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Tracking excited states in wave function optimization using density matrices and
variational principles

Lan Nguyen Tran,1, 2, ∗ Jacqueline A. R. Shea,1 and Eric Neuscamman1, 3, †

1Department of Chemistry, University of California, Berkeley, California, 94720, USA
2Ho Chi Minh City Institute of Physics, VAST, Ho Chi Minh City, 700000, Vietnam

3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
(Dated: April 12, 2019)

We present a method for finding individual excited states’ energy stationary points in complete
active space self-consistent field theory that is compatible with standard optimization methods and
highly effective at overcoming difficulties due to root flipping and near-degeneracies. Inspired by
both the maximum overlap method and recent progress in excited state variational principles, our
approach combines these ideas in order to track individual excited states throughout the orbital
optimization process. In a series of tests involving root flipping, near-degeneracies, charge transfers,
and double excitations, we show that this approach is more effective for state-specific optimization
than either the naive selection of roots based on energy ordering or a more direct generalization of
the maximum overlap method. Furthermore, we provide evidence that this state-specific approach
improves the performance of complete active space perturbation theory. With a simple implemen-
tation, a low cost, and compatibility with large active space methods, the approach is designed to
be useful in a wide range of excited state investigations.

I. INTRODUCTION

While linear response theory has indisputably been the
most widely successful paradigm for making predictions
about electronic excitations in chemistry, there remain
important situations in which its use is either difficult
or entirely inadvisable. The most affordable methods
in this category,1 such as time-dependent density func-
tional theory (TD-DFT) and configuration interaction
singles (CIS), are well known to face challenges when
an excitation significantly alters a molecule’s charge den-
sity, as occurs in charge transfer, Rydberg, and core ex-
citations. Although TD-DFT has additional concerns,2

one major issue in these cases comes from the fact that
significant charge density changes induce orbital relax-
ation effects that are not captured in the linear response
of a Slater determinant.3 Even equation of motion cou-
pled cluster theory with singles and doubles excitations
(EOM-CCSD),4 which is responding around a much more
sophisticated wave function, has difficulty in capturing
these relaxation effects in double excitations4–6 and some
core excitations.7 Orbital relaxation effects aside, these
linear response methods — as well as many other excited
state methods including GW theory,8 the Bethe-Salpeter
equation,8 and most variants of the algebraic diagram-
matic construction9 — rely on the assumption that the
ground state is single-reference in character. When this
assumption fails, as for example at conical intersections
where at least two states mix strongly, one is typically
forced to abandon the realm of weakly correlated meth-
ods altogether.

For decades now, complete active space self-consistent
field theory (CASSCF)10–13 and its generalizations14–16

have been the go-to starting points for strongly correlated
treatments of molecular ground and excited states alike.
Just as Hartree-Fock (HF) theory17 provides a reference

state in which the molecular orbitals are relaxed in the
presence of strong Pauli correlations, CASSCF relaxes
the molecular orbitals in the presence of both Pauli corre-
lations and any other strong correlations that exist within
an active set of orbitals and electrons, typically chosen
as a small set near the Fermi level. While expanding the
size of the active space that can be treated remains a high
priority and has been the focus of much recent work,18–24

an additional important concern in excited state model-
ing is the issue of root flipping25–29. In the same way
that HF and ∆SCF methods30–33 relax orbitals by find-
ing stationary points on the single-Slater-determinant en-
ergy surface, one would ideally like to prepare a CASSCF
reference state by finding the CASSCF energy station-
ary point corresponding to the excited state in question.
However, the common approach of separating the config-
uration interaction (CI) coefficient equations and the or-
bital rotation equations can create problems when two CI
stationary points (typically called roots) cross each other
in energy upon updating the orbitals in pursuit of the
(initially) higher energy root’s overall stationary point.
Simple root selection (SRS) — in which one naively seeks
to make the nth root’s energy stationary during each or-
bital rotation step — will fail in this scenario, because
the nth root and the root below it exchange ordering in-
definitely during the “tick-tock” cycle of CI and orbital
relaxation steps.

Although early methods in the coupled nonlinear opti-
mization of CI coefficients and orbitals showed promise in
bypassing this issue,34 the most common remedy in use
today is the state averaged (SA) approach35, in which
one simply minimizes the average energy of multiple
states. The SA approach has the benefit of being com-
patible with modern, highly efficient tick-tock optimiza-
tion schemes and is largely immune to root flipping by
virtue of being insensitive to the ordering of the states
within the average. However, it achieves these advan-
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tages by abandoning the quest to locate individual ex-
cited states’ stationary points. This lack of stationarity
can be inconvenient when evaluating gradients,36 but the
more troubling issue is the potential loss of accuracy in-
curred by producing reference states whose orbitals are
not fully relaxed. Whether this matters in practice of
course depends on the system and whether or not post-
CASSCF correlation methods can correct for this short-
coming alongside their treatment of out-of-active-space
correlation effects. In cases where different states require
drastically different orbital relaxations, such as in the
presence of the large dipole shifts associated with charge
transfer excitations37, it would be particularly appealing
to avoid state averaging while at the same time avoiding
root flipping and retaining compatibility with tick-tock
optimization.

Recently, fully state-specific orbital relaxations have
been achieved for weakly correlated excited states38 by
exploiting simple approximations to excited state varia-
tional principles.39–42 This progress came in the form of a
nonlinear optimization in which the approximated varia-
tional principle was minimized under the constraint that
the energy end up stationary with respect to both CI co-
efficients and orbital rotations. While one can imagine a
straightforward application of these ideas to the CASSCF
wave function, this would lead to a coupled nonlinear op-
timization of CI and orbital variables that would not nec-
essarily be cost-competitive with modern tick-tock opti-
mization schemes. In this study, we will instead explore
whether affordable approximations to excited state varia-
tional principles can aid CASSCF in successfully tracking
individual excited states in the presence of root flipping.
The general idea is similar in spirit to the maximum over-
lap method (MOM)43,44 that works to prevent variational
collapse during ∆SCF optimizations, and indeed we find
that state-tracking is most effective when we combine
approximate variational principles with a MOM-inspired
matching condition based on reduced density matrices.
In particular, we demonstrate that this combination is
more effective at finding CASSCF excited state station-
ary points than either the naive SRS approach or an ap-
proach based on approximate wave function overlaps as
estimated via the CI vectors. In doing so, we also pro-
vide evidence that, although the improvement is some-
times modest, state specific CASSCF (SS-CASSCF) is
a better reference for post-CASSCF methods than SA-
CASSCF. Finally, as the CASSCF step is rarely the bot-
tleneck when post-CASSCF methods are in use, our ap-
proach does not significantly increase overall computa-
tional cost, and so we are able to recommend its use in
general. In particular, the approach requires only one-
and two-body reduced density matrices, and so should
be immediately compatible with the rapidly expanding
collection of large active space methods that have come
on to the scene in recent years.18–23

II. THEORY

A. Excited state variational principles

It has long been recognized41,42 that the variational
principle

W =
〈Ψ|(ω − Ĥ)2|Ψ〉

〈Ψ|Ψ〉
, (1)

has the Hamiltonian eigenstate with energy closest to ω
as its global minimum. Recently, this and similar forms
involving Ĥ2 have found tractable applications in spite of
the challenges posed by the squared Hamiltonian opera-
tor, both in single-reference excited state approaches38,45

and in quantum Monte Carlo,37,46–52 where one can sepa-
rate the two powers of Ĥ using a resolution of the identity∑
I |I〉 〈I| over which statistical sampling may be per-

formed,

W =
1

〈Ψ|Ψ〉
∑
I

〈Ψ|(ω − Ĥ)|I〉 〈I|(ω − Ĥ)|Ψ〉. (2)

In the context of CASSCF, one can simplify this reso-
lution of the identity significantly by exploiting the fact
that the space of wave functions that Ĥ can connect the
CASSCF reference to is exactly spanned by the active
space itself and all internally contracted singles and dou-
bles excitations out of it. For ease of discussion, we will
consider the case in which there are no closed shell or-
bitals, noting that the generalization to the full theory
with a closed shell is straightforward. With active spin
orbitals labeled by i and j and virtual spin orbitals la-
beled by a and b and the trivial assumption that the
CASSCF wave function Φ is normalized, the resolution
of the identity form of the variational principle can thus
be organized as

W = W0 +W1 +W2, (3)

W0 = (ω − E)2, (4)

W1 =
∑
ia

∣∣∣〈Φ| Ĥ â+
a âi |Φ〉

∣∣∣2 , (5)

W2 =
∑
ijab

∣∣∣〈Φ| Ĥ â+
a â

+
b âj âi |Φ〉

∣∣∣2 . (6)

Of particular note is that, by virtue of being limited
to internally contracted single and double excitations,
a full evaluation of W , should one wish to pursue it,
should be similar in complexity to constructing the right
hand side of the first order wave function equation in
complete active space second order perturbation theory
(CASPT2).53,54

Inspecting the three components of W , we find that
they have simple interpretations if we take Φ to be a
root of the complete active space CI problem. First, W0

is simply stating that the eigenstate we are after should
have an energy close to ω. Second, noting that CI roots’
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energies are already stationary with respect to the CI
coefficients, we see that W1 is simply a measure of how
close the wave function is to being an overall energy sta-
tionary point as each of its terms is proportional to the
energy derivative with respect to an active-to-virtual or-
bital rotation. Indeed, if Φ is a CI root and W1 = 0,
then the CASSCF energy is stationary. Finally, noting
that W1 and W2 are unaffected if we make the replace-
ment Ĥ → Ĥ −E, we see that W2 contains all the terms
that would need to be zero in addition to those in W1

in order for the energy variance σ2 = 〈(Ĥ − E)2〉 to be

zero. As an exact eigenstate of Ĥ will be both an energy
stationary point and a zero variance state, we see that,
together, W0, W1, and W2 are simply a least-squares way
of saying that we want the CASSCF wave function that
is closest to the exact energy eigenstate near ω.

In principle, we could use these expressions to follow
the approach of excited state mean field (ESMF) theory38

and minimize the Lagrangian

L = W − ~µ · ∂E
∂~ν

, (7)

with respect to a variable set ~ν that contained both or-
bital rotations and the CI coefficients. This approach
uses the variational principle W , or an approximatin to
it, to guide an optimization to the desired energy sta-
tionary point via constrained Lagrangian minimization.
However, making such an approach cost-competitive with
CASSCF tick-tock optimization methods would not be
trivial, and in this study we seek to exploit approxima-
tions to W in a much simpler context.

Within the standard tick-tock approach of switching
back and forth between Davidson CI diagonalizations and
orbital optimization steps, it is typically the CI step that
dominates the cost when the active space gets large. We
will therefore leave the Davidson step unchanged for now
and consider using approximations to W in the remain-
der of the optimization. In our initial testing, we have
found that while an L-BFGS minimization of |∇L|2 with
respect to orbital rotation variables is effective when we
set W ≈W0 +W1, it is in most cases equally effective to
relax the orbitals by a simple L-BFGS minimization of
|∇E|2. This observation suggests that simple generaliza-
tions of standard Newton-Raphson style orbital optimiza-
tions in which the line search is set to minimize |∇E|2
rather than E itself are likely adequate in many cases
(and much faster than L-based quasi-Newton methods),
even if they lack the strong resistance to ground state
collapse offered by L. However, orbital relaxation for a
particular CI root is only part of the process of converging
to a desired stationary point during a CASSCF tick-tock
optimization. The method used for selecting which CI
root to relax the orbitals for is equally important and
in general quite challenging. As we now discuss, it is in
this area that we find excited state variational ideas to
be most helpful.

B. Maximum overlap analogues

First introduced by Gill and coworkers,43 the maxi-
mum overlap method (MOM) helps prevent variational
collapse to the ground state when attempting to lo-
cate excited state solutions to the Roothan equations in
Hartree Fock or density functional theory. The idea is
to choose the excited state orbital occupation for the the
orbitals generated by a newly diagonalized Fock matrix
by selecting the orbitals that give the largest combined
overlap with the molecular orbitals from the previous it-
eration of the method, or some target set of molecular
orbitals believed to be similar to those of the desired ex-
cited state. In essence, MOM is an attempt to follow the
trail of a particular excited state through the sequence
of discreet (and sometimes large) orbital relaxations that
occur over the course of the self consistent field itera-
tions. This goal is very similar to what we desire when
faced with a root flipping problem in CASSCF: we wish
to track a particular excited state through the sequence
of discreet (and sometimes large) changes to the David-
son CI roots that occur over the course of a tick-tock
CASSCF optimization.

If one wished to pursue a strategy similar in spirit to
that of the orbital-overlap-based MOM, a simple strat-
egy would be to hope that changes to the CI vector ~c
between iterations were never too large and simply de-
fine a tracking function QMOM based on the approximate
wave function overlap

QMOM(~c ) = ~ct · ~c, (8)

between each of the current iteration’s CI roots and some
target CI vector ~ct, taken here to be the CI vector selected
in the previous iteration. Of course, like MOM itself, this
strategy, and any tracking strategy based on measuring
wave function similarities across iterations, will not nec-
essarily be robust in cases where the iterative method
makes large changes to the wave function in a single
iteration. Ideally, we would therefore like to augment
this strategy with a component that is less dependent
on iteration-to-iteration similarity. The central finding
of this study is that, in combination with a measure of
similarity that is more robust than CI vector dot prod-
ucts, the excited state variational principle W can help
in this way.

In hopes of creating a more robust state-tracking func-
tion, we define the following quality measure for a newly
generated Davidson root with CI vector ~c.

QWΓ(~c ) = W0(~c ) +W1(~c ) +D(~c ), (9)

D(~c ) =
||Γt − Γ(~c ) ||

n
CAS

. (10)

Here Γt and Γ(~c ) are the one-body reduced density ma-
trices (1RDMs) for the target wave function and the cur-
rent root in question, respectively, with Γt rotated into
the current orbital basis in order to reduce sensitivity to
orbital changes. While one would like to do something
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similar for QMOM, it is not obvious how this would be
done as active-virtual orbital rotations prevent ~ct from
being expressible within the new orbitals’ active space.
Note that we divide the Frobenius norm of the 1RDM
difference by the number of active orbitals n

CAS
in or-

der to make the relative importance of W0, W1, and D
less sensitive to the size of the chosen active space. This
choice is built on the idea that the out-of-active-space
parts of the density matrix difference are small, as the
occupation vector is fixed for these orbitals and we do
not expect qualitative changes in the closed-shell orbital
shapes. While it may be that a different balance between
W0, W1, and the density matrix difference is optimal, in
practice we have found that this choice is effective in most
cases. While one could of course also include W2 in this
quality measure, we have chosen to omit it due to its rel-
atively high cost of evaluation and our observation that
QWΓ is quite effective even without it.

As for why we chose a density matrix difference for
our measure of iteration-to-iteration similarity, the logic
is that we could have measured similarity via a combi-
nation of any number of wave function properties (e.g.
dipole moment), but a large number of properties are
themselves determined via the 1RDM. Of course, one
could also consider 2RDM differences, but for simplic-
ity’s sake we have for now limited our investigation to
differences of 1RDMs. As our results will demonstrate,
the quality measure QWΓ, although not perfect and cer-
tainly less sophisticated than it could be, is far more
effective at dealing with root flipping when attempting
to track a specific excited state through a CASSCF tick-
tock optimization than either SRS or QMOM.

C. Optimization procedure

To summarize, the overall optimization procedure that
we test here involves the following steps.

1. Choose an orbital basis as an initial guess, perform
an initial CASCI calculation, and select the root
that will be targeted for state-specific convergence.

2. Relax the orbital coefficient matrix = C0e
X via an

L-BFGS minimization of either |∇XL|2 + |∇µL|2
(with W ≈ W0 + W1) or the even simpler objec-
tive function |∇XE|2. While the latter is in princi-
ple more prone to variational collapse, we find that
in the cases studied here the two orbital rotation
objective functions lead to the same results. Ei-
ther way, we implement the gradients needed for
L-BFGS within the TensorFlow automatic differ-
entiation framework.55

3. Perform a new CASCI calculation (via the pySCF
package56) to obtain the low-lying roots of the ap-
propriate space and spin symmetry in new orbital
basis.

4. Select the root with the lowest value for QMOM

or QWΓ, depending on which quality measure is
being employed. If instead one is following the SRS
approach, then simply select the root based on its
position in the energy ordering.

5. Return to step 2 and continue until an overall
CASSCF energy stationary point is found.

III. RESULTS AND DISCUSSION

We now turn to a collection of molecular examples with
which we seek to gain insight into three key questions.
First, how effective is the WΓ approach at overcoming
root flipping in comparison to the MOM and SRS meth-
ods? Second, can the WΓ approach succeed in cases
where there are nearly degenerate states that cannot be
distinguished by W alone? Finally, do the SS-CASSCF
solutions that this approach helps us find outperform
their SA-CASSCF counterparts as reference functions
for post-CASSCF methods like CASPT2 and Davidson-
corrected multi-reference configuration interaction with
singles and doubles (MRCI+Q)?

These questions are studied in the molecular systems
summarized in Table I. The cc-pVDZ basis set was used
throughout, as were CASSCF energy, orbital gradient,
and density matrix convergence thresholds of 10−7, 10−4,
and 10−4, respectively. In most cases, we began our opti-
mizations in the HF orbital basis, but in MgO we began
in the LDA basis instead because both the MOM and
WΓ approaches converged more rapidly from an LDA
starting point. All CASPT2 and MRCI+Q calculations
were carried out using Molpro,57 while EOM-CCSD cal-
culations were performed using QChem.58 Note that all
post-CASSCF methods employed the usual frozen-core
approximation, but for CASSCF itself the core was frozen
or not as described in Table I. For MRCI+Q, we used
Molpro’s default convergence thresholds for the energy
and density matrix in all systems except for MgO, where
we found it necessary to set them both to 10−5 in order
to avoid unstable oscillations in the energies.

TABLE I. Summary of frozen and active orbitals used for
all systems.

Molecules frozen orbitals active orbitals

LiH none 4e,4o: Li 1s2s2pz H 1s

O3 O 1s2s 12e,9o: O 2p

CH2O C 1s2s O 1s2s 8e,8o: C 2p O 2p H 1s

MgO none 8e,8o: Mg 3s3p O 2s2p
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FIG. 1. Left panel: The change in energy during CASSCF optimizations of the first excited state (A1Σ+) of LiH at
a bond distance of 2.6 Å. The SRS, MOM, and WΓ approaches all start with the Hartree-Fock orbitals as the initial
guess. For reference, the horizontal lines show the FCI energies for the ground and excited states. The inset shows
the 2σ and 3σ natural orbitals and occupation numbers for the excited state as produced by the WΓ approach. The
occupation numbers from FCI (the second number) are given for comparison. Li and H atoms are in purple and
white, respectively. Right panel: Excitation energy errors relative to FCI at different bond distances R.

A. LiH

Let us begin with the well-known example of root
flipping that occurs in LiH. Near the equilibrium bond
length (∼1.6Å), this molecule’s ground state (X1Σ+) is
basically ionic, while the first excited state (A1Σ+) is pre-
dominantly neutral due to a charge transfer excitation.
As the bond length is stretched, however, the ground
state becomes increasingly neutral and the excited state
increasingly ionic. At intermediate distances, the sys-
tem shows an avoided crossing between these states that
causes a well-recognized example of root flipping for SRS,
as seen in the left panel of Figure 1. As the orbitals are
optimized for the excited state, the energy of the ground
state CASCI root rises while that of the excited state
root falls. Soon the two roots flip in the energy ordering,
at which point SRS is now effectively trying to optimize
the orbitals for the ground state, which in turn causes the
energy ordering to flip back. This process continues in-
definitely, preventing the SRS approach from converging
at all.

After the first orbital relaxation, both the MOM and
WΓ approaches recognize that the ordering of the roots
has changed and select the lower root, thus diverging
from the optimization path of SRS. Their two quality
measures then select the same root for one more iter-
ation, at which point orbital relaxations clearly work to
push the state towards the ground state, as can be seen by
the large energy lowering between macro iterations 2 and
3. It is here that the two methods diverge, with MOM’s
quality measure selecting the root that ultimately be-
comes the ground state. The WΓ measure, on the other
hand, successfully keeps track of the excited state root

and ultimately converges to a CASSCF stationary point
that clearly corresponds to the desired excited state. As
seen in the right panel of Figure 1 and in the more de-
tailed tabulation within the Supporting Information (SI),
this success is repeated at all bond distances, and we
find that the excitation energies based on SS-CASSCF
energy differences tend to be a bit more accurate than
those based on equally-weighted SA-CASSCF energies.

B. Asymmetric O3

We now turn to asymmetrically stretched ozone, in
which we focus our attention on two nearly degenerate
excitations at the somewhat arbitrary asymmetric ge-
ometry RO1O2

= 1.3 Å, RO2O3
= 1.8 Å, ∠O1O2O3 =

120◦. These states correspond to the fourth and fifth
SS-CASSCF excitation energies (relative to the ground
11A′ state) in this Cs geometry’s A′′ representation, and
so we will label them as 41A′′ and 51A′′ even though
we will see that when out-of-active-space correlation is
included it is no longer obvious which actually has the
lower energy. The 41A′′ state’s primary component is
the configuration with four singly occupied orbitals re-
sulting from a double excitation that moves one electron
each from the two highest-occupied A′ orbitals into the
lowest unoccupied A′ and A′′ orbitals, whereas the 51A′′

state’s primary component is the single excitation from
the highest-occupied A′′ orbital into the lowest unoccu-
pied A′ orbital. That said, both of these states have
nontrivial coefficients on the other state’s primary com-
ponent, meaning that neither state can be described as a
simple single excitation. To add to the confusion, these
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FIG. 2. The energy of the selected root after each CASCI calculation during SS-CASSCF optimizations of asymmetric
O3. The left and right panels show results when the SRS, MOM, and WΓ methods are initialized with the 41A′′ and
51A′′ CASCI roots, respectively, in the initial Hartree-Fock orbital basis.

states show up in the reverse order (51A′′ before 41A′′)
in the energy-ordered CASCI roots in the initial HF or-
bital basis, and so root flipping is essentially guaranteed
during state-specific optimization.

Unlike the lowest three A′′ states — all of which con-
verge without trouble using SRS — this pair of states
proves a nontrivial challenge for state specific optimiza-
tion. As shown in Figure 2, the MOM finds the 41A′′ sta-
tionary point without difficulty when starting from the
corresponding (fifth) A′′ root of the HF-orbital CASCI,
but becomes trapped in a limit cycle when we target
the 51A′′ by starting from the corresponding (fourth)
root. SRS succeeds in finding both stationary points, but
it does so by making a root-flipping-induced qualitative
swap in the state being tracked. This (or perhaps collapse
to a lower state) is to be expected, as the energy ordering
of these states is reversed at their individual stationary
points as compared to the initial HF-orbital CASCI. The
practical results are twofold. First, the state the user
gets is not the same excited state as was initially tar-
geted. Second, the convergence of the 41A′′ state proves
to be very slow with the gradient still not quite converged
even after 100 macro iterations.

The WΓ approach, in contrast, converges rapidly for
both the 41A′′ and 51A′′ states when it is initiated
with the corresponding root from the initial HF-orbital
CASCI. Unlike SRS, these optimizations do not involve
any switching between qualitatively different states, de-
spite the fact that the energy ordering does change. We
explicitly verify that the desired state is tracked at every
iteration of the optimization in Figure 3, which shows
both how little the relevant active space natural orbital
occupation numbers change as well as how clearly qual-
itatively different the 41A′′ and 51A′′ states are. At
convergence, we see that the stationary points found in
the WΓ approach correspond closely to both the ini-
tial CASCI wave functions and the results from equal-

weighted 3-state (11A′, 41A′′, 51A′′) and 6-state (11A′,
11A′′, 21A′′, 31A′′, 41A′′, 51A′′) SA-CASSCF calcula-
tions.

Of course, when comparing to SA-CASSCF, the more
pressing question is whether the ability to find the correct
stationary points in SS-CASSCF offers any advantages in
final accuracy. To investigate this question, we have per-
formed both CASPT2 and MRCI+Q calculations based
on the different SS and SA wave functions, the results of
which are displayed in Figure 4. We find that MRCI+Q
predicts the states to be nearly degenerate with excita-
tion energies within 0.02 eV of each other regardless of
whether we base it on either of the SA-CASSCF calcula-
tions’ orbitals or on the SS-CASSCF orbitals.

Note that the latter SS-MRCI+Q case amounts to
three different MRCI+Q calculations, one each in the
ground, 41A′′, and 51A′′ state’s orbital basis, with the
appropriate MRCI+Q root’s energy extracted in each
case. CASPT2, on the other hand, only predicts the
degeneracy to be within 0.02 eV when based on the SS-
CASSCF wave functions, showing gaps of more than 0.07
eV in both the 3-state and 6-state SA cases (note that
we used single-state zero order Hamiltonians for CASPT2
both when starting from SA-CASSCF and SS-CASSCF).
One way to explain these findings is to note that the
out-of-active-space single excitations that provide state-
specific orbital relaxations are treated perturbatively in
CASPT2, and so the fact that SS-CASSCF has already
provided state-specific orbitals puts us in a regime where
the perturbative assumption of small singles (and dou-
bles) coefficients is more likely to be satisfied in practice.
Although the improvement is modest, the SS-CASPT2 is
in closer agreement with MRCI+Q than is SA-CASPT2,
which is encouraging as it suggests that SS-CASSCF may
help the lower-cost CASPT2 method agree better with
the higher-cost and typically higher-accuracy MRCI+Q
method. As we will see, this same pattern plays out again
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SA-CASSCF wave functions.

and again in the states studied below.

C. CH2O

We now turn to formaldehyde — with C2V geometry
RCO = 1.2Å, RCH = 1.1Å,∠(H,C,H) = 116.43◦ — to in-
vestigate a case of two excited states with very similar
components. According to EOM-CCSD, there are two
excited states in the 1A1 symmetry sector whose princi-
pal components are superpositions of the 1b1 → 2b1 and

2b2 → 3b2 single-electron transitions (orbitals are plotted
in Figure 5). These two states, which in the HF-orbital
CASCI are the 21A1 and 41A1 states, are dominated by
the sum of or difference between these components and
turn out to have very similar natural orbital occupation
numbers (see Figure 5). One might worry that such sim-
ilarity could confuse a density matrix based approach,
whereas it looks at first glance like the MOM approach
should be effective as the CI vectors are clearly quite
different, at least according to EOM-CCSD. As we will
see, however, the more difficult of these two states con-
founds both the MOM and WΓ approaches as we defined
them in Section II, and we were only able to succeed with
SS-CASSCF by increasing the weighting of the density
matrix difference within our QWΓ measure.

Starting all CASSCF optimizations with HF orbitals
as the initial guess, we find that the SRS, MOM, and
WΓ approaches all succeed at finding the energy station-
ary point associated with the 21A1 state. However, even
though we are using a nearly full-valence active space,
none of these approaches succeeded for the 41A1 state
when applied as described in the theory section. For ex-
ample, Figure 5 shows how the MOM approach collapses
to the ground state after just a few macro iterations. In-
terestingly, this 41A1 state proves to be an example of a
case in which the relative weighting of the W1, W2, and
D components matters when employing the WΓ quality
measure of Eq. (9). When we double the weighting of the
density matrix difference, i.e. QWΓ →W0 +W1 +2D, the
WΓ approach converges successfully to the 41A1 state, as
seen in Figure 5. Thus, despite this being a case where
it is not obvious a priori that root flipping will occur and
despite the states in question having easily distinguished
CI vectors at the outset of the optimization, we find that
the approach that incorporates density matrix differences
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is more effective at converging to the relevant stationary
points than either the SRS or MOM approaches.

To ascertain how much the ability to find these states’
stationary points matters at the end of the day, we
compare CASPT2 and MRCI+Q results based on SS-
and SA-CASSCF in Table II. Here we have employed
two SA schemes, one that gives equal weighting to the
first four 1A1 states (w1) and one that uses weightings
of (0.6, 0.1, 0.1, 0.2) and (0.2, 0.1, 0.1, 0.6) when model-
ing the ground and 41A1 states, respectively (w2). As
CASPT2 was found to suffer from intruder states, we
have employed two different level shifts in each case. One
difference that is noticed immediately is that, compared

TABLE II. Excitation energies (eV) for the 21A1 and
41A1 states of CH2O along with the IPEA level shifts
(a.u.) used for CASPT2.

Method Shift 21A1 41A1

SA(w1)-CASPT2 0.1 9.71 10.94

SA(w1)-CASPT2 0.2 9.83 11.15

SA(w1)-MRCI+Q N/A 9.86 11.10

SA(w2)-CASPT2 0.1 N/A 11.03

SA(w2)-CASPT2 0.2 N/A 11.19

SA(w2)-MRCI+Q N/A N/A 11.21

SS-CASPT2 0.1 9.74 11.24

SS-CASPT2 0.2 9.83 11.35

SS-MRCI+Q N/A 9.83 11.30

EOM-CCSD N/A 10.08 11.38

to SA-CASPT2, the excitation energies for SS-CASPT2
are less sensitive to changes in the level shift, which is
certainly a desirable property. For the 21A1 state, we see
that CASPT2 and MRCI+Q excitation energies are not
so sensitive to the choice between SA-CASSCF and SS-
CASSCF. Note that for this state, there is some question
about how accurate EOM-CCSD is expected to be, as the
CASSCF CI vectors all show a significant weight on the
(2b2)2 → (2b1)2 double excitation, and EOM-CCSD is
known to overestimate the energies of double excitations
due to its inability to relax their orbitals.4–6 The 41A1

state, on the other hand, does not have any significant
doubly excited components, and so the coupled cluster
result should be more reliable for it. Indeed, we find that
as we go in order of increasing state specificity, SA(w1)
→ SA(w2)→ SS, the CASPT2 and MRCI+Q results for
this state move towards the coupled cluster number, sug-
gesting that there is a modest accuracy improvement to
be had for this state by achieving SS-CASSCF. Recalling
that overall cost in large systems is dominated by post-
CASSCF methods, we see that accuracy improvements of
this type should be achievable at a negligible extra cost
compared to a SA approach.

D. MgO

The final system we investigate is MgO at a bond dis-
tance of 1.8 Å. Like LiH, the ground state at this near-
equilibrium geometry has ionic character, but in MgO
the closed-shell determinant that dominates the ground
state wave function is somewhat doubly ionic, with both
of Mg’s 3s electrons moving into a bonding σ orbital
with substantial O 2p character. We therefore expect
to find a challenging assortment of low-lying excitations
including double charge transfers that return the system
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to more neutral states as well as excitations that retain
the ground state’s ionic nature. Indeed, Table III shows
that the eight lowest-lying 1A1 states in an initial CASCI
calculation in the LDA orbital basis (LDA-CASCI) con-
tain three excited states whose dipoles suggest that they
largely retain the ground state’s ionic nature, as well
as four charge transfer states whose electron densities
have shifted significantly towards the Mg atom. The
prevalence of double excitations and even double charge
transfers among these states makes MgO a clear example
where a multi-reference treatment is necessary, but the
mixture of neutral and ionic states makes it hard to know
a priori how to construct a SA scheme that treats all
states fairly. Ideally, this concern could be bypassed via
state-specific optimization, in which the CASSCF energy
stationary point corresponding to each of these states was
located. However, as we now discuss, MgO proves to be
especially difficult in this regard, with SRS failing to con-
verge to the targeted excited state in every case and the
MOM and WΓ approaches succeeding in only 4 and 6
out of the 7 cases, respectively.

To begin, we emphasize that the SRS approach fails to
converge to the initially targeted state in every one of the
seven MgO excited states studied here. That said, Fig-
ure 6 shows that although there are cases where SRS does
not converge at all, it often finds a stationary point corre-

TABLE III. Information for the eight lowest MgO 1A1

states in the initial LDA-CASCI calculation, including
their dipole moments (µ, in Debye), dominant excitation
characters (DECs) and primary active space configura-
tions (PASCs). For states with two important configu-
rations of nearly equal weight, we have listed both. See
Figure S1 in the SI for the LDA orbital shapes. Note
that we order the states’ labels within a category (GS for
ground state, M for missing, V for valence, CT for charge
transfer) by their SS-CASSCF energies and that the or-
dering of CT3 and CT4 inverts during SS optimization.

State Label µ DECs PACSs

11A1 GS –3.95 N/A 5σ22π46σ2

21A1 M1 –5.39 6σ → 7σ 5σ22π46σ17σ1

2π → 3π 5σ22π36σ23π1

31A1 V1 –4.88 2π → 3π 5σ22π36σ23π1

41A1 V2 –5.93 6σ → 8σ 5σ22π46σ18σ1

51A1 CT1 3.84 2π2 → 7σ2 5σ22π26σ27σ2

61A1 CT2 3.93 2π2 → 7σ2 5σ22π26σ27σ2

6σ2 → 7σ2 5σ22π47σ2

71A1 CT4 2.33 2π6σ → 3π7σ 5σ22π36σ13π17σ1

81A1 CT3 3.66 2π6σ → 3π7σ 5σ22π36σ13π17σ1

2π2 → 7σ2 5σ22π26σ27σ2

sponding to a different state than the one originally tar-
geted. This is true even when targeting state V2, which
in Figure 6 looks like a success. However, inspecting
the converged wave function’s natural orbital occupation
numbers and comparing to those in Figure 7 (and Ta-
ble S2 in the SI), we find that when targeting state V2,
SRS converges to the nearly-degenerate stationary point
belonging to state CT1. Similarly, when targeting CT1,
CT2, and CT3, SRS converges to the stationary points
for CT2, CT3, and a state outside our set of seven, re-
spectively.

Compared to SRS, both the MOM and WΓ approaches
prove substantially more effective. For the six states
shown in Figure 6, they at least both converge to a sta-
tionary point in every case. Careful inspection of the
final wave functions, including the natural orbital occu-
pation analysis of Figure 7, shows that WΓ in fact con-
verges to the intended stationary point in all six cases.
In contrast, MOM succeeds in only four cases: when at-
tempting to find the stationary point for the CT1 and
CT4 states, it collapses to the V1 stationary point. We
therefore see that, as in other systems in this study, the
WΓ approach proves more effective for SS-CASSCF than
the CI-vector-based MOM, while both of these greatly
outperform SRS. That said, we note that none of these
methods succeeded in converging to the M1 stationary
point, and indeed we have not been able to locate this
point by any means. Thus, while the WΓ approach is
promising, it would clearly benefit from further improve-
ments in future work.

To investigate whether these SS-CASSCF solutions
offer advantages when using post-CASSCF methods,
we must first decide on SA schemes to compare them
against. There are of course an infinite number of possi-
ble SA weighting schemes, and it can be difficult to pre-
dict a priori what will be most effective. While this dif-
ficulty is especially concerning in a case like MgO where
different states have significantly different charge distri-
butions, we have used two SA schemes here that each
try to achieve simple forms of balance. First, we take an
equally-weighted 8-state SA approach, which we denote
as SA(8). Second, we attempt to minimize the number of
states involved in the average by only including enough
states such that the desired state is present, and equally
weight the states in the average. This SA(N) approach is
much less straightforward, because the Nth initial LDA-
CASCI root does not necessarily show up in the same
order (or at all) in an N -state SA. States V1, CT1, CT2,
and CT3, show up as the Nth root in equal-weight N -
state SA calculations for N =2, 3, 5, and 8, respectively.
However, the near-degeneracy between V2 and CT1 at
the CASSCF level prevents V2 from showing up at all in
a 4-state SA. The minimum number of states to include
in order for V2 to show up turned out to be N = 6, in
which case it appears as the 6th root. State CT4 was
even more problematic, and indeed does not show up at
all in equal-weight SA calculations for any N ≤ 8, which
is unsurprising in light of how much higher in energy
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FIG. 6. The selected CASCI root’s energy at each macro iteration during SS-CASSCF optimizations of six MgO
excited states under the the SRS, MOM, and WΓ approaches to root selection.

its stationary point in Figure 6 is relative to the initial
LDA-CASCI energy. Thus, in summary, CT4 was not in-
cluded in the SA comparison, while the SA(N) approach
for states V1, V2, CT1, CT2, and CT3 uses the values
N = 2, 6, 3, 5, and 8, respectively.

The LDA-CASCI, CASSCF, CASPT2, and MRCI+Q
excitation energies for the six 1A1 excited states for which
SS-CASSCF stationary points were found are shown in
Table IV. In Figure 8, we show the difference from
the corresponding MRCI+Q excitation energies for both
CASSCF and CASPT2 when working in different meth-
ods’ (LDA, SA(8), SA(N), SS-CASSCF) orbital bases.
In every case, the SS-CASSCF orbital basis leads to the
smallest difference between CASPT2 and MRCI+Q exci-
tation energies, which supports the hypothesis that state-
specific orbital relaxations should be beneficial when re-
lying on the perturbative assumption that the CASSCF
wave function is close to the exact wave function. Un-
surprisingly, working in the LDA orbital basis led to the
largest differences, while the SA approaches were in be-
tween these two extremes. While SS-CASSCF thus ap-
pears to offer improvements for CASPT2, it is important
to note that its CASSCF excitation energies are often
not closer to the corresponding MRCI+Q when compared
to the situation in SA-CASSCF, as revealed by the left
panel of Figure 8. This result should not be surprising,
as CASSCF lacks all out-of-active-space weak correla-
tion effects, the size of which is expected to differ signif-
icantly for different states. For example, neutral states
have roughly 12 and 8 electrons located on the Mg and O
atoms, respectively, while the doubly ionic ground state

has 10 and 10, and so these states have different numbers
of electrons in close proximity to each other. As most of
the energetic effects coming from weak electron correla-

TABLE IV. Excitation energies for six 1A1 excited states
of MgO. CASPT2 used an IPEA level shift of 0.2 a.u.
to avoid intruder states. In some cases, states were
not found (NF) in the SA approach, and in others, the
MRCI+Q Davidson solver did not converge (NC).

Method V1 V2 CT1 CT2 CT3 CT4

LDA-CASCI 3.70 6.46 5.10 7.14 8.16 8.07

LDA-CASPT2 3.80 6.42 5.68 6.21 6.02 7.31

LDA-MRCI+Q 3.81 6.33 5.92 5.59 6.57 NC

SA(8)-CASSCF 3.97 7.24 5.10 5.67 6.94 NF

SA(8)-CASPT2 3.91 6.76 5.68 6.23 7.02 NF

SA(8)-MRCI+Q 3.81 6.31 5.92 6.46 6.66 NF

SA(N)-CASSCF 4.10 6.76 5.29 5.94 6.94 NF

SA(N)-CASPT2 3.89 6.57 5.66 6.32 7.02 NF

SA(N)-MRCI+Q 3.76 6.39 5.99 6.46 6.66 NF

SS-CASSCF 4.88 6.60 6.57 7.16 8.39 11.47

SS-CASPT2 3.76 6.55 5.73 6.32 6.91 10.44

SS-MRCI+Q 3.79 6.52 5.97 6.44 6.76 NC
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FIG. 7. MgO’s excited states may be distinguished using
natural orbital occupation numbers.

tions are local in nature, a crude accounting of how many
local electron pairs can be enumerated on each atom (12
choose 2 and 8 choose 2 compared to twice 10 choose 2)
suggests that the size of weak correlation effects should
be different for different states. Thus, while SS-CASSCF
does not and is not expected to bring the CASSCF en-
ergetics closer to those of MRCI+Q, it does serve as a
better platform for CASPT2 than either of the two SA
approaches.

IV. CONCLUSION

We have presented an approach for locating state-
specific CASSCF energy stationary points that over-
comes root flipping via a metric of quality based on an
excited state variational principle and density matrix dif-
ferences. This approach was inspired by both the maxi-
mum overlap method and recent progress in excited state
variational methods, as well as the twin goals of control-
ling cost and maintaining compatibility with widely used
tick-tock methods that treat orbital and CI coefficients
in separate optimization steps. Our central finding is
that this approach is highly effective in the face of both

root flipping and near-degeneracies, significantly outper-
forming both simple root selection and a CI-vector-based
adaptation of the maximum overlap method. Although
the improvements can be modest, we find that, compared
to state averaging, state-specific CASSCF provides a su-
perior starting point for CASPT2 in that it brings this
method’s excitation energies more closely in line with
those of the more reliable but expensive MRCI+Q. As
the additional cost of converging each CASSCF state in-
dividually is typically small compared to the cost of post-
CASSCF methods, we are happy to recommend that ap-
plications of this approach be explored across a wider
spectrum of chemical systems.

Aside from post-CASSCF accuracy improvements, the
ability to locate individual excited states’ energy station-
ary points delivers a number of important and useful
properties. Unlike state averaged CASSCF, the excited
state specific version retains the size extensivity and size
consistency of its ground state counterpart, which implies
that its CASSCF excitation energies will be size inten-
sive. Furthermore, stationarity with respect to the en-
ergy makes the calculation of many properties, not least
of which are the nuclear gradients, significantly more
straightforward as it avoids the need for Lagrangian or
Z-vector techniques. Finally, state-specific optimization
avoids the need to decide on how many states to average
and what weights to use, choices that are both difficult
to justify a priori and which can have significant effects
on CASSCF and post-CASSCF energetics.

While we have presented evidence in this study of how
our approach to stationary points can be beneficial to
CASPT2, other excited state methods are likely to ben-
efit as well. For example, the most difficult optimization
stage in the application of variational Monte Carlo to
excited states tends to be the step in which orbital relax-
ations are enabled. A question that we are very eager to
answer in future work is thus whether orbitals optimized
for an individual excited state by CASSCF could serve
as a good alternative to those optimized by Monte Carlo,
and whether these two sources of optimized orbitals make
any difference in practice when fed in to the diffusion
Monte Carlo method. Back in the area of quantum chem-
istry, it is quite possible that the recently-introduced ex-
cited state mean field method could be accelerated by
tick-tock optimization methods, at which point it too
would come face to face with root flipping issues that the
WΓ approach presented here might alleviate. Finally,
it will be exciting to pair this improved state-specific
methodology with large active space methods, which al-
ready offer substantial advantages when dealing with root
flipping.

Looking forward, there are numerous promising ways
to extend and apply this new methodology. Although
we have chosen to avoid the double excitation compo-
nents of the variational principle in the present study to
keep the approach simple and inexpensive, an excellent
approximation to the effect of this term should be acces-
sible via the application of modern selective CI integral
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handling technology. Similarly, although the two-body
reduced density matrix in the full orbital space may be
impractical to employ for root comparisons due to high
memory demands, one can imagine inspecting it in a
second, much larger active space. As we have already
identified at least one state in MgO that continues to
defy all of the attempted state specific optimizations, we
are eager to explore these extensions in order to make
the methodology more reliable and robust. In terms of
applications, the freedom to define the target state in
whichever way the user chooses would appear to be a
natural fit when trying to optimize the two (or more!)
adiabatic states near a conical intersection. While these
states mix freely at the intersection itself and so differen-
tiating between them in terms of their diabatic character
is less meaningful, away from but nearby the intersec-
tion the use of diabatic states as the targets for state-
specific CASSCF optimization could help identify which
adiabatic states are which and also help ensure that all

the states in question were found in the state specific
optimization process. More generally, it will be interest-
ing to investigate how a more aggressively state-specific
approach to excited states in CASSCF can be applied to
the ongoing challenge of handling the strong excited state
orbital relaxations common to core and charge transfer
excitations.
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SUPPORTING INFORMATION

TRACKING EXCITED STATES IN WAVE
FUNCTION OPTIMIZATION USING

DENSITY MATRICES AND VARIATIONAL
PRINCIPLES

Lan Nguyen Tran, Jacqueline A. R. Shea and Eric
Neuscamman

TABLE S1. Excitation energies (in eV) for A1Σ+ of LiH
from FCI, SA- and SS-CASSCF at different bond lengths
(in Å).

R FCI SA-CASSCF SS-CASSCF

1.2 3.85 3.47 3.58

1.4 3.71 3.36 3.47

1.6 3.47 3.14 3.26

1.8 3.18 2.88 3.01

2.0 2.86 2.61 2.73

2.2 2.55 2.34 2.45

2.4 2.25 2.09 2.18

2.6 1.98 1.87 1.94

2.8 1.75 1.68 1.74

3.0 1.56 1.54 1.58

3.4 1.36 1.39 1.41

3.8 1.35 1.41 1.42

4.2 1.45 1.51 1.51
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TABLE S2. Occupation numbers and dipole moments µ (in Debye) of eight lowest 1A1 states including the ground
state from LDA-CASCI and SS-CASSCF calculations for MgO.

CASCI
Label Method

Occupation numbers
µ

ordering 5σ 2π 6σ 3π 7σ 8σ

11A1 GS CASCI 2.00 3.92 1.63 0.07 0.36 0.00 –3.95

SS-CASSCF 2.00 3.93 1.73 0.07 0.27 0.01 –4.62

21A1 M1 CASCI 2.00 3.55 1.78 0.45 0.22 0.00 –5.39

31A1 V1 CASCI 2.00 2.99 1.99 1.00 0.02 0.00 –4.88

SS-CASSCF 2.00 3.00 1.95 1.00 0.05 0.00 –4.58

41A1 V2 CASCI 2.00 3.93 1.19 0.07 0.01 0.81 –5.93

SS-CASSCF 2.00 3.93 1.20 0.07 0.01 0.79 –5.48

51A1 CT1 CASCI 2.00 2.03 1.97 0.18 1.80 0.01 3.84

SS-CASSCF 2.00 2.16 1.90 0.28 1.65 0.01 3.14

61A1 CT2 CASCI 2.00 2.80 1.20 0.37 1.59 0.01 3.93

SS-CASSCF 2.00 2.64 1.36 0.29 1.76 0.02 3.48

71A1 CT4 CASCI 2.00 2.97 1.35 0.97 0.70 0.00 3.66

SS-CASSCF 2.00 3.00 1.20 1.00 0.82 0.00 3.16

81A1 CT3 CASCI 2.00 2.90 1.34 0.64 1.11 0.00 2.33

SS-CASSCF 2.00 2.88 1.31 0.70 1.11 0.00 2.18

5σ 6σ

7σ 8σ

2πx 2πy

3πx 3πy

FIG. S1. Shapes of the eight LDA orbitals used to construct the active space for MgO. In each image, the Mg atom
is on the left.
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