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Statistical Shape analysis on MRI
Roksana Sadeghi

Abstract

Medical imaging including magnetic resonance imaging (MRI) has become a major source
of information for making clinical decisions, specifically based on static and dynamic shape
variations of organs and moving structures respectively. Most conventional algorithms for
shape extraction from images rely on deterministic modeling that offers no quantification
for confidence of the extracted shapes. In this thesis a probabilistic approach for shape
extraction is tested that provides a degree of confidence in extracted shapes. The degree of
confidence create the important information in clinical decisions. This novel method,
termed probabilistic Bayesian shape analysis introduced by Le.T and Schuff.N in [1],
utilizes Curvelet transformation and Hidden Markov model simultaneously to detect
probabilistic distributions of shape contours. In addition, this thesis, aims to effectively
summarize probabilistic shape features in terms of information theoretic measures, such as
the entropy (E) and statistical complexity (SC). The approach was initially demonstrated
on well-defined hand gestures. To show the clinical potential of probabilistic shape feature
extraction, the novel method was tested on tongue shape variations during pronunciation
of vowels. Probabilistic shape analysis of tongue movement during vowel pronunciations
mapped on MRI was performed on 5 subjects [1 woman, 4 men, age range 25-58], who
speak English. MRI consisted of a Fast Low Angle Shot sequence [2]. All subjects were
asked to sequentially pronounce the vowels [u:], [i:], [a:], [ae:], [e:], [o:], each for
approximately 7 seconds, while having the fast MRI scan of the tongue. A probabilistic
contour of tongue shape was extracted from each MRI frame (total = 210) and its features
were summarized in terms of E and SC. Variations in E and SC as a function of vowel were
then tested using univariate linear mixed effects regression. In addition, a multivariate
linear mixed effects regression based on Monte Carlo sampling was used to test variations
in E and SC simultaneously. First, the analysis showed that the novel method significantly
captures variations in tongue shapes compared to repeated MRI variations. Second, the
analysis demonstrated that entropy of the tongue extracted consistent shapes for the
vowels [u:], [ae:], and [o:] across subjects, and for SC consistent features were found for [u:],
[ae:], [a:] and [o:]. Moreover, using E and SC together capture consistent features for the
vowels [a:], [e:], [i:] and [u:] across subjects. In conclusion, this thesis illustrated that the
probabilistic shape model captures tongue shapes associated with vowel pronunciation.
The new method is of potential interest to clinical studies of tongue disorders and function,
including speech therapy, assessment of tongue surgery and assessment of functionality of
the tongue. Beyond the tongue, the novel probabilistic approach has potentially wide
clinical applications in almost any medical field that uses imaging. Examples of
applications for the importance of contour extraction and shape detection include the
delineation of almost any organ, such as the shape of kidneys and liver, the changing
shapes of tendons in joints during movement, the tracking of change in structure of the
beating heart and the shape of a tumor, specifically in the brain.
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Chapter 1

Introduction

Medical imaging including magnetic resonance imaging (MRI), has become a major source
of information for making informed clinical decisions, such as diagnoses, localizing organs
pathology, planning surgeries and evaluating medical and surgical interventions. Especially
anatomical features like location, shape, and size of organs or lesions often provide important
clinical impressions about a medical condition. Humans can visually extract anatomical fea-
tures to a certain degree by using expert knowledge. However, this approach is potentially
influenced by reader bias. Additionally, for large number of images, i.e. in dynamic imaging,
human reading is also ineffective and costly. With improving computer power, computa-
tional solutions to extract image features automatically have become increasingly attractive
in clinical practice. These computational solutions generally rely on image contours that
imply boundaries of anatomical structures. A variety of algorithms have been developed
over the years to capture image contours of anatomical structures and to further facilitate
quantitative measurements, such as volume, thickness and shapes on these structures. How-
ever, a major problem in this field is the precision in detecting contours in the presence of
noise. The overarching goal of this thesis is to develop a computational framework that im-
proves precision in contour detection and representation of anatomical structures in medical
imaging.
Algorithms for extracting contours fall roughly into two fundamentally different classes: one
class treats contours deterministically by establishing discrete landmark points along the
contours; the other treats contours probabilistically by allowing a degree of uncertainty.
In the deterministic approach it is assumed that the entire measurement process is known
beforehand, that is, there are no errors by chance. Accordingly, deterministic contour eval-
uations usually rely on models that separate contour information, i.e. image contrast, from
noise. On the contrary, in the probabilistic approach the element of chance is involved.
Contrast variations are considered to be probabilistic, typically resulting from a hidden ran-
dom process that the approach attempts to characterize. Contours are then derived from
the maximum likelihood of their respective probability distributions given the contrast vari-
ations. Furthermore, a probabilistic approach offers the advantage that established rules
of information theory can be applied to quantify the degree of confidence in the contour
measurements. This thesis focuses on a novel probabilistic formalism for extraction contours
and quantifying shapes.
Aside from developing a computational framework for probabilistic shapes, this thesis also
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addresses the challenge to effectively summarize features of probabilistic shapes. A conven-
tional and also straightforward summary metric for quantifying shape features is to take
mean value and standard deviation of a set of contours. However, this method is very sim-
plistic and only provides a global measure of shape without ability to capture potentially
local shape variations. More sophisticated and popular methods for summarizing features
are Principal Component Analysis (PCA) [4] and Fractal feature analysis [5]. PCA is a sta-
tistical procedure to bring out strong pattern in a dataset, called the principal components,
based on variations. The largest principal components can be used to quantify some degree
of the complexity in shapes. Fractal analysis allows assessing the characteristics of shapes
in terms of complex patterns that are self-similar across different scales, so called fractals
[5]. However, a fundamental limitation of both PCA and Fractal analysis is that they only
operate on discrete input data that unlike probabilistic inputs - do not permit a degree of
uncertainty. PCA is also limited in the way it transforms possibly correlated input variables
into a set of linearly uncorrelated output variables while potentially nonlinear correlations
are ignored. A critical limitation of fractal analysis is that the fractals are determined em-
pirically and are not necessarily generalizable. To overcome the limitations of both PCA
and Fractal analysis, this thesis utilized SC, a recently developed formalism for analyzing
medical imaging data proposed by Young and Schuff in [6] to quantify probabilistic shape
features.
The clinical importance of developing improved methods for shape measurements is that
many diseases lead to deformations of affected organs and development of tumors or tis-
sue lesions that can be visualized with medical imaging, e.g. using MRI. Similarly, dynamic
imaging of shape changes is also increasingly being used in clinics to evaluate proper function
of moving body parts and organs, such as joints and the heart. To demonstrate the clini-
cal utility of the new probabilistic shape formalism in this thesis, variations in the shape of
tongue during speech generation have been studied. Specifically, the degree to which the new
probabilistic shape formalism captures consistent tongue shapes for vowel pronunciations has
successfully been tested on normal human subjects. The new method should be of interest
to clinical studies of tongue disorders and function, including speech therapy, assessment of
tongue surgery and assessment of functionality of the tongue [7], [8]. Beyond the tongue, the
novel probabilistic approach has potentially wide clinical applications in almost any medical
field that employs imaging. Examples of potential applications include the delineation of
almost any organ, such as the shape of kidneys and liver, the changing shapes of tendons in
joints during movement, the tracking of change in structure of beating heart, and the shape
of a tumor, specifically in the brain.
To summarize, the goal of this study is to implement a probabilistic approach to identify
contours in images of anatomical shapes and to introduce a novel metric for quantifying
shape variations based on information theory. As a test, a shape analysis of serial MRI data
that maps tongue movement during vowel generation is presented.
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Chapter 2

Background

2.1 Conventional Shape Representation Algorithms

In bio-medical imaging, analysis of static and dynamic anatomical morphology plays a central
role for assessing abnormalities and diseases. Several methods for shape representation have
been proposed over the years. Arguably the most popular and commonly used methodology
so far has been deformable active contour models, termed Snakes [9].
An initial algorithm of Snakes, termed Basis Snake, has been introduced by Kass et al in 1988
[9]. This method starts with initial landmarks of shape boundaries and helps these landmarks
to move toward ideal positions using energy minimization algorithms, which generally utilize
intensity similarity for optimization. However, this approach requires images with high
contrast and high signal to noise ratio to obtain robust contour estimates. In addition, the
boundaries in Basis Snake highly depend on initial landmarks. The Balloon Force Snake [10]
has been developed to address some of these drawbacks. Balloon Force Snake uses intensity
gradients rather than direct intensities as energy minimization. This causes landmarks to
move faster together toward the ideal shape boundaries driven by a global so-called internal
pressure, which also results in lower sensitivity to initial conditions. However, contours
can easily diverge from boundaries in Balloon Force Snake if the boundary energy, i.e. the
gradient slope, is too small in comparison to the internal pressure [1]. To overcome this
issue, the Greedy Snake [11] and Gradient Vector Flow [12] algorithms have been developed,
in which the impact of the global pressure force is relaxed and each landmark is allowed to
move through the boundaries separately. However, these algorithms still have a problem in
absence of any pressure when no clear direction for landmark movement can be derived.
In summary, Snakes algorithms have fundamental limitations and are very sensitive to noise.
For an illustration of the problems with Snakes, figure 2.1 shows contours based on various
Snakes algorithms for U and H shaped objects that were obviously not always successful,
despite high image contrast.

2.2 Shape Constraints

The performance of contour detection can often be improved by incorporating prior knowl-
edge about the physical object features. An example of prior knowledge in medical imaging is
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Figure 2.1: H and U simulated shapes and their detected contours with Basis Snake (BS),
Balloon Forced Snake (BFS), Gradient Vector Flow (GVF) and Greedy Snake (GDS) algo-
rithms [1].

the fact that organs have smooth surfaces with no sharp edges. Requiring algorithms to yield
smooth contour curvatures may improve the results. However, if a constraint on contours
from prior knowledge is too strong, solutions will be heavily biased toward prior knowledge
and in the extreme can be even flatly wrong. A probabilistic approach to shape analysis, as
pursued in this thesis, offers in principle an effective solution by accounting for the degree of
uncertainty in prior knowledge. In this thesis, prior knowledge has been incorporated into
probabilistic shape determinations by considering spatial relationships between the closest
neighbor landmarks along a shape contour via Markov chains and Hidden Markov Models.

2.3 Shape Quantification

In addition to contour detection, another major problem in shape analysis is effectively
summarizing complex shape features. The most simplistic summary is using mean and
standard deviation, i.e. variance, of contours. While this provides information about global
shape features, local variations in shapes are averaged out. Although there are many trivial
solutions to measure local shape features, such as computing mean and standard deviation
within a patch that slides across the image, the analysis of sliding patches can quickly
become overwhelming because of the high dimensional data. A popular method for dimension
reduction, while maintaining most of the information, is Principal Component Analysis
(PCA) [4]. PCA is a statistical procedure to bring out strong patterns in a multidimensional
data, called the principal components. Applied to shape analysis, the largest principal
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components will contain most important characteristics whereas smaller components can
be ignored, resulting overall in a reduction of data dimension. A problem of PCA is that
the dimension reduction is accomplished by transforming correlated input variables into a
set of only linear uncorrelated output variables while potentially nonlinear correlations are
ignored. The restriction to linearity might miss important information about shapes and also
could lead to a bias [4]. To relax the linearity restriction, Fractal analysis has been proposed
for characterizing shapes. Fractal analysis evaluates the characteristics of shapes in terms
of complex patterns that are self-similar across different scales, the so called fractals [5].
However, Fractal analysis has various methodological issues. In particular, as Fractals are
generally derived empirically, a generalization is often limited. Furthermore, a fundamental
limitation of both PCA and Fractals in the context of probabilistic shape is that they are
both deterministic formalism providing no means to determine the degree of confidence in
the shape feature extractions.

2.4 Probabilistic Shape Modeling

To summarize, conventional Snakes algorithms have limitations for extracting contours. In
addition, popular methods such as PCA and Fractals can be ineffective for quantifying
shapes. In this thesis, a novel probabilistic shape model is used for contour extraction that
has been developed by Le.T and Schuff.N [1]. Figure 2.2 demonstrates that simulations for
the probabilistic method outperforms Snakes, as illustrated in figure 2.1. However, tests of
the probabilistic shape extraction method on experimental data has been limited so far. A
major focus of this thesis is to adapt the probabilistic method for extracting shapes of the
tongue during vowel generation.

Figure 2.2: H and U simulated shapes and their detected contours using the probabilistic
shape model [1]
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Chapter 3

Theory

In this section, the principal elements of the novel probabilistic shape analysis approach will
be presented.

3.1 Sparse Image Representation

Image feature extraction is typically performed by sparse representation of images in terms
of selected basis functions where the function coefficients contain most of the image informa-
tion, e.g. the location of sharp boundaries. Trigonometric basis functions such as cos and sin,
which are the basis of Fourier transform, are widely used for this purpose. However, trigono-
metric functions are not spatially selective and therefore are not very effective in representing
sharp boundaries [13]. In contrast to trigonometric basis functions, Wavelet basis functions
offer greater spatial selectivity. Wavelets are widely being used in imaging for multiscale fea-
ture extraction. However, neither trigonometric nor Wavelet basis functions provide angular
information, which is important for curved boundaries. As a generalization of Wavelets,
more recently, Curvelet basis functions have been introduced, which provide angular as well
as intensity information [14]. For the purpose of probabilistic shape representations, this
thesis used Curvelets.

3.1.1 Curvelet Transformation

Curvelets are designed to provide directionality representation of shape boundaries in im-
ages. The Curvelet transformation has been developed by Candes and Donoho in 2000
[14] as a generalization of Wavelet transformation that provides directionality representa-
tion of points in an image. In 2006, a new version of Curvelet transformation, named Fast
Digital Curvelet Transformation, has been introduced to make Curvelet transformations
computationally tractable [3]. Curvelet basis functions are scalable and multidirectional.
Furthermore, Curvelet coefficients obey a Gaussian distribution [15] . In order to perform
Curvelet transformation, first a 2D Fourier transform of the image is taken and represented
in radial coordinates. Afterwards, the 2D frequency domain is divided into parabolic wedges
which results in partitioning the Fourier plane in radial coordinate and angular divisions, as
illustrated in figure 3.1.
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Figure 3.1: Curvelets in Fourier frequency (left) and spatial domain (right) [3].

The multi-size circles indicate multiscale image decomposition and the angular wedges cor-
respond to directionality and orientation. Thus, a particular wedge is defined by a certain
scale and a given angle. Figure 3.1 shows the Curvelet coefficients in Cartesian coordinates
as well.
Here is a brief description of basic principles of Curvelet transformation. Let W (r), r ∈
(1/2, 2), and V (t), t ∈ (−1, 1), be a pair of smooth and non-negative real-valued functions.
W (r), the radial window, and V (t), angular window satisfy the admissibility conditions as
follows,

∞∑
j=−∞

W 2(2jr) = 1; r ∈ (
3

4
,
3

2
) (3.1)

∞∑
l=−∞

V 2(t− l) = 1; t ∈ (
−1

2
, 1) (3.2)

For each j ≥ 0 as a scale factor, the window Uj in Fourier domain is defined as,

Uj(r, θ) = 2
−3j
4 W (2−jr)V (

2|
j
2
|θ

2π
) (3.3)

where (r, θ) denotes the polar coordinate. A Curvelet function φjlk is described by three
parameters: a scale 2−j, a direction index l and a position k, defined as,

φjlk(x) = π(Rθjl(x− x
jl
k )) (3.4)

where φj(x) = Uj(0, 0) and the Curvelet at scale 2−j is θjl = 2π×2−|
j
2
|×l, l ≥ 0, 0 ≤ θl ≤ 2π.

Curvelet coefficients are computed using the inner product of the image and the curvelet
transform,

cjlk(x) =< f(x), φjlk > (3.5)

The image therefore can be represented as a Curvelet series,

f(x) =
∑
jlk

cjlkφjlk (3.6)
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3.2 Markov Chain and Hidden Markov Model

Prior knowledge of smoothness of organs incorporated into shape modeling can improve
results. Smoothness can be imposed on contours by taking into consideration that nearest
neighbor landmarks are spatially related. An effective model for neighbor relationships along
a contour is a Markov Chain model, as explained further below. In addition, Hidden Markov
Models will be employed to characterize variations in Markov chain sequences along contours.

3.2.1 Markov Chain Model

A Markov chain model, best known from time series analysis, is a collection of random vari-
ables, generated by a random process in which future states conditionally depend on the
present and past states [16]. In the context of image contours, a Markov chain model can be
envisioned to describe the angular distribution at a new landmark position as conditionally
dependent on the neighboring landmark angular distributions. As a result, a large angular
deviation, such as a U-turn, will be unlikely in a new landmark if the angular distribu-
tion of neighboring landmarks were narrow. Next, a hidden Markov model will be used to
characterize the random process that generated variations in Markov chain sets.

3.2.2 Hidden Markov Model (HMM)

HMM is a statistical approach for modeling of symbolic sequences, i.e. variations in Markov
chain sets. In imaging, HMM has widely been used in contour completion analysis and
object tracking due to its ability of working as a generative model of contour progression
[17, 18, 19]. In this thesis, HMM is exploited to effectively extract angular distributions
along contours that ultimately lead to the quantification of probabilistic shapes.
To employ HMM for angular distributions along contours, consider a contour S of N land-
marks, S = {s1, s2, . . . , sN}, where si is the ith landmark angle. Each si ∈ S, is determined
based on a set of D different angles, which are defined by the Curvelet transformation scal-
ing factor j (see paragraph on Curvelets above). Typically, D = 8 yields sufficient angular
resolution for a MRI of size 256× 256. The D = 8 angular resolution is derived using chain
coding method as shown in figure 3.2.

Figure 3.2: Eight connected chain coding to achieve 8-angular resolution [1].

Now, a turning angle between a pair of neighboring landmarks on the contour can be defined
as differences between the 8 possible angles at each landmark. Thus, the number of possible
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turning angles between two landmarks is 16. Let O = {o1, o2, . . . , o16}, be the set of possible
turning angles between two landmarks. HMM models S using a sequence of hidden states
Q, Q = {h1, h2, . . . , hN}, where hi is the selected hidden state of the ith landmark that
generated the angle distribution of si in S. Each hi of Q comes from a predefined hidden
state space H, H = {H1, H2, . . . , HM} where M is the number of hidden states of HMM.
Determining M is specific and hard problem. In this thesis, M is set to 8 to represent 16
different observations based on 8 hidden states. In HMM, choosing the hidden state for
the ith observation is based on the probabilities of transition between hidden states and the
probabilities of producing the observation by the states. Accordingly, a HMM consists of:

1. Sets of hidden states, H, and observations, O,

2. The transition matrix A with elements aij where i, j = 1, . . . ,M , is the probability of
transition from state Hi to state Hj,

3. The observation probability matrix B = {bki} where bki is the probability of the ob-
servation Oi given the state Hk,

4. The initial distribution of hidden states, p

Hence, an HMM model l is a tuple of the three parameters, l = (A,B, p), describing the
probabilities of transition between hidden states, the probabilities of observations given the
state, and the state prior probabilities respectively. Given a sequence S, the objective
function of l is:

λ(S) = π(h1)×
N∏
i=1

P (hi|hi−1)× P (si|hi)→ max (3.7)

Where P (hi|hj) = aij and P (si|hi) = bii. The HMM l can perform following routines:

1. Evaluating: to compute the probability of generating S,

2. Decoding: to determine the most probable state sequence that produces S,

3. Training: to estimate the model parameters A,B, p to maximize the objective function
l(S).

In this thesis, for contour detection a probabilistic method has been used to select contour
among different possible landmark candidates, i.e. Bayesian model, in which HMM is first
trained to approximate contour progressions in a contour subset. The decoding functionality
the trained HMM is then used to produce the sequence of hidden state vectors of each
given sequence, which is used as contour progression description and applied in sequence
complexity computation.

3.2.3 Hidden Semi Markov Model (HSMM)

A traditional HMM has the drawback that hidden states are assumed to follow a random
Markov process [20]. A Markov process is a stochastic model with the property that hidden
state changes only depend on the current state and are not repeated by other hidden states.
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In contour progression problems, however, a state change might occur again from other
hidden states due to contour bending trends. Selecting an appropriate HMM is therefore
essential for model accuracy. Among possible HMM models, the recently developed HSMM
is chosen because it allows repetition of hidden states and has stability and fast convergence
[20]. Consider P = {P1, P2, . . . , PM} where Pi = {pi1, pi2, . . . , piZ} and pij is the probability
that hidden state Hi to be repeated j times. Z, termed sojourn, is the maximum length of
hidden states that can be repeated.
An HSMM model λ is a tuple of (A,B, p, P ), where A,B, and p are identical to those
of HMM; P is sojourn probability distributions of hidden states. Similar to HMM, HSMM
approximates the symbol sequence using a sequence of hidden states that generate a sequence
of observations. To determine the hidden state to be selected at landmark i, HSMM produces
a vector of hidden state probabilities vi at the ith contour location si, resulting in a sequence
of hidden state vectors V , V = {v1, v2, . . . , vN}, where vi = {vki}; k = 1, . . . ,M and vki is
the probability of observing si within the hidden state space Hk. Given a contour S, HSMM
computes V using a HMM decode routine. The hidden state vector sequence V describes
the probabilistic bending variation of contour S. The probabilistic bending variation at each
landmark along S is then used to summarize probabilistic shape information in terms of the
E and SC of the bending variations of S.

3.2.4 HSMM training

Given a set U = {Si}; i = 1, . . . , n of contour sequences, a HSMM model is then trained
on its attributes A,B, p and P that maximize the objective function in equation (3.7) for
every sequence Si of U . Baum-Welch [21], a popular HMM training algorithm based on
Expectation Maximization, was used in this thesis. For initialization, the mean and variance
of each model parameter are estimated based on the values of the contour sequences U . The
gradient descent learning law is further applied during Expectation Maximization to prevent
the training process from yielding oscillatory solutions [1].

3.3 Information Theoretic Measures

Since the probabilistic approach for contour detection incorporates uncertainty of the turning
angle variation along contours, information theoretic measures, such as the E and the SC,
can be applied to quantify uncertainty in contour variations that lead to a characterization
of the corresponding probabilistic shapes.
Information theory is a broad field of Mathematics, beginning with Claude Shannons sem-
inal work in 1948 to quantify information of noisy signals [22]. Today, information theory
has broad applications in a wide spectrum of fields from management to biology. With
regard to quantifying probabilistic shapes in this thesis, established measures such as the
entropy [22], the statistical complexity [6], and the Jensen-Shannon divergence [23] are used
to quantify respectively overall shape curvature, curvature variation, and similarity between
distributions.
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3.3.1 Entropy

Given random values x ∈ s, i.e. image intensities, the entropy is the average uncertainty
or - in other words - the degree of surprise associated with observing x in a set of random
variables, s. The entropy is defined as:

E = −
∑
x∈s

P (x) log(P (x)) (3.8)

Here, P (x) is the probability of x ∈ s occurring in any of possible states s. Possible states
of a binary random system of zero and one are for example s = {[0, 0], [0, 1], [1, 0], [1, 1]}
for states of size = 2. The E is always non negative and 0 log 0 for P (x) = 0 is zero by
definition. Obviously, the entropy is a measure of information since a surprising observation
carries more information than observations that occur more frequently. In this thesis, the
entropy is used to quantify the overall angular distribution of probabilistic shape curvatures.

3.3.2 Statistical Complexity

Statistical Complexity quantifies the complexity of a random system. Various definitions for
SC have been introduced. In this thesis the high-dimensional SC has been used which was
introduced by Young.K and Schuff.N in 2008 for imaging [6]. Let s be a set of states again
and x and y random values of s. Then SC is defined as:

SC = −
∑
s

∑
x,y/ins

P (x|y)
∑
x,y∈s

log(P (x|y)) (3.9)

P (x|y) is the probability of observing x conditionally to having observed y. The sums run
across all observations x and y and all possible states s. SC can be interpreted as the difficulty
to discover information in a stochastic sequence. Obviously, information is easy to discover
from sequences that are strictly periodic or completely random (i.e. zero information), while
retrieving information from any sequence in between these extremes is complex. In this
thesis, SC is used to quantify the variability in the angular distributions of probabilistic
shape curvatures.

3.3.3 Jensen-Shannon Divergence

Lastly, the Jensen-Shannon Divergence (JSD) is used to determine similarity between prob-
ability distributions, i.e. the similarity between the distributions of hidden states for two
neighboring landmarks on a contour. Obviously, it is reasonable to assume that the angular
variation between two neighboring landmarks is small if the two landmarks are associated
with similar hidden states distributions. In contrast, the angular variations between the
landmarks could be large if their corresponding hidden states distribution differ significantly.
JSD quantifies how much two probability distribution differ. JSD is defined as:

JSD(P,Q) = E
(P +Q

2

)
− 1

2
(E(P ) + E(Q)) (3.10)

Here, E(P ) and E(Q) are the entropies of distribution P and Q, respectively. In this
thesis, JSD is used to derive the turning angle probability between two landmarks given the
uncertainty of the angular distributions at each landmark.
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Chapter 4

Method

4.1 Subjects and Study Protocol

Five healthy subjects [1 woman, 4 men, age range 24-58] were recruited for this study.
The study was approved by the Institutional Review Board of the UCSF (University of
California, San Francisco) and all subjects provided written informed consent. All subjects
spoke English but were different native speakers. The subjects included 1 German speaker, 1
French, 1 Chinese mandarin and 2 Persian speakers. All subjects were asked to sequentially
pronounce the vowels [u:], [i:], [a:], [ae:], [e:], [o:], each for approximately 7 seconds, while
lying in an MRI machine and having a fast MRI scan of the tongue.

4.2 MRI Acquisition

2D MRI scans were obtained with high temporal, spatial image resolution and good soft
tissue contrast using a MRI Fast Low Angle Shot(FLASH) sequence that was introduced by
A. Haase et al.[2]. FLASH is a gradient echo based sequence technique that uses very low
flip angle in order to obtain a sufficiently high yield of the MRI signal while avoiding long
waiting time between successive experiments for signal recovery. The FLASH sequence was
setup for optimal contrast to noise within a short acquisition time without losing spatial
resolution. Since the flip angle is very short, low rf power is required. Taking the advantage
of the FLASH sequence, a movie of tongue movement during speech is possible [24].
The MR images of the tongue were acquired on a standard clinical 3.0 Tesla MRI Siemens
Skyra system with a 32-channel head coil. For each vowel, seven image frames of the 2D
mid sagittal slice of the tongue were acquired from each subject. Other relevant imaging
parameters were: 1.5mm in-plane resolution, 10mm slice thickness, 36.7 ms repetition time,
1.36ms gradient echo time, and 5 degree flip angle.
The total scan time for 42 image frames (6 vowels and 7 frames per vowel) was approximately
10 minutes for each subject.
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4.3 Preprocessing

Head MR raw images which covered brain and mouth were smoothed with a spatial median
filter in order to reduce noise. The area around the tongue was cropped using a rectangular
and anatomically registered mask.

4.4 Bayesian Contour Extraction

Figure 4.1: Flow chart of Bayesian Contour extraction modeling.

In the following sections, the extraction of tongue surface contours using probabilistic
Bayesian shape model is derived.

4.4.1 Curvelet Representation

Next, the contour extraction model is derived from Curvelet representation of images as
defined in equation (3.6). The determination of scale j of Curvelets is problem specific. For
the purpose of probabilistic shape modeling, the scale j = 8 was used, although other scales
could be more effective solutions to certain problems.
Let ck be the maximum curvelet coefficient and θk the corresponding direction at the location
k in the curvelet representation of the image, defining a landmark point in the landscape of
all coefficients and directions. Since the curvelet coefficients surrounding a landmark point
follow a normal distribution N(k, ck) [19], the conditional probability of a neighbor k′ given
k is defined according to:

P (k′|k) =
1

ck
√

2π
exp(−|k

′ − k|
2ck2

) (4.1)
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The coefficient distribution at k′ can be approximated according to:

Pk′ =
1

n

n∑
k′=1

P (k′|k) (4.2)

σk′ =
∑
k′

P (k′, k)× |k′ − k| (4.3)

Here, pk′ is the prior probability of the coefficient probability distribution at k′ and σk′ is
the standard deviation of the approximation. The better estimation of σk′ , σ

∗
k′ is defined as:

σ∗k′ = min{ck′ , σk′} (4.4)

4.4.2 Defining Intensity of Contour Representation

Next, the extraction of contour representations in the curvelet representation of the image
is described.
Let S be a contour represented by the k landmark points, si, i = 1, . . . , k;S = (s1, s2, . . . , sk).
The intensity of S is defined according to:

D(S) =
∑
si

P (si|Si−1)× ci (4.5)

Where P (si|Si−1) is the probability of the contour Si−1 progressing to si and ci is the
corresponding Curvelet coefficient. A first order Markov chain model is then applied to
derive the contour progression. The first order Markov chain model is defined according to:

P (si|Si−1) = P (si|si−1)× P (Si−1) (4.6)

With,
P (si|si−1) = P (si|si−1, θi)× P (θi|si−1, θi−1) (4.7)

4.4.3 Deriving the probability of contour progression

The first term of equation (4.7) at lhs is the probability of progression to si, given si−1 and
the selected progression angle θi (see further below for the selection probability). The second
term on the rhs describes the probability of switching direction from θi−1 to θi. Given the
probability of switching direction, the probable angle for the contour progression from si−1
to si will then depend on the coefficients ci−1 and ci according to:

P i
θ(i−1) = exp−|ci−1 − ci|

2

2× (ci)2
(4.8)

4.4.4 Selecting Best Progression Point

In general, several points, can be candidates for progression. Thus, a method needs to be de-
veloped for guiding the selection given the data. Here, it is postulated that the best selection
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of a candidate is the one which provides maximum gain in information for the progression.
This is equivalent to minimizing the mutual information between the distributions of possi-
ble points. In detail, given two data points, si and sj, and their corresponding distributions,
Di and Dj, the mutual information between the distributions is:

IM(Di, Dj) =
∑
dik∈Di

∑
djl∈Dj

P (dik, djl) log
( P (dik, djl)

P (dik)P (djl)

)
(4.9)

Here, dik is the conditional probability of point k given the point i. Therefore, a solution for
the contour evolution where information is maximized is needed. To find the solution that
maximizes information, IM(Di, Dj) is first normalized according to equation (4.10), before
integrating over all possible solutions to find the one yielding maximum information gain.

IN(Di, Dj) =
IM(Di, Dj)

maxk,l{IM(Dk, Dl)}
(4.10)

The contour S∗ represents a feature boundary in the image if and only if it holds the criterion
in equation (4.11), that leads to the model of contour detection algorithm. IN(si−1, si), the
normalized mutual information is computed using the coefficient distributions at si and si−1,
according to equation (4.10).

D(S∗) = max
i
{D(Si)} (4.11)

D(Si) = max
si−1

{B(si−1, si)× P (si|Si−1)× ci +D(Si−1)} (4.12)

B(si−1, si) =
1

IN(si−1), si
(4.13)

To summarize, D(S∗) is the contour intensity of the probabilistic model S∗. D(Si) is the
intensity of contour length i.

4.4.5 Bias Reduction

In general, D(S∗) will be biased toward the initial point selection. To reduce bias, multiple
contours using random selection of the initial points are computed. A search for a contour
using the model in equation (4.9) can be done using a dynamic programming algorithm in
combination with multiple initial point selection [1]. This yields multiple contours which
describe slightly different as well as overlapping image features. A post analysis on the
detected contours is needed to identify the key features in of the image. This is accomplished
as follows: Let C∗ be the set of common landmarks in the detected contours, C∗ = ∩Si,
i = 1, . . . ,m, where m is the number of detected contours. Let F (p) be the frequency
function defined on C∗ as in equation (4.14).

F (p) =
1

m

m∑
i−1

I(p ∈ Si) (4.14)

Where

I(x) =

{
1 ; x=true
0 ; x=false

(4.15)
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Each detected contour will be assigned a rank index based on how it covers the common
landmark set, defined as in

R(S) =
∑
k∈S

F (k)× pk × ck (4.16)

The contour S∗ having the highest rank value will be selected as the first key feature of the
image. For additional key features, we define:

Mk = ∪ki−1Si (4.17)

The similarity measurement of contours is determined based on the distributions of contour
conditional probabilities, according to:

Score(S) =
R(Mk)−R(S)

R(Mk)
× IM(S,Mk)

IM(Mk,Mk)
(4.18)

where Mk is the set of points in k selected features.
In these approaches, [p1, p2], the overlap between a contour S and the set of selected contours
is computed using the contour overlapping density. The ”new” property of a contour S is
determined based on the information gained by adding S to the selected contour set. A
contour S will be the (k + 1)th selected feature if and only if:

Score(S ′) = min
i=1,...,m

{Si} (4.19)

For selecting a contour likelihood based approach is used in this method; each candidate
contour will be assigned a log-likelihood index based on how likely it is regarding the HMM
of the detected contours in the image. Maximization of the likelihood will provide the best
contour solution, according to:

Score(S) =
R(Mk ∩ S)

R(Mk)
× IM(S,Mk)

IM(Mk,Mk)
(4.20)

The first term, on the lhs, indicates how much S overlaps with the selected contours; the
second term on rhs indicates how similar S is regarding the selected contour set. For potential
candidate S, both the terms should be minimized.

4.5 Feature Extraction

Based on the probability model described above, we have a contour containing many land-
mark points and directionality information including a set of 16 different turning angles from
the Curvelet transformation in addition to position knowledge for each landmark. To im-
pose smoothness on the contours curvature, given prior knowledge that the imaged physical
objects are smooth, the probability of turning angles between neighboring landmark points
can be computed using a Markov chain model (as described in previous section (3.2)). Fur-
thermore, the probability distributions of 8 hidden states can be derived from aggregated
contours. In this study, the aggregation includes 42 contours per subject from all 7 images
frames per vowel and 6 vowels per subject.
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Given the distribution of hidden states, the turning angle between a pair of neighboring
landmark points on a contour is then computed as difference between the pair of landmark
angles weighted by the JSD of the corresponding hidden states to enforce smoothness, as
expressed in equation (4.21). Again, the idea is that similar distributions of hidden states
between neighboring landmarks, yielding JSD values near zero, are probably generating sim-
ilar angular distributions and therefore the occurrence of large turning angles between such
landmarks is penalized. In contrast, for vastly dissimilar distributions of hidden states be-
tween neighboring landmarks, yielding JSD values near unity, the occurrence of large angular
differences is expected.

Dij = |θi − θj|.JSD(Pi, Pj) (4.21)

The sequence of Dij values from a contour reflects the curvature of that contour. To ef-
fectively summarize variations in contour curvatures, the Dij values are then assembled in
a co-occurrence matrix X where each Dij value is plotted against any other Dij value and
the sum of all occurrences is normalized to one to express X in terms of probability. Given
that Dij can take 16 values in this study based on a Curvelet angular resolution of 8, the X
matrix in this study is of size 16× 16.

4.6 Quantification of Features

The X, 16×16 matrix, is basically a two dimension histogram of turning angle distributions
of a contour, capturing the curvature of the contour. The E and the SC of X are then
computed according to equations 3.8 and 3.9, to quantify curvature. Specifically, the E
measures the degree of turning angle distributions that determines the overall curvature
features of a contour. For a curvature with largely flat features, the E will be small, because
the distribution of turning angles will be narrow. In contrast, for a curvature with mainly
round features the E will be large, because the distribution of turning angles will be wide. SC
measures the degree of variability in turning angle distributions. For a curvature, whether
flat or round, but with many local varying features, SC will be large. For a curvature with
locally more uniform features, SC will be small. Each E or SC alone or both together can be
used to classify shapes. In this thesis, the various shapes of the tongue when pronouncing
different vowels is measured using E, SC, as well as E and SC together.

4.7 Computational language method

All algorithms have been coded in Matlab.

4.8 Statistics

The sensitivity of novel approach to capture characteristic tongue shapes during vowel gener-
ation was tested across 210 shape models from contours of the tongue of 5 subject, 6 vowels,
and 7 MRI frames. First, it was tested whether the novel probabilistic shape method can
capture variations in tongue shapes when pronouncing vowels, compared to shape variations
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of the tongue at rest, i.e. variations across repeated measurements. This was accomplished
by separately modeling each shape metric, i.e. E or SC, as a function of vowel as well as
MRI scan number. To further consider variations across subjects, the design was extended
to a mixed effects model with vowels as fixed effect and variations between subjects as ran-
dom effect. Second, it was tested whether the novel probabilistic shape method can further
capture a characteristic tongue shape of each vowel across subjects. This was accomplished
by contrasting the shape variations between vowels in a mixed effects model with vowel by
frame interactions across subjects. Moreover, in order to explore the benefit of using E and
SC together for probabilistic shape characterization, univariate mixed effects models for each
metric were expanded to a multivariate one in which SC and E were used simultaneously.
This was accomplished using a Monte Carlo sampling library in R using the MCMCglmm
function.
To determine statistical significant, a bootstrap was used to obtain distributions of the mod-
eling coefficients, and their 95% confidence interval was evaluated to determine statistical
significance.
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Chapter 5

Initial Test

As initial test of shape method, a recorded movie of hand shapes as shown in figure 5.1 was
used. The images provided high contrast and well defined features, i.e. finger positions. The
raw images of different hand gestures extracted from the video are shown in below.

Figure 5.1: Different hand gestures numbering one to five, respectively.

Results of contour extraction from the hand are shown in figure 5.2.

Figure 5.2: The green lines shows extracted contours using the novel probabilistic shape
model.

Note, in the second and fourth hand shapes, there are sharp edges that are difficult to detect
with the probabilistic method due to the assumption of smoothness and this leads to incom-
plete contours. Nonetheless, the main features of hand shapes are successfully detected. The

19



probabilistic algorithm successfully detected hand gestures in 9 frames for first gesture, 10
frames for second gesture, 9 frames for third, 10 frames of fourth gesture and 2 frames for
fifth gesture (total 40 frames).
In the scatter plot below, SC is plotted versus E for each hand gesture. Each color corre-
sponds to the specific hand gesture shown in figure 5.1.

Figure 5.3: Plot of SC versus E for different hand gestures. Colors indicate the various hand
gestures shown in figure 5.1. Note, the clustering in SC and E for most hand shapes.

Note, the E and SC are correlated to each other i.e. more E results in more complex data
as expected. More E means wider range of angles in landmarks and higher SC means more
angle variations between the landmarks. The scatter plot also indicates that some hand
gestures can be clearly separated based on E and SC, such as gestures number 1, 3 and 5 in
figure 5.2 while others overlap.
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Chapter 6

Main Results - Tongue Shapes

Representative raw images from a subject while pronouncing 6 vowels, [u:], [i:], [a:], [ae:],
[e:], [o:] respectively are shown in figure 6.1.

Figure 6.1: Representative MRI data from a subject pronouncing 6 vowels.The images have
been acquired with MRI Skyra system with 32 channel head coil and the Flash sequence.
The important parameters of the sequence can be found in the images.The images in the
first row corresponds to vowels [u:] and [i:], second row [a:] and [ae:] and third row [e:] and
[o:], respectively.

As mentioned in method section (4.3), image preprocessing involved cropping the main
area around the tongue and also spatially filtering to increase signal to noise ratio. The
images below, figure 6.2, illustrate the results from preprocessing of the raw images shown
in figure 6.1.
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Figure 6.2: Preprocessed images of the same subject as shown in figure 6.1 while pronouncing
6 vowels. The images in the first row corresponds to vowels [u:], [i:] and [a:] and second row
[ae:], [e:] and [o:], respectively.

Contours of the tongue shapes for various vowel pronunciations obtained using the novel
probabilistic shape method are shown in figure 6.3.

Figure 6.3: Contours extraction of the same subject pronouncing different vowels.

To illustrate between subject variability in tongue shape, images in figure 6.4 shows data from
different subjects pronouncing vowel [i:]. As one can see, different subjects have different
shape of tongue for pronouncing same vowel.
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Figure 6.4: Different subjects pronouncing [i:] under the MR System.

The scatter plots in figure 6.5 depict SC versus E of tongue shapes when pronouncing different
vowels for each of the subjects. The colors indicate the different vowel.
Note, in all subjects the E and SC are correlated to each other i.e. more E results in more
complex data as expected. More E means wider range of angles in landmarks and higher SC
means more angle variations between the landmarks. The plots show clustering of tongue
shapes for vowels in some subjects, although there is variability between subjects.
The first test was to determine whether any vowel explains variations in either E or SC
significantly better than repeated scans. For both E and SC, the effect of vowels on variations
was markedly strong (p-value = 0.0540 and 0.0319 respectively) than the effect of repeated
scan, demonstrating that the novel method can capture tongue shapes associated with a
particular vowel. The second test was to determine whether variations in either (E, SC) or
(E and SC together) vowels are associated with individual vowels across subjects. Table 6.1
provides the summary of p-values from univariate models. For E, consistent variations at
the 95% confidence level were associated with vowels [u:], [ae:] and [o:] (p-value < 0.05).
For SC, consistent variations at the 95% confidence level were associated with vowels [u:],
[ae:], [o:] and [a:] (p-value < 0.05). For E and SC used together, consistent variations were
associated with vowels [a:], [e:], [i:], and [u:] with (p-value ≤ 0.05).
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(a) Subject A. Note, the light blue and
blue has been well clustered.

(b) Subject B. In contrast to previous
subject, almost all vowels has been clus-
tered except green.

(c) Subject C. In this subject, the blue
and yellow are not distinguishable but
the green, red, light blue and purple are
perfectly clustered.

(d) Subject D. Similarly, the plot of En-
tropy vs. SC has clustered the different
vowels.

(e) Subject F. In this subject,the pur-
ple and blue is clustered but the other
vowels are not distinguishable.

Figure 6.5: Plot of SC versus E in 5 subjects
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Fixed Effects p-values of E model p-values of SC model
Intercept < 0.001∗ < 0.001*

[i :] 0.167 0.373
[a :] 0.536 0.019*
[ae :] 0.016* 0.047*
[e :] 0.091 0.284
[o :] < 0.001* < 0.001*

Frame-2 0.607 0.741
Frame-3 0.371 0.883
Frame-4 0.297 0.505
Frame-5 0.254 0.679
Frame-6 0.576 0.957
Frame-7 0.267 0.581

Table 6.1: Univariate analysis of E and SC separately. This table contains p-values of
variations from different vowels as well as different frames from univariate mixed effect model
considering E and SC. Note, the one with * significantly detected with the corresponding
model

Fixed Effects p-values of E and SC model
Intercept 0.046*

[ae:] 0.220
[e:] 0.038*
[i:] 0.040*
[o:] 0.196
[u:] 0.050*

Frame-2 0.994
Frame-3 0.132
Frame-4 0.942
Frame-5 0.530
Frame-6 0.402
Frame-7 0.692

Table 6.2: Multivariate analysis of E and SC together. This table contains p-values
of variations from different vowels as well as different frames from multivariate mixed model
considering both E and SC. Note, the one with * significantly detected with the model
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Chapter 7

Discussion and Conclusion

A novel model for contour extraction in MRI was tested that utilizes a probabilistic formalism
to incorporate uncertainty of shape features. In addition, measures anchored in information
theory were used to effectively summarize probabilistic shape features.
The method was initially tested on high contrast images of well-defined hand gestures,
demonstrating its ability to capture the characteristic of several gestures. Values E and
SC of gestures #2 and #4 in figure 5.2 are different from other gestures because the contour
stops halve way at the outside hand border, whereas for the other gestures the contours
continue. However, this does not explain the large difference in E and SC between #2 and
#4. The higher E and SC values of #4 relative to #2 can be explained by the large contour
variability around the thumb, index, middle and ring finger in #4. Despite #2, the contour
variability is mainly confined to middle and ring finger. By the same token, the explanation
for the slightly larger SC value of #3 relative to #1 is the V shaped interruption of the finger
contour in #3 that is absence by the closed finger in #1. Since the spread of all fingers makes
a V shaped interruption appear more regular again, the SC value of #2 values decreases and
falls in the middle between #1 and #3. Taking together, initial tests shows that different
hand gestures are captured using E and SC.
The method was then tested on tongue shapes when pronouncing vowels [u:], [i:], [a:], [ae:],
[e:] and [o:]. The results indicate that the method is able to capture characteristic tongue
shapes for all vowels across subjects. In particular, the variations in shape were significantly
larger than variations in repeated MRI scans, demonstrating the sensitivity of the approach
to detected shapes. Furthermore, it was possible to extract consistent shapes across indi-
viduals for vowels [u:], [ae:] and [o:] by considering the E of angular distributions along
contour. In addition, considering the SC of angular distributions along contour, consistent
variations were associated with vowels [u:], [ae:], [o:] and [a:]. Modeling contours by both
E and SC also extract consistent shapes across subjects for vowels [a:], [e:], [i:] and [u:],
significantly. The reason why a consistent shape in a model was detected across subjects
for some vowels but not for others is unclear. One explanation is that individual tongue
shapes vary more for some vowels than for others, potentially in accordance with the native
language of the subjects. The number of subjects in this thesis was too small to test this
possibility with a reasonable level of confidence. Another explanation is that 2D imaging of
the tongue midsection is insufficient to capture the complex tongue motion for pronouncing
some of the vowels. An extension of the method to 3D data is required to address this issue.
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The most important finding of this thesis is that the probabilistic shape approach resulted
in a sensitivity detection of tongue shape during vowel pronunciations.
An important methodological innovation in this thesis is that the degree of smoothness of
contour curvatures is data-driven using HSMM in conjunction with a Markov chain model.
In contrast, most other approaches of shape extraction use ad-hoc models for smoothness
which potentially induce bias on smoothness. The findings of this thesis demonstrate that a
data-driven approach is effective. However, an extension of HSMM and Markov chain from
contours to planes for 3 dimensional data is challenging and requires substantially more work.
In addition, an Expectation Maximization algorithm was used to find the best answer from
initial guesses based on maximum likelihood, though it remains difficult whether a global
maximum solution is always achieved. Other optimization methods may offer more robust
results.
The new method is potential of interest to clinical studies of tongue disorders and function,
including speech therapy, assessment of tongue surgery and assessment of functionality of
the tongue. Beyond the tongue, the novel probabilistic approach has potentially wide clinical
applications in almost any medical field that uses imaging. Examples of applications for the
importance of contour extraction and shape detection include the delineation of almost any
organ, such as the shape of kidneys and liver, the changing shapes of tendons in joints during
movement, the tracking of change in structure of beating heart, and the shape of a tumor,
specifically in the brain.
In summary, this thesis demonstrated the successful extraction of shape features of both
hand gestures and tongue movement using the novel probabilistic shape model. In addition,
the probabilistic nature facilitated quantification of the shapes in terms of E and SC. This
approach is potentially applicable in many medical fields.
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