
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Attentive representations for objects detection and instance segmentation

Permalink
https://escholarship.org/uc/item/4cs646xv

Author
Wang, Xudong

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cs646xv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Attentive Representations for Objects Detection and Instance Segmentation

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Electrical Engineering
(Intelligent System, Robotics and Control)

by

Xudong Wang

Committee in charge:

Professor Nuno Vasconcelos, Chair
Professor Hao Su
Professor Mohan M. Trivedi
Professor Zhuowen Tu

2019



Copyright

Xudong Wang, 2019

All rights reserved.



The thesis of Xudong Wang is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2019

iii



DEDICATION

To my parents:

Xiurong Wang, Wei Wang.

iv



EPIGRAPH

Don’t judge each day by the harvest you reap but by the seeds that you plant

—Robert Louis Stevenson

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 2D Objects Detection . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 3D Objects Segmentation . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Multi-Domain Learning/Adaptation . . . . . . . . . . . . . . . . . 5
1.4 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Universal representations for objects detection . . . . . . . 6
1.4.2 3D context enhanced representations for 3D image segmentation 10

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Domain sensitive representations for universal objects detection . . . . . 14
2.1 Multi-domain Object Detection . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Multi-domain Datasets . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Single-domain Detector Bank . . . . . . . . . . . . . . . . 15
2.1.3 Adaptive Multi-domain Detector . . . . . . . . . . . . . . . 17
2.1.4 SE Adapters . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Universal Object detection . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Universal Detector . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Domain-attentive Universal Detector . . . . . . . . . . . . . . 21
2.2.3 Universal SE Adapter Bank . . . . . . . . . . . . . . . . . 22
2.2.4 Domain Attention . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Datasets and Evaluation . . . . . . . . . . . . . . . . . . . 24
2.3.2 Single-domain Detection . . . . . . . . . . . . . . . . . . . 25
2.3.3 Multi-domain Detection . . . . . . . . . . . . . . . . . . . 25

vi



2.3.4 Effect of the number of SE adapters . . . . . . . . . . . . . 26
2.3.5 Results on the full benchmark . . . . . . . . . . . . . . . . 28
2.3.6 Official evaluation . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3 3D context enhanced representations for 3D image segmentation . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Volumetric Attention . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Bag of Long-range Features . . . . . . . . . . . . . . . . . 36
3.3.2 Volumetric Channel Attention . . . . . . . . . . . . . . . . 37
3.3.3 Volumetric Spatial Attention . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Datasets and Evaluation . . . . . . . . . . . . . . . . . . . 38
3.4.2 Pre-processing for LiTS and DeepLesion Datasets . . . . . 39
3.4.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 LiTS Experiments . . . . . . . . . . . . . . . . . . . . . . 40
3.4.5 Extension Experiments on DeepLesion . . . . . . . . . . . 44

3.5 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



LIST OF FIGURES

Figure 1.1: Samples of our universal object detection benchmark. . . . . . . . . . . . . 8
Figure 1.2: Multi-domain and universal object detectors for three domains. . . . . . . . 9
Figure 1.3: Examples of 3D segmentation results by Mask-RCNN and our proposed

methods on the LiTS val set. . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.1: The statistics of each convolutional activation of all single-domain detectors. 17
Figure 2.2: (a) block diagram of the SE adapter and (b) SE adapter bank. . . . . . . . . 19
Figure 2.3: Block diagram of the proposed domain adaptation module. . . . . . . . . . 20
Figure 2.4: Detailed view of the universal adapter . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.5: Soft assignments across SE units for all datasets. . . . . . . . . . . . . . . 27

Figure 3.1: Architecture of the Volumetric Attention(VA) Mask-RCNN. Three continu-
ous 2.5D images, each composed of 3 adjacent slices, are shown as example. 36

Figure 3.2: Volumetric Spatial and Channel Attention Module. N is the bag size, C, H,
W the feature map channel size, height and width, respectively. Spatial and
channel pooling are used to reduce computation. . . . . . . . . . . . . . . 37

Figure 3.3: 2D visualization of segmentations by Mask-RCNN and VA Mask R-CNN on
LiTS val set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.4: FROC curves on the DeepLesion test set. . . . . . . . . . . . . . . . . . 44

viii



LIST OF TABLES

Table 2.1: The dataset details, the domain-specific hyperparameters and the performance
of the single-domain detectors. “T/V/T” means train/val/test, “size” the
shortest side of inputs, BS RPN batch size, and S/R anchor “scales/aspect
ratios”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.2: The comparison on multi-domain detection. † denotes fixed assignment.
“time” is the relatively run-times on the five datasets when the domain is
unknown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 2.3: Overall results on the full universal object detection benchmark (11 datasets). 25
Table 2.4: The effect of SE adapters number. . . . . . . . . . . . . . . . . . . . . . . . 26
Table 2.5: The comparison with official evaluation on Pascal VOC, KITTI, DeepLesion,

Clipart, Watercorlor, Comic and WiderFace. . . . . . . . . . . . . . . . . . 29

Table 3.1: Comparison with LiTS Challenge leaderboard, as of April 2, 2019 . . . . . . 41
Table 3.2: Evaluation on LiTS val set, in terms of dice per volume, averaged over all

cases, and dice per lesions, averaged over small, medium and large lesions. . 42
Table 3.3: Sensitivity (%) at 1 and 2 FPs/image on the official split test set of DeepLesion. 44

ix



ACKNOWLEDGEMENTS

I hope that I can take this opportunity to express my gratitude and thanks to my family,

friends, colleagues and advisors who helped me during my master’s degree. Without their help, it

is impossible for me to finish the graduate work and enjoy the life in San Diego, their support

benefits me a lot.

First of all, I want to express my sincerely thanks to my supervisor, Professor Nuno

Vasconcelos. During past research journy in statistical visual and computing lab, his serious

research attitude and splendid research ideas led me into this whole new world for me, I feel so

fortunate to have him as my first mentor. His deep understanding and mastery of fundamental

problems of computer vision, strong passion in research, keen insight into emerging research

areas and hard-working attitude benefits me a lot. I can still remember he modified my conference

manuscript from late evening until the first light of rising sun touched the land. He is a prominent

role model to me, always have, always will.

I also really appreciate the help from Dr. Dashan Gao. His great leadership, rigorous and

serious research attitude and optimistic attitude towards life gave me a very deep impression. He

has been working to promote the use of artificial intelligence and computer vision in industry and

medical applications. The year I worked under his supervision has boosted my research a lot.

During the past several years in statistical visual and computing lab, many colleagues

and friends in SVCL helped me a lot: Zhaowei Cai, Yi Li, Pei Wang, Bo Liu, Pedro Morgado,

Yunsheng Li, John Ho and Zhihang Ren. I started work with PhD candidate, Bo Liu, I co-authored

the first paper in SVCL with him. He taught me the fundamental knowledge and coding skills in

computer vision field. Dr.Cai is the person who leads me into objects detection, I learned a lot

from him. Many ideas and valuable suggestions from him boosted my research and inspired me,

we co-authored another paper together. Pei Wang and Yi Li joined the lab one year later than me,

we talked with each other quite a lot and enjoyed many beautiful lunch time together. I want to

show thanks to Pedro Morgado, he took a lot of time on maintaining the GPU server and linux

x



server, which provide solid backup for all the members in SVCL. I would like to thank them all

and give my best wishes to their future research and career.

I also want to say thank you to my close friends, Ziyao Tang and Haifeng Huang in San

Diego, I will miss the weekly dinner with them. We three almost tried every Chinese restaurants

in San Diego together, every Friday night, the delicious dinner with them will always dispel

all the unhappiness away from me. I would like to thank the colleagues, Dr. Dashan Gao, Dr.

Yunqiang Chen, Xin Zhong, Dr. Patrick Langechuan Liu, Dr. Darryl Lin, Yuanpeng Wu, Weiwei

Liu, Dr. Jiao Wang, Dr. Shizhong Han, Dr. Yunxiang Mao, Nariaki Yamada and Jing Cai in 12

Sigma Technologies for their support, friendship and assistant during my internship period.

The last but very important, I want to appreciate the support from my family. No words

can express, no act of gratitude can relay, no gift can represent what their encouragement and

support have meant to me.

Chapter 2, in part, is a reprint of the material as it appears in In Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019. Xudong Wang, Zhaowei Cai, Dashan

Gao, Nuno Vasconcelos., IEEE, 2019. The thesis author was the primary investigator and author

of this paper.

Chapter 3, in part, has been submitted for publication of the material as it may appear

in International Conference on Medical Image Computing and Computer Assisted Interven-

tion(MICCAI), 2019, Xudong Wang, Zhaowei Cai, Dashan Gao, Nuno Vasconcelos., Springer,

2019. The thesis author was the primary investigator and author of this paper.

xi



VITA

2016 B. S. in Engineering, Jilin University, Jilin, China

2019 Master of Science, Electrical Engineering, Intelligent System, Robotics
and Control, University of California, San Diego

PUBLICATIONS

Xudong Wang, Shizhong Han, Dashan Gao, Nuno Vasconcelos. Volumetric Attention for 3D
Medical Image Segmentation and Detection. under review in International Conference on Medical
Image Computing and Computer Assisted Intervention(MICCAI), 2019

Xudong Wang, Zhaowei Cai, Dashan Gao, Nuno Vasconcelos. Towards Universal Object
Detection by Domain Attention.In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition(CVPR), 2019.

Bo Liu, Xudong Wang, Mandar Dixit, Roland Kwitt, Nuno Vasconcelos. Feature Space Transfer
for Data Augmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition(CVPR), 2018

xii



ABSTRACT OF THE THESIS

Attentive Representations for Objects Detection and Instance Segmentation

by

Xudong Wang

Master of Science in Electrical Engineering
(Intelligent System, Robotics and Control)

University of California San Diego, 2019

Professor Nuno Vasconcelos, Chair

In this thesis, we focused on investigating novelty modules integrated into popular detec-

tion network for assisting it to learn attentive representations for several practical applications

in objects detection and instance segmentation tasks, including universal object detection and

3D medical image segmentation tasks. For universal object detection task, despite increasing

efforts on universal representations for visual recognition, few have addressed object detection.

In this thesis, we develop an effective and efficient universal object detection system that is

capable of working on various image domains, from human faces and traffic signs to medical

CT images. Unlike multi-domain models, this universal model does not require prior knowledge

xiii



of the domain of interest. This is achieved by the introduction of a new family of adaptation

layers, based on the principles of squeeze and excitation, and a new domain-attention mechanism.

In the proposed universal detector, all parameters and computations are shared across domains,

and a single network processes all domains all the time. Experiments, on a newly established

universal object detection benchmark of 11 diverse datasets, show that the proposed detector

outperforms a bank of individual detectors, a multi-domain detector, and a baseline universal

detector, with a 1.3× parameter increase over a single-domain baseline detector. For 3D medical

images segmentation tasks, although high resolution 3D medical images offer abundant detail

information of human body parts and allow early detection of small lesions, due to the limitation

of GPU memory, most methods either use down-sampled 3D volume as input, which significantly

affects the detectability of small lesions, or use 2.5D networks to crop out neighboring image

slices at original resolution, which loses context information along z direction. Both ways can

significantly affect the performance of final model. In this paper, we propose a cross-slice spatial

and channel attention module, which can maintain spatial resolution of input data, and effectively

utilize context information along z direction of 3D volume. In order to get higher quality mask

prediction, a cascade mask refinement module is designed to provide an objectiveness pixel-wise

attention map for input feature maps. Furthermore, our scheme allows us to utilize the pretrained

2D detection models to achieve good results even with limited amount of training data, which is

often met in medical applications and imposes big challenge to many deep learning methods. By

utilizing the two novel modules, we achieve state-of-art performance 74.10 dice per case on Liver

Tumor Segmentation Challenge(LiTS), which outperforms previous year challenge winner by 6.7

points and rank as 1st on leader board of LiTS benchmark upon submission of this paper.
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Chapter 1

Introduction
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1.1 2D Objects Detection

There has been significant progress in object detection in recent years [Gir15, RHGS15,

CFFV16, LDG+17, HGDG17, CV18], powered by the introduction of convolution network(ConvNet)

and the availability of challenging and diverse object detection datasets, e.g. PASCAL VOC

[EEVG+15], COCO [LMB+14], KITTI [GLU12], WiderFace [YLLT16], etc. Generally, Con-

vNet based object detection network can be divided as two-stage based detector and single-stage

based detector, which will be described as followings.

R-CNN[GDDM14] utilizes a selective search method to generate limited amount of

proposals, instead of using sliding windows methods with huge number of regions, for regressing.

ConvNet will be used for feature extrction followed by a SVM as regionwise proposals classifier

to get per-proposal category prediction. However, due to the fact that selective search method is

not trainable, proposal quality is not satisfactory. Also, the testing and training speed of R-CNN

is very slow and is not able to be used as real-time detector. To bypass above limitations of

R-CNN, Fast R-CNN[Gir15] is proposed. Fast R-CNN will identify region of interests from heat

maps generated by feeding images to CNN layers, the trainable CNN layers boosts proposal

qualities of Fast R-CNN compared with R-CNN. For speeding up inference time, SVM is

replace by a fully connected layers and a softmax layer, which can process all ROIs extracted

features together, therefore, inference time can decrease a lot. Faster R-CNN[RHGS17] further

increased training and inference speed by using CNN layers called region proposal network(RPN)

to provide proposal predictions, predicted regions proposals are used for extracting interested

features regions with ROI pooling operator and the second stages will jointly do classification and

bounding box offsets prediction. Many works have expanded Faster R-CNN base architecture.

For example, MS-CNN [CFFV16] and FPN [LDG+17] built a feature pyramid to effectively

detect objects of various scales; the R-FCN [DLHS16] proposed a position-sensitive pooling to

achieve further speed-ups; and the Cascade R-CNN [CV18] introduced a multi-stage cascade for
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high quality object detection.

In parallel, single-stage object detectors, such as YOLO [RDGF16] and SSD [LAE+16],

became popular for their fairly good performance and high speed. [RDGF16] proposed much

faster network with single stage which predicts bounding boxes and class probabilities directly

from full images in one evaluation, however, the performance YOLO is still much worse than

Faster R-CNN. SSD[LAE+16] will provide category scores and box offset of different scales

from different feature scales, they also proposed new matching strategies, based on these method,

SSD reached much higher performance than YOLO with competitive inference and training

speed. Some anchor free detectors are also proposed for realizing comparable performance with

complicated two-stage detector and meanwhile, maintaining the speed adavantages of one-stage

detector. CornerNet[LD18] proposed a single-stage network which gives the bounding box

prediction by predicting the bottom-right and top-left corners, instead of regressing manually

designed anchor boxes as other single-stage detector, such as YOLO[RF18] and SSD[LAE+16].

CenterNet[ZWK19] will consider object detection problems as key point prediction problems,

the main task will be predicting center point of objects bounding boxes and regressing object

size(width and height of bounding box), dimension(2D or 3D), 3D context, orientation and some

other related properties of target objects. Due to the simplicity of anchor free methods, they are

able to reach pretty good speed-accuracy trade-off on objects detection tasks.

However, all these network need to be fine-tuned on target domain if they want to reach

good performance on target datasets. Therefore, none of these detectors could reach high detection

performance on more than one dataset/domain without finetuning. In the pre-deep learning era,

[KZM+12] proposed a universal DPM [FGMR10] detector, by adding dataset specific biases to

the DPM. But this solution is limited since DPM is not comparable to deep learning detectors.

3



1.2 3D Objects Segmentation

A natural solution to 3D medical image segmentation and detection problems is to rely

on 3D convolutional networks, such as the 3D U-Net of [ÇAL+16] or the extended 2D U-Net

of [RFB15]. However, current GPU memory limitations prevent the processing of 3D volumes

with high resolution. This is problematic, because the use of low-resolution volumes leads to

low precision or miss-detection of small lesions and tumors and blur in lesion mask predictions,

especially on boundaries. Hence, there is a need to trade-off the spatial resolution of each 2D

slice for the number of slices processed. This implies a trade-off between the precision with

which segmentation or detection can be performed and the amount of contextual information, in

the z direction, that can be leveraged. A popular solution is to a use a 2D network to segment or

detect the structures of interest in 2D or 2.5D slices and then concatenate the results to build a 3D

segmentation mask or bounding box.

Christ et al. proposed a 2D U-Net for liver and tumor segmentation, followed by a

conditional random field for segmentation refinement [CEE+16]. Li et al. proposed a hybrid

Dense 2D/3D UNet of three-stages [LCQ+18]. They found that a pre-trained 2D model can

significantly boost performance of their network. Bi et al. proposed a two-stage cascaded deep

residual network for liver lesion segmentation [Han17]. These approaches are limited by the

lack of contextual information. Since even human experts need to inspect multiple slices to

reach confident assessments of confusing lesions, this is likely to upper bound their performance.

Ding et al. applied 2D networks to generate lesion candidates, then 3D CNN classifiers were

trained for false positive reduction (FPR). To address this problem, Yan et al. [YBS18] proposed

a 3D context enhanced region-based CNN. However, their method is based on a region proposal

network (RPN) and cannot be implemented as a single-stage detector, such as SSD and YOLO,

or a segmentation network, such as U-Net, without an RPN component. Furthermore, because

only the feature map derived from a central image is processed by the RPN to generate proposals,
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the proposal generation process has no access to 3D context. Given that missed proposals can not

be recovered, this places an upper bound on detection performance.

1.3 Multi-Domain Learning/Adaptation

Multi-domain learning (MDL) addresses the learning of representations for multiple

domains, known a priori [JCDR12, NH16a]. It uses a combination of parameters that are shared

across domains and domain-specific parameters. The latter are adaptation parameters, inspired by

works on domain adaptation [PGLC15, LCWJ15, RT18, MDL18], where a model learned from a

source domain is adapted to a target domain. [THZ+14] proposed deep domain confusion(DDC)

maximum module for learning domain invariant representations for both target and source

domains, which is powered by MMD based domain confusion loss and cross-entropy loss.

However, they will only add one domain adaptation layer, which may not be powerful enough

to solve domain adaptation problem, [LCWJ15] proposed Deep Adaptation Network(DAN)

architecture for learning transferable features with multiple kernels and layers, [YCBL14] shows

that the deeper layers will tend to learn domain-specific bias and domain discrepancy will drops

significantly along the transition from higher to lower layer of CNN network. DAN is composed of

several MK-MDD(multi-kernel variant of maximum mean discrepancies) module which adopted

mean embedding of different domain distributions for enhancing test power and decreasing test

error[LCWJ15]. For the recent years, generative adversarial net(GAN)[GPAM+14] is proposed

for estimating generative models via an adversarial process. [THSD17] utilized GAN for training a

domain discriminator and a target encoder for domain adaptation. CycleGAN [ZPIE17] introduce

the constraint of cycle-consistency to regularize the GAN model without necessarily having a

one-to-one mapping between images from input to target domain in the training set. The Domain

Transfer Network[TPW16] proposed an unsupervised image style transfer network trained with

pixel-wise loss and semantic loss. CyCADA [HTP+17] applied feature loss and pixel loss for
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adapting the learned representations at pixel and feature levels. In order to maintain structural

consistency, similar to [THSD17], cycle-consistency is used for regularizing model and semantic

loss is also applied for maintaining semantic information.

In multi-domain learning field, [BV17] showed that multi-domain learning is feasi-

ble by simply adding domain-specific BN layers to an otherwise shared network. [RBV17]

learned multiple visual domains with residual adapters, while [RBV18] empirically studied

efficient parameterizations. However, they build on BN layers and are not suitable for de-

tection, due to the batch constraints of detector training. Instead, we propose an alternative

SE adapters, inspired by “Squeeze-and-Excitation” [HSS17], to solve this problem. An-

other similar topic is about Multi-task learning (MTL). MTL investigates how to jointly learn

multiple tasks simultaneously, assuming a single input domain. Various multi-task networks

[Kok17, ZSS+18, HGDG17, LSNK17, WSL+15, ZY17] have been proposed for joint solution

of tasks such as object recognition, object detection, segmentation, edge detection, human pose,

depth, action recognition, etc., by leveraging information sharing across tasks. However, the

sharing is not always beneficial, sometimes hurting performance [EMP05, KKSA08]. To address

this, [MSGH16] proposed a cross-stitch unit, which combines tasks of different types, eliminating

the need to search through several architectures on a per task basis. [ZSS+18] studied the common

structure and relationships of several different tasks.

1.4 Contributions of the Thesis

1.4.1 Universal representations for objects detection

There has been significant progress in object detection in recent years [Gir15, RHGS15,

CFFV16, LDG+17, HGDG17, CV18], powered by the availability of challenging and diverse

object detection datasets, e.g. PASCAL VOC [EEVG+15], COCO [LMB+14], KITTI [GLU12],

WiderFace [YLLT16], etc. However, existing detectors are usually domain-specific, e.g. trained
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and tested on a single dataset. This is partly due to the fact that object detection datasets are

diverse and there is a nontrivial domain shift between them. As shown in Figure 1.1, detection

tasks can vary in terms of categories (human face, horse, medical lesion, etc.), camera viewpoints

(images taken from aircrafts, autonomous vehicles, etc.), image styles (comic, clipart, watercolor,

medical), etc. In general, high detection performance requires a detector specialized on the target

dataset.

This poses a significant problem for practical applications, which are not usually restricted

to any one of the domains of Figure 1.1. Hence, there is a need for systems capable of detecting

objects regardless of the domain in which images are collected. A simple solution is to design a

specialized detector for each domain of interest, e.g. use D detectors trained on D datasets, and

load the detector specialized to the domain of interest at each point in time. This, however, may

be impractical, for two reasons. First, in most applications involving autonomous systems the

domain of interest can change frequently and is not necessarily known a priori. Second, the overall

model size increases linearly with the number of domains D. A recent trend, known as general

AI, is to request that a single universal model solves multiple tasks [KGS+17, Kok17, ZSS+18],

or the same task over multiple domains [RBV17, BV17]. However, existing efforts in this area

mostly address image classification, rarely targeting the problem of object detection. The fact

that modern object detectors are complex systems, composed of a backbone network, proposal

generator, bounding box regressor, classifier, etc., makes the design of a universal object detector

much more challenging than a universal image classifier.

In this paper, we address the design of an object detector capable of detecting objects

from multiple domains, e.g. the 11 datasets of Figure 1.1. Figure 1.2 summarizes a number

of architectures that can be used to address the problem. In Figure 1.2, “D” is the domain, “O”

the output, “A” domain-specific adapter, and “DA” the proposed domain attention module. The

blue color and the DA are domain-universal, but the other colors domain-specific. The left two

are multi-domain detectors, requiring prior knowledge of the domain of interest. The right two

7
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Figure 1.1: Samples of our universal object detection benchmark.

are universal detectors, with no need for such knowledge. When operating on an unknown

domain, the multi-domain detector have to repeat the inference process with different sets of

domain-specific parameters, while the universal detector performs inference only once.

The detector of Figure 1.2 (a) is a bank of domain-specific detectors, with no sharing of

parameters/computations. Multi-domain learning (MDL) [JCDR12, NH16b, KCK+17, YH14,

JZCL08, DKC10] improves on this, by sharing parameters across various domains, and adding

small domain-specific layers. In [RBV17, BV17], expensive convolutional layers are shared

and complemented with light-weight domain-specific adaptation layers, implemented with a

combination of batch normalization (BN) [IS15] and ResNet-style residual layers [HZRS16].

These are not practical for object detection, due to the constraints on BN in this setting. Instead,

we propose a new class of light adapters, based on the squeeze and excitation (SE) mechanism

of [HSS17], and denoted SE adapters. This leads to the multi-domain detector of Figure 1.2 (b),

where domain-specific SE adaptation layers are introduced throughout the network to compensate

8
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Figure 1.2: Multi-domain and universal object detectors for three domains.

for domain shift. On 11 datasets, this detector outperforms Figure 1.2 (a) with ∼5 times less

parameters.

In contrast, the universal detector of Figure 1.2 (c) shares all parameters/computations1

across domains. It consists of a single network, which is always active. This is the most efficient

solution in terms of parameter sharing, but it is difficult for a single model to cover many domains

with nontrivial domain shifts. Hence, this solution underperforms the multi-domain detector of

Figure 1.2 (b). To overcome this problem, we propose the domain-attentive universal detector of

Figure 1.2 (d). This leverage a novel domain attention (DA) module based on the now proposed

SE adapters. A bank of universal SE adapters, which are used at all times, is first added to the

network. A feature-based attention mechanism is then introduced to achieve domain sensitivity.

This mechanism learns to assign network activations to different domains automatically, soft-

routing their responses through the different SE adapters. This enables the adapters to specialize

on individual domains. Since the process is data-driven, the number of domains does not have to

match the number of datasets and datasets can span multiple domains. This allows the network to

leverage shared knowledge across domains, which is not available in the common single-domain

detectors. Our experiments show that this data-driven form of parameter/computation sharing

enables substantially better multi-domain detection performance than the remaining architectures

1other than output layers
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of Figure 1.2. This allows the network to leverage the fact that some domains are close, e.g. the

everyday objects of VOC [EEVG+15] and COCO [LMB+14], but some others are very distinct,

e.g. the aerial objects of DOTA [XBD+18] and the medical images of DeepLesion [YWL+18].

1.4.2 3D context enhanced representations for 3D image segmentation

There has been significant progress in 2D object detection and segmentation in recent

years [Gir15, RHGS15, LAE+16]. Mask-RCNN [HGDG17] tried to accomplish both object

detection and 2D object instance segmentation tasks using one network by adding a branch for

predicting an object mask in parallel with the existing branch for bounding box recognition.

U-Net[RFB15] built upon fully convolutional network for 2D medical image segmentation. With

3D medical imaging, healthcare professionals can now access new angles, resolutions and details

that offer an all-around better understanding of the body part in question, all while cutting the

dosage of radiation for patients. Therefore developing a high accuracy network for segmentation

and detection on 3D CT volume will be very necessary.

For 3D medical image segmentation and detection, one solution is using 2D network to

do segmentation and detection on 2.5D or 2D slices, then concatenate all results together to build

a 3D segmentation mask or give bounding box prediction on key slices. Another one is using

3D network directly, such as 3D U-Net[ÇAL+16] extended 2D U-Net[RFB15] to learn dense

volumetric segmentation. Due to the limitation of GPU memory. If we want to use 3D network

for 3D CT images detection and segmentation, low resolution CT volume will be used as input

for 3D network to fit GPU memory, which will lead to low precision or miss-detection of small

lesions and tumors and blur lesion mask prediction, especially on boundaries. If we want to keep

the spatial resolution, we need to sacrifice the slices number, the advantage of utilizing contextual

information in z direction will be damaged. Therefore, most researchers still choose to use the

2D architecture with 2D convolution for the 3D medical CT images segmentation. Christ et al.

utilized a 2D U-Net for liver and tumor segmentation followed by a conditional random filed

10
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Figure 1.3: Examples of 3D segmentation results by Mask-RCNN and our proposed methods
on the LiTS val set.

for segmentation refinement [CEE+16]. Vorontsov et al. proposed to jointly segment the liver

and lesion together with two 2D U-Net [VTPK18]. Li et al. proposed a hybrid Dense 2D and

3D UNet with three-stage [LCQ+18]. They found that the 2D pretrained model can significantly

boost the performance. Bi et al. proposed a two-stage cascaded deep residual network for

liver lesion segmentation [Han17]. However even human experts need to look through multiple

slices before making accurate analysis on confusing lesions. Yan et al. [YBS18] proposed 3D

context enhanced region-base CNN to incorporate 3D context information and make bounding

box prediction on key slices. However, their method is based on region proposal network(RPN),

it is impossible to extend this method to one-stage detector, such as SSD and YOLO, or some

segmentation network, such as U-Net, which do not contain RPN part. Also, only the feature

map derived from the central image is sent to the RPN to generate lesion proposals and crop

feature maps across multiple images, so RPN will not be able to benefit from 3D context, missed

proposals can not be traced back.

In order to learn long-range dependencies between video frames and exploit spatial in-

formation within 3D video data, [WGGH18] added a non-local network to 3D convolutional

network(C3D/I3D) for video classification, based on a spacetime dependency/attention mecha-

nism. Inspired by [WGGH18], we proposed a flexible and computation efficient Cross-Slices

Channel and Spatial attention(CSCS) module, which sequentially infers 3D enhanced attention

maps along two separate dimensions, channel and spatial, then the attention maps are multi-

plied to the input feature map for adaptive feature refinement, based on 2D network. Similar to
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[HSS17] and [WPLK18], global spatial pooling and global channel pooling are used for reducing

computation cost. Our proposed module has several advantages: 1) It will be able to afford

high spatial resolution images, meanwhile utilize 3D context information for segmentation and

detection on 3D CT volume. 2) CSCS can be combined with any existing architectures, both

one-stage/two-stage detectors and segmentation network can benefit from it. 3) Due to spatial and

channel pooling, our proposed module is computation cost efficient. 4) This module can be added

on customized positions, RPN can also benefit from our proposed block. 5) Because our module

can be combined with 2D network, we can leverage pre-trained 2D CNN weights for transfer

learning. As we can see from Fig.1.3, with our proposed module, the improved Mask-RCNN

will not only reduce false positive segmentation, but also retrieve missed tiny lesions in original

Mask-RCNN model. In Fig.1.3, the red area denote the segmented liver while the green ones

denote the segmented lesions. Zoomed out 3D mask on the bottom right are ground truth mask,

the dark red area denote the liver area while the dark green ones denote the lesions area.As we

can see from left example, our method can detect all the lesions with only one false positive,

Mask-RCNN not only misses one lesion but also has five false positive instance segmentation.

For the right example, our method can find all the 5 tiny lesions, Mask-RCNN will miss 4 of

them. These examples proved that our module will not only enhance small lesions prediction

ability but also benefit the network to remove false positive cases.

Based on our proposed modules, we got state-of-art performance, 74.1 dice per case on

LiTS liver tumor segmentation challenge test set, which outperforms ∼5 points than previous

year challenge winner and got the 1st place on leaderboard upon submission of this paper. In order

to prove the generalization ability of our methods on 3D CT volume, we further did extension

experiments on DeepLesion dataset, which provide 3D CT volume to do 2D bounding box

prediction on key slices, our proposed method got 77.22 sensitivity at 1 false positives(FPs) per

image, which outperforms best published results by ∼ 4 points.
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1.5 Organization of the Thesis

The rest of this thesis will be organized as follows, in Chapter 2 we will introduce the

data-drive domain attentive representations for universal objects detection. We will also discuss

the difference of single domain objects detector bank, adaptive multi-domain detector, universal

detector and domain-attentive universal detector. The proposed universal objects detection

benchmark(UODB) will also be discussed in this chapter. In chapter 3, we will focus on 3D

medical image segmentation problems and discussed the proposed volumetric attention module

which leverages 3D context enhanced representations with 3D medical CT volume as training

set. To further prove the effectiveness of our volumetric attention module, we also did extension

experiments on objects detection datasets, deeplesion, which provides neighbor slices of key

slices with bounding boxes annotations. The final chapter 4 will draw conclusions on these

algorithms and talk about the future works we are going to work on and the possible applications.
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Chapter 2

Domain sensitive representations for

universal objects detection
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2.1 Multi-domain Object Detection

2.1.1 Multi-domain Datasets

To train and evalaute multi-domain object detection systems, we proposed to use 11

datasets: Pascal VOC [EEVG+15], WiderFace [YLLT16], KITTI [GLU12], LISA [MTM12],

DOTA [XBD+18], COCO [LMB+14], Watercolor [IFYA18], Clipart [IFYA18], Comic [IFYA18],

Kitchen [GRM+16] and DeepLesions [YWL+18].

This set includes the popular VOC [EEVG+15] and COCO [LMB+14], composed of

images of everyday objects, e.g. bikes, humans, animals, etc. The 20 VOC categories are

replicated on CrossDomain [IFYA18] with three subsets of Watercolor, Clipart and Comic, with

objects depicted in watercolor, clipart and comic styles, respectively. Kitchen [GRM+16] consists

of common kitchen objects, collected with an hand-held Kinect, while WiderFace [YLLT16]

contains human faces, collected on the web. Both KITTI [GLU12] and LISA [MTM12] depict

traffic scenes, collected with cameras mounted on moving vehicles. KITTI covers the categories

of vehicle, pedestrian and cyclist, while LISA is composed of traffic signs. DOTA [XBD+18]

is a surveillance-style dataset, containing objects such as vehicles, planes, ships, harbors, etc.

imaged from aerial cameras. Finally DeepLesion [YWL+18] is a dataset of lesions on medical

CT images. A representative example of each dataset is shown in Figure 1.1. Some more details

are summarized in Table 2.1. Altogether, the 11 datasets cover a wide range of variations in

category, camera view, image style, etc. They thus establish a good suite for the evaluation of

multi-domain object detection.

2.1.2 Single-domain Detector Bank

The Faster R-CNN [RHGS15] is used as the backbone architecture of all detectors

proposed in this work. As a single-domain object detector, the Faster R-CNN is implemented in

two stages. First, a region proposal network (RPN) produces preliminary class-agnostic detection
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Table 2.1: The dataset details, the domain-specific hyperparameters and the performance of the
single-domain detectors. “T/V/T” means train/val/test, “size” the shortest side of inputs, BS
RPN batch size, and S/R anchor “scales/aspect ratios”.

dataset
dataset details hyperparameters

mAP
class T/V/T domain size BS RoIs S/R

KITTI 3 7k/-/7k traffic 576 256 128 12/3 64.3
WiderFace 1 13k/3k/16k face 800 256 256 12/1 48.9
VOC 20 8k/8k/5k natural 600 256 256 4/3 78.5
LISA 4 8k/-/2k traffic 800 64 32 4/3 88.3
DOTA 15 14k/5k/10k aerial 600 128 128 12/3 57.5
COCO 80 35k/5k/- natural 800 256 256 4/3 47.3
Watercolor 6 1k/-/1k watercolor 600 256 256 4/3 52.4
Clipart 6 0.5k/-/0.5k clipart 600 256 256 4/3 32.1
Comic 20 1k/-/1k comic 600 256 256 4/3 45.8
Kitchen 11 5k/-/2k indoor 800 256 256 12/3 87.7
DeepLesion 1 23k/5k/5k medical 512 128 64 12/3 51.3
Average - - - - - - - 59.4

hypotheses. The second stage processes these with a region-of-interest detection network to

output the final detections.

As illustrated in Figure 1.2 (a), the simplest solution to multi-domain detection is to use an

independent detector per dataset. We use this detector bank as a multi-domain detection baseline.

This solution is the most expensive, since it implies replicating all parameters of all detectors.

Figure 2.1 shows the statistics (mean and variance) of the convolutional activations of the 11

detectors on the corresponding dataset. Some observations can be made. First, these statistics

vary non-trivially across datasets. While the activation distributions of VOC and COCO are

similar, DOTA, DeepLesion and CrossDomain have relatively different distributions. Second,

the statistics vary across network layers. Early layers, which are more responsible for correcting

domain shift, have more evident differences than latter layers. This tends to hold up to the

output layers. These are responsible for the assignment of images to different categories and

naturally differ. Interestingly, this behavior also holds for RPN layers, even though they are

category-independent. Third, many layers have similar statistics across datasets. This is especially

true for intermediate layers, suggesting that they can be shared by at least some domains.
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Figure 2.1: The statistics of each convolutional activation of all single-domain detectors.

2.1.3 Adaptive Multi-domain Detector

Inspired by Figure 2.1, we propose an adaptive multi-domain detector, shown in Figure

1.2 (b). In this model, the output and RPN layers are domain-specific. The remainder of the

newtork, e.g. all convolutional layers, is shared. However, to allow adaptation to new domains, we

introduce some additional domain-specific layers, as is commonly done in MDL [RBV17, BV17].

These extra layers should be 1) sufficiently powerful to compensate for domain shift; 2) as light

as possible to minimize parameters/computation. The adaptation layers of [RBV17, BV17] rely

extensively on batch normalization. This is unfeasible for detection, due to the small batch sizes

allowable for detector training. For detection, BN layers have to be frozen.

As suggested by the universal classification [RBV17, BV17] and our observations in

Figure 2.1, we propose a semi-shared multi-domain detector, with the architecture of Figure
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1.2 (c). In this model, beyond the domain-specific output and RPN layers, some light-weight

intermediate layers are domain-specific as well, but the heavy-weight layers are shared, e.g. the

convolutional layers. Since the domain-specific layers will add extra parameters/computations,

they should 1) effectively account for domain shift throughout the entire network; 2) be light such

that the memory/computation budget will be under control when more than a dozen domains to

address. In [RBV17, BV17], the batch normalization (BN) layers are domain-specific, because

BN layers meet these two requirements. However, in object detection, BN layers have to be

frozen due to the small batch size during training. Thus, the domain-specific BN is not available

for multi-domain detection.

Instead, we have experimented with the squeeze-and-excitation (SE) module [HSS17]

of Figure 2.2 (a). There are a few reasons for this. First, feature-based attention is well known

to be used in mammalian vision as a mechanism to adapt perception to different tasks and

environments [Yar67, Pal99, Wol00, IB05, Yan98]. Hence, it seems natural to consider feature-

based attention mechanisms for domain adaptation. Second, the SE is a module that accounts

for interdependencies among channels to modulate channel responses. This can be seen as a

a feature-based attention mechanism. Third the SE module has enabled the SENet to achieve

state-of-the-art classification on ImageNet. Finally, it is a light-weight module. Even when added

to each residual block of the ResNet [HZRS16] it increases the total parameter count by only

∼10%. This is close to what was reported by [RBV17] for BN-based adapters. For all these

reasons, we adopt the SE module as the atomic adaptation unit, used to build all domain adaptive

detectors proposed in this work, and denote it by the SE adapter.

2.1.4 SE Adapters

Following [HSS17], the SE adapter consists of the sequence of operations of Figure 2.2

(a): a global pooling layer, a fully conected (FC) layer, a ReLU layer, and a second FC layer,
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Figure 2.2: (a) block diagram of the SE adapter and (b) SE adapter bank.

implementing the computation

XSE = FSE(Favg(X)), (2.1)

where Favg is a global average pooling operator, and FSE the combination of FC+ReLU+FC

layers. The channel dimension reduction factor r, in Figure 2.2, is set as 16 in our experiments.

To enable multi-domain object detection, the SE adapter is generalized to the architecture of

Figure 2.2 (b), which is denoted as the SE adapter bank. This consists of adding a SE adapter

branch per domain and a domain-switch, which allows the selection of the SE adapter associated

with the domain of interest. Note that this architecture assumes this domain to be known a priori.

It leads to the multi-domain detector of Figure 1.2 (b). Compared to Figure 1.2 (a), this model is

up to 5 times smaller, while achieving better overall performance across the 11 datasets.

2.2 Universal Object detection

The detectors of the previous section require prior knowledge of the domain of interest.

This is undesirable for autonomous systems, like robots or self-driving cars, where determining
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Figure 2.3: Block diagram of the proposed domain adaptation module.

the domain is part of the problem to solve. In this section, we consider the design of universal

detectors, which eliminate this problem.

2.2.1 Universal Detector

The simplest solution to universal detection, shown in Figure 1.2 (c), is to share a single

detector by all tasks. Note that, even for this detector, the output layer has to be task-specific, by

definition of the detection problem. We have found that there is also a benefit in using task-specific

RPN layers, due to the observations of Figure 2.1. This is not a problem because the task, namely

what classes the system is trying to detect, is always known. Universality refers to the domain

of input images that the detector processes, which does not have to be known in the case of

Figure 1.2 (c). Beyond universal, the fully shared detector is the most efficient of all detectors

considered in this work, as it has no domain-specific parameters. On the other hand, by forcing

the same set of parameters/representations on all domains, it has little flexibility to deal with the

statistical variations of Figure 2.1. In our experiments, this detector usually underperforms the

multi-domain detectors of Figure 1.2 (a) and (b).
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2.2.2 Domain-attentive Universal Detector

Ideally, a universal detector should have some domain sensitivity, and be able to adapt to

different domains. While this has a lot in common with multi-domain detection, there are two

main differences. First, the domain must be inferred automatically. Second, there is no need to

tie domains and tasks. For example, the traffic tasks of Figure 1.1 operate on a common visual

domain, “traffic scenes”, which can have many sub-domains, e.g. due to weather conditions

(sunny vs. rainy), environment (city vs. rural ), etc. Depending on the specific operating

conditions, any of the tasks may have to be solved in any of the domains. In fact, the domains

may not even have clear semantics, i.e. they can be data-driven. In this case, there is no need to

request that each detector operates on a single domain, and a soft domain-assignment makes more

sense. Given all of this, while domain adaptation can still be implemented with the SE adapter of

Figure 2.2 (a), the hard attention mechanism of Figure 2.2 (b), which forces the network to fully

attend to a single domain, can be suboptimal. To address this limitations, we propose the domain

adaptation (DA) module of Figure 2.4. This has two components, a universal SE adapter bank

and a domain attention mechanism, which are discussed next.
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2.2.3 Universal SE Adapter Bank

The universal SE (USE) Adapter Bank, shown in Figure 2.4, is an SE adapter bank similar

to that of Figure 2.2 (b). The main difference is that there is no domain switching, i.e. the adapter

bank is universal. This is implemented by concatenating the outputs of the individual domain

adapters to form a universal representation space

XUSE = [X1
SE ,X

2
SE , ...,X

N
SE ] ∈ RC×N , (2.2)

where N is the number of adapters and Xi
SE the output of each adapter, given by (2.1). Note

that N is not necessarily identical to the number of detection tasks. The USE adapter bank can

be seen as a non-linear generalization of the filter banks commonly used in signal processing

[Vai93]. Each branch (non-linearly) projects the input along a subspace matched to the statistics

of a particular domain. The attention component then produces a domain-sensitive set of weights

that are used to combine these projections in a data-driven way. In this case, there is no need to

know the operating domain in advance. In fact there may not even be a single domain, since an

input image can excite multiple SE adapter branches.

2.2.4 Domain Attention

The attention component, of Figure 2.4, produces a domain-sensitive set of weights that

are used to combine the SE bank projections. Motivated by the SE module, the domain attention

component first applies a global pooling to the input feature map, to remove spatial dimensions,

and then a softmax layer (linear layer plus softmax function)

SDA = FDA(X) = softmax(WDAFavg(X)), (2.3)
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where WDA ∈RN×C is the matrix of softmax layer weights. The vector SDA is then used to weigh

the USE bank output XUSE , to produce a vector of domain adaptive responses

XDA = XUSESDA ∈ RC×1. (2.4)

As in the SE module of [HSS17], XDA is finally used to channel-wise rescale the activations

X ∈ RC×H×W being adapted,

X̃ = Fscale(X,σ(XDA)) (2.5)

where Fscale(·) implements a channel-wise multiplication, and σ is the sigmoid function.

In this way, the USE bank captures the feature subspaces of the domains spanned by all

datasets, and the DA mechanism soft-routes the USE projections. Both operations are data-driven,

and operate with no prior knowledge of the domain. Unlike the hard attention mechanism of

Figure 2.2 (b), this DA module enables information sharing across domains, leading to a more

effective representation. In our experiments, the domain-attentive universal detector outperforms

the other detectors of Figure 1.2.

2.3 Experiments

In all experiments, we used a PyTorch implementation [YLBP17] of the Faster R-CNN

with the SE-ResNet-50 [HSS17] pretrained on ImageNet, as the backbone for all detectors.

Training started with a learning rate of 0.01 for 10 epochs and 0.001 for another 2 epochs on

8 synchronized GPUs, each holding 2 images per iteration. All samples of a batch are from a

single (randomly sampled) dataset, and in each epoch, all samples of each dataset are processed

only once. As is common for detection, the first convolutional layer, the first residual block and

all BN layers are frozen, during training. These settings were used in all experiments, unless

otherwise noted. Both multi-domain and universal detectors were trained on all domains of
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interest simultaneously.

The Faster R-CNN has many hyperparameters. In the literature, where detectors are tested

on a single domain, these are tuned to the target dataset, for best performance. This is difficult,

and very tedious, to do over the 11 datasets now considered. We use the same hyperparameters

across datasets, except when this is critical for performance and relatively easy to do, e.g. the

choice of anchors. The main dataset-specific hyperparameters are shown in Table 2.1.

2.3.1 Datasets and Evaluation

Our experiments used the new UODB benchmark introduced in Section 2.1.1. For

Watercolor [IFYA18], Clipart [IFYA18], Comic [IFYA18], Kitchen [GRM+16] and DeepLesion

[YWL+18], we trained on the official trainval sets and tested on the test set. For Pascal VOC

[EEVG+15], we trained on VOC2007 and VOC2012 trainval set and tested on VOC2007 test

set. For WiderFace [YLLT16], we trained on the train set and tested on the val set. For KITTI

[GLU12], we followed the train/val splitting of [CFFV16] for development and trained on the

trainval set for the final results on test set. For LISA [MTM12], we trained on the train set

and tested on the val set. For DOTA [XBD+18], we followed the pre-processing of [XBD+18],

trained on train set and tested on val set. For MS-COCO [LMB+14], we trained on COCO

2014 valminusminival and tested on minival, to shorten the experimental period.

All detectors were evaluated on each dataset individually. The Pascal VOC mean average

precision (mAP) was used for evaluation in all cases. The average mAPs was used as the

overall measure of universal/multi-domain detection performance. The domain attentive universal

detector was also evaluated using the official evaluation tool of each dataset, for comparison with

the literature.
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Table 2.2: The comparison on multi-domain detection. † denotes fixed assignment. “time” is
the relatively run-times on the five datasets when the domain is unknown.

Params time KITTI VOC WiderFace LISA Kitchen Avg

single-domain 31.06M×5 5x 64.3 78.5 48.8 88.3 87.7 73.5
adaptive 42.37M 6x 67.8 78.9 49.9 88.5 86.0 74.2
BNA [BV17] 31.72M 5x 64.0 71.9 44.0 66.8 84.3 66.2
RA [RBV17] 82.72M 6x 64.3 70.5 46.9 69.1 84.6 67.1
universal 31.64M 1x 66.3 76.7 45.5 88.4 85.4 72.5
universal+DA† 42.37M 1.3x 67.5 79.0 49.8 88.2 88.0 74.6
universal+DA 42.44M 1.33x 67.9 79.2 52.2 87.5 88.5 75.1

Table 2.3: Overall results on the full universal object detection benchmark (11 datasets).
# adapters Params DA index KITTI VOC WiderFaceLISA Kitchen COCODOTA Lesion Comic ClipartWatercolor Avg

single-domain - 31.06M×11 - 64.3 78.5 48.8 88.3 87.7 47.3 57.5 51.2 45.8 32.1 52.6 59.4
universal - 32.60M - 67.5 80.9 45.5 87.1 88.5 45.5 54.7 45.3 51.1 43.1 47.0 59.7
adaptive 11 58.13M - 68.0 82.1 50.6 88.5 87.2 45.7 54.1 53.0 50.0 56.1 57.8 63.0
universal+DA 11 58.29M all 68.1 82.0 51.6 88.3 90.1 46.5 57.0 57.3 50.7 53.1 58.4 63.8
universal+DA* 6 41.74M first+middle 67.6 82.7 51.8 87.9 88.7 46.8 57.0 54.8 52.6 54.6 58.2 63.9

2.3.2 Single-domain Detection

Table 2.1 shows the results of the single-domain detector bank of Figure 1.2 (a) on all

datasets. Our VOC baseline with the SE-ResNet-50 is 78.5, and better than the Faster R-CNN

performance of [RHGS17, HZRS16] (76.4 mAP for ResNet-101). The other entries in the table

are incomparable to the literature, where different evaluation metrics/tools are used for different

datasets. The detector bank is a fairly strong baseline for multi-domain detection (average mAP

of 59.4).

2.3.3 Multi-domain Detection

Table 2.2 compares the multi-domain object detection performance of all architectures

of Figure 1.2. For simplicity, only five datasets (VOC, KITTI, WiderFace, LISA and Kitchen)

were used in this section. The table confirms that the adaptive multi-domain detector of Section

2.1.3 (“adaptive”) is light-weight, only adding ∼11M parameters to the Faster R-CNN over the

five datasets. Nevertheless, it outperforms the much more expensive single-domain detector bank

by 0.7 points. Note that the latter is a strong baseline, showing the multi-domain detector can
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Table 2.4: The effect of SE adapters number.
# adapters Params KITTI VOC WiderFace LISA Kitchen Avg

single 31.06M×5 64.3 78.5 48.8 88.3 87.7 73.5
1 32.32M 66.3 74.9 43.5 87.4 85.4 71.3
3 37.38M 67.8 78.4 47.1 87.7 89.0 74.1
5 42.44M 67.9 79.2 52.2 87.5 88.5 75.1
7 47.50M 67.9 79.6 52.2 89.5 88.7 75.6

beat individually trained models with a fraction of the computation. Table 2.2 also shows that the

proposed SE adapter significantly outperforms the BN adapter (BNA) of [BV17] and the residual

adapter (RA) or [RBV17], previously proposed for classification. This is not surprising, given the

above discussed inadequacy of BN as an adaptation mechanism for object detection.

The universal detector of Figure 1.2 (c) is even more efficient, adding only 0.5M parame-

ters to the Faster R-CNN, accounting for domain-specific RPN and output layers. However, its

performance (“universal” in Table 2.2) is much weaker than that of the adaptive multi-domain

detector (1.7 points). Finally, the domain-attentive universal detector (“universal+DA”) has the

best performance. With a ∼7% parameter increase per domain, i.e. comparable to the multi-

domain detector, it outperforms the single-domain bank baseline by 1.6 points. To assess the

importance of data-driven domain attention mechanism of Figure 2.4 (b), we fixed the soft domain

assignments, simply averaging the SE adapter responses, during both training and inference. This

(denoted “universal+DA†”) caused a performance drop of 0.5 point. Finally, Table 2.2 shows the

relative run-times of all methods on the five datasets, when the domain is unknown. It can be

seen that “universal+DA” is about 4× faster than the multi-domain detectors (“single-domain”

and “adaptive”) and only 1.33× slower than “universal”.

2.3.4 Effect of the number of SE adapters

For the USE bank of Figure 2.4 (b), the number N of SE adapters does not have to match

the number of detection tasks. Table 2.4 summarizes how the performance of the domain attentive

universal detector depends on N. For simplicity, we again use 5 datasets in this experiment. For
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Figure 2.5: Soft assignments across SE units for all datasets.

a single adapter, the DA module reduces to the standard SE module, and the domain attentive

universal detector to the universal detector. This has the worst performance. Performance

improves with the number of adapters. On the other hand, the number of parameters increases

linearly with the number of adapters. In these experiments, the best trade-off between performance

and parameters is around 5 adapters. This suggests that, while a good rule of thumb is to use “as

many adapters as domains”, fewer adapters can be used when complexity is at a premium.
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2.3.5 Results on the full benchmark

Table 2.3 presents results on the full benchmark. The settings are as above, but we

used 10 epochs with learning rate 0.1, and then 4 epochs with 0.01 on 8 GPUs, each holding 2

images. The universal detector performs comparably to the single-domain detector bank, with

10 times fewer parameters. The domain-attentive universal detector (“universal+DA”) improves

baseline performance by 4.4 points with a 5-fold parameter decrease. It has large performance

gains (>5 points) on DeepLesion, Comic, and Clipart. This is because Comic/Clipart contain

underpopulated classes, greatly benefiting from information leveraged from other domains. The

large gain of DeepLesion is quite interesting, given the nontrivial domain shift between its

medical CT images and the RGB images of the other datasets. The gains are mild for VOC,

KITTI, Kitchen, WiderFace and WaterColor (1∼5 points), and none for COCO, LISA and DOTA.

In contrast, for the universal detector, joint training is not always beneficial. This shows the

importance of domain sensitivity for universal detection.

To investigate what was learned by the domain attention module of Figure 2.4 (b), we

show the soft assignments of each dataset, averaged over its validation set, in Figure 2.5. Only

the first and last blocks of the 4th and 5th residual stages are shown. The fact that some datasets,

e.g. VOC and COCO, have very similar assignment distributions, suggests a substantial domain

overlap. On the other hand, DOTA and DeepLesion have distributions quite distinct from the

remaining. For example, on block “DA 4 1”, DeepLesion fully occupies a single domain. These

observations are consistent with Figure 2.1, indicating that the proposed DA module is able to

learn domain-specific knowledge.

A comparison of the first and the last blocks of each residual stage, e.g. “DA 4 1” v.s.

“DA 4 6”, shows that the latter are much less domain sensitive than the former, suggesting that

they could be made universal. To test this hypothesis, we trained a model with only 6 SE adapters

for the 11 datasets, and only in the first and middle blocks, e.g. “DA 4 1” and “DA 4 3”. This

model, “universal+DA*”, achieved the best performance with much less parameters than the
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Table 2.5: The comparison with official evaluation on Pascal VOC, KITTI, DeepLesion, Clipart,
Watercorlor, Comic and WiderFace.

(a) The comparison on VOC 2007 test.
Backbone mAP

Faster-RCNN [RHGS15] ResNet-101 76.4
R-FCN [DLHS16] ResNet-50 77.0
Faster-RCNN‡ [RHGS17] VGG16 78.8
RefineDet512 [ZZW+17] VGG-16 81.8
Faster-RCNN (ours) SE-ResNet-50 78.5
Faster-RCNN+DA SE-ResNet-50 79.6
Faster-RCNN+DA† SE-ResNet-50 82.7

(b) The comparison on WiderFace Val.
Backbone Easy Medium Hard

CascadeCNN [ZZLQ16] VGG-16 0.851 0.820 0.607
Faster-RCNN [RHGS15] VGG-16 0.907 0.850 0.492
MS-CNN [CFFV16] VGG-16 0.916 0.903 0.802
HR [HR17] ResNet-101 0.925 0.910 0.806
SSH [NSCD17] VGG-16 0.931 0.921 0.845
Faster-RCNN (ours) SE-ResNet-50 0.910 0.872 0.556
Faster-RCNN+DA SE-ResNet-50 0.914 0.882 0.587

(c) Sensitivity on DeepLesion test.
Backbone Sensitivity

Faster-RCNN [RHGS15] VGG-16 81.62
R-FCN [DLHS16] VGG-16 82.21
R-FCN† [DLHS16] VGG-16 82.76
3-DCE, 9 Slices [YBS18] VGG-16 84.34
3-DCE, 27 Slices [YBS18] VGG-16 85.65
Faster-RCNN (ours) SE-ResNet-50 82.44
Faster-RCNN+DA SE-ResNet-50 87.29

(d) The comparison on KITTI test set of car.
Backbone Moderate Easy Hard

Faster-RCNN [RHGS15] VGG-16 81.84 86.71 71.12
SDP+CRC [YCL16] VGG-16 83.53 90.33 71.13
YOLOv3 [RF18] Darknet-53 84.13 84.30 76.34
MS-CNN [CFFV16] VGG-16 88.83 90.46 74.76
F-PointNet [QLW+18] PointNet 90.00 90.78 80.80
Faster-RCNN (ours) SE-ResNet-50 81.83 90.34 71.23
Faster-RCNN+DA SE-ResNet-50 88.23 90.45 74.21

(e) The comparison on Clipart, Watercolor and Comic test set.
Backbone Clipart Watercolor Comic

ADDA [THSD17] VGG-16 27.4 49.8 49.8
Faster-RCNN[RHGS15] VGG-16 26.2 - -
SSD300 [LAE+16] VGG-16 26.8 49.6 24.9
Faster-RCNN+DT+PL[IFYA18] VGG-16 34.9 - -
SSD300+DT+PL[IFYA18] VGG-16 46.0 54.3 37.2
Faster-RCNN (ours) SE-ResNet-50 32.1 52.6 45.8
Faster-RCNN+DA SE-ResNet-50 54.6 58.2 52.6

“universal+DA” detector of 11 adapters. It outperformed the single domain baseline by 4.5 points.

2.3.6 Official evaluation

Since, to the best of our knowledge, this is the first work to explore universal/multi-

domain object detection on 11 datasets, there is no literature for a direct comparison. Instead, we

compared the “universal+DA*” detector of Table 2.3 to the literature using the official evaluation

for each dataset. This is an unfair comparison, since the universal detector has to remember

11 tasks. On VOC, we trained two models, with/without COCO. Results are shown in Table

2.5a, where all methods were trained on Pascal VOC 07+12 trainval, ‡/† denotes with COCO

trainval/val. Note that our Faster R-CNN baseline ( SE-ResNet-50 backbone) is stronger than
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that of [HZRS16] (ResNet-101). Adding universal domain adapters improved on the baseline

by more than 1.1 points. Adding COCO enabled another 3.1 points. Note that, 1) this universal

training is different from the training scheme of [RHGS17] (the network trained on COCO then

finetuned on VOC), where the final model is only optimized for VOC; and 2) only the 35k images

of COCO2014 valminusminival were used.

The baseline was the default Faster R-CNN that initially worked on VOC, with minimum

dataset-specific changes, e.g. in Table 2.1. Table 2.5d shows that this performed weakly on

KITTI. However, the addition of adapters, enabled a gain of 6.4 points (Moderate setting).

This is comparable to detectors optimized explicitly on KITTI, e.g. MS-CNN [CFFV16] and

F-PointNet [QLW+18]. For WiderFace, which has enough training face instances, the gains

of shared knowledge are smaller (see Table 2.5b). On the other hand, on DeepLesion and

CrossDomain (Clipart, Comic and Watercolor), see Table 2.5c and 2.5e respectively, the domain

attentive universal detector significantly outperformed the state-of-the-art. Overall, these results

show that a single detector, which operates on 11 datasets, is competitive with single-domain

detectors in highly researched datasets, such as VOC or KITTI, and substantially better than the

state-of-the-art in less explored domains. This is achieved with a relatively minor increase in

parameters, vastly smaller than that needed to deploy 11 single task detectors.
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Chapter 3

3D context enhanced representations for

3D image segmentation
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3.1 Introduction

There has been significant progress in 2D object detection and instance segmentation

in recent years. Many two-stage object detectors, such as Fast-RCNN[Gir15] and Faster-

RCNN[RHGS15], and one-stage detector, such as SSD[LAE+16] and YOLO[RF18], reached

pretty good results on object detection tasks. Mask-RCNN [HGDG17] tried to accomplish both

object detection and 2D object instance segmentation tasks using one network by adding a branch

for predicting an object mask in parallel with the existing branch for bounding box recognition.

U-Net[RFB15] built upon fully convolutional network for 2D medical image segmentation.

For 3D medical image segmentation, 3D U-Net extended 2D U-Net to learn dense

volumetric segmentation and became one of the most popular network for 3D medical image

segmentation. However, due to the limitation of GPU memory, we need to make a trade-off

between slice resolution and feature bags size. If we want to keep the spatial resolution, we need

to sacrifice the feature bags size, which can damage the ability of utilizing contextual information

in z direction for more accurate lesion detection and mask generation. Another choice is to use

low resolution 3D volume as input of 3D U-Net, which usually leads to miss-detection of small

lesions and low precision of mask.

Our network is built based on 2D Mask-RCNN for 2D instance segmentation. Although

high resolution images will be able to fit into 2D network, slice dependencies will not be able

to be utilized for 2D network. In order to overcome this problem and provide another direction

to solve detection and segmentation problems with 3D contextual information, we introduced

a cross-slice spatial and channel attention module to learn and utilize the relationship between

different slices to help improve 3D object/lesion detection and mask prediction tasks.

As shown in Figure 1, we introduced two new modules for high precision segmentation,

they are cross-slice spatial and channel attention module and mask refinement module. Cross-slice

spatial and channel attention module is used for combining information from multiple slices in
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the volume and learn the dependencies between them. The reasons why multi-slices are useful is

that, for many lesions, it is very easy even for human doctors to be confused between lesions and

blood vessel without looking through nearby slices above and below key slice. Only rely on one

single slice to get high accuracy lesion and organ segmentation is neither reliable nor practical, as

human doctors also need to get access to multiple slices for final disease prediction and lesion

detection on many cases, which is also the reason why a volume of CT scan is necessary not only

several slices. Also, getting access to nearby slices will provide neural network extra information

for getting more precise prediction on the key slices lesion detection and mask prediction.

We also built anther module named mask refinement module for higher performance mask

prediction. For human visual system, saliency is used for processing visual information and

images. Human brains will automatically blur the unfocused part of input image and salient the

focused part. Inspired by this, we add a cascade mask refinement module which will be able to

provide an objectiveness attention map for input feature maps and help mask head to get higher

quality mask prediction.

Based on above two novel modules, we got state-of-art performance, 74.1 dice per case

on lesion segmentation, on one of the biggest 3D medical image segmentation challenges-LiTS

liver tumor segmentation challenge, which outperforms 5 points than previous year challenge

winner and got the 1st place on leaderboard upon submission of this paper. Overall architecture

can be seen in Figure 3.1 and details will be discussed in following sections.

3.2 Related Work

Attention Module: [VSP+17] proposed a self-attention module for machine translation, obtain-

ing the response at a position by attending to all positions in a sequence. Similarly, [WGGH18]

proposed a non-local network for video classification, based on a spacetime dependency/attention

mechanism. [HSS17] focused on channel relationships, introducing the SE module to adapta-
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tively recalibrate channel-wise feature responses. The resulting SENet achieved good results on

ImageNet recognition. [WPLK18] proposed Convolutional Block Attention Module(CBAM),

which sequentially infers attention maps along two separate dimensions, channel and spatial,

then the attention maps are multiplied to the input feature map for adaptive feature refinement.

Compared with previous work, which will do self-attention operation, our work will build a bag

of features by concatenating the features extracted from a list of neighbor slices and focused on

learning the dependencies in feature space between key slice and a bag of neighbor slices for

boosting the performance on key slice.

2D Objects Detection and Instance Segmentation: The two stage detection framework of the

R-CNN [GDDM14], Fast R-CNN [Gir15] and Faster R-CNN [RHGS15] detectors has achieved

great success in recent years. Many works have expanded this base architecture. For example,

MS-CNN [CFFV16] and FPN [LDG+17] built a feature pyramid to effectively detect objects of

various scales; the R-FCN [DLHS16] proposed a position-sensitive pooling to achieve further

speed-ups; and the cascade R-CNN [CV18] introduced a multi-stage cascade for high quality

object detection. In parallel, single-stage object detectors, such as YOLO [RDGF16] and SSD

[LAE+16], became popular for their fairly good performance and high speed. However, all of

these detectors will only deal with 2D images/samples for objects detection without considering

merging information from other images/samples.

3D Medical Image Segmentation: A natural solution to 3D medical image segmentation and

detection problems is to rely on 3D convolutional networks, such as the 3D U-Net of [ÇAL+16]

or the extended 2D U-Net of [RFB15]. However, current GPU memory limitations prevent

the processing of 3D volumes with high resolution. This is problematic, because the use of

low-resolution volumes leads to low precision or miss-detection of small lesions and tumors and

blur in lesion mask predictions, especially on boundaries. Hence, there is a need to trade-off the

spatial resolution of each 2D slice for the number of slices processed. This implies a trade-off

between the precision with which segmentation or detection can be performed and the amount
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of contextual information, in the z direction, that can be leveraged. A popular solution is to a

use a 2D network to segment or detect the structures of interest in 2D or 2.5D slices and then

concatenate the results to build a 3D segmentation mask or bounding box.

Christ et al. proposed a 2D U-Net for liver and tumor segmentation, followed by a

conditional random field for segmentation refinement [CEE+16]. Li et al. proposed a hybrid

Dense 2D/3D UNet of three-stages [LCQ+18]. They found that a pre-trained 2D model can

significantly boost performance of their network. Bi et al. proposed a two-stage cascaded deep

residual network for liver lesion segmentation [Han17]. These approaches are limited by the

lack of contextual information. Since even human experts need to inspect multiple slices to

reach confident assessments of confusing lesions, this is likely to upper bound their performance.

Ding et al. applied 2D networks to generate lesion candidates, then 3D CNN classifiers were

trained for false positive reduction (FPR). To address this problem, Yan et al. [YBS18] proposed

a 3D context enhanced region-based CNN. However, their method is based on a region proposal

network (RPN) and cannot be implemented as a single-stage detector, such as SSD and YOLO,

or a segmentation network, such as U-Net, without an RPN component. Furthermore, because

only the feature map derived from a central image is processed by the RPN to generate proposals,

the proposal generation process has no access to 3D context. Given that missed proposals can not

be recovered, this places an upper bound on detection performance.

3.3 Volumetric Attention

The overall architecture of the VA Mask R-CNN is shown in Fig.3.1. The VA attention

module operates on the Mask R-CNN feature pyramids extracted from a target 2.5D image,

where detection takes place, and neighboring contextual 2.5D images. The 2.5D images are each

composed of 3 adjacent slices. The attention module has three components: bag of long-range

features, volumetric channel attention, and volumetric spatial attention. Unlike the self-attentive
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Figure 3.1: Architecture of the Volumetric Attention(VA) Mask-RCNN. Three continuous 2.5D
images, each composed of 3 adjacent slices, are shown as example.

feature map of [WGGH18], VA uses long-range features from neighboring slices, which are

combined with the feature map of the target slice to generate spatial and channel attention

responses. A detailed scheme of the attention module is given in Fig. 3.2. We next discuss the

three components combined with Mask-RCNN in detail.

3.3.1 Bag of Long-range Features

To account for dependencies along the z direction of the 3D CT volume, the VA Mask

R-CNN complements the target 2.5D image, with neighboring images, both above and below the

target image. These are denoted as contextual images. The features extracted from these images

are concatenated for each level of the spatial pyramid, according to

Xi
long = [X1,X2, ...,XN ] ∈ RN×Ci×H i×W i

, (3.1)

where i is the pyramid level, Ci×H i×W i its dimensions (chanel, height, and width, respectively),

Xi
long the corresponding bag of long-range features, and N the number of contextual images. The

features Xk are sorted by the order of the corresponding images along the z direction of the 3D

volume.
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Figure 3.2: Volumetric Spatial and Channel Attention Module. N is the bag size, C, H, W the
feature map channel size, height and width, respectively. Spatial and channel pooling are used
to reduce computation.

3.3.2 Volumetric Channel Attention

This attention mechanism is inspired by that of [HSS17, WGGH18]. The bag of features

Xlong ∈RN×C×H×W and corresponding target image feature map Xtgt ∈RC×H×W are each subject

to a global average pooling operator Fc
avg. Following [HSS17], computation is reduced by replac-

ing the linear embedding layer of the original non-local blocks of [WGGH18] by two 1×1 con-

volutional layers with reduction ratio of 16. This is implemented as Fc
emb(X) =W2δ(W1Fc

avg(X)),

where W1 ∈ R
C
16×C, W2 ∈ RC× C

16 and δ is the RELU function. The slices attention signal is finally

computed with a softmax

Sc
att = softmax(Fc

emb(Xtgt) ·Fc
emb(Xlong)) ∈ R1×N (3.2)

along dimension N, where Fc
emb(Xtgt) ∈ R1×C, Fc

emb(Xlong) ∈ RC×N and · refers to matrix mul-

tiplication. The slice attention signal Sc
att is then applied to Fc

emb(Xlong) ∈ RN×C according to

Sc
att ·Fc

emb(Xlong) and this is followed by a relu layer, a 1×1 conv layer and a sigmoid layer, to

learn a nonlinear interaction Sc ∈RC×1×1 between channels. Then channel-wise multiplication is
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applied on Xtgt ∈ RC×H×W .

3.3.3 Volumetric Spatial Attention

The volumetric spatial attention module uses max and average pooling to shrink feature

maps along the channel dimension, concatenating them into two channel feature maps Fs
pool(X) =

[Fs
max(X),Fs

avg(X)] ∈ R2×H×W . An embedding function is then implemented as Fs
emb(X) =

WFs
pool(X), where W is a learned convolutional weight layer. The slice attention signal is finally

computed with a softmax

Ss
att = softmax(Fs

emb(Xtgt) ·Fs
emb(Xlong)) ∈ R1×N (3.3)

along dimension N. A spatial attention map Ss ∈ R1×H×W is then generated with an architecture

similar to that of Section 3.3.2 and element-wise multiplied with Xtgt ∈ RC×H×W .

3.4 Experiments

The volumetric attention was evaluated on two public datasets, Liver Tumor Segmentation

(LiTS) [BCV+19] and DeepLesion[YWLS18]. All experiments used a PyTorch implementation

[CPW+18] of the Mask-RCNN and Faster R-CNN. Unless otherwise noted, all hyperparameters

are as in [LDG+17] for the Faster-RCNN and [HGDG17] for the Mask-RCNN.

3.4.1 Datasets and Evaluation

LiTS is a dataset of liver lesions, including 131 training and 70 test CT scans, acquired

in six different clinical sites using different protocols and scanners. Lesion segmentation per-

formance is evaluated and ranked by the Dice coefficient per volume, averaged over all test

cases. For additional insight on the quality of the segmentation, we also break down the average
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Figure 3.3: 2D visualization of segmentations by Mask-RCNN and VA Mask R-CNN on LiTS
val set.

Dice/lesion per lesion size: the coefficients measured for small (diameter < 15 mm), medium

(diameter between [15mm, 30mm] and large (diameter > 30mm) legions are denoted as Dices,

Dicem and Dicel respectively. DeepLesion is a dataset with a larger variety of lesions, including

33,688 bookmarked radiology images from 10,825 studies of 4,477 unique patients. For each

bookmarked image, a bounding box is generated to indicate the location of each lesion. We use

the official split (70% training, 15% validation and 15% test) at the patient level, for training and

testing. For consistency with prior art, detection results are evaluated with the False Positives

(FPs) per Image metric.

3.4.2 Pre-processing for LiTS and DeepLesion Datasets

For the pre-processing of LiTS data. The volume intensity values are truncated to the

HU range of [-200, 300] for removing the irrelevant information and then normalized to [0, 1].

The slice spacing is resampled to 1.5 mm. The original in-plane spacing is kept same because

of the small variation. The adjacent three axial slices are concatenated as a 2D image for the

Mask-RCNN training and inference. The ground truth lesions are removed in the training stage, if

the number of pixels is smaller than 5. We add another body mask for the Mask-RCNN learning,

because the Mask-RCNN can not learn anything from the negative sample without any ground
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truth target. The body mask was generated by a binary threshold with -200 HU value and followed

by hole filling in each slice. Then the Mask-RCNN model is trained with multi tasks supervised

by lesion, liver, and body mask together.

For DeepLesion datasets, the 12-bit CT intensity range was rescaled to floating-point

numbers in [0,255] using a single windowing (1024 to 3071 HU) that covers the intensity ranges

of lung, soft tissue,and bone. Every image slice was resized to512512. To encode 3-D information,

we used three axial slices to compose a three-channel image and input it to the network. The

slices were the center slice that contains the bookmark and its neigh-boring slices interpolated at

2-mm slice intervals.

3.4.3 Post-processing

In the inference stage of LiTS dataset, the 2D live and lesion segmentation can be predicted

from the trained Mask-RCNN model. The 3D liver and lesion segmentation can be get by stacking

the 2D segmentation.

3.4.4 LiTS Experiments

Pre-processing: For 3D liver/lesion detection and segmentation, we stack three adjacent axial

slices into a 3-channel image and apply the Mask-RCNN to detect and segment the liver/lesion

for the center slice. 3D segmentation results are then obtained by stacking the masks generated

for all slices. The Mask-RCNN is trained to detect both liver and lesions, to enable the removal

of false lesions outside the liver by simply computing the logical AND of the predicted liver and

lesion masks. Since the focus of this task is on the liver and lesions, the CT scan’s Hounsfield

unit (HU) is clamped between [-200, 300] and normalized to a floating point between [0, 1]. Each

slice is scaled to 1024×1024 pixels and the slice-thickness resampled to 1.5mm.

Benchmark results: To evaluate performance on LiTS, the feature bag size of (3.1) was set to 9,

40



Table 3.1: Comparison with LiTS Challenge leaderboard, as of April 2, 2019
Team Model Dice per case

3D U-Net(Ours) [ÇAL+16] 3D U-Net 55.0
X. Li et al. [LCQ+18] 3D DenseUNet 59.4
G. Chlebus [CMMS17] 2D U-Net 65.0
E. Vorontsov et al. [VTPK18] 2D + 3D FCN 65.0
Y. Yuan [Yua17] Deconv-Conv Net 65.7
X. Han [Han17] 2D U-Net 67.0
Mask-RCNN(Ours)[HGDG17] Mask-RCNN 70.3
X. Li et al.[LCQ+18] H-DenseUNet 72.2
VolumetricAttention VA Mask-RCNN 74.1

the weights of the feature extractor and RPN copied from detectors pre-trained on the MS-COCO

and DeepLesion datasets, and the smallest image scale set to 1024. Table 3.1 presents a copy of

the LiTS leaderboard, at the time of submission of this paper. All algorithms are evaluated on the

LiTS test set. The VA Mask R-CNN achieves state-of-the-art performance, with 74.10 dice per

case. This outperforms the previous year challenge winner by 6.8 points and the best published

results by 1.6 points.

Ablation study and evaluation: To better understand the proposed architecture, the LiTS dataset

was split, using 75% of the train data to create a training set and the remaining 25% as a val

set for a local ablation study. Table 3.2 summarizes the resulting dice per volume, averaged

over all cases, and dice per cases, averaged over small, medium and large lesions. All these are

control experiments, all hyper-parameters and settings remaining the same as in the benchmark

experiments, unless otherwise noted.

Benefits of VA attention: Three conclusions can be drawn from Table 3.2a. First, the 2D

approaches outperform the 3D U-Net, even before addition of the VA attention module. This

shows that 2D networks are at least competitive for 3D mask segmentation. Since the Mask-RCNN

achieved the best performance on these experiments, we use it as base model in the remainder of

the paper. It should, however, be pointed out that VA could equally be combined with the 2D

U-Net. Second, the addition of the VA module further increases performance, increasing the Dice
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Table 3.2: Evaluation on LiTS val set, in terms of dice per volume, averaged over all cases,
and dice per lesions, averaged over small, medium and large lesions.

(a) Dice comparison.
Dice Dices Dicem Dicel

3D U-Net 35.3 17.0 39.2 61.3
2D U-Net 48.8 39.7 58.2 68.3
Mask-RCNN 56.1 44.3 65.1 77.9
Ours 63.3 54.3 73.7 80.3

(b) Influence of image scales.
Scale Dice Dices Dicem Dicel

512 50.2 35.8 65.1 77.9
800 61.1 52.1 71.6 79.3

1024 63.3 54.3 73.7 80.3
1333 63.5 54.8 73.5 80.4

(c) Pre-training dataset.
Pre-training dataset

+ImageNet X X X
+MS-COCO X X
+DeepLesion X
Dice per case 59.3 61.2 63.3

(d) Influence of VA modules.
Dice Dices Dicem Dicel

Baseline 56.1 44.3 65.1 77.9
+channel att 61.5 52.2 72.7 78.7
+spatial att 63.3 54.3 73.7 80.3

(e) Influence of VA location.
Dice Dices Dicem Dicel

Baseline 56.1 44.3 65.1 77.9
RPN 63.3 54.3 73.7 80.3
RCNN 60.6 51.0 70.4 78.2

(f) Influence of number of slices.
# Slices Dice Dices Dicem Dicel

9(3×3) 60.8 52.2 69.4 77.7
21(3×7) 62.5 52.6 72.2 79.3
27(3×9) 63.3 54.3 73.7 80.3
33(3×11) 63.1 53.6 73.4 80.6

coefficient per case by 5.24 points. Third, this gain is especially large for small and medium

lesions, e.g. 10 points (a ∼23% relative improvement) for small lesions. Note how the lack of

contextual information along the z direction severely compromises the small lesion performance

of the mask R-CNN. Fig.3.3 illustrates how VA attention enables the Mask R-CNN to reject

confusing FP lesions and produce smoother segment boundaries. Segmented liver is shown in red

and lesions in green. Zoomed out ground truth masks are shown on bottom right, with liver in

gray and lesions in white. The VA Mask-RCNN produces smoother segmentation boundaries and

lower FP and miss rates. In the top left, the gallbladder area is easily confused with the lesion

area. VA Mask-RCNN leverages contextual slices to remove this FP.

Image scales. Table 3.2b shows that larger image scales lead to better performance, especially for

small lesions. However, performance saturates at a scale of 1333 pixels. This is only marginally

better than a scale of 1024 but requires substantially more memory. For this reason, a scale of

1024 is adopted in the remainder of the paper.

Influence of pre-training: [HGD18] claims that ImageNet pre-training does not improve accu-
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racy of networks trained with as few as 10k COCO images. As shown in Table 3.2c, this does not

hold for medical imaging where, due to the difficulties of collecting and labeling datasets, few

datasets have 10k examples. Furthermore, while MS-COCO has∼5 objects/image, this number is

much smaller for medical image datasets. For LiTS the number is smaller than 1, especially when

the 3D volume is split into 2D slices and these are considered different examples. Table 3.2c

shows that, in this case, ImageNet pre-training still has an important role in combating overfitting.

Adding MS-COCO to the pre-training dataset further improves performance by 1.9 points. This

is mostly because the COCO tasks encourage the network to more accurately localize objects.

Finally, due to the non-trivial domain shift between MS-COCO and LiTS, further pre-training on

DeepLesion improves performance by an additional 2.1 points.

Spatial vs. Channel Attention: to compare the relative importance of the two attention mech-

anisms, the two modules were incrementally added to the 2D Mask-RCNN, with the results

of Table 3.2d. These experiments use 9 slices. The addition of channel attention enhances

performance by more than 4 points, and the subsequent addition of spatial attention increases

performance by another 2 points. In summary, both attention mechanisms are important.

Location of attention module: the VA module can be added as shown in Fig.3.1, i.e. to the last

stage of feature extraction, before the RPN, or after the bounding box ROI align and mask ROI

align steps, i.e. before the RCNN. Table 3.2e shows that attention is more effective if introduced

before the RPN. While this improves performance by 5.1 Dice points per case, the gain is only

1.7 points when attention is introduced after the RCNN. This shows that 3D context is important

for high quality proposal generation. Since only RPN detected ROIs are used to crop feature

maps, addition of attention after the RPN only improves the ability to reject FPs. In this case,

attention cannot improve the retrieval of lesions that are otherwise missed.

Feature bags size: Table 3.2f compares the network performance as the feature bag size varies

between 3, 7, 9 and 11 images. While dice per case increases with feature bag size, the small and

medium lesion performance starts to worsen beyond a bag size of 9. We thus adopt this size in
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Figure 3.4: FROC curves on the DeepLesion test set.

Table 3.3: Sensitivity (%) at 1 and 2 FPs/image on the official split test set of DeepLesion.
Model Backbone 1 FPs 2 FPs
No 3D context VGG-16 60.57 71.19
Faster-RCNN[YWLS18] VGG-16 67.26 75.57
R-FCN[DLHS16] VGG-16 67.26 75.37
Improved R-FCN [DLHS16] VGG-16 67.65 76.89
Data-level fusion, 11 slices VGG-16 70.03 77.89
3-DCE,9 Slices[YBS18] VGG-16 70.68 79.09
3-DCE,27 Slices[YBS18] VGG-16 73.37 80.70
VA Faster-RCNN, 9 Slices ResNet50 75.63 82.45
VA Faster-RCNN, 9 Slices ResNet101 77.42 83.67

the remaining experiments. We note, however, that for applications sensitive to inference time,

smaller bag size may be preferable.

3.4.5 Extension Experiments on DeepLesion

To test the effectiveness of volumetric attention for the processing of 3D CT volume

datasets, we performed some extension experiments on DeepLesion. This dataset enables the use

of part of the 3D CT volume as context for 2D bounding box prediction on target slices. Since

DeepLesion does not provide mask groundtruth, the VA module was implemented on two Faster-

RCNN-FPN detectors, with ResNet50 and ResNet101 backbones. As usual for DeepLesion,

performance is evaluated with FPs per image. All experiments in this section are based on
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training with the DeepLesion train and val sets, and testing on test set. Each 2.5D image is

formed by concatenating 3 contiguous slices and scaled to 512× 512 pixels as in [YWLS18], the

Faster-RCNN-FPN backbone is pretrained on ImageNet.

Table 3.3 and Fig. 3.4, compare the proposed networks to several methods from the

literature. The proposed networks achieve state of the art results, increasing sensitivity by

more than 4 points at 1 Fp/image and 2.97 at 2 FPs/image. Fig.3.4, shows that the proposed

network with the ResNet50 backbone is almost equivalent to the much heavier Faster-RCNN

with ResNet101 backbone. This confirms that VA attention is effective for both 3D segmentation

and detection.
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Chapter 4

Conclusions
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In this thesis, we mainly focused on domain attentive representations for universal objects

detection and volumetric attentive representations for 3D medical images segmentation. For the

first one, We have investigated the unexplored and challenging problem of universal/multi-domain

object detection. We proposed a universal detector that requires no prior domain knowledge,

consisting of a single network that is active for all tasks. The proposed detector achieves domain

sensitivity through a novel data-driven domain adaptation module and was shown to outperform

multiple universal/multi-domain detectors on a newly established benchmark, and even individual

detectors optimized for a single task.

We also proposed a volumetric attention module that enables 2.5D methods to leverage

contextual information along the z direction and the use of pretrained 2D detection models when

training data is limited, as is often the case for medical applications. VA can be combined with

any CNN architecture, including one-stage and two-stage detectors and segmentation networks. It

was shown that 2.5D networks with VA achieve state of the art results for both lesion segmentation

and detection.
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