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Expecting the Unexpected:
Adaptation for Predictive Energy Conservation

Jeffrey P. Rybczynski, Darrell D. E. Long† Ahmed Amer‡
Storage Systems Research Center Department of Computer Science
University of California, Santa Cruz University of Pittsburgh

ABSTRACT
The use of access predictors to improve storage device per-
formance has been investigated for both improving access
times, as well as a means of reducing energy consumed by
the disk. Such predictors also offer us an opportunity to
demonstrate the benefits of an adaptive approach to han-
dling unexpected workloads, whether they are the result of
natural variation or deliberate attempts to generate a prob-
lematic workload. Such workloads can pose a threat to sys-
tem availability if they result in the excessive consumption
of potentially limited resources such as energy. We pro-
pose that actively reshaping a disk access workload, using a
dynamically self-adjusting access predictor, allows for con-
sistently good performance in the face of varying workloads.
Specifically, we describe how our Best Shifting prefetching
policy, by adapting to the needs of the currently observed
workload, can use 15% to 35% less energy than traditional
disk spin-down strategies and 5% to 10% less energy than
the use of a fixed prefetching policy.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management;
D.4.5 [Operating Systems]: Reliability; D.4.6 [Operating
Systems]: Security and Protection; H.3.m [Information
Storage and Retrieval]: Miscellaneous—Caching, Prefetch-
ing, Power Management, Storage

General Terms
Algorithms, Design, Security, Performance
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1. INTRODUCTION
In addition to protecting storage and data from intru-

sion and misuse, ensuring the security of a storage device
includes guaranteeing the system’s continued availability in
the face of differing workloads. Unforeseen workloads can
be the result of unexpected changes in load or application
behavior, or even the result of malicious and deliberate user
activity. In the latter case, it may be possible to limit re-
quests from problematic client systems or applications, but
even with a nominally light load a workload can be harmful
to the system. For example, two clients making the exact
same number of requests to a disk subsystem can result in
radically different energy consumption by the system. To
see this, consider a set of read requests that are presented
to a disk in one burst. After these requests are satisfied, and
a timeout period of inactivity has passed, the disk may en-
ter a low-power state to conserve energy and remain in that
state until the next set of requests arrives. On the other
hand, if the exact same number of requests arrive with an
inter-arrival time that is slightly greater than the inactivity
timeout of the disk, it will continuously enter a low power
state, only to be returned to an active state almost immedi-
ately afterwards. This behavior leads to the consumption of
excess energy at each such awakening, the disk spin-up cost
expended to bring the disk back to active state, resulting in
a great deal of excess energy being expended. As long as
a fixed spin-down policy is employed, the system is vulner-
able to encountering such unexpected problem workloads,
whether they be deliberately or naturally pathological.

One method to avoid such problematic workloads is to
develop fully adaptive strategies for managing the disk sub-
system. By continually and dynamically adapting the disk
spin-down and prefetching policies in response to the cur-
rent workload, such strategies provide a system that utilizes
the best policy available in the face of the current workload,
regardless of how such a workload may vary. In this case we
look at the problem of conserving disk energy consumption,
but in doing so we are also effectively minimizing total disk
motion and reducing unnecessary spin-ups and spin-downs.
This in turn implies a reduction in overall mechanical wear
and an increase in the reliability and availability of the disk
and the system as a whole. In this manner, a policy aimed
at reducing disk energy consumption and activity can miti-
gate the effects of malicious and pathological workloads, as
well as increasing the overall longevity of hard drives.

While processors are still the main consumer of system
power, it has been shown that the hard disk can use up to
30% of the total system energy [9], making the disk sub-
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system a prime candidate for energy conservation. Much
research has been dedicated to conserving energy, particu-
larly in mobile environments. We use prediction and its ap-
plication to energy conservation as a means to illustrate the
benefits of adaptive and self-optimizing strategies in the face
of varying workloads. We contend that even in applications
where prediction is the goal, such adaptive management is
advantageous in handling the inevitably unpredictable and
variant.

2. PREDICTORS AND DISK POWER
Disk systems use a significant amount of energy. Unlike

most electronics in a computer, the disk has mechanical com-
ponents. The spinning disk platters and the actuator arm
require a considerable amount of energy to start operation.
Powering down the disk to conserve energy is therefore only
worthwhile if the disk can remain idle long enough to con-
serve as much as the additional energy that would be needed
to spin the disk back up again. Aside from intelligently de-
ciding whether to spin the disk down for each idle period
(dynamic disk spin-down), another technique is to actively
reshape the workload by prefetching data that will be re-
quested in the future, which would result in longer periods of
inactivity between such bursts. Different access prediction
policies can meet with varying success for different work-
loads, and it is interesting to note that the most accurate
predictors are not necessarily the most beneficial for conserv-
ing energy. Our Best Shifting policy provides an effective
energy-conserving predictor, while automatically updating
its prediction policy in light of the current workload.

2.1 Accurate Prediction is Not Optimal
To allow our disk spin-down policy the longest idle peri-

ods, a perfect predictor will need to both prefetch read data,
as well as judiciously delay or accelerate write-backs of mod-
ified data back to the disk. To test our dynamic policy, and
competing predictors, we evaluate the performance of such
a perfect oracle for each test workload.

Simply prefetching the next N items (even if you are per-
fectly accurate) is not always the best strategy. Assume that
we have an access pattern which contains items A, B, C and
D, and we are trying to create long disk idle periods so we
can spin the disk down. Now, assume the following access
sequence: ABABCDDDBBBB (shown in Figure 1) and that
we have a cache with a capacity of 2 items. If we assume
that all items are predictable, then predicting the next items
that fit in the cache will get us an access pattern as shown
in Figure 1(b), with three idle periods of length three. As
we can see from the sequence, if we fetch D and prefetch B
towards the end of the trace (i.e., delaying the eviction of
D), then we can reduce this to only two idle periods, one
of length three and the other of length six (Figure 1(c)).
Through dynamic programming we identify the behavior of
a perfect oracle, rather than relying on simply prefetching
the next N items which, as was shown in Figure 1(b), is not
an optimal strategy.

The oracle works on the principal that all accesses are
in one of three categories, either they are predictable, un-
predictable, or may be delayed. Predictable accesses are
for data that has been requested before, and assuming a
prefetching algorithm was smart enough, could be predicted
and prefetched. An unpredictable disk access, whether it is
a write that needs to happen immediately or just a file that

has not been requested before, refers to accesses that cannot
be predicted and will always result in disk activity. Accesses
that can be delayed are a special case. These are accesses
which can be postponed for at most a given time period. Af-
ter that time period expires, if the data has yet to be written
to disk or read, it becomes equivalent to an unpredictable
disk access that must happen immediately. An example of
an access that can be postponed is a write request stored in
a write buffer and waiting for a flexible time-out before be-
ing written to disk. This allows the system to batch writes
with other requests based on the current state of the disk so
that they can all go to the disk at the same time, creating a
busier burst period and a possibly longer idle period. Weis-
sel et al. [18] have also shown that flexible write time-outs
can be used to batch disk requests and save disk power.

The oracle is also optimal in terms of the spin-down policy.
If the idle period is long enough to make a spin-down effi-
cient, then this perfect oracle assumes a spin-down occurs at
the start of the idle period. This allows the oracle to repre-
sent not only optimal prefetching and request batching, but
also optimal spin down strategy as well. The energy value
estimated for our oracle is therefore a strict lower bound on
how much disk energy a given trace would require.

2.2 Best-Shifting Prediction
To demonstrate the effectiveness and feasibility of dynam-

ically adapting a predictive disk power management mech-
anism to the current workload, we present the Best Shifting
policy. Since we will demonstrate how different prefetching
policies can perform best for different workloads, and that
access patterns can vary substantially, it would be best to
use an algorithm that would automatically switch to the best
prefetching policy in response to the current workload. This
is the basis of our Best Shifting prefetching policy, which ad-
justs which prefetching algorithm it uses based on which is
likely to conserve the most energy for the current access
pattern.

The Best Shifting policy uses machine learning techniques
to choose which policy out of six implemented component
algorithms works best for the workload at that point in time.
The Best Shifting policy dynamically chooses the best pol-
icy, not based upon hit ratio performance, but rather, based
on dynamically estimated energy savings for each compo-
nent policy.

The six component predictors we evaluate in comparison
to our Best Shifting policy, are: Unmodified, Last Succes-
sor [1, 2], First Successor [1, 2], Stability [1, 2], FMOC [11],
and EPCM [12]. Each of these prefetching policies use past
access events to predict future accesses. The unmodified
policy simply leaves the original workload unchanged, while
the Successor and Stability predictors are based on simple
pair-wise associations. The FMOC and EPCM predictors
are based on data compression and context modeling.

To keep track of the performance of the different pre-
dictors, each policy has its own virtual cache, containing
the data it would have in the cache if it were the system’s
prefetching policy. The virtual cache then allows us to derive
which data accesses would cause disk activity for the differ-
ent policies. Each policy then stores these disk accesses in its
own Disk Access Window, which is a snapshot of all the disk
accesses a given policy would have created in the past N sec-
onds had it been the system’s prefetching policy. From this
window, we can directly estimate potential energy consump-
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Figure 1: The initial request pattern with even spaces between each request and the corresponding disk accesses for:

no prefetching, greedy prefetching, and optimal prefetching.

tion. Virtual caches were used previously by Ari et al. [3]
and Gramercy et al. [8]. Our use of virtual caches differs in
that we evaluate each policy’s performance based on the es-
timated energy cost of using that policy, and not the simple
hit ratios that it would have achieved. Best Shifting uses
the virtual caches to determine the disk accesses each policy
would have created had it been the system’s policy. Then, it
periodically calculates the idle durations and estimates the
energy used by each policy. The policy with the lowest esti-
mated energy usage is adopted as the policy for the cache.
This selection is actually based on a relative weighting of the
components, and the use of a machine-learning algorithm to
dynamically adjust these weights.

When Best Shifting’s policy changes, there are two strate-
gies that we can employ to realize this change. First we can
simply change the policy without affecting the contents of
the cache. This changes the way future predicted data will
be prefetched, though it does nothing to the data already in
the cache. The second strategy is to “roll over” the cache.
This is the process of synchronizing the virtual cache of the
winning policy with the actual cache. This operation, how-
ever, can take many disk accesses to perform, and so is only
to be attempted if the disk is in the active state. If the cache
policy changes while the disk is down, roll-over does not take
place. If the disk is already active, then we can fetch the
data we need to synchronize the cache in the background
without causing an unnecessary disk spin-up. Roll-over can
quickly help cache performance after the policy is switched
due to a workload change that favors the new policy.

3. EXPERIMENTAL RESULTS
To test Best Shifting, our dynamic prefetching policy, we

used file system traces from a varied selection of sources.
A cache emulator is used to model the system cache while
keeping track of the demand-fetched and prefetched files,
along with cache statistics. If a trace entry asks for a file

that is not in the cache, a disk request is created. Our cache
emulator records the timing of file accesses that result in
cache misses and require physical disk activity. This output
is then used as the input to a spin-down algorithm, and disk
energy usage can then be calculated. For our tests, we used
a cache emulator with a typical 30 second write-buffer time-
out. The output for this emulator was then run through a
dynamic spin-down algorithm, implemented as described by
Helmbold et al. [10].

The difference among policies was the prefetching algo-
rithms, which were used to predict and prefetch possible
future data requests. The prefetched files are then placed
in the system cache, alongside normal demand fetched files.
The cache then uses LRU to decide which files should be
evicted. Thus prefetching incorrect files can adversely affect
the performance of the cache and reduce the length of idle
periods. That is why it is important to use prefetching poli-
cies that are accurate and effective. We have implemented
six different prefetching policies. Each also uses an under-
lying LRU cache eviction algorithm while predicting and
prefetching files.

Different prefetching policies can be seen to work better
for different workloads, and even for the same workload ob-
served over different days. Figures 3(a) and 3(b) show how
different prefetching algorithms work better when using day
long traces from instructional computers at the University
of California, Berkeley [16]. Figure 2 shows the difference
in performance for workloads observed on a Windows PC at
the University of California, Santa Cruz during early 2005.
The energy usage presented in these figures is depicted as
a ratio of the estimated energy used by the given policy
against the ideal energy usage of the oracle, which has the
benefits of perfect prescience and perfect (instant and in-
fallibly judicious) spin-down decisions. Both sets of traces
demonstrate that a single prefetching policy does not al-
ways perform best. This is typical of practically all traces
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Figure 2: The energy usage for host Periodot at the Uni-

versity of California, Santa Cruz on February 14, 2005.

(a) Day 1

(b) Day 2

Figure 3: The energy usage for host INS#23 at the

University of California, Berekely on October 3 and 4,

1996.

we have observed, and suggests that it would be best to use
management algorithms which automatically switch to the
best policy in response to the current workload. The Best
Shifting policy, which aims to do just that, can be seen to
consistently offer the best performance compared against all
other fixed and non-adaptive policies.

4. RELATED RESEARCH
Effectively spinning down the disk drive can save valuable

energy in a mobile environment [13, 7]. We have used a dy-
namic spin-down algorithm which adjust the timeout value
based on past disk request history. Helmbold et al. [10] de-
scribed another dynamic spin-down timeout algorithm that
employed a machine learning algorithm to adjust the time-
out. Bisson and Brandt demonstrated the practicality of
implementing such an algorithm [4]. One of the earliest
proposals for the incorporation of prediction to dynamically
save energy in storage systems was offered by Wilkes [19].

The nature of the access workload, and its interaction with
the underlying cache and disk, is crucial for for effective disk
power management. Zhu et al. [20] showed that simply min-
imizing cache misses does not necessarily result in the min-
imum energy usage for a given cache replacement policy.
They proposed four different power-aware caching policies
that can save up to 16% disk energy over a traditional LRU
cache policy. Creating busier burst periods and longer idle
periods allows the disk to be spun down for longer periods
of time. The exploitation and promotion of such bursty be-
havior has been explicitly attempted by Weisel et al. [18],
and Papathanasiou and Scott [15]. They found that tra-
ditional OS resource management policies tend to “smooth
out” these burst and idle periods. The Milly Watt Project [5]
contended that because application needs are the driving
force behind power management strategies, it is useful to
propagate energy efficiency information to the application.
Nobel’s implementation, Odyssey [14], showed a factor of
five increase in performance over three different benchmarks.
More specifically, Flinn et al. [6] showed that collaboration
between the operation system and applications can be used
to achieve longer battery life and less energy consumption.
Their implementation in the Linux kernel monitored energy
supply and demand to select a tradeoff between energy con-
servation and performance. Others have also used dynamic
collaboration between the operating system and applications
to increase energy efficiency and performance [18, 17].

5. CONCLUSION & FUTURE RESEARCH
Increasing system longevity, and increasing the overall re-

liability a system is an important goal when providing secure
and available storage. Resources can be wasted, and avail-
ability threatened, by unforeseen changes in workload, as
well as potentially deliberate problem workloads. One as-
pect of increasing availability in the face of such a threat
is workload reshaping with the goal of reducing disk en-
ergy consumption. By creating increasingly bursty disk ac-
cess patterns and longer disk idle periods through prediction
and prefetching, such active workload reshaping can increase
disk energy savings. But while some predictors are better
than others, there is rarely a universal single choice of al-
gorithm that is best for all possible workloads. This is par-
ticularly true if the nature of workload change is a result of
deliberate attempts to produce a problematic, though light,
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workload. In such a situation, a dynamically self-optimizing
algorithm, such as our Best Shifting prefetcher, has the po-
tential to leverage the best strategy regardless of the encoun-
tered request patterns. This particular prefetcher, when
combined with a dynamic spin-down mechanism, results in
the use of 15% to 35% less energy than traditional predictive
prefetching and spin-down policies.

Here we have focused solely on prefetchers and disk en-
ergy, but we aim to investigate the benefits of dynamic adap-
tation for other subsystems, and in the face of more deliber-
ate adversaries. While we have shown that by dymanically
selecting the prefetching strategy we can lengthen disk idle
periods and save energy, our oracle results also show that
there is possibly more energy yet to be saved. By imple-
menting different prefetching strategies, with the goal not
only to make more accurate predictions but also to create
busier burst periods, we aim to come closer to optimal disk
energy savings, regardless of the workload our algorithms
may encounter.
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