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Abstract: Bone metastasis resulting from advanced breast cancer causes osteolysis and increases
mortality in patients. Kalkitoxin (KT), a lipopeptide toxin derived from the marine cyanobacterium
Moorena producens (previously Lyngbya majuscula), has an anti-metastatic effect on cancer cells. We
verified that KT suppressed cancer cell migration and invasion in vitro and in animal models in
the present study. We confirmed that KT suppressed osteoclast-soup-derived MDA-MB-231 cell
invasion in vitro and induced osteolysis in a mouse model, possibly enhancing/inhibiting metastasis
markers. Furthermore, KT inhibits CXCL5 and CXCR2 expression, suppressing the secondary growth
of breast cancer cells on the bone, brain, and lungs. The breast-cancer-induced osteolysis in the mouse
model further reveals that KT plays a protective role, judging by micro-computed tomography and
immunohistochemistry. We report for the first time the novel suppressive effects of KT on cancer
cell migration and invasion in vitro and on MDA-MB-231-induced bone loss in vivo. These results
suggest that KT may be a potential therapeutic drug for the treatment of breast cancer metastasis.

Keywords: kalkitoxin; breast cancer; metastasis; EMT markers; an anti-cancer medicine

1. Introduction

Breast cancer is prevalent in women, and bone is a common metastatic site of advanced
breast cancer [1]. The survival rate descends from 90% in circumscribed breast cancer to
metastatic breast cancer [2]. There is a relationship between metastatic breast cancer cells
and bone cells, acknowledged as the “vicious cycle” [3]. Bone metastasis causes bone
complications such as pathological fractures, hypercalcemia, bone pain, and spinal cord
compression syndrome, causing increased morbidity and mortality in patients [4].

Epithelial-mesenchymal transition is the process of obtaining a mesenchymal pheno-
type by losing epithelial characteristics. Epithelial-mesenchymal transition (EMT) plays a
role in increasing belligerent, invasive, and metastatic potential in cancer cells. The process
of EMT favors cells undergoing phenotypic changes and molecular variations representing
mesenchymal differentiation [5]. EMT leads to cancer cells losing epithelial markers, such
as E-cadherin, a-catenin, and y-catenin, and gaining mesenchymal markers fibronectin,
vimentin, and N-cadherin, leading epithelial cancer cells to become more invasive and gain
metastatic capabilities. EMT shows a substantial effect on drug resistance [6]. Activation
of JAK2/STAT3 signaling facilitates the growth of breast cancer cells [7]. Phosphorylation
of STAT3 favors breast cancer progression and activates HIF-1c [8]. Once cancer cells
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metastasize to the bone, different chemokine motif ligands (CXCL12, CXCR4, CXCLS5,
CXCR2) promote breast cancer cell colonization within the bone [9,10].

Breast cancer can produce osteoclastogenesis factors, such as PTHrP and interleukins
(IL)-1, IL-6, and IL-11. These factors act on osteoblasts to increase the production of
RANKL [11,12]. RANK and RANKL binding activate tumor necrosis factor receptor-
associated factor 6 (TRAF6), resulting in the activation of intracellular actions, such as NF-
kB; mitogen-activated kinases (MAPKSs), such as JNK, ERK, and p38 signaling pathways,
and nuclear factor of activated T cells c1 (NFATc1) signaling pathways. These pathways are
crucial for osteoclast formation [1,12,13]. NFATc1 targets an osteoclast-specific gene such as
cathepsin K, MMP9, or tartrate-resistant acid phosphate (TRAP) [13,14].

Moorea producens is a special kind of filamentous cyanobacteria found in marine
from where kalkitoxin (KT) was isolated for the first time [15,16]. Later, kalkitoxin was
extracted from cyanobacterium Lyngbya majuscula, an active lipopeptide found at the
bottom of coral reefs. KT reduces cell division, inhibits inflammations, and was found
to be ichthyotoxic [17]. Furthermore, kalkitoxin was used to observe the interaction of
tetrodotoxin, and voltage-sensitive sodium channels showed substantial tumor-selective
cytotoxicity that was enhanced during the period of clonogenic assays [18,19]. However,
the molecular mechanism of KT in breast cancer metastasis is unknown, and the protective
impact of kalkitoxin on bone destruction in vivo is not fully understood. Therefore, our
main aim is to determine the effect of KT in the anti-metastatic development of breast
cancer and anti-osteoclastogenesis.

2. Results
2.1. Kalkitoxin (KT) Affects Cell Viability in Breast Cancer Cell Line MDA-MB-231

To determine KT concentration for in vitro studies, we performed MTT and colony
formation assays with 0, 25, 50, and 100 nM of KT. Drug concentration with cytotoxicity
can affect the in vitro cell migration assay, so we treated MDA-MB-231 cells using 25, 50,
and 100 nM of KT. KT is not cytotoxic at 24 and 48 h. The ICs; of KT is 27.64 uM for MDA-
MB-231. Furthermore, there was no statistical significance even though cell viability was
decreased by around 10% in KT of 50 and 100 nM at 48 h (Figure 1G). In addition, the colony-
forming assay showed that KT of 25, 50, and 100 nM formed colonies of 40, 41, and 37,
respectively, while without KT treatment, it formed 42 colonies (Supplementary Figure S1).
Taken together, KT did not affect cell proliferation below 100 nM.

2.2. KT Reduces the Motile Ability of MDA-MB-231

Wound healing, transwell migration, and invasion assays were performed to deter-
mine KT’s effect on cell migration. A wound healing assay was carried out within 16 h
after KT treatment, whereas migration and invasion assays were carried out after 24 h of
KT treatment. As a result, wound healing ability was significantly decreased in KT of 25,
50, and 100 nM compared with control (Figure 1A,B). The transwell migration assay shows
that the respective concentration of KT suppresses the migration of cancer cells. The 50 and
100 nM concentrations of KT inhibit cancer cell invasion (Figure 1C-E). Our results indicate
that KT reduces the motility of MDA-MB-231 breast cancer cells.

2.3. KT Inhibits Communication between MDA-MB-231 Cells and Active Osteoclast

Bone is a frequent site of metastases. For cancer metastasis, it has been reported
that communication between tumor cells at the primary site and various cytokines are
secreted from bone cells [20]. Therefore, we supposed that some factors secreted from
active osteoclasts might relocate cancer cells to the bone and change tumor cell behavior.
To identify whether KT could affect the correlation between the cancer cell and osteoclasts,
a transwell chemotactic assay was performed on MDA-MB-231, and conditioned media
from mature osteoclasts (OcCM) were applied to MDA-MB-231 cells. The transmigration of
tumor cells exposed to OcCM was increased compared with traditional media. Furthermore,
in OcCM with KT, the transmigrated-cell number was significantly reduced (Figure 1C,F).
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Figure 1. Kalkitoxin suppresses the migration of MDA-MB-231 cells. Cells were cultured with
DMEM high glucose (growth media) with or without 25, 50, and 100 nM concentrations of KT.
(A) Wound healing assay (Scale bar, 100 um) (C), transwell migration, transwell invasion assay, and
CM migration were observed (Scale bar, 100 um). (B,D-F) Quantitative analysis of the assays with
or without KT. (G) Effect of different concentrations of KT on MDA-MB-231 cells at 24, 48, and 72 h,
observed by MTT assay. (H) Molecular structure of kalkitoxin. Results are presented as means + S.D.
(n=3). *p <0.05,** p <0.01, and *** p < 0.001 indicate significant differences between KT-treated
groups and control.

2.4. KT Alters the Expression of Epithelial-Mesenchymal Transition Markers

EMT protein plays a significant role in cancer cell metastasis from primary to sec-
ondary tumor sites. The EMT program’s execution involves the transcriptional alteration
of many genes regulating cell adhesion, mesenchymal differentiation, cell migration, and
invasion [21]. Inhibiting HIF-1 activity in mice after orthotopic transplantation of triple-
negative breast cancer dramatically affects primary tumor growth and metastasis to lymph
nodes and lungs. HIF-1 stimulates EMT by upregulating or repressing EMT-associated
transcription factors [22]. Western blot analysis showed that KT significantly enhanced
claudin and E-cadherin, whereas it substantially suppressed the expression of ZEB-1, Snail,
Slug, N-cadherin, 3-catenin, and vimentin. In addition, KT suppressed the expression of
HIF1x, MMP-2, and MMP-9, which also play a significant role in bone metabolism and
metastasis of cancer (Figure 2A-K). These results show that KT shows substantial effects
on EMT markers.

2.5. KT Suppresses the Expression of JAK2/STAT3

JAK2/STAT3 is responsible for breast cancer progression. JAK-2, STAT3, and STAT5
regulate genes that promote breast cancer cell survival, proliferation, and metastasis [8]. As
shown in Figure 3A-D, protein expression of p-JAK2, p-STAT3, and p-STAT5 were markedly
reduced by KT treatment. This result indicates that KT suppressed the JAK2/STAT3
pathway and prevented breast cancer cell survival and metastasis.
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Figure 2. KT suppresses breast cancer epithelial-mesenchymal markers. Cells were cultured with
DMEM high glucose (growth media) with or without 25, 50, and 100 nM concentrations of KT.
(A) Western blot analysis was performed to determine the expression of breast cancer EMT marker
proteins. (B-K) Quantitative analysis of the expression of EMT marker proteins. Results are presented
asmeans £ S.D. (n =3). *p < 0.05, * p <0.01, and *** p < 0.001 indicate significant differences between
KT-treated groups and control.
A
0 25 50 100 KT (nM)

p-JAK2 “ “ B

150
JAK2
p-STAT3

D
120
100
dekedk
ok
"'STATS‘ S e e ‘ o 25 50 25 50 100
[ 25 50 100

STAT3
i Concentration of KT (nM)
e @ rem——— comentsien oHTen

[a]

g

8

p-JAK2/JAK2 (%)

p-STAT3/STAT3 (%)
p-STATS/STATS (%)

bl
(9]
X

E 0 25 50 100 KT (nM)

2

T — —— CXCLS

— A e 8 CXCR2
A

B CXCL12

e el WAl | Ccxcre 25 50 100 0 25 50 H 50 0 2 50 100
. Concentration of KT (nM) Concentration of KT (nM) Concentration of KT (nM) Concentration of KT (nM)

- | oo

°

CXCLS/B-actin (%)
o8823888
CXCR2/B-actin (%)
EEEERR]
CXCL12/B-actin (%)
H
CXCR4/B-actin (%)
o333 888
i
i

Figure 3. KT suppresses JAK2/STAT3 pathways and abrogates secondary cancer cell growth on bone.
C. (A) Western blot analysis was performed to determine the expression of JAK2/STAT3 proteins.
(B-D) Quantitative analysis of related protein expression. (E) Protein expression of secondary cancer
cell growth factors on bone. (F-I) Quantitative analysis of the secondary growth stimulator of cancer
cells on bone proteins. Results are presented as means + S.D. (n = 5). * p < 0.05, ** p < 0.01, and
*** p < 0.001 indicate significant differences between KT-treated groups and control.
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2.6. KT Inhibits the Expression of MAPK and Akt

MAPKs and Akt pathways were involved in breast cancer cell proliferation and
metastasis as well as in facilitating tamoxifen resistance [23,24]. Therefore, we examined
KT’s effect on the expression of MAPKs and Akt pathways. As shown in Figure 4A-E,
protein expression of pERK, pJNK, p-p38, and pAkt was markedly reduced by KT treatment
after 30 min. Thus, these results suggest that KT suppressed MAPKs and Akt pathways
and prevented cancer cell proliferation and metastasis.
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Figure 4. KT suppresses the MAPK pathway and osteoclastogenic protein expression. MDA-MB-231
cells were cultured in DMEM high glucose (growth media) with or without 25, 50, and 100 nM
of KT for 30 min for the MAPK pathway and 24 h for osteoclastogenic proteins. (A) The total
protein was isolated to perform Western blotting using antibodies p-AKT, p-JNK, p-ERK, and p-JNK.
(B-E) Quantitative analysis of MAPK pathway proteins. (F) Western blot analysis was performed
to determine the expression of osteoclastogenic-related proteins. (G-K) Quantitative analysis of
osteoclastogenic-related protein expression. Results are presented as means + S.D. (1 = 3). * p < 0.05,
** p <0.01, and *** p < 0.001 indicate significant differences between KT-treated groups and control.

2.7. KT Affects the Expression of Osteoclast Factors

Cathepsin K, OPG, and NF-kB play a crucial role in osteolysis and cancer cell migration.
Calcyclin-binding protein (CYBP) has been reported as a migration suppressor [25], and
cathepsin K is well known as a positive regulator of bone resorption, cancer progress,
and cancer cell migration. The expression of CYBP was increased by around two times
compared to the control, whereas that of cathepsin K was decreased dose-independently
after treatment with KT. OPG produced by the bone reduces bone degradation. However,
OPG produced by cancer cells increases bone resorption. Besides the role of NF-kB in
osteolysis, it also plays a role in promoting tumor cell proliferation and survival. KT inhibits
the expression of both OPG and NF-kB (Figure 4A-F).

2.8. KT Inhibits Breast Cancer Metastasis in Mouse Modeling

Protein expression of CXCL5/CXCR2 and CXCL12/CXCR4 were decreased with
KT treatment, resulting in KT inhibiting cancer cells’ secondary growth within the bone
(Figure 3E-I). To evaluate whether KT could block cancer metastasis in vivo, KT was ad-
ministered a day after the intracardiac injection of cancer cells, according to time schedules.
The intensity of cancer signals was different in the vehicle and KT-treated groups. KT
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effectively inhibited cancer metastasis to secondary sites (Figure 5A). Out of eight mice in
each group, the number of distant metastases was higher in the vehicle group compared
to the KT-treated group. Eight of eight mice had bone metastasis in the vehicle group,
while five and three mice had bone metastasis in the 2 and 10 mg/kg KT-treated groups,
respectively. The intensity of cancer cells on bone was very low in KT-treated groups.
Cancer cells metastasize to the brain in six out of eight in the vehicle, while KT abrogated
it in KT-treated groups. The 10 mg/kg KT treatment completely inhibited breast cancer
metastasis to the lungs (Figure 5B). No mice died in the 10 mg/kg KT group, while the
2 mg/kg KT group and vehicle group showed 70% and 25% survival rates, respectively
(Figure 5C). There was no weight loss except for the vehicle group (Figure 5D). Immunohis-
tochemistry analysis of the femurs of mice showed that KT substantially suppressed the
expression of vimentin and (3-catenin, whereas it enhanced the expression of E-cadherin.
Interestingly, KT suppressed the expression of mammaglobin A in the brain of the mice
dose-dependently (Figure 5E). Mammaglobin A is an attractive target for the treatment of
patients with breast cancer because of its highly specific expression from breast cancers.

A Vehicle 2 mg/kg 10 mg/kg B

Breast cancer metastasis to organs out of 8
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Bone 8 5 3
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Figure 5. KT inhibits distant breast cancer metastasis in vivo. (A) MDA-MB-231 cells were intrac-
ardially injected into the mice. After five weeks with or without treatment of KT, each group of
mice had bioluminescence after five weeks. (B) Several distant metastases in mice of each group.
(C) The Mantel-Cox log-rank test was used to determine percentage survival. (D) Average mouse
weights during the course of the study were measured. (E) Femurs were fixed, decalcified, embedded,
sectioned, and subjected to immunohistochemistry for EMT marker proteins such as E-cadherin,
{-catenin, and vimentin in the femur section (Scale bar, 100 um). Arrow indicates the dense staining
of the biomarker. Immunohistochemistry for mammaglobin A protein in the brain section was
performed. Results are presented as means & S.D. (n = 8). * p < 0.05 indicates significant differences
between KT-treated groups and vehicle.

The pCT analysis of the femur (Figure 6A) showed the bone volume (BV)/trabecular
volume (TV), bone mineral density (BMD), trabecular thickness (Tb. Th), and trabecular
number (Tb. N) of the KT-treated group, which was significantly increased compared to
the vehicle group and total porosity of KT-treated group and decreased compared to that
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of the control group (Figure 6B-F). These results indicated that KT suppressed distant
cancer metastasis, indicating that KT could be an anti-cancer medicine for breast metastasis.
TRAP staining of the femur shows more TRAP+ cells in the vehicle than in the sham group.
Treatment of low and high KT doses significantly suppresses the number of TRAP+ cells
(Figure 6G,H).
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Figure 6. KT inhibits osteolysis in vivo. (A) MDA-MB-231 cells were intracardially injected into the
mice. After five weeks with or without treatment of KT, representative micro-CT images of each
group’s mice were shown. (B-F) BV/TV, trabecular separation, cortex BMD, trabecular number,
trabecular thickness, trabecular BMD, and total porosity were determined using micro-CT data
analysis. (G) Femurs were fixed, decalcified, embedded, and sectioned. TRAP staining of mice and
osteoclast numbers in femurs were counted (Scale bar, 100 um). Arrows indicate mature osteoclasts.
(H) Quantitative analysis of TRAP-positive osteoclast numbers displayed as a histogram. Results
are presented as means £ S.D. (n = 8). * p < 0.05, ** p < 0.01, and *** p < 0.001 indicate significant
differences between KT-treated groups and control.

3. Discussion

Breast cancer frequently spreads to the bone and leads to extensive bone destruction. In
the present study, we investigated whether KT had a therapeutic effect on distant metastatic
cancer. Firstly, we determined a non-toxic concentration of KT to identify its impact on cell
motility in the MDA-MB-231 triple-negative breast cancer cell line. According to in vitro
studies, KT reduced cell migration dose-dependently; 100 nM of KT significantly reduced
cell migration without cytotoxicity.

The metastatic cascade process can be explained simply in three steps: proliferation of
the primary tumor, local invasion of the tumor by entrance into blood vessels (intravasation)
and lymph nodes, and colonization and outgrowth of primary cancer in distant secondary
organs. The close collaboration of cancerous cells with specific microenvironment elements
is required in each stage [26]. Metastatic cancer usually relocates and regrows in specific
organs; for example, breast cancer cells mainly grow in bones, the brain, and the lungs.
This phenomenon has been explained based on the “seed and soil” hypothesis proposed
by Stephen Paget in 1889 [27,28]. The bone micro-environment is affected by cancer cells
present at the primary site, thus enhancing tumor cells’ capacity to seed the bone and
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secrete many chemokines that control various behaviors of tumor cells to sites that support
their growth [20].

Based on these reports, we speculated that osteoclasts or osteoblasts have a chemo-
attractive effect on the breast cancer cell. However, according to our previous study,
KT inhibited osteoclast activation. Thus, we selected osteoclast cells to verify the KT
effect on communication between breast cancer cells and bone cells. Conditioned media
from osteoclasts were collected and then applied to MDA-MB-231 cells. Interestingly, the
transmigration and migration ability of MDA-MB-231 cells were highly induced when
exposed to OcCM. However, in KT-containing OcCM, they were significantly reduced.
These results suggested that unknown factors secreted from osteoclasts had a functional
effect on chemotaxis and migration ability in MDA-MD-231 cells, and KT interrupted
communication between breast cancer and osteoclasts.

A high level of HIF-1c at diagnosis signifies early relapse and metastasis [29], and
increased expression of HIF-1 targeted genes are found in the triple-negative breast cancer
subgroup [30]. HIF-1 plays a significant role in breast cancer biology, including angiogen-
esis, stem cell maintenance, EMT, invasion, metastasis, and obstruction of radiation and
chemotherapy [31]. HIF-1 promotes EMT by controlling the transcription of E-cadherin,
Snail, and ZEB-1 [32]. KT suppresses the expression of HIF-1o.. JAK2/STAT3 activa-
tion promotes breast cancer cell growth, survival, and metastasis via EMT induction and
chemotherapy resistance [33]. Matrix metalloproteinase (MMP) is a zinc-dependent en-
dopeptidase that degrades many extracellular matrix (ECM) components and the bone
matrix. MMP-2 and MMP-9 have corresponded positively with a higher metastasis inci-
dence [34]. KT inhibits the expression of MMPs, suppressing bone metastasis and bone
degradation. Standard features of EMT are loss of E-cadherin expression and upregulation
of N-cadherin, called the “cadherin switch,” associated with increased migratory and
invasive behavior of cancer cells [35]. E-cadherin, a cell-cell adhesion molecule, has been
identified as a tumor suppressor protein. Loss of E-cadherin leads to tumor cell dissociation
and enhanced ability to migrate, invade, and metastasize [36]. ZEB-1 is an inducer of
EMT and cancer progression by downregulating E-cadherin, leading to advanced disease
or metastasis [37]. KT increases the expression of E-cadherin, decreases N-cadherin, and
decreases the ZEB-1, facilitating the inhibition of invasion from the epithelium to the blood.
The first family member identified, claudin 1, forms the tight junction strand. The PDZ
domain of claudin 1 interacts with zona occludins (ZO1 and ZO2), which connect to several
signaling pathways [38]. The overexpression of claudin 1 alone induced apoptosis in
MDA-MB-231 cells [39]. KT significantly increases claudin expression, facilitating lower
recurrence status and more prolonged disease-free survival in breast cancer; however,
overexpression of claudin 1 increases cell invasion in colon cancer [40].

Vimentin contributes to the aggressive phenotype in invasive breast cancer and is
considered a canonical marker of EMT, which plays a role in tumor invasion and progres-
sion [41]. B-catenin is a cytoplasmic plaque protein that plays a vital role in EMT [42]. In
cells undergoing EMT, it is located either in the nucleus or cytoplasm of cells. Localization
of B-catenin to the nucleus stimulates the transcription of genes that induce EMT [43].
KT inhibits the expression of both vimentin and f-catenin, suppressing the invasion of
cancer cells. The Snail family includes three members as Snail, Slug, and Smuc. Snail
is widely known as the repressor of E-cadherin and activator of nuclear ERK2 during
EMT [44]. Slug enhances the colony formation size and number [45] and plays a role in the
homing/colonization of cancer cells to bone [46]. The CXCL5/CXCR?2 axis stimulates bone
colonization, which is also a step for cancer cell stability in bone [9]. KT inhibits the Slug
and CXCL5/CXCR2 axis, inhibiting colony formation within the bone after metastasis.

KT regulated the expression of the calcyclin-binding protein (CYBP) and cathepsin K.
CYBP has been reported as a negative regulator of malignant behavior in gastric cancer [25]
and metastasis in colon cancer [47]. Cathepsin K is a protease responsible for bone resorp-
tion. Recently developed potent cathepsin K inhibitors act as useful anti-resorptive agents
to treat osteoporosis [48]. In general, bone loss is caused by the over-activation of osteoclasts
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that breaks down bone tissue. Tumor cells within the bone promote osteolysis, creating
a favorable micro-environment as the bone matrix is abundant in growth factors. Tumor
cells in bone secrete pre-osteoclast maturing factors, such as parathyroid hormone-related
protein, IL-11, and TNF-«, which stimulate osteoblasts to increase RANKL and decrease
osteoprotegerin (OPG) production, consequentially leading to bone destruction [49]. OPG
secreted from bone marrow acts as a negative regulator of bone metabolism. Still, OPG
secreted from breast cancer cells enhances the tumor-promoting effect on primary breast
tumors by blocking TRAIL action and through a direct impact on tumor cells. KT in-
hibits the OPG, which promotes the growth of endothelial cells and tubule formation and
promotes metastatic tumors at sites outside of bone [50]. RANKL, a ligand of RANK’s
receptor, has been considered the central molecule for bone destruction. The binding of
RANKL to RANK stimulates the maturation and activation of osteoclasts. OPG, a decoy
receptor of RANKL, blocks the binding of RANKL to RANK, leading to the inhibition of
osteoclast differentiation and activation. The RANKL/RANK/OPG system imbalance is
common in several tumors such as breast cancer, prostate cancer, malignant bone tumors,
and squamous cell carcinoma [51,52].

Chemotherapy is a standard systemic treatment for bone metastasis, and many drugs
for breast cancer treatment mainly target bone. The bisphosphonate (BP) group of anti-
cancer drugs is widely used in general medicine. BPs inhibit osteoclast development
and migration, increase the production of OPG by osteoblasts, and promote osteoclast
apoptosis [53]. RANKL is considered the central molecule for bone resorption. Anti-
RANKL drugs inhibit osteoclast differentiation by masking the RANKL receptor. In our
previous studies, KT inhibited osteoclast activation and regenerated bone destruction by
inflammation in the osteoporosis mouse model.

KT was initially isolated from Lyngbya majuscula to collect new molecules for testing
as anti-tumor or anti-fungal agents [54]. However, until now, KT’s effect on cancer has
only been reported in 2015. This paper explained that KT inhibits HIF-1 activation by
suppressing mitochondrial oxygen consumption at the electron transport chain and targets
tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor
cells [16].

Based on our in vitro studies, KT verifies the therapeutic effect on metastatic cancer
and bone loss caused by cancer in the bone. Metastatic mouse modeling was established
through the cardiac injection of MDA-MB-231_Luc?2 cells. Firstly, we examined whether
KT could inhibit cancer metastasis through an in vivo mouse model. Still, the intensity of
cancer signals in secondary organs showed significant differences between the vehicle and
two KT-treated groups. We thus tested whether KT was adequate to reduce metastases-
secondary cancer. KT was administered orally from the day after the intracardiac injection
of MDA-MB-231 cells to five weeks after cancer implantation. A high dose of KT completely
inhibits breast cancer metastasis to the brain and lungs. KT may be a promising agent for
the treatment of metastasis to the brain and lungs besides bones. Our results showed that
the treatment of KT suppressed distant cancer metastases.

Furthermore, micro-CT analysis results showed that bone loss caused by metastatic
cancer decreased in the KT-treated group compared to the vehicle. Moreover, the mice’s
physical conditions, such as walking, playing, and body weight were similar to normal mice
in the KT group. Our previous studies identified that KT inhibited osteoclast activation and
repaired inflammatory bone loss [55]. Therefore, these results may indicate KT’s function in
bone regeneration by suppressing osteoclast differentiation. Indeed, it was challenging to
determine KT’s effect on the bone with the present results, but we consider these findings
significant, and further studies are needed.

4. Materials and Methods
4.1. Reagents

Fetal bovine serum (FBS), a-modified essential medium (x-MEM), and penicillin
were purchased from Gibco (Gaithersburg, MD, USA). Parental MDA-MB-231 cells were
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purchased from a Korean Cell Line Bank (South Korea). RAW264.7 macrophage cells
were purchased from ATCC (Manassas, VA, USA). RANKL was obtained from
PeproTech (Rocky Hill, NJ, USA. pGL4.50 [luc2/CMV/] vector was purchased from
Promega (Madison, WI, USA). The antibiotic hygromycin was purchased from Gibco BRL
(Gaithersburg, MD, USA). Primary antibodies were purchased from Thermo Fisher Scien-
tific (Waltham, MA, USA), Santa Cruz Biotechnology (Santa Cruz, CA, USA), and Abcam
(Cambridge, MA, USA).

4.2. Cell lines and Conditioned Medium

Human MDA-MB-231 breast cancer cells and MDA-MB-231-luc?2 cells were cultured in
a standard DMEM supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/mL),
and streptomycin (100 U/mL) and maintained at 37 °C in 5% COs,.

4.3. Cell Viability

The cytotoxicity of KT was examined with the MTT assay. A total of 4 x 103 of MDA-
MB 231 cells/well were seeded on 96 well plates separately and treated with various KT
doses for 24 h and 48 h. KT untreated cells were taken as control. Then 0.5 mg/mL of MTT
was added to cells for 2 h at 37 °C, and cells were dissolved with 200 uL dimethyl sulfoxide
(DMSO) and quantified with a spectrophotometer at 570 nm.

4.4. Wound—Healing Assay/Transwell Migration and Invasion Assay

MBA-MB-231 cells were maintained until nearly 100% confluence, and then a linear
scratch was made using a 200 pL pipette tip. After washing twice with phosphate-buffered
saline (PBS), the cells were treated with KT of 0, 25, 50, and 100 nM and then incubated for
16 h, and images were taken at 10x magnification.

According to the manufacturer’s protocol, a transwell chamber with 24-well, 8.0 uM
pore membranes (Corning USA) was used. A total of 1 x 10° cells/well were seeded in
the upper chamber with 100 pL serum-free medium, and 600 pL of complete medium
was added to the lower chamber as a chemoattractant with or without KT. After 24 h of
incubation, cells on the upper surface were removed with a cotton swab, and cells on the
lower surface were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet
solution. Cells were photographed with an inverted fluorescence microscope.

For the osteoclast soup migration assay, 5 x 10* cells per well were seeded in the
upper chamber in 100 puL serum-free medium, and 600 uL of OcCM was added to the lower
chamber chemoattractant with different concentrations of KT for 24 h.

For the transwell invasion assay, 2 X 10° cells were seeded, and the assay was carried
out in a similar manner to the transwell migration assay described above, except that 100 pL
of 1:8 DMEM/ dilute Matrigel (BD, USA) was added to each well at 37 °C for 2 h before the
cells were seeded on the membrane.

4.5. Preparation of Total Protein and Conditioned Media

Cells were lysed in a protein extraction buffer (50 mM Tris (pH 8.0), 5 mM EDTA,
150 mM sodium chloride, 0.5% deoxycholic acid, 0.1% SDS, 1% NP-40, 1 mM PMSF, and
1 mg/mL protease inhibitor cocktail) to prepare total protein. Cells were then centrifuged,
and the supernatant was retained. The concentrations of all protein samples were deter-
mined using a Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA, USA).

RAW264.7 macrophage cells were exposed to RANKL for differentiation into osteoclast-
like cells to obtain conditioned media from osteoclasts (OcCM). RAW?264.7 cells were
cultured with growth media until 80% confluence and then exposed to differentiation
media containing 2% FBS with 50 ng/mL RANKL for five days. The media were then
replaced with fresh media with 2% FBS. After 24 h, conditioned media were clarified by
centrifugation and stored at —80 °C until use.
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4.6. Western Blot Analysis

MDA-MB-231 cells were lysed in a lysis buffer, 10% SDS-PAGE was used to separate
protein, and these proteins were moved to a polyvinylidene difluoride membrane using a
transferred buffer. Nonfat skimmed milk (5%) was prepared, and membranes were blocked
for 60 min at room temperature. Blocked membranes were treated with primary rabbit anti-
p-ERK, anti-p-p38, anti-p-JNK, anti-ERK, anti-]NK, anti-p38, anti-NFATc1, anti-cathepsin
K, and anti-B-actin antibodies, which were diluted at 1:500 to 1:1000 ratios and incubated
at 4 °C for 15 h. Secondary conjugated anti-rabbit or anti-mouse antibodies were diluted
at a 1:3000 to 1:5000 ratio in 5% skimmed milk for 2 h at room temperature. Then protein
expression was developed with an ECL detection kit (Bio-Rad, Hercules, CA, USA).

4.7. Establishment of Luciferase-Expressing Stable Cells

MDA-MB-231 cells were transfected with pGL4.50 (Luc2/CMV /Hygro) vector using
LipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. Positive clones of MDA-MB-231 cells were selected after treatment with
300 pg/mL hygromycin for one week, and the IVIS system confirmed the luciferase activity
of cells. These cell lines were designated as “MDA-MB-231_Luc2”.

4.8. Tumor Implantation and Drug Treatment

The ethics committee for animal handling at Jeonbuk National University, South Korea,
approved the study. All mice experiments were performed in accordance with the local
institutional animal care and use committee (IACUC) guidelines. Four-week-old female
athymic nude mice were used to establish a breast cancer metastasis model. All mice were
obtained from NARA Biotech (Tae-jeon, South Korea). Mice were divided into 4 groups of
8 mice: sham, vehicle, low-dose (2 mg/kg), and high-dose (10 mg/kg). For intracardiac
injection, vehicle and dose groups of mice were anesthetized with 250 mg/kg of Avertin
(2, 2, 2-Tribromoethanol), then 10° MDA-MB-231-Luc?2 cells were suspended in 100 pL
of phosphate-buffered saline and injected into the left ventricle of the heart. Mice of the
standard control group were injected intracardially with PBS instead of cancer cells. The
cancer development and metastasis in the mice were monitored once at five weeks through
the IVIS system. The mice in KT-treated groups were orally administered KT once per
two days for five weeks. At the experimental endpoint, all mice were euthanized. Bone
fragments and brain were excised, fixed in 4% paraformaldehyde overnight, and stored at
—80 °C until further analysis.

4.9. In Vivo Bioluminescent Imaging (BMI)

After cancer implantation to the heart, BLI of femurs was measured at five weeks, and
signal intensity of KT-treated groups was compared with the vehicle group. Biolumines-
cent imaging was conducted with an in vivo optical imaging system (IVIS 200; Xenogen
Corp.). During the imaging procedure, all mice were anesthetized with isoflurane gas (2%
isoflurane in oxygen, 1 L/min). Five minutes after the intraperitoneal injection of 100 uL
of D-luciferin solution (15 mg/mL), all mice acquired a bioluminescence image. Living
Image software (Xenogen Corp) analyzed signals by depicting a circular ROI around each
bioluminescent source. The results are reported as the maximum photon flux within an
ROI in photons per second (photon-s~'-cm™2:sr™1).

4.10. Assessment for Osteolytic Bone Metastases

Both femurs of mice were analyzed using a high-performance in vivo micro-CT
Skyscan 1076 (Skyscan, Kontich, Belgium), with an image field at a pixel size of 13 uM.
The distal femoral metaphysis was analyzed from a region that was 1.0 mM below the
growth plate and 1.5 mM in length. For quantitative analysis, the software CTAn (Skyscan)
was used to obtain the following parameters within the region of interest (ROI): bone
volume/tissue volume (BV/TV), trabecular thickness (Tb. Th), trabecular separation (Tb.
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Sp), trabecular number (Tb. N), and trabecular bone mineral density (BMD) [49]. The
cortical BMD was analyzed in the middle of the diaphysis of the femur.

4.11. Immunohistochemistry

Femurs were fixed in 10% neutral-buffered formalin, decalcified with 10% EDTA for
three weeks, and then embedded in paraffin. Paraffin-embedded femurs were cut at 4 uM,
deparaffinized with xylene, and rehydrated with alcohol for further hematoxylin-eosin or
3,3’-diaminobenzidine peroxidase (DAB) immunohistochemical staining. Proteolytic diges-
tion and peroxidase blocking of femur slides was carried out, and slides were incubated
overnight with primary antibodies against E-cadherin, vimentin, and 3-catenin dilution
1:100 at 4 °C.

4.12. Statistical Analysis

Experiments were performed thrice and analyzed by one-way ANOVA with Tukey’s
multiple comparisons test. GraphPad Prism software was used to analyze all statistical tests
(GraphPad Software Inc., La Jolla, CA, USA), and the data are expressed as means & S.D.
Values of p < 0.05 were appraised as statistically significant.

5. Conclusions

Kalkitoxin inhibits neoplastic cell metastasis and crosstalk between bone, brain, lungs,
and cancer cells. KT inhibits wound healing, and the transwell migration assay indicates the
inhibition of local migration of MDA-MB-231 cells within the primary site. Furthermore, KT
inhibits the invasion of cancer cells, suppressing the invasion of the cancer cells to the blood
vessel from a primary site to a blood vessel and blood vessels to the secondary sites. KT
also alters the expression of protein markers to suppress epithelial-mesenchymal transition.
E-cadherin, HIF-1«, and vimentin are major proteins for EMT, migration, and invasion,
and KT strongly alters the expression of these proteins. It also delays secondary tumor
growth and progression by inhibiting JAK2 /STAT3 and MAPK pathways. KT alleviates
the invasion of cancer cells from blood vessels to bone by inhibiting CXCL5/CXCR2 and
CXCL12/CXCR4. In bone, the “vicious cycle” is disturbed by the inhibition of CtsK,
OPG, and p-NF«kB by the action of KT preventing bone loss caused by metastatic breast
cancer. KT shows an anti-metastatic effect on MDA-MB-231 in vitro as well as in vivo, so
it has the potential as an anti-cancer medicine to alleviate severe pain in patients with
metastatic cancer.
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