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Abstract

NEWS EVENTS, INFORMATION ACQUISITION,
AND SERIAL CORRELATION

Prior research ¯nds that momentum strategies (buying past losers and selling past win-

ners) generate abnormal returns over medium-term (3- to 12-month) horizons. The Fama

and French factors are unable to account for this e®ect, though they account for long-term

reversals in asset returns. We develop a model which accounts for the medium-term con-

tinuation (momentum) by analyzing information acquisition about news events (such as

earnings announcements) in a multiperiod setting. As more and more agents become in-

formed about news events, temporal uncertainty is resolved endogenously through market

prices over time, which leads to positive autocorrelations in asset returns. We empirically

estimate serial correlations over medium-term horizons for portfolios sorted by ¯rm size

and past stock performance, and ¯nd that calibration of serial correlations in our model

spans the range of empirically estimated correlations.



Introduction

Jegadeesh and Titman (1993) ¯nd that momentum strategies, which buy stocks that

have performed well in the past and vice versa, generate signi¯cant abnormal returns of

over a medium-term holding period of 3- to 12-months. Rouwenhorst (1998) analyzes

momentum strategies on twelve European countries over a more recent period and ¯nds

strikingly similar results. He ¯nds evidence of medium-horizon abnormal returns in all

twelve countries and that abnormal returns are strongest for the smallest decile stocks

in each country, and decline in a smooth and nearly monotonic manner as ¯rm size

increases.

Paradoxically, the opposite strategy has been found to generate abnormal pro¯ts in

long-horizons. DeBondt and Thaler (1985) ¯nd that contrarian strategies (buying past

losers and selling past winners) achieve signi¯cant abnormal returns.1 Speci¯cally, they

¯nd this abnormal performance over a long-term holding periods of 3- to 5-years. Fama

and French (1996) ¯nd that their three-factor model is able to capture the long-term

reversal in addition to many of the CAPM average-return anomalies, including the size,

book-to-market equity, earnings/price, cash °ow/price e®ect, past sales e®ect. Their

intuitive explanation for capturing the long-term reversal e®ect based on changing factor

coe±cients is that \stocks with low long-term past returns (losers) tend to have positive

SMB and HML slopes (they are smaller and relatively distressed) and higher future

returns. Conversely, long-term winners tend to be strong stocks that have negative

slopes on HML and low future returns." Signi¯cantly, however, Fama and French are

unable to capture the medium-term continuation e®ect, and leave open the possibility

that momentum remains unexplained because their factors do not completely capture

dynamic changes in risk premia (see Fama and French, 1996, p. 82). Indeed, Chan,

Jegadeesh, and Lakonishok (1996) lament the \woeful shortage of potential explanations

for momentum."

We provide a model that accounts for medium-term continuations by analyzing the

1At very short horizons of a day or a week, there is evidence of negative autocorrelation (Jegadeesh
(1990), Lehmann (1990)), but a large literature attributes this to microstructural biases and measurement
problems (see, for example, Kaul and Nimalendran (1990), Ahn et al (1999)).

1



dynamic behavior of asset price movements prior to signi¯cant news events such as earn-

ings announcements. We build on existing models of information acquisition and study

two settings: (i) we allow informed agents to trade prior to the time they receive private

information and (ii) we consider sequential information acquisition, i.e., we allow agents

to expend resources to in°uence the timing of private information receipt. In both of the

above settings, there is temporal resolution of uncertainty because private information

is re°ected in prices sequentially. This in°uences the dynamic behavior of asset prices

prior to news events. We characterize agents' optimal trades, information acquisition,

and stock price behavior prior to the informational event. Our model essentially embeds

information asymmetry into the work of Epstein and Turnbull (1980), who do not fo-

cus on serial correlation but analyze the e®ect of temporal resolution of uncertainty on

risk premia. In contrast, our focus is on analyzing how dynamic changes in information

asymmetry can in°uence serial correlation in asset returns.

As noted above, our ¯rst model recognizes that in reality, there are lags between the

time an agent invests in resources to obtain information and the time he actually gets

the information signal. This setting yields an analytic solution for the equilibrium in

the trading stage, and allows us to analyze continuations, volatility, and volume prior to

news events.2 Our analysis suggests that total trading volume is highest for intermediate

levels of information acquisition costs (where agent heterogeneity is highest), whereas

there is no clear relationship between volatility and the cost of information acquisition.

We also ¯nd that stocks with low information acquisition costs will be characterized by

continuations provided the variance of private information is su±ciently large.3

The intuition for the last result is the following. Consider a standard model where

liquidity shocks in each period are absorbed by risk averse agents, and where there is

no trading on private information. In such a framework, price changes would exhibit

2There is a voluminous empirical literature on stock market volatility and trading volume. See, for
example, Lo and Mackinlay (1990), DeBondt and Thaler (1985), Kaul and Nimalendran (1990), Shiller
(1981), Karpo® (1987), and Gallant, Rossi, and Tauchen (1992).

3Behavioral considerations such as those explored in Barberis, Shleifer, and Vishny (1998), Daniel,
Hirshleifer, and Subrahmanyam (1998), and Hong and Stein (1999) may also play a role in continuations.
In this paper, however, we focus on whether continuations can obtained by strictly rational agents.
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reversal because of standard inventory considerations (see, for example, Grossman and

Miller [1988]). Now consider a structure similar to the one above, but suppose that a

private information signal, concerning, say a future earnings announcement or an annual

report, is received sequentially by risk averse agents. In this case, the risk borne by the

market decreases over time, simply because the mass of better-informed agents increases

over time. As a consequence, there is a gradual decrease in the conditional risk premia

required to absorb liquidity shocks. This e®ect tends to lend positive autocorrelation

to asset risk premia and thus, leads to price continuations. If information costs are

su±ciently low (so that the mass of informed agents is su±ciently large), and if the

variance of information is su±ciently high, price changes will exhibit continuations.

In our extension of the basic setting, we allow agents to expend resources to in°uence

the timing of information receipt. This model allows us to develop insight on how the

costs of early versus late information acquisition in°uence price continuation vs. reversal.

The basic intuition in this case is that if the costs of getting information early and late

are very di®erent, the mass of agents changes sharply over time, which leads to strong

positive autocorrelation in risk premia and hence to momentum in asset prices.4 Thus

tendency for momentum to obtain is increasing in the disparity between the cost of

obtaining information early and late.5 Arbel (1983) argues that the cost of obtaining

information early is larger for small stocks. Under this plausible assumption, our model

predicts stronger continuations for small ¯rms than large ¯rms. Thus, our model is

consistent with the empirical ¯ndings of Jegadeesh and Titman (1993) and Rouwenhorst

(1998) that continuations are stronger in small ¯rms.

4Sequential private information arrival of the type considered in this paper is also a feature of Hir-
shleifer, Subrahmanyam, and Titman (1994). However, in that model, the masses of early- and late-
informed agents are exogenous; further, there is no predictability in asset returns, because prices are set
by risk-neutral uninformed agents (interpreted as market makers). In our model, uninformed agents are
risk averse.

5Kim and Verrecchia (1991) show how the information acquisition about a private signal is altered
as a result of a separate public signal. In contrast, we analyze information acquisition about the public
signal itself. Also, Kim and Verrecchia (1991) do not analyze price continuation vs. reversal. Wang
(1993a,b) develops important continuous time models with long horizon investors in which information
arrives smoothly. In his work, asset price changes can exhibit positive serial correlation because of
persistence in risk aversion or asset supplies. Our model instead considers short horizon traders and is
intended to apply to sporadic news events.
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To get a feel for the ability of the model to generate empirically-relevant results,

we estimate serial correlations over quarterly horizons using the CRSP Monthly Size

Decile portfolios for the combined NYSE-AMEX-Nasdaq universe of stocks, and for decile

portfolios sorted by past stock performance. All but one of our serial correlation estimates

are positive, and the majority of them are signi¯cantly so. Our calibrated theoretical

model covers the full range of empirically estimated serial correlations. In addition,

our estimated serial correlations are highest for small ¯rms, which is consistent both

with our theoretical model and with the evidence of Jegadeesh and Titman (1993) and

Rouwenhorst (1998). We also develop several other testable implications of our model

which relate the magnitude of the serial correlation to the information content of the

order °ow in a stock.

In related work, Jones and Slezak (1999) provide a multi-asset dynamic rational

expectations model to explain cross-sectional patterns in asset returns. Their model

provides insights into book-to-market e®ects and can generate reversals arising from the

reversion of risk premia due to liquidity trading shocks. However, their model does not

generate continuations because they assume that the mass of informed agents is constant

over time. Thus, our consideration of the sequential nature of information acquisition is

the key to generating positive serial correlation within a rational expectations model.

This paper is organized as follows. Section 1 presents the economic setting. Section

2 describes the equilibrium of the model in which agents trade in advance of private

information receipt, perform an empirical calibration, and then considers endogenous

information acquisition. Section 3 discusses the extension in which di®erent agents receive

information at di®erent times. Section 4 concludes.

1 The Economic Setting

Our initial purpose is to analyze information acquisition and the dynamics of price move-

ments prior to a single major news event. We imbed this news event as one in a series of

informational events. Thus, we consider a risky security which pays cash °ows at regular
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intervals. In period t, t = 1; 2; : : : ;1, the security's cash °ow is given by

Ft = ¹Ft + µt + ²t (1)

The term ¹Ft is non-stochastic whereas the µt and ²t terms are mutually as well as serially

independent, and multivariate normally distributed with mean zero and common variance

vµ and vz, respectively. We also normalize the security's supply to be zero.6

The time between t¡ 1 and t is subdivided into three dates t1, t2, and t3, with t3 = t.

The dates t can be interpreted as the date of a signi¯cant informational event such as an

earnings announcement. The subperiods ti, i = 1; 2; 3 represent dates on which trading

takes place between informational events occurring on the dates t¡ 1 and t.

We consider three types of agents who trade at the dates ti: informed agents, unin-

formed agents, and liquidity traders with exogenous demands. These agents form the

cohort for any period t. Motivated by recent literature on the implications of investors

with short investment horizons, and the notion that much e®ort appears to be directed

to forecasting and speculating on earnings announcements in the short-term, we assume

that the cohort associated with an announcement at time t trades only in the subperiods

corresponding to that cohort. This implies that all members of the cohort corresponding

to time t completely reverse their positions at time t3(=t).7

The assumptions that news events are serially independent and that a cohort of agents

trades only in the subperiods corresponding to a particular event imply that we can

analyze the equilibrium corresponding to a particular set of subperiods ti separately from

all other sets of subperiods.8 Note that these assumptions do not a®ect our analysis of

price behavior prior to a particular news event. They are made solely to allow a tractable

6This assumption is without loss of generality. Introducing a positive mean supply causes the uncon-
ditional risk premium to be nonzero, but does not a®ect the rest of the analysis that we perform.

7Thus, the existing cohort reverses its position in the stock after the dividend is paid at time t¡3 = t,
whereas the arriving cohort trades the stock ex-dividend at times (t + 1)i, i = 1; 2; 3. Note that we
normalize the supply of the stock to zero, so no agent has to carry the supply from one cohort to the
next. Short-horizon behavior has previously been assumed, for example, in Froot, Scharfstein, and Stein
(1992), Vives (1995), Dow and Gorton (1994), Bhushan, Brown, and Mello (1997), and McNichols and
Trueman (1994).

8An alternative would be to consider overlapping generations models, where the existing cohort
overlaps for one or two periods with the next cohort. A preliminary analysis on our part suggests that
similar results obtain in such a setting, but the model becomes very complicated and does not promise
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analysis of price behavior without conditioning on a speci¯c news announcement; this

exercise is performed in Section 2.5. Till that section, we analyze a generic cohort t,

suppress time subscripts from all variables for convenience, and re-label the dates t1, t2

and t3 to 1, 2, and 3, respectively.

In the basic setting considered in the next section, we assume that there are two

types of utility-maximizing traders: informed traders who learn precisely the realization

of µ just prior to trade at date 2, and uninformed traders who have no knowledge of

µ. Each informed and uninformed trader has an endowment of B0 units of the riskless

bond. Further, the informed agent is required to make a decision to acquire information

prior to trade at date 1. This setting captures the notion that if one wishes to acquire

information, resources must be committed to do so well in advance of the actual receipt

of the signal. In Section 3, we consider dynamic information acquisition, wherein agents

can endogenously choose whether to become informed at dates 1 or 2, or be uninformed

at both dates.

We consider a competitive framework and thus assume that there is a continuum

of each type of trader.9 We also assume that exogenous liquidity trades of z1 and z2,

which are mutually independent and normally distributed with zero mean, and common

variance vz, arrive at the market at dates 1 and 2 respectively. Each of the liquidity

demand shocks are independent of each other and of µ and ².10 In the basic setting,

the mass of informed traders is M , and the mass of uninformed traders is 1 ¡M , so

that the total mass of all informed and uninformed traders is normalized to unity. All

traders have negative exponential utility over ¯nal wealth with a common risk aversion

coe±cient R.

any gain in understanding the phenomena we consider. Details of this exploratory analysis are available
from the authors upon request.

9Unfortunately, we ¯nd that the modeling of strategic behavior is intractable in our dynamic
framework.

10If we were to assume that there is only one demand shock, there would exist an equilibrium in which
the dates 1 and 2 prices would, taken together, fully reveal the private information - as in Grundy and
McNichols (1989). Modeling two independent demand shocks precludes this type of equilibrium from
obtaining and thereby enables us to examine serial correlation in asset price changes.
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2 Equilibrium with One Stage of Information Acqui-

sition

In this section, we consider the equilibrium of a setting where some agents are informed

at date 2, all agents are uninformed at date 1, and agents can trade in advance of the

receipt of private information. We initially ¯x the mass of informed agents, M , and

characterize linear equilibria in the trading stage (Sections 2.1 through 2.2), and then

consider a setting where M is determined endogenously (Section 2.3).

Let P1 and P2 denote the date 1 and date 2 equilibrium prices for the security. We

will consider linear equilibria implied by the model. Thus, let us postulate that P1 and

P2 are linearly related to the observables at each date such that

P2 = ¹F + aµ + bz1 + cz2; (2)

P1 = ¹F + fz1; (3)

In the ensuing analysis we verify that these conjectures are consistent with the equilibrium

we derive.

2.1 The Analytic Solution for the Equilibrium

This section presents the unique linear equilibrium. The complete solution is given in

the following Lemma (which is proved in the appendix).

Lemma 1 The unique linear equilibrium of the model is given by

a =
M [Mvµ +R2v²vz(v² + vµ)]

D
(4)

b =
Rv²[M

2vµ +R2v²vz(v² + vµ)]

D
(5)

c =
Rv²a

M
(6)

f = R(vµ + v²); (7)

with D ´M2vµ +MR2v²vµvz +R2v2
²vz.
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2.2 Comparative Statics

Our primary focus in performing comparative statics is on volume, volatility, and serial

correlation. For building insight, the present section focuses on the case of exogenous M ,

while the next subsection, which endogenizes information acquisition, considers compar-

ative statics with respect to the cost of information.

We ¯rst analyze trading volume. Also, let xI1 and xI2 denote the demands (holdings)

of the informed agents, and xU1 and xU2 the holdings of uninformed agents, at dates 1

and 2, respectively. Note that xi2 denotes the holdings, rather than the trades, of agent

i (i = I or U). Since the expectation of the absolute value of a normally distributed

variable is proportional to its standard deviation,11 the total expected trading volume at

date 2 is proportional to

TV 2 ´M std(xI2 ¡ xI1) + (1¡M) std(xU2 ¡ xU1) + v
1
2
z : (8)

The measure of total expected volume thus has three components: volume from the

informed, uninformed, and liquidity traders. Note that the date 1 trading volume is

proportional to 2v
1
2
z and is invariant to M , since the date 1 demand shock is split in the

ratio M to 1¡M between the informed and uninformed. The following proposition on

how the date 2 trading volume varies with the mass of informed traders is proved in the

appendix.

Proposition 1 Locally around M = 0, the total volume at date 2 is increasing in M

and locally around M = 1, is decreasing in M .

The intuition for the above proposition is that when most of the agents are uninformed

adding an informed agent adds to volume, because the degree of heterogeneity in the

market increases, but when most of the agents are informed, adding another agent de-

creases volume, because the reverse happens. Since the demands of the informed and

uninformed agents are continuous functions of M , (8) implies that the total trading vol-

ume as a function of M is a continuous function of M . From Proposition 1, this function

11The constant of proportionality is
p

2=¼.
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is increasing in M for M = 0, and decreasing in M for M = 1. This suggests that volume

as a function of M has at least one maximum for 0 · M · 1. The intuition is simply

that total volume should be maximized when there is su±cient heterogeneity in the mar-

ket, which should happen for an interior value of M . Under the plausible assumption

that the mass of informed agents is correlated with ¯rm size and hence with the level of

institutional ownership in a company, intriguing evidence consistent with this result is

provided by Utama and Cready (1997). They show that the empirical functional form of

volume prior to earnings announcements across ¯rms is quadratic and is maximized at

an institutional ownership level of about 50%.

We next consider the volatility of price changes. In addition to the quantities var(P3¡
P2) and var(P2 ¡ P1), it is also of interest to calculate the model's overall volatility, i.e.,

volatility that does not rely on picking any speci¯c pair of dates. Consider an econome-

trician who calculates price change variances by sampling price changes repeatedly but

does not condition on any particular pair of dates. He will calculate variances placing

equal weights on the price changes P3¡ P2 and P2 ¡P1. By the law of iterated expecta-

tions, the unconditional volatility is then just the arithmetic mean of var(P3 ¡ P2) and

var(P2¡P1).12 Our next proposition describes some results related to the above volatility

measures.

Proposition 2 (1) The variance of the price change across dates 2 and 3, var(P3¡P2),

is decreasing in M .

(2) Locally around M = 0, the variance of the price change across dates 1 and 2, var(P2¡
P1) is decreasing in M if and only if R2vz(v² + vµ) > 1 and locally around M = 1, is

decreasing in M if and only if v² > vµ.

(3) Locally around M = 0, the average of the two variances above is decreasing in M if

and only if 3R2vz(v² + vµ) > 1 and locally around M = 1, is decreasing in M if and only

if R2vz(3v² ¡ vµ) + 1 > 0.

12Note that E(P3¡P2) = E(P2¡P1) = 0, so that the variance equals the expectation of the squared
price change. The overall variance is the arithmetic mean of E(P3 ¡ P2)2 and E(P2 ¡ P1)2, assuming
each pair of dates is equally likely to be picked.

9



The above proposition indicates that, in conformance with intuition, informed trading

attenuates volatility across dates 2 and 3. The reason simply is that informed traders

make the price more informative, while making the date 2 price move `closer' to the

fundamental variable µ that is revealed at date 3, thereby reducing price °uctuations

across dates 2 and 3.

The date 2 volatility is not monotonic in the mass of informed traders. The broad

intuition for this is the following. The volatility of the price change P2¡P1 is determined

by two aspects. First, P2, is sensitive to the mass of informed agents but P1 is not,

which makes °uctuations in P2¡P1 depend on the mass of informed agents. Second, the

risk premium associated with the liquidity shocks declines at date 2, because the entry

of informed agents causes the overall level of risk borne by the market to fall. As M

increases, the ¯rst e®ect adds to the volatility of the price change P2¡P1 while the second

tends to reduce it. The overall e®ect is determined by these opposing considerations.

Finally, we analyze the serial covariance cov(P3¡P2; P2¡P1). Here is the proposition

which describes the behavior of this covariance.

Proposition 3 The analytic expression for the equilibrium value of the serial covariance

is given by

cov(P3¡P2; P2¡P1) =
R2v²vz[Mvµ +R2v²vz(v² + vµ)][M

2vµ +R2v²vz(v² + vµ)][Mvµ ¡ v²]
(M2vµ +MR2v²vµvz +R2v2

²vz)
2

;

(9)

so that this serial correlation is positive if and only if Mvµ > v².

The broad intuition for the above result is the following. The are two opposing e®ects

in°uencing the serial covariance. The ¯rst e®ect is that the risk premium required to bear

the supply shock z1 is decreasing over time because as agents receive private information

gradually, they bear less risk and consequently reduce the risk premium. On the other

hand, the shock z2 is reversed by date 2, and this tends to cause a negative autocorrelation

(as in a standard inventory model). If the mass of informed agents is su±ciently high,

the ¯rst e®ect dominates and we get positive serial correlation.

To obtain a further understanding of the above result, note that the serial covariance
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can be written in terms of the price coe±cients as13

cov(P3 ¡ P2; P2 ¡ P1) = a(1¡ a)vµ ¡ b(b¡ f)vz ¡ c2vz: (10)

Suppose ¯rst that M = 0. In this case, b = f = R(vµ + v²), and a = 0, so that we are left

with the last term in (10), and the serial correlation in this case is always negative. The

notion is simply that the conditional risk premium owing to the demand shock z2 reverses

by date 3, causing a price reversal on average. Note, however, that the risk borne by the

agents across dates 1 and 2 does not change, so the conditional risk premium related to

z1 does not change, and thus does not in°uence the serial correlation.

Now suppose that M = 1. Then a = 1, b = Rv², c = Rv², and f = R(v² + vµ) so that

the ¯rst term in (10) is zero, the second term is Rv²vµ, and the last term is ¡Rv2
² . Thus,

positive serial correlation obtains if vµ > v². The idea here is that the conditional risk

premium related to z1 is decreasing across dates 1 and 2, and is also decreasing across

dates 2 and 3 as prices approach full revelation. This is because the average risk borne

by agents is smaller at date 2, simply because agents become informed at this date. The

positive autocorrelation in the conditional risk premium tends to cause a continuation. If

the gradual decrease in the conditional risk premium related to z1 dominates the reversal

of an additional risk premium due to z2, the overall serial correlation is positive, so

that we obtain positive serial correlation. As M is increased starting from M = 0, the

tendency for positive serial correlation to obtain increases. This is because as M becomes

larger, the decrease in the conditional risk premium related to z1 is strong (because the

mass of agents receiving information at date 2 is increased) and the tendency for the

serial covariance to be positive becomes stronger.

It is worth noting that though we consider a stylized setting to facilitate analytic

solutions, the results on serial correlation around news events illustrate the following

intuitive point. In standard models of symmetric information, liquidity shocks generally

lend a negative serial correlation. However, conditional risk premia related to liquidity

shocks gradually decline if private information about a future public announcement is

13The expression for the serial covariance below follows immediately from the date 3 liquidation value
(1), and the two price de¯nitions (2) and (3).
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received sequentially by agents, as greater knowledge of asset values means less risk. As

Proposition 3 suggests, if the mass of informed agents is su±ciently large and private in-

formation is su±ciently valuable, the ¯rst e®ect dominates and positive serial correlation

obtains prior to the news event. Overall, our ¯nding is consistent with the momentum

e®ect documented by Jegadeesh and Titman (1993). In Section 3, we analyze this phe-

nomenon in a richer setting where agents can receive information at both dates 1 and 2,

and can in°uence the timing of information receipt by spending additional resources. As

a pre-amble to this exercise, the next subsection endogenizes information acquisition in

the context of the present model.

2.3 Equilibrium with Endogenous Information Acquisition

We now endogenize the mass of informed agents M by considering a scenario where the

information about µ must be purchased at a cost C. This cost is incurred prior to trade

at date 1. We thus assume that there is lag between commitment of resources to obtain

the signal and the receipt of the signal. Endogenizing information acquisition allows us

to obtain conditions for positive serial correlation in terms of parameters such as the

variance of liquidity shocks and the cost of information that were not represented in

Proposition 3. As will be seen in Section 2.4, this exercise leads to additional empirical

predictions as well.

Denote the informed by I and the uninformed by U . Since the wealth levels Wi

(i =; I; U) of the informed and uninformed agents are quadratic forms of multivariate

normal random variables, the ex ante utilities of each agent can be evaluated by using

standard results on the moment generating function of such quadratic forms; details are

provided in the appendix. There it is shown that the ex ante utility of agent i takes the

simple form

EUi = ¡j2Ai§ + Ij¡ 1
2 exp(¡RB0);

where Ai is the square, symmetric matrix such that RWi = ¸Ai¸
0 and where, in turn,

¸ is the normal vector [µ ² z1 z2]. Note that the expected utility of an agent can be

transformed into the certainty equivalent CEi by way of the following relation: CEi =
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¡(1=R) log(¡EUi). We de¯ne the di®erence in informed and uninformed certainty equiv-

alents as CEi(M)¡CEu(M) ´ ¡(M). Let C be the cost of receiving the signal. For an

equilibrium with endogenous information acquisition, in addition to the market clearing

conditions (27) and (28), the condition ¡(M) = C must be satis¯ed.

Our next proposition describes the behavior of the expected utilities of the two types

of agents.

Proposition 4 The di®erence in the certainty equivalents of wealth for the informed and

uninformed is given by

¡(M) =
1

2R
ln

"
M2vµ +R2v²vz(v² + vµ)

M2vµ +R2v2
²vz

#
;

and is therefore positive and is decreasing in M .

The above proposition indicates that the utility of being informed exceeds the bene¯t

of being uninformed for all values of M , and the bene¯t to being informed relative to

being uninformed is monotonically decreasing in M . Based on Propositions 3 and 4, a

de¯nitive result relating serial correlation to the cost of information acquisition can be

derived:

Proposition 5 The serial correlation of asset price changes prior to the news event is

positive if and only if

C <
1

2R
ln

"
v² +R2vµvz(v² + vµ)

v² +R2vµvzv²

#
: (11)

Overall, Proposition 5 indicates that the threshold level of the cost below which positive

serial correlation obtains is increasing in the variance of information (vµ), and decreasing

in the variance of the component of price movements not due to the public announcement

(v²) and the variance of liquidity trading (vz).

We analyze how serial correlation, volume, and volatility change as a function of

the cost of information acquisition, using Figures 1 through 3. These ¯gures use the

parameter values R = vµ = 2, v² = vz = 1. These parameter value choices are an

attempt to calibrate our model to real data. Thus, the orders of magnitude of v² and vµ
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are consistent with an annual return standard deviation of 20% (for realistic ranges of

stock prices), as reported by Mehra and Prescott (1985) and several others. The value for

risk aversion is identical to that assumed by Leland (1992) in his calibration and implies

a risk premium over the risk free rate of that twice the payo® variance (i.e., about 8%).

The range of the cost of information is chosen such that it spans the feasible range of

M from 0 to 1. Figure 1 shows how the serial correlation goes from positive to negative

as the cost of information acquisition is increased.

Please insert Figure 1 here.

It is interesting to note that at a cost level C = 0:2554 (found computationally), price

changes are serially uncorrelated, so that prices look like martingales, even though both

informed and uninformed agents in the market are risk averse. In addition, the magnitude

of the serial correlation is quite respectable; for example, at a cost level of 0.21, the serial

correlation is 0:30, a substantial number.

Turning now to trading volume, Proposition 1 suggests that trading volume is in-

creasing in M for small M and decreasing in M for large M . This, in turn, suggests

that under endogenous information acquisition, trading volume should be nonmonotonic

in the cost of information acquisition. This intuition is borne out in Figure 2, which

shows that trading volume is maximized for an intermediate level of the cost of infor-

mation acquisition. Note that trading volume drops o® towards the right of the graph,

simply because the mass of informed agents decreases relative to informed agents, and

uninformed agents trade less aggressively than informed ones. However, even though

the mass of informed agents approaches zero towards the right of the graph (see Figure

1), trading volume does not approach zero, because uninformed agents do trade some

non-zero amount for risk-sharing purposes. (Note here that in order to clearly illustrate

the e®ect of information cost on volume, we do not begin the y-axis origin at zero in

Figure 2.)

Please insert Figures 2 and 3 here.
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Figure 3, panel A, plots the variances var(P3¡P2) and var(P2¡P1), and shows that

the variance of price change across dates 2 and 3 in monotonic in the cost of information

acquisition, while that of the price change across dates 1 and 2 is not. It is also interesting

to note that the volatility across dates 2 and 3 increases sharply as the cost of information

becomes very high, because prices become virtually uninformative so that risk premia

become large. It can also be seen from Figure 3, panel B that the average level of

volatility is decreasing in the cost of information acquisition. These results are consistent

with those in Proposition 2. In addition, our results are consistent with that of Chari,

Jagannathan, and Ofer (1988) who ¯nd that volatility prior to earnings announcements

is higher relative to normal levels of volatility.14 They also ¯nd that this volatility ratio

is greater for small ¯rms than for large ¯rms, which is consistent with our results under

the additional assumption that it is more costly to obtain information about small ¯rms.

2.4 Additional Empirical Implications

Our theory addresses the issue of how asset price changes behave near signi¯cant public

informational events such as earnings announcements. Our basic premise is the notion

that information events occur in a lumpy fashion, and lags in acquisition (or processing)

of information lead to serial correlation in asset returns prior to the news event. There are

other models such as Foster and Viswanathan (1993, 1996), and Back, Cao, and Willard

(1998) in which volatility and volume persist and can depend on public information ar-

rival because of non-normal distributions and/or diversely informed traders. Our model

is complementary to these papers as it shows that returns prior to public events can show

persistence owing to the entry of agents with event-related information as the event ap-

proaches. Note that in a Glosten and Milgrom (1985) or a pure Kyle (1985)-type setting,

asset price changes do not show persistence. Under such a setting, returns on earnings

announcement dates and returns preceding the announcement should be unrelated for

any cross-sectional subsample. In contrast, our study predicts a positive correlation be-

tween announcement date returns and pre-announcement returns of regularly scheduled

14This ¯nding is con¯rmed by Pope and Inyangete (1992) for U.K. stocks.
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events such as earnings announcements for those cross-sectional subsamples with a high

mass of privately informed traders.15 Since the mass of informed traders is endogenous

in our model we can obtain implications for public event-induced return persistence in

terms of exogenous parameters such as earnings volatility and the variance of liquidity

trading.

To obtain empirical implications, we suggest using a proxy for the mass of informed

agents such as a measure of the informativeness of trades (e.g., using the methodology

of Hasbrouck (1991) or Huang and Stoll (1996)). For convenience, we refer to this proxy

as I. Then, our analysis suggests a number of predictions related to volume, volatility,

and the serial covariance of price changes prior to earnings announcements, that have

not been suggested previously in the literature.

² (Proposition 1) Suppose one strati¯es a sample of stocks by trade informativeness

(I). Our analysis suggests that trading volume near earnings announcements should

be increasing in trade informativeness for the high I sample, and decreasing in I

for the low I sample.

² (Proposition 2) Price change volatility near earnings announcements should be

decreasing in I. The relationship of volatility to I during periods that are distant

from earnings announcements is ambiguous.

² (Proposition 3) The tendency for the serial covariance of returns near earnings

announcements to be positive should be stronger for large I stocks and, controlling

for I, for stocks with greater earnings volatility (a proxy for the model parameter

vµ).

² (Proposition 5) The tendency for the serial covariance of asset returns to be positive

near earnings announcements should be stronger for stocks with high variance of

15For irregular events such as stock splits and takeover announcements, a positive correlation between
pre-event returns and announcement-date returns could simply mean that such events tend to occur
when the ¯rm is doing well. Our theory provides a rationale for pre-event return persistence for regularly
scheduled events such as earnings announcements for which the problem of the run-up causing the event
does not apply.
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liquidity trading (a proxy for which can be a measure of trading activity such as

the average number of trades per day) and stocks with greater earnings volatility.

2.5 Unconditional Serial Correlation

Let us now turn brie°y to the more general setting with an in¯nite sequence of news

events. Our serial correlation is calculated for the subperiods corresponding to each

period t. The question naturally arises as to the behavior of the overall (unconditional)

serial correlation implied by the model. The sign of the unconditional serial correlation

of contiguous price changes, however, is the same as that of the covariance calculated in

Proposition 3, so long as one makes the additional assumptions that liquidity trades are

all serially uncorrelated across all times t, the variance of liquidity trades in subperiods

t1 and t2 is constant across all t, and the cost of acquiring information is constant for all

t as well. To see this note ¯rst that the serial correlation across contiguous time periods

corresponding to successive cohorts is zero (i.e., cov(P(t+1)1
¡Pt3; Pt3¡Pt2) = 0), because

successive innovations are serially uncorrelated. Further, each cohort is symmetric owing

to the fact that noise trade variances and innovation variances are equal across di®erent

times t, so the sign of the serial correlation cov(Pt3¡Pt2 ; Pt2¡Pt1) does not switch across

subperiods corresponding to di®erent t's. Now, while sampling from a large set of asset

price changes, the econometrician is equally likely to pick the pair Pt3 ¡ Pt2; Pt2 ¡ Pt1

and P(t+1)1
¡ Pt3 ; Pt3 ¡ Pt2 . So long as the conditions for positive serial correlation

detailed in Propositions 3 and 5 obtain for a particular news event at time t, the above

arguments imply that the covariance corresponding to the ¯rst pair is positive while that

corresponding to the second pair is zero. Thus, the overall serial correlation calculated

by the econometrician is also positive. These results are formalized in the appendix and

summarized in the following proposition.

Proposition 6 In the model with an in¯nite sequence of news events, where the econo-

metrician is equally likely to sample from price changes surrounding a news event and

price changes preceding the news event, the overall autocorrelation of price changes will

be positive under the conditions for positive autocorrelation described in Propositions 3
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and 5.

Thus the results of Propositions 3 and 5 and the empirical implications in Section 2.4

carry over to a setting which does not condition on the arrival of any given public event.

In an intuitive sense, su±cient conditions for our result on positive serial correla-

tion are as follows: at least some information arrives in form of discrete news events

rather than smoothly and continuously, agents have ¯nite horizons and speculate on

near-term announcements, and information about these announcements is acquired with

a lag. Under these conditions, the reduction in risk borne by the short-term informed

and uninformed agents as more and more agents become informed about an impending

information event gives rise to positive serial correlation.16 The assumption of short

horizons appears reasonable and, as pointed out in the introduction, has been consid-

ered previously in DeLong, Shleifer, Summers, and Waldmann (DSSW) (1990), Froot,

Scharfstein, and Stein (1992), Vives (1995), and Dow and Gorton (1994), among others.

Such short horizons can be motivated by agency problems in the money management

industry (e.g., from money managers being evaluated too frequently - HolmstrÄom and

Ricart i Costa [1986]) or, as DSSW and Shleifer and Vishny (1990) point out, aversion to

the unpredictability of noise trader sentiment. While we do not analyze the problem of

long horizon agents in this paper for reasons of tractability, we believe our results would

generalize to such a setting, so long as the mass of such agents is small so that their

risk-bearing capacity is limited. Our result on positive serial correlation in Proposition

3 is consistent with the momentum result of Jegadeesh and Titman (1993). As noted

on Page 14, our model also produces momentum e®ects of a respectable magnitude for

reasonable parameter values.

We have attempted to argue above that the intuition behind our results generalizes

to richer settings. However, there still may be a question about the realism of our

assumption that agents trade in advance of receiving an information signal. We do

not believe this is an unreasonable assumption. Indeed, it requires time to synthesize

16The presence of agents with ¯nite horizons and a terminal date is also crucial in Froot, Scharfstein,
and Stein (1992) and Hirshleifer, Subrahmanyam, and Titman (1994).
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information gathered about a ¯rm's management, its products, its suppliers, into an

overall signal about the future earnings of the ¯rm. Therefore, lags between expenditure

of resources and receipt of information are quite likely.

Aside from lags of the type mentioned above it also is plausible that in ¯nancial mar-

kets, some agents may be able to obtain private information about a future informational

event (say, an earnings announcement) earlier than some other set of agents by expend-

ing additional resources. In the next section, we allow for this by considering a setting

with dynamic information acquisition, wherein we allow agents to in°uence the timing

of information receipt. Unfortunately, this model does not permit analytical solutions,

so that we have to resort to numerical simulations. However, the model deepens our un-

derstanding of the conditions needed to obtain positive serial correlation. In particular,

by allowing informed trading at both dates 1 and 2, we are able to obtain insights on

how the change in the mass of informed agents over time relates to the equilibrium serial

correlation in asset price changes.

3 An Extension to Multiple Stages of Information

Acquisition

We revert back to analyzing a cohort corresponding to a generic time t and suppress time

subscripts. We now consider a setting in which there are three types of utility-maximizing

traders: early informed traders learn precisely the realization of µ just prior to trade at

date 1, while late informed traders learn the realization of µ just prior to trading at date

2. There also are uninformed traders who have no knowledge of µ at either date. All

traders have negative exponential utility with a common risk aversion coe±cient R. The

respective masses of the early-informed, late-informed, and uninformed agents are given

by E, L, and U , with E+L+U = 1. In the general setting, these masses are endogenized

by postulating that the cost of receiving the signal late (at date 2) is a number C2, while

the total resources required to receive the signal early (at date 1) is a number C1, with

C1 > C2.
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Let CEi (i = E;L; U) denote the certainty equivalent of an agent of a particular type

(early-informed, late-informed, and uninformed). The masses E, L, and U are such that

no early informed, late informed, or uninformed agent wishes to change his information

acquisition strategy. This implies that in equilibrium, the di®erence in certainty equiv-

alents of obtaining information early and late should equal C1 ¡ C2, i.e., the additional

cost required to obtain information early, and the di®erence in certainty equivalents of

obtaining information late and not acquiring information should equal C2, i.e., the cost

of obtaining information late. Thus, in equilibrium, E, L, and U satisfy:

CEe ¡ CEl = C1 ¡ C2; (12)

CEl ¡ CEu = C2: (13)

3.1 Equilibrium

Let the subscripts e, l, and u denote the early-informed, the late-informed, and the

uninformed, respectively. Further, let xij denote the demand of agent i, i = e; l; u, at

time j, j = 1; 2.

Proposition 7 The equilibrium with multiple stages of information acquisition is char-

acterized by agent demands on date 2

xl2 = xe2 =
¹F + µ ¡ P2

Rv²
; (14)

xu2 =
¹F + E(µjP1; P2; )¡ P2

R var(µ + ²jP1; P2)
; (15)

by agent demands on date 1,

xe1 =
E(P2jµ; P1)¡ P1

RS1
+ k0e

¹F + µ ¡E(P2jµ; P1)

Rv²
; (16)

xl1 =
E(P2jP1)¡ P1

RS
0
1

+ k0l
¹F + E(µjP1)¡ E(P2jP1)

Rv²
; (17)

xu1 =
E(P2jP1)¡ P1

RS
00
1

+ k0u
¹F + E[fE(µjP1; P2)g jP1]¡ E(P2jP1)

R var(µ + ²jP1; P2)
; (18)
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where the S and k0 terms are exogenous constants described in the appendix, by market

clearing conditions

Exe1 + Lxl1 + Uxu1 + z1 = 0; (19)

Exe2 + Lxl2 + Uxu2 + z1 + z2 = 0; (20)

by agent ex-ante utilities

EUi = ¡j2Ai§ + Ij¡ 1
2 exp(¡RB0)] i = e; l; u; (21)

by the corresponding certainty-equivalent utilities

CEi = ¡(1=R) log(¡EUi) i = e; l; u; (22)

where Ai denotes the quadratic form of agent i's wealth Wi in terms of the normal vector

[µ ² z1 z2], and by the entry indi®erence equations (12)-(13).

As the proposition suggests, the model with multiple stages of information acquisi-

tion is exceedingly complex and does not permit a closed-form solution, so we provide

some numerical simulations. We are unable to formally address issues of equilibrium

uniqueness, though changing parameters in the neighborhood of our base case does not

yield evidence of equilibria other than the one we ¯nd in our simulations. For brevity,

we do not analyze the model in complete detail, but focus on the behavior of the serial

correlation of price changes.17

The discussion following Proposition 3 suggests that what matters for the serial corre-

lation prior to the news event is the increase in the mass of informed traders across dates

1 and 2, rather than the absolute masses at each date. To investigate this conjecture

17The trading behavior of early informed agents in this model is similar to that in Hirshleifer, Subrah-
manyam, and Titman (1994). In particular, these agents trade aggressively in the initial round and, to
reduce their exposure to the shock ², they partially reverse their trades at date 2 when the late informed
move the price in the direction of their information. Speci¯cally, we have veri¯ed that for the parameter
values we consider (as stated on Page 13), the covariance between their date trade and the date 2 price
move is negative, whereas the covariance between their date 1 trade and date 1 price move is positive
for all feasible ranges of E, U , and L. The trades of the other classes of agents are typically positively
correlated with the contemporaneous price move.
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further we analyze the case where decision to acquire information early, as opposed to

late, is endogenized, and the mass of uninformed is ¯xed at 0.25.18;19 Thus, the relevant

equilibrium condition is CEe ¡ CEl = C1 ¡ C2, with U = 0:25.

Please insert Figure 4 here.

Figure 4 plots the serial correlation versus the cost di®erential for obtaining information

early versus late.20 The serial correlation is negative for low levels of the cost of early

information acquisition, but becomes positive for higher levels of the cost. The ¯gure

illustrates the intuition that since the magnitude of changes in the conditional risk pre-

mium related to z1 is governed by the change in the mass of informed agents across dates

1 and 2, increasing the cost of acquiring information early relative actually increases the

tendency for markets to exhibit positive serial correlation prior to the news event. This is

because increasing this cost decreases the mass of informed agents at date 1, thus causing

a relatively larger increase in the mass of informed agents across dates 1 and 2.21

3.2 Discussion

The results above indicate that with sequential information acquisition, what matters for

the sign of the serial correlation prior to news events is how the mass of informed agents

changes over time, and not the absolute mass levels at each date. Thus, if informed agents

receive information at di®erent times, then, for positive serial correlation to occur prior

to the news event, not only is it necessary that the cost of late information acquisition

18We assume that each agent is required to make a decision to acquire information either early or
late or to acquire no information prior to trade at date 1. This assumption is made for simplicity, but
captures the notion that even if one wishes to acquire information late, resources must be committed to
do so well in advance of the actual receipt of the signal.

19It also is possible to analyze cases in which all three masses E, L, and U are endogenously determined
by the costs of early and late information acquisition. Such cases do not lend any more insight on serial
correlation than the ones presented here, so we omit them for brevity.

20The parameter values used are R = 2, vµ = 3, v² = vz = 1.
21We tried a number of di®erent parameter values in the neighborhood of the base case, and found

that the results were qualitatively unaltered. Thus, we found that if there are no late-informed agents,
markets exhibit reversals. If the change in mass across dates 1 and 2 is su±ciently large, and, as part
(2) of Proposition 5 suggests, vµ is su±ciently high, the market exhibits positive serial correlation prior
to the news event.
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be low (as we argued in Section 2.3), but also that the cost of receiving information early

relative to late be su±ciently high. When these conditions are satis¯ed, there will be

large changes in the mass of informed agents over time. In these cases, the risk premia

associated with liquidity shocks will reduce gradually over time, lending a positive serial

correlation to asset returns. Conversely, when these conditions are not satis¯ed, there will

be no sharp changes in the mass of informed agents across dates 1 and 2, and therefore

the positive autocorrelation in changes in the conditional risk premia will be small, and

price changes will exhibit reversals prior to public news events.

Arbel (1983) argues that the cost of obtaining information early is larger for small

stocks. One would expect that it would be more costly to obtain information early

for small ¯rms. Indeed, Arbel (1983) makes a compelling case that the main source

of information for small ¯rms are the accounting data released at the turn-of-the-year,

whereas information is accessible throughout the year for larger ¯rms. Thus, the disparity

between the costs of obtaining information early and late is likely to be greater for small

¯rms. Under this plausible premise, our model implies stronger continuations for small

¯rms than large ¯rms. Thus, our model is consistent with the empirical evidence of

Jegadeesh and Titman (1993) and Rouwenhorst (1998), that continuations are stronger in

small ¯rms. It is noteworthy that the 3-12 month lags over which continuation obtains is

consistent with the time period between occurrences of important events such as earnings

announcements and the release of annual reports.

3.3 Empirical Calibration

To get a feel for the ability of the model to generate empirically-relevant results, we

estimate serial correlations over medium-term horizons. The ¯rst set of data we use is

the CRSP Monthly Stock Indices ¯le for the combined NYSE-AMEX-Nasdaq universe of

stocks over the period 1960-1998. Speci¯cally, we used the Size Decile portfolios which

are formed by dividing all stocks into ten categories based on market capitalization and

are rebalanced annually. For each size decile, we calculated serial correlations between the
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current return and the cumulative return over the past three months.22 For robustness,

we also present these correlations for portfolios sorted by the cumulative return over the

past twelve months.

Please insert Table 1 here.

The serial correlations start at 0.14 for the smallest size decile and decline monoton-

ically through the largest size decile. All but one of the serial correlations are positive.

In addition, all the serial correlations for the winner-loser sorted portfolios are positive.

We test if these serial correlations are statistically greater than zero. Swinscow (1997,

Chapter 11), gives the appropriate test statistic for a correlation as

t = r

s
n¡ 2

1¡ r2
;

where r is the correlation estimate and n is the number of observations. The cuto®

for a one-tailed test at the 5% signi¯cance level observations is 1.65. The correlation

between current return and past 3-month return is signi¯cant for the smallest through

size 6 decile portfolio. This evidence is consistent with our prediction and the Jegadeesh

and Titman (1993) and Rouwenhorst (1998) ¯nding that continuations are stronger for

small ¯rms. In addition, observe that eight out of the ten serial correlations for the

winner-loser portfolios are signi¯cant. It is also worth noting that our theoretical model

generates positive serial correlations up to 0:20 (see the right end of Figure 4), which

covers the entire range of estimated serial correlations in Table 1.

3.4 Additional Empirical Implications

In Section 2.4, we considered additional empirical implications of the basic model. To

empirically distinguish between the basic model and the model of this section, we propose

stratifying the sample by analyst following. Based on Arbel (1983), ¯rms with low levels

of analyst following would be more likely to conform to the model of the previous section,

22We chose the three-month horizon because earnings announcements are scheduled every quarter.
Similar, but weaker results were obtained for 6- and 12-month horizons. In addition, substantively
identical results were obtained for portfolios sorted by past 6- and 12-month returns.
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where private information is only received at date 2. On the other hand, ¯rms with wider

analyst coverage would have more accessible sources of information so there would be

more opportunities to receive information earlier than others.

If one is willing to accept the premise that our analysis of this section is more likely

to apply to the ¯rms with high levels of analyst following, the analysis of this section

suggests the following implications for the sample with high analyst following.

² Divide the sample into high I and low I stocks. Within the high I sample, the

tendency for the serial covariance of asset returns near earnings announcements to

be positive will be stronger for the ¯rms with high analyst following.

² Further, as more and more agents become informed, agent heterogeneity decreases,

so that we should see a drop in trading volume as we approach the announcement

date.

² A feature of our model is that the mass of agents acquiring information about

an impending news event changes over time. Our model thus suggests that the

informativeness measure I should gradually increase as we approach the date of a

signi¯cant public announcement, as sequential information acquisition causes the

mass of informed agents to increase over time.

4 Conclusion

Fama and French (FF) (1996) indicate that their three-factor model can account for many

asset-market regularities but they are unable to explain the medium term continuation

e®ect (momentum) in equity returns. They leave open the possibility (FF, p. 82) that

their factors are unable to fully capture dynamic changes in risk premia. The continua-

tion e®ect has also been di±cult to explain using traditional models of asset pricing. In

this paper, we develop a model which accounts for this e®ect by analyzing information ac-

quisition prior to signi¯cant news events. Our analysis considers the temporal resolution

of uncertainty through market prices as the mass of investors who receive information
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about the news event increases over time. Essentially, we enrich the approach of Epstein

and Turnbull (1980) by allowing for asymmetric information, and show how continuation

is a natural consequence of autocorrelation in risk premia as the mass of informed agents

increases over time.

We consider two dynamic models: one in which agents are allowed to trade in advance

of receiving an information signal, and another in which agents can in°uence the timing of

information receipt by expending resources. The ¯rst setting permits an analytic solution

for the equilibrium serial covariance as a function of the mass of informed traders. In

this setting, our analysis is consistent with momentum if information acquisition costs

are su±ciently low. The intuition is that conditional risk premia related to early liquidity

shocks reduce gradually as agents sequentially receive private information about a future

public announcement; this lends unconditional positive autocorrelation to stock price

changes. On the other hand, risk aversion naturally lends negative serial correlation

to asset prices because of standard inventory considerations. If the mass of informed

agents is su±ciently high because of a low cost of information acquisition, positive serial

correlation obtains.

When di®erent agents receive information at di®erent times, how the informed mass

changes over time is the key determinant of whether markets exhibit positive serial cor-

relation prior to news events. This is because a large disparity in the costs of early versus

late information acquisition causes the mass of informed agents to change sharply over

time, thus leading to a gradual reversal in the conditional risk premium owing to early

liquidity shocks. This creates a stronger tendency for positive serial correlation to obtain.

Thus, if agents can in°uence the timing of information arrival by expending resources,

our analysis suggests that necessary conditions for positive serial correlation are that the

cost of late information acquisition be low and that the cost of receiving information early

relative to late be su±ciently high. Based on the work of Arbel (1983), these conditions

are particularly likely to be satis¯ed for relatively smaller ¯rms.

We estimate empirical serial correlations over quarterly horizons for decile portfolios

sorted by size and past performance. All but one of the serial correlations are posi-
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tive and the majority of them are signi¯cantly so. In addition, the serial correlations

monotonically decline as one moves from the small ¯rm decile to the large ¯rm decile,

which is consistent both with our model and with the evidence of Jegadeesh and Titman

(1993) and Rouwenhorst (1998). Using reasonable parameter values, our model covers

the full range of empirically estimated serial correlations. Our analysis also suggests sev-

eral untested empirical implications which relate the serial correlation to the information

contained in a stock's order °ow.
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Appendix

Proof of Lemma 1: We begin by conjecturing that all trader demands and both date

1 and date 2 prices are normally distributed. In the linear equilibrium we derive, this

conjecture is con¯rmed to be correct.

Using mean variance analysis, it can be shown that

xI2 =
¹F + µ ¡ P2

Rv²
; (23)

xU2 =
¹F + E(µjP1; P2)¡ P2

R var(µ + ²jP1; P2)
: (24)

The date 1 demands of the informed and uninformed agents are given by

xI1 =
E(P2jP1)¡ P1

RSI
+ kIE(xI2jP1) (25)

xU1 =
E(P2jP1)¡ P1

RSU
+ kUE(xU2jP1); (26)

where S and the k coe±cients are exogenous constants.

Market clearing implies

MxI1 + (1¡M)xU1 + z1 = 0; (27)

MxI2 + (1¡M)xU2 + z1 + z2 = 0: (28)

Next we state the following lemma, which is a standard result on multivariate normal

random variables (see, for example, Brown and Jennings [1989]).

Lemma 2 Let Q(Â) be a quadratic function of the random vector Â: Q(Â) = C +

B0Â¡ Â0AÂ, where Â » N(¹;§), and A is a square, symmetric matrix whose dimension

corresponds to that of Â. We then have

E[exp(Q(Â))] = j§j¡ 1
2 j2A+ §¡1j¡1

2£

exp
µ
C +B0¹+ ¹0A¹+

1

2
(B0 ¡ 2¹0A0)(2A+ §¡1)¡1(B ¡ 2A¹)

¶
:
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Let Áij and xij denote the information set and demand, respectively, of an agent

i (i = I; U), at date i. The date 2 demand of the agent (from maximization of the

mean-variance objective) is given by

xi2 =
E(F jÁi2)¡ P2

R var(F jÁi2)
: (29)

Let ¹2 ´ E(F jÁi2). Note that in period 1, the trader maximizes the derived expected

utility of his time 2 wealth which is given by

E[[¡expf¡R[B0 ¡ xi1P1 + xi1P2 + [¹2 ¡ P2]2=(2Rvar(F jÁi2))]g]jÁi1]: (30)

Let ¹P2 and ¹ denote the expectations of P2 and ¹2, and ¦ the variance-covariance matrix

of P2 and ¹2, conditional on Ái1. Then, the expression within the exponential above

(including terms from the normal density) can be written as

¡
·
1

2
y0Gy + h0y + w

¸
;

where

y0 = [¹2 ¡ ¹;P2 ¡ ¹P2];

h0 = [¡Rxi1 +
( ¹P2 ¡ ¹)

var(F jÁi2)
;

(¹¡ ¹P2)

var(F jÁi2)
];

G =

"
¦¡1 +

"
s¡1 ¡s¡1

¡s¡1 s¡1

# #
;

w = Rxi1(P1 ¡ ¹P2) + g;

where s ´ var(F jÁi1), and where g is an expression which does not involve xi1. From

Lemma 2 and Bray (1981, Appendix), (30) is given by

¡ 1

(Det(¦))
1
2 jDet(A)j 12

exp
µ

1

2
h0G¡1h¡ w

¶
: (31)

Thus, the optimal xi1 solves
"
dh

dxi1

#0
G¡1h¡ dw

dxi1
= 0:

Substituting for h and w, we have

xi1 =
¹P2 ¡ P1

RG1
+

¹¡ ¹P2

Rvar(F jÁi2)

G1 ¡G2

G1
; (32)

29



where G1 and G2 are the elements in the ¯rst row of the matrix G¡1. It follows that

the demands xI1 and xU1 are given by (25) and (26), respectively, with the S coe±cients

being the G1 coe±cient above and the k coe±cients being the term (G1 ¡ G2)=G1. We

thus obtain (25) and (26).

We can rewrite the market clearing condition at date 2, (28), as:

M
¹F + µ ¡ P2

Rv²
+ (1¡M)

¹F + E(µjÁ2)¡ P2

R var(µ + ²jÁ2)
+ z1 + z2 = 0; (33)

where Á2 is the date 2 information set of the uninformed. Now, the uninformed observe

P2 at date 2, which is equivalent to observing

¿ ´ µ +
Rv²
M

(z1 + z2):

In addition, since there is no private information at date 1, the uninformed also observe

the date 1 demand shock z1. Thus, we have

E(µjÁ2) = E(µj¿; z1) =
vµ

vµ + k2vz
(µ + kz2) (34)

and

var(µ + ²jÁ2) = v² + var(µj¿; z1) ´ v = v² +
k2vµvz
vµ + k2vz

; (35)

where k ´ Rv²
M

. Substituting for the above moments into the market clearing condition

(33), for the price P2 from (2), and equating coe±cients of the variables µ, z1, and z2, we

can obtain a closed-form expression for the date 2 price.

Now, from the market clearing condition at date 1, (27), we can solve for f in terms

of the k and S coe±cients in (25) and (26). This exercise yields

f =
b
h
M
RSI

+ 1¡M
RSU
¡
n
MkI
Rv²

+ (1¡M)kU
Rv

+ 1
oi

M
RSI

+ 1¡M
RSU

: (36)

The G coe±cients for the informed agents are given by the ¯rst row of the matrix

2
4
Ã
a2vµ + c2vz avµ

avµ vµ

!¡1

+

Ã
v¡1
² ¡v¡1

²

¡v¡1
² v¡1

²

!3
5
¡1

: (37)
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and those for the uninformed agents given by the ¯rst row of the matrix

2
64

0
@ a2vµ + c2vz

vµ(avµ+kcvµ)
vµ+k2vz

vµ(avµ+kcvµ)
vµ+k2vz

v2
µ

vµ+k2vz

1
A
¡1

+

Ã
v¡1 ¡v¡1

¡v¡1 v¡1

!3
75

¡1

: (38)

where v ´ var(F jP1; P2). Substituting for a, b, and c, we ¯nd that

SI = SU =
vµ[Mvµ +R2v²vz(v² + vµ)][M +R2v²vz]

M2vµ + 2MR2v²vµvz +R2v2
²vz[R

2vz(v² + vµ) + 1]
;

kI =
R2v2

²vz
Mvµ +R2v²vz(vµ + v²)

;

and

kU = kI
M2vµ +R2v²vz(v² + vµ)

M2vµ +R2v2
²vz

:

Note that kU > kI . Using (35), it is easy to show that kI=v² = kU=v. Substituting for

SI , SU , kI , and kU into (36) and performing some tedious algebra yields (7). 2

Proof of Proposition 1: The total trading volume at date 2 in terms of the price

coe±cients can be written as

M

vuut(1¡ a)2

R2v2
²

vµ +

Ã
1¡ b

Rv²

!2

vz +
c2vz
R2v2

²

+

(1¡M)

vuut(a1 ¡ a)2

R2v2
vµ +

Ã
1¡ b

Rv

!2

vz +
(a2 ¡ c)2

R2v2
vz + v

1
2
z ;

where a1 ´ M2vµ
M2vµ+R2v2

² vz
and a2 ´ Rv²vµa1

M
. Substituting for the price coe±cients for

Lemma 1 and di®erentiating, we ¯nd that the derivative of trading volume with respect

to M at M = 0 is
q
R2vz(v2

² + 2v²vµ + 2v2
µ) + vµ

Rv²
¡ vµv

1
2
z

v²
¡ v

1
2
z :

The above term is positive, as can be seen by comparing the ¯rst and second terms in

the square root to the last two negative terms following the square root. Similarly, the

derivative at M = 1 is

Rv²vz

·
Rv²v

1
2
z ¡

q
R2vz(v2

² + v2
µ) + vµ

¸

R2v²vz(v² + vµ)
;
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which is negative. 2

Proof of Proposition 2: The variance

var(P3 ¡ P2) = (1¡ c)2vµ + v² + (d2 + e2)vz =

R2v2
²vz[M

4v2
µ +M2vµfR2v²vz(3v² + 2vµ) + vµg+ 2MR2v²v

2
µvz +R2v2

²vzf2R2vz(v² + vµ)
2 + vµg]

(M2vµ +MR2v²vµvz +R2v2
²vz)

2
+v²:

It is easy to verify that the above expression is decreasing inM for 0 ·M · 1, completing

the proof of (1).

var(P2 ¡ P1) = a2vµ + [(b¡ f)2 + c2]vz:

Substituting for the price coe±cients from Lemma 1, we have

var(P2 ¡ P1) =
[Mvµ +R2v²vz(v² + vµ)]

2[M2vµ(R
2vµvz + 1) +R2v2

² ]

(M2vµ +MR2v²vµvz +R2v2
²vz)

2
:

The derivative of the above function with respect to M at M = 0 is

2vµ(v² + vµ)[(1¡R2(v² + vµ)]

v²
;

and at M = 1, it is
2R4v2

²vµv
2
z(vµ ¡ v²)

R2v²vz(v² + vµ) + vµ)
;

thus completing the proof of (2).

Similarly, it can be shown that the derivative of the sum var(P2¡ P1) + var(P3¡ P2)

with respect to M at M = 0 is

4vµ(v² + vµ)[1¡ 2R2vz(v² + vµ)]

v²
;

and at M = 1 is

¡2R2v2
²vµvz[2R

2vz(2v² ¡ vµ) + 1]

R2v²vz(v² + vµ) + vµ
;

thus completing the proof of (3). 2

Proof of Proposition 3: The serial covariance

cov(P3 ¡ P2; P2 ¡ P1) = a(1¡ a)vµ ¡ b(b¡ f)vz ¡ c2vz:
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Again, substituting for the price coe±cients from Lemma 1, the equilibrium serial co-

variance becomes

cov(P3 ¡ P2; P2 ¡ P1) =

[R2v²vz][Mvµ +R2v²vz(v² + vµ)][M
2vµ +R2v²vz(v² + vµ)][Mvµ ¡ v²]

(M2vµ +MR2v²vµvz +R2v2
²vz)

2
:

When M = 0, the serial covariance is ¡R2vz(v² + vµ)
2, which is negative, and when

M = 1, the serial covariance becomes R2v²vz(vµ ¡ v²), which is positive if and only if

vµ > v². 2

Derivation of the ex ante utilities of each informed agent: The ex ante utility

of each type of agent is derived by an application of Lemma 2. De¯ne ¸ = [µ ² z1 z2].

Given that the terminal wealth of agent i (where i = I; U) is given by

Wi = xi2(F ¡ P2)¡ xi1(P2 ¡ P1) +B0

we can construct the square, symmetric matrix Ai such that RWi = ¸0Ai¸. Noting

then that the ex ante expected utility is given by EUi = E[¡exp(¡RWi)], we can apply

Lemma 2 with ¹ = 0, C = ¡RB0, B = 0, and A = Ai. The agent's ex ante utility thus

becomes

EUi = E[¡exp(¡¸Ai¸0)] = ¡j§j¡ 1
2 j2Ai + §¡1j¡ 1

2 exp[¡RB0] = j2Ai§ + Ij¡ 1
2 exp[¡RB0]:

Proof of Proposition 4: The determinant of the matrix [2AI§ + I] is monotonically

related to the certainty equivalent and the expected utility of being informed, and is

given by

[R2vz(v² + vµ) + 1][M2vµ +R2v²vz(v² + vµ)][M
2vµ + 2MR2v²vµvz +R2v2

²vz(R
2v²(v² + vµ) + 1)]

(M2vµ +MR2v²vµvz +R2v2
²vz)

2

Similarly, the determinant of the matrix [2AU§ + I] is monotonically related to the

certainty equivalent and the expected utility of being uninformed, and is given by

[R2vz(v² + vµ) + 1][M2vµ +R2v2
²vz][M

2vµ + 2MR2v²vµvz +R2v2
²vz(R

2v²(v² + vµ) + 1)]

(M2vµ +MR2v²vµvz +R2v2
²vz)

2
:

It follows that the ratio of the above two quantities is given by

M2vµ +R2v²vz(v² + vµ)

M2vµ +R2v2
²vz)

; (39)
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which is greater than unity and is decreasing in M . 2

Proof of Proposition 5: Proposition 3 indicates that a necessary and su±cient condi-

tion for positive serial correlation to obtain is M > v²=vµ; this condition is equivalent to

C < ¡(v²=vµ). Condition (11) immediately obtains from substituting M = v²=vµ in (39).

2

Proof of Proposition 6: First note that

P(t+1)1 = ¹Ft+1 + bz(t+1)1

Pt3 = ¹Ft + µt + ²t

Pt2 = ¹Ft + aµt + bzt1 + czt2

Since zt+1 is uncorrelated with zt1 , µt and ²t, this implies that cov(P(t+1)1
¡Pt3; Pt3¡Pt2) =

0. If the conditionMvµ > v² or condition (11) (under endogenous information acquisition)

is satis¯ed then we have cov(Pt3¡Pt2 ; Pt2¡Pt1) > 0. By the law of iterated expectations,

if the pairs Pt3 ¡Pt2 ; Pt2¡Pt1 and P(t+1)1
¡Pt3 ; Pt3¡Pt2 are equally likely to be selected,

the overall autocorrelation is a simple arithmetic mean of the two covariances above and

is also positive. 2

Proof of Proposition 7

Equations (14)-(18) follow from standard mean variance analysis. Next, we supply

the de¯nitions of the S and the k0 terms in (16)-(18). From (32), ke = (S1 ¡ S2)=S1,

kl = (S 01 ¡ S 02)=S01, and kl = (S
00
1 ¡ S

00
2 )=S

00
1 , where S1 and S2 are the elements in the ¯rst

row of the matrix
"
fcov(P2; µjµ; P1)g¡1 +

Ã
v¡1
² ¡v¡1

²

¡v¡1
² v²

!#¡1

;

S 01 and S02 are the elements in the ¯rst row of

"n
cov(P2; µjP1)¡1jP1)

o¡1
+

Ã
v¡1
² ¡v¡1

²

¡v¡1
² v¡1

²

!#¡1

;

and, de¯ning v0 ´ var(µ + ²jP1; P2), S
00
1 and S

00
2 are the elements in the ¯rst row of

"
fcov(P2; E(µ; P1; P2)jP1)g¡1 +

Ã
v0¡1 ¡v0¡1

¡v0¡1 v0¡1

!#¡1

:
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We again consider linear equilibria implied by the model. Thus, let us postulate that

P1 and P2 are linearly related to the observables at each date such that

P2 = ¹F + aµ + bz1 + cz2 (40)

P1 = ¹F + eµ + fz1: (41)

Note that the variable has a coe±cient of unity in the form for P2.

Given the initial assumption that prices are normally distributed, one can substitute

for the moments in the demand equations in terms of the price coe±cients in (40) and

(41). Then, from the market clearing conditions (19) and (20), one can con¯rm that

prices are indeed normally distributed in equilibrium, and obtain a system of nonlinear

equations in the unknowns, i.e., a, b, c, e, and f .

Let us de¯ne the following quantities:

E(µjP1; P2) = ®1µ + ®2z1 + ®3z2; (42)

E(µjP1) = l1µ + l2z1; (43)

E(P2jP1) = m1µ +m2z1; (44)

E[E(µjP1; P2)jP1] = n1µ + n2z1: (45)

(Expressions for the coe±cients on the right-hand side of the above equations and for v0,

in terms of the price coe±cients a, b, c, e, and f are easy to derive and are omitted for

brevity). From the market clearing condition (28), we then have

(E + L)
1¡ a
Rv²

+ U
®1 ¡ a
Rv0

= 0; (46)

¡(E + L)
b

Rv²
+ U

®2 ¡ b
Rv0

+ 1 = 0; (47)

¡(E + L)
c

Rv²
+ U

®3 ¡ c
Rv0

+ 1 = 0; (48)

(49)

and, from (19), we have

E
a¡ e
RS1

+ E
1¡ a
Rv²

S1 ¡ S2

S1

+ L
m1 ¡ e
RS

0
1

+ L
l1 ¡m1

Rv²

S
0
1 ¡ S

0
2

S
0
1
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+U
m1 ¡ e
RS

00
1

+ U
n1 ¡m1

Rv0
S
00
1 ¡ S

00
2

S
00
1

= 0; (50)

E
b¡ f
RS1

¡E b

Rv²

S1 ¡ S2

S1
+ L

m2 ¡ f
RS

0
1

+ L
l2 ¡m2

Rv²

S
0
1 ¡ S

0
2

S
0
1

+U
m2 ¡ f
RS

00
1

+ U
n2 ¡m2

Rv0
S
00
1 ¡ S

00
2

S
00
1

¡ 1 = 0; (51)

The equilibrium in the securities market is described by the values of a, b, c, e, and f which

satisfy Equations (46)-(51). Expression (21) follows by a straightforward application of

Lemma 2. 2
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Table 1.
Serial Correlation of Current Return with 3-Month Past

Return For Size Deciles and Past Return Deciles
(T-statistics are given below each estimate.)

Size Serial Past Return Serial
Deciles Correlation Deciles Correlation

Smallest 0.14* Past Winner 0.11*
(3.00) (2.17)

2 0.13* 2 0.10*
(2.73) (2.06)

3 0.10* 3 0.10*
(2.25) (2.08)

4 0.10* 4 0.10*
(2.10) (1.94)

5 0.10* 5 0.08
(2.10) (1.64)

6 0.08* 6 0.10*
(1.82) (2.10)

7 0.06 7 0.10*
(1.22) (1.95)

8 0.05 8 0.09*
(1.11) (1.73)

9 0.04 9 0.08*
(0.92) (1.70)

Largest -0.00 Past Loser 0.06
(-0.11) (1.27)

N 464 405
* = Signi¯cant at 5% level.
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