
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
A study of the Exponentiated Gradient +/- algorithm for stochastic optimization of neural
networks

Permalink
https://escholarship.org/uc/item/4ck5k544

Author
Parks, David Freeman

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ck5k544
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

A study of the Exponentiated Gradient +/- algorithm for stochastic
optimization of neural networks

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

David F. Parks

September 2019

The Thesis of David F. Parks
is approved:

Professor Manfred K. Warmuth

Professor Shawfeng Dong

Professor J. Xavier Prochaska

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgements ix

1 Introduction 1
1.1 Stochastic Gradient Descent Optimization 1
1.2 Gradient descent algorithm variants 2

1.2.1 Vanilla SGD . 4
1.2.2 SGD with Momentum . 4
1.2.3 Nesterov accelerated gradient descent 5
1.2.4 Adagrad . 8
1.2.5 Adadelta . 9

1.2.5.1 Adadelta Initialization Issues 11
1.2.6 Window Grad . 12
1.2.7 RMSprop . 13
1.2.8 Adam . 14

2 Exponentiated Gradient ± Update Algorithm 20
2.0.1 Exponentiated Gradient . 21
2.0.2 Exponentiated Gradient ± 21

2.0.2.1 Memory footprint and computation cost 23
2.0.2.2 U Scaling . 24
2.0.2.3 Normalization method 26

2.0.3 EG± update algorithm . 29
2.0.4 Concrete Implementations 30

2.0.4.1 EG± code from ConvnetJS 32
2.0.4.2 EG± Initialization 32

2.0.5 Visualization . 33

3 Findings and conclusions 35
3.1 Summary of findings . 35
3.2 U parameter scaling . 36

iii

3.3 Distribution of weights produced by EG+- vs. Nesterov in a CNN 38
3.4 Unnormalized EG . 40
3.5 EG+/- with random noisy features 41
3.6 Comparing EG± with other optimization methods 42
3.7 Applying adadelta’s per-weight learning rate to EG± 45
3.8 Sum of square loss vs. cross entropy 47
3.9 EG+- compared vs. SGD/L1 regularization 48
3.10 Sharing weights applied to EG± . 48
3.11 Overfitting with SGD vs EG± . 51
3.12 Results of applying EG+- in a convolutional neural network . . . 52
3.13 EG± on residual neural networks 55
3.14 Adversarial examples . 56
3.15 Conclusion . 58

Bibliography 60

iv

List of Figures

1.1 SGD vs. Momentum . 6

1.2 Momentum vs. Nesterov . 7

1.3 Nesterov vs. Adagrad . 9

1.4 Adagrad vs. Adadelta . 11

1.5 Adadelta Initialization . 16

1.6 Adadelta vs. WidnowGrad . 17

1.7 Adadelta vs. RMSProp . 18

1.8 RMSProp vs. Adam . 19

2.1 EG vs. SGD convergence . 24

2.2 UScaling convergence . 26

2.3 Visualization of normalization methods 27

2.4 RMSPRop vs. EG . 34

3.1 Choosing a U parameter . 37

3.2 U scaling parameter experiment 38

3.3 Weights distribution of EG± vs. Nesterov 39

3.4 Biases distribution of EG± vs. Nesterov 39

3.5 EG± Unnormalized . 40

3.6 50% random noise experiment . 41

3.7 10k features of random Gaussian noise experiment 42

3.8 EG vs. other optimizers . 43

v

3.9 EG with adaptive learning rate . 47

3.10 EG with L1 regularization experiment 49

3.11 Weight sharing applied to EG± . 50

3.12 Weight sharing experiment detailed plot 51

3.13 Comparing EG± to SGD with L2 regularization 52

3.14 CNN results on CIFAR10 dataset 54

3.15 Activation values of EG± vs. Nesterov 54

3.16 Adversarial examples . 57

vi

List of Tables

3.1 Comparing trainers on MNIST, displaying test set accuracy over

time. Rows are per number of samples trained on, columns are

per optimization algorithm. 44

3.2 Comparing all gradient optimization methods on a 2 layer MNIST

dataset, including EG±with adaptive learning rate from Adadelta,

the adaptive EG± uses a global learning rate parameter of 0.02,

U=40, and ρ=0.95. 46

3.3 EG vs other optimizers compared using a 32 layer residual net-

work on the cifar10 dataset. 55

3.4 Comparison of EG optimizer with varying normalization method

against other optimizers using 1000 test cifar10 samples and ad-

versarial versions of the same images. 58

vii

Abstract

A study of the Exponentiated Gradient +/- algorithm for stochastic

optimization of neural networks

by David F. PARKS

Exponentiated Gradient +/- (abbr. EG±) is a gradient update algorithm

drawn from work by Manfred Warmuth (Kivinen and Warmuth, 1997) in the

online learning setting. This thesis ports the algorithm into the context of deep

neural networks and analyses its fitness in that context compared to the current

state of the art gradient update methods. Existing methods employ an additive

update scheme whereby some fraction of the gradient is added to the weight

values to update them at each iteration in the gradient descent algorithm. EG±

provides a multiplicative update scheme whereby a proportion of the gradient

is multiplied into the original weight value, and then normalized to update the

weight. EG± is motivated by using a relative entropy regularization. This thesis

analyzes various properties and experimental results of the algorithm in com-

parison to other update methods, and analyzes EG± in the context of state of the

art residual networks and challenging vision problems. Three published imple-

mentations are experimented with, and demonstrate that EG± performs better

than SGD when there are many noisy features, and that it compares well with

commonly used state-of-the art gradient descent optimization methods. EG±

also performs better than most SGD based optimizers on black-box adversarial

attacks, with the exception of non momentum based SGD with which it per-

forms similarly.

viii

Acknowledgements

Foremost, I would like to thank Professor Manfred Warmuth for overseeing this

work and providing guidance, inspiration, and for introducing me to many tal-

ented experts in the field from across the globe. I also want especially mention

Professor Shawfeng Dong who both mentored me in aspects of optimization

theory as well as advised me on multiple projects involving implementations of

neural networks on multiple frameworks, and in cluster computing with neural

networks. The experience gained in my work with Professor Dong has bene-

fited this work in innumerable ways. I would like to thank Professor J. Xavier

Prochaska from Astronomy for supporting work I’ve done in applying neural

networks to problems in the Astronomy domain, which has provided me with a

much deeper intuition and understanding of the algorithms applied in this the-

sis. I would like to thank Professor Ram Akella, and Dr. Jay Pujara, whom I’ve

learned from and worked on related research projects, all of whom have pro-

vided me tremendous amounts of information that went directly into this work

and all of whom have helped with research projects that directly affected my

knowledge in this topic area. I would like to thank Ryan Hausen, a fellow grad-

uate student with whom I’ve often collaborated with and bounced uncountably

many ideas off of since starting this work.

ix

Chapter 1

Introduction

This thesis will introduce the Exponentiated Gradient ± (EG±) algorithm in

Chapter 2 as an alternative gradient descent optimization method. In Chapter

3 we will explore the properties of EG± and compare the algorithm to 8 of the

most commonly used optimization algorithms used in neural network training

today. The core conclusions we derive are that EG± performs or or near state of

the art on common datasets such as MNIST and CIFAR10; it performs well on

simple fully connected networks as well as the more complex architectures of

residual networks (ResNet); it performs better with features consisting of ran-

dom noise than modern optimizers; and EG± shares beneficial properties with

vanilla SGD (stochastic gradient descent) on black box adversarial attacks that

other optimizers perform poorly on.

Before introducing EG± let’s take a tour through the existing, gradient de-

scent optimizers, starting with vanilla SGD.

1.1 Stochastic Gradient Descent Optimization

Stochastic Gradient descent is the workhorse algorithm for training artificial

neural networks today. Stochastic gradient descent (SGD) is the most basic

1

method in a family of gradient descent update algorithms. SGD is a simple, effi-

cient, and effective algorithm for updating the weights of the network given the

gradient. The update rule for SGD is simply: wt+1 = wt − η∇wJ(wt) , wherew

is a vector of weights (the networks trainable weights and biases for each layer,

and other trainable weights such as γ and β used in batch normalization), t is the

training iteration of the algorithm, and η is the learning rate, a (typically small)

step size which is specified as a hyper-parameter of the algorithm, J is a loss

function that evaluates the fitness of the network for a set of weights. Given the

gradient of the loss function with respect to the weights SGD takes a fraction of

the gradient and subtracts it from the weights, taking a linearly approximated

step in the direction of the negative gradient.

A single update step in SGD can be applied using a gradient computed over

(a) one sample of the data (stochastic gradient descent), (b) a mini-batch of uni-

formly random samples (mini-batch gradient descent), or (c) the entire data set

(full batch gradient descent). For notational brevity this document always as-

sumes updates are taken with respect to a mini-batch of samples, as is typical in

practice.

A number of variants of SGD have been developed that provide improve-

ments to the basic SGD algorithm. These algorithms add concepts such as mo-

mentum, per-weight learning rates, and other beneficial features. The family

of commonly used gradient descent optimization algorithms is discussed in the

following sections.

1.2 Gradient descent algorithm variants

We will start by reviewing the most popular optimization methods (Ruder, 2016;

Pascanu et al., 2013) employed by today’s neural network frameworks. For each

of the update algorithms there will be a visualization of how the algorithm deals

2

with a prototypical problem in optimization, which is exemplified by a plateau-

ing in one dimension x1, and a steep gradient in another dimension x2. Schaul

et al. (2013) propose this among a number of unit tests to assess the suitability of

an update algorithm.

The following gradient update algorithms are all implemented by the major

frameworks such as Tensorflow, Torch, Caffe, etc.

• SGD (Stochastic Gradient descent) — The original and most basic form

of gradient based optimization methods.

• SGD with Momentum — Adds a momentum term that alleviates the zig-

zag problem of SGD.

• Nesterov — Performs momentum updates more intelligently.

• Adagrad — Incorporates per-weight learning rate which decays over time.

• Adadelta — Ameliorates the decaying learning rate of Adagrad while main-

taining per-weight learning rates.

• Window Grad — This method was published as “idea 1” with Adadelta

and restricts the time period over which we accumulate the gradients to a

window.

• RMSProp — Another variant on Adagrad, similar to Adadelta which com-

putes a per-weight learning rate, with some benefits over Adadelta.

• Adam — Applies concepts of both momentum and adaptive weights while

correcting for initialization bias.

Notable among these algorithms is that they all employ an additive update

method just as SGD does. In SGD, wt+1 = wt − η∇wJ(wt) , a fraction of the

3

negative gradient is added to the previous weights. To contrast that, a multi-

plicative update method multiplies each weight by an exponential factor that

has the ith component of the negative gradient in the exponent. In practice

this has the effect of being a relatively small number slightly above or below

one which gets multiplied into the existing weight in the update process. The

family of exponentiated gradient optimization algorithms fall under this second

paradigm, which we we will introduce in Chapter 2, and study in Chapter 3.

Assuming the reader is familiar with stochastic gradient descent, let’s look at

each of SGD’s variants in turn with a visualization of each algorithm optimizing

a 2D prototypical example. Each of these algorithms have been re-implemented

for this project in Matlab to produce these visualizations.

1.2.1 Vanilla SGD

In vanilla SGD, gradient descent updates are performed by:

wt+1 = wt − η∇wJ(wt) (1.1)

∇wJ the gradient of the weights with respect to the loss function. This is the
gradient calculated by backprop.

η is a scalar learning rate provided to the algorithm as a hyperparameter.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.

SGD performs its update by taking a linear step in the direction of the nega-

tive gradient and then recomputing the weights and gradient at that point.

1.2.2 SGD with Momentum

The first addition to vanilla SGD is adding a momentum term (Qian, 1999). The

momentum term is akin to the speed gained by a ball rolling downhill. At the

4

top of the hill the ball starts rolling slowly, building up momentum as it con-

tinues downhill. It will reach a maximum terminal velocity depending on the

medium it’s traveling through (air for example). This has a particularly ben-

eficial effect when traveling down a valley (Sutton, 1986). When the gradient

surface provides a path towards a better optimum in one direction, but a steep

gradient in other directions SGD is known to oscillate, slowing progress towards

the objective. The momentum term minimizes progress along the axis of oscilla-

tion, and increases momentum along the axis where the gradient doesn’t change.

The SGD update with momentum is given by the equations:

vt+1 = γvt + η∇wJ(wt) (1.2)

wt+1 = wt − vt+1 (1.3)

∇wJ the gradient of the weights with respect to the loss function. This is the
gradient calculated by backprop.

η is a scalar learning rate provided to the algorithm as a hyperparameter.
v a vector of computed velocity terms per each weight w.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.

In Figure 1.1 the oscillation effect of SGD (in red) is quite visible, whereas

momentum draws a path that appears much more "natural".

1.2.3 Nesterov accelerated gradient descent

Nesterov accelerated gradient descent (Nesterov, 1983) makes a small, but ben-

eficial change to the concept of momentum. Nesterov updates take the momen-

tum of the previous update into account before computing the gradient, then

upon computing the gradient takes a "correction" step. Whereas momentum

5

FIGURE 1.1: Momentum updates in yellow, vanilla SGD in red.
SGD can oscillate back and forth in a valley, but momentum of-
fers a smoothing effect that draws it out of the oscillation pattern.

simply takes a step in the gradient direction. This can be thought of essentially

as a reordering of the optimization process where momentum is calculated first

before taking a step and then intelligently correcting for any error that occurred.

On convex problems Nesterov’s approach has provably better bounds than

SGD with Momentum. However the theoretical guarantees are imperfect in the

face of stochastic gradient noise due to mini batches of samples not contain-

ing a perfect gradient. This is discussed in more detail in Sutskever’s thesis

(Sutskever, 2013).

In the non convex setting, there are no theoretical guarantees about how Nes-

terov will perform, however this, update-then-correct strategy has been demon-

strated to perform more stably in a wide variety of cases.

6

FIGURE 1.2: Momentum update in red, Nesterov update in yel-
low. Nesterov updates take momentum from the previous step
into account prior to deciding where to compute the gradient,
then computes the gradient and takes a “corrected” gradient
step, smoothing out the progression and still avoiding SGD’s os-

cillation.

The Nesterov accelerated gradient update is given by the equations:

vt+1 = γvt + η∇wJ(wt − γvt) (1.4)

wt+1 = wt − vt+1 (1.5)

∇wJ the gradient of the weights with respect to the loss function. This is the
gradient calculated by backprop.

η is a scalar learning rate provided to the algorithm as a hyperparameter.
v a vector of computed velocity terms per each weight w.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.

7

1.2.4 Adagrad

Adagrad (Duchi et al., 2011) aims to improve on gradient descent by effectively

adjusting the learning rate per weight based on the history of the gradients for

that weight. To accomplish this adagrad accumulates the square of the gradient

each time-step, and divides the current gradient by the square root of previous

sum of square gradients. This has the beneficial effect of normalizing the learn-

ing rate based on the past values. Weights with small gradients will have their

effect boosted compared to weights with large gradients. This is particularly

important in deep neural networks where early layers will be more significantly

impacted by the vanishing gradient problem (Bengio et al., 1994; Pascanu et al.,

2013). The downside of Adagrad is that the accumulation of the square gradient

in the denominator causes the learning rate to decay over time. This is often

cited as a problem, though it can be noted that a simple heuristic solution to that

problem would be to increase the global learning rate passed as a parameter to

the algorithm.

The Adagrad update is given by the following equations, first describing

the non-vectorized form (since Adagrad uses per-weight updates), and then the

vectorized form:

gt,i = ∇wJ(wt,i) (1.6)

wt+1,i = wt,i − η · gt,i (1.7)

wt+1,i = wt,i −
η√

Gt,ii + ε
· gt,i (1.8)

wt+1 = wt −
η√
Gt + ε

� gt (1.9)

gt,i the per-weight gradient w.r.t. the loss function.
wt,i each trainable weight in the network indexed by i at time step t.
η is a scalar learning rate provided to the algorithm as a hyperparameter.

8

FIGURE 1.3: Adagrad update shown in yellow, compared with
the Nestrov update in red.

Gt ∈ Rd×d, where d is the number of weights inw, is a diagonal matrix where
the diagonal elements indexed by i, i are the sum of the square gradients
with respect to θi up to time step t.

Gt,ii is one of the diagonal elements of G.
ε is a small value to avoid numerical issues.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
� is the Hadamard product, a.k.a. element-wise vector multiplication.

1.2.5 Adadelta

Adadelta Zeiler (2012) attempts to take the best of Adagrad while eliminating

the decaying learning rate. Adadelta does this by allowing the accumulated

square gradient term to decay over time, taking only a fraction of the accumula-

tor on each step, which causes the estimate to be biased towards recent updates

over earlier updates. Adadelta further maintains a sum of square weight values.

9

Taking the ratio between decaying square weight values and decaying square

gradient values provides a learning rate per weight that adjusts to be smaller for

gradients that are large and larger for gradients that are small.

This has a dual benefit of helping train weights that are making slow progress,

and keeping them in line, relatively speaking, with weights that have a larger

gradient. This also has benefit in that it naturally increases the learning rate in

earlier layers where the vanishing gradient problem will be more pronounced

(Bengio et al., 1994; Pascanu et al., 2013).

The Adadelta update is given by the following equations:

wt+1 = wt + ∆wt (1.10)

∆wt = −RMS[∆w]t−1
RMS[g]t

� gt (1.11)

RMS[w]t =
√
E[∆w2]t + ε (1.12)

RMS[g]t =
√
E[g2]t + ε (1.13)

E[g2]t = γE[g2]t−1 + (1− γ)g2t (1.14)

γ is a hyperparameter configured similarly to Momentum with a common
default of 0.9.

η is a scalar learning rate provided to the algorithm as a hyperparameter.
E[g2]t is the running average at time step t, E is only a running approximation to

E expectation.
g is the vector of gradients.
g2 is the element-wise square of the gradients g.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
� is the Hadamard product, a.k.a. element-wise vector multiplication.
ε is a small value to avoid numerical issues.

10

FIGURE 1.4: Adagrad in red compared to Adadelta in yellow.
Adadelta is initialized with the gradient sums = 1.0 at start to

avoid pathological initialization issues.

1.2.5.1 Adadelta Initialization Issues

Adadelta has a few issues that are identified here. The initialization of the gra-

dient sums is quite critical. The algorithm can be pathologically slow when

the gradient sum is initialized to zero. An initialization of 1.0 seems to be rea-

sonable, producing convergence that seems reasonable in the toy example used

here. However initializing to a large number such as 10.0 causes the algorithm

to exhibit the same zig-zag effect of vanilla stochastic gradient descent, in fact it

will converge so slowly as to be irrelevant. Even after 1000 iterations the zig-zag

effect remains when the gradient sums are in this poor state. It should be further

noted that the zig-zag effect in the x1 dimension doesn’t affect progress in the x2

direction though, so the per-weight learning rate still ameliorates that problem.

11

The issues with initialization are particularly important because we experi-

ment with using adadelta’s per-weight learning rate in our exponentiated gra-

dient update algorithms (see section 3.7). The initialization issues are visualized

in Figure 1.5.

In summary, Adadelta allows us to eliminate the per-weight learning rate,

though the algorithm exhibits pathological states under certain conditions. It’s

hard to know whether these issues are commonly encountered in practice.

1.2.6 Window Grad

Window Grad (Zeiler, 2012) was proposed in the same paper with Adadelta.

It’s not as widely implemented as Adadelta or other methods. Window Grad

leaves out an accumulator of the change in weight values and only utilizes an

exponentially decaying accumulation of the gradients. Whereas Adadelta com-

pletely eliminates the learning rate, and adjusts the weights to their hypothetical

unit value, Window Grad can be thought of as an update in the units of the gra-

dient. Window Grad requires a learning rate to be set. Adadelta can be thought

of as the completed extension of the Window Grad idea. Visualization in 1.6.
The Windowgrad update is given by the following equations:

wt+1 = wt + ∆wt (1.15)

∆wt = − η

RMS[g]t
� gt (1.16)

RMS[g]t =
√
E[g2]t + ε (1.17)

E[g2]t = γE[g2]t−1 + (1− γ)g2t (1.18)

γ is a hyperparameter configured similarly to Momentum with a common
default of 0.9.

η is a scalar learning rate provided to the algorithm as a hyperparameter.

12

E[g2]t is the running average at time step t, E is only a running approximation to
E expectation.

g is the vector of gradients.
g2 is the element-wise square of the gradients g.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
� is the Hadamard product, a.k.a. element-wise vector multiplication.
ε is a small value to avoid numerical issues.

1.2.7 RMSprop

RMSprop (Hinton) is an unpublished algorithm proposed by Hinton. Ironically

the citation commonly used for it is to slide 29 lecture 6 from a lecture by Hinton.

RMSprop can be compared very similarly to Adadelta. It attempts to extend

Adagrad in a very similar way that Adadelta does. It maintains the per-weight

learning rate while eliminating the decaying learning rate inherent in Adagrad.

RMSprop maintains a "cache" of past weight values which decay over time

given a decay parameter and accumulates the square gradient. The current gra-

dient is divided by this "leaky" cache to modulate the learning rate per weight.

RMSprop maintains a global learning rate parameter that Adadelta gets rid of.

One notable difference that is apparent based on the visualizations provided

in this thesis (Figure 1.7) is that RMSprop does not have the same initializa-

tion problem that Adadelta has. The visual here shows Adadelta and RMSprop

performing almost identically, however it needs to be noted that Adadelta was

initialized with a good initial state (1’s for the gradient sum).

13

The RMSprop update is given by the following equations:

wt+1 = wt −
η√

E[g2]t + ε
· gt (1.19)

E[g2]t = γE[g2]t−1 + (1− γ)g2t (1.20)

γ is a hyperparameter configured similarly to Momentum with a common
default of 0.9.

η is a scalar learning rate provided to the algorithm as a hyperparameter.
E[g2]t is the running average at time step t, E is only a running approximation to

E expectation.
g is the vector of gradients.
g2 is the element-wise square of the gradients g.
w is a vector of all network weights.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
ε is a small value to avoid numerical issues.

1.2.8 Adam

Adam (Kingma and Ba, 2014) is another adaptive optimization method which

applies a momentum term in a new way. Adam is often cited as the best all

around stochastic optimization method to start with. Adam applies the concept

of momentum as well as adaptive learning rates per weight. Adam operates in

much the same way as RMSprop in that it maintains a history of square gradi-

ents that it uses to adapt the per-weight learning rate. Adam further accounts

for the fact that the initialization causes a bias towards zero and accounts for

this by computing the first and second moments correcting for the bias. Adam

updates are visualized in Figure 1.8.

14

The Adam update is given by the following equations:

wt+1 = wt −
η√
v̂t + ε

· m̂t (1.21)

m̂t =
mt

1− β1
(1.22)

v̂t =
vt

1− β2
(1.23)

mt = β1mt−1 + (1− β1)gt (1.24)

vt = β2vt−1 + (1− β2)g2t (1.25)

m an exponentially decaying average of past gradients
m̂ the bias-corrected first moment
v an exponentially decaying average of past gradients squared
v̂ the bias-corrected second moment
w is a vector of all network weights.
β1 a hyperparameter with a recommended default of 0.9
β2 a hyperparameter with a recommended default of 0.999
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
η is a scalar learning rate provided to the algorithm as a hyperparameter.
ε is a small value to avoid numerical issues.

15

FIGURE 1.5: Adadelta progress using 4 different initializations of
the gradient sum. In red the gradient sum is initialized to 0.0,
which is the default implementation of Adadelta by the papers
author in ConvnetJS. This initialization has a pathological issue
in this 2D example causing convergence to be extremely slow due
to a slowly accumulating x2 sum, and quickly accumulating gra-
dient sum. In yellow and blue Adadelta is initialized with a gra-
dient sum of 0.1 and 1.0, both reasonable initializations which
converge to within 0.1 of the x2 axis in 25 steps and 6 steps
respectively. The green line initializes the gradient sum with 5.0
and converges within 41 steps while exhibiting SGD’s oscillation
back and forth in the valley. Higher initialization values exacer-

bate the oscillation effect for longer time periods.

16

FIGURE 1.6: Adadelta in red vs. Window Grad in yellow, ini-
tialized with a "good" sum-square gradient initialization of 1.0 to

avoid a pathologically slow start.

17

FIGURE 1.7: In red, Adadelta with a gradient sum initialization
of 1’s (e.g. a “good” initialization), and RMSprop in yellow. Both
perform very similarly on this 2 dimensional example, and long
term convergence is quite similar: Both converge on the x dimen-
sion in 6 steps, though after 100 iterations RMSprop had moved
down to -100 in the y direction, vs. -300 for Adagrad, so Adagrad

took larger steps down the chasm.

18

FIGURE 1.8: RMSprop shown in red with Adam updates shown
in yellow. Although the RMS prop visualization appears to be-
have better in this case, the true test of an optimizer in high di-
mensional space is how well it performs on test set evaluation.
Low dimensional visuals can help in understanding the behav-
ior, but are not necessarily a clear indicator of optimal perfor-

mance.

19

Chapter 2

Exponentiated Gradient ±

Update Algorithm

In this Chapter we introduce the Exponentiated Gradient ± (henceforth EG±)

(Kivinen and Warmuth, 1995, 1997) algorithm, and its predecessor the Expo-

nentiated Gradient algorithm (henceforth EG). EG was introduced by Manfred

Warmuth and Jyrki Kivinen in 1995 in the context of linear online predictors.

The algorithm has been introduced for use in neural networks formally by Srini-

vasan et al. (2002), for which we extend the analysis to a more modern context,

and informally discussed in Langford (2007).

EG± generalizes the Exponentiated Gradient (EG) algorithm which main-

tains a probability distribution over weights. EG does not allow for weights to

change from positive to negative or vice versa. EG± operates by doubling the

number of weights and performs an EG update to both positive and negative

components of the weight.

We begin by introducing the EG algorithm first.

20

2.0.1 Exponentiated Gradient

The Exponentiated Gradient (EG) algorithm performs an update by computing

a multiplicative factor for each weight and multiplying that factor into each indi-

vidual weight, then re-normalizing by dividing by the total sum of the weights.

A global learning rate parameter that is used to scale the update factor, and

functions the same as it does with SGD and its variants.

The Exponentiated Gradient algorithm is derived by trading off the relative

entropy with the loss ameliorated by the learning rate that is defined by the fol-

lowing minimization problem: wt+1 = argmin
w s.t.

∑
wi=1

∑(
wi ln wi

wt,i

)
+ ηJ(w) and

this results in the update algorithm given below. EG is motivated by using a

relative entropy regularization.

wt+1,i =
wt,i · e(−η∇wJ(wt+1,i))∑N
j=1wt,j · e(−η∇wJ(wt+1,j))

≈ wt,i · e(−η∇wJ(wt,i))∑N
j=1wt,j · e(−η∇wJ(wt+1,j))

(2.1)

wt,i is a single weight at time step t indexed by i.
wt,j is a single weight at time step t indexed by j.
N number of weights in w
i i ∈ 1, ..., N , per each weight in w
j j ∈ 1, ..., N , per each weight in w
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
∇wJ the gradient of the weights with respect to the loss function. This is the

gradient calculated by backprop.
η is a scalar learning rate provided to the algorithm as a hyperparameter.

2.0.2 Exponentiated Gradient ±

EG± is a generalization of the Exponentiated Gradient (EG) algorithm which

allows weights to take on positive or negative values. EG± achieves this by

21

maintaining two weight vectors, w+ = {x ∈ Rd|x ≥ 0} and w− = {x ∈ Rd|x ≥

0}, where d is the number of weights in the neural network, represented byw =

{x ∈ Rd}. The basic EG update is applied to the each weight vector separately,

then scaled by a U parameter, and normalized. The neural network weights take

on the value w = w+ −w−.

EG± shares some properties with SGD, Figure 2.1 demonstrates a simple

plot where EG± and SGD perform the same updates given a fixed gradient as

the weight value updates from 0.1 to −0.1. In later sections we will visualize

this (Figure 2.4) and show comparable performance on adversarial samples in

Section 3.14.

22

The EG± update is given by the equations:

w+
t+1,i = U ·

w+
t,ir

+
t,i∑N

j=1w
+
t,jr

+
t,j + w−t,jr

−
t,j

(2.2)

w−t+1,i = U ·
w−t,ir

−
t,i∑N

j=1w
+
t,jr

+
t,j + w−t,jr

−
t,j

(2.3)

where

r+t,i = exp
(
−η∇wt,iJ(wt,i)

)
(2.4)

r−t,i = exp
(
η∇wt,iJ(wt,i)

)
=

1

r+t,i
(2.5)

U U is a scaling parameter that is provided as a hyperparameter, typical val-
ues are 20 to 80.

wt,i A single EG± weight at update step t, indexed by i.
wt,i is a weight used by the neural network at time t indexed by i.

∇wt,iJ The gradient of the loss function with respect to the combined weight
value wt,i. This is the gradient computed in backprop, and is with respect
to the combined weight value, not w+

t,i or w−t,i individually.
t is a scalar time step, representing the iteration comprising a forward pass

for making a prediction, and a backward pass to compute the gradients.
η is a scalar learning rate provided to the algorithm as a hyperparameter.
i index of the weight. The update equations describe the update per weight.
j index over the set of weights being normalized against, the set of weights

being normalized against depends on the normalization method employed
(per weight/neuron/layer/network). See Section 2.0.2.3

N number of weights being normalized against, the set of weights being
normalized against depends on the normalization method employed (per
weight/neuron/layer/network). See Section 2.0.2.3

2.0.2.1 Memory footprint and computation cost

EG± requires two values per neural network weight, though the update is still

in O(n) time, and is comparable in computation cost to other optimizers such

as Adam. In practice it’s most reasonable that the update be implemented by

23

FIGURE 2.1: We take a toy 1D example and plot 155 update steps
of EG± and of SGD. In both cases we start at 0.1 and hold the
gradient fixed at 0.05. SGD has a learning rate of 0.08, and EG±

uses 0.004 with a U scaling parameter of 20 (see 2.0.2 for details).
Given these parameters both EG± and SGD perform nearly iden-

tical updates.

maintaining 2n additional weights for the two vectors, w+ and w−, in ad-

dition to n weights of the network which represent the sum of w+ and w−.

EG± requires that the two vectors w+ and w− be independent of the weights

used in feedforward and backprop iterations. In forward/back propagation,

the weights will be the difference of w+ − w−, so the actual memory foot-

print of a typical implementation is 3n weights. While this is a cost, it’s typ-

ically a small fraction of the total memory footprint of practical neural net-

works. Additionally, technically feasible to reduce the memory footprint in an

optimized implementation because the weight values are restricted to be pos-

itive and limited by the U scaling parameter as discussed in the next section.

Hence storing both weights in one vector is possible at the expense of additional

CPU cycles (this is outside the scope of this paper, suggested further reading

https://en.wikipedia.org/wiki/Pairing_function).

2.0.2.2 U Scaling

EG± requires three parameters to be provided, learning rate, which is used as is

typical for update algorithms; the normalization method to use; and a U scaling

24

https://en.wikipedia.org/wiki/Pairing_function

parameter. The U scaling parameter is critical to the algorithm and has subtle

effects that need to be understood.

The w+ and w− vectors maintained by EG± are updated and normalized

(Section 2.0.2.3) to sum to 1 each time step t. After the normalization they are

scaled by a parameter U. Typical values of U are in the range of 20 to 80 as dis-

cussed and visualized in Section 3.2. The U scaling parameter has two important

effects:

• Numerical stability: we need the difference betweenw+ andw− to be well

within rounding error, in particular because neural networks typically use

32 bit floating point precision, and it’s been shown that 16, and even 8 bit

floating point precision can be used (Srinivasan et al., 2002; Deng et al.,

2015).

• More important than numerical stability is the fact that the U scaling pa-

rameter limits the maximum or minimum range that a weight can take.

If U=20, the weight values can range from [−20, 20]. This is visualized in

Figure 2.2.

This second bullet bears further discussion. This limitation might be rea-

sonably compared to Max-norm regularization which has been shown to have

benefit in neural networks (Srebro and Shraibman, 2005; Srivastava et al., 2014).

U scaling will cause the progression of a weight towards its max to asymptote

at the U scaling parameter value. A beneficial difference between U scaling and

Max-norm regularization would be that U-scaling will approach its maximum

smoothly. As occurs in the softmax function, the value assigned to a weight ap-

proaching the U scaling parameter will be redistributed to other weights in the

network via the normalization process.

25

FIGURE 2.2: 1D example of the U scaling limitation, the x-axis
is from 1 to 155 update steps, and the y-axis shows the weight
value. This visual performs EG+- updates with a gradient of 0.5
for each step, and a beginning weight value of 0.1, learning rate
of 0.1, and U parameter of 0.3. The weight is bound between +-

0.3 with updates smoothly approaching the asymptote.

It should be noted, however, that in practical examples explored in this pa-

per, the U scaling parameter was typically larger than weight values observed

in the trained networks. It should also be noted that depending on the imple-

mentation, the U scaling limitation may also apply equally to bias units as they

do to the weights. These issues are explored in more detail in Section 3.2 with

visuals and analysis of related use cases.

2.0.2.3 Normalization method

The normalization constant for EG± in Equation 2.2 and 2.3 is defined as∑N
j=1w

+
t,jr

+
t,j + w−t,jr

−
t,j . We experiment with 4 forms of normalization constant in

this work: (1) Per-weight normalization; (2) Per-neuron normalization; (3) Per-

layer normalization; and (4) Per-network normalization. These methods differ

over which weights are included in the normalization process. A visual aid

26

FIGURE 2.3: Visual aid showing the weights that EG± is nor-
malized against in the case of (a) per-weight normalization
(each weight normalized only against its own w+ and w−), (b)
per-neuron normalization (each weight normalized against all
weights input to a neuron), (c) per-layer (each weight normal-
ized against all weights in a layer), and (d) per-network (each

weight normalized against all weights in the network).

depicting the set of weights each method normalizes over is shown in Figure

2.3.

Per-weight normalization is normalized by only thew+ andw− values per

each weight, there is no normalization across different weights in the network.

In this case N = 1, the summation operator is an extraneous symbol.

Per-neuron normalization is normalized such that each weight is normalized

against all weights feeding into that neuron. In the case of a fully connected

neural network layer each neuron is the weighted sum of the neurons in the

layer before it. The summation is over the weights of the neurons that input into

each neuron.

27

In the case of convolutional network per-neuron normalization is per out-

put filter of the convolution operation. The weight matrix of a convolutional

neural network layer, by common convention, has the shape [kernel_height,

kernel_width, in_channels, out_channels]. Per neuron normalization

sums all weights per each out_channel such that you end up with a vector of

shape [out_channels].

A general vectorized solution for per-neuron normalization is implemented

in the Tensorflow reference implementation of EG± and relies on convention that

is used in Tensorflow. Other frameworks may implement different conventions.

The general vectorized solution sums each weight matrix across all but the last

dimension, producing a final vector of the shape of the last dimension of the

weight matrix. The vectorized solution is discussed below in the context of fully

connected layers, convolutional layers, and recurrent neural networks.

• Fully connected layers have a weight matrix of shape [neurons_in, neurons_out].

This is the most trivial case, a summation of such a matrix which preserves

the neurons_out dimension produces a value for each neuron which is

the sum of all inputs to that neuron.

• Convolutional layers have a weight matrix of shape [kernel_height, kernel_width,

in_channels, out_channels], which is a common convention which

may not hold under all frameworks. The vectorized solution sums over

the first 3 dimensions which cover the kernel height and width, and input

channels, which represent all input weights per output channel.

• Recurrent neural networks such as LSTMs and GRUs simply consist of multiple

fully connected networks linked together in non trivial ways. An LSTM

for example has four fully connected network operations. Each of these

operations is typically implemented using four 2D weight matrices, each

28

of which is just a fully connected network. Under this convention the same

process that applies to a fully connected network applies to the RNN.

Per-layer normalization normalizes across all weights in a particular layer.

As an implementation detail this method is implemented per-variable because

each layer in a neural network is typically defined using a single weight tensor.

This is a common convention implemented identically in all frameworks as far

as we are aware, but this normalization method also depends on the conven-

tion. It should be noted that some variables exist that are not explicitly network

weights or biases, such as is the case with trainable batch normalization vari-

ables. In the case of batch normalization the trainable weights are implemented

in a vector (a 1-D tensor) which would default to being optimized as per-weight

normalization because there are no dimensions to sum over.

In the case of per-layer normalization the normalizing constant is summed

across all weights of a particular network layer. In most cases this is appro-

priately named per-layer normalization, but in the case of batch normalization

it’s more apt to refer to it by the more specific term per-variable normalization

where the term layer doesn’t logically apply. This document will use the per-

layer terminology henceforth for simplicity.

Per-network normalization normalizes across all trainable weights in the

network. Note that in the reference implementation this would include variables

such as bias units, batch normalization, or any other trainable variables. This is

effectively just per-layer normalization summed across all layers.

2.0.3 EG± update algorithm

This section concerns actual implementations of EG±, including a detailed de-

scription of the update algorithm, and an example reference implementation.

The update algorithm for EG± is detailed in Algorithm 1.

29

Algorithm 1: EG± update procedure using per-neuron normalization.
Data: U hyperparameter
η learning rate hyperparameter
Neural network trainable weights wt−1
EG± weights w+

t−1, and w−
t−1

A gradient per neural network weight∇w

w,w+,w− are all initialized as per Algorithm 2 at t = 0.
Result: Updated EG± positive and negative weight vectors w+

t and w−
t ,

and neural network weights wt

for t = 1 to convergence do
for each weight: wt−1,i, w+

t−1,i, w
−
t−1,i do

r+i ← exp(−η∇wt−1,i)
r−i ←

1
r+i

w+
t,i ← U

w+
t−1,ir

+
i

w+
t−1,ir

+
i +w−

t−1,ir
−
i

w−t,i ← U
w−

t−1,ir
−
i

w+
t−1,ir

+
i +w−

t−1,ir
−
i

wt,i ← w+
t,i − w

−
t,i

end
end

2.0.4 Concrete Implementations

Three implementations of EG± were build in the process of creating this thesis.

The first in Matlab (Parks, 2016), which is a feed forward neural network

implementation written from the ground up based on the online book Neural

Networks and Deep Learning (Nielsen, 2015). This code was used to compare

EG± in depth against SGD using a variety of regularization methods (see Section

3).

The second implementation was added to ConvnetJS (Karpathy), a feed for-

ward and convolutional framework built on JavaScript which runs in the browser.

This framework was chosen because it provides excellent visualizations and

comparison with other update algorithms which were used as a comparison

and visualization platform for the algorithm.

30

A version of ConvnetJS will be hosted at UCSC until and unless the EG± en-

hancement is accepted into the mainline code, and will be accessible via https:

//goo.gl/mzosa6, and https://goo.gl/68hIZb.

The third implementation is considered the reference implementation for

EG± and is written in Python using the Tensorflow framework. It is hosted on

github at https://github.com/davidparks21/eg_plusminus_optimizer.

This implementation was used to run tests of EG± on large residual networks

on the GPU.

There are a few notable differences between the implementations. Most im-

portantly is how they handle updating the bias units. In the Matlab implemen-

tation EG± is applied to the weights, but it is not applied to the bias units. Bias

units are updated with standard SGD. The reason for this is the U parameter

scaling. The bias units are not usually regularized (see chapter 7-regularization

in the book Deep Learning, Goodfellow et al.), the bias is responsible for offset-

ting the function from the origin, hence it should be acceptable for it to grow

arbitrarily large without negatively impacting the algorithms ability to learn.

The bias does not represent an over reliance on any one feature. However in this

thesis we will identify reasons why this isn’t a concern in practice (see Section

3.3).

While it was possible to separate weight and bias updates in the Matlab im-

plementation, the implementation of ConvnetJS follows a more rigid structure

that is common to most frameworks, and is the same in the Tensorflow refer-

ence implementation. In those frameworks the weights are presented as a single

vector of values, it’s non-trivial to identify weights vs. bias units. In these frame-

works we apply EG± to both weights and biases. In doing so we also analyze

the U scaling issues with regard to the bias units (3.2) and find the issue unlikely

to be concerning in practice.

31

https://goo.gl/mzosa6
https://goo.gl/mzosa6
https://goo.gl/68hIZb
https://github.com/davidparks21/eg_plusminus_optimizer

Another difference to note is in weight initialization between the implemen-

tations. Weight initialization in the Matlab code normalizes the sum of inputs to

the neurons, see (Nielsen, 2015; Glorot and Bengio, 2010). ConvnetJS initializes

weights using a zero mean, unit variance distribution. In Tensorflow the weight

initialization depends on the model, we use the Xavier Initializer (Glorot and

Bengio, 2010) in testing for this thesis. On the grand scheme of things this differ-

ence is minor, though the better weight initialization has been shown to produce

slightly better final results, and is only mentioned for completeness.

2.0.4.1 EG± code from ConvnetJS

A demonstration of EG± as implemented in the online deep learning framework

ConvnetJS (Karpathy) is shown in Listing 2.1. This implementation updates

each weight, one by one, in a loop (which is somewhat inefficient, but useful

for demonstration purposes).

2.0.4.2 EG± Initialization

The positive and negative weights for EG± must be initialized properly. Given a

random weight initialization value, the correct initialization of the EG± positive

and negative weight values is given by the algorithm below. This initialization

method was applied to all normalization methods covered in 2.0.2.3. An alter-

nate iterative initialization method was experimented with, but did not work,

and is omitted from further discussion. The neural network weight initializa-

tion of θ can follow any standard practice applied to neural networks, such as

small random normal initialization or, for example, Xavier initialization as pro-

posed by Glorot and Bengio (2010).

32

LISTING 2.1: ConvnetJS implementation of EG± with per-neuron
normalization, Equations 2.2 to 2.5

Compute updates, gij is the gradient for neuron [i,j]
var rpos = Math.exp(-this.learning_rate * gij);
var rneg = 1 / rpos;
var unscaled_pos = this.w_pos[i][j] * rpos;
var unscaled_neg = this.w_neg[i][j] * rneg;
var normalize = unscaled_pos + unscaled_neg;
Save weights
this.w_pos[i][j] = this.U * (unscaled_pos / normalize);
this.w_neg[i][j] = this.U * (unscaled_neg / normalize);
W[j] = this.w_pos[i][j] - this.w_neg[i][j];

gij The gradient with respect to the weight being updated.
learning_rate The learning rate hyperparameter.

w_pos An array of positive weights maintained by the EG± algorithm.
w_neg An array of negative weights maintained by the EG± algorithm.

U The U scaling hyperparameter.
W[j] The updated weight value.

2.0.5 Visualization

To finish off our introduction to EG± we provide the same visualization of how

it would handle the same 2D case we presented for all of the other update algo-

rithms, see Figure 2.4.

It is interesting to note that EG± behaves in essentially the same way as

vanilla SGD in this toy case. In this respect it doesn’t take into account how the

Algorithm 2: EG± initialization procedure for all normalization methods
Data: U hyperparameter, randomly initialized neural network weights w,

two uninitialized EG± weight vectors w+ and w− the same shape
as w

Result: EG± positive and negative weight vectors w+ and w−

for each neural network weight: wi do
w+
i ← (U + wi)/2

w−i ← (U − wi)/2
end

33

FIGURE 2.4: RMSprop shown in red with EG updates with per-
weight normalization shown in yellow.

gradient changes over time. This isn’t to say that EG performs exactly the same

update as SGD, or that it will perform the same in practice, we will show many

ways in which it doesn’t, both for better and worse, and we will also experiment

with per-weight learning rates for EG (see Section 3.7).

34

Chapter 3

Findings and conclusions

This section concerns results and experiments performed with EG± compared

to SGD and other algorithms. In these experiments we utilize two datasets, the

MNIST handwritten digits dataset (Lecun et al., 1998) and CIFAR10 (Krizhevsky,

2009) image classification dataset.

3.1 Summary of findings

Some of the early experimentation with EG± focused on comparing EG± to SGD

and comparing how EG± performs on its own with regards to SGD using L1

and L2 regularization. In general cases L1 and L2 regularization with SGD out

performed EG±. With one particularly notable exception: when training with

many features of random noise, EG± clearly out performs SGD (section 3.5).

Later experimentation on EG± focused on comparing it to many other opti-

mization algorithms in common use. In this setting EG± was applied on even

footing with other algorithms and L2 regularization was applied to the loss of

EG± as well as other algorithms. In this setting EG± performed at the top of the

class on a 2 layer MNIST dataset in Karpathy’s ConvnetJS deep learning envi-

ronment (Section 3.6).

35

We experimented with extending EG± by adding per weight learning rates.

In this work we see obvious improvements in how EG± optimizes a manufac-

tured valley problem, but we don’t see that extend to a practical example, with

the adaptive version performing very similarly to the non adaptive version (Sec-

tion 3.7).

In the Tensorflow reference implementation of EG± we experimented with

EG± on a near state of the art large 32 block residual neural network trained on

the cifar10 dataset. In this context we find that EG± performs nearly, but not

quite as well as other optimizers. We do find that EG± performs better than

most other optimizers on adversarial examples, but this result is also replicated

using vanilla SGD and the common link appears to be that momentum based

optimizers perform worse on the adversarial examples we tested than do non

momentum based optimizers (EG±, and vanilla SGD).

3.2 U parameter scaling

We introduced U scaling in 2.0.2.2 in discussing the EG± algorithm. That section

includes discussion of how the U parameter applies to EG±, in particular that it

achieves a form of gradient clipping by limiting the size of the weights absolute

value to be no larger than the hyperparameter U.

In the next Section (3.3) we provide a visualization of the distribution of

weights and biases in a fully trained convolutional neural network using the

CIFAR10 dataset (Krizhevsky, 2009), trained by EG± and another trained with

the Nesterov gradient update algorithm. Skipping ahead to those visuals you

will note that the scale of weights and biases remains reasonably close to zero.

The weights are close to a normal distribution while the biases appear more uni-

formly distributed. In neither case do the weights or biases range into values

that would be affected by a U scaling parameter of 20 or more.

36

FIGURE 3.1: Accuracy for MNIST dataset when training with
varying U parameters from 1 to 100 using per-neuron normal-

ization.

We further analyze another dataset which might reasonably be expected to

have large biases in which our output is a regression with outputs in the range

[−60,+60]. However even in this case the biases do not extend beyond±4. So in

real world cases we don’t see U scaling causing an issue clipping the bias units

when it’s set to a value that is typically found via a hyperparameter search.

The selection of a good U parameter was one of the first points of interest.

Using the MNIST dataset (Lecun et al., 1998), we compare U parameters from 1

to 100 and find that U parameter values starting at 30 to 70 produce consistent

results. Note that the results listed here utilized a simplified 1k MNIST training

set on fully connected feed forward network with 1 hidden layer.

It is important to note that the selection of the U parameter will have an effect

on the results, and thus it’s necessary to do a proper hyperparameter search to

37

FIGURE 3.2: Test set results based on training a 5k subset of the
MNIST dataset using different U scaling parameter values rang-

ing from 5 to 300 and per-neuron normalization.

identify a good choice. Figure 3.2 demonstrates this by training EG± on the

MNIST dataset using a wide range of U parameters.

3.3 Distribution of weights produced by EG+- vs. Nes-

terov in a CNN

This section presents the distribution of weights and biases result from training

a 3 layer convolutional neural network using both EG± and Nesterov optimiza-

tion. By plotting a histogram of the weights (fig 3.3) and another for the biases

(fig 3.4), we can see that the weights and biases follow a very similar distribu-

tion, regardless of whether they’re trained using EG± vs. Nesterov.

This network was trained using ConvnetJS and the Cifar10 dataset and is

discussed in more detail in Section 3.12.

It is interesting to note that the distribution of weights takes on a clearly

Gaussian form with the mean slightly below zero. And it’s particularly useful

38

FIGURE 3.3: Histogram of weight values of a convolutional neu-
ral network trained on CIFAR10 and optimized by EG± (top) and

Nesterov (middle), and the two overlapped (bottom).

FIGURE 3.4: Histogram of bias values of a convolutional neural
network trained on CIFAR10 and optimized by EG± (top) and

Nesterov (bottom).

39

FIGURE 3.5: Training & testing accuracy on three networks (1)
MNIST trained with EG± with U=40, (2) EG± unnormalized, and
(3) SGD using L1 & L2 regularization with per-neuron normal-

ization.

to note how similarly the distributions are.

3.4 Unnormalized EG

We analyzed EG± with normalization against EG without normalization. We

found that EG can function without normalization, however it reduces it’s ef-

fectiveness significantly. The following comparison trains on MNIST using a

fully connected network with 1 hidden layer. We show a training set vs held

out test set, with both training accuracy and test accuracy shown for EG± with

normalization, and U = 40, EG± unnormalized, and SGD with L1 and L2 reg-

ularization. This example uses a subset of the full MNIST samples (a subset

is used for computational efficiency), hence the accuracy is not expected to be

state-of-the-art, this was done for computational efficiency.

EG± unnormalized performs a few percent worse in testing accuracy, and

similarly for training accuracy. EG± unnormalized also trains more slowly.

40

FIGURE 3.6: 6 networks compared, all trained on a 5k subset of
MNIST: The first two are 7-layer fully connected networks EG±

(U=40) and SGD with L1 regularization. The last 4 are 3-layer
fully connected networks with EG± unnormalized, EG± (U=40),
and SGD with L1 and L2 regularization applied. All with per-

neuron normalization.

3.5 EG+/- with random noisy features

Notably EG± is expected to perform well when there are many noisy features

because it promotes sparsity in the weights akin to L1 regularization. In this ex-

perimentation we’ve trained a fully connected feed forward neural net, with 3

layers, on the MNIST dataset, and we’ve added features which consist purely of

zero-mean, unit-variance, Gaussian noise. Figures 3.6, and 3.7 show the results

of the two experiments. In the first, Figure 3.6 we have added 784 of random

Gaussian noise to the original 784 features of MNIST (28x28 images = 784 fea-

tures). In the second, Figure 3.7, we add 10,000 features of random Gaussian

noise to the original 784 features of MNIST. EG± has no problem training on

the datasets with random features, seeming to ignore them. Whereas SGD opti-

mization has more significant issues with the noisy dataset.

41

FIGURE 3.7: EG± and SGD with L1, and SGD with L2 regular-
ization are trained 3 times with different random initialization
states. Also all hyperparameters have been carefully optimized
for each model to ensure the best possible test set accuracy. All

with per-neuron normalization.

In Figure 3.6, focusing on the 3 layer networks we see that EG, both un-

normalized and normalized perform quite stably, however SGD shows some

instability in training with the noise.

In the second Figure 3.7 the superiority of EG± is much more pronounced.

In this training we’ve carefully optimized the hyperparameters of EG and SGD

to ensure both have the best possible results. EG± is clearly able to outperform

SGD, regardless of L1 or L2 regularization used on SGD.

3.6 Comparing EG± with other optimization methods

In order to perform the most direct comparison EG± with other methods we

have added EG± to the ConvnetJS framework which provides an implementa-

tion of a 2 layer fully connected network trained on the full MNIST dataset using

the many optimization methods discussed in this thesis.

42

FIGURE 3.8: Running all trainers in ConvnetJS, including
the added EG± trainer. EG± performs well in this head to
head comparison, comparing to the top among trainers: SGD,
SGD+Momentum, Adam, Adagrad, Windowgrad, Adadelta,

and Nesterov.

In the results presented in Figure 3.8 EG± is trained on the same dataset,

seeing 300,000 samples of the dataset during training. Accuracy is plotted on the

test dataset. Of particular note, to keep the results as comparable as possible the

same degree of L2 regularization on the cost function (softmax/cross entropy)

was applied across all optimizers, including EG±.

For EG± the learning rate was set to a small value, 0.00005, found by cross

validation trial and error, and the EG± U scaling parameter was set to a value

of 40. Note that the value of the learning rate is affected by the choice of loss

functions and can’t be compared directly between the two implementations of

EG± used in this thesis.

The visual in Figure 3.8 is a little general, so another run using the same

configuration was trained until 1M training samples had been iterated over, the

results are in table 3.1. In this case EG± performed at the top of the group on a

held out test set, achieving accuracy of 0.93125 at the end, slightly beating SGD

at 0.92875, and Adadelta at 0.92125.

43

This result is unexpected for a few reasons. First, SGD wasn’t expected to

perform near the top of the group. Second, many of the more tuned algorithms

such as Adam didn’t perform as well as they have been observed to perform

in other settings, Adam achieved a test set accuracy of only 0.8275, significantly

worse than EG±, SGD, or Adadelta.

This result for EG± contradicts some of the results obtained in other exper-

iments, and the key difference that stands out is that L2 regularization was ap-

plied on the loss function for EG± in this experiment, whereas we steered away

from applying regularization on the loss function for EG± in other experiments.

In other experiments we opted to rely on the algorithm itself to perform its own

form of regularization.

samples SG
D

SG
D

+M
om

en
tu

m
A

da
m

A
da

gr
ad

W
in

do
w

gr
ad

A
da

de
lta

N
es

te
ro

v

EG
±

50k 81.3% 81.8% 73.4% 78.0% 76.9% 87.4% 84.4% 84.8%

100k 86.5% 87.9% 80.8% 82.3% 80.5% 90.8% 84.9% 87.5%

250k 89.3% 90.6% 80.9% 86.9% 84.1% 90.8% 89.1% 89.9%

500k 89.6% 88.4% 80.9% 85.4% 84.1% 90.5% 88.4% 90.3%

750k 90.6% 89.8% 81.6% 87.9% 83.3% 90.3% 89.6% 91.9%

1M 92.9% 90.8% 82.8% 87.9% 85.4% 92.1% 89.1% 93.1%

TABLE 3.1: Comparing trainers on MNIST, displaying test set
accuracy over time. Rows are per number of samples trained on,

columns are per optimization algorithm.

44

3.7 Applying adadelta’s per-weight learning rate to EG±

Based on the success we saw in Section 3.6, we decided to try to pull in some of

the features that have worked in other gradient descent techniques to try to im-

prove EG± further. A significant amount of work has gone into devising custom

per-weight learning rates. We now experiment with utilizing Adadelta’s (Zeiler,

2012) method of computing the learning rate per weight and apply it to EG±.

Adadelta was introduced as an improvement over Adagrad’s approach to

computing a learning rate per weight. For a review of Adagrad see 1.2.4. Ada-

grad computed a per-weight learning rate by maintaining a sum of square gra-

dients history of the gradient, allowing weights with a small gradient to take

larger step sizes. Adadelta (see 1.2.5 improved upon Adagrad by maintaining

a decaying history of both the weight values and gradients and using the ratio

of the two to adjust the learning rate. Adadelta succeeds in not decaying the

learning rate over time. Furthermore Adadelta completely replaces the learning

rate parameter, whereas Adagrad still required a global learning rate parameter.

This effort takes the Adadelta method of computing the learning rates and

uses that as the learning rate for EG±. This has one immediate challenge in that

the per-weight learning rates computed by the Adadelta method tend to stay

around zero to one. Anything near one will be much too high of a learning

rate for EG±, causing numeric overflow (Infinity values), so we further scale the

per-weight learning rate by a fixed global learning rate.

The vector of Adadelta per-weight learning rates η is computed via the fol-

lowing formulas:

Gt+1 = ρ ·Gt + (1− ρ) · ∇wJ(w)t
2 (3.1)

ηt+1 =

√
Xt + ε

Gt+1 + ε
(3.2)

45

Xt+1 = ρXt + (1− ρ)(wt+1 −wt)
2 (3.3)

η The per-weight learning rates to be used by EG± (in combination with the
global learning rate scaling parameter)

ρ A hyperparameter, usually fixed to a value above 0.9, we use 0.95.
G The gradient sum, this vector stores a decaying sum of past square gradi-

ents.
X this vector stores a decaying square-sum of changes in the weight values.
w the vector of neural network weights, in the case of EG± these are the

weight value after taking the difference between positive and negative
weights.

∇wJ the gradient of the weights with respect to the loss function. This is the
gradient calculated by backprop.

ε is a small value to avoid numerical issues.
t The iteration step, t+1 is the updated iteration step, t is the previous itera-

tion step.

It should also be noted that the X sums were initialized to 1.0 in this imple-

mentation. An issue with poor initialization was discussed in Section 1.2.5, and

is particularly problematic with EG± because it causes an exploding weights

issue (Infinity values aren’t hard to come by in exponentiation).

The ultimate result of this effort performs at approximately the same level

with EG±, and it’s notable that the global learning rate needed to be tuned care-

fully to achieve the results. We present the results of training EG±, and EG±

with Adadelta adaptive learning rates, and 7 other methods in table 3.2.

samples SG
D

SG
D

+M
om

en
tu

m
A

da
m

A
da

gr
ad

W
in

do
w

gr
ad

A
da

de
lta

N
es

te
ro

v

EG
±

EG
±

A
da

pt
iv

e
LR

885k 92.3% 90.8% 72.1% 89.3% 85.1% 92.1% 91.4% 92.9% 92.2%

46

FIGURE 3.9: EG± in red, EG± with Adagrad adaptive learning
rate in yellow (with "good" initialization, see 1.2.5.1).

TABLE 3.2: Comparing all gradient optimization methods on a
2 layer MNIST dataset, including EG± with adaptive learning
rate from Adadelta, the adaptive EG± uses a global learning rate

parameter of 0.02, U=40, and ρ=0.95.

We would also like to take a look at how EG± with adaptive learning rates

performs on the 2D visualization presented for all of the other optimization

methods. Figure 3.9 shows EG± updates vs. EG± with adaptive learning rates.

In this 2D simplified example there certainly appears to be an improvement in

the results, however in the practical example applying EG± to MNIST, it didn’t

make a notable difference.

3.8 Sum of square loss vs. cross entropy

During experimentation both square loss and cross entropy were used on MNIST

datasets. Cross entropy is well known to perform better on classification tasks

47

such as MNIST, however it was notable that when we used square loss, even

though it’s inferior to cross entropy for classification, EG± performed better than

SGD in the case of square loss, but when cross entropy was applied SGD with

L1 or L2 regularization on the loss function out performed EG without regular-

ization on the loss function. This note is added for completeness sake, there was

no further follow up regarding the choice of loss functions. All further results

utilize cross entropy as a loss function.

3.9 EG+- compared vs. SGD/L1 regularization

In this experiment we hypothesize that EG± its self is performing a form of L1

regularization. We compare EG± with varying U scaling parameters from 20 to

70 to SGD with L1 regularization of the weights being added to the loss function,

varying the amount of regularization across an appropriate range of values.

This network is trained on a 5k subsample of the MNIST dataset, and results

are reported on a held out test set of 10k samples.

For the top 3 values of L1 regularization the results in Figure 3.10 show that

SGD with L1 regularization out performed EG± with no regularization on the

cost function, over a variety of U scaling parameters. This suggests that regu-

larization on the cost function is a more significant advantage, in particular we

find that regularizing EG± seems to be beneficial in Section 3.6.

3.10 Sharing weights applied to EG±

Weight sharing is a concept drawn from extensive work in online learning. In

the online learning context weight sharing is the process of adding some past

history of the weight values to the current values, using a distribution such as

uniform, decaying past, and other more complex techniques. These approaches

48

FIGURE 3.10: 6 networks trained with SGD and L1 regularization
on a cross entropy loss function with varying lambda regulariza-
tion parameters, vs. 6 networks trained with EG± given varying
U scaling parameters and per-neuron normalization. SGD with

L1 regularization out performs EG±.

have the benefit in the online learning setting weights can return more quickly

to a previously remembered state.

In the context of gradient descent optimization we have experimented with

sharing a past average of weights to the current update step. The percentage of

past average weight is a fixed hyperparameter, α.

The weight update step has the following addition to share the past average:

Algorithm 3: EG± sharing update
Data: Neural network weights, θ, past averageA of the weights, and α

sharing parameter
Result: Updated weights θ with sharing applied
for each weight: θi, and past average Ai do

Update θi with EG± algorithm, unnormalized
θi ← (1− α) · θi + α ·Ai
Normalize as per the standard EG± process

end

49

FIGURE 3.11: Results of weight sharing for increasing values of
α, the more sharing was added, the worse the performance of the

network.

In Figure 3.11 the results of sharing were clearly not beneficial to the net-

work. In Figure 3.12 we can understand the likely cause. Sharing as it’s im-

plemented here was designed to bring weights back to a previous state. In the

online learning setting this is a desirable property. However in the setting of gra-

dient descent optimization, drawing the weights back to a previous state is not

our objective. Figure 3.12 shows the movement of 20 randomly selected weights

as they train. The values of those weights converges to a value, but does not

jump around or return to a previous state as they might in the online learning

setting.

Based on this experimentation, sharing as it’s performed in the online learn-

ing setting isn’t expected to be directly applicable to EG± in the gradient descent

domain. However changes to the way sharing is applied might have some ben-

eficial value still, Adagrad (1.2.4), Adadelta (1.2.5), and Adam (1.2.8) all have

forms of sharing past averages that are interpreted as adaptive learning rates.

50

FIGURE 3.12: A plot of the movement of 20 randomly selected
weights as EG± trains with per-neuron normalization. In the first
few steps some weights train in one direction and then change,
but after the initial few steps all weights simply converge to a

value, never returning to a previous state.

3.11 Overfitting with SGD vs EG±

We experiment here with overfitting by comparing EG without regularization

against SGD with L2 regularization on networks with large numbers of weights.

We use a 6 layer fully connected feed forward network. Fully connected neural

networks tend to perform worse as you add more and more layers. This is due to

a combination of factors including overfitting due to a large number of weights

and the vanishing gradient problem. We utilize this architecture to test how EG±

performs in these less than optimal conditions against SGD.

In Figure 3.13 the results confirm what we’ve seen in other experiments, that

SGD with L2 regularization will out perform EG± with no regularization. Based

on results presented in earlier sections we can surmise that adding L2 regular-

ization to the loss function for EG± would have improved the results for EG±.

One rather interesting result of note here is that we compared both square

51

FIGURE 3.13: Four networks are trained using EG± and SGD us-
ing the MNIST dataset. Square loss is used for two (which is non
optimal), and cross entropy is used for two. SGD with square
loss fails to train, where EG± does, but with cross entropy (the
correct loss function for classification), SGD with L2 regulariza-

tion outperforms EG±. All with per-neuron normalization.

loss to cross entropy loss in this case. It should be noted that square loss for a

classification problem is distinctly non optimal. That non optimality aside, it is

worth noting that EG±was able to train using square loss, whereas SGD failed to

train with square loss. Whether this result holds for regression problems where

square loss is the correct loss function was not tested, but this result does seem

to suggest that EG± might have an advantage in regression problems.

3.12 Results of applying EG+- in a convolutional neural

network

This section presents EG± in the context of a convolutional neural network as

it’s implemented in ConvnetJS. Convolutional neural networks are ubiquitous

with image processing tasks such as classification. ConvnetJS implements a 3

52

layer convolutional neural network to do classification of the CIFAR10 dataset

(Krizhevsky (2009)). The network uses ReLu activations and a softmax/cross

entropy loss function.

We have trained a network for 200,000 iterations, with a batches of 4 im-

ages, and L2 regularization of 0.001 using both EG± and Nesterov. These net-

works produce a test set accuracy in the mid around 65% for both EG± and

Nesterov, achieving higher accuracy with longer training (this platform is not

efficient enough to run for significantly longer, with GPU support this network

configuration can achieve accuracy close to 80%).

The results (see example 3.14) for training in this network are similar be-

tween EG± and Nesterov. At this point in training the Nesterov trainer achieves

61.2% accuracy on a random test set of the past 1000 test images, and the EG±

trainer achieves 60.2% accuracy. The accuracy on test set has enough variance

that these two results can be interpreted as quite similar.

In Section 3.3 we visualized the distribution of weights and biases that were

generated from these two models. In this section we present further visuals gen-

erated by ConvnetJS with regards to the networks. We do not note significant

differences between EG± and Nesterov trainers in this context. In particular the

visualizations don’t provide a definitive difference in terms of gradient activa-

tions, weight/bias distribution, or notable results regarding learning efficiency.

More direct comparison were presented in Section 3.6. The visualizations here

are available online at https://goo.gl/68hIZb.

The images in Figure 3.15 show just the first layer of the convolutional neural

network. The input image is shown, with the activations of each pixel, and for

the first convolutional network the activation values of each neuron are shown

along with the backprop generated gradient value (where gray is 0, black repre-

sents a negative gradient, and white represents a positive gradient). Analyzing

53

https://goo.gl/68hIZb

FIGURE 3.14: Classification results of test images from CIFAR10
dataset using a 3 layer CNN trained with EG± for 200,000 itera-

tions, a batch sizes of 4, and per-neuron normalization.

FIGURE 3.15: Activation values (top), and the gradient val-
ues, whiteness represents positive gradients, blackness repre-
sents negative gradients, for each pixel in the first layer of the
convolutional neural network. The left image was produced by

EG±, the right was produced with the Nesterov trainer.

54

these images for the two networks doesn’t draw one to a conclusion that there

is a major difference between the trainers, at least from the perspective of the

activations and gradients being produced. It does seem that the problem set its

self dictate the distribution of gradients and activations to a greater degree than

the trainer itself does.

3.13 EG± on residual neural networks

In previous work EG± was tested on fully connected networks with the from-

scratch Matlab implementation, and basic convolutional networks in Karpathy’s

javascript deep learning framework. The final reference implementation of EG±

in Tensorflow makes it possible to test larger models that require GPUs to train.

We trained EG and various additive optimizers on a well respected residual

network which has achieved state of the art on the cifar10 dataset recently. The

version of the network used is derived from Tensorflow’s research model He

et al. (2016, 2015); Zagoruyko and Komodakis (2016). In this context we compare

EG with its varying normalization forms to Vanilla SGD, SGD with Momentum,

and Adam.

Dataset EG
Pe

r W
ei

gh
t

EG
Pe

r N
eu

ro
n

EG
Pe

r V
ar

ia
bl

e
EG

Fu
ll

G
ra

ph
SG

D

SG
D

+M
om

en
tu

m
A

da
m

10k Test samples 91.7% 81.3% 92.0% 88.0% 89.0% 89.0% 87.5%

Learning Rate 1e-3 1e-4 1e-4 1e-3 1e-4 1e-3 1e-4

Batch Size 128 256 256 128 128 128 256

U-Scaling 100 100 100 100 - - -

Momentum rate - - - - - 0.98 -

55

TABLE 3.3: EG vs other optimizers compared using a 32 layer
residual network on the cifar10 dataset.

Hyperparameter Search: The results in this experiment were obtained after

running a hyperparameter search on each optimizer to determine the best set-

tings for learning rate, batch size, and U-scaling parameter for each optimizer.

The hyperparameter search followed a coordinate descent approach in which

each attribute has a set of possible values assigned and each value is tested. The

best result for each attribute is accepted after all values are tested and the next

attribute is tested using the best result from each previous attribute. This process

continues for at least 2 full iterations of all attributes. The process is validated

empirically, but is not rigorous. The trade off for lack of rigor is speed and sim-

plicity.

3.14 Adversarial examples

Black box adversarial samples, images in this case, are samples from the origi-

nal dataset which are modified to fool the network into misclassifying the image.

Such black box adversarial examples have been demonstrated to fool neural net-

works Xiao et al. (2018); Eykholt et al. (2017) even when access to the networks

weights or ability to query is not provided. We have used such examples to test

EG± in comparison to other additive gradient optimizers, see Figure 3.16. The

experiment presented here is a 32 layer residual network trained on the cifar10

dataset using a variety of optimizers.

The results demonstrate that EG± performs significantly better than most

other optimizers on the adversarial samples, with the notable exception of vanilla

SGD which also performs quite well against them. The common feature of SGD

and EG± is that neither uses momentum as part of their optimization algorithm.

Therefore we postulate that momentum is the causal factor for the improved

56

FIGURE 3.16: Visualization of two original cifar10 test images
and the correspondingly altered adversarial image. Although
they look quite similar, minor modifications can be noted. This
is a black box adversarial attack, produced without access to the

original model.

performance. Credit for this particular insight goes to Keller Jordan who first

noticed that SGD performs differently than other additive optimizers.

Table 3.4 show the results of experiments training the 32 layer resnet with

various optimizers and testing them against 1000 test-set samples from cifar10

which were originals or adversarial versions of the same image designed to fool

the network using a blackbox attack.

57

Dataset EG
Pe

r W
ei

gh
t

EG
Pe

r N
eu

ro
n

EG
Pe

r L
ay

er
EG

Fu
ll

G
ra

ph
SG

D

SG
D

+M
om

en
tu

m
A

da
m

Test 91.7% 87.3% 93.1% 87.1% 85.4% 86.9% 87.0%

Adversarial 35.1% 54.5% 39.2% 48.2% 74.1% 54.7% 30.0%

TABLE 3.4: Comparison of EG optimizer with varying normal-
ization method against other optimizers using 1000 test cifar10

samples and adversarial versions of the same images.

3.15 Conclusion

In this work we began by analyzing EG± and comparing it to vanilla SGD, and

how EG± by its self would compare with SGD with L1 and/or L2 regulariza-

tion. The regularized networks using SGD tended to out perform EG± except

in the case where random noise was added as features. In these cases EG± out

performed SGD even when SGD had L2 regularization.

In later work we found the EG± performed quite well against other popular

gradient descent optimization algorithms. Notably when L2 regularization was

included in the cost and gradient EG± seemed to perform best-in-class against

other algorithms on a small 2 layer MNIST data set.

In the case of a more complex convolutional neural network using the CI-

FAR10 image classification dataset we found that EG± and Nesterov performed

comparably, but due to the slow training times inherent in ConvnetJS, it wasn’t

possible to do exhaustive hyperparameter searches that are necessary to truly

report results on these larger and more compute-intensive networks.

We attempted to combine per-weight learning rates of Adagrad, one of the

better known gradient descent optimization algorithms to EG±. While we show

58

that this approach appears to work well in a 2D visualization example, it doesn’t

demonstrate a significant advantage when compared head to head with other

trainers.

Finally we provide a reference implementation of EG± in tensorflow and

demonstrate that it works comparably well to other gradient descent algorithms

on modern ResNet architectures.

In summary, EG± appears to work well as a gradient descent algorithm, com-

parable with the best algorithms used in practice today. There are some special

cases such as generated noise where it works better. EG± has some advantages

over all but vanilla SGD on black box adversarial attacks.

59

Bibliography

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

Z. Deng, C. Xu, Q. Cai, and P. Faraboschi. Reduced-precision memory value

approximation for deep learning. 2015.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12

(Jul):2121–2159, 2011.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song. Robust physical-world attacks on deep learning mod-

els, 2017.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Y. W. Teh and M. Titterington, editors, Pro-

ceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–

256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL

http://proceedings.mlr.press/v9/glorot10a.html.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation

for MIT Press. URL http://www.deeplearningbook.org.

60

http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-

tion, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual net-

works, 2016.

G. Hinton. Rms prop. URL http://www.cs.toronto.edu/~tijmen/

csc321/slides/lecture_slides_lec6.pdf.

e. a. Karpathy. Convnetjs - deep learning in your browser. Online. URL http:

//cs.stanford.edu/people/karpathy/convnetjs/.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates

for linear prediction. In Proceedings of the twenty-seventh annual ACM sympo-

sium on Theory of computing, pages 209–218. ACM, 1995.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent

for linear predictors. Information and Computation, 132(1):1–63, 1997.

A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.

J. Langford. Machine learning (theory) - exponentiated gradient, 08 2007. URL

http://hunch.net/?p=286.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

ISSN 0018-9219. doi: 10.1109/5.726791.

Y. Nesterov. A method of solving a convex programming problem with conver-

gence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376,

1983.

61

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://hunch.net/?p=286

M. A. Nielsen. Neural nnetwork and deep learning. Determination Press, 2015.

D. Parks. Experiemental neural network, matlab. Online, 2016.

URL https://github.com/davidparks21/experimental_neural_

network_matlab.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

neural networks. ICML (3), 28:1310–1318, 2013.

N. Qian. On the momentum term in gradient descent learning algorithms. Neu-

ral networks, 12(1):145–151, 1999.

S. Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

T. Schaul, I. Antonoglou, and D. Silver. Unit tests for stochastic optimization.

arXiv preprint arXiv:1312.6055, 2013.

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In International

Conference on Computational Learning Theory, pages 545–560. Springer, 2005.

N. Srinivasan, V. Ravichandran, K. Chan, J. Vidhya, S. Ramakirishnan, and S. Kr-

ishnan. Exponentiated backpropagation algorithm for multilayer feedforward

neural networks. In Proceedings of the 9th International Conference on Neural In-

formation Processing, 2002. ICONIP ’02., volume 1, pages 327–331. IEEE, 2002.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

I. Sutskever. Training recurrent neural networks. PhD thesis, University of Toronto,

2013.

62

https://github.com/davidparks21/experimental_neural_network_matlab
https://github.com/davidparks21/experimental_neural_network_matlab

R. S. Sutton. Two problems with backpropagation and other steepest-descent

learning procedures for networks. In Proc. 8th annual conf. cognitive science

society, pages 823–831, 1986.

C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Generating adversarial

examples with adversarial networks, 2018.

S. Zagoruyko and N. Komodakis. Wide residual networks, 2016.

M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

63

	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Introduction
	Stochastic Gradient Descent Optimization
	Gradient descent algorithm variants
	Vanilla SGD
	SGD with Momentum
	Nesterov accelerated gradient descent
	Adagrad
	Adadelta
	Adadelta Initialization Issues

	Window Grad
	RMSprop
	Adam

	Exponentiated Gradient pm Update Algorithm
	Exponentiated Gradient
	Exponentiated Gradient pm
	Memory footprint and computation cost
	U Scaling
	Normalization method

	EGpm update algorithm
	Concrete Implementations
	EGpm code from ConvnetJS
	EGpm Initialization

	Visualization

	Findings and conclusions
	Summary of findings
	U parameter scaling
	Distribution of weights produced by EG+- vs. Nesterov in a CNN
	Unnormalized EG
	EG+/- with random noisy features
	Comparing EGpm with other optimization methods
	Applying adadelta's per-weight learning rate to EGpm
	Sum of square loss vs. cross entropy
	EG+- compared vs. SGD/L1 regularization
	Sharing weights applied to EGpm
	Overfitting with SGD vs EGpm
	Results of applying EG+- in a convolutional neural network
	EGpm on residual neural networks
	Adversarial examples
	Conclusion

	Bibliography

