
UCLA
UCLA Electronic Theses and Dissertations

Title
Statistical Learning with Neural Networks Trained by Gradient Descent

Permalink
https://escholarship.org/uc/item/4cz3t9wq

Author
Frei, Spencer

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cz3t9wq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Statistical Learning with Neural Networks Trained by Gradient Descent

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Spencer Frei

2021

© Copyright by

Spencer Frei

2021

ABSTRACT OF THE DISSERTATION

Statistical Learning with Neural Networks Trained by Gradient Descent

by

Spencer Frei

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Quanquan Gu, Co-Chair

Professor Ying Nian Wu, Co-Chair

In this thesis, we theoretically analyze the ability of neural networks trained by gradient

descent to learn. The learning problem consists of an algorithmic component and a statis-

tical component. The algorithmic question concerns the underlying optimization problem:

given samples from a distribution, under what conditions can a neural network trained by

gradient descent efficiently minimize the empirical risk for some loss function defined over

these samples? As the underlying optimization problem is highly non-convex, standard tools

from optimization theory are not applicable and thus a novel analysis is needed. The statis-

tical question concerns the generalization problem: supposing gradient descent is successful

at minimizing the empirical risk, under what conditions does this translate to a guarantee

for the population risk? Contemporary neural networks used in practice are highly overpa-

rameterized and are capable of minimizing the empirical risk even when the true labels are

replaced with random noise, and thus standard uniform convergence-based arguments will

fail to yield meaningful guarantees for the population risk for these models.

We begin our thesis by analyzing the simplest nontrivial neural network possible: a

ii

single neuron with a nonlinear activation function under the squared loss. Even this simple

network induces a highly non-convex optimization problem. By showing that an approximate

surrogate risk is minimized throughout the gradient descent trajectory, we show that gradient

descent is able to learn single neurons for a large class of nonlinear activation functions. Our

results hold in the agnostic setting, implying that gradient descent succeeds even when the

model is mis-specified.

We continue our analysis of the single neuron by examining the classification setting,

where the loss of interest is the zero-one loss rather than the squared loss. As the decision

boundary for single neurons in the classification setting is identical to that of linear classifiers

for typical activation functions, we focus on the linear classifier setting. This reduces the

problem to that of learning halfspaces with noise, a long-studied problem in computational

learning theory with well-established computational hardness constraints on the learning

problem due to the non-convexity of the zero-one loss. We establish connections between

minimizers of convex surrogates of the zero-one loss and minimizers of the zero-one loss

itself to develop the first positive guarantees for gradient descent on convex loss functions

for learning halfspaces with agnostic noise.

We then establish guarantees for learning halfspaces with agnostic noise when using over-

parameterized SGD-trained two layer nonlinear neural networks. Our analysis requires both

overcoming the non-convexity of the underlying optimization problem as well as avoiding

generalization bounds that become vacuous when the number of parameters in the neural

network becomes large.

In our final contribution, we derive generalization bounds for overparameterized deep

residual networks trained by gradient descent. Our techniques leverage a recently developed

correspondence between large, overparameterized neural networks and the tangent kernels

of their infinite width approximations known as the neural tangent kernel.

iii

The dissertation of Spencer Frei is approved.

Qing Zhou

Arash Amini

Ying Nian Wu, Committee Co-Chair

Quanquan Gu, Committee Co-Chair

University of California, Los Angeles

2021

iv

For Jeff

v

TABLE OF CONTENTS

1 Introduction . 1

2 Learning a single neuron with gradient descent 8

2.1 Introduction . 9

2.2 Related work . 11

2.3 Agnostic learning setting . 13

2.3.1 Strictly increasing activations . 17

2.3.2 ReLU activation . 21

2.4 Noisy teacher network setting . 24

2.5 Conclusion and remaining open problems . 27

2.6 Detailed comparisons with related work . 28

2.7 Proof of Lemma 2.3.5 . 29

2.8 Noisy teacher network proofs . 34

2.9 Realizable setting . 39

2.9.1 Gradient descent on population loss 42

2.9.2 Stochastic gradient descent proofs . 46

2.10 Remaining Proofs . 50

3 Learning noisy halfspaces with logistic regression 51

3.1 Introduction . 52

3.2 Related Work . 55

3.2.1 Notation . 57

vi

3.3 Soft Margins . 58

3.4 Gradient Descent Finds Minimizers of the Surrogate Risk 60

3.5 Gradient Descent Finds Approximate Minimizers for the Zero One Loss . . . 61

3.5.1 Bounded Distributions . 62

3.5.2 Unbounded Distributions . 67

3.6 Conclusion and Future Work . 71

3.7 Fast Rates with Stochastic Gradient Descent 71

3.8 Soft Margin for Uniform Distribution . 79

3.9 Proofs for Unbounded Distributions . 79

3.9.1 Empirical Risk . 79

3.10 Loss Functions and Sample Complexity for Separable Data 81

3.11 Remaining Proofs . 82

4 Learning noisy halfspaces using one-hidden-layer neural networks trained

by stochastic gradient descent . 85

4.1 Introduction . 86

4.2 Related Work . 87

4.3 Problem Description and Results . 90

4.3.1 Notation . 91

4.3.2 Problem Setup . 91

4.3.3 Main Results . 94

4.3.4 Comparisons with Related Work . 97

4.4 Proof of the Main Results . 98

4.5 Experiments . 105

vii

4.6 Discussion . 109

4.7 Proof of Lemma 4.4.1 . 110

4.8 Additional Experiments and Experiment Details 111

5 Learning with deep residual networks trained by gradient descent 127

5.1 Introduction . 128

5.1.1 Our Contributions . 129

5.1.2 Additional Related Work . 130

5.2 Network Architecture and Optimization Problem 132

5.3 Main Theory . 134

5.4 Proof Sketch of the Main Theory . 138

5.5 Conclusions . 142

5.6 Proofs of Main Theorems and Corollaries . 143

5.6.1 Proof of Theorem 5.3.5 . 143

5.6.2 Proof of Theorem 5.3.6 . 146

5.6.3 Proof of Corollary 5.3.7 . 147

5.7 Proofs of Key Lemmas . 149

5.7.1 Proof of Lemma 5.4.1: hidden and interlayer activations are bounded 149

5.7.2 Proof of Lemma 5.4.2: semismoothness 152

5.7.3 Proof of Lemma 5.4.3: gradient lower bound 158

5.7.4 Proof of Lemma 5.4.4: gradient upper bound 160

5.8 Proofs of Technical Lemmas . 161

5.8.1 Proof of Lemma 5.7.2: intermediate layers are bounded 161

viii

5.8.2 Proof of Lemma 5.7.3: Lipschitz property with respect to input space

at each layer . 162

5.8.3 Proof of Lemma 5.7.4: local Lipschitz property with respect to weights

and sparsity bound . 163

5.8.4 Proof of Lemma 5.7.5: behavior of network output in WpW p0q, τq when

acting on sparse vectors . 166

5.8.5 Proof of Lemma 5.7.6 . 168

5.9 Proofs of Auxiliary Lemmas . 171

5.9.1 Proof of Lemma 5.8.2 . 171

5.9.2 Proof of Lemma 5.8.3 . 172

5.9.3 Proof of Lemma 5.8.4 . 174

6 Conclusion . 175

References . 178

ix

LIST OF FIGURES

4.1 Samples from D2.04,0.5 with random classification noise of 10% on t|x1| ą 2.04u

with the boundary term b “ 2.04 chosen so that OPTlin “ 0.25. Blue plus signs

correspond to y “ `1 and red circles to y “ ´1. The contour plot displays the

class probability for the output of a leaky ReLU network trained by online SGD

and has dark hues when the neural network is more confident in its predictions. 106

4.2 Test classification accuracy for data coming Db,0.5. The red dashed line is the

accuracy of the best linear classifier, and the black solid line is the average accu-

racy of the neural network with error bars over ten random initializations of the

first layer weights (experimental details can be found in Section 4.8). The blue

dash-dotted line is the Bayes optimal classifier accuracy. 107

4.3 Decision boundary of an SGD-trained neural network on Db,γ0 , where b is chosen

so that OPTlin P t0.1, 0.25, 0.40u, across four different random initializations. The

decision boundary is the line where the region changes from light red to light

blue, and the dark regions are areas where the neural network classifier has the

highest confidence. Even in the presence of substantial, adversarial noise, the

decision boundary is close to linear. 114

4.4 Decision boundary for the same setup as the baseline neural network except

with tanh activations. Columns correspond to different random initializations.

Compare with Figure 4.3. Even for nonlinear activations we still see an almost

perfectly linear decision boundary for OPTlin “ 0.25. 115

4.5 Test classification accuracy. The performance of leaky ReLU and tanh networks

are almost exactly the same and match the performance of the best linear pre-

dictor until extreme levels of noise. 116

x

4.6 Test classification accuracy for learning rates η “ 0.1 and η “ 0.001 compared to

baseline η “ 0.01. Large learning rates lead to a larger variance in performance. 118

4.7 Decision boundary for η “ 0.001 is consistently linear. 119

4.8 Decision boundary for η “ 0.1 varies over initializations but is roughly a pertur-

bation of the linear classifier decision boundary. 119

4.9 Test classification accuracy for different values of the variance of the first layer

weight initialization. The baseline neural network has variance 1{m. 120

4.10 Decision boundary for the smaller variance 1{m2 is more consistently linear. . . 120

4.11 Decision boundary for variance 1 has more variation across random initializations,

but are roughly perturbations of the linear classifier decision boundary. 121

4.12 Test classification accuracy for multiple-pass batch SGD. The differences with

online SGD are essentially indistinguishable. 121

4.13 Decision boundary when using 100 epochs multiple-pass SGD of batch size 32.

Columns correspond to different random initializations. The decision boundary

is more consistent across randomizations than the baseline online SGD algorithm. 122

4.14 Test classification accuracy when introducing bias terms and trainable second

layer weights (pink and coral dashed lines) as well as when increasing the width

from m “ 1,000 to m “ 100,000 (green line). The pink dashed line uses an

initialization variance of 1{m while the coral dashed line uses an initialization

variance of 1{m4. Note that the performance of a neural network with width

m “ 1,000 and width m “ 100,000 is imperceptible. With trainable bias and

second layer weights, the accuracy of the network varies significantly based on

the initialization scheme. Note that our result (Theorem 4.3.5) holds for an

arbitrary initialization. 123

4.15 Decision boundary when using trainable biases and second layer weights with an

initialization variance of 1{m4. The boundary is almost exactly linear. 123

xi

4.16 Same as Figure 4.15 but using an initialization variance of 1{m. Here, the network

can learn the appropriate nonlinear decision boundary. 124

4.17 Decision boundary for four layer network given in (4.8.2). Columns correspond

to different random initializations. Compare with Figure 4.3. With four layers,

the network is able to appropriately partition the input space and generalize well. 124

4.18 Test classification accuracy using the four layer network. The four layer network

accuracy is larger for OPTlin “ 0.4 than it is for OPTlin “ 0.15, a behavior closer

to that of the Bayes classifier. 125

4.19 Calculation of the angle 2θ for the distribution D̃b. 125

4.20 Decision boundary for the same setup as the baseline neural network for data

coming from D̃b for four random initializations (across columns) and for OPTlin P

t0.08, 0.26, 0.40u (across rows). Compare with Figure 4.3. The decision bound-

aries are noticeably nonlinear. 126

4.21 Test classification accuracy for data coming D̃b. Corollary 4.3.7 guarantees per-

formance of at least 1´Ωp
?
OPTlinq, but the neural network performs significantly

better due to the ability to produce a nonlinear decision boundary. Note that

the variance over ten initializations of the first layer weights are so small that the

error bars are not visible. 126

xii

LIST OF TABLES

2.1 Comparison of single neuron results in the agnostic setting 30

2.2 Comparison of single neuron results in the noisy teacher network setting 31

2.3 Comparison of single neuron results in the realizable setting 32

3.1 Comparison of halfspace results with other upper and lower bounds in the literature. 55

xiii

ACKNOWLEDGMENTS

It is an impossible task to name all of the individuals that made the completion of this

dissertation possible, so please forgive the following attempt.

First and foremost, I wish to thank my two Ph.D co-supervisors, Ying Nian Wu and

Quanquan Gu. Ying Nian is a constant source of inspiration for his deep intuitive under-

standing of so many disparate areas of statistics and machine learning. Ying Nian is one of

the nicest and most down-to-earth people I have ever met.

Ying Nian introduced me to Quanquan in September of 2018 after he joined the CS

department at UCLA. Shortly after our introduction, my interest and motivation for research

surged dramatically, and it quickly became apparent that my particular interests in the

theory of machine learning were perfectly aligned with Quanquan’s research expertise. The

year we met coincided with an explosion of research in the theory of deep learning, and was

a very exciting time to begin to do research in the area.

I worked with Quanquan and his postdoc Yuan Cao on all of the problems contained in

this thesis. They carefully read my work and helped find improvements to my arguments

and presentation of results. They both have a keen sense of which research problems are

worthwhile, interesting, and reasonable to pursue, which are particularly important skills in

as fast-moving a field as the one we find ourselves in. I owe a significant amount of gratitude

to both Quanquan and Yuan for showing me the ropes of machine learning theory and

optimization, and would be a much worse researcher without their guidance and expertise.

I am particularly indebted to Quanquan, who has demonstrated an enormous dedication

to his students and to ensuring their success. I was extremely fortunate to have had the

opportunity to work under his supervision for my Ph.D.

I am thankful to Arash Amini for providing useful guidance on a number of projects

I worked on during my thesis. I want to thank Ariana Anderson for supporting me as a

graduate student researcher throughout the majority of my Ph.D. I am thankful for Qing

xiv

Zhou’s guidance as a member of my committee, as well as the rest of the Statistics department

faculty and staff for providing an enriching learning environment during my time at UCLA.

I am thankful for my colleagues and collaborators in the statistics, mathematics, and

computer science departments at UCLA and elsewhere. In particular, my officemates and

academic siblings Sam Baugh, Levon Demirdjian, Junhyung Park, Gabriel Ruiz, Stephanie

Stacy, Zachary Stokes, Qiaoling Ye, and Yifei Xu; and fellow machine learning researchers

Niladri Chatterji, Zixiang Chen, Yoni Dukler, Surbhi Goel, Erik Nijkamp, Bo Pang, Pan Xu,

Difan Zou, and Dongruo Zhou. I am also thankful to my fellow UAW 2865 members and

organizers on campus and across the UCs, who made my time at UCLA a more fulfilling

experience. This includes Ted Everhart, Kavitha Iyengar, Jonathan Koch, Michael McCown,

Michael Stenovec, Garrett Strain, and many others.

Finally, I could not have completed this work without the steadfast support of my parents,

Susan and Steve; my brother, Garret; and my partner of nearly ten years, Jeffrey Dymond.

I am so thankful I have had your support and love for so long.

xv

VITA

2013 BSc. Mathematics, McGill University, Montréal. First class honours.

2015 MSc. Mathematics, University of British Columbia, Vancouver.

2015–2020 Teaching Assitant, UCLA Department of Statistics.

2016–2021 Research Assistant, UCLA School of Medicine and UCLA Department of

Psychiatry.

2016–2018 Statistical Consultant, BlackThorn Therapeutics/UCLA, Los Angeles.

2017–2019 Biostatistical Consultant, Ritter Pharmaceuticals, Los Angeles.

2020 Research Scientist Intern, Amazon Alexa AI, Cambridge, Massachusetts.

2021–2022 Postdoctoral Fellow, UC Berkeley Department of Statistics and the Simons

Institute for the Theory of Computing.

PUBLICATIONS

[1] Difan Zou*, Spencer Frei*, and Quanquan Gu. Provable robustness of adversarial train-

ing for learning halfspaces with noise. In International Conference on Machine Learning

(ICML), 2021.

[2] Spencer Frei, Yuan Cao, and Quanquan Gu. Provable generalization of SGD-trained

neural networks of any width in the presence of adversarial label noise. In International

xvi

Conference on Machine Learning (ICML), 2021.

[3] Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of halfspaces with gradient

descent via soft margins. In International Conference on Machine Learning (ICML) (long

talk), 2021.

[4] Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with

gradient descent. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[5] Ariana E. Anderson, Mirella Diaz-Santos, Spencer Frei et al. Hemodynamic latency

is associated with reduced intelligence across the lifespan: an fMRI DCM study of aging,

cerebrovascular integrity, and cognitive ability. Brain Structure and Function, 2020.

[6] Spencer Frei, Yuan Cao, and Quanquan Gu. Algorithm-dependent generalization bounds

for overparameterized deep residual networks. In Advances in Neural Information Processing

Systems (NeurIPS), 2019.

[7] S. Frei and E. Perkins. A lower bound for pc in range-R bond percolation in two and

three dimensions. Electronic Journal of Probability 21(56), 2016.

xvii

CHAPTER 1

Introduction

1

Although artificial neural networks have been an object of study for statisticians and

computer scientists for decades—the first edition of the now-famous Neural Information

Processing Systems (NeurIPS) conference was in 1987—it is only in the past decade that

these models have begun to attract significant and widespread attention in the broader

scientific community. The deep learning revolution can partially be traced to the success of

multilayer convolutional networks in the 2012 the ImageNet LSVRC-2012 competition. This

competition is based upon an image classification task where one has access to a million

samples of labeled images that can be used to learn a classifier that aims to classify colour

images of around 250ˆ250 pixels into one of 1,000 classes [DDS09]. The large dimensionality

of the training data (106 images with over 105 pixels per image), together with the large

number of classes, contributed to the understanding among scientists that achieving near-

human level accuracy of 5% top-5 error would constitute a major breakthrough in computer

vision [DDS09]. The best top-5 errors at the first two LSVRC competitions were 28.1%

and 25.7%, held in 2010 and 2011 respectively. At the 2012 ImageNet LSVRC competition,

the winning deep neural network classifier achieved a top-5 error of 15.3%, with the next-

best competitor achieving 26.2% top-5 error using kernel-based methods [KSH12]. Future

ImageNet competitions were dominated by deep neural networks, progressively lowering

the top-5 error rate to 12.5% in 2013 and 8.4% in 2014, largely due to using larger and

more complex neural network model classes and increased computational abilities that took

advantage of the particular computing power of graphical processing units (GPUs). In 2015,

deep neural networks broke the 5% ‘human-level’ error threshold for the first time, leading

to widespread news coverage in venues like the New York Times [Mar15]. Progress on

ImageNet has proceeded apace, with the most recent state-of-the-art model achieving 1.2%

top-5 error [PDX20] with a nearly 500,000,000 parameter model. Beyond image classification

tasks, deep neural network-based models have become a dominant framework in almost every

conceivable machine learning task that involves learning from labeled data, in such areas as

robotics, natural language understanding and automatic translation, gaming, and medical

2

imaging.

The success of deep learning has been a surprising phenomenon to theorists in the statis-

tics and machine learning communities. From a theoretical perspective, that modern deep

neural networks (such as those that have dominated computer vision competitions) are able

to perform so well is surprising in two respects: the ‘optimization’ or algorithmic question and

the ‘generalization’ or statistical question. From the algorithmic perspective, the optimiza-

tion problem for deep neural networks has long been known to be non-convex: there exist

local minima for the objective functions of neural networks, even when the neural network

consists of a single neuron with a sigmoidal nonlinearity [AHW95]. And yet the standard

algorithmic framework used for learning neural networks is gradient-based optimization (e.g.

stochastic gradient descent). The optimization question concerns how a local optimization

method is able to find approximately global optima of the objective function, even when the

underlying problem is highly nonconvex.

From the statistical perspective, that deep neural networks with low training error are

able to achieve low test error (i.e. on unseen data) is curious. One-hidden-layer networks have

long been known to be universal approximators of continuous functions [Cyb89], and such

networks have the capacity to perfectly fit any random labeling of training data with binary

labels (provided they are sufficiently wide). Typical uniform convergence-based complexity

arguments, which roughly state that the greater the capacity of a model class to fit random

labels the more prone the model class is to suffer from overfitting, thus fail to explain why

neural networks can generalize.

The close connection between the two questions of optimization and generalization in

deep learning was most clearly established in a landmark paper that appeared at the In-

ternational Conference on Learning Representations (ICLR) in 2017 by Chiyuan Zhang and

co-authors called ‘Understanding deep learning requires rethinking generalization’ [ZBH17].

The authors constructed a series of revealing experiments on the CIFAR-10 dataset, which

consists of 50,000 training samples of 32ˆ 32 RGB pixel images from 10 classes, and intro-

3

duced label noise to p P r0, 1s fraction of the training samples, where each sample’s label

was assigned randomly with probability p. For each p P r0, 1s, they showed that SGD-

training of the neural networks produce networks with 100% training accuracy. That is,

SGD-training produces interpolating classifiers, even when the labels are replaced with pure

noise, thereby showing that SGD-trained neural networks indeed have the capacity to per-

fectly fit randomly-labeled data. Next, they considered the generalization performance of the

networks which were trained on p-corrupted data on the (uncorrupted) test set. For p “ 1,

the neural networks achieved a 10% test error rate, matching that of random guessing. Most

remarkably, when trained on p-corrupted data, the SGD-trained networks achieved a test

error rate that was highly correlated with the proportion of corrupted data p: data with

20% label corruption resulted in 40% test error and data with 50% label corruption resulted

in 65% test error.

These experiments were, simply put, shocking. Here is a model class which demon-

strably is able to interpolate randomly-labeled training data, even though the underlying

optimization problem is non-convex and a local optimization method is used to learn the

model. Moreover, even in settings where half of the labels are replaced with random noise,

the model is still able to generalize significantly better than that of random guessing. The

standard frameworks of optimization, statistics, and machine learning are not easily recon-

cilable with either of these phenomena in isolation; their confluence in a single problem is

all the more remarkable.

And now, nine years on from “the” ImageNet competition, and almost five years on

from the “Rethinking generalization” paper, we are still exploring the intricacies of both

the optimization and generalization questions in deep learning. Under what conditions can

neural networks trained by gradient descent provably achieve small training error? Under

what conditions can such networks generalize well to unseen data? How does the presence

of noise affect the answers to these questions? Do our answers to these questions require the

development of new mathematical frameworks?

4

This thesis collects our attempts at answering these questions. We begin in Chapter 2

by focusing on the simplest non-trivial neural network possible, namely, a neural network

consisting of a single neuron x ÞÑ σpxw, xyq with a fixed activation function σ : R Ñ R.

When σ is linear, the problem of learning the best-fitting single neuron (as measured by

the `2 loss) over a distribution is simple, as the model is simply a linear model and so the

underlying optimization problem is convex. In particular, if we define

OPT`2σ :“ min
wPRd:}w}ď1

Epx,yq„D
“

pσpxw, xyq ´ yq2
‰

,

then for σpxq “ x, the standard gradient descent algorithm can learn the best single neuron

up to risk OPT`2σ in polynomial time and sample complexity. However, when σ is nonlinear,

the problem becomes significantly harder, as the underlying problem is nonconvex: the

empirical risk has many local minima, and so it is not clear how standard gradient-based

methods would succeed in minimizing the empirical risk. Indeed, the problem of learning

up to the risk OPT`2σ cannot be done in polynomial time with the standard gradient descent

algorithm when σpxq “ ReLUpxq “ maxp0, xq, even when the marginal of D over x is the

standard Gaussian [GKK19]. In this thesis, we show that when the activation function σ is

strictly increasing, then the standard gradient descent algorithm is able to learn up to risk

OpOPT`2σ q in polynomial time, and up to risk O
`

pOPT`2ReLUq
1{2
˘

in polynomial time when σ

is the ReLU.

In Chapter 3, we then consider the problem of learning the best single neuron for clas-

sification problems, i.e. when the loss is the zero-one loss rather than the squared loss in

the regression case. When σ is an odd function, since y ¨ σpxw, xyq ą 0 iff y ¨ xw, xy ą 0,

this is equivalent to the problem of learning the best halfspace over a distribution, and is a

long-studied problem in the computational learning theory community. Let us denote the

best halfspace error by

OPT01 :“ min
}w}“1

Ppx,yq„Dpy ‰ sgnpxw, xyqq.

Even learning up to risk OpOPT01q is known to be computationally hard without assumptions

5

on the marginal distribution of D [Dan16]. Some rather complicated algorithms have been

able to show that if OPT01 is sufficiently small, then when Dx satisfies certain properties

(e.g. isotropic and has a log-concave probability density function), it is possible to learn

halfspaces up to risk OpOPT01q [ABH15, ABH16, ABL17]. In this thesis, we show that the

standard logistic regression algorithm is able to learn halfspaces up to risk ÕpOPT
1{2
01 q when

Dx satisfies an anti-concentration property enjoyed by log-concave isotropic distributions

among others. We show improved guarantees of a classification error of at most ÕpOPT01q

when Dx comes from a noisy large margin distribution.

In Chapter 4, we consider one-hidden-layer neural networks consisting of m neurons,

fpx;W q “
m
ÿ

j“1

ajσpxwj, xyq.

We consider networks with leaky ReLU activations, σpzq “ maxpαz, zq, for α P p0, 1s. We

show that SGD-training of such networks will lead to classifiers that are competitive with

the best halfspace over the distribution when Dx satisfies anti-concentration properties en-

joyed by log-concave isotropic distributions. Equivalently, overparameterized one-hidden-

layer neural networks are able to generalize on linearly separable data where the labels have

been corrupted by an adversary. The analysis requires overcoming both (1) the highly non-

convex nature of the underlying optimization problem, and (2) showing that a model which

can overfit noisy training data can still generalize.

In the final chapter, we consider deep residual networks, which are defined recursively as

x1 “ σpW1xq, xl “ xl´1 ` θσpWlxl´1q, l “ 2, . . . , L, fpx;W q “ WL`1xL.

Here, W1 P Rmˆd, Wl P Rmˆm for l “ 2, . . . , L, and WL`1 P R1ˆm, and θ is a scaling factor.

We show that with a proper random initialization, if the underlying data distribution can be

classified using an infinite-width neural network, gradient descent-trained oveparameterized

networks with the above architecture will generalize well to unseen data from the distribution.

This analysis relies upon the neural tangent kernel approximation, which shows that under

6

a proper scaling, overparameterized neural networks can be approximated by their tangent

kernel around their initialization. The existence of the neural tangent kernel approximation

was first shown by Jacot et al. in 2018 [JGH18], with a flurry of works in 2018–2019 using

the approximation to generate optimization and generalization guarantees for SGD-trained

neural networks [DZP19, ADH19b, ZCZ19, ALS19, CG20, ADH19a, FCG19, COB19]. We

conclude by pointing to a number of open questions that remain in understanding neural

networks trained by gradient descent.

7

CHAPTER 2

Learning a single neuron with gradient descent

8

2.1 Introduction

In this chapter, we consider the problem of learning a single neuron with gradientd escent.

Consider input features x P Rd and output labels y P R distributed according to px, yq „ D.

Let σ : RÑ R be an activation function, and consider the problem of learning the best-fitting

single neuron with activation function σ as measured by the squared loss. In particular, we

define the population risk F pwq associated with a set of weights w as

F pwq :“ p1{2qEpx,yq„D
”

`

σpwJxq ´ y
˘2
ı

. (2.1.1)

The activation function is assumed to be non-decreasing and Lipschitz, and includes nearly

all activation functions used in neural networks such as the rectified linear unit (ReLU),

sigmoid, tanh, and so on. In the agnostic PAC learning setting [KSS94], no structural

assumption is made regarding the relationship of the input and the label, and so the best-

fitting neuron could, in the worst case, have nontrivial population risk. Concretely, if we

denote

v :“ argmin}w}2ď1F pwq, OPT :“ F pvq, (2.1.2)

then the goal of a learning algorithm is to (efficiently) return weights w such that the

population risk F pwq is close to the best possible risk OPT. The agnostic learning framework

stands in contrast to the realizable PAC learning setting, where one assumes OPT “ 0, so

that there exists some v such that the labels are given by y “ σpvJxq.

The learning algorithm we consider in this chapter is empirical risk minimization using

vanilla gradient descent. We assume we have access to a set of i.i.d. samples tpxi, yiqu
n
i“1 „

Dn, and we run gradient descent with a fixed step size on the empirical risk pF pwq “

p1{2nq
řn
i“1pσpw

Jxiq ´ yiq
2. A number of early neural network studies pointed out that

the landscape of the empirical risk of a single neuron has unfavorable properties, such as

a large number of spurious local minima [BRS89, AHW95], and led researchers to instead

study gradient descent on a convex surrogate loss [HKW95, HKW99]. Despite this, we are

9

able to show that gradient descent on the empirical risk itself finds weights that not only

have small empirical risk but small population risk as well.

Surprisingly little is known about neural networks trained by minimizing the empirical

risk with gradient descent in the agnostic PAC learning setting. We are aware of two works

[ALL19, AL19] in the improper agnostic learning setting, where the goal is to return a

hypothesis h P H that achieves population risk close to zOPT, where zOPT is the smallest

possible population risk achieved by a different set of hypotheses pH. Another work considered

the random features setting where only the final layer of the network is trained and the

marginal distribution over x is uniform on the unit sphere [VW19]. But none of these address

the simplest possible neural network: that of a single neuron x ÞÑ σpwJxq. We believe a

full characterization of what we can (or cannot) guarantee for gradient descent in the single

neuron setting will help us understand what is possible in the more complicated deep neural

network setting. Indeed, two of the most common hurdles in the analysis of deep neural

networks trained by gradient descent—nonconvexity and nonsmoothness—are also present

in the case of the single neuron. We hope that our analysis in this relatively simple setup

will be suggestive of what is possible in more complicated neural network models.

Our main contributions can be summarized as follows.

1) Agnostic setting (Theorem 2.3.3). Without any assumptions on the relationship be-

tween y and x, and assuming only boundedness of the marginal distributions of x and

y, we show that for any ε ą 0, gradient descent finds a point wt with population risk

OpOPTq ` ε with sample complexity Opε´2q and runtime Opε´1q when σp¨q is strictly

increasing and Lipschitz. When σ is ReLU, we obtain a population risk guarantee of

OpOPT1{2
q ` ε with sample complexity Opε´4q and runtime Opε´2q when the marginal

distribution of x satisfies a nondegeneracy condition (Assumption 2.3.2). The sample and

runtime complexities are independent of the input dimension for both strictly increasing

activations and ReLU.

10

2) Noisy teacher network setting (Theorem 2.4.1). When y “ σpvJxq ` ξ, where ξ|x

is zero-mean and sub-Gaussian (and possibly dependent on x), we demonstrate that

gradient descent finds wt satisfying F pwtq ď OPT ` ε for activation functions that are

strictly increasing and Lipschitz assuming only boundedness of the marginal distribution

over x. The same result holds for ReLU under a marginal spread assumption (Assumption

2.3.2). The runtime and sample complexities are of order Õpε´2q, with a logarithmic

dependence on the input dimension. When the noise is bounded, our guarantees are

dimension independent. If we further know ξ ” 0, i.e. the learning problem is in the

realizable rather than agnostic setting, we can improve the runtime and sample complexity

guarantees from Opε´2q to Opε´1q by using online stochastic gradient descent (Theorem

2.9.1).

2.2 Related work

Below, we provide a high-level summary of related work in the agnostic learning and teacher

network settings. Detailed comparisons with the most related works will appear after we

present our main theorems in Sections 2.3 and 2.4. In Section 2.6, we provide tables that

describe the assumptions and complexity guarantees of our work in comparison to related

results.

Agnostic learning: The simplest version of the agnostic regression problem is to find a

hypothesis that matches the performance of the best linear predictor. In our setting, this cor-

responds to σ being the identity function. This problem is completely characterized: [Sha15]

showed that any algorithm that returns a linear predictor v has risk OPT ` Ωpε´2 ^ dε´1q

when the labels satisfy |y| ď 1 and the marginal distribution over x is supported on the unit

ball, matching upper bounds proved by [SST10] using mirror descent.

When σ is not the identity, related works are scarce. [GKK17] studied agnostic learning

of the ReLU on distributions supported on the unit sphere but had runtime and sample

11

complexity exponential in ε´1. In another work on learning a single ReLU, [GKK19] showed

that learning up to risk OPT ` ε in polynomial time is as hard as the problem of learning

sparse parities with noise, long believed to be computationally intractable. Additionally, they

provided an approximation algorithm that could learn up to OpOPT2{3
q`ε risk in polypd, ε´1q

time and sample complexity when the marginal distribution over x is a standard Gaussian. In

a related but incomparable set of results in the improper agnostic learning setting, [ALL19]

and [AL19] showed that multilayer ReLU networks trained by gradient descent can match the

population risk achieved by multilayer networks with smooth activation functions. [VW19]

studied agnostic learning of a one-hidden-layer neural network when the first layer is fixed at

its (random) initial values and the second layer is trained. A very recent work by [DGK20a]

showed that population risk OpOPTq ` ε can be achieved for the single ReLU neuron by

appealing to gradient descent on a convex surrogate for the empirical risk.

Teacher network: The literature refers to the case of y “ σpvJxq`ξ for some possible zero

mean noise ξ variously as the “noisy teacher network” or “generalized linear model” (GLM)

setting, and is related to the probabilistic concepts model [KS94]. In the GLM setting, σ

plays the role of the inverse link function; in the case of logistic regression, σ is the sigmoid

function.

The results in the teacher network setting can be broadly characterized by (1) whether

they cover arbitrary distributions over x and (2) the presence of noise (or lackthereof). The

GLMTron algorithm proposed by [KKK11], itself a modification of the Isotron algorithm

of [KS09], is known to learn a noisy teacher network up to risk OPT ` ε for any Lipschitz

and non-decreasing σ and any distribution with bounded marginals over x. [MBM18] showed

that gradient descent learns the noisy teacher network under a smoothness assumption on

the activation function for a large class of distributions. [FSS18] provided a meta-algorithm

for translating ε-stationary points of the empirical risk to points of small population risk

in the noisy teacher network setting. A recent work by [MM20] develops a modified SGD

algorithm for learning a ReLU with bounded adversarial noise on distributions where the

12

input is bounded.

Of course, any guarantee that holds for a neural network with a single fully connected

hidden layer of arbitrary width holds for the single neuron, so in this sense our work can

be connected to a larger body of work on the analysis of gradient descent used for learning

neural networks. The majority of such works are restricted to particular input distributions,

whether it is Gaussian or uniform distributions [Sol17, Tia17, SJL19, ZYW19, GKM18,

CG19b]. [DLT18] showed that in the noiseless (a.k.a. realizable) setting, a single neuron

can be learned with SGD if the input distribution satisfies a certain subspace eigenvalue

property. [YS20] studied the properties of learning a single neuron for a variety of increasing

and Lipschitz activation functions using gradient descent, as we do in this chapter, although

their analysis was restricted to the noiseless setting.

2.3 Agnostic learning setting

We begin our analysis by assuming there is no a priori relationship between x and y, so the

population risk OPT of the population risk minimizer v defined in (2.1.2) may, in general,

be a large quantity. If OPT “ 0, then σpvJxq “ y a.s. and the problem is in the realizable

PAC learning setting. In this case, we can use a modified proof technique to get stronger

guarantees for the population risk; see Section 2.9 for the complete theorems and proofs in

this setting. We will thus assume without loss of generality that 0 ă OPT ď 1.

The gradient descent method we use in this chapter is as follows. We assume we have a

training sample tpxi, yiqu
n
i“1

i.i.d.
„ Dn, and define the empirical risk for weight w by

pF pwq “ p1{2nq
řn
i“1pσpw

Jxiq ´ yiq
2.

We perform full-batch gradient updates on the empirical risk using a fixed step size η,

wt`1 “ wt ´ η∇ pF pwtq “ wt ´ pη{nq
řn
i“1pσpw

J
t xiq ´ yiqσ

1pwJt xiqxi, (2.3.1)

where σ1p¨q is the derivative of σp¨q. If σ is not differentiable at a point z, we will use its

13

subderivative.

We begin by describing one set of activation functions under consideration in this chapter.

Assumption 2.3.1. (a) σ is continuous, non-decreasing, and differentiable almost every-

where.

(b) For any ρ ą 0, there exists γ ą 0 such that inf |z|ďρ σ
1pzq ě γ ą 0. If σ is not differentiable

at z P r´ρ, ρs, assume that every subderivative g on the interval satisfies gpzq ě γ.

(c) σ is L-Lipschitz, i.e. |σpz1q ´ σpz2q| ď L|z1 ´ z2| for all z1, z2.

We note that if σ is strictly increasing and continuous, then σ satisfies Assumption

2.3.1(b) since its derivative is never zero. In particular, the assumption covers the typical

activation functions in neural networks like leaky ReLU, softplus, sigmoid, tanh, etc., but

excludes ReLU. [YS20] recently showed that when σ is ReLU, there exists a distribution D

supported on the unit ball and unit length target neuron v such that even in the realizable

case of y “ σpvJxq, if the weights are initialized randomly using a product distribution,

there exists a constant c0 such that with high probability, F pwtq ě c0 ą 0 throughout

the trajectory of gradient descent. This suggests that gradient-based methods for learning

ReLUs are likely to fail without additional assumptions. Because of this, they introduced

the following marginal spread assumption to handle the learning of ReLU.

Assumption 2.3.2. There exist constants α, β ą 0 such that the following holds. For any

w ‰ u, denote by Dw,u the marginal distribution of D on spanpw, uq, viewed as a distribution

over R2, and let pw,u be its density function. Then infzPR2:}z}ďα pw,upzq ě β.

This assumption covers, for instance, log-concave distributions like the Gaussian and

uniform distribution with α, β “ Op1q [LV07]. We note that a similar assumption was

used in recent work on learning halfspaces with Massart noise [DKT20a]. We will use this

assumption for all of our results when σ is ReLU. Additionally, although the ReLU is not

differentiable at the origin, we will denote by σ1p0q its subderivative, with the convention

14

that σ1p0q “ 1. Such a convention is consistent with the implementation of ReLUs in modern

deep learning software packages.

With the above in hand, we can describe our main theorem.

Theorem 2.3.3. Suppose the marginals of D satisfy }x}2 ď BX a.s. and |y| ď BY

a.s. Let a :“ p|σpBXq| ` BY q
2. When σ satisfies Assumption 2.3.1, let γ ą 0 be the

constant corresponding to ρ “ 2BX and fix a step size η ď p1{8qγL´3B´2
X . For any

δ ą 0, with probability at least 1 ´ δ, gradient descent initialized at the origin and run

for T “ rη´1γ´1L´1B´1
X rOPT`an

´1{2 log1{2
p4{δqs´1s iterations finds weights wt, t ă T , such

that

F pwtq ď C1OPT` C2n
´1{2, (2.3.2)

where C1 “ 12γ´3L3 ` 2 and C2 “ OpL3B2
X

a

logp1{δq ` C1a
a

logp1{δqq.

When σ is ReLU, further assume that Dx satisfies Assumption 2.3.2 for constants α, β ą

0, and let ν “ α4β{8
?

2. Fix a step size η ď p1{4qB´2
X . For any δ ą 0, with probability

at least 1 ´ δ, gradient descent initialized at the origin and run for T “ rη´1B´1
X rOPT `

an´1{2 log1{2
p4{δqs´1{2s iterations finds a point wt such that

F pwtq ď C1OPT
1{2
` C2n

´1{4
` C3n

´1{2, (2.3.3)

where C1 “ OpBXν
´1q, C2 “ OpC1a

1{2 log1{4
p1{δqq, and C3 “ OpB2

Xν
´1 log1{2

p1{δqq.

We remind the reader that the optimization problem for the empirical risk is highly

nonconvex [AHW95] and thus any guarantee for the empirical risk, let alone the population

risk, is nontrivial. This makes us unsure if the suboptimal guarantee of OpOPT1{2
q for ReLU

is an artifact of our analysis or a necessary consequence of nonconvexity.

In comparison to recent work, [GKK19] considered the agnostic setting for the ReLU

activation when the marginal distribution over x is a standard Gaussian and showed that

learning up to risk OPT ` ε is as hard as learning sparse parities with noise. By using

an approximation algorithm of [ABL17], they were able to show that one can learn up to

15

OpOPT2{3
q ` ε with Oppolypd, ε´1qq runtime and sample complexity. In a very recent work,

[DGK20a] improved the population risk guarantee for the ReLU to OpOPTq ` ε when the

features are sampled from an isotropic log-concave distribution by analyzing gradient descent

on a convex surrogate loss. Projected gradient descent on this surrogate loss produces the

weight updates of the GLMTron algorithm of [KKK11]. Using the solution found by gradient

descent on the surrogate loss, they proposed an improper learning algorithm that improves

the population risk guarantee from OpOPTq ` ε to p1` δqOPT` ε for any δ ą 0.

By contrast, we show that gradient descent on the empirical risk learns up to a population

risk of OpOPTq ` ε for any joint distribution with bounded marginals when σ is strictly

increasing and Lipschitz, even though the optimization problem is nonconvex. In the case

of ReLU, our guarantee holds for the class of bounded distributions over x that satisfy

the marginal spread condition of Assumption 2.3.2 and hence covers (bounded) log-concave

distributions, although the guarantee is OpOPT1{2
q in this case. For all activation functions

we consider, the runtime and sample complexity guarantees do not have (explicit) dependence

on the dimension.1 Moreover, we shall see in the next section that if the data is known to

come from a noisy teacher network, the guarantees of gradient descent improve to OPT` ε

for both strictly increasing activations and ReLU.

In the remainder of this section we will prove Theorem 2.3.3. Our proof relies upon the

following auxiliary errors for the true risk F :

Gpwq :“ p1{2qEpx,yq„D
”

`

σpwJxq ´ σpvJxq
˘2
ı

,

Hpwq :“ p1{2qEpx,yq„D
”

`

σpwJxq ´ σpvJxq
˘2
σ1pwJxq

ı

. (2.3.4)

We will denote the corresponding empirical risks by pGpwq and pHpwq. We first note that G

trivially upper bounds F : this follows by a simple application of Young’s inequality and,

when Ery|xs “ σpvJxq, by using iterated expectations.

1We note that for some distributions, the BX term may hide an implicit dependence on d; more detailed
comments on this are given in Section 2.6.

16

Claim 2.3.4. For any joint distribution D, for any vector u, and any continuous activation

function σ, F puq ď 2Gpuq ` 2F pvq. If additionally we know that Ery|xs “ σpvJxq, we have

F puq “ Gpuq ` F pvq.

This claim shows that in order to show the population risk is small, it suffices to show

that G is small. It is easy to see that if infzPR σ
1pzq ě γ ą 0, then Hpwq ď ε implies

Gpwq ď γ´1ε, but the only typical activation function that satisfies this condition is the

leaky ReLU. Fortunately, when σ satisfies Assumption 2.3.1, or when σ is ReLU and D

satisfies Assumption 2.3.2, Lemma 2.3.5 below shows that H is still an upper bound for G.

The proof is deferred to Appendix 2.7.

Lemma 2.3.5. If σ satisfies Assumption 2.3.1, }x}2 ď B a.s., and }w}2 ď W , then for γ

corresponding to ρ “ WB, Hpwq ď ε implies Gpwq ď γ´1ε. If σ is ReLU and D satisfies

Assumption 2.3.2 for some constants α, β ą 0, and if for some ε ą 0 the bound F pwq ď

βα4ε{8
?

2 holds, then }w ´ v}2 ď 1 implies Gpwq ď ε.

Claim 2.3.4 and Lemma 2.3.5 together imply that if gradient descent finds a point with

auxiliary error Hpwtq ď OpOPTαq for some α ď 1, then gradient descent achieves population

risk OpOPTαq. In the remainder of this section, we will show that this is indeed the case. In

Section 2.3.1, we first consider activations satisfying Assumption 2.3.1, for which we are able

to show Hpwtq ď OpOPTq. In Section 2.3.2, we show Hpwtq ď OpOPT1{2
q for the ReLU.

2.3.1 Strictly increasing activations

In Lemma 2.3.6 below, we show that pHpwtq is a natural quantity of the gradient descent

algorithm that in a sense tells us how good a direction the gradient is pointing at time t, and

that pHpwtq can be as small as Op pF pvqq. Our proof technique is similar to that of [KKK11],

who studied the GLMTron algorithm in the (non-agnostic) noisy teacher network setup.

Lemma 2.3.6. Suppose that }x}2 ď BX a.s. under Dx. Suppose σ satisfies Assumption

2.3.1, and let γ be the constant corresponding to ρ “ 2BX . Assume pF pvq ą 0. Gradient

17

descent with fixed step size η ď p1{8qγL´3B´2
X initialized at w0 “ 0 finds weights wt satisfying

pHpwtq ď 6L3γ´2
pF pvq within T “ rη´1γ´1L´1B´1

X
pF pvq´1s iterations, with }wt ´ v}2 ď 1 for

each t “ 0, . . . , T ´ 1.

Before beginning the proof, we first note the following fact, which allows us to connect

terms that appear in the gradient to the square loss.

Fact 2.3.7. If σ is strictly increasing on an interval ra, bs with σ1pzq ě γ ą 0 for all z P ra, bs,

and if z1, z2 P ra, bs, then, it holds that

γpz1 ´ z2q
2
ď pσpz1q ´ σpz2qq pz1 ´ z2q. (2.3.5)

Proof of Lemma 2.3.6. The proof comes from the following induction statement. We claim

that for every t P N, either (a) pHpwτ q ď 6L3γ´2
pF pvq for some τ ă t, or (b) }wt ´ v}

2
2 ď

}wt´1 ´ v}
2
2 ´ ηL pF pvq holds. If this claim is true, then until gradient descent finds a point

where pHpwtq ď 6L3γ´2
pF pvq, the squared distance }wt ´ v}

2
2 decreases by ηL pF pvq at every

iteration. Since }w0 ´ v}
2
2 “ 1, this means there can be at most 1{pηL pF pvqq “ η´1L´1

pF pvq´1

iterations until we reach pHpwtq ď 6L3γ´2
pF pvq.

So let us now suppose the induction hypothesis holds for t, and consider the case t ` 1.

If (a) holds, then we are done. So now consider the case that for every τ ď t, we have

pHpwτ q ą 6L3γ´2
pF pvq. Since (a) does not hold, }wτ ´ v}

2
2 ď }wτ´1 ´ v}

2
2 ´ ηL

pF pvq holds for

each τ “ 1, . . . , t, and so }w0 ´ v}2 “ 1 implies

}wτ ´ v}2 ď 1 @τ ď t. (2.3.6)

In particular, }wτ}2 ď 1 ` }v}2 ď 2 holds for all τ ď t. By Cauchy–Schwarz, this implies

|wJτ x|_|v
Jx| ď 2BX a.s. By defining ρ “ 2BX and letting γ be the constant from Assumption

2.3.1, this implies σ1pzq ě γ ą 0 for all |z| ď 2BX . Fact 2.3.7 therefore implies

σ1pwJτ xq ě γ ą 0 and pσpwJτ xq ´ σpv
Jxqq ¨ pwJτ x´ v

Jxq ě γpwJτ x´ v
Jxq2 @τ ď t.

(2.3.7)

18

We proceed with the proof by demonstrating an appropriate lower bound for the quantity

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 “ 2η

A

∇ pF pwtq, wt ´ v
E

´ η2
›

›

›
∇ pF pwtq

›

›

›

2

2
.

We begin with the inner product term. We have

@

∇ pF pwtq, wt ´ v
D

“ p1{nq
n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘

σ1pwJt xiqpw
J
t xi ´ v

Jxiq

` p1{nq
n
ÿ

i“1

`

σpvJxiq ´ yi
˘

γ´1{2
¨ γ1{2σ1pwJt xiqpw

J
t xi ´ v

Jxiq

ě pγ{nq
n
ÿ

i“1

`

wJt xi ´ v
Jxi

˘2
σ1pwJt xiq

´
γ´1

2n

n
ÿ

i“1

`

σpvJxiq ´ yi
˘2
σ1pwJt xiq ´

γ

2n

n
ÿ

i“1

`

wJt xi ´ v
Jxi

˘2
σ1pwJt xiq

ě
γ

2

n
ÿ

i“1

pwJt xi ´ v
Jxiq

2σ1pwJt xiq ´ Lγ
´1

pF pvq

ě γL´2
pHpwtq ´ Lγ

´1
pF pvq. (2.3.8)

In the first inequality we used (2.3.7) for the first term and Young’s inequality for the second

(and that σ1 ě 0). For the final two inequalities, we use that σ is L-Lipschitz.

For the gradient upper bound,

›

›

›
∇ pF pwq

›

›

›

2

ď 2

›

›

›

›

›

1

n

n
ÿ

i“1

pσpwJxiq ´ σpv
Jxiqqσ

1
pwJxiqxi

›

›

›

›

›

2

` 2

›

›

›

›

›

1

n

n
ÿ

i“1

pσpvJxiq ´ yiqσ
1
pwJxiqxi

›

›

›

›

›

2

ď
2

n

n
ÿ

i“1

pσpwJxiq ´ σpv
Jxiqq

2σ1pwJxiq
2
}xi}

2
2

`
2

n

n
ÿ

i“1

pσpvJxiq ´ yiq
2σ1pwJxiq

2
}xi}

2
2

ď
2LB2

X

n

n
ÿ

i“1

pσpwJxiq ´ σpv
Jxiqq

2σ1pwJxiq ` 4L2B2
X
pF pvq

“ 4LB2
X
pHpwq ` 4L2B2

X
pF pvq. (2.3.9)

19

The first inequality is due to Young’s inequality, and the second is due to Jensen’s inequality.

The last inequality holds because σ is L-Lipschitz and }x}2 ď BX a.s. Putting (2.3.8) and

(2.3.9) together and taking η ď p1{8qL´3B´2
X γ,

}wt ´ v}
2
´ }wt`1 ´ v}

2
ě 2ηpγL´2

pHpwtq ´ Lγ
´1

pF pvqq ´ 4η2
pLB2

X
pHpwtq ` L

2B2
X
pF pvqq

ě 2η

ˆ

γL´2

2
pHpwtq ´

5

2
Lγ´1

pF pvq

˙

ě ηγL pF pvq.

The last inequality uses the induction assumption that pHpwtq ě 6L3γ´2
pF pvq, completing

the proof.

Since the auxiliary error pHpwq is controlled by pF pvq, we need to bound pF pvq. When

the marginals of D are bounded, Lemma 2.3.8 below shows that pF pvq concentrates around

F pvq “ OPT at rate n´1{2 by Hoeffding’s inequality; for completeness, the proof is given in

Section 2.10.

Lemma 2.3.8. If }x}2 ď BX and |y| ď BY a.s. under Dx and Dy respectively, and if σ is

non-decreasing, then for a :“ p|σpBXq| `BY q
2 and }v}2 ď 1, we have with probability at

least 1´ δ,

| pF pvq ´ OPT| ď 3a
a

n´1 logp2{δq.

The final ingredient to the proof is translating the bounds for the empirical risk to one for

the population risk. Since Dx is bounded and we showed in Lemma 2.3.6 that }wt ´ v}2 ď 1

throughout the gradient descent trajectory, we can use standard properties of Rademacher

complexity to get it done. The proof for Lemma 2.3.9 can be found in Section 2.10.

Lemma 2.3.9. Suppose σ is L-Lipschitz and }x}2 ď BX a.s. Denote `pw;xq by the loss

p1{2q
`

σpwJxq ´ σpvJxq
˘2

. For a training set S „ Dn, let RSpGq denote the empirical

Rademacher complexity of the following function class

G :“ tx ÞÑ wJx : }w ´ v}2 ď 1, }v}2 “ 1u.

20

Then we have

Rp` ˝ σ ˝ Gq “ ES„DnRSp` ˝ σ ˝ Gq ď 2L3B2
X{
?
n.

With Lemmas 2.3.6, 2.3.8 and 2.3.9 in hand, the bound for the population risk follows

in a straightforward manner.

Proof of Theorem 2.3.3 for strictly increasing activations. By Lemma 2.3.6, there exists wt

with t ă T and }wt ´ v}2 ď 1 such that pHpwtq ď 6L3γ´2
pF pvq. By Lemmas 2.3.5 and Lemma

2.3.8, this implies that with probability at least 1´ δ{2,

pGpwtq ď 6L3γ´3
´

OPT` 3an´1{2 log1{2
p4{δq

¯

. (2.3.10)

Since }w ´ v}2 ď 1 implies `pw;xq “ p1{2qpσpwJxq ´ σpvJxqq2 ď L2B2
X{2, standard results

from Rademacher complexity (e.g., Theorem 26.5 of [SB14]) imply that with probability at

least 1´ δ{2,

Gpwtq ď pGpwtq ` ES„DnRSp` ˝ σ ˝ Gq ` 2L2B2
X

c

2 logp8{δq

n
,

where ` is the loss and G is the function class defined in Lemma 2.3.9. We can combine

(2.3.10) with Lemma 2.3.9 and a union bound to get that with probability at least 1´ δ,

Gpwtq ď 6L3γ´3

˜

OPT` 3a

c

logp4{δq

n

¸

`
2L3B2

X?
n

`
2L2B2

X

a

2 logp8{δq
?
n

.

This shows that Gpwtq ď OpOPT` n´1{2q. By Claim 2.3.4, we have

F pwtq ď 2Gpwtq ` 2OPT ď OpOPT` n´1{2
q,

completing the proof for those σ satisfying Assumption 2.3.1.

2.3.2 ReLU activation

The proof above crucially relies upon the fact that σ is strictly increasing so that we may

apply Fact 2.3.7 in the proof of Lemma 2.3.6. In particular, it is difficult to show a strong

21

lower bound for the gradient direction term in (2.3.8) if it is possible for pz1 ´ z2q
2 to be

arbitrarily large when pσpz1q ´ σpz2qq
2 is small. To get around this, we will use the same

proof technique wherein we show that the gradient lower bound involves a term that relates

the auxiliary error pHpwtq to pF pvq, but our bound will involve a term of the form Op pF pvq1{2q

rather than Op pF pvqq. To do so, we will use the following property of non-decreasing Lipschitz

functions.

Fact 2.3.10. If σ is non-decreasing and L-Lipschitz, then for any z1, z2 in the domain of σ,

it holds that pσpz1q ´ σpz2qqpz1 ´ z2q ě L´1pσpz1q ´ σpz2qq
2.

With this fact we can present the analogue to Lemma 2.3.6 that holds for a general

non-decreasing and Lipschitz activation and hence includes the ReLU.

Lemma 2.3.11. Suppose that }x}2 ď BX a.s. under Dx. Suppose σ is non-decreasing and

L-Lipschitz. Assume pF pvq P p0, 1q. Gradient descent with fixed step size η ď p1{4qL´2B´2
X

initialized at w0 “ 0 finds weights wt satisfying pHpwtq ď 2L2BX
pF pvq1{2 within T “

rη´1L´1B´1
X

pF pvq´1{2s iterations, with }wt ´ v}2 ď 1 for each t “ 0, . . . , T ´ 1.

Proof. Just as in the proof of Lemma 2.3.6, the lemma is proved if we can show that for every

t P N, either (a) pHpwτ q ď 2L2BX
pF pvq1{2 for some τ ă t, or (b) }wt ´ v}

2
2 ď }wt´1 ´ v}

2
2 ´

ηLBX
pF pvq1{2 holds. To this end we assume the induction hypothesis holds for some t P N,

and since we are done if (a) holds, we assume (a) does not hold and thus for every τ ď t,

we have pHpwτ q ą 2L2BX
pF pvq1{2. Since (a) does not hold, }wτ ´ v}

2
2 ď }wτ´1 ´ v}

2
2 ´

ηLBX
pF pvq1{2 holds for each τ “ 1, . . . , t and hence the identity

}wτ ´ v}2 ď 1 @τ ď t, (2.3.11)

holds. We now proceed with showing the analogues of (2.3.8) and (2.3.9). We begin with

22

the lower bound,

@

∇ pF pwtq, wt ´ v
D

“ p1{nq
n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘

σ1pwJt xiqpw
J
t xi ´ v

Jxiq

`
@

p1{nq
n
ÿ

i“1

`

σpvJxiq ´ yi
˘

σ1pwJt xiqxi, wt ´ v
D

(2.3.12)

ě p1{Lnq
n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘2
σ1pwJt xiq

´ }wt ´ v}2

›

›

›

›

p1{nq
n
ÿ

i“1

`

σpvJxiq ´ yi
˘

σ1pwJt xiqxi

›

›

›

›

2

ě 2L´1
pHpwtq ´ LBX

pF pvq1{2. (2.3.13)

In the first inequality, we have used Fact 2.3.10 and that σ1pzq ě 0 for the first term. For

the second term, we use Cauchy–Schwarz. The last inequality is a consequence of (2.3.11),

Cauchy–Schwarz, and that σ1pzq ď L and }x}2 ď BX . As for the gradient upper bound

at wt, the bound (2.3.9) still holds since it only uses that σ is L-Lipschitz. The choice of

η ď p1{4qL´2B´2
X then ensures

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 ě 2η

´

2L´1
pHpwtq ´ LBX

pF pvq1{2
¯

´ η2
´

4B2
XL

pHpwtq ` 4L2B2
X
pF pvq

¯

ě η
´

3L´1
pHpwtq ´ 3LBX

´

pF pvq _ pF pvq1{2
¯¯

ě ηLBX
pF pvq1{2, (2.3.14)

where the last line comes from the induction hypothesis that pHpwtq ě 2L2BX
pF pvq1{2 and

since pF pvq P p0, 1q. This completes the proof.

With this lemma in hand, the proof of Theorem 2.3.3 follows just as in the strictly

increasing case.

Proof of Theorem 2.3.3 for ReLU. We highlight here the main technical differences with the

proof for the strictly increasing case. Although Lemma 2.3.9 applies to the loss function

23

`pw;xq “ p1{2q
`

σpwJxq ´ σpvJxq
˘2

, the same results hold for the loss function ˜̀pw;xq “

`pw;xqσ1pwJxq for ReLU, since ∇σ1pwJxq ” 0 a.e. Thus ˜̀ is still BX-Lipschitz, and we have

ES„DnRS

´

˜̀˝ σ ˝ G
¯

ď
2B2

X?
n
. (2.3.15)

With this in hand, the proof is essentially identical: By Lemmas 2.3.11 and 2.3.8, with

probability at least 1´ δ{2 gradient descent finds a point with

pHpwtq ď 2BX
pF pvq1{2 ď 2BX

˜

OPT1{2
`

?
3a log1{4

p4{δq

n1{4

¸

. (2.3.16)

We can then use (2.3.15) to get that with probability at least 1´ δ,

Hpwtq ď 2BX

˜

OPT1{2
`

?
3a log1{4

p4{δq

n1{4

¸

`
2B2

X?
n
` 2B2

X

c

2 logp8{δq

n
. (2.3.17)

Since Dx satisfies Assumption 2.3.2 and }wt ´ v}2 ď 1, Lemma 2.3.5 yieldsGpwtq ď 8
?

2α´4β´1Hpwtq.

Then applying Claim 2.3.4 completes the proof.

Remark 2.3.12. An examination of the proof of Theorem 2.3.3 shows that when σ satisfies

Assumption 2.3.1, any initialization with }w0 ´ v}2 bounded by a universal constant will

suffice. In particular, if we use Gaussian initialization w0 „ Np0, τ 2Idq for τ 2 “ Op1{dq,

then by concentration of the chi-square distribution the theorem holds with (exponentially)

high probability over the random initialization. For ReLU, initialization at the origin greatly

simplifies the proof since Lemma 2.3.11 shows that }wt ´ v}2 ď }w0 ´ v}2 for all t. When

w0 “ 0, this implies }wt ´ v}2 ď 1 and allows for an easy application of Lemma 2.3.5. For

isotropic Gaussian initialization, one can show that with probability approaching 1/2 that

}w0 ´ v}2 ă 1 provided its variance satisfies τ 2 “ Op1{dq (see e.g. Lemma 5.1 of [YS20]). In

this case, the theorem will hold with constant probability over the random initialization.

2.4 Noisy teacher network setting

In this section, we consider the teacher network setting, where the joint distribution of

px, yq „ D is given by a target neuron v (with }v}2 ď 1) plus zero-mean s-sub-Gaussian

24

noise,

y|x „ σpvJxq ` ξ, Eξ|x “ 0.

We assume throughout this section that ξ ı 0; we deal with the realizable setting separately

(and achieve improved sample complexity) in Section 2.9. We note that this is precisely the

setup of the generalized linear model with (inverse) link function σ. We further note that

we only assume that Ery|xs “ σpvJxq, i.e., the noise is not assumed to be independent of

the input x, and thus falls into the probabilistic concept learning model of [KS94].

With the additional structural assumption of a noisy teacher, we can improve the agnostic

result from OpOPTq ` ε (for strictly increasing activations) and OpOPT1{2
q ` ε (for ReLU)

to OPT ` ε. The key difference from the proof in the agnostic setting is that when trying

to show the gradient points in a good direction as in (2.3.8) and (2.3.12), since we know

Ery|xs “ σpvJxq, the average of terms of the form aipσpv
Jxiq ´ yiq with fixed and bounded

coefficients ai will concentrate around zero. This allows us to improve the lower bound from

x∇ pF pwtq, wt ´ vy ě Cp pHpwq ´ pF pvqαq to one of the form ě Cp pHpwq ´ εq, where C is an

absolute constant. The full proof of Theorem 2.4.1 is given in Section 2.8.

Theorem 2.4.1. Suppose Dx satisfies }x}2 ď BX a.s. and Ery|xs “ σpvJxq for some }v}2 ď

1. Assume that σpvJxq´y is s-sub-Gaussian. Assume gradient descent is initialized at w0 “ 0

and fix a step size η ď p1{4qL´2B´2
X . If σ satisfies Assumption 2.3.1, let γ be the constant

corresponding to ρ “ 2BX . There exists an absolute constant c0 ą 0 such that for any

δ ą 0, with probability at least 1´ δ, gradient descent for T “ η´1
?
n{pc0LBxs

a

logp4d{δqq

iterations finds weights wt, t ă T , satisfying

F pwtq ď OPT` C1n
´1{2

` C2n
´1{2

a

logp8{δq ` C3n
´1{2

a

logp4d{δq, (2.4.1)

where C1 “ 4L3B2
X , C2 “ 2

?
2L2B2

X

?
2, and C3 “ 4c0γ

´1L2sBX . When σ is ReLU, further

assume that Dx satisfies Assumption 2.3.2 for constants α, β ą 0, and let ν “ α4β{8
?

2.

Then (2.4.1) holds for C1 “ B2
Xν

´1, C2 “ 2C1, and C3 “ 4c0sν
´1BX .

25

We first note that although (2.4.1) contains a logpdq term, the dependence on the di-

mension can be removed if we assume that the noise is bounded rather than sub-Gaussian;

details for this are given in Section 2.8. As mentioned previously, if we are in the realizable

setting, i.e. ξ ” 0, we can improve the sample and runtime complexities to Opε´1q by using

online SGD and a martingale Bernstein bound. For details on the realizable case, see Section

2.9.

In comparison with existing literature, [KKK11] proposed GLMTron to show the learn-

ability of the noisy teacher network for a non-decreasing and Lipschitz activation σ when

the noise is bounded.2 In GLMTron, updates take the form wt`1 “ wt ´ ηg̃t where g̃t “

pσpwJt xq ´ yqx, while in gradient descent, the updates take the form wt`1 “ wt ´ ηgt where

gt “ g̃tσ
1pwJt xq. Intuitively, when the weights are in a bounded region and σ is strictly

increasing and Lipschitz, the derivative satisfies σ1pwJt xq P rγ, Ls and so the additional σ1

factor will not significantly affect the algorithm. For ReLU this is more complicated as the

gradient could in the worst case be zero in a large region of the input space, preventing

effective learnability using gradient-based optimization, as was demonstrated in the negative

result of [YS20]. For this reason, a type of nondegeneracy condition like Assumption 2.3.2

is essential for gradient descent on ReLUs.

In terms of other results for ReLU, recent work by [MM20] introduced another modified

version of SGD, where updates now take the form wt`1 “ wt ´ ηpgt, with pgt “ g̃tσ
1py ą θq,

and θ is an upper bound for an adversarial noise term. They showed that this modified SGD

recovers the parameter v of the teacher network under the nondegeneracy condition that the

matrix ExrxxJ1pvJx ě 0qs is positive definite. A similar assumption was used by [DLT18]

in the realizable setting.

Our GLM result is also comparable to recent work by [FSS18], where the authors provide

a meta-algorithm for translating guarantees for ε-stationary points of the empirical risk to

2A close inspection of the proof shows that sub-Gaussian noise can be handled with the same concentration
of norm sub-Gaussian random vectors that we use for our results.

26

guarantees for the population risk provided that the population risk satisfies the so-called

“gradient domination” condition and the algorithm can guarantee that the weights remain

bounded (see their Proposition 3). By considering GLMs with bounded, strictly increasing,

Lipschitz activations, they show the gradient domination condition holds, and any algorithm

that can find a stationary point of an `2-regularized empirical risk objective is guaranteed to

have a population risk bound. In contrast, our result concretely shows that vanilla gradient

descent learns the GLM, even in the ReLU setting.

2.5 Conclusion and remaining open problems

In this work, we considered the problem of learning a single neuron with the squared loss

by using gradient descent on the empirical risk. We first analyzed this in the agnostic PAC

learning framework and showed that if the activation function is strictly increasing and

Lipschitz, then gradient descent finds weights with population risk OpOPTq ` ε, where OPT

is the smallest possible population risk achieved by a single neuron. When the activation

function is ReLU, we showed that gradient descent finds a point with population risk at

most OpOPT1{2
q ` ε. Under the more restricted noisy teacher network setting, we showed

the population risk guarantees improve to OPT ` ε for both strictly increasing activations

and ReLU.

Our work points towards a number of open problems. Does gradient descent on the

empirical risk provably achieve population risk with a better dependence on OPT than we

have shown in this work, or are there distributions for which this is impossible? Recent work

by [GGK20] provides a statistical query lower bound for learning a sigmoid with respect

to the correlation loss Er`pyσpwJxqqs, but we are not aware of lower bounds for learning

non-ReLU single neurons under the squared loss. It thus remains a possibility that gradient

descent (or another algorithm) can achieve OPT ` ε risk for such activation functions. For

ReLU, [DGK20a] showed that gradient descent on a convex surrogate for the empirical risk

27

can achieve OpOPTq`ε population risk for log concave distributions; it would be interesting

if such bounds could be shown for gradient descent on the empirical risk itself.

2.6 Detailed comparisons with related work

Here, we describe comparisons of our results to those in the literature and give detailed

comments on the specific rates we achieve. In Table 2.1, we compare our agnostic learning

results. We note the guarantees for the population risk in the fourth column, the marginal

distributions over x for which the bounds hold in the fifth column, and the sample complexity

required to reach the specified level of risk plus some ε ą 0 in the final column. Our results

in this setting come from Theorem 2.3.3. The Big-O notation hides constants that may

depend on the parameters of the distribution or activation function, but does not hide

explicit dependence on the dimension d. However, the parameters of the distribution itself

may have implicit dependence on the dimension. In particular, for bounded distributions

that satisfy }x}2 ď BX , the Opq hides multiplicative factors that depend on BX . This means

that if BX depends on d, so will our bounds. For ReLU, the Opq hides polynomial factors in

BX . For non-ReLU, the worst-case activation functions under consideration in Assumption

2.3.1 (e.g. the sigmoid) can have γ „ expp´BXq, making the runtime and sample complexity

depend on γ´1 „ exppBXq, in which case it is preferable for BX to be a constant independent

of the dimension. We note that the sample complexity for [DGK20a] for the p1 ` δqOPT

guarantee is Opε´2rdδ´3ν´2sδ
´3
q when Dx is ν sub-Gaussian for some ν “ Op1q, and thus the

exact dependence on the dimension depends on the sub-Gaussian norm and error threshold

desired.

In Table 2.2, we provide comparisons of our noisy teacher network setting, where y “

σpvJxq` ξ for some zero mean noise ξ. Our results in this setting come from Theorem 2.4.1.

The complexity column here denotes the sample complexity required to reach population

risk OPT` ε. The subspace eigenvalue assumption given by [MM20] is that ErxxJ1pvJx ě

28

0qs ą 0. We note that the result of Mukherjee and Muthukumar holds for any bounded noise

distribution and thus is in the more general adversarial noise (but not agnostic3) setting.

Finally, in Table 2.3, we provide comparisons with results in the realizable setting (ξ ” 0q.

(Our results in this setting are given in Theorem 2.9.1 in Section 2.9.) For G.D. and S.G.D.,

the complexity column denotes the sample complexity required to reach population risk ε.

For G.D. or gradient flow on the population risk, it refers to the runtime complexity only

as there are no samples in this setting. For [DLT18], the subspace eigenvalue assumption is

that for any w and for the target neuron v, it holds that ErxxJ1pwJx ě 0, vJx ěqs ą 0.

This is a nondegeneracy assumption that is related to the marginal spread condition given

in Assumption 2.3.2, in the sense that it allows for one to show that H is an upper bound for

G. Finally, we note that any result in the agnostic or noisy teacher network settings applies

in the realizable setting as well.

2.7 Proof of Lemma 2.3.5

To prove Lemma 2.3.5, we use the following result of [YS20].

Lemma 2.7.1 (Lemma B.1, [YS20]). Under Assumption 2.3.2, for any two vectors a, b P R2

3Agnostic learning results typically require i.i.d. samples, and adversarial noise may depend on other
samples in malicious ways. Even in the i.i.d. case, trouble arises if one wishes to use parameter recovery to
show that a given algorithm competes with the population risk minimizer. Consider the ReLU with labels
given by y “ σpvJxq ` ξ where ξ “ ´σpvJxq. The zero vector minimizes the population risk, and so any
algorithm that returns the target neuron σpvJxq has large population risk. A similar phenomenon occurs
for ξ “ σpvJxq.

4Although their result is stated for the ReLU and isotropic log-concave distributions, their results also

apply for L-Lipschitz activations satisfying infz σ
1pzq ě γ ą 0 for isotropic distributions that satisfy our

Assumption 2.3.2. In this setting, one can show that the Chow parameters satisfy }χpσuq ´ χpσwq}
2
ě

γL´1ErpσpuJxq ´ σpvJxqq2s, from which the result follows easily.

29

Table 2.1: Comparison of single neuron results in the agnostic setting

Algorithm Activations Pop. risk Dx
Sample

Complexity

Halfspace reduction

[GKK19]

ReLU OpOPT2{3
q standard

Gaussian

Oppolypd, ε´1qq

Convex surrogate

G.D.

[DGK20a]4

ReLU OpOPTq isotropic

+log-concave

Opdε´2q

Convex surrogate

G.D.

+ Domain Partition

[DGK20a]

ReLU p1` δqOPT sub-Gaussian Opdcε´2q

Gradient Descent

(This chapter)

strictly

increasing

+ Lipschitz

OpOPTq bounded Opε´2q

Gradient Descent

(This chapter)

ReLU OpOPT1{2
q bounded

+ marginal

spread

Opε´4q

satisfying θpa, bq ď π ´ δ for δ P p0, πs, it holds that

inf
uPR2: }u}“1

ż

puJyq21paJy ě 0, bJy ě 0, }y} ď αqdy ě
α4

8
?

2
sin3

pδ{4q.

Proof of Lemma 2.3.5. We first consider the case when σ satisfies Assumption 2.3.1. By

assumption,

F pwq “ p1{2qE
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq

ı

ď ε.

30

Table 2.2: Comparison of single neuron results in the noisy teacher network setting

Algorithm Activations Dx
Sample

Complexity

GLMTron

[KKK11]

increasing

+ Lipschitz

bounded Opε´2q

Modified SGD

[MM20]

ReLU bounded

+ subspace eigen-

value

Oplogp1{εqq

Meta-algorithm

[FSS18]

strictly

increasing

+ Lipschitz

+ σ1 Lipschitz

bounded Opε´2 ^

dε´1q

Gradient Descent

[MBM18]

strictly

increasing

+ diff’ble

+ Lipschitz

+ σ1 Lipschitz

+ σ2 Lipschitz

centered

+ sub-Gaussian

+ ErxxJs ą 0

Opdε´1q

Gradient Descent

(This chapter)

strictly

increasing

+ Lipschitz

bounded Opε´2q

Gradient Descent

(This chapter)

ReLU bounded

+ marginal spread

Opε´2q

31

Table 2.3: Comparison of single neuron results in the realizable setting

Algorithm Activations Dx
Sample

Complexity

SGD [DLT18] ReLU bounded

+ subspace eigen-

value

Oplogp1{εqq

Projected Regularized GD

[Sol17]

ReLU standard

Gaussian

Oplogp1{εqq

Population GD[YS20] infzPR σ
1pzq ą 0 bounded

+ ErxxJs ą 0

Oplogp1{εqq

Population GD [YS20] inf0ăzăα σ
1pzq ą 0

+ Lipschitz

bounded

+ marginal spread

Oplogp1{εqq

Population Gradient Flow

[YS20]

ReLU marginal spread

+ spherical symme-

try

Oplogp1{εqq

SGD [YS20] inf0ăzăα σ
1pzq ą 0

+ Lipschitz

bounded

+ marginal spread

Õpε´2q

Population GD + SGD

(This work)

strictly increasing

+ Lipschitz

bounded Opε´1q

Population GD + SGD

(This work)

ReLU bounded

+ marginal spread

Opε´1q

Since the term in the expectation is nonnegative, restricting the integral to a smaller set

32

only decreases its value, so that

p1{2qE
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq1p|w

J
t x| ď ρq

ı

ď ε. (2.7.1)

For ρ “ BW , since }w}2 ď W , the inclusion t}x}2 ď ρ{W u “ t}x}2 ď Bu Ă t|wJt x| ď ρu

holds. This means we can lower bound (2.7.1) by substituting the indicator 1p|wJt x| ď ρq

with 1p}x}2 ď Bq, which is identically one by assumption. Since Hpwq ď ε, this implies

γ

2
E
”

`

σpwJt xq ´ σpv
Jxq

˘2
ı

ď p1{2qE
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq1p}x}2 ď Bq

ı

ď ε.

Dividing both sides by γ completes this part of the proof.

For ReLU, let us assume that F pwq ď ε, and denote the event

Kw,v :“ twJx ě 0, vJx ě 0u,

and define ζ :“ βα4{8
?

2. Since F pwq “ ErpσpwJxq ´ σpvJxqq21pwJx ě 0qs ď ζε, it holds

that

E
”

`

σpwJxq ´ σpvJxq
˘2
1pKw,vq

ı

ď ζε. (2.7.2)

Denote pw and pv as the projections of w and v respectively onto the two dimensional subspace

spanpw, vq. Using a proof similar to that of [YS20], we have

Ex„D
”

`

wJx´ vJx
˘2
1pKw,vq

ı

“ }w ´ v}22 Ex„D

»

–

˜

ˆ

w ´ v

}w ´ v}2

˙J

x

¸2

1pKw,vq

fi

fl

ě }w ´ v}22 inf
uPspanpw,vq, }u}“1

Ex
“

1puJxq21pKw,vq
‰

“ }w ´ v}22 inf
uPR2, }u}“1

Ey„Dw,v

“

puJyq21p pwJy ě 0, pvJy ě 0q
‰

ě }w ´ v}22 inf
uPR2, }u}“1

ż

puJyq21p pwJy ě 0, pvJy ě 0, }y}2 ď αqpw,vpyqdy

ě β }w ´ v}22 inf
uPR2, }u}“1

ż

puJyq21p pwJy ě 0, pvJy ě 0, }y}2 ď αqdy. (2.7.3)

By assumption, }w ´ v}2 ď 1. Since

1 ě }w ´ v}22 “ }w}2 p}w}2 ´ 2 cos θpw, vqq ` 1,

33

we must have either w “ 0 or θpw, vq P r0, π{2s. To see that w “ 0 is impossible, suppose

for the contradiction that w “ 0 and so F pwq “ F p0q ď ζε. Let z be any vector orthogonal

to v, so that θpv, zq “ π{2. Then,

ζε ě F p0q

“ Ex„D
“

pvJxq21pvJx ě 0q
‰

“ Ey„D0,v

“

ppvJyq21ppvJy ě 0
‰

ě inf
u: }u}“1

ż

puJxq21pvJx ě 0, zJx ě 0, }y}2 ď αqp0,vpyqdy

ě β inf
u: }u}“1

ż

puJxq21pvJx ě 0, zJx ě 0, }y}2 ď αqdy

ě
βα4

8
?

2
. (2.7.4)

The last line follows by using Lemma 2.7.1. For ε ă 1, this is impossible by the definition of

ζ. This shows that θpw, vq ď π{2. We can therefore apply Lemma 2.7.1 to (2.7.3) to get

ζε ě β }w ´ v}22 inf
uPR2, }u}“1

ż

puJyq21p pwJy ě 0, pvJy ě 0, }y}2 ď αqdy

ě
βα4

8
?

2
}w ´ v}22

“ ζB2
}w ´ v}22 .

This shows that }w ´ v}22 ď B´2ε. Since σ is 1-Lipschitz, Hölder’s inequality and E }x}22 ď B2

imply that Gpwq ď ε.

2.8 Noisy teacher network proofs

As in the agnostic case, we have a key lemma that shows pH is small when we run gradient

descent for a sufficiently large time. Note that one difference with the proof in the agnostic

case is that we do not need to consider different auxiliary errors for the strictly increasing

and ReLU cases; H alone suffices.

34

Lemma 2.8.1. Suppose that }x}2 ď BX a.s. under Dx. Let σ be non-decreasing and

L-Lipschitz. Suppose that the bound

}p1{nq
řn
i“1

`

σpvJxiq ´ yi
˘

αixi}2 ď K ď 1. (2.8.1)

holds for scalars satisfying αi P r0, Ls. Then gradient descent run with fixed step size

η ď p1{4qL´2B´2
X from initialization w0 “ 0 finds weights wt satisfying pHpwtq ď 4LK within

T “ rη´1K´1s iterations, with }wt ´ v}2 ď 1 for each t “ 0, . . . , T ´ 1.

Proof. Just as in the proof of Lemma 2.3.6, the theorem can be shown by proving the

following induction statement. We claim that for every t P N, either (a) pHpwτ q ď 4LK for

some τ ă t, or (b) }wt ´ v}
2
2 ď }wt´1 ´ v}

2
2 ´ ηK. If the induction hypothesis holds, then

until gradient descent finds a point where pHpwtq ď 4LK, the squared distance }wt ´ v}
2
2

decreases by ηK at every iteration. Since }w0 ´ v}
2
2 “ 1, this means there can be at most

η´1K´1 iterations until we reach pHpwtq ď 4LK. This shows the induction statement implies

the theorem.

We begin with the proof by supposing the induction hypothesis holds for t, and consid-

ering the case t` 1. If (a) holds, then we are done. So now consider the case that for every

τ ď t, we have pHpwτ q ą 4LK. Since (a) does not hold, }wτ ´ v}
2
2 ď }wτ´1 ´ v}

2
2´ ηK holds

for each τ “ 1, . . . , t. Since }w0 ´ v}2 “ 1, this implies

}wτ ´ v}2 ď 1 @τ ď t. (2.8.2)

35

We can therefore bound

A

∇ pF pwtq, wt ´ v
E

“

C

1

n

n
ÿ

1“1

`

σpwJt xiq ´ yi
˘

σ1pwJt xiqxi, wt ´ v

G

“
1

n

n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘

σ1pwJt xiqpw
J
t xi ´ v

Jxiq

`

C

1

n

n
ÿ

i“1

`

σpvJxiq ´ yi
˘

σ1pwJt xiqxi, wt ´ v

G

ě
L´1

n

n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘2
σ1pwJt xiq ´K }wt ´ v}2

ě 2L´1
pHpwtq ´K. (2.8.3)

In the first inequality, we have used Fact 2.3.10 for the first term. For the second term, we

use (2.8.1) and that αi :“ σ1pwJt xiq P r0, Ls. The last inequality uses (2.8.2).

For the gradient upper bound, we have

›

›

›
∇ pF pwtq

›

›

›

2

2
“

›

›

›

›

›

1

n

n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘

σ1pwJt xiqxi `
1

n

n
ÿ

i“1

`

σpvJxiq ´ yi
˘

σ1pwJt xiqxi

›

›

›

›

›

2

2

ď 2

›

›

›

›

›

1

n

n
ÿ

i“1

`

σpwJt xiq ´ σpv
Jxiq

˘

σ1pwJt xiqxi

›

›

›

›

›

2

2

` 2

›

›

›

›

›

1

n

n
ÿ

i“1

`

σpvJxiq ´ yi
˘

σ1pwJt xiqxi

›

›

›

›

›

2

2

ď
2LB2

X

n

n
ÿ

i“1

`

σpwJxiq ´ σpv
Jxiq

˘2
σ1pwJt xiq ` 2K2

“ 4LB2
X
pHpwtq ` 2K2. (2.8.4)

The first inequality uses Young’s inequality. The second uses that σ1pzq ď L and that

}x}2 ď BX a.s. and (2.8.1).

36

Putting (2.8.3) and (2.8.4) together, the choice of η ď p1{4qL´2B´2
X gives us

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 “ 2η

A

∇ pF pwtq, wt ´ v
E

´ η2
›

›

›
∇ pF pwtq

›

›

›

2

2

ě 2ηpL´1
pHpwtq ´Kq ´ η

2
´

4LB2
X
pHpwtq ` 2K2

¯

ě ηL´1
pHpwtq ´ 3ηK.

In particular, this implies

}wt`1 ´ v}
2
2 ď }wt ´ v}

2
2 ` 3ηK ´ ηL´1

pHpwtq (2.8.5)

Since pHpwtq ą 4KL, this completes the induction. The base case follows easily since

}w0 ´ v}2 “ 1 allows for us to deduce the desired bound on }w1 ´ v}
2
2 using (2.8.5).

To prove a concrete bound on the K term of Lemma 2.8.1, we will need the following

definition of norm sub-Gaussian random vectors.

Definition 2.8.2. A random vector z P Rd is said to be norm sub-Gaussian with parameter

s ą 0 if

Pp}z ´ Ez} ě tq ď 2 expp´t2{2s2
q.

A Hoeffding-type inequality for norm sub-Gaussian vectors was recently shown by [JNG19].

Lemma 2.8.3 (Lemma 6, [JNG19]). Suppose z1, . . . , zn P Rd are random vectors with

filtration Ft :“ σpz1, . . . , ztq such that zi|Fi´1 is a zero-mean norm sub-Gaussian vector with

parameter si P R for each i. Then, there exists an absolute constant c ą 0 such that for any

δ ą 0, with probability at least 1´ δ,
›

›

›

›

›

n
ÿ

i“1

zi

›

›

›

›

›

ď c

d

logp2d{δq
n
ÿ

i“1

s2
i .

Using this, we can show that if ξi :“ σpvJxiq ´ yi is s sub-Gaussian, then we can get

a bound on K at rate n´1{2. We note that if we make the stronger assumption that ξi is

bounded a.s., we can get rid of the logpdq dependence by using concentration of bounded

random variables in a Hilbert space (e.g. [PS86], Corollary 2).

37

Lemma 2.8.4. Suppose that }x}2 ď BX a.s. under Dx, and let σ be any continuous function.

Assume ξi :“ σpvJxiq ´ yi is s sub-Gaussian and satisfies Erξi|xis “ 0. Then there exists an

absolute constant c0 ą 0 such that for constants αi P r0, Ls, with probability at least 1 ´ δ,

we have

}p1{nq
řn
i“1

`

σpvJxiq ´ yi
˘

αixi} ď c0LBXs
a

n´1 logp2d{δq.

Proof of Lemma 2.8.4. Define zi :“
`

σpvJxiq ´ yi
˘

αixi. Using iterated expectations, we see

that Erzis “ 0. Since σpvJxiq ´ yi is s-sub-Gaussian and }αixi}2 ď LBX , it follows from the

definition that zi is norm sub-Gaussian with parameter LBXs for each i. By Lemma 2.8.3,

we have with probability at least 1´ δ,
›

›

›

›

›

n
ÿ

i“1

zi

›

›

›

›

›

ď c
b

logp2d{δqL2B2
Xns

2.

Dividing each side by n proves the lemma.

Proof of Theorem 2.4.1. By Lemmas 2.8.1 and 2.8.4, there exists some wt, t ă T and

}wt ´ v}2 ď 1, such that

pHpwtq ď 4LK ď 4c0L
2BXs

c

logp2d{δq

n
.

Consider σ satisfying Assumption 2.3.1 first, with γ corresponding to ρ “ 2BX . Since

}wt}2 ď 2, we can use Lemma 2.3.5 to transform the above bound for pH into one for pG,

pGpwtq ď 4c0γ
´1L2BXs

c

logp2d{δq

n
.

Since }w ´ v}2 ď 1 implies Gpwq ď L2B2
X{2, standard results from Rademacher complexity

imply (e.g. Theorem 26.5 of [SB14]) that with probability at least 1´ δ,

Gpwtq ď pGpwtq ` ES„DnRSp` ˝ σ ˝ Gq ` 2L2B2
X

c

2 logp4{δq

n
,

where `pw;xq “ p1{2qpσpwJxq´σpvJxqq2 and G are from Lemma 2.3.9. For the second term

above, Lemma 2.3.9 and rescaling δ yields that

Gpwtq ď
2L3B2

X?
n

`
2L2B2

X

a

2 logp8{δq
?
n

`
4c0γ

´1L2BXs
a

logp4d{δq
?
n

.

38

Then Claim 2.3.4 completes the proof for strictly increasing σ.

When σ is ReLU, the proof follows the same argument given in the proof of Theorem

2.3.3. Denoting the loss function ˜̀pw;xq “ p1{2qpσpwJxq ´ σpvJxqq2σ1pwJxq, we have

ES„DnRS

´

˜̀˝ σ ˝ G
¯

ď
2B2

X?
n
. (2.8.6)

By Lemmas 2.8.1 and 2.8.4, there exists some wt, t ă T and }wt ´ v}2 ď 1, such that

pHpwtq ď 4LK ď 4c0L
2BXs

c

logp2d{δq

n
. (2.8.7)

Using standard results from Rademacher complexity,

Hpwtq ď pHpwtq ` ES„DnRSp
˜̀˝ σ ˝ Gq ` 2B2

X

c

2 logp4{δq

n
.

By (2.8.6), this means

Hpwtq ď
4c0BXs

a

logp4d{δq
?
n

`
2B2

X?
n
`

2B2
X

a

2 logp8{δq
?
n

.

Since D satisfies Assumption 2.3.2 and }wt ´ v}2 ď 1, Lemma 2.3.5 shows that Gpwtq ď

8
?

2α´4β´1Hpwtq. Then Claim 2.3.4 translates the bound for Gpwtq into one for F pwtq.

2.9 Realizable setting

In this section we assume y “ σpvJxq a.s. for some }v}2 ď 1. As in the agnostic and noisy

teacher network setting, we use the auxiliary loss

Hpwq :“ p1{2qEx„DrpσpwJxq ´ σpvJxqq2σ1pwJxqs.

Note that in the realizable setting, the previous auxiliary loss G defined in (2.3.4) coincides

with the true objective F , i.e. we have

F pwq :“ p1{2qEx„DrpσpwJxq ´ σpvJxqq2s.

39

For purpose of comparison with [YS20], we provide analyses for two settings in the realizable

case: in the first setting, we consider gradient descent on the population loss,

wt`1 “ wt ´ η∇F pwtq, (2.9.1)

and return wt˚ :“ argmin0ďtăTF pwtq. The second setting is online SGD with samples xt „ D.

Here we compute unbiased estimates (conditional on wt) of the population risk Ftpwtq :“

p1{2qpσpwJt xtq ´ σpv
Jxtqq

2 and update the weights by

wt`1 “ wt ´ η∇Ftpwtq (2.9.2)

For SGD, we output wt˚ “ argmin0ďtăTFtpwtq.

We summarize our results in the realizable case in Theorem 2.9.1.

Theorem 2.9.1. Suppose }x}2 ď B a.s. and σ is non-decreasing and L-Lipschitz. Let

η ď L´2B´2 be the step size.

(a) Let σ satisfy Assumption 2.3.1, and let γ be the constant corresponding to ρ “ 4B.

For any initialization satisfying }w0}2 ď 2, if we run gradient descent on the population

risk T “ r2ε´1Lη´1γ´1 }w0 ´ v}
2
2s iterations, then there exists t ă T such that F pwtq ď

ε. For stochastic gradient descent, for any δ ą 0, running SGD for T̃ “ 6T logp1{δq

guarantees there exists wt, t ă T , such that w.p. at least 1´ δ, F pwtq ď ε.

(b) Let σ be ReLU and further assume that D satisfies Assumption 2.3.2 for constants

α, β ą 0 and that w0 “ 0. Let ν “ α4β{8
?

2. If we run gradient descent on the

population risk T “ r2ε´1Lη´1ν´1 }w0 ´ v}
2
2s iterations, then there exists t ă T such

that F pwtq ď ε. For stochastic gradient descent, for any δ ą 0, running SGD for

T̃ “ 6T logp1{δq guarantees there exists wt, t ă T , such that w.p. at least 1 ´ δ,

F pwtq ď ε.

A few remarks on the above theorem: first, in comparison with our noisy neuron result

in Theorem 2.4.1, we are able to achieve OPT ` ε “ ε population risk with sample com-

plexity and runtime of order ε´1 rather than ε´2 using the same assumptions by invoking

40

a martingale Bernstein inequality rather than Hoeffding. Second, although Theorem 2.9.1

requires the distribution to be bounded almost surely, we show in Section 2.9.1 below that

for GD on the population loss, we can accomodate essentially any distribution with finite

expected squared norm.

[YS20] used the marginal spread assumption to show that with probability 1/2, a single

neuron in the realizable setting can be learned using gradient-based optimization with ran-

dom initialization for Lipschitz activation functions satisfying inf0ăzăα σ
1pzq ą 0, where α is

the same constant in Assumption 2.3.2, and thus includes essentially all neural network acti-

vation functions like softplus, sigmoid, tanh, and ReLU. Under the additional assumption of

spherical symmetry, they showed that this can be improved to a high probability guarantee

for the ReLU activation. For gradient descent on the population risk, they proved linear

convergence, i.e. a runtime of order Oplogp1{εqq, while for SGD their runtime and sample

complexity is of order Opε´2 logp1{εqq. In comparison, our result for the non-ReLU activa-

tions requires only boundedness of the distributions and holds with high probability over

random initializations, with runtime and sample complexity of order Opε´1q for both gradi-

ent descent on the population risk and SGD. Our results for ReLU use the same marginal

spread assumption as Yehudai and Shamir, but our proof technique differs in that we do not

require the angle θpwt, vq between the weights in the GD trajectory and the target neuron

be decreasing. As they pointed out, angle monotonicity fails to hold for the trajectory of

gradient descent even when the distribution is a non-centered Gaussian, so that proofs based

on angle monotonicity will not translate to more general distributions. Indeed, our proofs in

the agnostic and noisy teacher network setting use essentially the same proof technique as

the realizable case without relying on angle monotonicity. Instead, we show a type of induc-

tive bias of gradient descent in the sense that if initialized at the origin, the angle between

the target vector and the population risk minimizer cannot become larger than π{2, even in

the agnostic setting.

41

2.9.1 Gradient descent on population loss

The key lemma for the proof is as follows.

Lemma 2.9.2. Consider gradient descent on the population risk given in (2.9.1). Let w0

be the initial point of gradient descent and assume }w0}2 ď 2. Suppose that D satisfies

Exr}x}22s ď B2. Let σ be non-decreasing and L-Lipschitz. Assume the step size satisfies

η ď L´2B´2. Then for any T P N, we have for all t “ 0, . . . , T ´ 1, }wt ´ v}2 ď }w0 ´ v}2,

and

}w0 ´ v}
2
2 ´ }wT ´ v}

2
2 ě ηL´1

T´1
ÿ

t“0

F pwtq.

Proof. We begin with the identity, for t ă T ,

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 “ 2η x∇F pwtq, wt ´ vy ´ η2

}∇F pwtq}22 . (2.9.3)

First, we have

}∇F pwtq}2 ď Ex
›

›pσpwJt xq ´ σpv
Jxqqσ1pwJt xqx

›

›

2

ď

b

Ex rσ1pwJt xqpσpwJt xq ´ σpvJxqq2s
b

Exσ1pwJt xq }x}
2
2

ď B
?
L
b

Ex rσ1pwJt xqpσpwJt xq ´ σpvJxqq2s.

The first inequality is by Jensen. The second inequality uses that σ1pzq ě 0 and Hölder, and

the third inequality uses that σ is L-Lipschitz and that Er}x}22s ď B2. We therefore have

the gradient upper bound

}∇F pwtq}22 ď 2B2LF pwtq. (2.9.4)

For the inner product term of (2.9.3), since σ1pzq ě 0, we can use Fact 2.3.10 to get

x∇F pwtq, wt ´ vy ě L´1Ex
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq

ı

“ 2L´1F pwtq. (2.9.5)

Putting (2.9.5) and (2.9.4) into (2.9.3), we get

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 ě 4ηL´1F pwtq ´ 2η2B2LF pwtq ě 2ηL´1F pwtq,

42

where we have used η ď L´2B´2. Telescoping the above over t ă T gives

}w0 ´ v}
2
2 ´ }wT ´ v}

2
2 ě 2ηL´1

T´1
ÿ

t“0

F pwtq.

Dividing each side by ηT shows the desired bound.

We will show that if σ satisfies Assumption 2.3.1, then Lemma 2.9.2 allows for a popula-

tion risk bound for essentially any distribution with Er}x}22s ď B2. In particular, we consider

distributions with finite expected norm squared and the possible types of tail bounds for the

norm.

Assumption 2.9.3. (a) Bounded distributions: there exists B ą 0 such that }x}2 ď B a.s.

(b) Exponential tails: there exist a0, Ce ą 0 such that Pp}x}22 ě aq ď Ce expp´aq holds for

all a ě a0.

(c) Polynomial tails: there exist a0, Cp ą 0 and β ą 1 such that Pp}x}22 ě bq ď Cpa
´β holds

for all a ě a0.

If either (a), (b), or (c) holds, there exists B ą 0 such that E }x}22 ď B2. One can verify

that for (b), taking B2 “ 2pa0 _Ceq suffices, and for (c), B2 “ 2pa0 _C
1{β
p {p1´ βqq suffices.

In fact, any distribution that satisfies E }x}22 ă 8 cannot have a tail bound of the form

Pp}x}22 ě aq “ Ωpa´1q, since in this case we would have

E }x}22 “
ż 8

0

Pp}x}22 ą tqdt ě C

ż 8

a0

t´1dt “ 8.

So the polynomial tail assumption (c) is tight up to logarithmic factors for distributions with

finite E }x}22.

Theorem 2.9.4. Let Er}x}22s ď B2 and assume D satisfies one of the conditions in Assump-

tion 2.9.3. Let σ satisfy Assumption 2.3.1.

(a) Under Assumption 2.9.3a, let γ be the constant corresponding to ρ “ 4B in Assumption

2.3.1. Running gradient descent for T “ r2ε´1Lη´1γ´1 }w0 ´ v}
2
2s guarantees there exists

t P rT ´ 1s such that F pwtq ď ε.

43

(b) Under Assumption 2.9.3b, let γ be the constant corresponding to ρ “ 4
a

logp18Ce{εq.

Running gradient descent for T “ r2ε´1Lη´1γ´1 }w0 ´ v}
2
2s guarantees there exists t P

rT ´ 1s such that F pwtq ď ε.

(c) Under Assumption 2.9.3c, let γ be the constant corresponding to ρ “ 4p18Cp{εpβ ´

1qqp1´βq{2. Running gradient descent for T “ r2ε´1Lη´1γ´1 }w0 ´ v}
2
2s guarantees there

exists t P rT ´ 1s such that F pwtq ď ε.

Proof. First, note that the conditions of Lemma 2.9.2 hold, so that we have for all t “

0, . . . , T ´ 1, }wt}2 ď 4 and

η
T´1
ÿ

t“0

F pwtq ď L }w0 ´ v}
2
2 ´ L }wT ´ v}

2
2 . (2.9.6)

By taking T “ ζ´1Lε´1η´1 }w0 ´ v}
2
2 for arbitrary ζ ą 0, (2.9.6) implies that there exists

t P rT ´ 1s such that

F pwtq “ E
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq

ı

ď
L }w0 ´ v}

2
2

ηT
ď ζε. (2.9.7)

It therefore suffices to bound F pwtq in terms of the left hand side of (2.9.7). We will do

so by using the distributional assumptions given in Assumption 2.9.3 and by choosing ζ

appropriately.

We begin by noting that (2.9.7) implies, for any ρ ą 0,

E
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq1p|w

J
t x| ď ρq

ı

ď ζε. (2.9.8)

For any ρ ą 0, since }wt}2 ď 4, the inclusion

!

}x}2 ď ρ{4
)

Ă

!

|wJt x| ď ρ
)

, (2.9.9)

holds. Under Assumption 2.9.3a, by taking ρ “ 4B and letting γ be the corresponding

constant from Assumption 2.3.1, eqs. (2.9.8) and (2.9.9) imply

γE
”

`

σpwJt xq ´ σpv
Jxq

˘2
ı

ď E
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq1p}x}2 ď ρ{4q

ı

ď ζε.

44

By taking ζ “ γ{2, this implies F pwtq ď ε.

Under Assumption 2.9.3b, by taking ρ “ 4
?
a0, we get

E
“

}x}22 1p}x}
2
2 ą ρ2

{42
q
‰

“

ż 8

a0

Pp}x}22 ą tqdt

ď Ce expp´a0q. (2.9.10)

Note that Assumption 2.9.3b holds if we take a0 larger. We can therefore let a0 be large

enough so that a0 ě logp18Ce{εq, so that then

E
“

}x}22 1p}x}
2
2 ą ρ2

{42
q
‰

ď ε{18. (2.9.11)

Similarly, under Assumption 2.9.3c, we can let γ be the constant corresponding to ρ “

4
?
a0 and take a0 ě pεpβ ´ 1q{18Cpq

1{p1´βq so that

E
“

}x}22 1p}x}
2
2 ą ρ2

{42
q
‰

“

ż 8

a0

Pp}x}22 ą tqdt

ď Cp
a1´β

0

β ´ 1

ď ε{18.

and so (2.9.11) holds as well under Assumption 2.9.3c. We can therefore bound

E
”

`

σpwJt xq ´ σpv
Jxq

˘2
1p}x}22 ą ρ2

{42
q

ı

ď E
“

}wt ´ v}
2
2 }x}

2
2 1p}x}

2
2 ą ρ2

{42
q
‰

ď }w0 ´ v}
2
2 E

“

}x}22 1p}x}
2
2 ą ρ2

{42
q
‰

ď }w0 ´ v}
2
2 ε{18

ď ε{2. (2.9.12)

The first inequality uses that σ is 1-Lipschitz and Cauchy–Schwarz. The second inequality

uses (2.9.6). The third inequality uses (2.9.11). The final inequality uses that }w0 ´ v}2 ď

}w0}2 ` }v}2 ď 3.

45

We can then guarantee

2γF pwtq “ γE
”

`

σpwJt xq ´ σpv
Jxq

˘2
ı

“ E
”

`

σpwJt xq ´ σpv
Jxq

˘2
γ1p|wJt x| ď ρq

ı

` γE
”

`

σpwJt xq ´ σpv
Jxq

˘2
1p|wJt x| ą ρq

ı

ď E
”

`

σpwJt xq ´ σpv
Jxq

˘2
σ1pwJt xq1p|w

J
t x| ď ρq

ı

` γE
”

`

σpwJt xq ´ σpv
Jxq

˘2
1p}x}22 ą ρ2

{42
q

ı

ď ζε` γε{2

ď γε.

The first inequality follows since Assumption 2.3.1 implies σ1pzq1p|z| ď ρq ě γ1p|z| ď ρq

and by (2.9.9). The second inequality uses (2.9.8) and (2.9.12). The final inequality takes

ζ “ γ{2.

Remark 2.9.5. The precise runtime guarantee in Theorem 2.9.1 will depend upon the acti-

vation function and tail distribution. The worst-case activation functions (like the sigmoid)

can have γ „ expp´ρq, and so if one only has polynomial tails, the runtime can be exponen-

tial in ε´1 in this case. If the distribution of }x}22 has exponential tails, as is the case if the

components of x are sub-Gaussian, runtime will be polynomial in ε´1. On the other hand, if

the γ in Assumption 2.3.1 is a fixed constant independent of ρ (as it is for the leaky ReLU),

any of the tail bounds under consideration will have runtime of order ε´1.

2.9.2 Stochastic gradient descent proofs

We consider the online version of stochastic gradient descent, where we sample independent

samples xt „ D at each step and compute stochastic gradient updates gt, such that

gt “
`

σpwJt xtq ´ σpv
Jxtq

˘

σ1pwJt xtqxt, wt`1 “ wt ´ ηgt.

46

As in the gradient descent case, we have a key lemma that relates the distance of the weights

at iteration t from the optimal v with the distance from initialization and the cumulative

loss.

Lemma 2.9.6. Assume that σ is non-decreasing and L-Lipschitz, and that D satisfies }x}2 ď

B a.s. Assume the initialization satisfies }w0}2 ď 2. Let T P N and run stochastic gradient

descent for T ´ 1 iterations at a fixed learning rate η satisfying η ď L´2B´2. Then with

probability one over D, we have }wt`1 ´ v}2 ď }wt ´ v}2 for all t ă T , and

}w0 ´ v}
2
2 ´ }wT ´ v}

2
2 ě 2ηL´1

T´1
ÿ

t“0

F t,

where F t :“ 1
2

`

σpwJt xtq ´ σpv
Jxtq

˘2
σ1pwJt xtq.

Proof. We begin with the decomposition

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 “ 2η xgt, wt ´ vy ´ η

2
}gt}

2
2 . (2.9.13)

By Assumption 2.3.1, since }x}2 ď B a.s. it holds with probability one that

}gt}
2
2 “

›

›

`

σpwJt xtq ´ σpv
Jxtq

˘

σ1pwJt xtqxt
›

›

2

2
ď 2LB2F t. (2.9.14)

By Fact 2.3.10, since σ1pzq ě 0, we have with probability one,

xgt, wt ´ vy “
`

σpwJt xtq ´ σpv
Jxtq

˘

σ1pwJt xtqpw
J
t xt ´ v

Jxtq

ě L´1
`

σpwJt xtq ´ σpv
Jxtq

˘2
σ1pwJt xtq

“ 2L´1F t. (2.9.15)

Putting (2.9.14) and (2.9.15) into (2.9.13), we get

}wt ´ v}
2
2 ´ }wt`1 ´ v}

2
2 ě 4ηL´1F t ´ 2η2LB2F t

ě 2ηL´1F t,

by taking η ď L´2B´2. Telescoping over t ă T gives the desired bound.

47

We now want to translate the bound on the empirical error to that of the true error. For

this we use a martingale Bernstein inequality of [BLL11]. A similar analysis of SGD was

used by [JT20b] for a one-hidden-layer ReLU network.

Lemma 2.9.7 ([BLL11], Theorem 1). Let tYtu be a martingale adapted to the filtration Ft,

and let Y0 “ 0. Let tDtu be the corresponding martingale difference sequence. Define the

sequence of conditional variance

Vt :“
t
ÿ

k“1

ErD2
k|Fk´1s,

and assume that Dt ď R almost surely. Then for any δ P p0, 1q, with probability greater

than 1´ δ,

Yt ď R logp1{δq ` pe´ 2qVt{R.

Lemma 2.9.8. Suppose that }x}2 ď B a.s., and let σ be non-decreasing and L-Lipschitz.

Assume that the trajectory of SGD satisfies }wt ´ v}2 ď }w0 ´ v}2 for all t a.s. We then

have with probability at least 1´ δ,

1

T

T´1
ÿ

t“0

F pwtq ď
4

T

T´1
ÿ

t“0

F t `
2

T
B2L3

}w0 ´ v}
2
2 logp1{δq.

Proof. Let Ft “ σpx0, . . . , xtq be the σ-algebra generated by the first t ` 1 draws from D.

Then the random variable Gt :“
řt
τ“0pF pwτ q ´ F τ q is a martingale with respect to the

filtration Ft with martingale difference sequence Dt :“ F pwtq ´ F t. We need bounds on Dt

and on ErD2
t |Ft´1s in order to apply Lemma 2.9.7.

Since σ is L-Lipschitz and }x}2 ď B a.s., with probability one we have

Dt ď F pwtq ď
1

2
L3B2

}wt ´ v}
2
2 ď

1

2
L3B2

}w0 ´ v}
2
2 . (2.9.16)

The last inequality uses the assumption that }wt ´ v}2 ď }w0 ´ v}2 a.s. Similarly,

ErF 2

t |Ft´1s “
1

4
E
”

`

σpwJt xtq ´ σpv
Jxtq

˘4
σ1pwJt xtq

2
|Ft´1

ı

ď
1

4
L3B2

}wt ´ v}
2
2 Ex

”

`

σpwtxtq ´ σpv
Jxtq

˘2
σ1pwJt xtq|Ft´1

ı

ď
1

2
L3B2

}w0 ´ v}
2
2 F pwtq. (2.9.17)

48

In the first inequality, we have used }x}22 ď B2 a.s. and L-Lipschitzness of σ. For the second,

we use the assumption that }wt ´ v}2 ď }w0 ´ v}2 together with the fact that ExrF t|Ft´1s “

F pwtq. We then can use (2.9.17) to bound the squared increments,

ErD2
t |Ft´1s “ F pwtq

2
´ 2F pwtqErF t|Ft´1s ` ErF 2

t |Ft´1s

“ ´F pwtq
2
` ErF 2

t |Ft´1s

ď
1

2
L3B2

}w0 ´ v}
2
2 F pwtq. (2.9.18)

This allows for us to bound

VT :“
T´1
ÿ

t“0

ErD2
t |Ft´1s ď

1

2
B2L3

}w0 ´ v}
2
2

T´1
ÿ

t“0

F pwtq.

Since Dt ď F pwtq ď p1{2qL3B2 }w0 ´ v}
2
2 a.s. by (2.9.16), Lemma 2.9.7 implies that with

probability at least 1´ δ, we have

T´1
ÿ

t“0

pF pwtq ´ F tq ď pexpp1q ´ 2q
T´1
ÿ

t“0

F pwtq `
1

2
L3B2

}w0 ´ v}
2
2 logp1{δq,

and using that p1´ expp1q ` 2q´1 ď 4, we divide each side by T and get

1

T

T´1
ÿ

t“0

F pwtq ď
4

T

T´1
ÿ

t“0

F t `
2

T
L3B2

}w0 ´ v}
2
2 logp1{δq. (2.9.19)

With the above in hand, we can prove Theorem 2.9.1 in the SGD setting.

Proof of Theorem 2.9.1, SGD. By the assumptions in the theorem, Lemma 2.9.6 holds, so

that we have for any t “ 0, . . . , T ´ 1, }wt}2 ď 4 and

}wt ´ v}
2
2 ` 2ηL´1

t´1
ÿ

τ“0

F τ ď }w0 ´ v}
2
2 . (2.9.20)

This shows that }wt ´ v}2 ď }w0 ´ v}2 holds for all t “ 0, . . . , T ´ 1 a.s., allowing for the

application of Lemma 2.9.8 to get

1

T

T´1
ÿ

t“0

F pwtq ď
4

T

T
ÿ

t“1

F t `
2

T
L3B2

}w0 ´ v}
2
2 logp1{δq. (2.9.21)

49

Dividing both sides of (2.9.20) by ηTL´1 yields

min
tăT

F pwtq ď
1

T

T´1
ÿ

t“0

F pwtq ď
L }w0 ´ v}

2
2

ηT
`

2

T
L3B2

}w0 ´ v}
2
2 logp1{δq.

For arbitrary ζ ą 0, taking T “ r2ε´1ζ´1η´1L3B2 }w0 ´ v}
2
2 logp1{δqs shows there exists T

such that F pwtq ď ζε. When σ satisfies Assumption 2.3.1, since }wt}2 ď 4 for all t, it holds

that F pwtq ě γF pwtq, so that ζ “ γ furnishes the desired bound.

When σ is ReLU and D satisfies Assumption 2.3.2, we note that Lemma 2.9.6 implies

}wt ´ v}2 ď }w0 ´ v}2 a.s. Thus taking ζ “ α4β{8
?

2 and using Lemma 2.3.5 completes the

proof.

2.10 Remaining Proofs

Proof of Lemma 2.3.8. Since σ is non-decreasing, |σpvJxq´y| ď |σpBXq|`BY . In particular,

each summand defining pF pvq is a random variable with absolute value at most a “ p|σpBXq|`

BY q
2. As Er pF pvqs “ F pvq “ OPT, Hoeffding’s inequality implies the lemma.

Proof of Lemma 2.3.9. The bound RSpGq ď 2 maxi }xi}2 {
?
n follows since }w}2 ď 2 holds

on G with standard results Rademacher complexity theory (e.g. Sec. 26.2 of [SB14]); this

shows RpGq ď 2BX{
?
n. Using the contraction property of the Rademacher complexity, this

implies Rpσ ˝ Gq ď 2BXL{
?
n. Finally, note that if }w ´ v}2 ď 1 and }x}2 ď BX , we have

}∇`pw;xq} “
›

›

`

σpwJxq ´ σpvJxq
˘

σ1pwJxqx
›

› ď L2
}w ´ v} }x} ď L2BX . (2.10.1)

In particular, ` is L2BX Lipschitz. The result follows.

50

CHAPTER 3

Learning noisy halfspaces with logistic regression

51

3.1 Introduction

In this chapter, we take a closer look at learning single neurons x ÞÑ σpxw, xyq under the

zero-one loss, which is the standard loss of interest for classification problems. The standard

approach for minimizing the classification error in neural networks is to perform gradient

descent on convex surrogates of the zero-one loss, such as the cross entropy loss `pzq “

logp1` expp´zqq, by considering the objective function

F pwq :“ Epx,yq„D`pyσpxw, xyqq.

Using similar ideas from Chapter 2, we can derive guarantees for the population risk under

the cross-entropy loss when using a single neuron under the assumption that σ is strictly

increasing and σp0q “ 0, with the final result showing that gradient descent can efficiently

find approximate minimizers of the cross-entropy loss. However, our goal is not to find

minimizers for the surrogate loss, but minimizers for the zero-one loss itself. It turns out

that this is a much more intricate matter, even when the activation function σ is the identity

function. Note also that if σpzq is such that σpzq ą 0 if z ą 0 and σpzq ă 0 if z ă 0, then the

hypothesis space induced by σpxw, xyq is the same as that induced by xw, xy, i.e. the single

neuron with the identity activation. (This condition is satisfied by many common activation

functions in practice, such as the leaky ReLU, tanh, arctan, ELU, swish activation, etc.) For

this reason, in this chapter we restrict ourselves to the case of σpzq “ z. This reduces our

problem to the agnostic learning of halfspaces, a long-studied problem in learning theory.

By a halfspace we mean a function x ÞÑ sgnpwJxq P t˘1u for some w P Rd. Let D be a

joint distribution over px, yq, where the inputs x P Rd and the labels y P t˘1u, and denote

by Dx the marginal of D over x. We are interested in the performance of halfspaces found

by gradient descent in comparison to the best-performing halfspace over D, so let us define,

52

for w P Rd,

err0´1
pwq :“ Ppx,yq„DpsgnpwJxq ‰ yq,

OPT01 :“ min
}w}“1

err0´1
pwq.

Due to the non-convexity and discontinuity of the zero-one loss, the standard approach for

minimizing the classification error is to consider a convex surrogate loss ` : RÑ R for which

1pz ă 0q ď Op`pzqq and to instead minimize the surrogate risk

F pwq :“ Epx,yq„D
“

`pywJxq
‰

. (3.1.1)

Without access to the population risk itself, one can take samples tpxi, yiqu
n
i“1

i.i.d.
„ D and

optimize (3.1.1) by gradient descent on the empirical risk pF pwq, defined by taking the expec-

tation in (3.1.1) over the empirical distribution of the samples. By using standard tools from

convex optimization and Rademacher complexity, such an approach is guaranteed to effi-

ciently minimize the population surrogate risk up to optimization and statistical error. The

question is then, given that we have found a halfspace x ÞÑ wJx that minimizes the surro-

gate risk, how does this halfspace compare to the best halfspace as measured by the zero-one

loss? And how does the choice of the surrogate loss affect this behavior? To the best of our

knowledge, no previous work has been able to demonstrate that gradient descent on convex

surrogates can yield approximate minimizers for the classification error over halfspaces, even

for the case of the standard logistic (binary cross-entropy) loss `pzq “ logp1 ` expp´zqq or

the hinge loss `pzq “ maxp1´ z, 0q.

We show below that the answer to these questions depend upon what we refer to as the

soft margin function of the distribution at a given minimizer for the zero-one loss. (We note

that in general, there may be multiple minimizers for the zero-one loss, and so we can only

refer to a given minimizer.) For v̄ P Rd satisfying }v̄} “ 1, we say that the halfspace v̄

satisfies the φv̄-soft-margin property if for some function φv̄ : r0, 1s Ñ R, for all γ P r0, 1s,

PDxp|v̄
Jx| ď γq ď φvpγq.

53

To get a flavor for how this soft margin can be used to show that gradient descent finds

approximately optimal halfspaces, for bounded distributions Dx, we show in Theorem 3.5.2

below that with high probability,

err0´1
pwT q ď inf

γPp0,1q

!

Opγ´1OPT01q ` φv̄pγq `Opγ
´1n´1{2

q ` ε
)

,

where φv̄ is a soft margin function corresponding to a unit norm minimizer v̄ of the popu-

lation zero-one loss. Thus, by analyzing the properties of φv̄, one can immediately derive

approximate agnostic learning results for the output of gradient descent. In particular, we

are able to show the following guarantees for the output of gradient descent:

1. Hard margin distributions. If }x} ď BX almost surely and there is γ̄ ą 0 such that

v̄Jx ě γ̄ a.s., then err0´1pwtq ď Õpγ̄´1OPT01q ` ε.

2. Sub-exponential distributions satisfying anti-concentration. If random vectors

from Dx are sub-exponential and satisfy an anti-concentration inequality for projections

onto one dimensional subspaces, then err0´1pwtq ď ÕpOPT
1{2
01 q ` ε. This covers any

log-concave isotropic distribution.

For each of our guarantees, the runtime and sample complexity are polypd, ε´1q. The exact

rates are given in Corollaries 3.5.3, 3.5.6 and 3.5.11. In Table 3.1 we compare our results

with known lower bounds in the literature. To the best of our knowledge, our results are

the first to show that gradient descent on convex surrogates for the zero-one loss can learn

halfspaces in the presence of agnostic label noise, despite the ubiquity of this approach for

classification problems.

The remainder of the chapter is organized as follows. In Section 3.2, we review the

literature on learning halfspaces in the presence of noise. In Section 3.3, we discuss the

notion of soft margins which will be essential to our proofs, and provide examples of soft

margin behavior for different distributions. In Section 3.4 we show that gradient descent

efficiently finds minimizers of convex surrogate risks and discuss how the tail behavior of the

54

Table 3.1: Comparison of halfspace results with other upper and lower bounds in the litera-

ture.

Algorithm Dx Population

Risk

Known Lower Bound

Non-convex G.D.

[DKT20b]

Concentration,

anti-concentration

OpOPT01q N/A

Convex G.D.

(this work)

Sub-exponential,

anti-concentration

ÕpOPT
1{2
01 q ΩpOPT01 logαp1{OPT01qq

[DKT20b]

Convex G.D.

(this work)

Hard margin Õpγ̄´1OPT01q Ωpγ̄´1OPT01q

[DGT19]

loss function can affect the time and sample complexities of gradient descent. In Section 3.5

we provide our main results, which relies upon using soft margins to convert minimizers for

the convex surrogate risk to approximate minimizers for the classification error. We conclude

in Section 3.6.

3.2 Related Work

The problem of learning halfspaces is a classical problem in machine learning with a history

almost as long as the history of machine learning itself, starting from the perceptron [Ros58]

and support vector machines [BGV92] to today. Much of the early works on this problem

focused on the realizable setting, i.e. where OPT01 “ 0. In this setting, the Perceptron

algorithm or methods from linear programming can be used to efficiently find the optimal

halfspace. In the setting of agnostic PAC learning [KSS94] where OPT01 ą 0 in general,

the question of which distributions can be learned up to classification error OPT01 ` ε, and

55

whether it is possible to do so in polypd, 1{εq time (where d is the input dimension), is

significantly more difficult and is still an active area of research. It is known that without

distributional assumptions, learning up to even OpOPT01q ` ε is NP-hard, both for proper

learning [GR09] and improper learning [Dan16]. Due to this difficulty, it is common to make

a number of assumptions on either Dx or to impose some type of structure to the learning

problem.

A common structure imposed is that of structured noise: one can assume that there exists

some underlying halfspace y “ sgnpvJxq that is corrupted with probability ηpxq P r0, 1{2q,

possibly dependent on the features x. The simplest setting is that of random classification

noise, where ηpxq ” η, so that each label is flipped with the same probability [AL88]; poly-

nomial time algorithms for learning under this noise condition were shown by [BFK98]. The

Massart noise model introduced by [MN06] relaxes this assumption to ηpxq ď η for some ab-

solute constant η ă 1{2. The Tsybakov noise model [Tsy04] is a generalization of the Massart

noise model that instead requires a tail bound on Ppηpxq ě 1{2´tq for t ą 0. [ABH15] showed

that optimally learning halfspaces under Massart noise is possible for the uniform distribu-

tion on the unit sphere, and [ABH16] showed this for log-concave isotropic distributions.

The recent landmark result of [DGT19] provided the first distribution-independent result for

optimally learning halfspaces under Massart noise, answering a long-standing [Slo88] open

problem in computational learning.

By contrast, in the agnostic PAC learning setting, one makes no assumptions on ηpxq,

so one can equivalently view agnostic PAC learning as an adversarial noise model in which

an adversary can corrupt the label of a sample x with any probability ηpxq P r0, 1s. Re-

cent work suggests that even when Dx is the Gaussian, agnostically learning up to exactly

OPT01 ` ε likely requires expp1{εq time [GGK20, DKZ20]. In terms of positive results in

the agnostic setting, [KKM08] showed that a variant of the Average algorithm [Ser99] can

achieve risk OpOPT01

a

logp1{OPT01qq risk in polypd, 1{εq time when Dx is uniform over the unit

sphere. [ABL17] demonstrated that a localization-based algorithm can achieve OpOPT01q`ε

56

under log-concave isotropic marginals. [DKT20b] showed that for a broad class of distribu-

tions, the output of projected SGD on a nonconvex surrogate for the zero-one loss produces

a halfspace with risk OpOPT01q ` ε in polypd, 1{εq time. For more background on learning

halfspaces in the presence of noise, we refer the reader to [BH21].

We note that [DKT20b] also showed that the minimizer of the surrogate risk of any con-

vex surrogate for the zero-one loss is a halfspace with classification error ωpOPT01q. [BLS12]

and [ABL17] showed similar lower bounds that together imply that empirical risk minimiza-

tion procedures for convex surrogates yield halfspaces with classification error ΩpOPT01q.

Given such lower bounds, we wish to emphasize that in this chapter we are not making

a claim about the optimality of gradient descent (on convex surrogates) for learning halfs-

paces. Rather, our main interest is the characterization of what are the strongest learning

guarantees possible with what is perhaps the simplest learning algorithm possible. Given

the success of gradient descent for the learning of deep neural networks, and the numerous

questions that this success has brought to the theory of statistics and machine learning, we

think it is important to develop a thorough understanding of what are the possibilities of

vanilla gradient descent, especially in the simplest setting possible.

Recent work has shown that gradient descent finds approximate minimizers for the popu-

lation risk of single neurons x ÞÑ σpwJxq under the squared loss [DGK20b, FCG20], despite

the computational intractability of finding the optimal single neuron [GKK19]. The main

contribution of this chapter is that despite the computational difficulties in exact agnostic

learning, the standard gradient descent algorithm satisfies an approximate agnostic PAC

learning guarantee, in line with the results found by [FCG20] for the single neuron.

3.2.1 Notation

We say that a differentiable loss function ` is L-Lipschitz if |`1pzq| ď L for all z in its

domain, and we say the loss is H-smooth if its derivative `1 is H-Lipschitz. We use the word

“decreasing” interchangeably with “non-increasing”. We use the standard Op¨q,Ωp¨q order

57

notations to hide universal constants and Õp¨q, Ω̃p¨q to additionally suppress logarithmic

factors. Throughout this chapter, }x} refers to the standard Euclidean norm on Rd induced

by the inner product xJx. We will emphasize that a vector v is of unit norm by writing

v̄. We assume D is a probability distribution over Rd ˆ t˘1u with marginal distribution Dx

over Rd.

3.3 Soft Margins

In this section we will formally introduce the soft margin function and describe some common

distributions for which it takes a simple form.

Definition 3.3.1. Let v̄ P Rd satisfy }v̄} “ 1. We say v̄ satisfies the soft margin condition

with respect to a function φv̄ : RÑ R if for all γ P r0, 1s, it holds that

Ex„Dx

“

1
`

|v̄Jx| ď γ
˘‰

ď φv̄pγq.

We note that our definition of soft margin is essentially an unnormalized version of the

soft margin function considered by [FSS18] in the context of learning GLMs, since they

defined φv̄pγq as the probability that |v̄Jx{ }x} | ď γ. This concept was also considered

by [BZ17] for s-concave isotropic distributions under the name ‘probability of a band’.

Below we will consider some examples of soft margin function behavior. We shall see later

that our final generalization bounds will depend on the behavior of φv̄pγq for γ sufficiently

small, and thus in the below examples we only care about the behavior of φv̄p¨q in small

neighborhoods of the origin. In our first example, we show that (hard) margin distributions

have simple soft margin functions.

Example 3.3.2 (Hard margin distributions). If Dx is a hard margin distribution in the

sense that v̄Jx ě γ˚ ą 0 for some γ˚ ą 0 almost surely, then φv̄pγq “ 0 for γ ă γ˚.

Proof. This follows immediately: Pp|v̄Jx| ď γq “ 0 when γ ă γ˚.

58

Note that the soft margin function in Example 3.3.2 is specific to the vector v̄, and does

not necessarily hold for arbitrary unit vectors in Rd. By contrast, for many distributions it

is possible to derive bounds on soft margin functions that hold for any vector v̄, which we

shall see below is a key step for deriving approximate agnostic learning guarantees for the

output of gradient descent.

The next example shows that provided the projections of Dx onto one dimensional sub-

spaces satisfy an anti-concentration property, then all soft margins function for that distri-

bution take a simple form. To do so we first introduce the following definition.

Definition 3.3.3 (Anti-concentration). For v̄ P Rd, denote by pv̄p¨q the marginal distribution

of x „ Dx on the subspace spanned by v̄. We say Dx satisfies U-anti-concentration if there

is some U ą 0 such that for all unit norm v̄, pv̄pzq ď U for all z P R.

A similar assumption was used in [DKT20a, DKT20b, DKT21] for learning halfspaces;

in their setup, the anti-concentration assumption was for the projections of Dx onto two

dimensional subspaces rather than the one dimensional version we consider here.

Example 3.3.4 (Distributions satisfying anti-concentration). If Dx satisfies U anti concen-

tration, then for any unit norm v̄, φv̄pγq ď 2Uγ.

Proof. We can write Pp|v̄Jx| ď γq “
şγ

´γ
pv̄pzqdz ď 2γU.

We will show below that log-concave isotropic distributions satisfy U -anti-concentration

for U “ 1. We first remind the reader of the definition of log-concave isotropic distributions.

Definition 3.3.5. We say that a distribution Dx over x P Rd is log-concave if it has a density

function pp¨q such that log pp¨q is concave. We call Dx isotropic if its mean is the zero vector

and its covariance matrix is the identity matrix.

Typical examples of log-concave isotropic distributions include the standard Gaussian

and the uniform distribution over a convex set.

59

Example 3.3.6 (Log-concave isotropic distributions). If Dx is log-concave isotropic then it

satisfies 1-anti-concentration, and thus for any v̄ with }v̄} “ 1, φv̄pγq ď 2γ.

Proof. This was demonstrated in [BZ17, Proof of Theorem 11].1

3.4 Gradient Descent Finds Minimizers of the Surrogate Risk

We begin by demonstrating that gradient descent finds weights that achieve the best pop-

ulation level surrogate risk. The following theorem is a standard result from stochastic

optimization. For completeness, we present its proof in Section 3.11.

Theorem 3.4.1. Suppose }x} ď BX a.s. Let ` be convex, L-Lipschitz, and H-smooth, with

`p0q ď 1. Let v P Rd be arbitrary with }v} ď V for some V ą 1, and suppose that the

initialization w0 satisfies }w0} ď V . For any ε, δ ą 0 and for any provided η ď p2{5qH´1B´2
X ,

if gradient descent is run for T “ p4{3qη´1ε´1 }w0 ´ v}
2, then with probability at least 1´ δ,

F pwT´1q ď F pvq `
4BXV L
?
n

` 8BXV

c

2 logp2{δq

n
.

This shows that gradient descent learns halfspaces that have a population surrogate risk

competitive with that of the best predictor with bounded norm for any norm threshold V .

For distributions that are linearly separable by some margin γ ą 0, the above theorem allows

us to derive upper bounds on the sample complexity that suggest that exponentially tailed

losses are preferable to polynomially tailed losses from both time and sample complexity

perspectives, touching on a recent problem posed by [JDS20].

Corollary 3.4.2 (Sample complexity for linearly separable data). Assume }x} ď BX a.s.

Suppose that for some v̄ P Rd, }v̄} “ 1, there is γ ą 0 such that yv̄Jx ě γ a.s. If ` is convex,

decreasing, L-Lipschitz, and H-smooth, and if we fix a step size of η ď p2{5qH´1B´2
X , then

1The cited theorem implies a similar bound of the form Opγq holds for the more general set of s-concave
isotropic distributions. We focus here on log-concave isotropic distributions for simplicity.

60

‚ Assume ` has polynomial tails, so that for some C0, p ą 0 and `pzq ď C0z
´p holds

for all z ě 1. Provided n “ Ωpγ´2ε´2´2{pq, then running gradient descent for T “

Ωpγ´2ε´1´2{pq iterations guarantees that err0´1pwT q ď ε.

‚ Assume ` has exponential tails, so that for some C0, C1, p ą 0, `pzq ď C0 expp´C1z
pq

holds for all z ě 1. Then n “ Ω̃pγ´2ε´2q and T “ Ω̃pγ´2ε´1q guarantees that

err0´1pwT q ď ε.

The proof for the above Corollary can be found in Section 3.10. At a high level, the

above result shows that if the tails of the loss function are heavier, one may need to run

gradient descent for longer to drive the population surrogate risk, and hence the zero-one

risk, to zero.2 In the subsequent sections, we shall see that this phenomenon persists beyond

the linearly separable case to the more general agnostic learning setting.

Remark 3.4.3. The sample complexity in Theorem 3.4.1 can be improved from Opε´2q

to Opε´1q if we use online stochastic gradient descent rather than vanilla gradient descent.

The proof of this is somewhat more involved as it requires a technical workaround to the

unboundedness of the loss function, and may be of independent interest. We present the full

analysis of this in Section 3.7.

3.5 Gradient Descent Finds Approximate Minimizers for the Zero

One Loss

We now show how we can use the soft margin function to develop bounds for the zero-one

loss of the output of gradient descent.

2We note that in Corollary 3.4.2, there is a gap for the sample complexity and runtime when using
polynomially tailed vs. exponentially tailed losses. However, such a gap may be an artifact of our analysis.
Deriving matching lower bounds for the sample complexity or runtime of gradient descent on polynomially
tailed losses remains an open problem.

61

3.5.1 Bounded Distributions

We first focus on the case when the marginal distribution Dx is bounded almost surely.

By Theorem 3.4.1, since by Markov’s inequality we have that err0´1pwq ď `p0q´1F pwq,

if we want to show that the zero-one population risk for the output of gradient descent is

competitive with that of the optimal zero-one loss achieved by some halfspace v P Rd, it

suffices to bound F pvq by some function of OPT01. To do so we decompose the expectation

for F pvq into a sum of three terms which incorporate OPT01, the soft margin function, and

a term that drives the surrogate risk to zero by driving up the margin on those samples that

are correctly classified.

Lemma 3.5.1. Let v̄ be a unit norm population risk minimizer for the zero-one loss, and

suppose v̄ satisfies the soft margin condition with respect to some φ : r0, 1s Ñ R. Assume

that }x} ď BX a.s. Let v “ V v̄ for V ą 0 be a scaled version of v̄. If ` is decreasing,

L-Lipschitz and `p0q ď 1, then

F pvq ď inf
γą0

!

p1` LV BXqOPT01 ` φpγq ` `pV γq
)

.

Proof. We begin by writing the expectation as a sum of three terms,

Er`pyvJxqs “ E
“

`pyvJxq1
`

yv̄Jx ď 0
˘‰

` E
“

`pyvJxq1
`

0 ă yv̄Jx ď γ
˘‰

` E
“

`pyvJxq1
`

yv̄Jx ą γ
˘‰

. (3.5.1)

For the first term, we use that ` is L-Lipschitz and decreasing as well as Cauchy–Schwarz to

get

Er`pyvJxq1pyv̄Jx ď 0qs ď Erp1` L|vJx|q1pyv̄Jx ď 0qs

ď p1` LV BXqEr1pyv̄Jx ď 0qs

“ p1` LV BXqOPT01.

62

In the last inequality we use that }x} ď BX a.s. For the second term,

E
“

`pyvJxq1
`

0 ă yv̄Jx ď γ
˘‰

ď `p0qE
“

1
`

0 ă yv̄Jx ď γ
˘‰

ď φpγq, (3.5.2)

where we have used that ` is decreasing in the first inequality and Definition 3.3.1 in the

second. Finally, for the last term, we can use that ` is decreasing to get

E
“

`pyvJxq1
`

yv̄Jx ą γ
˘‰

“ E
“

`pyV v̄Jxq1
`

yV v̄Jx ą V γ
˘‰

ď `pV γq. (3.5.3)

In order to concretize this bound, we want to take V large enough so that the `pV γq

term is driven to zero, but not so large so that the term in front of OPT01 grows too large.

Theorem 3.4.1 is given in terms of an arbitrary v P Rd, and so in particular holds for v “ V v̄.

We can view the results of Theorem 3.4.1 as stating an equivalence between running gradient

descent for longer and for driving the norm }v} “ V to be larger.

We formalize the above intuition into Theorem 3.5.2 below. Before doing so, we introduce

the following notation. For general decreasing function `, for which an inverse function may

or may not exist, we overload the notation `´1 by denoting `´1ptq :“ inftz : `pzq ď tu.

Theorem 3.5.2. Suppose }x} ď BX a.s. Let ` be convex, decreasing, L-Lipschitz, and

H-smooth, with 0 ă `p0q ď 1. Assume that a unit norm population risk minimizer of the

zero-one loss, v̄, satisfies the φ-soft-margin condition for some increasing φ : R Ñ R. Fix a

step size η ď p2{5qH´1B´2
X . Let ε1, γ ą 0 and ε2 ě 0 be arbitrary. Denote by wT the output

of gradient descent run for T “ p4{3qη´1ε´1
1 γ´2r`´1pε2qs

´2 iterations after initialization at

the origin. Then, with probability at least 1´ δ,

err0´1
pwT q ď `p0q´1

“

p1` LBXγ
´1`´1

pε2qqOPT01 ` φpγq `Opγ
´1`´1

pε2qn
´1{2

q ` ε1 ` ε2

‰

,

where Op¨q hides absolute constants that depend on L, H, and logp1{δq.

63

Proof. We take v “ V v̄ for a given unit-norm zero-one population risk minimizer v̄ in

Theorem 3.4.1 to get that for some universal constant C ą 0 depending only on L and

logp1{δq, with probability at least 1´ δ,

F pwT q ď F pvq ` ε1{2` CV BXn
´1{2. (3.5.4)

By Lemma 3.5.1, for any γ ą 0 it holds that

F pvq ď p1` LV BXqOPT01 ` φpγq ` `pV γq.

Let now V “ γ´1`´1pε2q. Then `pV γq “ ε2, and putting this together with (3.5.4), we get

F pwT q ď p1` Lγ
´1
qOPT01 ` φpγq `Opγ

´1`´1
pε2qn

´1{2
q ` ε1 ` ε2. (3.5.5)

Finally, by Markov’s inequality,

PpywJT x ă 0q ď
Er`pywJT´1xqs

`p0q
“
F pwT q

`p0q
. (3.5.6)

Putting (3.5.5) together with (3.5.6) completes the proof.

A few comments on the proof of the above theorem are in order. Note that the only

place we use smoothness of the loss function is in showing that gradient descent minimizes

the population risk in (3.5.4), and it is not difficult to remove the H-smoothness assumption

to accommodate e.g., the hinge loss. On the other hand, that ` is L-Lipschitz is key to the

proof of Lemma 3.5.1. Non-Lipschitz losses such as the exponential loss or squared hinge loss

would incur additional factors of γ´1 in front of OPT01 in the final bound for Theorem 3.5.2.3

We shall see below in the proof of Proposition 3.5.5 that this would yield worse guarantees

for err0´1pwT q.

Additionally, in concordance with the result from Corollary 3.4.2, we see that if the tail

of ` is fatter, then `´1pε2q will be larger and so our guarantees would be worse. In particular,

3This is because the first term in (3.5.1) would be bounded by OPT01 ¨ sup|z|ďV BX
`pzq. For Lipschitz

losses this incurs a term of order OpV q while (for example) the exponential loss would have a term of order
OpexppV qq, and our proof requires V “ Ωpγ´1q.

64

for losses with exponential tails, `´1pε2q “ Oplogp1{ε2qq, and so by using such losses we incur

only additional logarithmic factors in 1{ε2. For this reason, we will restrict our attention

in the below results to the logistic loss—which is convex, decreasing, 1-Lipschitz and 1{4-

smooth—although they apply equally to more general losses with different bounds that will

depend on the tail behavior of the loss.

We now demonstrate how to convert the bounds given in Theorem 3.5.2 into bounds solely

involving OPT01 by substituting the forms of the soft margin functions given in Section 3.3.

Corollary 3.5.3 (Hard margin distributions). Suppose that }x} ď BX a.s. and that a unit

norm population risk minimizer v̄ for the zero-one loss satisfies |v̄Jx| ě γ̄ ą 0 almost surely

under Dx for some γ̄ ą 0. For simplicity assume that `pzq “ logp1` expp´zqq is the logistic

loss. Then for any ε, δ ą 0, with probability at least 1 ´ δ, running gradient descent for

T “ Õpη´1ε´1γ̄´2q is guaranteed to find a point wT such that

err0´1
pwT q ď

1

log 2

”

OPT01 ` 2BX γ̄
´1OPT01 logp2{OPT01q

ı

` ε,

provided n “ Ω̃pγ̄´2B2
X logp1{δqε´2q.

Proof. Since |v̄Jx| ě γ˚ ą 0, φpγ˚q “ 0. Note that the logistic loss is 1{4-smooth and

satisfies `´1pεq P rlogp1{p2εqq, logp2{εqs. By taking ε2 “ OPT01 the result follows by applying

Theorem 3.5.2 with runtime T “ 4η´1 ε´1 γ̄´2 log2
p1{2OPT01q.

Remark 3.5.4. The bound Õpγ̄´1OPT01q in Corollary 3.5.3 is tight up to logarithmic fac-

tors4 if one wishes to use gradient descent on a convex surrogate of the form `pywJxq.

[DGT19, Theorem 3.1] showed that for any convex and decreasing `, there exists a dis-

tribution over the unit ball with margin γ̄ ą 0 such that a population risk minimizer

w˚ :“ argminwEr`pywJxqs has zero-one population risk at least Ωpγ̄´1κq, where κ is the

4In fact, one can get rid of the logarithmic factors here and elsewhere in the chapter by using the hinge
loss rather than the logistic loss. In this case one needs to modify Lemma 3.11.1 to accomodate non-smooth
losses, which can be done with runtime Opε´2q rather than Opε´1q by e.g. [SB14, Lemma 14.1]. Then we
use the fact that `´1p0q “ 1 for the hinge loss.

65

upper bound for the Massart noise probability. The Massart noise case is more restrictive

than the agnostic setting and satisfies OPT01 ď κ. A similar matching lower bound was

shown by [BLS12, Proposition 1].

In the below Proposition we demonstrate the utility of having soft margins. As we saw

in the examples in Section 3.3, there any many distributions that satisfy φpγq “ Opγq. We

show below the types of bounds one can expect when φpγq “ Opγpq for some p ą 0.

Proposition 3.5.5 (Soft margin distributions). Suppose }x} ď BX a.s. and that the soft

margin function for a population risk minimizer of the zero-one loss satisfies φpγq ď C0γ
p

for some p ą 0. For simplicity assume that ` is the logistic loss, and let η ď p2{5qB´2
X .

Assuming OPT01 ą 0, then for any ε, δ ą 0, with probability at least 1´ δ, gradient descent

run for T “ Õpη´1ε´1OPT
´2{p1`pq
01 q iterations with n “ Ω̃pOPT

´2{p1`pq
01 logp1{δqε´2q samples

satisfies

err0´1
pwT q ď Õ

´

pC0 `BXqOPT
p

1`p

01

¯

` ε,

Proof. By Theorem 3.5.2, we have err0´1pwT q is at most

1

log 2

”

`

1` LBXγ
´1`´1

pε2q
˘

OPT01 ` C0γ
p
`Opγ´1BX`

´1
pε2qn

´1{2
q ` ε1 ` ε2

ı

.

For the logistic loss, L “ 1 and `´1pεq P rlogp1{2εq, logp2{εqs and so we take ε2 “ OPT01.

Choosing γp “ γ´1OPT01, we get γ “ OPT
1{p1`pq
01 and hence

err0´1
pwT q ď 2

`

2`BXOPT
´ 1

1`p

01 logp2{OPT01q
˘

OPT01 ` 2C0OPT
1

1`p

01 ` 2ε1,

provided n “ ΩpOPT
´2
1`p

01 ε´2
1 logp1{δq log2

p1{OPT01qq and the number of iterations is T “

4η´1ε´1
1 OPT

´2{p1`pq
01 log2

p1{2OPT01q.

By applying Proposition 3.5.5 to Examples 3.3.4 and 3.3.6 we get the following approxi-

mate agnostic learning guarantees for the output of gradient descent for log-concave isotropic

distributions and other distributions satisfying U -anti-concentration.

66

Corollary 3.5.6. Suppose that Dx satisfies U -anti-concentration and }x} ď BX a.s. Then

for any ε, δ ą 0, with probability at least 1 ´ δ, gradient descent on the logistic loss

with step size η ď p2{5qB´2
X and run for T “ Õpη´1ε´1OPT´1

01 q iterations with n “

Ω̃pOPT´1
01 logp1{δqε´2q samples returns weights wT satisfying err0´1pwT q ď ÕpOPT

1{2
01 q ` ε,

where Õp¨q, Ω̃p¨q hide universal constant depending on BX , U , logp1{δq and logp1{OPT01q only.

To conclude this section, we compare our result to the variant of the Average algorithm,

which estimates the vector wAvg “ d´1Epx,yqrxys. [KKM08] showed that when Dx is the

uniform distribution over the unit sphere, wAvg achieves risk OpOPT01

a

logp1{OPT01qq. Esti-

mation of wAvg can be viewed as the output convex optimization procedure, since it is the

minimum of the convex objective function FAvgpwq “ Erpxw, xy ´ yq2s.

Although `pwq “ pxw, xy ´ yq2 is convex, it is not decreasing and thus is not covered

by our analysis. On the other hand, this loss function is not typically used in practice for

classification problems, and the aim of this work is to characterize the guarantees for the

most typical loss functions used in practice, like the logistic loss. Finally, we wish to note that

the approach of soft margins is not likely to yield good bounds for the classification error

when Dx is the uniform distribution on the unit sphere. This is because the soft margin

function behavior on this distribution has a necessary dimension dependence; we provide

detailed calculations for this in Section 3.8.

3.5.2 Unbounded Distributions

We show in this section that we can achieve essentially the same results from Section 3.5.1

if we relax the assumption that Dx is bounded almost surely to being sub-exponential.

Definition 3.5.7 (Sub-exponential distributions). We say Dx is Cm-sub-exponential if every

x „ Dx is a sub-exponential random vector with sub-exponential norm at most Cm. In

particular, for any v̄ with }v̄} “ 1, PDxp|v̄
Jx| ě tq ď expp´t{Cmq.

We show in the following example that any log-concave isotropic distribution is Cm-sub-

67

exponential for an absolute constant Cm independent of the dimension d.

Example 3.5.8. If Dx is log-concave isotropic, then Dx is Op1q-sub-exponential.

Proof. By Section 5.2.4 and Definition 5.22 of [Ver10], it suffices to show that for any unit

norm v̄, we have pE|v̄Jx|pq1{p ď Oppq. By [BZ17, Theorem 3], if we define a coordinate

system in which v̄ is an axis, then v̄Jx is equal to the first marginal of Dx and is a one

dimensional log-concave isotropic distribution. By [LV07, Theorem 5.22], this implies

pEr|v̄Jx|psq1{p ď 2pE|v̄Jx| ď 2p
a

E|v̄Jx|2 ď 2p.

In the second inequality we use Jensen’s inequality and in the last inequality we have used

that v̄Jx “ x1 is isotropic.

As was the case for bounded distributions, the key to the proof for unbounded distribu-

tions comes from bounding the surrogate risk at a minimizer for the zero-one loss by some

function of the zero-one loss.

Lemma 3.5.9. Suppose Dx is Cm-sub-exponential. Denote by v̄ as a unit norm population

risk minimizer for the zero-one loss, and let v “ V v̄ for V ą 0 be a scaled version of v̄. If `

is decreasing, L-Lipschitz and `p0q ď 1, then

Epx,yq„D`pyvJxq ď inf
γą0

!

φpγq ` `pV γq `
`

1` Cm ` LV Cm logp1{OPT01q
˘

OPT01

)

.

Proof. We again use the decomposition (3.5.1), with the only difference coming from the

68

bound for the first term, which we show here. Fix ξ ą 0 to be chosen later. We can write

Er`pyvJxq1pyv̄Jx ď 0qs ď Erp1` LV |v̄Jx|q1pyv̄Jx ă 0qs

“ OPT01 ` LV Er|v̄Jx|1pyv̄Jx ď 0, |v̄Jx| ď ξqs

` Er|v̄Jx|1pyv̄Jx ď 0, |v̄Jx| ą ξqs

ď p1` LV ξqOPT01 `

ż 8

ξ

Pp|v̄Jx| ą tqdt

ď p1` LV ξqOPT01 `

ż 8

ξ

expp´t{Cmqdt

“ p1` LV ξqOPT01 ` Cm expp´ξ{Cmq.

The first inequality comes from Cauchy–Schwarz, the second from truncating, and the last

from the definition of Cm-sub-exponential. Taking ξ “ Cm logp1{OPT01q results in

Er`pyvJxq1pyv̄Jx ď 0qs ď p1` Cm ` LV Cm logp1{OPT01qqOPT01.

To derive an analogue of Theorem 3.5.2 for unbounded distributions, we need to extend

the analysis for the generalization bound for the output of gradient descent we presented in

Theorem 3.4.1 to unbounded distributions. Rather than using (full-batch) vanilla gradient

descent, we instead use online stochastic gradient descent. The reason for this is that dealing

with unbounded distributions is significantly simpler with online SGD due to the ability to

work with expectations rather than high-probability bounds. It is straightforward to extend

our results to vanilla gradient descent at the expense of a more involved proof by using

methods from e.g., [ZYW19].

Below we present our result for unbounded distributions. Its proof is similar to that of

Theorem 3.5.2 and can be found in Section 3.9.

Theorem 3.5.10. Suppose Dx is Cm-sub-exponential, and let Er}x}2s ď B2
X . Let ` be

convex, L-Lipschitz, and decreasing with 0 ă `p0q ď 1. Let ε1, γ ą 0 and ε2 ě 0 be arbitrary,

69

and fix a step size η ď L´2B´2
X ε1{4. By running online SGD for T “ 2η´1ε´1

1 γ´2r`´1pε2qs
´2

iterations after initialization at the origin, SGD finds a point such that in expectation over

px1, . . . , xT q „ DT ,

Ererr0´1
pwtqs ď 1{`p0q

”

φpγq ` ε1 ` ε2 `
`

1` Cm ` LCm`
´1
pε2qγ

´1 logp1{OPT01q
˘

OPT01

ı

.

The above theorem yields the following bound for sub-exponential distributions satisfy-

ing U -anti-concentration. Recall from Examples 3.3.6 and 3.5.8 that log-concave isotropic

distributions are Op1q-sub-exponential and satisfy anti-concentration with U “ 1.

Corollary 3.5.11. Suppose Dx is Cm-sub-exponential with Er}x}2s ď B2
X and assume U -

anti-concentration holds. Let ` be the logistic loss and let ε ą 0. Fix a step size η ď B´2
X ε{16.

By running online SGD for T “ Õpη´1ε´1CmU
´1OPT´1

01 q iterations, there exists a point wt,

t ă T , such that

Ererr0´1
pwtqs ď Õ

´

pCm{Uq
1{2OPT

1{2
01

¯

` ε.

Proof. By Example 3.3.4, φpγq ď 2γU . Since `´1pεq P rlogp1{2εq, logp2{εqs, we can take

ε2 “ OPT01 in Theorem 3.5.10 to get

Ererr0´1
pwtqs ď 1{logp2q

”

2γU ` ε`
`

2` Cm ` LCmγ
´1 log2

p2{OPT01q
˘

OPT01

ı

.

This bound is optimized when Uγ “ Cmγ
´1OPT01, i.e., γ “ U´1{2C

1{2
m OPT

1
2
01. Substituting

this value for γ we get the desired bound with T “ 2 logp2qη´1ε´1CmU
´1OPT´1

01 log2
p1{2OPT01q.

Remark 3.5.12. [DKT20b, Theorem 1.4] recently showed that if the marginal of D over

x is the standard Gaussian in d dimensions, for every convex, non-decreasing loss `, the

minimizer v “ argminwF pwq satisfies err0´1pvq “ ΩpOPT01

a

logp1{OPT01qq. Thus, there is a

large gap between our upper bound of ÕpOPT1{2
q and their corresponding lower bound. We

think it is an interesting question if either the lower bound or the upper bound could be

sharpened.

70

We also wish to note that [DKT20b] showed that by using gradient descent on a certain

bounded and decreasing non-convex surrogate for the zero-one loss, it is possible to show

that gradient descent finds a point with err0´1pwT q ď OpOPT01q ` ε. In comparison with

our result, this is perhaps not surprising: if one is able to show that gradient descent with a

bounded and decreasing loss function can achieve population risk bounded by OpEr`pyvJxqsq

for arbitrary v P Rd, then the same proof technique that yields Theorem 3.5.10 from Lemma

3.5.9 would demonstrate that err0´1pwtq ď OpOPT01q. Since the only globally bounded

convex function is constant, this approach would require working with a non-convex loss.

3.6 Conclusion and Future Work

In this work we analyzed the problem of learning halfspaces in the presence of agnostic label

noise. We showed that the simple approach of gradient descent on convex surrogates for the

zero-one loss (such as the cross entropy or hinge losses) can yield approximate minimizers

for the zero-one loss for both hard margin distributions and sub-exponential distributions

satisfying an anti-concentration inequality enjoyed by log-concave isotropic distributions.

Our results match (up to logarithmic factors) lower bounds shown for hard margin distri-

butions. For future work, we are interested in exploring the utility of the soft margin for

understanding other classification problems.

3.7 Fast Rates with Stochastic Gradient Descent

In Theorem 3.4.1, we showed that F pwT q ď F pvq`Op1{
?
nq given n samples from D by using

vanilla (full-batch) gradient descent. In this section we demonstrate that by instead using

stochastic gradient descent, one can achieve F pwT q ď OpF pvqq ` Op1{nq by appealing to a

martingle Bernstein bound. We note that although the population risk guarantee degrades

from F pvq to OpF pvqq, our bounds for the zero-one risk in vanilla gradient descent already

71

have constant-factor errors and so the constant-factor error for F pvq will not change the

order of our final bounds.

The version of stochastic gradient descent that we study is the standard online SGD.

Suppose we sample zt “ pxt, ytq
i.i.d.
„ D for t “ 1, . . . , T , and let us denote the σ-algebra

generated by the first t samples as Gt “ σpz1, . . . , ztq. Define

pFtpwq :“ `pytw
Jxtq, Er pFtpwtq|Gt´1s “ F pwtq “ Epx,yq„D`pywJt xq.

The online stochastic gradient descent updates take the form

wt`1 :“ wt ´ η∇ pFtpwtq.

We are able to show an improved rate of Opε´1q when using online SGD.

Theorem 3.7.1 (Fast rate for online SGD). Assume that `p¨q ě 0 is convex, strictly de-

creasing, L-Lipschitz and H-smooth. Assume }x} ď BX a.s. For simplicity assume that

w0 “ 0. Let v P Rd be arbitrary with }v} ď V . Let η ď p32HB2
Xq
´1. Then for any ε, δ ą 0,

by running online stochastic gradient descent for T “ Opε´1V 2 logp1{δqq iterations, with

probability at least 1´ δ there exists a point wt˚ , with t˚ ă T , such that

err0´1
pwt˚q ď OpEr`pyvJxqsq ` ε,

where Op¨q hides constant factors that depend on L, H and BX only.

In this section we will sketch the proof for the above theorem. First, we note the following

guarantee for the empirical risk. This result is a standard result in online convex optimization

(see, e.g., Theorem 14.13 in [SB14]).

Lemma 3.7.2. Suppose that `p¨q ě 0 is convex and H-smooth, and that }x} ď BX a.s.

Then for any α P p0, 1q, for fixed step size η ď α{p8HB2
Xq, and for any T ě 1, it holds that

1

T

T´1
ÿ

t“0

pFtpwtq ď p1` αq
1

T

T´1
ÿ

t“0

pFtpvq `
}w0 ´ v}

2

ηT
.

72

From here, one could take expectations and show that in expectation over the randomness

of SGD, the population risk found by gradient descent is at most p1`αqF pvq`Op1{T q, but

we are interested in developing a generalization bound that has the same fast rate but holds

with high probability, which requires significantly more work. Much of the literature for fast

rates in stochastic optimization require additional structure to achieve such results: [BJM06]

showed that the empirical risk minimizer converges at a fast rate to its expectation under a

low-noise assumption; [SSS09] achieved fast rates for the output of stochastic optimization by

using explicit regularization by a strongly convex regularizer; [SST10] shows that projected

online SGD achieves fast rates when minv Er`pyvJxqs “ 0. By contrast, we show below that

the standard online SGD algorithm achieves a constant-factor approximation to the best

population risk at a fast rate. We do so by appealing to the martingale Bernstein inequality

provided in Lemma 2.9.7.

We would like to take Yt “
ř

τătrF pwtq ´
pFtpwtqs, which has martingale difference se-

quence Dt “ F pwtq ´ pFtpwtq. The difficulty here is showing that Dt ď R almost surely for

some absolute constant R. The obvious fix would be to show that the weights wt stay within a

bounded region throughout gradient descent via early stopping. In the case of full-batch gra-

dient descent, this is indeed possible: in Lemma 3.11.1 we showed that }wt ´ v} ď }w0 ´ v}

throughout gradient descent, which would imply that `pywJt xq is uniformly bounded for all

samples x throughout G.D., in which case Dt ď F pwtq would hold almost surely. But for on-

line stochastic gradient descent, since we must continue to take draws from the distribution

in order to reduce the optimization error, there isn’t a straightforward way to get a bound

on }wt} to hold almost surely throughout the gradient descent trajectory.

Our way around this is to realize that in the end, our end goal is to show something of

the form

err0´1
pwtq ď OpEr`pyvJxqsq `Op1{T q,

since then we could use a decomposition similar to Lemma 3.5.1 to bound the right hand side

by terms involving OPT01 and a soft margin function. Since for a non-negative H-smooth

73

loss r`1pzqs2 ď 4H`pzq holds, it actually suffices to show that the losses tr`1pytw
Jxtqs

2uT1

concentrate around their expectation at a fast rate. Roughly, this is because one would have

min
tăT

ED
`

r`1pywJt xqs
2
˘

ď
1

T

T´1
ÿ

t“0

r`1pytw
J
t xtq

2
s `Op1{T q

ď
4H

T

T´1
ÿ

t“0

`pytw
J
t xtq `Op1{T q

ď
4H

T

T´1
ÿ

t“0

`pytv
Jxtq `Op1{T q. (3.7.1)

To finish the proof we can then use the fact that v is a fixed vector of constant norm to show

that the empirical risk on the last line of (3.7.1) concentrates around OpEr`pyvJxqsq at rate

Op1{T q. For decreasing and convex loss functions, `1pzq2 is decreasing so the above provides

a bound for err0´1pwtq by Markov’s inequality.

This shows that the key to the proof is to show that t`1pytwtxtq
2u concentrates at rate

Op1{T q. The reason this is easier than showing concentration of t`pytwtxtqu is because for

Lipschitz losses, `1pytw
J
t xtq

2 is uniformly bounded regardless of the norm of wt. This ensures

that the almost sure condition needed for the martingale difference sequence in Lemma 2.9.7

holds trivially. We note that a similar technique has been utilized before for the analysis of

SGD [JT20b, CG20, FCG19], although in these settings the authors used the concentration

of t`1pztqu rather than t`1pztq
2u since they considered the logistic loss, for which |`1pzq| ď `pzq.

Since not all smooth loss functions satisfy this inequality, we instead use concentration of

t`1pztq
2u.

Below we formalize the above proof sketch. We first show that t`1pytw
J
t xtq

2u concentrates

at rate Op1{T q for any fixed sequence of gradient descent iterates twtu.

Lemma 3.7.3. Let ` be any differentiable L-Lipschitz function, and let zt “ pxt, ytq
i.i.d.
„ D.

Denote Gt “ σpz1, . . . , ztq the σ-algebra generated by the first t draws from D, and let twtu

be any sequence of random variables such that wt is Gt´1-measurable for each t. Then for

74

any δ ą 0, with probability at least 1´ δ,

1

T

T´1
ÿ

t“0

Epx,yq„D
´

“

`1pywJt xq
‰2
¯

ď
4

T

T´1
ÿ

t“0

“

`1pytw
J
t xtq

‰2
`

4L2 logp1{δq

T
. (3.7.2)

Proof. For simplicity, let us denote

Jpwq :“ Epx,yq„D
´

“

`1pywJxq
‰2
¯

, pJtpwq :“
“

`1pytw
Jxtq

‰2
.

We begin by showing the second inequality in (3.7.2). Define the random variable

Yt :“
ÿ

τăt

pJpwτ q ´ pJτ pwτ qq (3.7.3)

Then Yt is a martingale with respect to the filtration Gt´1 with martingale difference sequence

Dt :“ Jpwtq ´ pJtpwtq. We need bounds on Dt and on ErD2
t |Gt´1s in order to apply Lemma

2.9.7. Since ` is L-Lipschitz,

Dt ď Jpwtq “ Epx,yq„D
`

r´`1pyvJxqs2
˘

ď L2.

Similarly,

Er pJtpwtq2|Gt´1s “ E
´

“

`1pytw
J
t xtq

‰4
|Gt´1

¯

ď L2E
´

“

`1pytw
J
t xtq

‰2
|Gt´1

¯

“ L2Jpwtq. (3.7.4)

In the inequality we use that ` is L-Lipschitz, so that |`1pαq| ď L. We then can use (3.7.4)

to bound the squared increments,

ErD2
t |Gt´1s “ Jpwtq

2
´ 2JpwtqEr pJtpwtq|Gt´1s ` Er pJtpwtq2|Gt´1s

ď Er pJtpwtq2|Gt´1s

ď L2Jpwtq.

This allows for us to bound

UT´1 “

T´1
ÿ

t“0

ErD2
t |Gt´1s ď L2

T´1
ÿ

t“0

Jpwtq.

75

Lemma 2.9.7 thus implies that with probability at least 1´ δ, we have

T´1
ÿ

t“0

pJpwtq ´ pJtpwtqq ď L2 logp1{δq ` pexpp1q ´ 2q
T´1
ÿ

t“0

Jpwtq.

Using that p1´ expp1q ` 2q´1 ď 4, we divide each side by T and get

1

T

T´1
ÿ

0“t

Jpwtq ď
4

T

T´1
ÿ

t“0

pJtpwtq `
4L2 logp1{δq

T
.

This completes the proof.

Next, we show that the average of t`pytv
Jxtqu is at most twice its mean at rate Op1{T q.

Lemma 3.7.4. Let ` be any L-Lipschitz function, and suppose that `p0q ď 1 and }x}2 ď B

a.s. Let v P Rd be arbitrary with }v} ď V . For any δ ą 0, with probability at least 1´ δ,

1

T

T´1
ÿ

t“0

pFtpvq ď 2F pvq `
2p1` LV BXq logp1{δq

T
.

Proof. Let Gt “ σpz1, . . . , ztq be the σ-algebra generated by the first t draws from D. Then

the random variable Yt :“
ř

τătp
pFτ pvq ´ F pvqq is a martingale with respect to the filtration

Gt´1 with martingale difference sequence Dt :“ pFtpvq´F pvq. We need bounds on Dt and on

ErD2
t |Gt´1s in order to apply Lemma 2.9.7. Since ` is L-Lipschitz and }x} ď BX a.s., that

}v} ď V implies that almost surely,

Dt ď pFtpvq “ `pytv
Jxtq ď p1` LV BXq. (3.7.5)

Similarly,

Er pFtpvq2|Gt´1s “ E
“

`pytv
Jxtq

2
|Gt´1

‰

ď p1` LV BXqEr`pytvJxtqs

“ p1` LV BXqF pvq. (3.7.6)

76

In the inequality, we have used that pxt, ytq is independent from Gt´1 together with (3.7.5).

We then can use (3.7.6) to bound the squared increments,

ErD2
t |Gt´1s “ F pvq2 ´ 2F pvqEr pFtpvq|Gt´1s ` Er pFtpvq2|Gt´1s

ď Er pFtpvq2|Gt´1s

ď p1` LV BXqF pvq.

This allows for us to bound

UT´1 :“
T´1
ÿ

t“0

ErD2
t |Gt´1s ď p1` LV BXqTF pvq.

Lemma 2.9.7 thus implies that with probability at least 1´ δ, we have

T´1
ÿ

t“0

p pFtpvq ´ F pvqq ď p1` LV BXq logp1{δq ` pexpp1q ´ 2qTF pvq.

Using that expp1q ´ 2 ď 1, we divide each side by T and get

1

T

T´1
ÿ

t“0

pFtpvq ď 2F pvq `
2p1` LV BXq logp1{δq

T
.

Finally, we put these ingredients together for the proof of Theorem 3.7.1.

Proof. Since ` is convex and H-smooth, we can take α “ 1{4 in Lemma 3.7.2 to get

1

T

T´1
ÿ

t“0

pFtpwtq ď
5

4T

T´1
ÿ

t“0

pFtpvq `
V 2

ηT
. (3.7.7)

77

We can therefore bound

min
tăT

E
`

r`1pywJt xqs
2
˘

ď
1

T

T´1
ÿ

t“0

Epx,yq„D
`

r`1pywJt xqs
2
˘

ď
4

T

T´1
ÿ

t“0

r`1pytw
J
t xtqs

2
`

4L2 logp2{δq

T

ď
16H

T

T´1
ÿ

t“0

pFtpwtq `
4L2 logp2{δq

T

ď
20H

T

T´1
ÿ

t“0

pFtpvq `
5L2 logp2{δq ` V 2

ηT

ď 40HF pvq `
40Hp1` LV BXqη logp2{δq ` 5L2η logp2{δq ` V 2

ηT
.

(3.7.8)

The second inequality holds since ` is L-Lipschitz so that we can apply Lemma 3.7.3.

The third inequality uses that ` is non-negative and H-smooth, so that r`1pzqs2 ď 4H`pzq

(see [SST10, Lemma 2.1]). The fourth inequality uses (3.7.7), and the final inequality uses

Lemma 3.7.4.

Since ` is convex and decreasing, d
dz
`1pzq2 “ 2`1pzq`2pzq ď 0, so `1pzq2 is decreasing. By

Markov’s inequality, this implies

PpywJt x ă 0q “ P
`

r`1pywJt xqs
2
ě `1p0q2

˘

ď r`1p0qs´2E
`

r`1pywJt xqs
2
˘

.

Substituting this into (3.7.8), this implies that with probability at least 1´ δ,

err0´1
pwtq ď OpF pvqq `OpV 2 logp1{δq{T q.

We note that the above proof works for an arbitrary initialization w0 such that }w0} is

bounded by an absolute constant with high probability, e.g. with the random initialization

w0
i.i.d.
„ Np0, Id{dq. The only difference is that we need to replace V 2 with }w0 ´ v}

2
ď OpV 2q

in (3.7.7) and the subsequent lines.

78

3.8 Soft Margin for Uniform Distribution

We show here that the soft margin function for the uniform distribution on the sphere

has an unavoidable dimension dependence. Consider x „ D is uniform on the sphere in

d dimensions. Then x has the same distribution as z{ }z}, where z „ Np0, Idq is the d-

dimensional Gaussian. The soft margin function on x thus satisfies, for }v} “ 1,

φpγq “ Pxp|vJx| ď γq “ Pz
`

|vJz|2{ }z}2 ď γ2
˘

.

By symmetry, we can rotate the coordinate system so that v “ p1, 0, . . . q, which results in

φpγq taking the form

P

˜

z2
1

řd
i“1 z

2
i

ď γ2

¸

“ P
´

p1´ γ2
qz2

1 ď γ2
řd
i“2 z

2
i

¯

“ P
ˆ

z2
1 ď

γ2

1´ γ2

řd
i“2 z

2
i

˙

ě Ppz2
1 ď γ2

řd
i“2z

2
i q.

Since γ2
řd
i“2 z

2
i “ Θpγ2dq with high probability by concentration of the χ2 distribution,

and since Pp|z1| ď aq “ Θpaq for the Gaussian, this shows that φpγq “ Ωpγ
?
dq when Dx

is uniform on the sphere. Thus our approach of using the soft margin in Theorem 3.5.2 to

derive generalization bounds will result in multiplicative terms attached to OPT that will

grow with d for such a distribution.

3.9 Proofs for Unbounded Distributions

In this section we prove Theorem 3.5.10.

3.9.1 Empirical Risk

First, we derive an analogue of Lemma 3.11.1 that holds for any distribution satisfying

Er}x}2s ď B2
X by appealing to online stochastic gradient descent. Note that any distribution

79

over Rd with sub-Gaussian coordinates satisfies Er}x}2s ď B2 for some B P R.

We use the same notation from Section 3.7, where we assume samples zt “ pxt, ytq
i.i.d.
„ D

for t “ 1, . . . , T , and Gt :“ σpz1, . . . , ztq, and denote

pFtpwq :“ `pytw
Jxtq, Er pFtpwtq|Gt´1s “ F pwtq “ Epx,yq„D`pywJt xq.

The online stochastic gradient descent updates take the form

wt`1 :“ wt ´ η∇ pFtpwtq.

Lemma 3.9.1. Suppose EDxr}x}
2
s ď B2

X . Suppose that ` is convex and L-Lipschitz. Let

v P Rd and ε, α P p0, 1q be arbitrary, and consider any initialization w0 P Rd. Provided

η ď L´2B´2
X ε{2, then for any T P N,

1

T

T´1
ÿ

t“0

EF pwtq ď F pvq `
}w0 ´ v}

2

ηT
` ε.

Proof. The proof is very similar to that of the proof of Lemma 3.7.2 described in Section

3.9.1, so we describe here the main modifications. The key difference comes from the gradient

upper bound: for gt “ `1pytw
J
t xtq, instead of getting an upper bound that holds a.s. in terms

of the loss, we only show that its expectation is bounded by a constant:

Er}gt}2 |Gt´1s ď Er`1pytwtxtq2 }xt}2 |Gt´1s ď L2Er}xt}2 |Gt´1s ď L2B2
X .

By convexity, xgt, wt ´ vy ě pFtpwtq ´ pFtpvq. Thus taking η “ Opεq, we get

}wt ´ v}
2
´ Er}wt`1 ´ v}

2
|Gt´1s ě Er2ηp pFtpwtq ´ pFtpvqq ´ η

2
}gt}

2
|Gt´1s

ě 2ηpF pwtq ´ F pvqq ´ η
2L2B2

X

ě 2ηpF pwtq ´ F pvq ´ εq.

Taking expectations with respect to the randomness of SGD and summing from 0 to T ´ 1,

we get

1

T

T´1
ÿ

t“0

EF pwtq ď F pvq `
}w0 ´ v}

2

ηT
` ε.

80

We note that the above analysis is quite loose and we are aware of a number of ways to

achieve faster rates by introducing various assumptions on ` and Dx; we chose the presenta-

tion above for simplicity.

With the above result in hand, we can prove Theorem 3.5.10.

Proof. Let ε1 ą 0. By taking η ď L´2B´2
X ε1{8 and T “ 2V 2η´1ε´1

1 , Lemma 3.9.1 and

Markov’s inequality, this implies that there exists some t ă T such that

Ererr0´1
pwtqs ď ErF pwtqs ď 1{`p0q

”

F pvq `
V 2

ηT
` ε1{2 ď F pvq ` ε1

ı

.

By Lemma 3.5.9, this implies that for any γ ą 0,

Ererr0´1
pwtqs ď 1{`p0q

”

p1` Cm ` LV Cm logp1{OPT01qqOPT01 ` φpγq ` `pV γq ` ε1

ı

.

For ε2 ě 0, by taking V “ γ´1`´1pε2q, this means that for any γ ą 0, we have

Ererr0´1
pwtqs ď 1{`p0q

”

`

1` Cm ` LCm`
´1
pε2qγ

´1 logp1{OPT01q
˘

OPT01 ` φpγq ` ε1 ` ε2

ı

.

For V “ γ´1`´1pε2q, we need T “ 2γ´2η´1ε´1
1 r`

´1pε2qs
2.

3.10 Loss Functions and Sample Complexity for Separable Data

We present here the proof of Corollary 3.4.2.

Proof. Let v “ V v̄. By Theorem 3.4.1, for any ε, δ ą 0 and V ą 0, running gradient descent

for T “ 4r`p0qs´1η´1V 2ε´1 iterations guarantees that w “ wT´1 satisfies

F pwq ď F pvq ` `p0q ¨ ε{3` CV n´1{2,

for some absolute constant C ą 0 depending only on L, BX , and logp1{δq. By Markov’s

inequality, this implies

PpywJx ă 0q ď
1

`p0q
F pwq ď

1

`p0q

ˆ

F pvq `
`p0q

3
ε` CV n´1{2

˙

. (3.10.1)

81

Since yv̄Jx ě γ a.s., we have

F pvq “ Epx,yq„D`pyV v̄Jxq ď `pV γq.

If ` has polynomial tails, then by taking V ě γ´1p6C0r`p0qs
´1ε´1q1{p we get F pvq ď C0pγV q

´p

which is at most `p0qε
6

. Substituting this into (3.10.1), this implies

PpywJx ă 0q ď
ε

2
`

CV

`p0qn1{2
. (3.10.2)

Thus, provided n “ Ωpγ´2ε´2´ 2
p q, if we run gradient descent for T “ Ω̃pγ´2ε´1´ 2

p q iterations,

we have that err0´1pwq ď ε.

If ` has exponential tails, then by taking V ě γ´1rC´1
1 logp6C0`p0qε

´1qs1{p we get F pvq ď

`p0qε
6

, and so (3.10.2) holds in this case as well. This shows that for exponential tails, taking

n “ Ω̃pγ´2ε´2q and T “ Ω̃pγ´2ε´1q suffices to achieve err0´1pwq ď ε.

3.11 Remaining Proofs

In this section we provide the proof of Theorem 3.4.1. We first will prove the following bound

on the empirical risk.

Lemma 3.11.1. Suppose that ` is convex and H-smooth. Assume }x} ď BX a.s. Fix a

step size η ď p2{5qH´1B´2
X , and let v P Rd be arbitrary. Then for any initialization w0, and

for any ε ą 0, running gradient descent for T “ p4{3qε´1η´1 }w0 ´ v}
2 ensures that for all

t ă T , }wt ´ v} ď }w0 ´ v}, and

pF pwT´1q ď
1

T

T´1
ÿ

t“0

pF pwtq ď pF pvq ` ε.

To prove this, we first introduce the following upper bound for the norm of the gradient.

Lemma 3.11.2 ([Sha20], Proof of Lemma 3). Suppose that ` is H-smooth. Then for any

ρ P p0, 1q, provided η ď 2ρH´1B´2
X , pF pwtq is decreasing in t. Moreover, if T P N is arbitrary

82

and u P Rd is such that pF puq ď pF pwT q, then for any t ă T , we have the following gradient

upper bound,
›

›

›
∇ pF pwtq

›

›

›

2

ď
1

ηp1´ ρq

´

pF pwtq ´ pF puq
¯

. (3.11.1)

With this gradient upper bound, we can prove Lemma 3.11.1.

Proof. Let ε ą 0 be fixed and let T “ p4{3qε´1η´1 }w0 ´ v}
2 be as in the statement of the

lemma. We are done if pF pwT q ă pF pvq, so let us assume that pF pvq ď pF pwT q. We proceed by

providing the appropriate lower bounds for

}wt ´ v}
2
´ }wt`1 ´ v}

2
“ 2η

A

pF pwtq, wt ´ v
E

´ η2
›

›

›

pF pwtq
›

›

›

2

.

For any v P Rd, by convexity of `,

A

∇ pF pwq, w ´ v
E

“
1

n

n
ÿ

i“1

`1pyiw
Jxiqpyiw

Jxi ´ yiv
Jxiq

ě
1

n

n
ÿ

i“1

r`pyiw
Jxiq ´ `pyiv

Jxiqs

“ pF pwq ´ pF pvq, (3.11.2)

by convexity of `. On the other hand, since pF pvq ď pF pwT q, by Lemma 3.11.2, for any t ă T ,

(3.11.1) holds, i.e.
›

›

›
∇ pF pwtq

›

›

›

2

ď
1

ηp1´ ρq

´

pF pwtq ´ pF pvq
¯

. (3.11.3)

Thus, for η ď p2{5qH´1B´2
X , putting eqs. (3.11.2) and (3.11.3) together yields

}wt ´ v}
2
´ }wt`1 ´ v}

2
“ 2η

A

∇ pF pwtq, wt ´ v
E

´ η2
›

›

›
∇ pF pwtq

›

›

›

2

ě 2ηp pF pwtq ´ pF pvqq ´ η2
¨

1

ηp1´ 1{5q

´

pF pwtq ´ pF pvq
¯

“
3

4
η
´

pF pwtq ´ pF pvq
¯

.

Summing and teloscoping over t ă T ,

1

T

T´1
ÿ

t“0

pF pwtq ď pF pvq `
p4{3q }w0 ´ v}

2

ηT
ď pF pvq ` ε.

83

By Lemma 3.11.2, pF pwtq is decreasing in t, and therefore

pF pwT´1q “ min
tăT

pF pwtq ď T´1
ÿ

tăT

pF pwtq,

completing the proof.

Lemma 3.11.1 shows that throughout the trajectory of gradient descent, }wt} stays

bounded by the norm of the reference vector v. We can thus use Rademacher complex-

ity bounds to prove Theorem 3.4.1.

Proof. By Lemma 3.11.1, it suffices to show that the gap between the empirical and popu-

lation surrogate risk is small. To do so, we use a Rademacher complexity argument. Denote

by G the function class

GV :“ tx ÞÑ wJx : }w} ď 3V u.

Since ` is L-Lipschitz and `p0q ď 1, it holds that `pywJxq ď 1` 3LV ď 4LV . We therefore

use standard results in Rademacher complexity (e.g. Theorem 26.12 of [SB14]) to get that

with probability at least 1´ δ, for any w P GV ,

F pwq ď pF pwq `
2BXV L
?
n

` 4BXV

c

2 logp2{δq

n
.

Since the output of gradient descent satisfies }wT´1 ´ v} ď }w0 ´ v} ď 2V , we see that

wT´1 P GV . We can thus apply the Rademacher complexity bound to both wT´1 P GV and

v P GV , proving the theorem.

84

CHAPTER 4

Learning noisy halfspaces using one-hidden-layer

neural networks trained by stochastic gradient descent

85

4.1 Introduction

In this chapter we show that SGD-trained neural networks are capable of learning halfspaces

with agnostic label noise, despite the capacity of such networks to overfit to random labels.

For a distribution D over features px, yq P Rd ˆ t˘1u, let us define

OPTlin :“ min
vPRd, }v}“1

Ppx,yq„D
´

y ‰ sgn
`

xv, xy
˘

¯

(4.1.1)

as the optimal classification error achieved by a halfspace xv, ¨y. We prove that for a broad

class of distributions, SGD-trained one-hidden-layer neural networks achieve classification

error at most Õp
?
OPTlinq in polynomial time. Equivalently, one-hidden-layer neural net-

works can learn halfspaces up to risk Õp
?
OPTlinq in the distribution-specific agnostic PAC

learning setting. Our result holds for neural networks with leaky-ReLU activations trained

on the cross-entropy loss and, importantly, hold for any initialization, and for networks of

arbitrary width.

By comparing the generalization of the neural network with that of the best linear classi-

fier over the distribution, we can make two different but equally important claims about the

training of overparameterized neural networks. The first view is that SGD produces neural

networks with classification error that is competitive with that of the best linear classifier

over the distribution, and that this behavior can occur for neural networks of any width and

any initialization. In this view, our work provides theoretical support for the hypothesis put

forward by [NKK19] that the performance of SGD-trained networks in the early epochs of

training can be explained by that of a linear classifier.

The second view is that of the problem of learning halfspaces in the presence of adversarial

label noise. (Note that adversarial label noise is distinct from the notions of adversarial ex-

amples or adversarial training [GSS14, MMS18], where the features x are perturbed rather

than the labels y.) In this setting, one views the (clean) data as initially coming from a

linearly separable distribution but for which each sample px, yq „ D has its label flipped

y ÞÑ ´y with some sample-dependent probability ηpxq P r0, 1s. Then the best error achieved

86

by a halfspace is Ex„Dxrηpxqs “ OPTlin. Viewed from this perspective, our result shows

that despite the clear capacity of an overparameterized neural network to overfit to cor-

rupted labels, when trained by SGD, such networks can still generalize (albeit achieving the

suboptimal risk
?
OPTlin). We note that the optimization algorithm we consider is vanilla

online SGD without any explicit regularization methods such as weight decay or dropout.

This suggests that the ability of neural networks to generalize in the presence of noise is not

solely due to explicit regularization, but that some forms of implicit regularization induced

by gradient-based optimization play an important role.

4.2 Related Work

We discuss here a number of works related to the questions of optimization and generalization

in deep learning. An approach that has attracted significant attention recently is the neural

tangent kernel (NTK) approximation [JGH18]. This approximation relies upon the fact that

for a specific initialization scheme, extremely wide neural networks are well-approximated

by the behavior of the neural network at initialization, which in the infinite width limit

produces a kernel (the NTK) [DZP19, DLL18, ALS19, ZCZ19, CG20, ADH19a, ADH19b,

CG19a, FCG19, ZG19, JT20b, CCZ21]. Using an assumption on separability of the training

data, it is commonly shown that SGD-trained neural networks in the NTK regime can

perfectly fit any training data. Under certain conditions, one can also derive generalization

bounds for the performance of SGD-trained networks for distributions that can be perfectly

classified by functions related to the NTK.

Although significant insights into the training dynamics of SGD-trained networks have

come from this approach, it is known that neural networks deployed in practice can tra-

verse far enough from their initialization such that the NTK approximation no longer

holds [FDP20]. A line of work known as the mean field approximation allows for ultra-

wide networks to be far from their initialization by connecting the trajectory of the weights

87

of the neural network to the solution of an associated partial differential equation [MMM19,

COB19, CCG20]. A separate line of work has sought to demonstrate that the concept classes

that can be learned by neural networks trained by gradient descent are a strict superset of

those that can be learned by the NTK [AL19, WLL19, LWM19, WGL20, LMZ20].

More relevant to our work is understanding the generalization of neural network classifiers

when the data distribution has some form of label noise. Works that explicitly derive gener-

alization bounds for SGD-trained neural networks in the presence of label noise are scarce.

Even for the simple concept class of halfspaces x ÞÑ sgnpxv, xyq, there are often tremendous

difficulties in determining whether or not any algorithm can efficiently learn in the presence

of noise. For this reason let us take a small detour to detail some of the difficulties in learning

halfspaces in the presence of noise, to emphasize the difficulty of learning more complicated

function classes in the presence of noise.

The most general (and most difficult) noise class is that of adversarial label noise, which

is equivalent to the agnostic PAC learning framework [KSS94]. In this setting, one makes no

assumption on the relationship between the features and the labels, and so continuing with

the notation from (4.1.1), the optimal risk OPTlin achieved by a halfspace is strictly positive

in general. It is known that learning up to classification error OpOPTlinq ` ε cannot be done

in polypd, ε´1q time without assumptions on the marginal distribution of D [Dan16]. For

this reason it is common to assume some type of structure on the noise or the distribution

to get tractable guarantees.

One relaxation of the noise condition is known as the Massart noise [MN06] where one

assumes that each sample has its label flipped with some instance-dependent probability

ηpxq ď η ă 1{2. Under this noise model, it was recently shown that there are efficient

algorithms that can learn up to risk η ` ε [DGT19]. A more simple noise setting is that

of random classification noise (RCN) [AL88], where the labels of each sample are flipped

with probability η. Polynomial time algorithms for learning under this model were first

shown by [BFK98]. Previous theoretical works on the ability of neural network classifiers

88

to generalize in the presence of label noise were restricted to the RCN setting [HLY20]

or Massart noise setting [LSO19]. In this paper, we consider the most general setting of

adversarial label noise.

In terms of distribution-specific learning guarantees in the presence of noise, polynomial

time algorithms for learning halfspaces under Massart noise for the uniform distribution

on the sphere were first shown by [ABH15], and for log-concave isotropic distributions

by [ABH16]. [ABL17] constructed a localization-based algorithm that efficiently learns halfs-

paces up to risk OpOPTlinq when the marginal is log-concave isotropic. For more background

on learning halfspaces in the presence of noise, we refer the reader to [BH21].

Returning to the neural network literature, in light of the above it should not be surprising

that computational tractability issues arise even for the case of neural networks consisting

of a single neuron. [GKK19] showed that learning a single ReLU neuron up to the best-

possible risk OPTReLU (under the squared loss) is computationally intractable, even when

the marginal is a standard Gaussian. By contrast, [FCG20] showed that gradient descent

on the empirical risk can learn single ReLUs up to risk Op
?
OPTReLUq efficiently for many

distributions. Two recent works have shown that even in the realizable setting—i.e., when

the labels are generated by a neural network without noise—it is computationally hard

to learn one-hidden-layer neural networks with (non-stochastic) gradient descent when the

marginal distribution is Gaussian [GGJ20, DKK20].

In terms of results that show neural networks can generalize in the presence of noise,

[LSO19] considered clustered distributions with real-valued labels (using the squared loss)

and analyzed the performance of GD-trained one-hidden-layer neural networks when a frac-

tion of the labels are switched. They derived guarantees for the empirical risk but did not

derive a generalization bound for the resulting classifier. [HLY20] analyzed the performance

of regularized neural networks in the NTK regime when trained on data with labels cor-

rupted by RCN, and argued that regularization was helpful for generalization. By contrast,

our work shows that neural networks can generalize for linearly separable distributions cor-

89

rupted by adversarial label noise without any explicit regularization, suggesting that certain

forms of implicit regularization in the choice of the algorithm plays an important role. We

note that a number of researchers have sought to understand the implicit bias of gradient

descent [SHN18, JT19, LL20, JT20a, MGW20, LXX20]. Such works assume that the dis-

tribution is linearly separable by a large margin, and characterize the solutions found by

gradient descent (or gradient flow) in terms of the maximum margin solution.

Finally, we note some recent works that connected the training dynamics of SGD-trained

neural networks with linear models. [BGM18] showed that SGD-trained one-hidden-layer

leaky ReLU networks can generalize on linearly separable data. [Sha18] compared the per-

formance of residual networks with those of linear predictors in the regression setting. They

showed that there exist weights for residual networks with generalization performance com-

petitive with linear predictors, and they proved that SGD is able to find those weights when

there is a residual connection from the input layer to the output layer. [NKK19] provided

experimental evidence for the hypothesis that much of the performance of SGD-trained neu-

ral networks in the early epochs of training can be explained by linear classifiers. [HXA20]

provided theoretical evidence for this hypothesis by showing that overparameterized neural

networks with the NTK initialization and scaling have similar dynamics to a linear predictor

defined in terms of the network’s NTK. [STR20] showed that neural networks are biased

towards simple classifiers even when more complex classifiers are capable of improving gen-

eralization.

4.3 Problem Description and Results

In this section we study the problem we consider and our main results.

90

4.3.1 Notation

For a vector v, we denote }v} as its Euclidean norm. For a matrix W , we use }W }F to

denote its Frobenius norm. We use the standard Op¨q and Ωp¨q notations to ignore universal

constants when describing growth rates of functions. The notation Õp¨q and Ω̃p¨q further

ignores logarithmic factors. We use a_ b to denote the maximum of a, b P R, and a^ b their

minimum. The notation 1pEq denotes the indicator function of the set E, which is one on

the set and zero outside of it.

4.3.2 Problem Setup

Consider a distribution D over px, yq P Rdˆt˘1u with marginal distribution Dx over x. Let

m P N, and consider a one-hidden-layer leaky ReLU network with m neurons,

fxpW q :“
m
ÿ

j“1

ajσpxwj, xyq, (4.3.1)

where σpzq “ maxpαz, zq is the leaky-ReLU activation with α P p0, 1s. Assume that

aj
i.i.d.
„ Unifp˘aq for some a ą 0 and that the taju are randomly initialized and not up-

dated throughout training, as is commonly assumed in theoretical analyses of SGD-trained

neural networks [DZP19, ADH19b, JT20b].1 We are interested in the classification error for

the neural network,

errpW q :“ Ppx,yq„D
´

y ‰ sgn
`

fxpW q
˘

¯

,

where sgnpzq “ 1 if z ą 0, sgnp0q “ 0, and sgnpzq “ ´1 otherwise. We will seek to minimize

errpW q by minimizing,

LpW q :“ Epx,yq„D`pyfxpW qq,

1The specific choice of the initialization of the second layer is immaterial; our analysis holds for any
second-layer weights that are fixed at a random initialization. The only difference that may arise is in the
sample complexity: if with high probability }a} “ Θp1q then the sample complexity requirement will be the
same within constant factors, while for initializations satisfying }a} “ ωp1q or }a} “ op1q our upper bound
for the sample complexity will become worse as the network becomes larger.

91

where ` is a convex loss function. We will use the fact that for any convex, twice differentiable

and decreasing function `, the function ´`1 is non-negative and decreasing, and thus ´`1 can

also serve as a loss function. In particular, by Markov’s inequality, these properties allow us

to bound the classification error by the population risk under ´`1:

Ppx,yq„D
´

y ‰ sgn
`

fxpW q
˘

¯

“ P
´

y ¨ fxpW q ď 0
¯

“ P
´

´ `1
`

yfxpW q
˘

ě 0
¯

ď
Epx,yq„D ´ `1

`

yfxpW q
˘

´`1p0q
(4.3.2)

Thus, provided ´`1p0q ą 0, upper bounds for the population risk under ´`1 yield guarantees

for the classification error. This property has previously been used to derive generalization

bounds for deep neural networks trained by gradient descent [CG20, FCG19, JT20b, CCZ21].

To this end, we make the following assumptions on the loss throughout this paper.

Assumption 4.3.1. The loss `p¨q : R Ñ R is convex, twice differentiable, decreasing, 1-

Lipschitz, and satisfies ´`1p0q ą 0. Moreover, for z ě 1, ` satisfies ´`1pzq ď 1{z.

The assumption that ´`1pzq ď 1{z for z ě 1 is to ensure that the surrogate loss ´`1

is not too large on samples that are classified correctly. Note that the standard loss used

for training neural networks in binary classification tasks—the binary cross-entropy loss

`pzq “ logp1` expp´zqq—satisfies all of the conditions in Assumption 4.3.1. We denote the

population risk under the surrogate loss ´`1 as follows,

EpW q :“ Epx,yq„D ´ `1pyfxpW qq.

We seek to minimize the population risk by minimizing the empirical risk induced by a set of

i.i.d. examples tpxt, ytqutě1 using the online stochastic gradient descent algorithm. Denote

ftpW q “ fxtpW q as the neural network output for sample xt, and denote the loss under `

and ´`1 for sample xt by

pLtpW q :“ `pytftpW qq, pEtpW q :“ ´`1pytftpW qq. (4.3.3)

92

The updates of online stochastic gradient descent are given by

W pt`1q :“ W ptq
´ η∇pLtpW

ptq
q “ W ptq

` η pEtpW ptq
qyt∇ftpW ptq

q. (4.3.4)

Before proceeding with our main theorem we will introduce some of the definitions and

assumptions which will be used in our analysis. The first is that of sub-exponential distri-

butions.

Definition 4.3.2 (Sub-exponential distributions). We say Dx is Cm-sub-exponential if every

x „ Dx is a sub-exponential random vector with sub-exponential norm at most Cm. In

particular, for any v̄ P Rd with }v̄} “ 1, PDxp|v̄
Jx| ě tq ď expp´t{Cmq.

We note that every sub-Gaussian distribution is sub-exponential. The next property we

shall use is that of a soft margin, which we introduced in Definition 3.3.1. The soft margin

can be seen as a probabilistic analogue of the standard hard margin, where we relax the

typical requirement for a margin-based condition from holding almost surely to holding with

some controlled probability. As written above, the soft margin condition can hold for a

specific vector v̄ P Rd, and our final generalization bound below will only care about the

soft margin function for a halfspace v̄ that achieves population risk OPTlin. However, for

many distributions, one can show that all unit norm vectors v̄ satisfy a soft margin of the

form φv̄pγq “ Opγq. One important class of such distributions are those satisfying a type of

anti-concentration property.

Definition 4.3.3 (Anti-concentration). For v̄ P Rd, denote by pv̄p¨q the marginal distribution

of x „ Dx on the subspace spanned by v̄. We say Dx satisfies U-anti-concentration if there

is some U ą 0 such that for all unit norm v̄, pv̄pzq ď U for all z P R.

Anti-concentration is a typical assumption used for deriving distribution-specific agnostic

PAC learning guarantees [KLS09, DKT20a, DKT20b, FCG21] as it allows for one to ignore

pathological distributions where arbitrarily large probability mass can be concentrated in

tiny regions of the domain. We previously used this property to derive guarantees for the

93

single neuron classifier in Chapter 3. Below, we collect some examples of soft margin function

behavior for different distributions, including those satisfying the above anti-concentration

property. We shall see in Theorem 4.3.5 that the behavior of φpγq for γ ! 1 will be the

determining factor in our generalization bound, and thus in the below examples one only

needs to pay attention to the behavior of φpγq for γ sufficiently small.

Example 4.3.4. 1. If |v̄Jx| ą γ˚ a.s., then φv̄pγq “ 0 for γ ă γ˚.

2. If Dx satisfies U -anti-concentration, then for any v̄ with }v̄} “ 1, φv̄pγq ď 2Uγ holds.

3. If Dx is isotropic and log-concave (i.e. its probability density function is log-concave),

then Dx satisfies 1-anti-concentration and hence φv̄pγq ď 2γ for all v̄.

The proofs for the properties described in Example 4.3.4 can be found in [FCG21, Section

3].

4.3.3 Main Results

With the above in place, we can provide our main result.

Theorem 4.3.5. Assume Dx is Cm-subexponential and there exists BX ą 0 such that

Er}x}2s ď B2
X ă 8. Denote OPTlin :“ min}w}“1 Ppx,yq„Dpyxw, xy ă 0q as the best classifi-

cation error achieved by a unit norm halfspace v˚. Let m P N be arbitrary, and consider a

leaky-ReLU network of the form (4.3.1) where a “ 1{
?
m. Let W p0q be an arbitrary initial-

ization and denote G0 :“ }W p0q}F . Let the step size satisfy η ď B´2
X . Then for any γ ą 0, by

running online SGD for T “ Opη´1γ´2rφv˚pγq `OPTlins
´2r1_G0sq iterations, there exists a

point t˚ ă T such that in expectation over px1, . . . , xT q „ DT ,

Ppx,yq„D
´

y ‰ sgn
`

fxpW
pt˚q
q
˘

¯

ď 2|`1p0q|´1α´1

„

´

1` γ´1Cm ` γ
´1Cm logp1{OPTlinq

¯

OPTlin ` φv˚pγq

.

94

To concretize the generalization bound in Theorem 4.3.5 we need to analyze the properties

of the soft margin function φv˚ at the best halfspace and then optimize over the choice of γ.

But before doing so, let us make a few remarks on Theorem 4.3.5 that hold in general. The

sample complexity (number of SGD iterations) T , and the resulting generalization bound,

are independent of the number of neurons m, showing that the neural network can generalize

despite the capacity to overfit.2 If }x} ď BX a.s. for some absolute constant BX , then the

sample complexity is dimension-independent, while if Dx is isotropic, Er}x}2s “ d and so

the sample complexity is linear in d. Finally, we note that large learning rates and arbitrary

initializations are allowed.

In the remainder of the section, we will discuss the implications of Theorem 4.3.5 for

common distributions. The first distribution we consider is a hard margin distribution.

Corollary 4.3.6 (Hard margin distributions). Suppose there exists some v˚ P Rd, }v˚} “ 1,

and γ0 ą 0 such that P
`

y ‰ sgnpxv˚, xyq
˘

“ OPTlin and |xv˚, xy| ě γ0 ą 0 almost surely over

Dx. Assume for simplicity that ` is the binary cross-entropy loss, `pzq “ logp1 ` expp´zqq.

Then under the settings of Theorem 4.3.5, there exists some t˚ ă T “ Opη´1γ´2
0 OPT´2

lin r1_

G0sq such that in expectation over px1, . . . , xT q „ DT ,

Ppx,yq„D
´

y ‰ sgn
`

fxpW
pt˚q
q
˘

¯

ď Õpγ´1
0 OPTlinq.

Proof. Since |xv˚, xy| ě γ0 ą 0, the soft margin at v˚ satisfies φv˚pγ0q “ 0. Since ´`1p0q “ 1{2,

by Theorem 4.3.5,

Ppx,yq„D
´

y ‰ sgn
`

fxpW
pt˚q
q
˘

¯

ď 4α´1
`

1` γ´1
0 Cm ` γ

´1
0 Cm logp1{OPTlinq

˘

OPTlin.

2[BGM18, Theorem 7] showed that if there are T samples and m “ ΩpT {dq, then for any set of labels
py1, . . . , yT q P t˘1uT and for almost every px1, . . . , xT q „ DT

x , there exist hidden layer weights W˚ and outer
layer weights ~a P Rm such that ftpW

˚q “ yt for all t P rT s. In contrast, Theorem 4.3.5 shows that when
m is sufficiently large there exist neural networks that can fit random labels of the data but SGD training
avoids these networks.

95

The above result shows that if the data comes from a linearly separable data distribution

with margin γ0 but is then corrupted by adversarial label noise, then SGD-trained networks

will still find weights that can generalize with classification error at most Õpγ´1
0 OPTlinq. In

the next corollary we show that for distributions satisfying U -anti-concentration we get a

generalization bound of the form Õp
?
OPTlinq.

Corollary 4.3.7 (Distributions satisfying anti-concentration). Assume Dx satisfies U anti

concentration. Assume for simplicity that ` is the binary cross-entropy loss, `pzq “ logp1 `

expp´zqq. Then under the settings of Theorem 4.3.5, with a number of iterations satisfying

T “ Opη´1OPT´3
lin r1_G0sq there exists t˚ ă T such that in expectation over px1, . . . , xT q „

DT ,

Ppx,yq„D
´

y ‰ sgn
`

fxpW
pt˚q
q
˘

¯

ď Õp
a

OPTlinq.

Proof. By Example 4.3.4, φv˚pγq ď 2Uγ. Substituting this into Theorem 4.3.5 and using

that ´`1p0q “ 1{2, we get

Ppx,yq„D
´

y ‰ sgn
`

fxpW
pt˚q
q
˘

¯

ď 4α´1
“

2Uγ ` 3γ´1CmOPT logp1{OPTq
‰

.

This bound is optimized when γ “ OPT1{2, and results in a bound for the classification error

that is at most OpOPT1{2 logp1{OPTqq.

The above corollary covers, for instance, log-concave isotropic distributions like the Gaus-

sian or the uniform distribution over a convex set by Example 4.3.4.

Taken together, Corollaries 4.3.6 and 4.3.7 demonstrate that despite the capacity for

overparameterized neural networks to overfit to the data, SGD-trained neural networks are

fairly robust to adversarial label noise. We emphasize that our results hold for SGD-trained

neural networks of arbitrary width and following an arbitrary initialization, and that the

resulting generalization and sample complexity do not depend on the number of neurons

m. In particular, the above phenomenon cannot be explained by the neural tangent kernel

approximation, which is highly dependent on assumptions about the initialization, learning

rate, and number of neurons.

96

4.3.4 Comparisons with Related Work

We now discuss how our result relates to others appearing in the literature. First, [BGM18]

showed that by running multiple-pass SGD on the hinge loss one can learn linearly separable

data. They assume a noiseless pOPTlin “ 0q model over a norm-bounded domain and assume

a hard margin distribution, so that yxv˚, xy ą γ0 for some γ0 ą 0. In the noiseless setting,

Corollaries 4.3.6 and 4.3.7 generalize their result to include unbounded, linearly separable

(marginal) distributions without a hard margin like log-concave isotropic distributions. More

significantly, our results hold in the adversarial label noise setting (a.k.a., agnostic PAC

learning). This allows for us to compare the generalization of an SGD-trained neural network

with that of the best linear classifier over the distribution, and make a much more general

claim about the dynamics of SGD-trained neural networks.

[HXA20] showed that for sufficiently wide neural networks with the NTK initialization

scheme, and under the assumption that the components of the input distribution are in-

dependent, the dynamics in the early stages of SGD-training are closely related to that of

a linear predictor defined in terms of the NTK of the neural network. By contrast, our

result holds for any initialization and neural networks of any width and covers a larger class

of distributions. Their result was for the squared loss, while ours holds for the standard

losses used for classification problems. Our results can be understood as a claim about the

‘early training dynamics’ of SGD, since we show that there exists some iterate of SGD that

performs almost as well as the best linear classifier over the distribution, and we provide an

upper bound on the number of iterations required to reach this point. One might expect

that under more stringent assumptions (on, say, the initialization, learning rate schedule,

and/or network architecture), stronger guarantees for the classification error could hold in

the later stages of training; we will revisit this question with experimental results in Section

4.5.

[LSO19] considered a handcrafted distribution consisting of noisy clusters and showed

97

that sufficiently wide one-hidden-layer neural networks trained by GD on the squared loss

with the NTK initialization have favorable properties in the early training dynamics. A direct

comparison of our results is difficult as they do not provide a guarantee for the generalization

error of the resulting neural network. But at a high level, their analysis focused on a noise

model akin to Massart noise (a more restrictive setting than the agnostic noise considered

in this paper), and they made a number of assumptions—a particular (large) initialization,

sufficiently wide network, and the use of the squared loss for classification—that were not

used in this work. The results of [LSO19] covered general, smooth activation functions (but

not leaky-ReLU).

[HLY20] showed that ultra-wide networks with NTK scaling and initialization trained

by SGD with various forms of regularization can generalize when the labels are corrupted

with random classification noise. Their generalization bound was given in terms of the

classification error on the ‘clean’ data distribution (without any noise) and allowed for general

activation functions (including leaky-ReLU). In comparison, we assume that the training

data and the test data come from the same distribution, and our generalization bound is

given in terms of the performance of the best linear classifier over the distribution. Our

generalization guarantee holds without any explicit forms of regularization, suggesting that

the mechanism responsible for the lack of overfitting is not explicit regularization, but forms

of regularization that are implicit to the SGD algorithm.

4.4 Proof of the Main Results

We will show that stochastic gradient descent achieves small classification error by using a

proof technique similar to that of [BGM18], who showed the convergence and generalization

of gradient descent on the hinge loss for one-hidden-layer leaky ReLU networks on linearly

98

separable data.3 Their proof relies upon the fact that both the classification error and

the hinge loss for the best halfspace are zero. In our setting—without the assumption of

linear separability, and with more general loss functions—their strategy for showing that

the empirical risk can be driven to zero will not work. (We remind the reader that our

goal is to show that the neural network will generalize when it is of arbitrary width, and

when significant noise is present, and thus we cannot guarantee the smallest empirical or

population loss is arbitrarily close to zero.) Instead, we need to compare the performance of

the neural network with that of the best linear classifier over the data, which will in general

have error (both classification and loss value) bounded away from zero. To do so, we use

some of the ideas used in [FCG21] to derive generalization bounds for the classification error

when the surrogate loss is bounded away from zero.

To begin, let us introduce some notation. Let v˚ P Rd be a unit norm halfspace that

minimizes the halfspace error, so that

Ppx,yq„D
´

y ‰ sgn
`

xv˚, xy
˘

¯

“ OPTlin.

Denote the matrix V P Rmˆd as having rows vJj P Rd defined by

vj “
1
?
m

sgnpajqv
˚. (4.4.1)

The scaling of each row of the matrix V ensures that }V }F “ 1. For γ ą 0, denote

pξtpγq :“ 1pytxv
˚, xty P r0, γqq ` p1` γ

´1
|xv˚, xty|q1pytxv

˚, xty ă 0q.

The expected value of the above quantity will be an important quantity in our proof. To

give some idea of how this quantity will fit in to our analysis, assume for the moment that

}x} ď 1 a.s. Then taking expectations of the above and using Cauchy–Schwarz, we get

Epξtpγq ď φv˚pγq`p1`γ
´1
qEr|xv˚, xty|1pytxv˚, xty ă 0qs ď φv˚pγq`p1`γ

´1
qOPTlin. (4.4.2)

3This proof technique can be viewed as an extension of the Perceptron proof presented in [SB14, Theorem
9.1].

99

The above appears (in a more general form) in the bound for the classification error presented

in Theorem 4.3.5. In particular, the goal below will be to show that the classification error

can be bounded by a constant multiple of Erpξtpγqs.

Continuing, let us denote

pHt :“ xW ptq, V y, pG2
t “

›

›W ptq
›

›

2

F
. (4.4.3)

The quantity pHt measures the correlation between the weights found by SGD and those of

the best linear classifier over the distribution. We define the population-level versions of

each of the random variables above by replacing the p̈with their expectation Esgdp¨q over the

randomness of the draws px1, . . . , xtq of the distribution used for SGD. That is,

Lt :“ Esgd
pLtpW

ptq
q,

Et :“ Esgd
pEtpW ptq

q,

Ht :“ Esgd
pHt,

G2
t :“ Esgdr pG

2
t s,

ξpγq :“ Epxt,ytq„Dpξtpγq. (4.4.4)

Our proof strategy will be to show that until gradient descent finds weights with small

risk, the correlation HT between the weights found by SGD and those of the best linear

predictor will grow at least as fast as ΩpT q, while GT always grows at a rate of at most

Op
?
T q. Since }V }F “ 1, by Cauchy–Schwarz we have the bound HT ď GT , and so the

growth rates HT “ ΩpT q and GT “ Op
?
T q can only be satisfied for a small number of

iterations. In particular, there can only be a small number of iterations until SGD finds

weights with small risk.

To see how we might be able to show that the correlation HT is increasing, note that we

have the identity

pHt`1 ´ pHt “ ´ηx∇pLtpW
ptq
q, V y “ ´η`1pytftpW

ptq
qqytx∇ftpW ptq

q, V y.

100

Since ´`1 ě 0, the inequality pHt`1 ą pHt holds if we can show ytx∇ftpW ptqq, V y ą 0, i.e. if

we can show that the gradient of the neural network is correlated with the weights of the

best linear predictor. For this reason, the following technical lemma is a key ingredient in

our proof.

Lemma 4.4.1. For V defined in (4.4.1), for any pxt, ytq P Rd ˆ t˘1u, for any W P Rmˆd,

and any γ P p0, 1q,

ytx∇ftpW q, V y ě aγ
?
m
”

α ´ pξtpγq
ı

. (4.4.5)

The proof of the above lemma is in Section 4.7. As alluded to above, with this technical

lemma we can show that until the surrogate risk is as small as a constant factor of ξpγq, the

correlation of the weights found by SGD and those of the best linear predictor is increasing.

Lemma 4.4.2. For any t P NY t0u, for any γ ą 0, it holds that

Ht`1 ě Ht ` ηaγ
?
m
“

αEt ´ ξpγq
‰

.

Proof. Since pHt`1 “ xW
pt`1q, V y “ xW ptq, V y ´ ηxpLtpW

ptqq, V y, we can write

pHt`1 “ pHt ´ ηx∇pLtpW
ptq
q, V y

“ pHt ´ η`
1
pytftpW

ptq
qqytx∇ftpW ptq

q, V y

ě pHt ´ η`
1
pytftpW

ptq
qqaγ

?
mrα ´ pξtpγqs

ě pHt ` ηaγ
?
m
”

αpEtpW ptq
q ´ pξtpγq

ı

.

In the first inequality we have used Lemma 4.4.1 and that ´`1 ě 0, and in the second

inequality we have used that ´`1 ď 1. Taking expectations over the draws of the distribution

on both sides completes the proof.

Notice that if αEt ą ξpγq, Lemma 4.4.2 shows that Ht`1 ´Ht ą 0. We will later repeat

this argument for T iterations to show that until we find a point with αEt ď 2ξpγq, HT will

grow at least as fast as ΩpT q.

101

All that remains is to show that GT “ Op
?
T q. We will accomplish this by first demon-

strating a bound on G2
t`1 ´G

2
t .

Lemma 4.4.3. For any t P NY t0u, η ą 0, and if Er}x}2s ď B2
X ,

G2
t`1 ď G2

t ` 2η ` η2ma2B2
X .

Proof. We begin with the identity

pG2
t`1 “

›

›

›
W ptq

´ η∇pLtpW
ptq
q

›

›

›

2

F
“
›

›W ptq
›

›

2

F
´ 2η

A

W ptq,∇pLtpW
ptq
q

E

` η2
›

›

›
∇pLtpW

ptq
q

›

›

›

2

F
.

(4.4.6)

We proceed by analyzing the last two terms. We have

xW ptq,∇pLtpW
ptq
qy “ `1pytftpW

ptq
qqytxW

ptq,∇fxtpW ptq
qy

“ `1pytftpW
ptq
qqyt

m
ÿ

j“1

ajσ
1
pxw

ptq
j , xtyqxw

ptq
j , xty

“ `1pytftpW
ptq
qqyt

m
ÿ

j“1

ajσpxw
ptq
j , xtyq

“ `1pytftpW
ptq
qqytftpW

ptq
qq.

The third equality uses that σ is homogeneous, so σ1pzqz “ σpzq. We can therefore bound

´ 2η
A

W ptq,∇pLtpW
ptq
q

E

“ ´2η`1pytftpW
ptq
qqytftpW

ptq
q ď 2η. (4.4.7)

To see that the inequality holds, note that ´`1pzq ¨ z ď 1 if z ď 1 since ´`1pzq P r0, 1s, and

if z ě 1 then ´`1pzq ď 1{z by Assumption 4.3.1. For the gradient norm term, if we denote

~a P Rm as the vector with j-th entry aj and ΣW
t P Rmˆm as the diagonal matrix with j-th

diagonal entry σ1pxwj, xtyq, then

›

›

›
∇pLtpW q

›

›

›

2

F
“
›

›`1pytftpW qqΣ
W
t ~ax

J
t

›

›

2

F

“ `1pytftpW qq
2
›

›ΣW
t ~a

›

›

2

2
}xt}

2

ď ma2
}xt}

2 . (4.4.8)

102

The second equation uses that
›

›bdJ
›

›

F
“ }b}2 }d}2 for vectors b, d. The inequality uses that

|`1| P r0, 1s.

Substituting (4.4.7) and (4.4.8) into (4.4.6), we get

pG2
t`1 ď

pG2
t ` 2η `ma2η2

}xt}
2 .

Taking expectations of both sides over the draws of the distribution we get

G2
t`1 ď G2

t ` 2η `ma2η2B2
X ,

where we have used that Er}x}2s ď B2
X .

We now have all of the ingredients needed to prove Theorem 4.3.5.

Proof of Theorem 4.3.5. First, let us note that for V defined as (4.4.1) (satisfying }V }F “ 1),

we have by Cauchy–Schwarz,

H2
t “ pErxW ptq, V ysq2 ď E}W ptq

}
2
FE }V }

2
F “ G2

t ðñ |Ht| ď Gt. (4.4.9)

For a “ 1{
?
m, and for η ď pma2B2

Xq
´1 “ B´2

X , Lemma 4.4.3 becomes

G2
t`1 ď G2

t ` 2η ` η2ma2B2
X ď G2

t ` 3η.

Summing the above from t “ 0, . . . , T ´ 1, we get

G2
T ď G2

0 ` 3ηT. (4.4.10)

Similarly, Lemma 4.4.2 becomes

Ht`1 ě Ht ` ηγrαEt ´ ξs.

(Note that ξ “ ξpγq depends on γ, but we have dropped the notation for simplicity.) Sum-

ming the above, we get

HT ě H0 ` ηγ
T´1
ÿ

t“0

rαEt ´ ξs. (4.4.11)

103

We can therefore bound

´G0 ` ηγ
T´1
ÿ

t“0

rαEt ´ ξs ď H0 ` ηγ
T´1
ÿ

t“0

rαEt ´ ξs

ď HT

ď GT

ď G0 `
?
T ¨ 2

?
η. (4.4.12)

The first inequality uses (4.4.9). The second inequality uses (4.4.11). The third inequality

again uses (4.4.9). The final inequality uses (4.4.10) together with
?
a` b ď

?
a`

?
b.

We claim now that this implies that within a polynomial number of samples, SGD finds

weights satisfying Et ď 2α´1ξ. Suppose that for every iteration t “ 1, . . . , T , we have

Et ą 2α´1ξ. Then (4.4.12) gives

ηαγξT ď 2G0 ` 2
?
η ¨
?
T ðñ ηαγξ ¨ T ´ 2

?
η ¨
?
T ´ 2G0 ď 0.

This is an equation of the form β2x
2 ´ β1x´ β0 ď 0, and thus using the quadratic formula,

this implies
?
T ď p2β2q

´1p´β1 `
a

β2
1 ´ 4β0β2q. Squaring both sides and using a bit of

algebra, this implies

T ď β´2
2 β2

1 ` β
´3{2
2 β1β

1{2
0 ` β´1

2 β0.

In particular, we have

T ď η´2α´2γ´2ξ´2
¨ 4η ` η´3{2α´3{2γ´3{2ξ´3{2

¨ 2η1{2
¨G

1{2
0 ` η´1α´1ξ´1

¨ 2G0

ď 4η´1α´2γ´2ξ´2
pG0 _ 1q.

That is, within T “ Opη´1γ´2ξ´2rG0_1sq iterations, gradient descent finds a point satisfying

Et “ Esgd

“

´ `1
`

yfxpW
ptq
q
˘‰

ď 2α´1ξ. (4.4.13)

By Markov’s inequality (see (4.3.2)) this implies

PpyfxpW ptq
q ă 0q ď 2|`1p0q|´1α´1ξ.

104

To complete the proof, we want to bound ξ. Recall from the calculation (4.4.2) that

ξ “ ξpγq “ φv˚pγq ` OPTlin ` γ
´1E

”

|xv˚, xy|1pyxv˚, xy ă 0q
ı

.

Fix ρ ą 0 to be chosen later. We can write

Er|xv˚, xy|1pyxv˚, xy ă 0qs “ Er|v̄Jx|1pyv̄Jx ď 0, |v̄Jx| ą ρqs

` Er|v̄Jx|1pyv̄Jx ď 0, |v̄Jx| ď ρqs

ď ρOPTlin `

ż 8

ρ

Pp|v̄Jx| ą tqdt

ď ρOPTlin `

ż 8

ρ

expp´t{Cmqdt

“ ρOPTlin ` Cm expp´ρ{Cmq. (4.4.14)

The first inequality comes from Cauchy–Schwarz, the second from truncating, and the last

from the definition of Cm-sub-exponential. Taking ρ “ Cm logp1{OPTq results in

Er|xv˚, xy|1pyv̄Jx ď 0qs ď CmOPTlin logp1{OPTlinq ` CmOPTlin.

Substituting the above into (4.4.13), we get

PpyfxpW ptq
q ă 0q ď 2|`1p0q|´1α´1

“

φv˚pγq ` p1` γ
´1CmqOPTlin ` γ

´1CmOPTlin logp1{OPTlinq
‰

.

4.5 Experiments

In this section, we provide some experimental verification of our theoretical results. We

consider a distribution Db,γ0 that is a mixture of two 2D Gaussians perturbed by both

random classification noise and deterministic (adversarial) label noise. The distribution is

constructed as follows. We first take two independent Gaussians with independent com-

ponents of unit variance and means p´3, 0q and p3, 0q, and assign the label ´1 to the left

105

6 4 2 0 2 4

3

2

1

0

1

2

3

Figure 4.1: Samples from D2.04,0.5 with random classification noise of 10% on t|x1| ą 2.04u

with the boundary term b “ 2.04 chosen so that OPTlin “ 0.25. Blue plus signs correspond

to y “ `1 and red circles to y “ ´1. The contour plot displays the class probability for the

output of a leaky ReLU network trained by online SGD and has dark hues when the neural

network is more confident in its predictions.

cluster and `1 to the right cluster. We remove all samples with first component x1 satisfy-

ing |x1| ď γ0 “ 0.5, so that we have a hard margin distribution with margin γ0. We then

introduce a boundary factor b ą γ0, and for samples with first component satisfying |x1| ď b

we deterministically flip the label to the opposite sign. Finally, for samples with |x1| ą b, we

introduce random classification noise at level 10%, flipping the labels in those regions with

probability 0.1 each. The symmetry of the distribution implies that an optimal halfspace is

the vector v˚ “ p1, 0q.

The boundary factor b can be tweaked to incorporate more deterministic label noise

which will affect the best linear classifier: if b is larger, OPTlin is larger as well. We give

details on the precise relationship of b and OPTlin in Section 4.8. But because this ‘noise’ is

deterministic, the best classifier over Db,γ0 (the Bayes optimal classifier) can always achieve

accuracy of at least 90% by using the decision rule

yBayes “

$

’

&

’

%

`1, x1 P p´b, 0q Y pb,8q,

´1, x1 P p´8, bs Y r0, bs.

(4.5.1)

106

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
bayes
linear
nn

Figure 4.2: Test classification accuracy for data coming Db,0.5. The red dashed line is the

accuracy of the best linear classifier, and the black solid line is the average accuracy of

the neural network with error bars over ten random initializations of the first layer weights

(experimental details can be found in Section 4.8). The blue dash-dotted line is the Bayes

optimal classifier accuracy.

107

Since the error for the Bayes decision rule corresponds to the region t|x1| ą bu with random

classification noise, we can exactly calculate the error for the Bayes classifier as well as

OPTlin. As b increases, the region with random classification noise becomes smaller, and thus

the Bayes classifier gets better as the linear classifier becomes worse on Db,γ0 . This makes

Db,γ0 a good candidate for understanding the performance of SGD-trained one-hidden-layer

networks in comparison to linear classifiers. Further, to our knowledge no previous work has

been able to show that neural networks can provably generalize if the data distribution is

Db,γ0 .
4

Since Db,γ0 is a subexponential hard margin distribution, Corollary 4.3.6 shows that we

can expect an SGD-trained leaky ReLU network on Db,0.5 to achieve a test set accuracy of at

least 1´C ¨OPTlin logp1{OPTlinq for some constant C ě 1. We ran experiments on such a neural

network with m “ 1000 neurons and learning rate η “ 0.01 and first layer weights initialized

as independent normal random variables with variance 1{m (see Section 4.8 for more details

on the experiment setup). In Figure 4.1 we plot the decision boundary for the SGD-trained

neural network on the distribution D2.04,0.5, where b “ 2.04 is chosen so that OPTlin “ 0.25.

We notice that the decision boundary is almost exactly linear and is essentially the same

as that of the best linear classifier px1, x2q ÞÑ sgnpx1q. And in Figure 4.2, we see that the

neural network accuracy is almost exactly equal to 1´OPTlin when OPTlin ď 0.30 and that

the network slightly outperforms the best linear classifier when OPTlin ą 0.30.

In Section 4.8 we conduct additional experiments to better understand whether this

behavior is consistent across hyperparameter and architectural modifications to the network.

When using the bias-free networks of the form (4.3.1) we consider in this paper, we found

that one-hidden-layer SGD-trained networks failed to generalize better than a linear classifier

when using tanh activations (Figures 4.4 and 4.5), using different learning rates (Figures 4.6,

4There are two reasons that no other work can show generalization bounds in the settings we consider.
The first is the presence of adversarial label noise. The second is that our generalization bound holds for
neural networks with finite width and any initialization. All previous works fail to allow at least one of these
conditions.

108

4.7, 4.8), different initialization variances (Figures 4.9, 4.10, 4.11), and using multiple-pass

SGD rather than online SGD (Figures 4.12, 4.13). On the other hand, we found that

introducing bias terms can lead to decision boundaries closer to that of the Bayes-optimal

classifier (Figures 4.14, 4.15, 4.16). Interestingly, this behavior was strongly dependent on the

initialization scheme used: when using an initialization variance of 1{m4, a linear decision

boundary was consistently learned, while using an initialization variance of 1{m lead to

approximately Bayes-optimal decision boundaries. By contrast, the result we present in

Theorem 4.3.5 holds for arbitrary initialization schemes. This suggests that a new analytical

approach would be needed in order to guarantee neural network generalization performance

better than that of a linear classifier on Dγ0,b.

4.6 Discussion

We have shown that overparameterized one-hidden-layer networks can generalize almost as

well as the best linear classifier over the distribution for a broad class of distributions. Our

results imply two related but distinct insights on SGD-trained neural networks. First, re-

gardless of the initialization scheme and number of neurons, SGD training will produce

neural networks that are competitive with the best linear predictor over the data, provid-

ing theoretical support for the hypothesis presented by [NKK19] that the performance of

SGD-trained networks in the early stages of training can be explained by that of a linear

classifier. Second, a linearly separable dataset can be corrupted by adversarial label noise

and overparameterized neural networks will still be able to generalize, despite the capacity

to overfit to the label noise.

A number of extensions and open questions remain. First, our analysis was specific to

one-hidden-layer networks with the leaky-ReLU activation. We are interested in extending

our results to more general neural network architectures. Second, a natural question is

whether or not there are concept classes that are more expressive than halfspaces for which

109

overparameterized neural networks can generalize for noisy data. We are particularly keen on

understanding this question for finite width neural networks that are not well-approximated

by the NTK.

4.7 Proof of Lemma 4.4.1

In this section we will prove a stronger version of Lemma 4.4.1 that holds for any increasing

activation.

Lemma 4.7.1. Suppose that σ is non-decreasing. For V defined in (4.4.1), for any px, yq P

Rd ˆ t˘1u, for any W P Rmˆd, and any γ P p0, 1q:

yx∇fxpW q, V y

ě aγm´1{2
”

1´ 1pyxv˚, xy P r0, γqq ´ p1` γ´1
q|xv˚, xy|1pyxv˚, xy ă 0q

ı

m
ÿ

j“1

σ1pxwj, xyq.

(4.7.1)

For σpzq “ maxpαz, zq, we have
řm
j“1 σ

1pxwj, xyq P rαm,ms, and hence the above implies

Lemma 4.4.1:

yx∇fxpW q, V y

ě aγm´1{2
”

αm´m1pyxv˚, xy P r0, γqq ´mp1` γ´1
q|xv˚, xy|1pyxv˚, xy ă 0q

ı

“ aγ
?
m
”

α ´ 1pyxv˚, xy P r0, γqq ´ p1` γ´1
q|xv˚, xy|1pyxv˚, xy ă 0q

ı

.

Proof of Lemma 4.7.1. By the definition of V (see (4.4.1)), we have

yx∇fxpW q, V y “
m
ÿ

j“1

ajσ
1
pxwj, xyqxyvj, xy

“ am´1{2
m
ÿ

j“1

σ1pxwj, xyqxyv
˚, xy

“ am´1{2
m
ÿ

j“1

σ1pxwj, xyqxyv
˚, xy

”

1pyxv˚, xy ě γq ` 1pyxv˚, xy P r0, γqq ` 1pyxv˚, xy ă 0q
ı

.

110

The second line uses that ajvj “ |aj|v
˚ “ av˚. Continuing, we have

yx∇fxpW q, V y

ě aγm´1{2
1pyxv˚, xy ě γq ¨

m
ÿ

j“1

σ1pxwj, xyq

` am´1{2
m
ÿ

j“1

σ1pxwj, xyqxyv
˚, xy

”

1pyxv˚, xy P r0, γqq ` 1pyxv˚, xy ă 0q
ı

ě aγm´1{2
1pyxv˚, xy ě γq ¨

m
ÿ

j“1

σ1pxwj, xyq ` am
´1{2

m
ÿ

j“1

σ1pxwj, xyqxyv
˚, xy1pyxv˚, xy ă 0q

“ aγm´1{2
r1´ 1pyxv˚, xy P r0, γqq ´ 1pyxv˚, xy ă 0qs

m
ÿ

j“1

σ1pxwj, xyq

` am´1{2
m
ÿ

j“1

σ1pxwj, xyqxyv
˚, xy1pyxv˚, xy ă 0q

ě aγm´1{2
r1´ 1pyxv˚, xy P r0, γqq ´ 1pyxv˚, xy ă 0qs

m
ÿ

j“1

σ1pxwj, xyq

´ am´1{2
|xv˚, xy|1pyxv˚, xy ă 0q

m
ÿ

j“1

σ1pxwj, xyq

“ am´1{2
”

γ ´ γ1pyxv˚, xy P r0, γqq ´ pγ ` 1q|xv˚, xy|1pyxv˚, xy ă 0q
ı

m
ÿ

j“1

σ1pxwj, xyq.

The first and second inequalities use that σ1pzq ě 0 and that a ą 0. The third inequality

uses that x ě ´|x|. This proves (4.7.1).

4.8 Additional Experiments and Experiment Details

In this section, we give details on the experiments given in Section 4.5. Let us first describe

how we calculate OPTlin for Db,γ0 . To remind the reader, we begin by constructing Db,γ0 with

a mixture of two independent Gaussians centered at p´3, 0q and p3, 0q with independent

unit variance components and then remove all data that has x1 component in the interval

r´γ0, γ0s. We assign initial labels to be ´1 if x1 ă 0 and 1 if x1 ą 0. For boundary factor

111

b ą γ0, the deterministic adversarial label noise then assigns the label 1 if ´b ă x1 ă ´γ0,

and assigns the label ´1 if γ0 ă x1 ă b. The final labels are determined by flipping labels

for samples with |x1| ą b with probability p each.

By construction, an optimal unit-norm halfspace classifier is given by the vector p1, 0q,

and this classifier is a hard-margin classifier with margin γ0 ą 0. The optimal halfspace

classification error is given as the sum of two terms: (1) the random classification noise

for the region |x1| ą b, and (2) the deterministic noise in the region |x1| ă b. The error

introduced from the deterministic, adversarial noise is the proportion of 2D Gaussian that

has x1 coordinate lying between 3´ γ0 and 3´ b, conditioned on the fact that x1 is at most

3´ γ0. We can directly calculate this as

errdet “
Pp3´ b ă Np0, 1q ď 3´ γ0q

PpNp0, 1q ď 3´ γ0q
“

Φp3´ γ0q ´ Φp3´ bq

Φp3´ γ0q
,

where Φ is the standard normal cumulative distribution function. Similarly, the error for

the best linear classifier introduced by the random classification noise at rate p is given by p

times the proportion of a 2D Gaussian that has x1 coordinate smaller than 3´b, conditioned

on the x1 coordinate being at most 3´ γ0. That is,

errrcn “ p
PpNp0, 1q ď 3´ bq

PpNp0, 1q ď 3´ γ0q
“ p

Φp3´ bq

Φp3´ γ0q
. (4.8.1)

The total error for the optimal linear classifier is then given by

OPTlin “ errdet ` errrcn

“
1

Φp3´ γ0q

´

Φp3´ γ0q ´ Φp3´ bq ` pΦp3´ bq
¯

“
1

Φp3´ γ0q

´

Φp3´ γ0q ´ p1´ pqΦp3´ bq
¯

.

Solving for the boundary term in terms of OPTlin results in

b “ 3´ Φ´1

˜

1´ OPTlin

1´ p
Φp3´ γ0q

¯

¸

.

We then consider OPTlin in a grid and take the corresponding values of the boundary term b

to produce a distribution with hard margin γ0 “ 0.5 where the best population risk achieved

112

by a linear classifier is OPTlin. We note that the Bayes-optimal classifier has decision rule

given by (4.5.1) with the Bayes risk equal to errrcn.

The baseline neural network model we use, and the neural network used for Figure

4.2, is as follows. We use a bias-free one-hidden-layer network (4.3.1) with leaky ReLU

activations (with α “ 0.1q and m “ 1000 neurons with outer layer fixed at initialization

with half of the aj equal to `1{
?
m and the other half equal to ´1{

?
m. We initialize the

hidden layer weights independently with normal random variables with variance 1{m, so

that G2
0 “ }W

p0q}2F “ Op1q with high probability (ignoring d “ 2 as a small constant). We

use online SGD (i.e. batch size one with a new sample used at each iteration) with T “

20,000 samples5 trained on the cross-entropy loss with fixed learning rate η “ 0.01. We

use a validation set of size 10,000 and evaluate performance on the validation set every 100

SGD iterations, and we take the model with the smallest validation error over the T samples

and evaluate its performance on a fresh test set (sampled independently from the training

and validation sets) of 100,000 samples to produce the final test set accuracy. We then

repeat this experiment ten times for each level of OPTlin considered with the ten trials using

different seeds for both the initialization of the first layer weights and for the sequence of

data observed in online SGD (i.e. for fixed data txtu
T
1 , we use a permutation π : rT s Ñ rT s

to permute the data txtu
T
1 ÞÑ txπptqu

T
1). We plot the average across the ten trials with error

bars corresponding to one standard deviation in Figure 4.2; in all subsequent modifications to

this baseline neural network model, we will always plot the mean and error bars over the ten

trials considered. We calculate the Bayes-optimal classification error by using the boundary

term corresponding to each value of OPTlin and plotting errrcn as the blue dash-dotted line

in Figure 4.2. Code for our experiments is available on Github.6

In Figure 4.3, we show the decision boundary of the baseline neural network for OPTlin P

5In ablation studies with T “ 100,000 samples, we observed no discernible difference in the classification
accuracy, unless otherwise stated.

6https://github.com/spencerfrei/nn generalization agnostic noise

113

https://github.com/spencerfrei/nn_generalization_agnostic_noise

t0.1, 0.25, 0.40u for four independent initializations of the first layer weights. For each level

of OPTlin, the neural network classifier has a nearly linear decision boundary.

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.3: Decision boundary of an SGD-trained neural network on Db,γ0 , where b is chosen

so that OPTlin P t0.1, 0.25, 0.40u, across four different random initializations. The decision

boundary is the line where the region changes from light red to light blue, and the dark

regions are areas where the neural network classifier has the highest confidence. Even in the

presence of substantial, adversarial noise, the decision boundary is close to linear.

In Figures 4.4 and 4.5, we modify the baseline neural network by having tanh activa-

tions instead of leaky ReLU. Although tanh is highly nonlinear, the performance of tanh

networks is essentially the same as the leaky ReLU network, and the decision boundaries are

approximately linear even for large OPTlin.

In Figures 4.6, 4.7, and 4.8, we consider variations of the learning rate from the baseline

η “ 0.01 to η P t0.1, 0.001u. Overall, the test accuracy is essentially the same, albeit of

smaller variance across initializations when the learning rate is smaller. When the learning

rate is smaller, the decision boundary is almost perfectly linear, even when OPTlin “ 0.4.

When η “ 0.1, the decision boundary changes significantly for different initializations of

the first layer weights, resulting in a higher variance for the test accuracy, but the decision

boundary is still a rough perturbation of the best linear classifier decision boundary.

In Figures 4.9, 4.10, and 4.11, we examine the effect of modifying the initialization

114

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.4: Decision boundary for the same setup as the baseline neural network except with

tanh activations. Columns correspond to different random initializations. Compare with

Figure 4.3. Even for nonlinear activations we still see an almost perfectly linear decision

boundary for OPTlin “ 0.25.

of the first layer weights from the baseline variance of 1{m to Varpw
p0q
i,j q P tm

´2, 1u. The

overall accuracy is essentially the same across initialization variances. The decision boundary

becomes more smooth and linear when the variance is smaller. When the variance is larger,

the decision boundary is more disjointed and nonsmooth, but is still roughly a perturbation

of the best linear classifier decision boundary.

In Figures 4.12 and 4.13, we consider the modification of using 100 epochs of multiple-

pass SGD with batch size 32. All other architectural and optimization hyperparameters from

the baseline case are the same. We see that the decision boundary and test accuracy has

less variance across random initializations, which we interpret as being due to the averaging

effect of increasing the batch size from 1 to 32. The test classification accuracy is virtually

indistinguishable from the online SGD case.

In Figures 4.14, 4.15, and 4.16, we consider two modifications to the neural network: (1)

increasing the width from the baseline of m “ 103 to m “ 105, and (2) introducing trainable

bias terms and training the second layer weights. The difference in (1) is imperceptible and so

we do not plot the decision boundary in this case. On the other hand, we observed that with

115

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●
●

●
●

●
●

●●

●
●

●

●

●

●

●

●
0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

bayes
leaky
linear
tanh

Figure 4.5: Test classification accuracy. The performance of leaky ReLU and tanh networks

are almost exactly the same and match the performance of the best linear predictor until

extreme levels of noise.

trainable biases and second layer weights, the neural network can come close to Bayes-optimal

classifier accuracy provided the initialization variance is chosen appropriately. In particular,

with an initialization variance of 1{m, the network is able to learn a nonlinear decision

boundary, but with an initialization variance of 1{m4, the network only learns a linear

decision boundary.7 We note that our result in Theorem 4.3.5 holds for any initialization,

and thus these experiments suggest that we would need to introduce new analyses in order

to get generalization performance much better than a linear classifier. Additionally, these

experiments suggest that the ability of an SGD-trained network to generalize better than a

linear classifier on Dγ0,b is strongly dependent upon the initialization scheme used and the

usage of bias terms.

As a final study on Db,γ0 , we consider a three-hidden-layer fully connected network of the

7For the experiments involving trainable biases and second layer weights, we increased the sample size
from T “ 20,000 to T “ 100,000 since the validation accuracy was still continuing to increase with T “
20,000 for the initialization variance of 1{m. This was the only set of experiments where we noticed such
behavior.

116

form

xp1q “ σpW p1qxq, xplq “ σpW plqxpl´1q
q, l “ 2, 3, fxp ~W,~bq “ aJxp3q, (4.8.2)

where W p1q P Rmˆd, W plq P Rmˆm for l “ 2, 3, a P Rmˆ1 are all trainable weights, and

σ is again the leaky ReLU with α “ 0.1. In Figures 4.17 and 4.18, we plot the decision

boundary and accuracy for this four layer network (with m “ 100) with each layer’s weights

initialized with variance 1{m and the final layer weights initialized at ˘1{
?
m and the same

learning rate of 0.01. This network is able to learn a better partition of the input space and

is able to generalize almost as well as the Bayes optimal classifier, enjoying the same trend of

increase in performance as OPTlin increases that holds for the Bayes optimal classifier. This

experiment suggests that although there is evidence that bias-free one-hidden-layer networks

fail to learn Db,γ0 up to an accuracy better than a linear classifier, bias-free networks with

multiple hidden layers can.

We also conducted a series of experiments to emphasize that although it seems that bias-

free SGD-trained one-hidden-layer networks cannot learn Db,γ0 to an accuracy better than

a linear classifier, there are simple distributions for which such networks easily outperform

linear predictors. We construct a distribution D̃b as follows. We introduce a boundary

factor b ą 0 and sample an isotropic 2D Gaussian, and then assign the label `1 if x2 ă b|x1|,

and the label ´1 otherwise. Every (bias-free) halfspace for the marginal distribution of a

2D Gaussian partitions any circle centered at the origin into two equal-sized halves. By

symmetry of the isotropic Gaussian, this means the best halfspace will have error exactly

equal to the proportion of `1 lying in the region with 0 ă x2 ď b|x1|. If we denote the angle

corresponding to the region tx2 ě b|x1|u where y “ ´1 as 2θ, then this means the error of

the best linear classifier is given by OPTlin “
π´2θ

2π
“ 1{2 ´ θ{π (see Figure 4.19). The angle

θ P r0, π{2s is given by θ “ arctanp1{bq, and thus we can solve for OPTlin in terms of b. When

bÑ 0, the error for the best halfspace converges to 0, while as bÑ 8 we have OPTlin Ñ 1{2.

The Bayes classifier achieves accuracy 100% with the decision rule yBayes “ 1 if x2 ă b|x1|

and ´1 otherwise.

117

The 2D Gaussian satisfies 1-anti-concentration and Corollary 4.3.7 guarantees that an

SGD-trained neural network will achieve a test set accuracy of at least 1´ Ω̃p
?
OPTlinq. We

see in Figures 4.21 and 4.20 that the neural network performs quite a bit better than the

best linear classifier (and significantly better than 1´
?
OPTlin), with the decision boundary

notably nonlinear and attuned to the distribution of the data. In summary, one-hidden-layer

bias-free leaky ReLU networks trained by SGD can learn nonlinear decision boundaries, but

apparently not the type of decision boundary necessary to outperform linear classifiers on

Db,γ0 .

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●
●
●

●●●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
● ●●● ●

●
● ●

●
● ●

●● ●

●

● ●

●

●

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

●

bayes
linear
lr=1e−1
lr=1e−2
lr=1e−3

Figure 4.6: Test classification accuracy for learning rates η “ 0.1 and η “ 0.001 compared

to baseline η “ 0.01. Large learning rates lead to a larger variance in performance.

118

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.7: Decision boundary for η “ 0.001 is consistently linear.

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.8: Decision boundary for η “ 0.1 varies over initializations but is roughly a pertur-

bation of the linear classifier decision boundary.

119

●●●
●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●● ●●● ●●●

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

●

bayes
linear
var=1
var=1/m
var=1/m^2

Figure 4.9: Test classification accuracy for different values of the variance of the first layer

weight initialization. The baseline neural network has variance 1{m.

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.10: Decision boundary for the smaller variance 1{m2 is more consistently linear.

120

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.11: Decision boundary for variance 1 has more variation across random initializa-

tions, but are roughly perturbations of the linear classifier decision boundary.

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●● ●
●
● ●

●● ● ●●

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

batch
bayes
linear
online

Figure 4.12: Test classification accuracy for multiple-pass batch SGD. The differences with

online SGD are essentially indistinguishable.

121

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.13: Decision boundary when using 100 epochs multiple-pass SGD of batch size

32. Columns correspond to different random initializations. The decision boundary is more

consistent across randomizations than the baseline online SGD algorithm.

122

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
● ●

● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
● ●

● ● ●

●
●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
● ●

●

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

●

●

baseline
bayes

init. sd m−1/2

init. sd m−2

linear
m=105

Figure 4.14: Test classification accuracy when introducing bias terms and trainable second

layer weights (pink and coral dashed lines) as well as when increasing the width from m “

1,000 to m “ 100,000 (green line). The pink dashed line uses an initialization variance of 1{m

while the coral dashed line uses an initialization variance of 1{m4. Note that the performance

of a neural network with width m “ 1,000 and width m “ 100,000 is imperceptible. With

trainable bias and second layer weights, the accuracy of the network varies significantly based

on the initialization scheme. Note that our result (Theorem 4.3.5) holds for an arbitrary

initialization.

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4
0

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.15: Decision boundary when using trainable biases and second layer weights with

an initialization variance of 1{m4. The boundary is almost exactly linear.

123

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4
0

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.16: Same as Figure 4.15 but using an initialization variance of 1{m. Here, the

network can learn the appropriate nonlinear decision boundary.

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.1

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.2
5

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

OP
Tl

in
 0

.4
0

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

6 4 2 0 2 4 6
4

2

0

2

Figure 4.17: Decision boundary for four layer network given in (4.8.2). Columns correspond

to different random initializations. Compare with Figure 4.3. With four layers, the network

is able to appropriately partition the input space and generalize well.

124

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
● ● ●

●
●

●
● ●

● ● ● ● ● ●
●

● ● ●
●

● ●
●

0.7

0.8

0.9

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
●

●

●

●

baseline
bayes
linear
three_h_layer

Figure 4.18: Test classification accuracy using the four layer network. The four layer network

accuracy is larger for OPTlin “ 0.4 than it is for OPTlin “ 0.15, a behavior closer to that of

the Bayes classifier.

 b
θ

1

Figure 4.19: Calculation of the angle 2θ for the distribution D̃b.

125

3 2 1 0 1 2 3
3

2

1

0

1

2

3

OP
Tl

in
 0

.0
8

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

OP
Tl

in
=0

.2
6

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

OP
Tl

in
=0

.4
0

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 4.20: Decision boundary for the same setup as the baseline neural network for

data coming from D̃b for four random initializations (across columns) and for OPTlin P

t0.08, 0.26, 0.40u (across rows). Compare with Figure 4.3. The decision boundaries are

noticeably nonlinear.

●
●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4
OPTlin

ac
cu

ra
cy

model
1−sqrt(x)
bayes
linear
nn

Figure 4.21: Test classification accuracy for data coming D̃b. Corollary 4.3.7 guarantees

performance of at least 1´Ωp
?
OPTlinq, but the neural network performs significantly better

due to the ability to produce a nonlinear decision boundary. Note that the variance over ten

initializations of the first layer weights are so small that the error bars are not visible.

126

CHAPTER 5

Learning with deep residual networks trained by

gradient descent

127

5.1 Introduction

An important recent development in the practical deployment of neural networks has been

the introduction of skip connections between layers, leading to a class of architectures known

as residual networks. Residual networks were first introduced by [HZR16] to much fanfare,

quickly becoming a standard architecture choice for state-of-the-art neural network classifiers.

The motivation for residual networks came from the poor behavior of very deep traditional

fully connected networks: although deeper fully connected networks can clearly express any

function that a shallower one can, in practice (i.e. using gradient descent) it can be difficult

to choose hyperparameters that result in small training error. Deep residual networks, on

the other hand, are remarkably stable in practice, in the sense that they avoid getting stuck

at initialization or having unpredictable oscillations in training and validation error, two

common occurrences when training deep non-residual networks. Moreover, deep residual

networks have been shown to generalize with better performance and far fewer parameters

than non-residual networks [TL18, CSS19, IMA16]. We note that much of the recent neural

network generalization literature has focused on non-residual architectures [BFT17, NBS18,

AGN18, GRS18, CG20] with bounds for the generalization gap that grow exponentially as

the depth of the network increases. [LLW18] recently studied a class of residual networks

and proved algorithm-independent bounds for the generalization gap that become larger

as the depth of the network increases, with a dependence on the depth that is somewhere

between sublinear and exponential (a precise characterization requires further assumptions

and/or analysis). We note that verifying the non-vacuousness of algorithm-independent

generalization bounds relies on empirical arguments about what values the quantities that

appear in the bounds generally take in practical networks (i.e. norms of weight matrices and

interlayer activations), while algorithm-dependent generalization bounds such as the ones we

provide in this paper can be understood without relying on experiments.

128

5.1.1 Our Contributions

In this work, we consider fully connected deep ReLU residual networks and study opti-

mization and generalization properties of such networks that are trained with discrete time

gradient descent following Gaussian initialization.

We consider binary classification under the cross-entropy loss and focus on data that

come from distributions D for which there exists a function f for which y ¨ fpxq ě γ ą 0 for

all px, yq P suppD from a large function class F (see Assumption 5.3.2). By analyzing the

trajectory of the parameters of the network during gradient descent, for any error threshold

ε ą 0, we are able to show:

1. Under the cross-entropy loss, we can study an analogous surrogate error and bound

the true classification error by the true surrogate error. This method was introduced

by [CG20].

2. If m˚ “ Õppolypγ´1qq ¨ maxpd, ε´2q, then provided every layer of the network has at

least m ě m˚ units, gradient descent with small enough step size finds a point with

empirical surrogate error at most ε in at most Õppolypγ´1q ¨ ε´1q steps with high

probability. Here, Õp¨q hides logarithmic factors that may depend on the depth L of

the network, the margin γ, number of samples n, error threshold ε, and probability

level δ.

3. Provided m˚ “ Õppolypγ´1, ε´1qq and n “ Õppolypγ´1, ε´1qq, the difference between

the empirical surrogate error and the true surrogate error is at most ε with high

probability, and therefore the above provide a bound on the true classification error of

the learned network.

We emphasize that our guarantees above come with at most logarithmic dependence on

the depth of the network. Our methods are adapted from those used in the fully connected

architecture by [CG20] to the residual network architecture, and rely upon the neural tangent

129

kernel approximation [JGH18]. This approximation relies upon the fact that for a particular

initialization of the weights of the network, gradient descent-trained networks can be closely

approximated by their tangent kernel at initialization. The tangent kernel at initialization is

expressive enough to be guaranteed to find small surrogate training error, but has sufficiently

small complexity to guarantee a small generalization gap between the training and test errors.

By showing that these competing phenomena occur simultaneously, we are able to derive the

test error guarantees of Corollary 5.3.7. The key insight of our analysis is that the Lipschitz

constant of the network output for deep residual networks as well as the semismoothness

property (Lemma 5.4.2) have at most logarithmic dependence on the depth, while the known

analogues for non-residual architectures all have polynomial dependence on the depth.

5.1.2 Additional Related Work

In the last year there has been a variety of works developing algorithm-dependent guarantees

for neural network optimization and generalization [LL18, ALS19, ZCZ19, DZP19, ADH19b,

CG20, ZG19, CG19a]. [LL18] were among the first to theoretically analyze the properties of

overparameterized fully connected neural networks trained with Gaussian random initializa-

tion, focusing on a two layer (one hidden layer) model under a data separability assumption.

Their work provided two significant insights into the training process of overparameterized

ReLU neural networks: (1) the weights stay close to their initial values throughout the

optimization trajectory, and (2) the ReLU activation patterns for a given example do not

change much throughout the optimization trajectory. These insights were the backbone of

the authors’ strong generalization result for stochastic gradient descent (SGD) in the two

layer case. The insights of [LL18] provided a basis to various subsequent studies. [DZP19]

analyzed a two layer model using a method based on the Gram matrix using inspiration from

kernel methods, showing that gradient descent following Gaussian initialization finds zero

training loss solutions at a linear rate. [ZCZ19] and [ALS19] extended the results of Li and

Liang to the arbitrary L hidden layer fully connected case, again considering (stochastic)

130

gradient descent trained from random initialization. Both authors showed that, provided the

networks were sufficiently wide, arbitrarily deep networks would converge to a zero training

loss solution at a linear rate, using an assumption about separability of the data. Recently,

[ZG19] provided an improved analysis of the global convergence of gradient descent and

SGD for training deep neural networks, which enjoys a milder over-parameterization condi-

tion and better iteration complexity than previous work. Under the same data separability

assumption, [ZYC19] showed that deep residual networks can achieve zero training loss for

the squared loss at a linear rate with overparameterization essentially independent of the

depth of the network. We note that [ZYC19] studied optimization for the regression problem

rather than classification, and their results do not distinguish the case with random labels

from that with true labels; hence, it is not immediately clear how to translate their analysis

to a generalization bound for classification under the cross-entropy loss as we are able to do

in this paper.

The above results provide a concrete answer to the question of why overparameterized

deep neural networks can achieve zero training loss using gradient descent. However, the

theoretical tools of [DZP19, ALS19, ZCZ19, ZG19] apply to data with random labels as well

as true labels, and thus do not explain the generalization to unseen data observed exper-

imentally. [DR17] optimized PAC-Bayes bounds for the generalization error of a class of

stochastic neural networks that are perturbations of standard neural networks trained by

SGD. [CG20] proved a guarantee for arbitrarily small generalization error for classification

in deep fully connected neural networks trained with gradient descent using random initial-

ization. The same authors recently provided an improved result for deep fully connected

networks trained by stochastic gradient descent using a different approach that relied on the

neural tangent kernel and online-to-batch conversion [CG19a]. [EMW19] recently developed

algorithm-dependent generalization bounds for a special residual network architecture with

many different kinds of skip connections by using kernel methods.

131

5.2 Network Architecture and Optimization Problem

We begin with the notation of the paper. We denote vectors by lowercase letters and matrices

by uppercase letters, with the assumption that a vector v is a column vector and its transpose

vJ is a row vector. We use the standard Op¨q,Ωp¨q,Θp¨q complexity notations to ignore

universal constants, with Õp¨q, Ω̃p¨q additionally ignoring logarithmic factors. For n P N, we

write rns “ t1, 2, . . . , nu. Denote the number of hidden units at layer l as ml, l “ 1, . . . , L`1.

Let the l-th layer weights be Wl P Rml´1ˆml , and concatenate all of the layer weights into a

vector W “ pW1, . . . ,WL`1q. Denote by wl,j the j-th column of Wl. Let σpxq “ maxp0, xq

be the ReLU nonlinearity, and let θ be a constant scaling parameter. We consider a class of

residual networks defined by the following architecture:

x1 “ σpWJ
1 xq, xl “ xl´1 ` θσ

`

WJ
l xl´1

˘

, l “ 2, . . . , L,

xL`1 “ σpWJ
L`1xLq.

Above, we denote xl as the l-th hidden layer activations of input x P Rd, with x0 :“ x. In

order for this network to be defined, it is necessary that m1 “ m2 “ ¨ ¨ ¨ “ mL. We are free

to choose mL`1, as long as mL`1 “ Θpm1q (see Assumption 5.3.4). We define a constant,

non-trainable vector v “ p1, 1, . . . , 1,´1,´1, . . . ,´1qJ P RmL`1 with equal parts `1 and

´1’s that determines the network output,

fW pxq “ vJxL`1.

We note that our methods can be extended to the case of a trainable top layer weights v by

choosing the appropriate scale of initialization for v. We choose to fix the top layer weights

in this paper for simplicity of exposition.

We will find it useful to consider the matrix multiplication form of the ReLU activations,

which we describe below. Let 1pAq denote the indicator function of a set A, and define

diagonal matrices Σlpxq P Rmlˆml by rΣlpxqsj,j “ 1pwJl,jxl´1 ą 0q, l “ 1, . . . , L ` 1. By

convention we denote products of matrices
śb

i“aMi by Mb ¨Mb´1 ¨ . . . ¨Ma when a ď b, and

132

by the identity matrix when a ą b. With this convention, we can introduce notation for the

l-to-l1 interlayer activations H l1

l pxq of the network. For 2 ď l ď l1 ď L and input x P Rd we

denote

H l1

l pxq :“
l1
ź

r“l

`

I ` θΣrpxqW
J
r

˘

. p2 ď l ď l1 ď Lq (5.2.1)

If l “ 1 ă l1, we denote H l1

1 pxq “ H l1

2 pxqΣ1pxqW
J
1 , and if l1 “ L ` 1 ą l, we denote

HL`1
l pxq “ ΣL`1pxqW

J
L`1H

L
l pxq. Using this notation, we can write the output of the neural

network as fW pxq “ vJHL`1
l`1 pxqxl for any l P t0u Y rL ` 1s and x P Rd. For notational

simplicity, we will denote Σlpxq by Σl and H l1

l pxq by H l1

l when the dependence on the input

is clear.

We assume we have i.i.d. samples pxi, yiq
n
i“1 „ D from a distribution D, where xi P Rd

and yi P t˘1u. We note the abuse of notation in the above, where xl P Rml refers to the

l-th hidden layer activations of an arbitrary input x P Rd while xi refers to the i-th sample

xi P Rd. We shall use xl,i P Rml when referring to the l-th hidden layer activations of a

sample xi P Rd (where i P rns and l P rL ` 1s), while xl P Rml shall refer to the l-th hidden

layer activation of arbitrary input x P Rd.

Let `pxq “ logp1 ` expp´xqq be the cross-entropy loss. We consider the empirical risk

minimization problem optimized by constant step size gradient descent,

min
W

LSpW q :“
1

n

n
ÿ

i“1

`pyi ¨ fW pxiqq, W
pk`1q
l “ W

pkq
l ´ η ¨∇Wl

LSpW
pkq
q pl P rL` 1sq.

We shall see below that a key quantity for studying the trajectory of the weights in the

above optimization regime is a surrogate loss defined by the derivative of the cross-entropy

loss. We denote the empirical and true surrogate loss by

ESpW q :“ ´
1

n

n
ÿ

i“1

`1pyi ¨ fW pxiqq, EDpW q :“ Epx,yq„Dr´`1py ¨ fW pxqqs,

respectively. The empirical surrogate loss was first introduced by [CG20] for the study of

deep non-residual networks. Finally, we note here a formula for the gradient of the output

133

of the network with respect to different layer weights:

∇Wl
fW pxq “ θ1p2ďlďLqxl´1v

JHL`1
l`1 Σlpxq, p1 ď l ď L` 1q. (5.2.2)

5.3 Main Theory

We first go over the assumptions necessary for our proof and then shall discuss our main

results. Our assumptions align with those made by [CG20] in the fully connected case. The

first main assumption is that the input data is normalized.

Assumption 5.3.1. Input data are normalized: supppDxq Ă Sd´1 “ tx P Rd : }x}2 “ 1u.

Data normalization is common in statistical learning theory literature, from linear models

up to and including recent work in neural networks [LL18, ZCZ19, DZP19, ALS19, ADH19b,

CG20], and can easily be satisfied for arbitrary training data by mapping samples x ÞÑ

x{ }x}2.

The next assumption is on the data generating distribution. Because overparameterized

networks can memorize data, any hope of demonstrating that neural networks have a small

generalization gap must restrict the class of data distribution processes to one where some

type of learning is possible.

Assumption 5.3.2. Let ppuq denote the density of a standard d-dimensional Gaussian

vector. Define

F “

#

ż

Rd

cpuqσpuJxqppuqdu : }cp¨q}
8
ď 1

+

.

Assume there exists fp¨q P F and constant γ ą 0 such that y ¨ fpxq ě γ for all px, yq P

supppDq.

Assumption 5.3.2 was introduced by [CG20] for the analysis of fully connected networks

and is applicable for distributions where samples can be perfectly classified by the random

kitchen sinks model of [RR08]. One can view a function from this class as the infinite

134

width limit of a one-hidden-layer neural network with regularizer given by a function cp¨q

with bounded `8-norm. As pointed out by [CG20], this assumption includes the linearly

separable case.

Our next assumption concerns the scaling of the weights at initialization.

Assumption 5.3.3 (Gaussian initialization). We say that the weight matricesWl P Rml´1ˆml

are generated via Gaussian initialization if each of the entries of Wl are generated indepen-

dently from Np0, 2{mlq.

This assumption is common to much of the recent theoretical analyses of neural net-

works [LL18, ZCZ19, ALS19, DZP19, ADH19b, CG20] and is known as the He initialization

due to its usage in the first ResNet paper by [HZR16]. This assumption guarantees that the

spectral norms of the weights are controlled at initialization.

Our last assumption concerns the widths of the networks we consider and allows us to

exclude pathological dependencies between the width and other parameters that define the

architecture and optimization problem.

Assumption 5.3.4 (Widths are of the same order). We assume mL`1 “ ΘpmLq. We call

m “ mL ^mL`1 the width of the network.

Our first theorem shows that provided we have sufficient overparameterization and suffi-

ciently small step size, the iterates W pkq of gradient descent stay within a small neighborhood

of their initialization. Additionally, the empirical surrogate error can be bounded by a term

that decreases as we increase the width m of the network.

Theorem 5.3.5. Suppose W p0q are generated via Gaussian initialization and that the resid-

ual scaling parameter satisfies θ “ 1{ΩpLq. For τ ą 0, denote a τ -neighborhood of the

weights W p0q “ pW
p0q
1 , . . . ,W

p0q
L`1q at initialization by

WpW p0q, τq :“
!

W “ pW1, . . . ,WL`1q :
›

›

›
Wl ´W

p0q
l

›

›

›

F
ď τ @l P rL` 1s

)

.

135

There exist absolute constants ν, ν 1, ν2, C, C 1 ą 0 such that for any δ ą 0, provided τ ď

νγ12 plogmq´
3
2 , η ď ν 1pτm´ 1

2 ^ γ4m´1q, and Kη ď ν2τ 2γ4 plogpn{δqq´
1
2 , then if the width of

the network is such that,

m ě C 1
ˆ

τ´
4
3d log

m

τδ
_ d log

mL

δ
_ τ´

2
3 plogmq´1 log

L

δ
_ γ´2

ˆ

d log
1

γ
_ log

L

δ

˙

_ log
n

δ

˙

then with probability at least 1 ´ δ, gradient descent starting at W p0q with step size η

generates K iterates W p1q, . . . ,W pKq that satisfy:

(i) W pkq PWpW p0q, τq for all k P rKs.

(ii) There exists k P t0, . . . , K ´ 1u with ESpW pkqq ď C ¨m´ 1
2 ¨ pKηq´

1
2
`

log n
δ

˘
1
4 ¨ γ´2.

This theorem allows us to restrict our attention from the large class of all deep residual

neural networks to the reduced complexity class of those with weights that satisfy W P

WpW p0q, τq. Our analysis provides a characterization of the radius of this reduced complexity

class in terms of parameters that define the network architecture and optimization problem.

Additionally, this theorem allows us to translate the optimization problem over the empirical

loss LSpW q into one for the empirical surrogate loss ESpW pkqq, a quantity that is simply

related to the classification error (its expectation is bounded by a constant multiple of the

classification error under 0-1 loss; see Appendix 5.6.2).

Our next theorem characterizes the Rademacher complexity of the class of residual net-

works with weights in a τ -neighborhood of the initialization. Additionally, it connects the

test accuracy with the empirical surrogate loss and the Rademacher complexity.

Theorem 5.3.6. Let W p0q denote the weights at Gaussian initialization and suppose the

residual scaling parameter satisfies θ “ 1{ΩpLq. Suppose τ ď 1. Then there exist absolute

constants C1, C2, C3 ą 0 such that for any δ ą 0, provided

m ě C1

´

τ´
2
3 plogmq´1 logpL{δq _ τ´

4
3d logpm{pτδqq _ d logpmL{δq

¯

,

136

then with probability at least 1 ´ δ, we have the following bound on the Rademacher com-

plexity,

Rn

`

fW : W PWpW p0q, τq
(˘

ď C2

ˆ

τ
4
3

a

m logm`
τ
?
m

?
n

˙

,

so that for all W PWpW p0q, τq,

Ppx,yq„D py ¨ fW pxq ă 0q ď 2ESpW q ` C2

ˆ

τ
4
3

a

m logm`
τ
?
m

?
n

˙

` C3

c

logp1{δq

n
. (5.3.1)

We shall see in Section 5.4 that we are able to derive the above bound on the Rademacher

complexity by using a semi-smoothness property of the neural network output and an upper

bound on the gradient of the network output. Standard arguments from statistical learning

theory provide the first and third terms in (5.3.1).

The missing ingredients needed to realize the result of Theorem 5.3.6 for networks trained

by gradient descent are supplied by Theorem 5.3.5, which gives (i) control of the growth of

the empirical surrogate error ES along the gradient descent trajectory, and (ii) the distance

τ from initialization before which we are guaranteed to find small empirical surrogate error.

Putting these together yields Corollary 5.3.7.

Corollary 5.3.7. Suppose that the residual scaling parameter satisfies θ “ 1{ΩpLq. Let

ε, δ ą 0 be fixed. Suppose that m˚ “ Õppolypγ´1qq ¨ maxpd, ε´14q ¨ logp1{δq and n “

Õppolypγ´1qq ¨ ε´4. Then for any m ě m˚, with probability at least 1´ δ over the initializa-

tion and training sample, there is an iterate k P t0, . . . , K ´ 1u with K “ Õppolypγ´1qq ¨ ε´2

such that gradient descent with Gaussian initialization and step size η “ Opγ4 ¨m´1q satisfies

Ppx,yq„Dry ¨ fW pkqpxq ă 0s ď ε.

This corollary shows that for deep residual networks, provided we have sufficient over-

parameterization, gradient descent is guaranteed to find networks that have arbitrarily high

classification accuracy. In comparison with the results of [CG20], the width m, number of

137

samples n, step size η, and number of iterates K required for the guarantees for residual

networks given in Theorem 5.3.5 and Corollary 5.3.7 all have (at most) logarithmic depen-

dence on L as opposed to the exponential dependence in the corresponding results for the

non-residual architecture. Additionally, we note that the step size and number of iterations

required for our guarantees are independent of the depth, and this is due to the advantage

of the residual architecture. Our analysis shows that the presence of skip connections in the

network architecture removes the complications relating to the depth that traditionally arise

in the analysis of non-residual architectures for a variety of reasons. The first is a technical

one from the proof, in which we show that the Lipschitz constant of the network output and

the semismoothness of the network depend at most logarithmically on the depth, so that

the network width does not blow up as the depth increases (see Lemmas 5.4.1 and 5.4.2

below). Second, the presence of skip-connections allows for representations that are learned

in the first layer to be directly passed to later layers without needing to use a wider network

to relearn those representations. This property was key to our proof of the gradient lower

bound of Lemma 5.4.3 and has been used in previous approximation results for deep residual

networks, e.g., [Yar17].

5.4 Proof Sketch of the Main Theory

In this section we will provide a proof sketch of Theorems 5.3.5 and 5.3.6 and Corollary 5.3.7,

following the proof technique of [CG20]. We will first collect the key lemmas needed for their

proofs, leaving the proofs of these lemmas for Appendix 5.7. We shall assume throughout

this section that the residual scaling parameter satisfies θ “ 1{ΩpLq, which we note is a

common assumption in the literature of residual network analysis [DLL18, ALS19, ZYC19].

Our first key lemma shows that the interlayer activations defined in (5.2.1) are uniformly

bounded in x and l provided the network is sufficiently wide.

Lemma 5.4.1 (Hidden layer and interlayer activations are bounded). Suppose thatW1, . . . ,WL`1

138

are generated via Gaussian initialization. Then there exist absolute constants C0, C1, C2 ą 0

such that if m ě C0d log pmL{δq, then with probability at least 1´δ, for any l, l1 “ 1, . . . , L`1

with l ď l1 and x P Sd´1, we have C1 ď }xl}2 ď C2 and
›

›H l1

l

›

›

2
ď C2.

Due to the scaling of θ, we are able to get bounds on the interlayer and hidden layer

activations that do not grow with L. As we shall see, this will be key for the sublinear

dependence on L for the results of Theorems 5.3.5 and 5.3.6. The fully connected architecture

studied by [CG20] had additional polynomial terms in L for both upper bounds for }xl}2

and
›

›H l1

l

›

›

2
.

Our next lemma describes a semi-smoothness property of the neural network output fW

and the empirical loss LS.

Lemma 5.4.2 (Semismoothness of network output and objective loss). Let W1, . . . ,WL`1

be generated via Gaussian initialization, and let τ ď 1. Define

hpxW, W̃ q :“
›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

L
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2
`

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
.

There exist absolute constants C,C ą 0 such that if

m ě C
´

τ´
2
3 plogmq´1 logpL{δq _ τ´

4
3d logpm{pτδqq _ d logpmL{δq

¯

,

then with probability at least 1´ δ, we have for all x P Sd´1 and xW, W̃ PWpW, τq,

f
xW pxq ´ fW̃ pxq ď Cτ

1
3

a

m logm ¨ hpxW, W̃ q ` C
?
m ¨ hpxW, W̃ q2

`

L`1
ÿ

l“1

tr

„

´

xWl ´ W̃l

¯J

∇Wl
fW̃ pxq

.

and

LSpxW q ´ LSpW̃ q ď Cτ
1
3

a

m logm ¨ hpxW, W̃ q ¨ ESpW̃ q ` Cm ¨ hpxW, W̃ q2

`

L`1
ÿ

l“1

tr

„

´

xWl ´ W̃l

¯J

∇Wl
LSpW̃ q

.

139

The semismoothness of the neural network output function fW will be used in the anal-

ysis of generalization by Rademacher complexity arguments. For the objective loss LS, we

apply this lemma for weights along the trajectory of gradient descent. Since the differ-

ence in the weights of two consecutive steps of gradient descent satisfy W
pk`1q
l ´ W

pkq
l “

´η∇Wl
LSpW

pkqq, the last term in the bound for the objective loss LS will take the form

´η
řL`1
l“1

›

›∇Wl
LSpW

pkqq
›

›

2

F
. Thus by simultaneously demonstrating (i) a lower bound for the

gradient for at least one of the layers and (ii) an upper bound for the gradient at all layers

(and hence an upper bound for hpW pk`1q,W pkqq), we can connect the empirical surrogate

loss ESpW pkqq at iteration k with that of the objective loss LSpW
pkqq that will lead us to

Theorem 5.3.5. Compared with the fully connected architecture of [CG20], our bounds do

not have any polynomial terms in L.

Thus the only remaining key items needed for our proof are upper bounds and lower

bounds for the gradient of the objective loss, described in the following two lemmas.

Lemma 5.4.3. Let W “ pW1, . . . ,WL`1q be weights at Gaussian initialization. There

exist absolute constants C,C, ν such that for any δ ą 0, provided τ ď νγ3 and m ě

Cγ´2 pd log γ´1 ` logpL{δqq _ C logpn{δq, then with probability at least 1 ´ δ, for all W̃ P

WpW, τq, we have
›

›

›
∇WL`1

LSpW̃ q
›

›

›

2

F
ě C ¨mL`1 ¨ γ

4
¨ ESpW̃ q2.

Lemma 5.4.4. Let W “ pW1, . . . ,WL`1q be weights at Gaussian initialization. There exists

an absolute constant C ą 0 such that for any δ ą 0, provided m ě C pd_ logpL{δqq and

τ ď 1, we have for all W̃ PWpW, τq and all l,

›

›

›
∇Wl

LSpW̃ q
›

›

›

F
ď θ1p2ďlďLq ¨ C

?
m ¨ ESpW̃ q.

Note that we provide only a lower bound for the gradient at the last layer. It may be

possible to improve the degrees of the polynomial terms of the results in Theorems 5.3.5 and

5.3.6 by deriving lower bounds for the other layers as well.

140

With all of the key lemmas in place, we can proceed with a proof sketch of Theorems

5.3.5 and 5.3.6. The complete proofs can be found in Appendix 5.6.

Proof of Theorem 5.3.5. Consider hk “ hpW pk`1q,W pkqq, a quantity that measures the dis-

tance of the weights between gradient descent iterations. It takes the form

hk “ η

«

›

›∇W1LSpW
pkq
q
›

›

2
` θ

L
ÿ

l“2

›

›∇Wl
LSpW

pkq
q
›

›

2
`
›

›∇WL`1
LSpW

pkq
q
›

›

2

ff

.

By Lemma 5.4.4 we can show that hk ď Cη
?
mESpW pkqq. The gradient lower bound in

Lemma 5.4.3 substituted into Lemma 5.4.2 shows that the dominating term in the semis-

moothness comes from the gradient lower bound, so that we have for any k,

LSpW
pk`1q

q ´ LSpW
pkq
q ď ´C ¨ η ¨mL`1 ¨ γ

4
¨ ESpW pkq

q
2.

We can telescope the above over k to get a bound on the loss at iteration k in terms of

the bound on the r.h.s. and the loss at initialization. A simple concentration argument

shows that the loss at initialization is small with mild overparameterization. By letting

k˚ “ argminrK´1sESpW pkqq2, we can thus show

ESpW pk˚q
q ď C3 pKη ¨mq

´ 1
2
`

LSpW
p0q
q
˘

1
2 ¨ γ´2

ď C3 pKη ¨mq
´ 1

2

´

log
n

δ

¯
1
4
¨ γ´2.

We provide below a proof sketch of the bound for the Rademacher complexity given in

Theorem 5.3.6, leaving the rest for Appendix 5.6.2.

Proof of Theorem 5.3.6. Let ξi be independent Rademacher random variables. We consider

a first-order approximation to the network output at initialization,

FW p0q,W pxq :“ fW p0qpxq `
L`1
ÿ

l“1

tr

„

´

Wl ´W
p0q
l

¯J

∇Wl
fW p0qpxq

,

141

and bound the Rademacher complexity by two terms,

pRSrFpW p0q, τqs ď Eξ

«

sup
WPWpW p0q,τq

1

n

n
ÿ

i“1

ξirfpxiq ´ FW p0q,W pxiqs

ff

` Eξ

«

sup
WPWpW p0q,τq

1

n

n
ÿ

i“1

ξi

L`1
ÿ

l“1

tr

„

´

Wl ´W
p0q
l

¯J

∇Wl
fW p0qpxq

ff

For the first term, taking W̃ “ W p0q in Lemma 5.4.2 results in |fW pxq ´ FW p0q,W pxq| ď

C3τ
4
3

?
m logm. For the second term, since }AB}F ď }A}F }B}2, we reduce this term to

a product of two terms. The first involves the norm of the distance of the weights from

initialization, which is τ . The second is the norm of the gradient at initialization, which

can be taken care of by using Cauchy–Schwarz and the gradient formula (5.2.2) to get

}∇Wl
fW p0q}F ď C2θ

1p2ď`ďLq
?
m. A standard application of Jensen inequality gives the 1{

?
n

term.

Finally, we can put together Theorems 5.3.5 and 5.3.6 by appropriately choosing the

scale of τ , η, and K to get Corollary 5.3.7. We leave the detailed algebraic calculations for

Appendix 5.6.3.

Proof of Corollary 5.3.7. We need only specify conditions on τ, η,Kη, and m such that the

results of Theorems 5.3.5 and 5.3.6 will hold, and making sure that each of the four terms

in (5.3.1) are of the same scale. This can be satisfied by imposing the condition Kη “

ν2γ4τ 2 plogpn{δqq´
1
2 and

C3 pKηmq
´ 1

2 plogpn{δqq
1
4 ¨ γ´2

“ C2τ
4
3

a

m logm “ C2τ
a

m{n “ C3

a

logp1{δq{n “ ε{4.

5.5 Conclusions

In this paper, we derived algorithm-dependent optimization and generalization results for

overparameterized deep residual networks trained with random initialization using gradient

142

descent. We showed that this class of networks is both small enough to ensure a small

generalization gap and also large enough to achieve a small training loss. Important to our

analysis is the insight that the introduction of skip connections allows for us to essentially

ignore the depth as a complicating factor in the analysis, in contrast with the well-known

difficulty of achieving nonvacuous generalization bounds for deep non-residual networks.

This provides a theoretical understanding for the increased stability and generalization of

deep residual networks over non-residual ones observed in practice.

5.6 Proofs of Main Theorems and Corollaries

5.6.1 Proof of Theorem 5.3.5

We first show that W pkq PWpW p0q, τ{2q for all k ď K satisfying Kη ď ν2τ 2γ4plogpn{δqq´1{2.

Suppose W pk1q PWpW p0q, τ{2q for all k1 “ 1, . . . , k ´ 1. By Lemma 5.4.4, we have

›

›

›
∇Wl

LSpW
pk1q
q

›

›

›

F
ď C1θ

1p2ďlďLq
?
m ¨ ESpW pk1q

q.

Since η
?
m ď ν 1τ and ESp¨q ď 1, we can make ν 1 small enough so that we have by the triangle

inequality
›

›

›
W
pkq
l ´W

p0q
l

›

›

›

F
ď η

›

›∇Wl
LSpW

pk´1q
q
›

›

F
`
τ

2
ď τ. (5.6.1)

Therefore we are in the τ -neighborhood that allows us to apply the bounds described in the

main section. Define

hk :“ η

«

›

›∇W1LSpW
pkq
q
›

›

2
` θ

L
ÿ

l“2

›

›∇Wl
LSpW

pkq
q
›

›

2
`
›

›∇WL`1
LSpW

pkq
q
›

›

2

ff

.

Then using the upper bounds for the gradient given in Lemma 5.4.4, we have

hk ď η

«

C
?
mESpW pkq

q ` θ
L
ÿ

l“2

`

θ
?
mESpW pkq

q
˘

` C
?
mESpW pkq

q

ff

ď C 1η
?
mESpW pkq

q.

(5.6.2)

143

Notice that hk “ hpW pk`1q,W pkqq where h is from Lemma 5.4.2. Hence, we have

LSpW
pk`1q

q ´ LSpW
pkq
q

ď Cτ
1
3

a

m logm ¨ hk ¨ ESpW pkq
q ` Cmh2

k ´ η
L`1
ÿ

l“1

›

›∇Wl
LSpW

pkq
q
›

›

2

F

ď Cητ
1
3

a

m logm ¨
?
m ¨ ESpW pkq

q
2
` Cm2η2

¨ ESpW pkq
q
2
´ Cη ¨mL`1 ¨ γ

4
¨ ESpW pkq

q
2

ď ESpW pkq
q
2
¨

´

C1ητ
1
3m

a

logm` C2m
2
¨ η2

´ C3η ¨mL`1 ¨ γ
4
¯

The first inequality follows by Lemma 5.4.2 and since trpAJAq “ }A}2F . The second inequal-

ity uses the lower bound for the gradient given in Lemma 5.4.3 and (5.6.2). Therefore, if we

take τ
1
3

?
logm ď ν

1
3γ4, i.e. τ ď ν ¨ γ12 plogmq´

3
2 for some small enough constant ν, and if

we take η ď ν 1 ¨ γ4m´1, then there is a constant C ą 0 such that

LSpW
pk`1q

q ´ LSpW
pkq
q ď ´C ¨ η ¨mL`1 ¨ γ

4
¨ ESpW pkq

q
2. (5.6.3)

Re-writing this we have

ESpW pkq
q
2
ď Cγ´4

pηmL`1q
´1

`

LSpW
pkq
q ´ LSpW

pk`1q
q
˘

. (5.6.4)

Before completing this part of the proof, we will need the following bound on the loss at

initialization:

LSpW
p0q
q ď C

c

log
n

δ
. (5.6.5)

To see this, we notice that fW pxiq is a sum of mL`1{2 independent random variables (con-

ditional on xL,i),

fW pxiq “

mL`1{2
ÿ

j“1

”

σpwJL`1,jxL,iq ´ σpw
J
L`1,j`mL`1{2

xL,iq
ı

.

Applying the upper bound for }xL`1}2 given by Lemma 5.4.1 and Hoeffding inequality gives

a constant C1 ą 0 such that with probability at least 1 ´ δ, |fW p0qpxiq| ď C1

a

logpn{δq for

all i P rns. Since `pzq “ logp1` expp´zqq ď |z| ` 1 for all z P R, we have

LSpW
p0q
q “

1

n

n
ÿ

i“1

`pyi ¨ fW p0qpxiqq ď 1` C1

c

log
n

δ
ď C

a

logpn{δq.

144

We can thus bound the distance from initialization by

›

›

›
W
pkq
l ´W

p0q
l

›

›

›

F
ď η

k´1
ÿ

k1“0

›

›

›
∇Wl

LSpW
pk1q
q

›

›

›

F

ď Cη
?
m

k´1
ÿ

k1“0

ESpW pk1q
q

ď Cη
?
m
?
k

g

f

f

eγ´4 pηmL`1q
´1

k´1
ÿ

k1“0

pLSpW pkqq ´ LSpW pk`1qqq

ď C
a

kη ¨ γ´2
´

log
n

δ

¯
1
4

ď
τ

2
.

The first line comes from the definition of gradient descent and the triangle inequality.

For the second line, (5.6.1) allows us to apply Lemma 5.4.4. The third line follows by

Cauchy–Schwarz and (5.6.4). The next line follows by (5.6.5), and the last since kη ď

ν2τ 2γ4plogpn{δqq´
1
2 . This completes the induction and shows that W pkq PWpW p0q, τq for all

k ď K.

For the second part of the proof, we want to derive an upper bound on the lowest empirical

surrogate error over the trajectory of gradient descent. Since we have shown that W pkq P

WpW p0q, τ{2q for k ď K, (5.6.3) and (5.6.5) both hold. Let k˚ “ argminkPt0,...,K´1uESpW pkqq2.

Then telescoping (5.6.3) over k yields

LSpW
pKq
q ´ LSpW

p0q
q ď ´C ¨ η ¨mL`1 ¨ γ

4
¨

K
ÿ

k“1

ESpW pkq
q
2

ď ´C ¨Kη ¨mL`1 ¨ γ
4
¨ ESpW pk˚q

q
2.

Rearranging the above gives

ESpW pk˚q
q ď C3 pKη ¨mq

´ 1
2
`

LSpW
p0q
q
˘

1
2 ¨ γ´2

ď C3 pKη ¨mq
´ 1

2

´

log
n

δ

¯
1
4
¨ γ´2,

where we have used that LSp¨q is always nonnegative in the first inequality and (5.6.5) in

the second.

145

5.6.2 Proof of Theorem 5.3.6

Denote FpW p0q, τq “ tfW pxq : W P WpW p0q, τqu, and recall the definition of the empirical

Rademacher complexity,

pRSrFpW p0q, τqs “ Eξ

«

sup
fPFpW p0q,τq

1

n

n
ÿ

i“1

ξifpxiq

ff

“ Eξ

«

sup
WPWpW p0q,τq

1

n

n
ÿ

i“1

ξifpxiq

ff

, (5.6.6)

where ξ “ pξ1, . . . , ξnq
J is an n-dimensional vector of i.i.d. ξi „ Unifpt˘1uq. Since y P t˘1u,

|`1pzq| ď 1 and `1p¨q is 1-Lipschitz, standard uniform convergence arguments (see, e.g., [SB14])

yield that with probability at least 1´ δ,

sup
WPWpW p0q,τq

|ESpW q ´ EDpW q| ď 2ES pRS

“

FpW p0q, τq
‰

` C1

c

logp1{δq

n
.

Since ´`1pxq “ p1` expp´xqq´1 satisfies ´`1pxq ă 1
2

if and only if x ă 0, Markov’s inequality

gives

Ppx,yq„D py ¨ fW pxq ă 0q ď 2Epx,yq„D p´`1py ¨ fW pxqqq “ 2EDpW q,

so that it suffices to get a bound for the empirical Rademacher complexity (5.6.6). If we

define

FW p0q,W pxq :“ fW p0qpxq `
L`1
ÿ

l“1

tr

„

´

Wl ´W
p0q
l

¯J

∇Wl
fW p0qpxq

,

then since supa`bPA`Bpa` bq ď supaPA a` supbPB b, we have

pRSrFpW p0q, τqs ď Eξ

«

sup
WPWpW p0q,τq

1

n

n
ÿ

i“1

ξirfpxiq ´ FW p0q,W pxiqs

ff

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

I1

` Eξ

«

sup
WPWpW p0q,τq

1

n

n
ÿ

i“1

ξi

L`1
ÿ

l“1

tr

„

´

Wl ´W
p0q
l

¯J

∇Wl
fW p0qpxq

ff

loomoon

I2

146

For the I1 term, we take W̃ “ W p0q in Lemma 5.4.2 to get

|fW pxq ´ FW p0q,W pxq| ď C
”

τ
4
3

a

m logmp2` Lθq
ı

` Cτ 2
?
m p2` Lθq

ď Cτ
4
3

a

m logm.

For I2, since }AB}F ď }A}F }B}2, Lemma 5.4.1 yields for all l and any matrix ξ,

›

›xlv
J
¨ ξ
›

›

F
ď
›

›xlv
J
›

›

F
}ξ}2 ď C

?
m }ξ}2 .

Applying this to the gradient of f at initialization given by (5.2.2) and using Lemma 5.4.1,

there is a constant C2 such that

}∇Wl
fW p0q}F ď C2θ

1p2ďlďLq
?
m. (5.6.7)

We can therefore bound I2 as follows:

I2 ď
τ

n

L`1
ÿ

l“1

Eξ

›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fW p0qpxiq

›

›

›

›

›

F

ď
τ

n

L`1
ÿ

l“1

g

f

f

eE

›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fW p0qpxiq

›

›

›

›

›

2

F

“
τ

n

L`1
ÿ

l“1

d

n
ÿ

i“1

}∇Wl
fW p0qpxiq}

2
F

ď C
τ

n

˜

?
nm`

L
ÿ

l“2

?
nmθ2 `

?
nm

¸

ď C

c

m

n
τ.

The first line above follows since trpAJBq ď }A}F }B}F and W P WpW p0q, τq. The second

comes from Jensen inequality, with the third since ξ2
i “ 1. The fourth line comes from

(5.6.7), with the final inequality by the scale of θ. This completes the proof.

5.6.3 Proof of Corollary 5.3.7

We need only specify conditions on τ, η,Kη, and m such that the results of Theorems 5.3.5

and 5.3.6 will hold, and such that each of the four terms in (5.3.1) are of the same scale

147

ε. To get the two theorems to hold, we need τ ď νγ12 plogmq´
3
2 , η ď ν 1pγ4m´1 ^ τm´ 1

2 q,

Kη ď ν2τ 2γ4 plogpn{δqq´
1
2 , and

m ě C

ˆ

γ´2d log
1

γ
_ γ´2 log

L

δ
_ d log

L

δ
_ τ´

4
3d log

L

τδ
_ τ´

2
3 plogmq´1 log

L

δ
_ log

n

δ

˙

.

We now find the appropriate scaling by first setting the upper bound for the surrogate loss

given in Theorem 5.3.5 to ε and then ensuring τ is such that the inequality required for Kη

is satisfied:

C3 pKηmq
´ 1

2 plogpn{δqq
1
4 ¨ γ´2

“ ε, Kη “ ν2γ4τ 2
plogpn{δqq´

1
2 .

Substituting the values for Kη above, we get C4m
´ 1

2γ´2τ´1
a

logpn{δq “ ε, so that

τ “ C6γ
´4ε´1m´ 1

2

a

logpn{δq. (5.6.8)

Let pm be such that νγ12 plogmq´
3
2 “ τ , so that mplogmq´3 “ Cν´2γ´32 plogpn{δqq ε´2. It is

clear that such a pm can be written pm “ Ω̃ppolypγ´1qq ¨ ε´2. Finally we set

m˚
“ max

ˆ

pm, d log
mL

δ
, τ´

4
3 log

m

τδ

˙

.

By (5.6.8) we can write τ´
4
3 logpm{pτδqq “ γ

16
3 plogpn{δqq´

2
3 ε

4
3m

2
3 log

´

m3{2γ4εplogpn{δqq´
1
2 {δ

¯

.

Thus we can take

m˚
“ Ω̃ppolypγ´1

qq ¨maxpd, ε´2
q ¨ log

1

δ
.

Using (5.6.8) we see that K “ Cγ´4 plogpn{δqq
1
2 ε´2 and η ď ν 1γ4m´1 gives the desired

forms of K and η as well as the first term of (5.3.1). For the second term of (5.3.1), we

again use (5.6.8) to get τ
4
3

?
m logm ď Cγ´

16
3 plogpn{δqq

2
3 ε´

4
3m´ 1

6 “ Rε´
4
3m´ 1

6 where R “

Õppolypγ´1qq. Since ε´
4
3m´ 1

6 ď ε iff m ě ε´14, this takes care of the second term in (5.3.1).

For the third term, we again use (5.6.8) to write τ
a

m{n “ Cγ´4
a

logpn{δqn´
1
2 ε´1 ď ε,

which happens if
a

n{ logpn{δq ě Cε´2γ´4, i.e., n “ Õppolypγ´1qqε´4. For the final term

of (5.3.1), it’s clear that
a

logp1{δq{n ď ε is satisfied when n ě Cε´2 logp1{δq, which is less

stringent than the Õppolypγ´1qqε´4 requirement.

148

5.7 Proofs of Key Lemmas

In this section we provide proofs to the key lemmas discussed in Section 5.4. We shall first

provide the technical lemmas needed for their proof, and leave the proofs of the technical

lemmas for Appendix 5.8. Throughout this section, we assume that θ “ 1{ΩpLq.

5.7.1 Proof of Lemma 5.4.1: hidden and interlayer activations are bounded

We first recall a standard result from random matrix theory; see, e.g. [Ver10], Corollary

5.35.

Lemma 5.7.1. Suppose W1, . . . ,WL`1 are generated by Gaussian initialization. Then there

exist constants C,C 1 ą 0 such that for any δ ą 0, if m ě d_C logpL{δq, then with probability

at least 1´ δ, }Wl}2 ď C 1 for all l P rL` 1s.

The next lemma bounds the spectral norm of the maps that the residual layers define.

This is a key result that allows for the simplification of many of the arguments that are

needed in non-residual architectures. Its proof is in Appendix 5.8.1.

Lemma 5.7.2. Suppose W1, . . . ,WL are generated by Gaussian initialization. Then for any

δ ą 0, there exist constants C0, C
1
0, C such that if m ě C0 log pL{δq, then with probability

at least 1 ´ δ, for any L ě b ě a ě 2, and for any tuple of diagonal matrices Σ̃a, . . . , Σ̃b

satisfying
›

›

›
Σ̃i

›

›

›

2
ď 1 for each i “ a, . . . , b, we have

›

›

›
pI ` θΣ̃bW

J
b qpI ` θΣ̃b´1W

J
b´1q ¨ . . . ¨ pI ` θΣ̃aW

J
a q

›

›

›

2
ď exp pC 10θLq ď 1.01. (5.7.1)

In particular, if we consider Σ̃i “ Σipxq for any x P Sd´1, we have with probability at least

1´ δ, for all 2 ď a ď b ď L and for all x P Sd´1,

›

›pI ` θΣbpxqW
J
b qpI ` θΣb´1pxqW

J
b´1q ¨ . . . ¨ pI ` θΣapxqW

J
a q

›

›

2
ď exp pC 10θLq ď 1.01.

The next lemma we show concerns a Lipschitz property of the map x ÞÑ xl. Compared

with the fully connected case, our Lipschitz constant does not involve any terms growing

149

with L, which allows for the width dependence of our result to be only logarithmic in L. Its

proof is in Appendix 5.8.2.

Lemma 5.7.3. Suppose W1, . . . ,WL are generated by Gaussian initialization. There are

constants C,C 1 ą 0 such that for any δ ą 0, if m ě Cd logpmL{δq, then with probability at

least 1´ δ, }xl ´ x
1
l}2 ď C 1 }x´ x1}2 for all x, x1 P Sd´1 and l P rL` 1s.

With the above technical lemmas in place, we can proceed with the proof of Lemma

5.4.1.

Proof of Lemma 5.4.1. We first show that a bound of the form C ď }pxl}2 ď C holds for all px

in an ε-net of Sd´1 and then use the Lipschitz property from Lemma 5.7.3 to lift this result

to all of Sd´1.

Let N ˚ be a τ0-net of Sd´1. By applying Lemma A.6 of [CG20] to the first layer of our

network, there exists a constant C1 such that with probability at least 1´ δ{3, we can take

m “ Ω pd log pm{pτ0δqqq large enough so that

}px1}2 ď 1` C1

c

d log pm{pτ0δqq

m
ď 1.004.

If 2 ď l ď L, by an application of Lemma 5.7.2, by taking m larger we have with

probability at least 1´ δ{3, for all 2 ď l ď L, px P N ˚,

}pxl}2 “
›

›pI ` θΣlppxqW
J
l q ¨ ¨ ¨ pI ` θΣ2ppxqW

J
2 qΣ1ppxqW

J
1 px

›

›

2

ď
›

›pI ` θΣlppxqW
J
l q ¨ ¨ ¨ pI ` θΣ2ppxqW

J
2 q

›

›

2
}px1}2

ď 1.01 ¨

˜

1` C1

c

d log pm{pτ0δqq

m

¸

ď 1.015.

For the last fully connected layer, we can use a proof similar to that of Lemma A.6 in [CG20]

using the above upper bound on }pxL}2 to get that with probability at least 1 ´ δ, for any

l P rL` 1s and px P N ˚,

}pxl}2 ď 1.02. (5.7.2)

150

For any x P Sd´1, there exists px P N ˚ such that }x´ px}2 ď τ0. By Lemma 5.7.3, this means

that with probability at least 1´ δ{2, }xl ´ pxl}2 ď C1τ0 for some C1 ą 0, and this holds over

all px P N ˚. Let τ0 “ 1{m, so that d log pmL{pτ0δqq ď 2d logpmL{δq. Then (5.7.2) yields that

with probability at least 1´ δ, for all x P Sd´1 and all l P rL` 1s,

}xl}2 ď }pxl}2 ` }xl ´ pxl}2 ď 1.02` C1{m ď 1.024.

As for the lower bound, we again let N ˚ be an arbitrary τ0-net of Sd´1. For l “ 1, we use

Lemma A.6 in [CG20] to get constants C,C 1 such that provided m ě Cd log pm{pτ0δqq, then

we have with probability at least 1´ δ{3, for all px P N ˚,

}pxl}2 ě 1´ C 1
a

dm´1 log p3m{pτ0δqq pl “ 1, 2, . . . , Lq. (5.7.3)

To see that the above holds for layers 2 ď l ď L, we note that it deterministically holds that

pxl,j ě px1,j for such l and all j. For the final layer, we follow a proof similar to Lemma A.6

of [CG20] with an application of (5.7.2) to get that with probability at least 1´ δ{3,

}pxL`1}
2
2 ě }pxL}

2
2 ´ C3

a

dm´1 log p3{pτ0δqq.

Thus m “ Ωpd logpm{pτ0δqq implies there is a constant C4 such that with probability at least

1´ δ, for all l P rL` 1s and px P N ˚,

}pxl}2 ě C4 ą 0. (5.7.4)

By Lemma 5.7.3, we have with probability at least 1´ δ, for all x P Sd´1,

}xl}2 ě }pxl}2 ´ }xl ´ pxl}2 ě C4 ´ C1τ0.

Thus by taking τ0 to be a sufficiently small universal constant, we get the desired lower

bound.

We now demonstrate the upper bound for
›

›H l1

l

›

›

2
. Since H l1

l “ xl1 when l “ 1, we need

only consider the case l ą 1. If l1 ď L, then H l1

l appears in the bound for Lemma 5.7.2 and

151

so we are done. For l1 “ L` 1, by Lemmas 5.7.1 and 5.7.2 we have

›

›HL`1
l

›

›

2
“

›

›

›

›

›

ΣL`1pxqW
J
L`1

L
ź

r“l

`

I ` θΣrpxqW
J
r

˘

›

›

›

›

›

2

ď }ΣL`1pxq}2 }WL`1}2

›

›

›

›

›

L
ź

r“l

`

I ` θΣrpxqW
J
r

˘

›

›

›

›

›

2

ď C.

5.7.2 Proof of Lemma 5.4.2: semismoothness

To prove the semismoothness result, we need two technical lemmas. The first lemma concerns

a Lipschitz-type property with respect to the weights, along with a characterization of the

changing sparsity patterns of the rectifier activations at each layer. The second lemma

characterizes how the neural network output behaves if we know that one of the initial

layers has a given sparsity pattern. This allows us to develop the desired semi-smoothness

even though ReLU is non-differentiable. The proof for Lemmas 5.7.4 and 5.7.5 can be found

in Appendix 5.8.3 and 5.8.4, respectively.

Lemma 5.7.4. Let W “ pW1, . . . ,WL`1q be generated by Gaussian initialization, and let

xW “ pxW1, . . . ,xWL`1q, W̃ “ pW̃1, . . . , W̃L`1q be weight matrices such that xW, W̃ PWpW, τq.

For x P Sd´1, let Σlpxq, pΣlpxq, Σ̃lpxq and xl, pxl, x̃l be the binary matrices and hidden layer

outputs of the l-th layers with parameters W,xW, W̃ respectively. There exist absolute con-

stants C1, C2, C3 such that for any δ ą 0, if m ě C1τ
´ 4

3 ¨ d logpm{pτδqq _ C1d logpmL{δq,

then with probability at least 1´ δ, for any x P Sd´1 and any l P rL` 1s, we have

}pxl ´ x̃l}2 ď

$

’

’

’

’

’

&

’

’

’

’

’

%

C2

›

›

›

xW1 ´ W̃1

›

›

›

2
, l “ 1,

C2

›

›

›

xW1 ´ W̃1

›

›

›

2
` θC2

řl
r“2

›

›

›

xWr ´ W̃r

›

›

›

2
, 2 ď l ď L,

C2

›

›

›

xW1 ´ W̃1

›

›

›

2
` θC2

řL
r“2

›

›

›

xWr ´ W̃r

›

›

›

2
` C2

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
, l “ L` 1.

and
›

›

›

pΣlpxq ´ Σ̃lpxq
›

›

›

0
ď C3mτ

2
3 .

152

Lemma 5.7.5. Let W1, . . . ,WL`1 be generated by Gaussian initialization. Let W̃l be such

that
›

›

›
Wl ´ W̃l

›

›

›

2
ď τ for all l, and let Σ̃lpxq be the diagonal activation matrices corresponding

to W̃l, and H̃ l1

l pxq the corresponding interlayer activations defined in (5.2.1). Suppose that
›

›

›
Σ̃lpxq ´ Σlpxq

›

›

›

0
ď s for all x P Sd´1 and all l. Define, for l ě 2 and a P Rml´1 ,

glpa, xq :“ vJH̃L`1
l pxqa.

Then there exists a constant C ą 0 such that for any δ ą 0, providedm ě Cτ´
2
3 plogmq´1 logpL{δq,

we have with probability at least 1´ δ and all 2 ď l ď L` 1,

sup
}x}2“}a}2“1, }a}0ďs

|glpa, xq| ď C1

”

τ
?
m`

a

s logm
ı

.

In comparison with the fully connected case of [CG20], our bounds in Lemmas 5.7.4 and

5.7.5 do not involve polynomial terms in L, and the residual scaling θ further scales the

dependence of the hidden layer activations on the intermediate layers.

With the above two technical lemmas, we can proceed with the proof of Lemma 5.4.2.

Proof of semismoothness, Lemma 5.4.2. Recalling the notation of interlayer activations H l1

l

from (5.2.1), we have for any l P rL`1s f
xW pxq “ vJ pHL`1

l`1 pxl, where we have denoted H l1

l pxq “

H l1

l for notational simplicity. Similarly, in what follows we denote Σpxq by Σ with the

understanding that each diagonal matrix Σ still depends on x. We have the decomposition

pHL`1
2

pΣ1
xW1x “

´

pHL`1
2 ´ H̃L`1

2

¯

pΣ1
xWJ

1 x` H̃
L`1
2

pΣ1
xWJ

1 x,

and for 2 ď l ď L,

pHL`1
l ´ H̃L`1

l “

´

pHL`1
l`1 ´ H̃

L`1
l`1

¯´

I ` θpΣl
xWJ
l

¯

` θH̃L`1
l`1

´

pΣl
xWJ
l ´ Σ̃lW̃

J
l

¯

.

153

Thus we can write

pHL`1
1 pxq ´ H̃L`1

1 pxq “
´

pHL`1
2 ´ H̃L`1

2

¯

pΣ1
xWJ

1 x` H̃
L`1
2

´

pΣ1
xWJ

1 ´ Σ̃1W̃
J
1

¯

x

“

´

pΣL`1
xWJ
L`1 ´ Σ̃L`1W̃

J
L`1

¯

pxL

` θ
L
ÿ

l“2

H̃L`1
l`1

´

pΣl
xWJ
l ´ Σ̃lW̃

J
l

¯

pxl´1 ` H̃
L`1
2

´

pΣ1
xW1 ´ Σ̃1W̃1

¯

x.

We thus want to bound the quantity

f
xW pxq ´ fW̃ pxq “ vJ

´

pΣL`1
xWJ
L`1 ´ Σ̃L`1W̃

J
L`1

¯

pxL pT1q

` θvJ

«

L
ÿ

l“2

H̃L`1
l`1

´

pΣl
xWJ
l ´ Σ̃lW̃

J
l

¯

pxl´1

ff

pT2q

` vJ
”

H̃L`1
2

´

pΣ1
xW1 ´ Σ̃1W̃1

¯

x
ı

. pT3q (5.7.5)

We deal with the three terms separately. The idea in each is the same.

First term, T1. We write this as the sum of three terms vJpI1 ` I2 ` I3q, where
´

pΣL`1
xWJ
L`1 ´ Σ̃L`1W̃

J
L`1

¯

pxL

“

´

pΣL`1 ´ Σ̃L`1

¯

xWJ
L`1pxL

loooooooooooooomoooooooooooooon

I1

` Σ̃L`1

´

xWJ
L`1 ´ W̃

J
L`1

¯

ppxL ´ x̃Lq
loooooooooooooooooooomoooooooooooooooooooon

I2

` Σ̃L`1

´

xWJ
L`1 ´ W̃

J
L`1

¯

x̃L
looooooooooooooomooooooooooooooon

I3

.

(5.7.6)

By directly checking the signs of the diagonal matrices, we can see that for any l “ 1, . . . , L`

1,
›

›

›

´

pΣl ´ Σ̃l

¯

xWJ
l pxl´1

›

›

›

2
ď C1

›

›

›

xWl ´ W̃l

›

›

›

2
` C1 }pxl´1 ´ x̃l´1}2 . (5.7.7)

We will use Lemma 5.7.4 to get specific bounds for each l. Denote |Σ| as the entrywise

absolute values of a diagonal matrix Σ, so that |Σ|Σ “ Σ provided the diagonal entries are

all in t0,˘1u. Then we can write

|vJI1| “

›

›

›
vJ

ˇ

ˇ

ˇ

pΣL`1 ´ Σ̃L`1

ˇ

ˇ

ˇ

´

pΣL`1 ´ Σ̃L`1

¯

xWJ
L`1pxL

›

›

›

2

ď C3τ
1
3
?
m
›

›

›

´

pΣL`1 ´ Σ̃L`1

¯

xWJ
L`1pxL

›

›

›

2

ď C3τ
1
3

?
m ¨

´

C1

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
` C1 }pxL ´ x̃L}2

¯

(5.7.8)

154

The first inequality follows by first noting that for any vector a with |ai| ď 1 it holds that
›

›vJa
›

›

2
ď }a}

1
2
0 , and then applying Lemma 5.7.4 to get

›

›

›

pΣL`1 ´ Σ̃L`1

›

›

›

0
ď s “ O

´

mτ
2
3

¯

.

The last line is by (5.7.7).

The I2 term in (5.7.6) follows from a simple application of Cauchy–Schwarz:

|vJI2| ď
?
m ¨ C ¨

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
}pxL ´ x̃L}2 . (5.7.9)

Putting together (5.7.8) and (5.7.9) shows that we can bound T1 in (5.7.5) by

T1 ď C3τ
1
3
?
m ¨

´

C1

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
` C1 }pxL ´ x̃L}2

¯

`
?
m ¨ C ¨

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
}pxL ´ x̃L}2

` vJΣ̃L`1

´

xWL`1 ´ W̃L`1

¯J

x̃L

ď C3τ
1
3

?
m

˜

C1

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
` C 11

«

›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

L
ÿ

r“2

›

›

›

xWr ´ W̃r

›

›

›

2

ff¸

` C
?
m
›

›

›

xWL`1 ´ W̃L`1

›

›

›

2

˜

›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

L
ÿ

r“2

›

›

›
W̃r ´xWr

›

›

›

2

¸

` vJΣ̃L`1

´

xWL`1 ´ W̃L`1

¯J

x̃L. (5.7.10)

Second term, T2. We again use a decomposition like (5.7.6):

H̃L`1
l`1

´

pΣl
xWJ
l ´ Σ̃lW̃

J
l

¯

pxl´1

“ H̃L`1
l`1

´

pΣl ´ Σ̃l

¯

xWJ
l pxl´1

loooooooooooooomoooooooooooooon

I1

` H̃L`1
l`1 Σ̃l

´

xWJ
l ´ W̃

J
l

¯

ppxl´1 ´ x̃l´1q
loooooooooooooooooooooomoooooooooooooooooooooon

I2

` H̃L`1
l`1 Σ̃l

´

xWJ
l ´ W̃

J
l

¯

x̃l´1
looooooooooooooomooooooooooooooon

I3

.

(5.7.11)

For I1, we note that Lemma 5.7.4 gives sparsity level s “ Opmτ
2
3 q for pΣl ´ Σ̃l. We thus

proceed similarly as for the term T1 to get

|vJI1| ď

›

›

›
vJΣ̃L`1W̃

J
L`1H̃

L
l`1

ˇ

ˇ

ˇ

pΣl ´ Σ̃l

ˇ

ˇ

ˇ

´

pΣl ´ Σ̃l

¯

xWJ
l pxl´1

›

›

›

2

ď Cτ
1
3

a

m logm ¨
´

C1

›

›

›

xWl ´ W̃l

›

›

›

2
` C2 }pxl´1 ´ x̃l´1}2

¯

.

155

The above follows since s logm ě C logpL{δq holds for s “ mτ
2
3 , and we can hence apply

Lemma 5.7.5 and (5.7.7). The bound for the I2 term again follows by Cauchy–Schwarz,

|vJI2| ď
?
m ¨ C ¨

›

›

›

xWl ´ W̃l

›

›

›

2
}pxl´1 ´ x̃l´1}2 .

Thus, for the term T2 in (5.7.5) we have

T2 ď θ
L
ÿ

l“2

´

C6τ
1
3

a

m logm
›

›

›

xWl ´ W̃l

›

›

›

2
` Cτ

1
3

a

m logm
›

›

›

xW1 ´ W̃1

›

›

›

2

¯

` θ2
L
ÿ

l“2

˜

τ
1
3

a

m logm
l
ÿ

r“2

›

›

›
W̃r ´xWr

›

›

›

2

¸

` θ
L
ÿ

r“2

?
mC

›

›

›

xWl ´ W̃l

›

›

›

2

˜

›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

2
ÿ

r“l

›

›

›

xWr ´ W̃r

›

›

›

2

¸

` θ
L
ÿ

l“2

vJH̃L`1
l`1 Σ̃l

´

xWJ
l ´ W̃

J
l

¯

x̃l´1. (5.7.12)

Third term, T3. For T3, we work on the quantity

H̃L`1
2

´

pΣ1
xWJ

1 ´ Σ̃1W̃
J
1

¯

x “ H̃L`1
2

´

pΣ1 ´ Σ̃1

¯

xWJ
1 x` H̃

L`1
2 Σ̃1

´

xW1 ´ W̃1

¯

x.

Thus, we again have by Lemma 5.7.5,

T3 ď

›

›

›
vJH̃L`1

2

ˇ

ˇ

ˇ

pΣ1 ´ Σ̃1

ˇ

ˇ

ˇ

›

›

›

2

›

›

›

´

pΣ1 ´ Σ̃1

¯

xW1x
›

›

›

2
` vJH̃L`1

2 Σ̃1

´

xW1 ´ W̃1

¯

x

ď τ
1
3

a

m logm
›

›

›

xW1 ´ W̃1

›

›

›

2
` vJH̃L`1

2 Σ̃1

´

xW1 ´ W̃1

¯

x. (5.7.13)

Using the linearity of the trace operator and that trpABCq “ trpCABq “ trpBCAq for

any matrices A,B,C for which those products are defined, we can use the gradient formula

(5.2.2) to calculate for any l P rL` 1s,

θ1p2ďlďLqvJH̃L`1
l Σ̃l

´

xWl ´ W̃l

¯J

x̃l´1 “ tr

„

´

xWl ´ W̃l

¯J

∇Wl
fW̃ pxq

. (5.7.14)

Let now

hpxW, W̃ q :“
›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

L
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2
`

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
.

156

Substituting the bounds from (5.7.10), (5.7.12), (5.7.13) and (5.7.14) thus yield for some

constant C,

f
xW pxq ´ fW̃ pxq ď Cτ

1
3

a

m logm

«

›

›

›

xW1 ´ W̃1

›

›

›

2
` θC

L
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2
` C

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2

ff

` Cτ
1
3

a

m logm

«

›

›

›

xW1 ´ W̃1

›

›

›

2
` C

›

›

›

xW1 ´ W̃1

›

›

›

2
` θC

l
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2

ff

` C
?
m

«

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
¨

›

›

›

xW1 ´ W̃L`1

›

›

›

2
` θ

›

›

›

xWL`1 ´ W̃L`1

›

›

›

2

L
ÿ

r“2

›

›

›

xWr ´ W̃r

›

›

›

2

` θ
L
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2

›

›

›

xW1 ´ W̃1

›

›

›

2
` θ

L
ÿ

l“2

›

›

›

xWl ´ W̃l

›

›

›

2
¨

˜

θ
l
ÿ

r“2

›

›

›

xWr ´ W̃r

›

›

›

2

¸ff

`

L`1
ÿ

l“1

tr
”´

xWl ´ W̃l

¯

∇Wl
fW̃ pxq

ı

ď Cτ
1
3

a

m logm ¨ hpxW, W̃ q ` C
?
m ¨ hpxW, W̃ q2 `

L`1
ÿ

l“1

tr
”´

xWl ´ W̃l

¯

∇Wl
fW̃ pxq

ı

(5.7.15)

This completes the proof of semi-smoothness of fW . For LS, denote pyi, ỹi as the outputs

of the network for input xi under weights xW, W̃ respectively. Since `2pzq ď 0.5 for all z P R,

if we denote ∆i “ pyi ´ ỹi “ f
xW pxiq ´ fW̃ pxiq, we have

LSpxW q ´ LSpW̃ q ď
1

n

n
ÿ

i“1

„

`1pyiỹiq ¨ yi ¨∆i `
1

4
∆2
i

.

Applying (5.7.15) and using that ´n´1
řn
i“1 `

1pziq ď 1 for any zi P R,

1

n

n
ÿ

i“1

`1pyiỹiqyi ¨∆i ď Cτ
1
3

a

m logm ¨ hpxW, W̃ q ¨ ESpW̃ q ` C
?
m ¨ hpxW, W̃ q2 ¨ ESpW̃ q

`

L`1
ÿ

l“1

1

n

n
ÿ

i“1

`1pyiỹiq ¨ yi ¨ tr
”´

xWl ´ W̃l

¯

∇Wl
fW̃ pxiq

ı

.

Linearity of the trace operator allows the last term in the above display to be written as

L`1
ÿ

l“1

tr
”´

xWl ´ W̃l

¯

∇Wl
LSpW̃ q

ı

.

Moreover, using Lemma 5.7.4,

∆2
i “

“

vJppxL`1,i ´ x̃L`1,iq
‰2
ď }v}22 }pxL`1,i ´ x̃L`1,i}

2
2 ď C2 ¨m ¨ hpxW, W̃ q2.

157

This term dominates the corresponding h2 term coming from ∆i and so completes the proof.

5.7.3 Proof of Lemma 5.4.3: gradient lower bound

This is the part of the proof that makes use of the assumption on the data distribution

given in Assumption 5.3.2, and is key to the mild overparameterization required for our

generalization result. The key technical lemma needed for the proof of the gradient lower

bound is given below. The proof of Lemma 5.7.6 can be found in Appendix 5.8.5.

Lemma 5.7.6. Let apx, yq : Sd´1 ˆ t˘1u Ñ r0, 1s. For any δ ą 0, there is a constant

C ą 0 such that if m ě Cγ´2 pd logp1{γq ` logpL{δqq and m ě C logpn{δq then for any such

function a, we have with probability at least 1´ δ,

mL`1
ÿ

j“1

›

›

›

›

›

1

n

n
ÿ

i“1

“

apxi, yiq ¨ yi ¨ σ
1
`

wJL`1,jxL,i
˘

¨ xL,i
‰

›

›

›

›

›

2

2

ě
1

67
mL`1γ

2

˜

1

n

n
ÿ

i“1

apxi, yiq

¸2

.

Proof of Lemma 5.4.3. Let ỹi :“ fW̃ pxiq, and define gj :“ 1
n

řn
i“1

“

`1pyiỹiq ¨ vj ¨ yi ¨ σ
1pwJL`1,jxL,iq ¨ xL,i

‰

so that
mL`1
ÿ

j“1

}gj}
2
2 “

mL`1
ÿ

j“1

›

›

›

›

›

1

n

n
ÿ

i“1

“

`1pyiỹiq ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ xL,i

‰

›

›

›

›

›

2

2

.

Recall that ESpW̃ q “ ´n´1
řn
i“1 `

1pyiỹiq. Applying Lemma 5.7.6 gives

mL`1
ÿ

j“1

}gj}
2
2 ě

1

67
mL`1γ

2
rESpW̃ qs2. (5.7.16)

By Lemma 5.4.1, for any j P rmL`1s, we have

}gj}2 ď
1

n

n
ÿ

i“1

›

›`1pyiỹiq ¨ vj ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ xL,i

›

›

2
ď 1.02ESpW̃ q. (5.7.17)

Define

A :“
!

j P rmL`1s : }gj}
2
2 ě

1

2 ¨ 67
γ2

´

ESpW̃ qq
¯2)

.

158

We can get the following lower bound on |A|:

|A|ESpW̃ q2 ě
1

1.022

ÿ

jPA

}gj}
2
2

ě
1

1.05

ˆ

1

67
mL`1γ

2
rESpW̃ qs2 ´

1

2 ¨ 67
|Ac|γ2

rESpW̃ qs2
˙

ě
1

1.05 ¨ 2 ¨ 67
mL`1γ

2
rESpW̃ qs2.

The first line follows by (5.7.17), and the second by writing the sum over rmL`1s as a sum over

A and Ac and then (5.7.16) and the definition of A. The last line holds since |Ac| ď mL`1,

and all of the above allows for the bound

|A| ě
1

141
mL`1γ

2. (5.7.18)

Let now A1 “ tj P rmL`1s : σ1pw̃JL`1,jx̃L,iq ‰ σ1pwJL`1,jxL,iqu. By Lemma 5.7.4, we have

|A1| “
›

›

›
Σ̃L`1pxq ´ ΣL`1pxq

›

›

›

0
ď C1τ

2
3mL`1. (5.7.19)

Since τ ď νγ3, we can make ν small enough so that C1τ
2
3 ă γ2 ¨ p1{141´ 1{150q. Thus

(5.7.18) and (5.7.19) imply

|AzA1| ě |A| ´ |A1| ě
1

141
mL`1γ

2
´ C1τ

2
3mL`1 ě

1

150
mL`1γ

2. (5.7.20)

By definition, ∇WL`1,j
LSpW̃ q “

1
n

řn
i“1 `

1pyiỹiq¨vj ¨yi¨σ
1pw̃JL`1,jx̃L,iq¨x̃L,i. For indices j P AzA1,

we can therefore write

}gj}2 ´
›

›

›
∇WL`1,j

LSpW̃ q
›

›

›

2
ď

›

›

›

›

›

1

n

n
ÿ

i“1

`1pyiỹiq ¨ vj ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ pxL,i ´ x̃L,iq

›

›

›

›

›

2

ď
1

n

n
ÿ

i“1

›

›`1pyiỹiq ¨ vj ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ pxL,i ´ x̃L,iq

›

›

2

ď C3τESpW̃ q. (5.7.21)

The first inequality follows by the triangle inequality and since indices j P AzA1 satisfy

σ1pw̃JL`1,jx̃L,iq “ σpwJL`1,jxL,iq. The second inequality is an application of Jensen inequality.

159

The last inequality follows by Lemma 5.7.4 and since vj, yi P t˘1u. Now take ν small enough

so that C3τ ă
`

p2 ¨ 67q´1{2 ´ 1{16
˘

. Then we can use (5.7.21) together with the definition

of A to get for any index j P AzA1,

›

›

›
∇WL`1,j

LSpW̃ q
›

›

›

2
ě

1
?

2 ¨ 67
γESpW̃ q ´ C3τESpW̃ q ě

1

16
γESpW̃ q. (5.7.22)

Thus we can derive the lower bound for the gradient of the loss at the last layer:

›

›

›
∇WL`1

LSpW̃ q
›

›

›

2

F
“

mL`1
ÿ

j“1

›

›

›
∇WL`1,j

LSpW̃ q
›

›

›

2

F

ě
ÿ

jPAzA1

›

›

›
∇WL`1,j

LSpW̃ q
›

›

›

2

2

ě
1

162
|AzA1|γ2

rESpW̃ qs2

ě
1

150 ¨ 162
γ4mL`1rESpW̃ qs2.

The first line is by definition, and the second is since the spectral norm is at most the

Frobenius norm. The third line uses (5.7.22), and the final inequality comes from (5.7.20).

5.7.4 Proof of Lemma 5.4.4: gradient upper bound

Proof. Using the gradient formula (5.2.2) and the H l1

l notation from (5.2.1), we can write

∇Wl
LSpW̃ q “ θ1p2ďlďLq

1

n

n
ÿ

i“1

`1pyiỹiq ¨ yi ¨ x̃l´1,iv
JH̃L`1

l`1 Σ̃lpxiq, p1 ď l ď L` 1q. (5.7.23)

Since τ ď 1, there is a constant C such that w.h.p.
›

›

›
W̃l

›

›

›

2
ď C for all l. Thus, it is easy to

see that an analogous version of Lemma 5.7.2 can be applied with Lemma 5.7.4 to get that

with probability at least 1´ δ, for all i P rns and for all l,

}x̃l´1,i}2 ď C1 and
›

›

›
H̃L`1
l`1

›

›

›

2
ď C2. (5.7.24)

160

Therefore, we can bound

›

›

›
∇Wl

LSpW̃ q
›

›

›

F
ď

1

n

n
ÿ

i“1

›

›

›
`1pyiỹiq ¨ yi ¨ x̃l´1,iv

JH̃L`1
l`1 Σ̃l`1pxiq

›

›

›

F

“
1

n

n
ÿ

i“1

}`1pyiỹiq ¨ yi ¨ x̃l´1,i}2

›

›

›
vJH̃L`1

l`1 Σ̃l`1pxiq
›

›

›

2

ď C3

?
mESpW̃ q.

The first line follows by the triangle inequality, and the second since for vectors a, b, we have
›

›abJ
›

›

F
“ }a}2 }b}2. The last line is by Cauchy–Schwarz, (5.7.24), and the definition of ES,

finishing the case l “ 1. By substituting the definition of the gradient of the loss using the

formula (5.7.23) we may similarly demonstrate the corresponding bounds for l ě 2 with an

application of Cauchy–Schwartz.

5.8 Proofs of Technical Lemmas

In this section we go over the proofs of the technical lemmas that were introduced in Ap-

pendix 5.7. In the course of proving these technical lemmas, we will need to introduce a

handful of auxiliary lemmas, whose proofs we leave for Appendix 5.9. Throughout this

section, we continue to assume that θ “ 1{ΩpLq.

5.8.1 Proof of Lemma 5.7.2: intermediate layers are bounded

By Lemma 5.7.1, there is a constant C1 such that with probability at least 1´ δ, }Wl}2 ď C1

for all l “ a, . . . , b. Therefore for each r ě 2, we have

›

›

›
I ` θΣ̃rWr

›

›

›

2
ď }I}2 ` θ

›

›

›
Σ̃r

›

›

›

2
}Wr}2 ď 1` θC1.

161

The submultiplicative property of the spectral norm gives

›

›

›
pI ` θΣ̃bW

J
b qpI ` θΣ̃b´1W

J
b´1q ¨ . . . ¨ pI ` θΣ̃aW

J
a q

›

›

›

2

ď

b
ź

r“a

›

›

›
I ` θΣ̃rW

J
r

›

›

›

2

ď p1` θC1q
L

ď exp pC1θLq .

The result follows by the choice of scale θ “ 1{ΩpLq and taking θ small.

5.8.2 Proof of Lemma 5.7.3: Lipschitz property with respect to input space at

each layer

Before beginning with the proof, we introduce the following claim that will allow us to develop

a Lipschitz property with respect to the weights. This was used in [CG20] and [ALS19].

Claim 5.8.1. For arbitrary u, y P Rml , let Dpuq be the diagonal matrix with diagonal

entries rDpuqsj,j “ 1puj ě 0q. Then there exists another diagonal matrix qDpuq such that
›

›

›
Dpuq ` qDpuq

›

›

›

2
_

›

›

›

qDpuq
›

›

›

2
ď 1 and σpuq ´ σpyq “

`

Dpuq ` qDpuq
˘

pu´ yq.

Proof of Claim 5.8.1. Simply define

r qDpuqsj,j “

$

’

&

’

%

rDpuq ´Dpyqs
yj

uj´yj
uj ‰ yj,

0 uj “ yj.

Proof of Lemma 5.7.3. We note that for any x, y, the matrix |Σlpxq ´ Σlpyq| is zero every-

where except possibly the diagonal where it is either zero or one. Therefore its spectral norm

is uniformly bounded by 1 for all x, y. Using this, Lemma 5.7.1 gives with probability at

162

least 1´ δ{3, for all x, x1 P Sd´1,

}x1 ´ x
1
1}2 “

›

›pΣ1px1q ´ Σ1px
1
1qqW

J
1 px´ x

1
q
›

›

2

ď }Σ1px1q ´ Σ1px
1
1q}2 }W1}2 }x´ x

1
}2

ď 1 ¨ C ¨ }x´ x1}2 .

For the case L ě l ě 2, we have residual links to analyze. Using Claim 5.8.1 we can write

σpWJ
l xl´1q ´ σpW

J
l pxl´1q “ pΣlpxq ` qΣlpxqqW

J
l pxl´1 ´ pxl´1q

for diagonal matrix qΣl satisfying
›

›

›

qΣlpxq
›

›

›

2
ď 1 and

›

›

›
Σlpxq ` qΣlpxq

›

›

›

2
ď 1. By Lemma 5.7.2,

we have with probability at least 1´ δ{3, for all 2 ď l ď L and all x, x1 P Sd´1,

}xl ´ x
1
l}2 ď

›

›

›
I ` θpΣlpxq ` qΣlpxqqW

J
l

›

›

›

2

›

›xl´1 ´ x
1
l´1

›

›

2

ď p1` θC0q
›

›xl´1 ´ x
1
l´1

›

›

2

ď

ˆ

1`
C0θL

L

˙L

¨ }x´ x1}2

ď C1 }x´ x
1
}2 ,

since θL is uniformly bounded from above.

The case l “ L` 1 follows as in the case l “ 1 by an application of Lemma 5.7.1, so that

with probability at least 1 ´ δ{3,
›

›x1L`1 ´ xL`1

›

›

2
ď C2 }x´ x

1}2. Putting the above three

claims together, we get a constant C3 such that with probability at least 1´ δ, }xl ´ x
1
l}2 ď

C3 }x´ x
1}2 for all x, x1 P Sd´1 and for all l P rL` 1s.

5.8.3 Proof of Lemma 5.7.4: local Lipschitz property with respect to weights

and sparsity bound

For this lemma, we need to introduce an auxiliary lemma that allows us to get control over

the sparsity levels of the ReLU activation patterns. Its proof can be found in Appendix

5.9.1.

163

Lemma 5.8.2. There are absolute constants C,C 1 such that for any δ ą 0, if

m ě C

ˆ

β´1

c

d log
1

βδ
_ d log

mL

δ

˙

,

then with probability at least 1´ δ, the sets

Slpx, βq “ tj P rmls : |wJl,jxl´1| ď βu, x P Sd´1, l P rL` 1s,

satisfy |Slpβq| ď C 1m
3
2
l β for all x P Sd´1 and l P rL` 1s.

Proof of Lemma 5.7.4. We begin with the Lipschitz property, and afterwards will show the

sparsity bound. Consider l “ 1. Since px1 “ σ
´

xWJ
1 x

¯

and x̃1 “ σ
´

W̃J
1 x

¯

, by Claim 5.8.1,

for every l there is a diagonal matrix qΣlpxq with
›

›

›

qΣlpxq
›

›

›

2
ď 1 and

›

›

›

pΣlpxq ` qΣlpxq
›

›

›

2
ď 1 such

that

}px1 ´ x̃1}2 “

›

›

›

´

pΣ1pxq ` qΣ1pxq
¯´

xWJ
1 x´ W̃

J
1 x

¯
›

›

›

2

ď

›

›

›

pΣ1pxq ` qΣ1pxq
›

›

›

2

›

›

›

xW1 ´ W̃1

›

›

›

2
}x}2

ď

›

›

›

xW1 ´ W̃1

›

›

›

2
. (5.8.1)

For l “ 2, . . . , L, we can write

pxl ´ x̃l “ pxl´1 ` θσ
´

xWJ
l pxl´1

¯

´ x̃l´1 ´ θσ
´

W̃J
l x̃l´1

¯

“

”

I ` θ
´

pΣlpxq ` qΣlpxq
¯

W̃J
l

ı

ppxl´1 ´ x̃l´1q ` θ
”

pΣlpxq ` qΣlpxq
ı ´

xWl ´ W̃l

¯J

pxl´1.

Therefore, we have

}pxl ´ x̃l}2 ď
›

›

›
I ` θppΣlpxq ` qΣlpxqqW̃

J
l

›

›

›

2
}pxl´1 ´ x̃l´1}2 ` θ

›

›

›

pΣlpxq ` qΣlpxq
›

›

›

2

›

›

›

xWl ´ W̃l

›

›

›

2
}pxl´1}2

ď p1` Cθq }pxl´1 ´ x̃l´1}2 ` θ
›

›

›

xWl ´ W̃l

›

›

›

2
}pxl´1}2 . (5.8.2)

We notice an easy induction will complete the proof. For the base case l “ 2, notice that

}px1}2 ď }x1}2 ` }px1 ´ x1}2 ď C ` τ ď C 1, so that (5.8.1) and (5.8.2) give

}px2 ´ x2}2 ď p1` Cθq
›

›

›

xW1 ´ W̃1

›

›

›

2
` C 1θ

›

›

›

xW2 ´ W̃2

›

›

›

2
ď C4

›

›

›

xW1 ´ W̃1

›

›

›

2
` C4θ

›

›

›

xW2 ´ W̃2

›

›

›

2
.

164

Suppose by induction that there exists a constant C such that }pxl´1 ´ xl´1}2 ď C5

›

›

›

xW1 ´ W̃1

›

›

›

2
`

C5θ
řl´1
r“1

›

›

›

xWr ´ W̃r

›

›

›

2
. Then as in the base case, }pxl´1}2 ď C 1, so that (5.8.2) gives for all

l “ 2, . . . , L,

}pxl ´ x̃l}2 ď p1` CθqC

«

C5

›

›

›

xW1 ´ W̃1

›

›

›

2
` C5θ

l´1
ÿ

r“1

›

›

›

xWr ´ W̃r

›

›

›

2

ff

` C 1θ
›

›

›

xWl ´ W̃l

›

›

›

2

ď C6

›

›

›

xW1 ´ W̃1

›

›

›

2
` C6θ

l
ÿ

r“1

›

›

›

xWr ´ W̃r

›

›

›

2
.

Finally, the case l “ L` 1 follows similarly to the case l ď L, as

}pxL`1 ´ x̃L`1}2 “

›

›

›

´

pΣL`1pxq ` qΣL`1pxq
¯´

xWJ
L`1pxL ´ W̃

J
L`1x̃L

¯
›

›

›

2

ď C
›

›

›

xWL`1 ´ W̃L`1

›

›

›

2
` C 1 }pxL ´ x̃L}2 .

The bound for the sparsity levels of Σ̃lpxq ´ pΣlpxq follows the same proof as Lemma B.5

in [CG20] with an application of our Lemma 5.8.2. Sketching this proof, we note that it

suffices to prove a bound for
›

›

›

pΣlpxq ´ Σlpxq
›

›

›

0
, use the same proof for

›

›

›
Σ̃lpxq ´ Σlpxq

›

›

›

0
and

then use triangle inequality to get the final result. We write

›

›

›

pΣlpxq ´ Σlpxq
›

›

›

0
“ s

p1q
l pβq ` s

p2q
l pβq,

where

s
p1q
l pβq “ |tj P Slpx, βq : p pwJl,jpxl´1q ¨ pw

J
l,jxl´1q ă 0u|,

s
p2q
l pβq “ |tj P S

c
l px, βq : p pwJl,jpxl´1q ¨ pw

J
l,jxl´1q ă 0u|,

which leads to
›

›

›

pΣlpxq ´ Σlpxq
›

›

›

0
ď Cm

3
2β ` C5τ

2β´2.

The choice of β “ m
´ 1

2
l τ

2
3 completes the proof.

165

5.8.4 Proof of Lemma 5.7.5: behavior of network output in WpW p0q, τq when

acting on sparse vectors

This technical lemma will require two auxiliary lemmas before we may begin the proof. Their

proofs are left for Appendix 5.9.2 and 5.9.3.

Lemma 5.8.3. Consider the function gl : Rml ˆ RmL`1 Ñ R defined by

glpa, bq :“ bJWJ
L`1ξla, .

where ξl P RmLˆml , and l ě 2. Suppose that with probability at least 1 ´ δ{2, }ξl}2 ď C

holds for all ξl, l “ 2, . . . , L. If s logm “ Ω pC logpL{δqq, then there is a constant C0 ą 0

such that probability at least 1´ δ, for all l,

sup
}a}2“}b}2“1, }a}0,}b}0ďs

|glpa, bq| ď C0

c

1

m
s logm.

Lemma 5.8.4. Consider the function gl : Rml Ñ R defined by

glpaq :“ vJΣL`1pxq
JWJ

L`1ξla,

where ξl P RmLˆml and l ě 2. Assume that with probability at least 1´ δ, }ξl}2 ď C0 for all

l. Then provided s logm “ Ω plogpL{δqq, we have with probability at least 1´ δ, for all l,

sup
}a}2“1, }a}0ďs

|glpaq| ď C1

a

s logm.

With these lemmas in place, we can prove Lemma 5.7.5.

Proof of Lemma 5.7.5. By definition, glpa, xq “ vJH̃L`1
l a. First: since

›

›

›
W̃l ´Wl

›

›

›

2
ď τ ,

there is an absolute constant C2 ą 0 such that with high probability,
›

›

›
W̃l

›

›

›

2
ď C2 for all l.

Therefore, we have with high probability for all x P Sd´1, all l, and all a considered,

›

›

›
H̃L
l

›

›

›

2
ď

«

L
ź

r“l

›

›

›
I ` θΣ̃rpxqW̃

J
r

›

›

›

2

ff

}a}2 ď p1` θ ¨ 1 ¨ C2q
L
¨ 1 ď C3, (5.8.3)

166

by our choice of θ. We proceed by bounding gl by a sum of four terms:

|glpa, xq| ď a ď
ˇ

ˇ

ˇ
vJ

´

Σ̃L`1pxq ´ ΣL`1pxq
¯

W̃J
L`1H̃

L
l a

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
vJΣL`1pxqW̃

J
L`1H̃

L
l a

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
vJ

´

Σ̃L`1pxq ´ ΣL`1pxq
¯´

W̃J
L`1 ´W

J
L`1

¯

H̃L
l a

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
vJ

´

Σ̃L`1pxq ´ ΣL`1pxq
¯

WJ
L`1H̃

L
l a

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
vJΣL`1pxq

´

W̃J
L`1 ´W

J
L`1

¯

H̃L
l a

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
vJΣL`1pxqW

J
L`1H̃

L
l a

ˇ

ˇ

ˇ
.

For the first term, we can write

ˇ

ˇ

ˇ
vJ

´

Σ̃L`1pxq ´ ΣL`1pxq
¯´

W̃J
L`1 ´W

J
L`1

¯

H̃L
l

ˇ

ˇ

ˇ

ď }v}2

›

›

›

´

Σ̃L`1pxq ´ ΣL`1pxq
¯´

W̃J
L`1 ´W

J
L`1

¯

HL
l a

›

›

›

2

ď C
?
m
›

›

›
Σ̃L`1pxq ´ ΣL`1pxq

›

›

›

2

›

›

›
W̃L`1 ´WL`1

›

›

›

2

›

›

›
H̃L
l a

›

›

›

2

ď C 1τ
?
m,

where we have used Cauchy–Schwarz in the first line, properties of the spectral norm in the

second, and (5.8.3) in the third. A similar calculation shows

ˇ

ˇ

ˇ
vJΣL`1

´

W̃J
l`1 ´W

J
L`1

¯

H̃L
l

ˇ

ˇ

ˇ
ď }v}2

›

›

›
ΣL`1

´

W̃J
L`1 ´W

J
L`1

¯

H̃L
l

›

›

›

2

ď Cτ
?
m.

For the second and fourth terms, we use Lemmas 5.8.3 and 5.8.4. LetqbJ “ vJ
´

Σ̃L`1pxq ´ ΣL`1pxq
¯

.

Then it is clear that
›

›

›

qb
›

›

›

0
ď s and

›

›

›

qb
›

›

›

2
ď
?
m (in fact,

›

›

›

qb
›

›

›

2
ď
?
s, but this doesn’t matter

since the fourth term dominates the second term). Thus applying Lemma 5.8.3 to b “ qb{
›

›

›

qb
›

›

›

2
,

|vJ
´

Σ̃L`1pxq ´ ΣL`1pxq
¯

WJ
L`1H̃

L
l a| ď C

?
m ¨

c

s

m
logm

ď C
a

s logm.

For the fourth term, we can directly apply Lemma 5.8.4 to get another term 9
?
s logm.

167

5.8.5 Proof of Lemma 5.7.6

This lemma is the key to the sublinear dependence on L for the required width for the

generalization result. Essential to its proof is the following proposition which states that

there is a linear separability condition at each layer due to Assumption 5.3.2 with only a

logarithmic dependence on the depth L. In fact, we only need linear separability at the

second-to-last layer for the proof of Lemma 5.7.6.

Proposition 5.8.5. Suppose m ě Cγ´2
´

d log 1
γ
` log L

δ

¯

for some large constant C. Then

there exists α P SmL´1 such that with probability at least 1´ δ, for all l “ 1, . . . , L, we have

y xα, xly ě γ{2.

Proof of Proposition 5.8.5. We recall that Assumption 5.3.2 implies that there exists cpuq

with }cpuq}
8
ď 1 such that fpxq “

ş

Rd cpuqσpu
Jxqppuqdu satisfies y ¨ fpxq ě γ for all

px, yq P supppDq. Following Lemma C.1 in [CG20], if we define

α :“

c

1

m1

¨

ˆ

c

ˆ
c

m1

2
w1,1

˙

, . . . , c

ˆ
c

m1

2
w1,m1

˙˙

,

then α “ α1{ }α1}2 P S
m1´1 satisfies y ¨ αJx1 ě

γ
2

for all px, yq P suppD.

We now show that the l-th layer activations xl are linearly separable using α. We can

write, for l “ 2, . . . , L,

xα, xly “
@

α, pI ` θΣlpxqW
J
l qxl´1

D

“ xα, x1y ` θ
l
ÿ

l1“2

@

α,Σl1pxqW
J
l1 xl1´1

D

. (5.8.4)

Since
@

α,ΣlpxqW
J
l xl´1

D

“
řml

k“1

b

1
m1
c
`
a

m1

2
w1,k

˘

¨ σpwJl,kxl´1q and }cp¨q}
8
ď 1, we have for

every l ě 2,

´

ml
ÿ

k“1

c

1

m1

ˇ

ˇwJl,kxl´1

ˇ

ˇ ď
@

α,ΣlpxqW
J
l xl´1

D

ď

ml
ÿ

k“1

c

1

m1

ˇ

ˇwJl,kxl´1

ˇ

ˇ . (5.8.5)

168

Thus it suffices to find an upper bound for the term on the r.h.s. of (5.8.5). Since we have

E
ˇ

ˇwJl,kxl´1

ˇ

ˇ “

c

2

π

c

2

m1

}xl´1}2 ď C2m
´ 1

2 ,

we can apply Hoeffding inequality to get absolute constants C4, C5 ą 0 such that for fixed x

and l, we have with probability at least 1´ δ,

ml
ÿ

k“1

c

1

m1

ˇ

ˇwJl,kxl´1

ˇ

ˇ ď

ml
ÿ

k“1

c

1

m
C2m

´ 1
2 ` C4

c

1

m
log

1

δ

ď C5 ` C4

c

1

m
log

1

δ
.

Take a 1
2
-net N of Sd´1 so that |N | ď 5d and every x P Sd´1 has px P N with }x´ px}2 ď

1
2
.

Then, provided m ě Cd log L
δ
, there is a constant C6 ą 0 such that we have with probability

at least 1´ δ, for all px P N and all l ď L,

ml
ÿ

k“1

c

1

m1

ˇ

ˇwJl,kpxl´1

ˇ

ˇ ď C6.

By (5.8.5), this means for all px P N and l, ´C6 ď
@

α,ΣlppxqW
J
l pxl´1

D

ď C6. We can lift this

to hold over Sd´1 by using Lemma 5.7.3: for arbitrary x P Sd´1 we have

ˇ

ˇ

@

α,ΣlpxqW
J
l xl

D
ˇ

ˇ ď
ˇ

ˇ

@

α,ΣlpxqW
J
l pxl ´ pxlq

D
ˇ

ˇ`
ˇ

ˇ

@

α,ΣlpxqW
J
l pxl

D
ˇ

ˇ

ď }α̃l}2 }Σlpxq}2 }Wl}2 }xl ´ pxl}2 ` C6

ď C7,

so that with probability at least 1´ δ, for all l ď L and all x P Sd´1, we have

´C7 ď
@

α,ΣlpxqW
J
l pxl´1

D

ď C7.

Substituting the above into (5.8.4), we get

$

’

&

’

%

xα, xly ě xα, x1y ´ θLC7,

´xα, xly ě ´ xα, x1y ´ θLC7.

169

Considering the cases y “ ˘1 we thus get with probability at least 1 ´ δ for all l and

px, yq P suppD,

$

’

&

’

%

y xα, xly ě y xα, x1y ´ θLC7 ě
γ
2
´ θLC7, y “ 1,

y xα, xly ě y xα, x1y ´ θLC7 ě
γ
2
´ θLC7, y “ ´1.

Thus taking θ small enough so that θL ď γC´1
7 {4 completes the proof.

With Proposition 5.8.5 in hand, we can prove Lemma 5.7.6.

Proof of Lemma 5.7.6. By Proposition 5.8.5, there exists αL P S
mL´1 such that with prob-

ability at least 1 ´ δ, y xαL, xLy ě γ{4 for all px, yq P supppDq. In particular, since a is

non-negative, this implies for all i,

xapxi, yiq ¨ yi ¨ xL,i, αLy “ apxi, yiq ¨ yi xxL,i, αLy ě apxi, yiqyiγ{4. (5.8.6)

Since Erσ1pwJL`1,jxL,iq|xL,is “
1
2
, by Hoeffding inequality, with probability at least 1´δ{2,

for all i “ 1, . . . , n, we have

1

mL`1

mL`1
ÿ

j“1

σ1pwJL`1,jxL,iq ě
1

2
´ C1

d

1

mL`1

logpn{δq ě
49

100
. (5.8.7)

170

Therefore, we can bound

mL`1
ÿ

j“1

›

›

›

›

›

1

n

n
ÿ

i“1

“

apxi, yiq ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ xL,i

‰

›

›

›

›

›

2

2

ě mL`1

›

›

›

›

›

1

mL`1

mL`1
ÿ

j“1

1

n

n
ÿ

i“1

“

apxi, yiq ¨ yi ¨ σ
1
pwJL`1,jxL,iq ¨ xL,i

‰

›

›

›

›

›

2

2

“ mL`1

›

›

›

›

›

1

n

n
ÿ

i“1

«

apxi, yiq ¨ yi ¨ xL,i
1

mL`1

mL`1
ÿ

j“1

σ1pwJL`1,jxL,iq

ff
›

›

›

›

›

2

2

ě mL`1

C

1

n

n
ÿ

i“1

apxi, yiq ¨ yi ¨ xL,i ¨
1

mL`1

mL`1
ÿ

j“1

σ1pwJL`1,jxL,iq, αL

G2

“ mL`1

˜

1

n

n
ÿ

i“1

apxi, yiq ¨ yi ¨
1

mL`1

mL`1
ÿ

j“1

σ1pwJL`1,jxL,iq ¨ xxL,i, αLy

¸2

ě

ˆ

49

100

˙2

mL`1

˜

1

n

n
ÿ

i“1

apxi, yiq

¸2

¨
γ2

42

ě
1

67
mL`1 ¨ γ

2

˜

1

n

n
ÿ

i“1

apxi, yiq

¸2

.

The first inequality above follows by Jensen inequality. The second inequality follows by

Cauchy–Schwarz and since }αL}2 “ 1. The third inequality follows with an application of

(5.8.6) and (5.8.7), and the final inequality by arithmetic.

5.9 Proofs of Auxiliary Lemmas

5.9.1 Proof of Lemma 5.8.2

Proof. By following a proof similar to that of Lemma A.8 in [CG20], one can easily prove

the following claim:

Claim 5.9.1. For v P Rml´1 , β ą 0, and l P rL` 1s define

Slpv, βq :“ tj P rmls : |wJl,jv| ď βu. (5.9.1)

171

Suppose that there is an absolute constant ξ P p0, 1q such that for any δ ą 0 we have with

probability at least 1 ´ δ{2, }v}2 ě ξ for all v P V for some finite set V Ă Rml´1 . Then

there exist absolute constants C,C 1 ą 0 such that if m ě Cβ´1
a

logp4|V |{δq, then with

probability at least 1´ δ, we have |Slpv, βq| ď C 1m
3{2
l β for all v P V .

By Lemmas 5.4.1 and 5.7.1, with probability at least 1 ´ δ{3, we have }xl´1}2 ě C

and }wl,j}2 ď C1 for all x P Sd´1, l P rL ` 1s, and j P rmls. By Lemma 5.7.3, with

probability at least 1´ δ{3, we have }xl ´ x
1
l}2 ď C2 }x´ x

1}2 for all x, x1 P Sd´1. By taking

V to be the β{pC1C2q-net N pSd´1, β{pC1C2qq, since |N | ď p4C1C2{βq
d, the assumption that

m ě Cβ´1
a

d logp1{pβδqq allows us to apply Lemma 5.9.1 to get that with probability at

least 1 ´ δ{3, we have |Slppx, 2βq| ď 2C 1m
3
2
l β for all l and px P N . For arbitrary x P Sd´1,

there exists px P N with }x´ px}2 ď β{pC1C2q. Thus, we have

|wJl,jxl´1| ď |w
J
l,jpxl´1| ` |w

J
l,jpxl´1 ´ pxl´1q|

ď β ` }wl,j}2 }xl´1 ´ pxl´1}2

ď β ` C1 ¨ C2 }x´ px}2

ď 2β,

i.e. Slpx, βq Ă Slppx, 2βq. Therefore |Slpx, βq| ď |Slppx, 2βq| ď 2C 1m
3
2
l β, as desired.

5.9.2 Proof of Lemma 5.8.3

Proof. The j-th row of WJ
L`1ξla has distribution wJL`1,jξla „ N

´

0, 2
mL`1

}ξla}
2
2

¯

, and hence

glpa, bq „ N
´

0, 2
ml
}ξla}

2
2

¯

. Since }ξl}2 ď C0 for all l with high probability, it is clear that

}ξla}
2
2 ď C2

0 . Thus applying Hoeffding inequality gives a constant C3 ą 0 such that we have

for fixed a and b, with probability at least 1´ δ,

|bJWJ
L`1ξla| ď C3

d

1

mL`1

log
1

δ
. (5.9.2)

Let Ma be a fixed subspace of Rml with sparsity s, and let NapM, 1{4q be a 1{4-net covering

Ma. There are
`

ml

s

˘

choices of such Ma. Let Na “ YMaNapMa, 1{4q be the union of such

172

spaces. By Lemma 5.2 in [Ver10], for s larger than e.g. 15, we have

|Na| ď

ˆ

ml

s

˙

9s ď ms
l .

Similarly consider subspace Mb Ă RmL`1 with sparsity level s and let NbpMb, 1{4q be a 1{4-

net of RmL`1 with sparsity level s and define Nb “ YMb
NbpMb, 1{4q, so that |Nb| ď ms

L`1.

We apply (5.9.2) to every pa P Na and pb P Nb and use a union bound to get a constant C4 ą 0

such that with probability at least 1´ δ, for all pa P Na,pb P Nb, and all l,

|pbJWJ
L`1ξlpa| ď C3

d

1

mL`1

log
|Na| ¨ |Nb| ¨ L

δ

ď C3

d

1

mL`1

log
ms
L`1 ¨m

s
l ¨ L

δ

“ C3

d

1

mL`1

ˆ

s logpmL`1mlq ` log
L

δ

˙

ď C4

c

s

mL`1

logm.

ˆ

s logm “ Ω

ˆ

log
L

δ

˙˙

For arbitrary a P Sml´1 and b P SmL`1´1 with }a}0 , }b}0 ď s, there are pa P Na and pb P Nb

with }a´ pa}2 ,
›

›

›
b´pb

›

›

›

2
ď 1{4. Note that g is linear in a and b. Triangle inequality gives

|glpa, bq| ď |glppa,pbq| ` |glpa, bq ´ glppa,pbq|

ď C3

c

s

mL`1

logmL`1 ` |glpa, bq ´ glppa, bq| ` |glppa,pbq ´ glppa, bq| (5.9.3)

We have for any pa,

|glppa,pbq ´ glppa, bq| “
›

›

›
b´pb

›

›

›

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

gl

¨

˝

pa,
b´pb

›

›

›
b´pb

›

›

›

2

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4
sup

}b1}2“}a}2“1, }a}0,}b
1}0ďs

|gl pa, b
1
q| . (5.9.4)

Similarly,

|glpa, bq ´ glppa, bq| ď
1

4
sup

}b}2“}a}2“1, }a}0,}b}0ďs

|gl pa, bq| . (5.9.5)

173

Taking supremum over the left hand side of (5.9.3) and using the bounds in (5.9.4) and

(5.9.5) completes the proof.

5.9.3 Proof of Lemma 5.8.4

Proof. We notice that since v “ p1, . . . , 1,´1, . . . ,´1qJ, we can write glpaq as a sum of

independent random variables in the following form:

glpaq “
?
mL`1

mL`1{2
ÿ

j“1

1
?
mL`1

”

σpwJL`1,jξl`1aq ´ σpw
J
L`1,j`mL`1{2

ξl`1aq
ı

.

Since }ξl`1a}2 is uniformly bounded by a constant, Hoeffding inequality yields a constant

C3 ą 0 such that for fixed a, with probability at least 1´ δ, we have

glpaq ď C3

?
m

c

1

m
log

1

δ
.

Let M be a fixed subspace of Rml with sparsity s, and let N “ YMN pM, 1{2q be the union

of all 1{2-nets covering each M so that |N | ď ms
l . Using a union bound over all pa P N and

l, we get that with probability at least 1´ δ, for all pa P N and all l ď L,

glppaq ď C3

?
m ¨

c

1

m
log

|N | ¨ L
δ

ď C5

a

s logm.

For arbitrary a P Sml´1 satisfying }a}0 ď s, there is pa P N with }a´ pa}2 ď 1{2. Since g is

linear,

|glpaq| ď |glppaq| ` |glpa´ paq| ď C5

a

s logm` |glpa´ paq|. (5.9.6)

For the second term, we have

|glpa´ paq| “ }a´ pa}2

ˇ

ˇ

ˇ

ˇ

gl

ˆ

a´ pa

}a´ pa}2

˙
ˇ

ˇ

ˇ

ˇ

ď
1

2
sup

}a}2“1, }a}0ďs

|glpaq|.

Substituting this into (5.9.6) and taking supremums completes the proof.

174

CHAPTER 6

Conclusion

175

In this thesis, we provided a number of analyses which explore the optimization and

generalization questions for the SGD-training of neural networks. Our first set of results

consisted of the simplest neural network possible, namely a single neuron neural network.

We showed that for learning single neuron neural networks in the regression setting, there

exists a surrogate loss for which the original optimization problem exhibits a type of proto-

convexity with respect to the surrogate loss. For the classification setting, we connected the

minimizers of convex surrogates for the zero-one loss to the minimizers for the zero-one loss

itself, and showed that under benign distributional assumptions the two are quite closely

related. This resulted in the first positive guarantee for the agnostic learning of halfspaces

using gradient descent on convex losses.

We continued our analysis of the agnostic learning of halfspaces by showing that SGD-

trained one-hidden-layer networks can also agnostically learn halfspaces under benign dis-

tributional assumptions. Our result here utilized that the gradients of the neural network

were always partially correlated with those of the best linear predictor over the dataset, and

that this correlation would increase until we reach a point with small loss. This approach

avoided the non-convexity of the underlying optimization problem. Moreover, our guarantees

were independent of the width of the neural network, in stark contrast to standard uniform

convergence-based bounds on the VC dimension of the network which grow as the network

becomes larger.

We finished the thesis with an analysis of a complicated deep residual network, showing

that if the data can be classified under an infinitely-wide one-hidden-layer neural network,

then deep residual networks trained by gradient descent can generalize as well.

There are numerous natural next steps from here. In this thesis, we were able to develop

guarantees for constant width networks on noisy linear data, and for networks of unbounded

width on nonlinear data without noise. But as of the time of writing, there exist no provable

guarantees for the generalization of SGD-trained constant width neural networks on noisy

nonlinear data distributions. Such work is a natural progression of the ideas considered in

176

this dissertation.

In the course of developing the optimization guarantees for learning a single neuron and

for learning halfspaces with noise, we utilized novel analyses to avoid the nonconvexity of

the underlying optimization problem. Understanding the extent to which these techniques

can be generalized into abstract principles for nonconvex optimization is another task we are

interested in exploring further.

More broadly, there is an ever-expanding universe of problems in the theory of deep

learning as new methods and techniques are developed which exhibit ever-more surprising

behaviors of deep neural network models trained by gradient descent. Recent questions that

have come to the fore include the ability of semi-supervised and self-supervised learning

methods to improve the generalization performance of models in the supervised learning

setting; the brittleness of deep neural network classifiers to adversarial perturbations of the

input data; and the ubiquity of transformer-based architectures for problems across a variety

of domain settings. We are excited about the possibility of theoretically understanding these

perplexing empirical phenomena in the future.

177

REFERENCES

[ABH15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. “Ef-
ficient Learning of Linear Separators under Bounded Noise.” In Conference on
Learning Theory (COLT), 2015.

[ABH16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang.
“Learning and 1-bit Compressed Sensing under Asymmetric Noise.” In Confer-
ence on Learning Theory (COLT), 2016.

[ABL17] Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. “The Power of
Localization for Efficiently Learning Linear Separators with Noise.” J. ACM,
63(6), January 2017.

[ADH19a] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and
Ruosong Wang. “On exact computation with an infinitely wide neural net.” In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[ADH19b] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. “Fine-
Grained Analysis of Optimization and Generalization for Overparameterized
Two-Layer Neural Networks.” In International Conference on Machine Learning
(ICML), 2019.

[AGN18] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. “Stronger Gener-
alization Bounds for Deep Nets via a Compression Approach.” In International
Conference on Machine Learning (ICML), 2018.

[AHW95] Peter Auer, Mark Herbster, and Manfred K. Warmuth. “Exponentially Many
Local Minima for Single Neurons.” In Advances in Neural Information Processing
Systems (NeurIPS), 1995.

[AL88] Dana Angluin and Philip Laird. “Learning from noisy examples.” Machine
Learning, 2(4):343–370, 1988.

[AL19] Zeyuan Allen-Zhu and Yuanzhi Li. “What Can ResNet Learn Efficiently, Go-
ing Beyond Kernels?” In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[ALL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and Generalization
in Overparameterized Neural Networks, Going Beyond Two Layers.” In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[ALS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep
Learning via Over-Parameterization.” In International Conference on Machine
Learning (ICML), 2019.

178

[BFK98] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. “A polynomial-
time algorithm for learning noisy linear threshold functions.” Algorithmica, 22(1-
2):35–52, 1998.

[BFT17] Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. “Spectrally-
normalized margin bounds for neural networks.” In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

[BGM18] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. “SGD
Learns Over-parameterized Networks that Provably Generalize on Linearly Sep-
arable Data.” In International Conference on Learning Representations (ICLR),
2018.

[BGV92] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training
algorithm for optimal margin classifiers.” In Conference on Learning Theory
(COLT), 1992.

[BH21] Maria-Florina Balcan and Nika Haghtalab. “Noise in Classification.” In Tim
Roughgarden, editor, Beyond Worst Case Analysis of Algorithms, chapter 16.
Cambridge University Press, 2021.

[BJM06] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. “Convexity, clas-
sification, and risk bounds.” Journal of the American Statistical Association,
101(473):138–156, 2006. (Was Department of Statistics, U.C. Berkeley Techni-
cal Report number 638, 2003).

[BLL11] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E.
Schapire. “Contextual Bandit Algorithms with Supervised Learning Guaran-
tees.” In Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

[BLS12] Shai Ben-David, David Loker, Nathan Srebro, and Karthik Sridharan. “Minimiz-
ing the misclassification error rate using a surrogate convex loss.” In International
Conference on Machine Learning (ICML), 2012.

[BRS89] M. L. Brady, R. Raghavan, and J. Slawny. “Back propagation fails to sepa-
rate where perceptrons succeed.” IEEE Transactions on Circuits and Systems,
36(5):665–674, 1989.

[BZ17] Maria-Florina F Balcan and Hongyang Zhang. “Sample and computationally ef-
ficient learning algorithms under s-concave distributions.” In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[CCG20] Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. “A Generalized Neural
Tangent Kernel Analysis for Two-layer Neural Networks.” In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

179

[CCZ21] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. “How Much Over-
parameterization Is Sufficient to Learn Deep ReLU Networks?” In International
Conference on Learning Representations (ICLR), 2021.

[CG19a] Yuan Cao and Quanquan Gu. “Generalization Bounds of Stochastic Gradient
Descent for Wide and Deep Neural Networks.” In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019.

[CG19b] Yuan Cao and Quanquan Gu. “Tight Sample Complexity of Learning One-
hidden-layer Convolutional Neural Networks.” In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019.

[CG20] Yuan Cao and Quanquan Gu. “Generalization Error Bounds of Gradient Descent
for Learning Over-parameterized Deep ReLU Networks.” In AAAI Conference
on Artificial Intelligence, 2020.

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. “On Lazy Training in Differ-
entiable Programming.” In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[CSS19] Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun, Martin Kersner,
Beomsu Kim, Dongyoung Kim, and Sungjoo Ha. “Temporal Convolution for
Real-time Keyword Spotting on Mobile Devices.” In INTERSPEECH, 2019.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal function.”
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[Dan16] Amit Daniely. “Complexity theoretic limitations on learning halfspaces.” In
ACM Symposium on Theory of Computing (STOC), pp. 105–117, 2016.

[DDS09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A
Large-Scale Hierarchical Image Database.” In Computer Vision and Pattern
Recongition (CVPR), 2009.

[DGK20a] Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. “Approximation Schemes for ReLU Regression.” In Conference
on Learning Theory (COLT), 2020.

[DGK20b] Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. “Approximation Schemes for ReLU Regression.” In Conference
on Learning Theory (COLT), 2020.

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. “Distribution-
independent pac learning of halfspaces with massart noise.” In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

180

[DKK20] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, and Nikos Zarifis. “Algo-
rithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Net-
works.” In Conference on Learning Theory (COLT), 2020.

[DKT20a] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. “Learn-
ing Halfspaces with Massart Noise Under Structured Distributions.” In Confer-
ence on Learning Theory (COLT), 2020.

[DKT20b] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. “Non-
Convex SGD Learns Halfspaces with Adversarial Label Noise.” In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[DKT21] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. “Learn-
ing Halfspaces with Tsybakov Noise.” In ACM Symposium on Theory of Com-
puting (STOC), 2021.

[DKZ20] Ilias Diakonikolas, Daniel M Kane, and Nikos Zarifis. “Near-optimal sq lower
bounds for agnostically learning halfspaces and relus under gaussian marginals.”
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[DLL18] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gradi-
ent Descent Finds Global Minima of Deep Neural Networks.” In International
Conference on Machine Learning (ICML), 2018.

[DLT18] Simon S. Du, Jason D. Lee, and Yuandong Tian. “When is a Convolutional
Filter Easy to Learn?” In International Conference on Learning Representations
(ICLR), 2018.

[DR17] Gintare Karolina Dziugaite and Daniel M. Roy. “Computing Nonvacuous Gener-
alization Bounds for Deep (Stochastic) Neural Networks with Many More Param-
eters than Training Data.” In Conference on Uncertainty in Artificial Intelligence
(UAI), 2017.

[DZP19] Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh. “Gradient De-
scent Provably Optimizes Over-parameterized Neural Networks.” In Interna-
tional Conference on Learning Representations (ICLR), 2019.

[EMW19] Weinan E, Chao Ma, Qingcan Wang, and Lei Wu. “Analysis of the Gradient
Descent Algorithm for a Deep Neural Network Model with Skip-connections.”
Preprint, arXiv:1904.05263, 2019.

[FCG19] Spencer Frei, Yuan Cao, and Quanquan Gu. “Algorithm-Dependent Generaliza-
tion Bounds for Overparameterized Deep Residual Networks.” In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

181

[FCG20] Spencer Frei, Yuan Cao, and Quanquan Gu. “Agnostic Learning of a Single
Neuron with Gradient Descent.” In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[FCG21] Spencer Frei, Yuan Cao, and Quanquan Gu. “Agnostic Learning of Halfspaces
with Gradient Descent via Soft Margins.” In International Conference on Ma-
chine Learning (ICML), 2021.

[FDP20] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani,
Daniel M. Roy, and Surya Ganguli. “Deep learning versus kernel learning: an
empirical study of loss landscape geometry and the time evolution of the Neu-
ral Tangent Kernel.” In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[FSS18] Dylan J. Foster, Ayush Sekhari, and Karthik Sridharan. “Uniform Convergence
of Gradients for Non-Convex Learning and Optimization.” In Advances in Neural
Information Processing Systems, 2018.

[GGJ20] Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam
Klivans. “Superpolynomial Lower Bounds for Learning One-Layer Neural Net-
works using Gradient Descent.” In International Conference on Machine Learn-
ing (ICML), 2020.

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam Klivans. “Statistical-query lower
bounds via functional gradients.” In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[GKK17] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. “Reliably Learn-
ing the ReLU in Polynomial Time.” In Conference on Learning Theory (COLT),
2017.

[GKK19] Surbhi Goel, Sushrut Karmalkar, and Adam R. Klivans. “Time/Accuracy Trade-
offs for Learning a ReLU with respect to Gaussian Marginals.” In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

[GKM18] Surbhi Goel, Adam R. Klivans, and Raghu Meka. “Learning One Convolutional
Layer with Overlapping Patches.” In Jennifer G. Dy and Andreas Krause, editors,
International Conference on Machine Learning, 2018.

[GR09] Venkatesan Guruswami and Prasad Raghavendra. “Hardness of learning halfs-
paces with noise.” SIAM Journal on Computing, 39(2):742–765, 2009.

[GRS18] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. “Size-Independent Sam-
ple Complexity of Neural Networks.” In Conference on Learning Theory (COLT).
PMLR, 2018.

182

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples.” Preprint, arXiv:1412.6572, 2014.

[HKW95] David P. Helmbold, Jyrki Kivinen, and Manfred K. Warmuth. “Worst-Case
Loss Bounds for Single Neurons.” In Advances in Neural Information Processing
Systems (NeurIPS), 1995.

[HKW99] David P. Helmbold, Jyrki Kivinen, and Manfred K. Warmuth. “Relative loss
bounds for single neurons.” IEEE Transactions on Neural Networks, 1999.

[HLY20] Wei Hu, Zhiyuan Li, and Dingli Yu. “Simple and Effective Regularization Meth-
ods for Training on Noisily Labeled Data with Generalization Guarantee.” In
International Conference on Learning Representations (ICLR), 2020.

[HXA20] Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. “The Surprising Sim-
plicity of the Early-Time Learning Dynamics of Neural Networks.” In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” In Computer Vision and Pattern Recognition
(CVPR), 2016.

[IMA16] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 1MB model size.” Preprint, arXiv:1602.07360, 2016.

[JDS20] Ziwei Ji, Miroslav Dud́ık, Robert E. Schapire, and Matus Telgarsky. “Gradient
descent follows the regularization path for general losses.” In Conference on
Learning Theory (COLT), 2020.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel:
Convergence and Generalization in Neural Networks.” In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[JNG19] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jor-
dan. “A Short Note on Concentration Inequalities for Random Vectors with
SubGaussian Norm.” Preprint, arXiv:1902.03736, 2019.

[JT19] Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient descent on nonsep-
arable data.” In Conference on Learning Theory (COLT), 2019.

[JT20a] Ziwei Ji and Matus Telgarsky. “Directional convergence and alignment in deep
learning.” In Advances in Neural Information Processing Systems (NeurIPS),
2020.

183

[JT20b] Ziwei Ji and Matus Telgarsky. “Polylogarithmic width suffices for gradient de-
scent to achieve arbitrarily small test error with shallow ReLU networks.” In
International Conference on Learning Representations (ICLR), 2020.

[KKK11] Sham M. Kakade, Adam Kalai, Varun Kanade, and Ohad Shamir. “Efficient
Learning of Generalized Linear and Single Index Models with Isotonic Regres-
sion.” In Advances in Neural Information Processing Systems, 2011.

[KKM08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
“Agnostically Learning Halfspaces.” SIAM J. Comput., 37(6):1777–1805, 2008.

[KLS09] Adam R. Klivans, Philip M. Long, and Rocco A. Servedio. “Learning Halfs-
paces with Malicious Noise.” Journal of Machine Learning Research (JMLR),
10(94):2715–2740, 2009.

[KS94] Michael J. Kearns and Robert E. Schapire. “Efficient distribution-free learning
of probabilistic concepts.” Journal of Computer and System Sciences, 48(3):464
– 497, 1994.

[KS09] Adam Tauman Kalai and Ravi Sastry. “The Isotron Algorithm: High-
Dimensional Isotonic Regression.” In Conference on Learning Theory (COLT),
2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks.” In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2012.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. “Toward efficient
agnostic learning.” Machine Learning, 17(2-3):115–141, 1994.

[LL18] Yuanzhi Li and Yingyu Liang. “Learning Overparameterized Neural Networks
via Stochastic Gradient Descent on Structured Data.” In Conference on Neural
Information Processing Systems, pp. 8168–8177, 2018.

[LL20] Kaifeng Lyu and Jian Li. “Gradient Descent Maximizes the Margin of Homoge-
neous Neural Networks.” In International Conference on Learning Representa-
tions (ICLR), 2020.

[LLW18] Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis D. Haupt, and Tuo Zhao. “On
Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and
Beyond.” Preprint, arXiv:1806.05159, 2018.

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. “Learning Over-Parametrized
Two-Layer ReLU Neural Networks beyond NTK.” In Conference on Learning
Theory (COLT), 2020.

184

[LSO19] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. “Gradient Descent with
Early Stopping is Provably Robust to Label Noise for Overparameterized Neural
Networks.” In Conference on Artificial Intelligence and Statistics (AISTATS),
2019.

[LV07] László Lovász and Santosh Vempala. “The Geometry of Logconcave Functions
and Sampling Algorithms.” Random Struct. Algorithms, 30(3):307–358, 2007.

[LWM19] Yuanzhi Li, Colin Wei, and Tengyu Ma. “Towards Explaining the Regularization
Effect of Initial Large Learning Rate in Training Neural Networks.” In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[LXX20] Yan Li, Ethan X.Fang, Huan Xu, and Tuo Zhao. “Implicit Bias of Gradient
Descent based Adversarial Training on Separable Data.” In International Con-
ference on Learning Representations (ICLR), 2020.

[Mar15] John Markoff. “A Learning Advance in Artificial Intelligence Rivals Human
Abilities.” The New York Times, 2015.

[MBM18] Song Mei, Yu Bai, and Andrea Montanari. “The landscape of empirical risk for
nonconvex losses.” The Annals of Statistics, 46(6A):2747–2774, 12 2018.

[MGW20] Edward Moroshko, Suriya Gunasekar, Blake Woodworth, Jason D. Lee, Nathan
Srebro, and Daniel Soudry. “Implicit Bias in Deep Linear Classification: Initial-
ization Scale vs Training Accuracy.” In Advances in Neural Information Process-
ing Systems (NeurIPS), 2020.

[MM20] Anirbit Mukherjee and Ramchandran Muthukumar. “A Study of Neural Train-
ing with Non-Gradient and Noise Assisted Gradient Methods.” Preprint,
arXiv:2005.0421, 2020.

[MMM19] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. “Mean-field theory of
two-layers neural networks: dimension-free bounds and kernel limit.” In Confer-
ence on Learning Theory (COLT), 2019.

[MMS18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial At-
tacks.” In International Conference on Learning Representations (ICLR), 2018.

[MN06] Pascal Massart, Élodie Nédélec, et al. “Risk bounds for statistical learning.” The
Annals of Statistics, 34(5):2326–2366, 2006.

[NBS18] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. “A PAC-
Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Net-
works.” In International Conference on Learning Representations (ICLR), 2018.

185

[NKK19] Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L.
Edelman, Fred Zhang, and Boaz Barak. “SGD on Neural Networks Learns Func-
tions of Increasing Complexity.” In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[PDX20] Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and Quoc V. Le. “Meta
Pseudo Labels.” Preprint, arXiv:2003.10580, 2020.

[PS86] I. F. Pinelis and A. I. Sakhanenko. “Remarks on Inequalities for Large Deviation
Probabilities.” Theory of Probability & Its Applications, 30(1):143–148, 1986.

[Ros58] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” Psychological review, 65(6):386, 1958.

[RR08] Ali Rahimi and Benjamin Recht. “Weighted Sums of Random Kitchen Sinks:
Replacing minimization with randomization in learning.” In Advances in Neural
Information Processing Systems (NeurIPS), 2008.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, New York, NY, USA,
2014.

[Ser99] Rocco A. Servedio. “On PAC Learning Using Winnow, Perceptron, and a
Perceptron-like Algorithm.” In Conference on Computational Learning Theory,
p. 296–307, 1999.

[Sha15] Ohad Shamir. “The Sample Complexity of Learning Linear Predictors with the
Squared Loss.” Journal of Machine Learning Research, 16(108):3475–3486, 2015.

[Sha18] Ohad Shamir. “Are ResNets Provably Better than Linear Predictors?” In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2018.

[Sha20] Ohad Shamir. “Gradient Methods Never Overfit On Separable Data.” Preprint,
arXiv:2007.00028, 2020.

[SHN18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan
Srebro. “The Implicit Bias of Gradient Descent on Separable Data.” Journal of
Machine Learning Research (JMLR), 19(70):1–57, 2018.

[SJL19] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee. “Theoretical Insights
Into the Optimization Landscape of Over-Parameterized Shallow Neural Net-
works.” IEEE Transactions on Information Theory, 65(2):742–769, 2019.

[Slo88] Robert Sloan. “Types of Noise in Data for Concept Learning.” In Conference on
Learning Theory (COLT), 1988.

186

[Sol17] Mahdi Soltanolkotabi. “Learning ReLUs via Gradient Descent.” In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[SSS09] Karthik Sridharan, Shai Shalev-Shwartz, and Nathan Srebro. “Fast rates for
regularized objectives.” In Advances in Neural Information Processing Systems
(NeurIPS), 2009.

[SST10] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. “Smoothness, Low
Noise and Fast Rates.” In Advances in Neural Information Processing Systems
(NeurIPS), 2010.

[STR20] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth
Netrapalli. “The Pitfalls of Simplicity Bias in Neural Networks.” In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[Tia17] Yuandong Tian. “Symmetry-Breaking Convergence Analysis of Certain Two-
layered Neural Networks with ReLU nonlinearity.” In International Conference
on Learning Representations (ICLR), 2017.

[TL18] Raphael Tang and Jimmy Lin. “Deep Residual Learning for Small-Footprint
Keyword Spotting.” In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018.

[Tsy04] Alexander B Tsybakov et al. “Optimal aggregation of classifiers in statistical
learning.” The Annals of Statistics, 32(1):135–166, 2004.

[Ver10] Roman Vershynin. “Introduction to the non-asymptotic analysis of random ma-
trices.” Preprint, arXiv:1011.3027, 2010.

[VW19] Santosh S. Vempala and John Wilmes. “Gradient Descent for One-Hidden-Layer
Neural Networks: Polynomial Convergence and SQ Lower Bounds.” In Confer-
ence on Learning Theory (COLT), 2019.

[WGL20] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pe-
dro Savarese, Itay Golan, Daniel Soudry, and Nathan Srebro. “Kernel and
Rich Regimes in Overparametrized Models.” In Conference on Learning The-
ory (COLT), 2020.

[WLL19] Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. “Regularization Matters:
Generalization and Optimization of Neural Nets v.s. their Induced Kernel.” In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[Yar17] Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks.”
Neural Networks, 94:103–114, 2017.

187

[YS20] Gilad Yehudai and Ohad Shamir. “Learning a Single Neuron with Gradient
Methods.” In Conference on Learning Theory (COLT), 2020.

[ZBH17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
“Understanding deep learning requires rethinking generalization.” In Interna-
tional Conference on Learning Representations (ICLR), 2017.

[ZCZ19] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Gradient descent
optimizes over-parameterized deep ReLU networks.” Machine Learning, 2019.

[ZG19] Difan Zou and Quanquan Gu. “An Improved Analysis of Training Over-
parameterized Deep Neural Networks.” In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[ZYC19] Huishuai Zhang, Da Yu, Wei Chen, and Tie-Yan Liu. “Training Over-
parameterized Deep ResNet Is almost as Easy as Training a Two-layer Network.”
Preprint, arXiv:1903.07120, 2019.

[ZYW19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. “Learning one-
hidden-layer relu networks via gradient descent.” In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2019.

188

	Introduction
	Learning a single neuron with gradient descent
	Introduction
	Related work
	Agnostic learning setting
	Strictly increasing activations
	ReLU activation

	Noisy teacher network setting
	Conclusion and remaining open problems
	Detailed comparisons with related work
	Proof of Lemma 2.3.5
	Noisy teacher network proofs
	Realizable setting
	Gradient descent on population loss
	Stochastic gradient descent proofs

	Remaining Proofs

	Learning noisy halfspaces with logistic regression
	Introduction
	Related Work
	Notation

	Soft Margins
	Gradient Descent Finds Minimizers of the Surrogate Risk
	Gradient Descent Finds Approximate Minimizers for the Zero One Loss
	Bounded Distributions
	Unbounded Distributions

	Conclusion and Future Work
	Fast Rates with Stochastic Gradient Descent
	Soft Margin for Uniform Distribution
	Proofs for Unbounded Distributions
	Empirical Risk

	Loss Functions and Sample Complexity for Separable Data
	Remaining Proofs

	Learning noisy halfspaces using one-hidden-layer neural networks trained by stochastic gradient descent
	Introduction
	Related Work
	Problem Description and Results
	Notation
	Problem Setup
	Main Results
	Comparisons with Related Work

	Proof of the Main Results
	Experiments
	Discussion
	Proof of Lemma 4.4.1
	Additional Experiments and Experiment Details

	Learning with deep residual networks trained by gradient descent
	Introduction
	Our Contributions
	Additional Related Work

	Network Architecture and Optimization Problem
	Main Theory
	Proof Sketch of the Main Theory
	Conclusions
	Proofs of Main Theorems and Corollaries
	Proof of Theorem 5.3.5
	Proof of Theorem 5.3.6
	Proof of Corollary 5.3.7

	Proofs of Key Lemmas
	Proof of Lemma 5.4.1: hidden and interlayer activations are bounded
	Proof of Lemma 5.4.2: semismoothness
	Proof of Lemma 5.4.3: gradient lower bound
	Proof of Lemma 5.4.4: gradient upper bound

	Proofs of Technical Lemmas
	Proof of Lemma 5.7.2: intermediate layers are bounded
	Proof of Lemma 5.7.3: Lipschitz property with respect to input space at each layer
	Proof of Lemma 5.7.4: local Lipschitz property with respect to weights and sparsity bound
	Proof of Lemma 5.7.5: behavior of network output in W(W(0),) when acting on sparse vectors
	Proof of Lemma 5.7.6

	Proofs of Auxiliary Lemmas
	Proof of Lemma 5.8.2
	Proof of Lemma 5.8.3
	Proof of Lemma 5.8.4

	Conclusion
	References

