves the next higher moment, we need to make an approxi-

mation for the radiation pressure in order to close the otherwise infinite set of moment

equations. This may be done through the ansatz that the radiation field is isotropic.

Together with the assumption that the flux Fν varies slowly with time compared to the

spatial gradient in Eν, i.e., (1/c)∂Fν/∂t� (1/3)∇Eν, we obtain, after averaging over all

photon frequencies (i.e., a gray approximation), the following diffusion equation for the

frequency-averaged radiation energy density

∂E
∂t

= ∇ · (D∇E)+ c κP(aT 4
m−E). (G.7)

Here a is the radiation constant; the diffusion coefficient D = c/(3κR) with κR = ρσR,

where ρ is the material’s density and σR is the Rosseland mean opacity; and κP = ρσP

with σP the Planck mean opacity. Equation (G.7) needs to be supplemented by an

equation for the material energy density um [85]

∂um

∂t
=

∫ ∞

0
hc κa,ν(Eν−4πIνB(Tm)) dν = c κP(E−aT 4

m). (G.8)

In order to prevent transport of energy at speeds faster than light, we need to introduce a

flux limiter λ in the expression for D. We choose the form by LeBlanc and Wilson [72]
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given by λ(R) = 1/(3 + R), where R = |∇E|/(κRE). This yields D = cλ/κR, and

transforms (G.7) into

∂E
∂t

= ∇ ·
(

c
3κR + |∇E|/E

∇E
)
+ c κP (aT 4

m−E), (G.9)

As in [99], we assume that κR ∝ Z3T−3
m where Z is the material’s effective atomic number.

If we make the additional approximation that the radiation field is in thermal equilibrium

with the material, we have E = aT 4
m (i.e., the radiation has a Planckian distribution at the

material temperature) and the model reduces to a single equation for the radiation energy

density

∂E
∂t

= ∇ ·
(

cE
γE/DZ + |∇E|∇E

)
, (G.10)

where DZ ≡ Z−3E3/4 and γ combines a number of physical constants and proportionality

factors and ensures dimensional correctness.



Appendix H

Derivation of the total energy

deposition in the tumor

For a particular realization of the vector ξξξ containing the random parameters, the

energy absorption per unit time and per unit surface area at position x and time t, Ėabs, is

given by

Ėabs(x, t) = κR(x, t) cE(x, t), (H.1)

with κR given by [99]

κR = αZ3T−3 = α a3/4Z3E−3/4, (H.2)

where the proportionality constant α is assumed to be independent of the material

properties. The last equality in (H.2) is based on the ansatz that the radiation field is in

thermal equilibrium with the medium through which it propagates. From (G.10), (H.1)
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and (H.2), it follows that

Ėabs =
1
3

γ cZ3E1/4. (H.3)

From (H.3), we conclude that energy absorption increases strongly with the material’s

atomic number Z, and more weakly with the energy density of the radiation field. A

dimensionless form of (H.3) is given by

˙̃Eabs =
w

E0cZ4
1

Ėabs =
γw

3E3/4
0

Z̃3Ẽ1/4 =
1
3

Z̃3Ẽ1/4. (H.4)

where E0 = (γw)4/3, Z̃ and Ẽ are defined in Section 4.3. To obtain the energy absorp-

tion Eabs(i, j,k) in ∆∆∆x j,k ≡ [x1, j−∆x1, j/2,x1, j+∆x1, j/2]× [x2,k−∆x2,k/2,x2,k+∆x2,k/2]

during the time step ∆t from ti to ti +∆t (i = 0, . . . , I− 1 with I = T/∆t, and t0 = 0),

where ∆x1, j and ∆x2,k ( j,k = 1, . . . ,N) are the dimensions in spatial directions 1 and 2,

respectively, of the grid cell centered around (x1, j,x2,k)
>, we multiply Ėabs(i, j,k) with

∆t∆x1, j∆x2,k. In analogy with (H.4), we define a corresponding dimensionless quantity

Ẽabs(i, j,k) =
1

E0Z4
1w2

Ėabs(i, j,k) ∆t∆x1, j∆x2,k =
1
3

Z̃3
j,k(Ẽ

i+1
j,k )1/4∆t̃∆x̃1, j∆x̃2,k, (H.5)

with ∆t̃ = c∆t/w, ∆x̃1, j = ∆x1, j/w and ∆x̃2,k = ∆x2,k/w. Here Z̃ j,k is the value of Z̃ in

∆∆∆x̃ j,k (we assume that Z̃ is constant over a finite volume cell) and Ẽ i+1
j,k approximates

the average value of the dimensionless radiation energy density over ∆∆∆x̃ j,k during the

dimensionless time step from t̃i to t̃i +∆t̃ (we evaluate it at t̃i +∆t̃). The dimensionless

total energy absorption Ẽabs,tot by the medium in the entire region T̃ over time T̃ = I∆t̃
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is then given by

Ẽabs,tot =
I

∑
i=1

∑
j
∑
k

Ẽabs(i, j,k), (H.6)

where we sum over the indices j and k corresponding to the grid cells within T̃ . Together

with (H.5), and omitting ·̃, this yields

Eabs,tot =
∆t
3

I

∑
i=1

∑
j
∑
k

Z3
j,k(E

i+1
j,k )1/4∆x1, j∆x2,k. (H.7)



Appendix I

Jacobian-free Newton-Krylov

algorithm for Chapter 4

Despite its quadratic convergence rate, a standard Newton method requires com-

putation of the full Jacobian J. For our radiation-diffusion problem, the derivatives in J

cannot be obtained analytically and instead would need to be approximated numerically

(e.g., using Fréchet derivatives). Rather than pursuing this approach, which is prone to

errors and also time-consuming, we solve the linear system J(En+1
k )δEk+1 =−f(En+1

k ),

where Ji, j = ∂ fi/∂E j, at the kth Newton iteration inexactly using the iterative Krylov

algorithm Generalized Minimum RESidual (GMRES). (Here we have assumed that the

two-dimensional matrix En+1
k has been reshaped into a one-dimensional array, and that

the converged solution En+1
K is reshaped back into a two-dimensional matrix.) To imple-

ment this method we only need to represent the Jacobian-vector product Jv, with v the

Krylov vector, rather than explicitly calculate the Jacobian matrix elements. We may

approximate Jv by finite differences with first-order accuracy [70]

J(En+1
k )v≈ f(En+1

k + εv)− f(En+1
k )

ε
, (I.1)
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or second-order accuracy [70]

J(En+1
k )v≈ f(En+1

k + εv)− f(En+1
k − εv)

2ε
. (I.2)

Here ε is a small perturbation parameter, which cannot be too large (poor derivative

approximation) or too small (large floating-point roundoff error). Omitting the subscript

k and superscript n+1 for notational convenience, we use the formula

ε =


1

n‖v‖2

n

∑
i=1

√
ε(1+ |Ei|) if ‖v‖2 > ε

1
n

n

∑
i=1

√
ε(1+ |Ei|) if ‖v‖2 ≤ ε,

(I.3)

where n is the size of E (n = N2 for N grid cells in each spatial direction) and ε =

2.2204 ·10−16 (machine epsilon for 64-bit double precision). In our simulations we use

expression (I.2).



Appendix J

Local and global sensitivity analysis

To identify the relative influence of the input parameters on a model’s output, we

may perform a local or global sensitivity analysis [46]. The former measures changes in

the model output with respect to variations in a single parameter. Typically, parameters

are changed one at a time in relatively small increments starting from some nominal value

for all parameters, yielding a local sensitivity index for each parameter. This strategy only

works when the model output is linearly related to the parameters near the reference point,

and does not allow for the evaluation of simultaneous changes in all input parameters.

These limitations may be overcome through a global sensitivity analysis, which enables

parameters to be varied simultaneously and yields the relative contributions of each

individual parameter, as well as the interactions between parameters, to the model output

variance. Examples of global sensitivity techniques are Fourier amplitude sensitivity

analysis (FAST) [81] and the method by Sobol’ [105], which are based on variance

decomposition techniques. We now focus on the latter approach.

Let x = (x1,x2, . . . ,xs), be the vector of input parameters. Each parameter is

considered to range over some finite interval which may be assumed, after rescaling,

to be [0,1]. Assuming that the xi (i = 1, . . . ,s) are mutually independent, uniformly
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distributed random variables on [0,1], we may decompose f into

f (x) = f0 +
s

∑
i=1

fi(xi)+
s

∑
i=1

∑
j<i

fi, j(xi,x j)+ · · ·+ f1,...,s(x1, . . . ,xs), (J.1)

in which

f0 = 〈 f 〉=
∫

f (x) dx (J.2)

fi(xi) = 〈 f |xi〉− f0 =
∫

f (x)∏
k 6=i

dxk− f0

fi, j(xi,x j) = 〈 f |xi,x j〉− f0− fi(xi)− f j(x j),

etc. Here we used the fact that the joint probability density function of x, px, is given by

p(x) =
s

∏
i=1

pi(xi)≡ 1, (J.3)

where the last equality follows from the fact that each parameter is uniformly distributed

on [0,1]. Using the orthogonality property

∫
fi1,...,is(xi1 , . . . ,xi,s)dxk = 0 for k = i1, . . . , is, (J.4)

we obtain for the variance σ2
f of f

σ2
f =

k

∑
i=1

σ2
i +

s

∑
i=1

∑
j<i

σ2
i, j + · · ·+σ2

1,...,s, (J.5)

where

σ2
i1,...,is =

∫
f 2
i1,...,isdx′, (J.6)
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with x′ = (xi1,xi2, . . . ,xis)
>, is the partial variance corresponding to the subset of parame-

ters {xi1, . . . ,xis}. The Sobol’ sensitivity index for x′ is then given by

Si1,...,is =
σ2

i1,...,is

σ2
f

. (J.7)

The first-order (“main effect”) index Si = σ2
i /σ2

f measures the fractional contribution

of the ith parameter to the output variance, while the second-order index Si, j = σ2
i, j/σ2

f

is used to compute the fractional contribution from interaction between the ith and jth

parameters, and so on. We may also define total-order sensitivity indices STi quantifying

the overall effect of the ith parameter on the model output through

STi =
1

σ2
f

∑
α∈Ii

σ2
α, (J.8)

where Ii is the set of all subsets of {x1, . . . ,xs} containing i. From (J.5), it is clear that

k

∑
i=1

Si +
s

∑
i=1

∑
j<i

Si, j + · · ·+S1,...,k = 1. (J.9)

The higher the sensitivity index for a parameter, the more effect it has on the model

output. While no distinct cutoff exists, the value of 0.05 is frequently used to distinguish

important from unimportant parameters, although a more stringent condition may apply

for models with only a few input parameters [127].



Appendix K

Landau free energy

Equations (5.8) and (5.9) can be rewritten in the form of a Langevin-type equation

∂m
∂t

=−Γ
δF [m;T ]

δm
+η(x, t), (K.1)

where F [m(x, t);T ] is the free-energy functional of the system and Γ is the inverse

damping coefficient. This equation describes the relaxation of a system to its free-energy

minimum. For the sGLEa, F [m;T ] is given by

F = F0[T ]+
∫ [A

2
m2 +

B
4

m4 +
c2J
2

(
∂m
∂x

)2
]

dx, (K.2)

where F0[T ] is a temperature-dependent constant, and the coefficients A and B are defined

in (5.6b). In the deterministic case (η = 0), the free energy F reaches its minimum value

at equilibrium,

F(T ) =


±
√

3(R−1)/R3 for T < Tc

0 for T ≥ Tc

, (K.3)
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where R = Tc/T and Tc is the mean-field critical temperature. Figure K.1 illustrates this

point by showing the shape of F [m;T ] at different temperatures around Tc.

T>Tc
T=Tc

T<Tc

m=-√(3τ) m=+√(3τ)

F

m

m = +
p

3⌧m = �
p

3⌧

m

F

T > Tc

T = Tc

T < Tc

Figure K.1: Landau free energy with τ = 3(R−1)/R3.



Appendix L

Statistical moment equations for

sGLEs

We use the Reynolds decomposition to represent the magnetization m(x, t) with

x∈Rd as m=m+m′, where m′(x, t) is the zero-mean fluctuation of m about its ensemble

average m(x, t). Expanding f (m) = Am+Bm3 into a Taylor series around m,

f (m) =
∞

∑
i=0

f (i)(m)

i!
(
m′
)i
, (L.1)

and substituting the first four terms in this expansion into a d-dimensional version of (5.8),

we obtain

∂m
∂t

= ΓK∇2m−Γ
[
Am+Bm3 +(A+3Bm2)m′+3Bm(m′)2

+B(m′)3
]
+η. (L.2)

where we have defined K ≡ c2J, and omitted the subscript a in Γa and ηa for notational

convenience. Taking the ensemble average of (L.2) gives an approximate equation for
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the mean dynamics,

∂m
∂t

= ΓK∇2m−Γ
[
Am+Bm3 +3Bmσ2

m +B(m′)3
]
, (L.3)

where σ2
m(x, t) ≡ Cm(x, t;x, t) is the variance of m(x, t). Assuming m′(x, t) to be a

Gaussian random field with probability density function

pm(v;x, t) =
1√

2πσm
exp
(
− v2

2σ2
m

)
, (L.4)

we approximate (L.3) with

∂m
∂t

= ΓK∇2m−Γ
[
Am+Bm3 +3Bmσ2

m
]
. (L.5)

To calculate higher moments of m, including σ2
m, we compute the cross-covariance

Cηm(y,τ;x, t). Its governing equation is obtained by multiplying (L.2) with η(y,τ) and

averaging,

∂Cηm

∂t
= ΓK∇2Cηm−Γ

[
(A+3Bm2)Cηm +3Bm (m′)2 η

+B(m′)3 η
]
+Cη. (L.6)

Since η(x, t) is Gaussian and m′(x, t) is assumed to be Gaussian, their mixed moments

are computed as

(m′)n η =
1

2π
√

Ω

∫ +∞

−∞

∫ +∞

−∞
ξvne−Πdξdv, (L.7)
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where Ω = σ2
ησ2

m−C2
ηm and Π = (ξ2σ2

m−2ξvCηm + v2σ2
η)/(2Ω). This yields

(m′)n η =
1√
2π

Cηm

σ3
m

∫ +∞

−∞
vn+1 exp

(
v2C2

ηm

2Ωσ2
m
−

v2σ2
η

2Γ

)
dv

=
1√
2π

Cηm

σ3
m

∫ +∞

−∞
vn+1 exp

(
− v2

2σ2
m

)
dv, (L.8)

so that

(m′)2 η = 0, (m′)3 η =
1√
2π

Cηm

σ3
m

3
√

π(2σ2
m)

5/2

4
= 3σ2

mCηm. (L.9)

Substituting (L.9) into (L.6) gives an equation for Cηm(y,τ;x, t),

∂Cηm

∂t
= ΓK∇2Cηm−Γ

[
A+3B(m2 +σ2

m)
]
Cηm +Cη. (L.10)

An equation for the two-point time-space auto-covariance Cm(x, t;y,τ) is obtained by

multiplying (L.2) with m′(y,τ) and averaging,

∂Cm

∂t
= ΓK∇2Cm−Γ

[
(A+3Bm2)Cm +Bm′(y,τ)m′(x, t)3

]
+Cηm. (L.11)

Using the second expression in (L.9) and replacing η with m′ yields

∂Cm

∂t
= ΓK∇2Cm−Γ

[
A+3B(m2 +σ2

m)
]
Cm +Cηm. (L.12)

One-dimensional versions of (L.5), (L.10) and (L.12) are given by (5.16)–(5.18), respec-

tively.

To compute the steady-state solution of these equations, we set the left-hand sides

of (5.16)–(5.18) to zero and use a three-point stencil for the 1D Laplacian. Discretizing

the interval [0,L] into I grid cells of size ∆x, such that 0≤ i, j ≤ I−1 and L = I∆x, this



182

leads to a system of dimensionless equations

0 = mi+1 +mi−1−Λi,i mi− q?R2

3
(mi)3 (L.13)

0 = Ĉi+1, j
ηm +Ĉi−1, j

ηm −
[
Λi,i +q?R2(mi)2]Ĉi, j

ηm +
2Ai, jq?

R
δ̂i, j

dis (L.14)

0 =Ci+1, j
m +Ci−1, j

m −
[
Λi,i +q?R2(mi)2]Ci, j

m +
q?

R
Ĉi, j

ηm (L.15)

where Ĉi, j
ηm is the dimensionless version of Ci, j

ηm, δ̂i, j
dis is the dimensionless discretization

of the delta function δ(xi− y j), and

q? = q(∆x′)2, Λi,i = 2+q?
(

1−R
R

+R2Ci,i
m

)
(L.16)

Ai, j =


ζ2

a for I/4≤ i < 3I/4

A2 for 0≤ i < I/4 or 3I/4≤ i≤ I
. (L.17)

The subscripts indicate the covariance type, while the superscripts i and j refer to

the spatial discretization of x and y, respectively. To discretization of δ(xi− y j), we

approximate it by a Gaussian, δ(xi− y j)≈ (πν)−1/2 exp[−(xi− y j)
2/ν], which is exact

in the limit of ν→ 0. This results in

δ̂i, j
dis =

1√
πν′

exp
[
−(i− j)2(∆x′)2

ν′

]
, ν′ =

ν
c2 . (L.18)

In the simulations reported in Figure 5.4 we set ν′ = 0.2304.

Since m(x = 0) = m(x = L) and η(x = 0) = η(x = L), their moments m, Cm and
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Cηm are periodic as well, i.e.

mi=−1 = mi=I−1, mi=I = mi=0,

Ci=−1, j
m =Ci=I−1, j

m , Ci=I, j
m =Ci=0, j

m , (L.19)

Ci=−1, j
ηm =Ci=I−1, j

ηm , Ci=I, j
ηm =Ci=0, j

ηm .

The nonlinear system of algebraic equations (L.13)-(L.19) is solved with an iterative

Newton-Raphson method (with the tolerance 10−6), and the resulting magnetization

variance profile is compared to that obtained with the time-dependent of the stochastic

GLE. In the simulations reported here, we set I = 40, q = 2 and R = 2/1.8, and use the

following initial guess for the unknowns:

mi =0 for i = 0, . . . ,N−1 (L.20)

Ci, j
m =


1 for I/4≤ i < 3I/4 and j = i

1 for 0≤ i < I/4 or 3I/4≤ i < I and j = i

0 otherwise

(L.21)

Ĉi, j
ηm = 1 for i, j = 0, . . . , I−1. (L.22)



Appendix M

Computation of the parameters in the

learned sGLE model

In order to calculate the coefficients of the learned discrete sGLE, we employ the

widely used statistical technique of maximizing the log-likelihood that the model will

predict the GD training data. The discrete sGLE we are trying to learn has the form

φn+1,i, j = φn,i, j +α0(φn,i+1, j +φn,i−1, j +φn,i, j+1

+φn,i, j−1−4φn,i, j)+

C−1
2

∑
k=0

αk+1φ2k+1
n,i, j

+α(C+3)/2 ξn,i, j, (M.1)

where C is the model complexity (we only consider odd complexities) and the ξn,i, j

are independent, identically distributed standard normal random variables. Subscripts

n and n+1 refer to times tn and tn+1, while i = 0, . . . , N̄1−1 and j = 0, . . . , N̄2−1 are

the spatial coordinates of the blocks obtained by coarse-graining the spin lattice, with

N̄1 and N̄2 the number of blocks in both spatial directions. Given the block-averaged

training data Sn,i, j with n = 0, . . . ,neq, we would like to find the set of parameters
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αααopt ≡ {α0,α1, . . . ,α(C+3)/2} that maximizes the probability of observing S0, S1,. . . ,

Sneq from model (M.1). Here Sn refers to the N̄1× N̄2 block-averaged spin configuration

after n steps following the convention introduced in Sec. 6.4. This probability is given by

P(S0,S1, . . . ,Sneq;ααα)

= P(S0)P(S1 | S0;ααα) . . .P(Sneq | S1, . . . ,Sneq−1;ααα)

= P(S0)P(S1 | S0;ααα) . . .P(Sneq | Sneq−1;ααα). (M.2)

Given Sn, we can see from (M.1) that for each i and j, Sn+1,i, j is normally distributed

with mean

Yn,i, j = Sn,i, j +α0(Sn,i+1, j +Sn,i−1, j +Sn,i, j+1

+Sn,i, j−1−4Sn,i, j)+

C−1
2

∑
k=0

αk+1S2k+1
n,i, j (M.3)

and variance α2
(C+3)/2. Therefore, we have

P
(
Sn+1,i, j = s | Sn;ααα

)
=

1
α(C+3)/2

√
2π

exp

[
−
(
s−Yn,i, j

)2

2α2
(C+3)/2

]
, (M.4)

and since the ξn,i, j are independent,

P(Sn+1 | Sn;ααα)

=
1(

α2
(C+3)/22π

)(N̄1N̄2)/2
exp

[
−‖Sn+1−Yn‖2

2α2
(C+3)/2

]
, (M.5)
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where Yn is defined according to the notational convention in Sec. 6.4. Hence,

lnP
(
S0,S1, . . . ,Sneq;ααα

)
=−

neq−1

∑
n=0

‖Sn+1−Yn‖2

2α2
(C+3)/2

−neqN̄1N̄2 ln
(
α(C+3)/2

)
+ constant. (M.6)

For notational simplicity, let us now focus on the case of C = 3; the generalization to

higher order nonlinearity is straightforward. From (M.6), it follows that we need to

minimize

L
(
S1, . . . ,Sneq;ααα

)
=

1
2

α−2
3 f (α0,α1,α2)

+neqN̄1N̄2 ln(α3) , (M.7)

where

f (α0,α1,α2) =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

[(Sn+1,i, j−Sn,i, j)

−α0(Sn,i+1, j +Sn,i−1, j +Sn,i, j+1

+Sn,i, j−1−4Sn,i, j)−α1Sn,i, j

−α2S3
n,i, j]

2. (M.8)

From

∂L
∂α3

=−α−3
3 f (α0,α1,α2)+neqN̄1N̄2α−1

3 = 0, (M.9)
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we can solve for α3

α3 =

√
f (α0,α1,α2)

neqN̄1N̄2
. (M.10)

Also, for k 6= 3, we have

∂L
∂αk

=
1
2

α−2
3

∂ f
∂αk

. (M.11)

If we now define

Dn,i, j = Sn+1,i, j−Sn,i, j,

An,i, j = Sn,i+1, j +Sn,i−1, j +Sn,i, j+1 +Sn,i, j−1−4Sn,i, j,

Bn,i, j = Sn,i, j, Cn,i, j = S3
n,i, j, (M.12)

then

∂ f
∂α0

= ∂α0

neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

(Dn,i, j−α0An,i, j

−α1Bn,i, j−α2Cn,i, j)
2

=−2

(
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Dn,i, jAn,i, j

)

+2

(
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

A2
n,i, j

)
α0

+2

(
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Bn,i, jAn,i, j

)
α1

+2

(
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Cn,i, jAn,i, j

)
α2

=−2(a0−a00α0−a01α1−a02α2) . (M.13)
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Similarly,

∂ f
∂α1

=−2(a1−a10α0−a11α1−a12α2) , (M.14)

where

a1 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Dn,i, jBn,i, j,

a10 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

An,i, jBn,i, j,

a11 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

B2
n,i, j,

a12 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Cn,i, jBn,i, j. (M.15)

Finally,

∂ f
∂α2

=−2(a2−a20α0−a21α1−a22α2) , (M.16)

where

a2 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Dn,i, jCn,i, j,

a20 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

An,i, jCn,i, j,

a21 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

Bn,i, jCn,i, j,

a22 =
neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

C2
n,i, j. (M.17)
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Hence, we need to solve the linear system

a00α0 +a01α1 +a02α2 = a0,

a10α0 +a11α1 +a12α2 = a1,

a20α0 +a21α1 +a22α2 = a2. (M.18)

We can see that despite the nonlinearity of the sGLE, optimizing the log-likelihood

function can be reduced to solving a linear system.



Appendix N

Details of the operational procedure for

calculating the error pdfs

To compute one data point in the error pdf for a learned sGLE model of complexity

C given a number of training samples Ntrain, we do the following.

1. We simulate Ntest independent GD test sample trajectories. The kth trajectory is

obtained as follows:

(a) Starting from a random initial Ising configuration, we march over nmc steps.

(b) Starting from the resulting Ising configuration, we march over neq steps and

store the block-averaged time history over these steps in a 3D matrix sav,test

with dimensions (neq +1)× N̄1× N̄2. Here N̄1 and N̄2 represent the number

of spin blocks in each spatial direction.

(c) This matrix sav,test will be the kth element of a 4D matrix sav,test,all with

dimensions Ntest× (neq +1)× N̄1× N̄2.

The initial spins si, j (i = 0, . . . ,N1− 1 and j = 0, . . . ,N2− 1) are given by si, j =

1− 2 ri, j, where the ri, j are drawn from a discrete uniform distribution on the

190



191

half-open interval [0,2). Furthermore, with “block-averaged time history”, we

refer to the time evolution of the block-averaged spin configuration of the Ising

lattice. At each discrete point in time, we group the individual spins into blocks of

a certain size, and then calculate the average spin values over the different blocks.

The resulting coarsened grid is then recorded.

2. We simulate Ntrain independent GD training sample trajectories. A trajectory is

calculated as follows:

(a) Starting from a random initial Ising configuration, we march over nmc steps.

(b) Starting from the final Ising configuration, we march over neq steps and store

the block-averaged time history over these steps in a 3D matrix sav,train with

dimensions (neq +1)× N̄1× N̄2.

(c) We concatenate sav,train of the current training sample with the corresponding

matrices of the previous training samples along the first (time) dimension,

and hence obtain a bigger matrix sav,train,all with dimensions Ntrain× (neq +

1)× N̄1× N̄2.

3. Using the training data stored in sav,train,all, we compute the coefficients of the

learned sGLE polynomial using a log-likelihood analysis (see Appendix D).

4. With the parameters calculated in step 3, we now simulate Ntest sGLE trajectories.

The kth trajectory is obtained as follows:

(a) We define a 3D matrix φ with dimensions (neq +1)× N̄1× N̄2.

(b) We take the block-averaged Ising test configuration stored in sav,test,all
k,0,:,: as the

initial condition and define sav,test ≡ sav,test,all
k,:,:,: . We then define φ0,:,: ≡ sav,test

0,:,: .

(c) We march over neq steps and store the time history over these steps in φ.
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(d) The configuration φn+1,:,: is calculated according to

φn+1,i, j = xi, j +G(x:,:;ααα), (N.1)

where x:,: is either sav,test
n,:,: or φn,:,:, i = 0, . . . , N̄1−1 and j = 0, . . . , N̄2−1.

In (d), we have defined G(x:,:;ααα) as

G(x:,:;ααα)

= α0(xi+1, j + xi−1, j + xi, j+1 + xi, j−1−4xi, j)

+

C−1
2

∑
k=0

αk+1(xi, j)
2k+1 +α(C+3)/2 ξn,i, j. (N.2)

5. For the kth sGLE trajectory, we calculate the RMS error

εk =

√√√√1
a

neq−1

∑
n=0

N̄1−1

∑
i=0

N̄2−1

∑
j=0

(φn+1,i, j− sav,test
n+1,i, j)

2, (N.3)

where a = neqN̄1N̄2.

6. Finally, we compute the test-averaged error

ε =
1

Ntest

Ntest

∑
k=1

εk, (N.4)

which we will call the “type 1” test error if the φn+1,i, j are calculated using x:,: =

sav,test
n,:,: in (N.1), or the “type 2” test error if the φn+1,i, j are calculated using x:,: = φn,:,:

in (N.1).
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of computed tomography for contrast agent concentration measurements with
monochromatic x-ray beams: comparison of K-edge versus temporal subtraction.
Phys. Med. Biol., 47:3369–3385, 2002.

[40] H. Engels. Numerical Quadrature and Cubature. Academic Press, London, 1980.

[41] M.-P. Errera and S. Chemin. Optimal solutions of numerical interface conditions
in fluid-structure thermal analysis. J. Comput. Phys., 245:431–455, 2013.

[42] C. Farhat and M. Lesoinne. Two efficient staggered procedures for the serial and
parallel solution of three-dimensional nonlinear transient aeroelastic problems.
Comput. Methods Appl. Mech. Engrg., 182:499–516, 2000.

[43] C. Farhat, M. Lesoinne, and P. Le Tallec. Load and motion transfer algorithms
for fluid/structure interaction problems with non-matching discrete interfaces:
Momentum and energy conservation, optimal discretization and application to
aeroelasticity. Comput. Methods Appl. Mech. Engrg., 157:95–114, 1998.

[44] C. A. Felippa and K. C. Park. Staggered transient analysis procedures for coupled
mechanical systems: Formulation. Comput. Methods Appl. Mech. Engrg., 24:61–
111, 1980.

[45] G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, and
S. Pannala. Time-parallel multiscale/multiphysics framework. J. Comput. Phys.,
228(21):8085–8092, 2009.

[46] H. C. Frey and S. R. Patil. Identification and review of sensitivity analysis methods.
Risk Anal., 22:553–578, 2002.

[47] K. J. Gaffney, A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, C. Blome,
O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P.
Lowney, T. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H.
Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, A. T. Macrander, P. H. Fuoss, C. C.
Kao, D. P. Siddons, R. Pahl, K. Moffat, J. Als-Nielsen, S. Duesterer, R. Ischebeck,
H. Schlarb, H. Schulte-Schrepping, J. Schneider, D. von der Linde, O. Hignette,
F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, J. S. Wark, M. Bergh, G. Huldt,
D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur,
S. Brennan, K. Luening, and J. B. Hastings. Observation of structural anisotropy
and the onset of liquidlike motion during the nonthermal melting of InSb. Phys.
Rev. Lett, 95:125701, 2005.

[48] A. L. Garcia. Adaptive mesh and algorithm refinement using Direct Simulation
Monte Carlo. J. Comput. Phys., 154:134–155, 1999.



197

[49] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach.
Springer-Verlag, New York, 1991.

[50] M. B. Giles. Stability analysis of numerical interface conditions in fluid-structure
thermal analysis. Int. J. Num. Methods Fluids, 25:421–436, 1997.

[51] M. B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–617,
2008.

[52] R. J. Glauber. Time-dependent statistics of the Ising model. J. Math. Phys.,
4(2):294–307, 1963.

[53] M. E. Gracheva, J. M. Rickman, and J. D. Gunton. Coarse-grained Ginzburg-
Landau free energy for Lennard-Jones systems. J. Chem. Phys., 113(9):3525–3529,
2000.

[54] T. Graham. On the adsorption and dialytic separation of gases by colloid septa.
Philos. Trans. R. Soc. London, 156:399, 1866.

[55] W. Gropp. Parallel Computing and Domain Decomposition. Proceedings of
the 5th International Conference on Domain Decomposition Methods in Norfolk,
Virginia (May 6-8, 1991).

[56] H. M. Hastings, R. J. Field, and S. G. Sobel. Microscopic fluctuations and
pattern formation in a supercritical oscillatory chemical system. J. Chem. Phys.,
119(6):3291–3296, 2003.

[57] G. T. Herman. Fundamentals of Computerized Tomography: Image Reconstruction
from Projections. Springer-Verlag, London Limited, 2nd edition, 2009.

[58] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Rev.
Mod. Phys., 49(3):435–479, 1977.

[59] J. B. Hunter. Palladium alloy diffusion process for hydrogen purification. Platinum
Met. Rev., 4(4):130–131, 1960.

[60] E. Ising. Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31:253–258, 1925.

[61] A. Ivanov, V. Sanchez, R. Stieglitz, and K. Ivanov. Internal multi-scale multi-
physics coupled system for high fidelity simulation of light water reactors. Ann.
Nucl. Energy, 66:104–112, 2014.

[62] K. D. Jarman and T. F. Russell. Eulerian moment equations for 2-D stochastic
immiscible flow. Multiscale Model. Simul., 1:598–608, 2003.

[63] N. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions
Volume 1. John Wiley and Sons, New York, 2nd edition, 1994.



198

[64] O. Joshi and P. Leyland. Implementation of surface radiation and fluid-structure
thermal coupling in atmospheric reentry. Int. J. Aerospace Engrg., 2012:402653,
2012.

[65] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. Wiley-VCH, Weinheim,
2nd edition, 2008.

[66] K. Kaski, K. Binder, and J. D. Gunton. A study of a coarse-grained free energy
functional for the three-dimensional Ising model. J. Phys. A: Math. Gen., 16:623–
627, 1983.

[67] K. Kaski, K. Binder, and J. D. Gunton. Study of cell distribution functions of the
three-dimensional Ising model. Phys. Rev. B, 29(7):3996–4009, 1984.

[68] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM
Philadelphia, 1995.

[69] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equa-
tions. Springer, 3rd edition, 1999.

[70] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of
approaches and applications. J. Comput. Phys., 193:357–397, 2004.

[71] L. D. Landau and E. M. Lifshitz. Statistical physics, part 1: Course of theoretical
physics (Volume 5). Butterworth-Heinemann, 3rd edition, 1980.

[72] J. M. LeBlanc and J. R. Wilson. A numerical example of the collapse of a rotating
magnetized star. Astrophys. J., 161:541, 1970.

[73] K. Leung. Heuristic derivation of continuum kinetic equations from microscopic
dynamics. Phys. Rev. E, 63:016102, 2000.

[74] C. D. Levermore and G. C. Pomraning. A flux-limited diffusion theory. Astrophys.
J., 248:321–334, 1981.

[75] P. Leyland, V. Carstens, F. Blom, and T. Tefy. Fully coupled fluid-structure algo-
rithms for aeroelasticity and forced vibration induced flutter. Revue Européenne
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